WO2014148565A1 - 嫌気性処理システム及び嫌気性処理方法 - Google Patents

嫌気性処理システム及び嫌気性処理方法 Download PDF

Info

Publication number
WO2014148565A1
WO2014148565A1 PCT/JP2014/057577 JP2014057577W WO2014148565A1 WO 2014148565 A1 WO2014148565 A1 WO 2014148565A1 JP 2014057577 W JP2014057577 W JP 2014057577W WO 2014148565 A1 WO2014148565 A1 WO 2014148565A1
Authority
WO
WIPO (PCT)
Prior art keywords
anaerobic treatment
tank
biogas
organic
anaerobic
Prior art date
Application number
PCT/JP2014/057577
Other languages
English (en)
French (fr)
Inventor
典之 藤本
稲葉 英樹
珠坪 一晃
Original Assignee
住友重機械工業株式会社
独立行政法人国立環境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社, 独立行政法人国立環境研究所 filed Critical 住友重機械工業株式会社
Priority to KR1020157030432A priority Critical patent/KR20150143521A/ko
Priority to CN201480013244.1A priority patent/CN105164062B/zh
Publication of WO2014148565A1 publication Critical patent/WO2014148565A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • C02F3/2893Particular arrangements for anaerobic reactors with biogas recycling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/002Apparatus and plants for the biological treatment of water, waste water or sewage comprising an initial buffer container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an anaerobic processing system and an anaerobic processing method.
  • Methane fermentation in anaerobic treatment is a biological reaction that proceeds in a reduced state.
  • the wastewater containing oxygen flows into the anaerobic treatment tank for performing methane fermentation or air (oxygen) is mixed into the tank, the reaction is stopped when the oxidation-reduction potential rises to become an oxidation state. Therefore, it is ideal to perform methane fermentation in a state where oxygen is not mixed.
  • microorganisms such as facultative anaerobic bacteria contained in wastewater and sludge consume oxygen when decomposing organic matter in the tank, so the amount of oxygen in the tank is not strictly controlled. Can maintain an anaerobic state.
  • the present invention has been made in view of the above, and an anaerobic treatment system and an anaerobic treatment that can suppress an increase in oxidation-reduction potential of an organic wastewater in an anaerobic treatment tank and can perform anaerobic treatment suitably.
  • the purpose is to provide a method.
  • an anaerobic treatment system includes an anaerobic treatment tank that generates biogas by anaerobically treating organic wastewater, and the anaerobic treatment of the organic wastewater.
  • a pre-treatment tank for treating in the front stage of the tank, and a gas return means for returning at least a part of the biogas generated in the anaerobic treatment tank to the previous stage from the anaerobic treatment tank.
  • the anaerobic treatment method includes an anaerobic treatment step of generating biogas by anaerobically treating organic wastewater in an anaerobic treatment tank, and the anaerobic treatment of the organic wastewater.
  • the biogas generated in the anaerobic treatment tank is returned to the preceding stage from the anaerobic treatment tank.
  • the biogas returned to the front stage from the anaerobic treatment tank contains hydrogen sulfide.
  • the biogas comes into contact with the organic wastewater, so that hydrogen sulfide dissolves in the organic wastewater and lowers the redox potential of the organic wastewater.
  • it can suppress that an oxidation-reduction potential raises in an anaerobic processing tank, and can perform anaerobic processing suitably.
  • the gas return unit may include a first gas return path that returns at least a part of the biogas to the pretreatment tank. It is done.
  • a reduction tank that is provided in the preceding stage of the preceding stage treatment tank and that reduces the organic waste water is further provided, and the gas return means includes the The aspect which has a 2nd gas return path as the return path which returns at least one part of biogas to the said reduction
  • the gas tank is further provided with a reduction tank that is provided in a front stage of the front-stage treatment tank and that reduces the organic waste water
  • the gas return unit is a gas that returns a part of the gas in the front-stage treatment tank to the reduction tank. It can also be set as the aspect which has a transfer path.
  • the biogas from the anaerobic treatment tank is returned to the pretreatment tank, and the biogas is directly returned to the reduction tank by including a transfer line for transferring the gas in the pretreatment tank to the reduction tank.
  • a transfer line for transferring the gas in the pretreatment tank to the reduction tank.
  • an anaerobic treatment system and an anaerobic treatment method capable of suppressing an increase in the oxidation-reduction potential of organic waste water in an anaerobic treatment tank and suitably performing anaerobic treatment.
  • FIG. 1 is a schematic diagram showing a configuration of an anaerobic treatment system according to an embodiment of the present invention.
  • the anaerobic treatment system 1 includes an adjustment tank 9 that accepts organic wastewater that has passed through the raw water inflow pipe L1, a subsequent acid generation tank 11, and a subsequent anaerobic treatment tank 12.
  • the adjustment tank (reduction tank) 9 is a tank that performs flow rate adjustment processing of the organic waste water to be sent to the subsequent stage. Moreover, the adjustment tank 9 has a function as a reduction tank which performs a reduction process. In the adjustment tank 9, the oxidation-reduction potential of the organic waste water is lowered. As a method for reducing the oxidation-reduction potential of the organic waste water, there can be mentioned a method of mixing a reducing agent such as sodium sulfide, sulfate or the like with the organic waste water in the adjustment tank 9. From the adjustment tank 9, organic waste water is sent to the acid production tank 11 through the water pipe L2 at a predetermined flow rate.
  • a reducing agent such as sodium sulfide, sulfate or the like
  • the acid generation tank (pre-treatment tank) 11 decomposes organic substances contained in the organic wastewater into acetic acid and the like by acid generating bacteria.
  • an alkali agent for example, sodium hydroxide
  • a water supply pipe L3 is connected to the acid generation tank 11, and the organic waste water in the acid generation tank 11 flows into the upward flow type anaerobic treatment tank 12.
  • the anaerobic treatment tank 12 is composed of a rectangular parallelepiped or cylindrical container, and is a type of water treatment tank called an EGSB (Expanded Granular Sludge Bed) reaction tank.
  • An inflow portion 13 is provided at the lower portion of the anaerobic treatment tank 12.
  • the inflow portion 13 communicates with the water supply pipe L3 and causes the organic waste water W to flow into the anaerobic treatment tank 12.
  • the inflow portion 13 is, for example, a water pipe that is provided with holes uniformly in the longitudinal direction.
  • granular sludge formed by granulating anaerobic sludge is stored.
  • the organic waste water W is anaerobically treated by anaerobic bacteria in the granule sludge by contacting the granule sludge. As such granular sludge settles and accumulates in the lower part in the organic waste water, a granular sludge layer 14 is formed in the lower part of the anaerobic treatment tank 12.
  • the organic waste water W is introduced into the inside from the inflow portion 13 provided in the lower portion thereof to cause upward flow, and the granule sludge layer 14 in which the anaerobic microorganisms are aggregated is organic.
  • the organic waste water W is anaerobically treated through the effluent water W.
  • the organic drainage W of the liquid layer contains floating granular sludge that has floated from the granular sludge layer 14 and biogas (for example, methane gas) generated by anaerobic treatment.
  • the floating granule sludge is one in which the granule sludge floats.
  • the gas sludge floats on the granule sludge or the gas is encapsulated therein.
  • the main components of biogas are methane and carbon dioxide, and other components such as hydrogen sulfide, nitrogen, and hydrogen are also contained in small amounts.
  • a three-phase separation unit 18 for separating the organic waste water W, the floating granular sludge, and the biogas is disposed.
  • an inlet 18a for introducing the organic waste water W into the three-phase separation unit 18 is formed.
  • an introduction plate 19 installed along the bottom of the three-phase separation unit 18 is provided below the three-phase separation unit 18 and around the introduction port 18a. It has been.
  • the introduction plate 19 is formed with a return port 19a for returning the organic waste water W that has not been introduced into the introduction port 18a downward.
  • a rectifying plate 20 for adjusting the flow of the organic waste water W returned through the return port 19 a of the introduction plate 19 is provided further below the introduction plate 19.
  • Organic drainage water W flows through the granule sludge layer 14 and flows upward, and flows into the introduction path formed between the introduction plate 19 and the three-phase separation portion 18 by the introduction plate 19 from the outside. Part of the organic waste water W that has passed through the introduction path flows into the three-phase separation part 18 from the introduction port 18a, and the other part flows downward from the return port 19a of the introduction plate 19. Yes.
  • the organic waste water W that has flowed into the three-phase separation section 18 overflows from the side wall 18b of the three-phase separation section 18 and is collected in the treated water discharge section 23 as treated water.
  • the liquid level H of the organic waste water W is formed at the height of the upper end of the side wall 18b.
  • Part of the treated water in the treated water discharge unit 23 is returned to the acid generation tank 11 through the treated water return path L4, and the remaining treated water in the treated water discharge unit 23 is discharged out of the system through the drain pipe L5.
  • a partition wall 24 is provided on the inner side of the side wall 18 b of the three-phase separation unit 18 so that the organic waste water W flowing from the inlet 18 a does not directly flow into the treated water discharge unit 23. ing.
  • the aforementioned biogas is temporarily stored in the closed space 31 above the liquid level H.
  • Organic waste water W is stored in the anaerobic treatment space 33 below the liquid surface H.
  • the anaerobic treatment of the organic waste water W is performed in the anaerobic treatment space 33, and biogas is generated.
  • the biogas rises and reaches the liquid level H, the biogas is temporarily stored in the gas storage space 31.
  • the biogas in the gas storage space 31 is discharged to the outside through the gas recovery line L6 and recovered as a useful energy source.
  • a return line L7 (gas return means) is provided for branching off from the gas recovery line L6 and returning the biogas to the previous stage.
  • the gas return line L7 further includes a gas return line L8 (gas return means: second gas return path) for returning a part of the biogas to the adjustment tank 9, and a gas for returning a part of the biogas to the acid generation tank 11.
  • Branches to the return line L9 gas return means: first gas return path).
  • the ends of the gas return lines L8 and L9 on the side of the adjustment tank 9 and the acid generation tank 11 are inside the organic wastewater stored in each tank, and are configured to blow biogas returned into the organic wastewater. Preferably there is.
  • the biogas returned by the gas return lines L8 and L9 is suitably mixed with the organic waste water in each tank.
  • gas return lines L8 and L9 are provided with valves V8 and V9 that can open and close the lines, respectively.
  • biogas methane gas, carbon dioxide, etc.
  • the biogas in the gas storage space 31 flows through the gas recovery line L6 due to the pressure in the gas storage space 31 and is discharged.
  • the biogas is sent to the adjustment tank 9 through the gas return line L7 branched from the gas recovery line L6 and the gas return line L8 branched from the gas return line L7. Further, the biogas is sent to the acid generation tank 11 through the gas return line L9 branched from the gas return line L7. Adjustment of the return amount of the biogas to the gas return lines L8 and L9 is performed by valves V8 and V9.
  • the anaerobic treatment in the anaerobic treatment tank 12 is a biological reaction caused by anaerobic bacteria (obligate anaerobic bacteria) such as methanogens that progress in a reduced state. Therefore, when the oxidation-reduction potential reaches an oxidation state of ⁇ 200 mV or more, the biological reaction stops.
  • anaerobic bacteria obligate anaerobic bacteria
  • methanogens that progress in a reduced state. Therefore, when the oxidation-reduction potential reaches an oxidation state of ⁇ 200 mV or more, the biological reaction stops.
  • the microorganisms flavative anaerobes present in the sludge of the granular sludge layer 14 consume oxygen when the organic matter is decomposed. Even if an amount of oxygen is mixed in the organic waste water, the methane fermentation proceeds and the anaerobic treatment is suitably performed.
  • the anaerobic treatment tank when a certain amount or more of oxygen is supplied to the anaerobic treatment tank, oxygen cannot be consumed and the oxidation-reduction potential increases, and as a result, the anaerobic treatment may not be suitably performed.
  • the oxidation-reduction potential increases there is a case where the concentration of organic substances contained in the organic waste water is low and the activity of microorganisms for consuming oxygen is not sufficiently performed.
  • the amount of activity of organic matter decomposition by microorganisms is small, the amount of oxygen consumed decreases as the amount of activity decreases.
  • the dissolved oxygen concentration in organic wastewater is higher than that at a medium temperature range (30-40 ° C) or high temperature range (50-60 ° C). It can be considered that oxygen is not sufficiently decomposed by microorganisms. In this way, oxygen in organic wastewater is not sufficiently removed, the oxidation-reduction potential rises, and if it exceeds -200 mV, anaerobic treatment may not be performed sufficiently and the quality of the treated water may deteriorate. There is.
  • anaerobic treatment system 1 in the anaerobic treatment system 1 according to the present embodiment, a part of the biogas generated in the anaerobic treatment tank 12 in the anaerobic treatment tank 12 is adjusted from the anaerobic treatment tank 12 and the adjustment tank 9 and the acid generation tank. 11 is provided.
  • Hydrogen sulfide is a highly reducing gas, which dissolves in the organic waste water to increase the concentration of sulfide ions in the organic waste water, whereby the redox potential of the organic waste water can be kept low. Therefore, even if the organic matter concentration in the organic wastewater is low, or even when the organic matter is not sufficiently decomposed by microorganisms, such as anaerobic treatment at low temperature, the oxygen consumption of the organic wastewater is not sufficient. An increase in potential can be suppressed and anaerobic treatment can be suitably performed.
  • the sludge of the granular sludge layer 14 of the anaerobic treatment tank 12 contains microorganisms that undergo a sulfuric acid reduction reaction, and the sulfates in the organic wastewater by the anaerobic treatment are reduced sulfur such as sulfur ions. This keeps the redox potential of the organic wastewater low.
  • the microorganisms that carry out the sulfate reduction reaction are also active. It is an environment that cannot.
  • the hydrogen sulfide contained in the biogas dissolves into the organic waste water before the anaerobic treatment tank 12 to prevent the deficiency of hydrogen sulfide in the organic waste water, and to reduce the redox potential of the waste water. Can be kept low.
  • Biogas may be returned to both the adjustment tank 9 and the acid generation tank 11 as in the anaerobic treatment system 1 shown in FIG. 1 or may be returned to only one of them. .
  • the adjustment tank 9 and the acid production tank 11 are compared, in the acid production tank 11, the step of decomposing the organic matter contained in the organic waste water into acetic acid or the like by the acid producing bacteria is performed. It becomes low compared with the adjustment tank 9.
  • the pH is lowered in this way, hydrogen sulfide in the biogas is less likely to dissolve in the organic wastewater. Therefore, the biogas is returned to the adjustment tank 9 having a higher pH of the organic wastewater. It is thought that hydrogen sulfide is likely to dissolve in organic waste water.
  • a gas transfer path that collects the gas in the upper part of the acid generation tank 11 and sends it to the adjustment tank 9
  • a gas transfer line L10 (shown by a broken line in FIG. 1) may be further provided.
  • generation tank 11 is provided. Gas that returns biogas directly to the adjustment tank 9 by returning the biogas from the anaerobic treatment tank 12 to the acid generation tank 11 and further transferring the gas in the acid generation tank 11 to the adjustment tank 9. Even if the return line L8 is not provided, the biogas and the organic waste water can be brought into contact with each other in the adjustment tank 9, and hydrogen sulfide can be dissolved in the organic waste water.
  • a gas return line may be connected to the water supply pipe L2 or the water supply pipe L3 to mix organic waste water and biogas flowing in the water supply pipe. That is, before the anaerobic treatment tank 12, by mixing the biogas returned from the anaerobic treatment tank 12 and the organic waste water, the hydrogen sulfide dissolves in the organic waste water, thereby reducing the redox potential. .
  • drain in the anaerobic processing tank 12 can be suppressed, and anaerobic processing can be performed suitably.
  • the return amount of the biogas to be returned may be adjusted according to the redox potential of the organic waste water, for example, by opening and closing valves V8 and V9.
  • the anaerobic treatment tank 12 is not limited to an EGSB reaction tank, and may be a UASB (Upflow Anaerobic Sludge Blanket) reaction tank, for example.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 嫌気性処理槽内の有機性排水の酸化還元電位の上昇を抑制し、好適に嫌気性処理を行う。 嫌気性処理槽12における嫌気性処理で発生したバイオガスの一部を嫌気性処理槽12より前段の調整槽9及び酸生成槽11に返送する構成を備える。これにより、バイオガスに含まれる硫化水素が有機性排水に溶け込んで有機性排水中の硫化物イオンの濃度を高めることにより、有機性排水の酸化還元電位を低く維持することができる。この結果、有機性排水中の有機物濃度が低い場合や、低温での嫌気性処理等、微生物による有機物分解が十分に行われず酸素の消費が十分ではない場合であっても、有機性排水の酸化還元電位の上昇を抑制し、嫌気性処理を好適に行うことができる。

Description

嫌気性処理システム及び嫌気性処理方法
 本発明は、嫌気性処理システム及び嫌気性処理方法に関する。
 有機物を含む有機性排水の処理方法として、多量の曝気動力を要し、余剰汚泥発生量も多い活性汚泥法に代えて、UASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性汚泥床)法やEGSB(Expanded Granular Sludge Bed:膨張粒状汚泥床)法などの高速メタン発酵法が普及してきている。これらのメタン発酵法等の嫌気性処理を用いた排水処理システムとしては、例えば特許文献1記載のものがある。特許文献1記載の排水処理システムのように、メタン発酵槽では、嫌気性のメタン生成菌によって有機酸がメタンガスや炭酸ガスに変換除去され、これにより処理水の水質向上が図られる。
特開2000-263084号公報
 嫌気性処理におけるメタン発酵は、還元状態で進行する生物反応である。ここで、メタン発酵を行う嫌気性処理槽に酸素を含む排水が流入したり、槽内に空気(酸素)が混入したりすることで酸化還元電位が上昇して酸化状態になると反応が停止するため、酸素が混入しない状態でメタン発酵を行うことが理想である。ただし、実際には、排水や汚泥に含まれる微生物(通性嫌気性菌等)が槽内の有機物を分解する際に酸素を消費するため、酸素の量を厳密に管理しなくても槽内の嫌気状態を維持することができる。
 しかしながら、有機物濃度が低い排水を嫌気性処理する場合には、微生物の有機物の分解量が減り、酸素の消費量が減るため、酸化還元電位の上昇する可能性がある。また、排水の温度が5~20℃程度の低温状況下にある場合でも、それ以上の温度の場合と比べて排水中の溶存酸素濃度が上昇するため、酸化還元電位が上昇する可能性がある。酸化還元電位が上昇すると、メタン発酵の効率が低下し、水質の悪化やメタン生成量(回収量)の低下が懸念される。
 本発明は上記を鑑みてなされたものであり、嫌気性処理槽内の有機性排水の酸化還元電位の上昇を抑制し、好適に嫌気性処理を行うことができる嫌気性処理システム及び嫌気性処理方法の提供を目的とする。
 上記目的を達成するため、本発明の一形態に係る嫌気性処理システムは、有機性排水を嫌気性処理することでバイオガスを発生させる嫌気性処理槽と、前記有機性排水を前記嫌気性処理槽の前段で処理する前段処理槽と、前記嫌気性処理槽で発生した前記バイオガスの少なくとも一部を前記嫌気性処理槽より前段に返送するガス返送手段と、を備えたことを特徴とする。
 また、本発明の一形態に係る嫌気性処理方法は、嫌気性処理槽において有機性排水を嫌気性処理することでバイオガスを発生する嫌気性処理工程と、前記有機性排水を前記嫌気性処理槽の前段で処理する前段処理工程と、前記嫌気性処理槽で発生した前記バイオガスの少なくとも一部を前記嫌気性処理槽よりも前段に返送するガス返送工程と、を備えたことを特徴とする。
 上記の嫌気性処理システム及び嫌気性処理方法では、嫌気性処理槽で発生したバイオガスの少なくとも一部が嫌気性処理槽より前段に返送される。嫌気性処理槽より前段に返送されるバイオガスには、硫化水素が含まれている。このため、嫌気性処理槽より前段において、バイオガスが有機性排水と接することで、硫化水素が有機性排水に溶け込み、有機性排水の酸化還元電位を低下させる。これにより、嫌気性処理槽において酸化還元電位が上昇することを抑制し、好適に嫌気性処理を行うことができる。
 ここで、上記作用を効果的に奏する構成として、具体的には、前記ガス返送手段は、前記バイオガスの少なくとも一部を前記前段処理槽へ返送する第1のガス返送路を有する態様が挙げられる。
 また、上記作用を効果的に奏する他の構成として、具体的には、前記前段処理槽の前段に設けられ、前記有機性排水を還元処理する還元槽を更に備え、前記ガス返送手段は、前記バイオガスの少なくとも一部を前記還元槽へ返送する返送路を第2のガス返送路を有する態様が挙げられる。
 また、前記前段処理槽の前段に設けられ、前記有機性排水を還元処理する還元槽を更に備え、前記ガス返送手段は、前記前段処理槽内のガスの一部を前記還元槽へ返送するガス移送路を有する態様とすることもできる。
 このように嫌気性処理槽からのバイオガスを前段処理槽に返送し、さらにその前段処理槽におけるガスを還元槽へ移送する移送ラインを備える構成とすることで、還元槽に直接バイオガスを返送するガス返送ラインを備えずとも、還元槽においてもバイオガスと有機性排水とが接触可能となり、有機性排水に硫化水素が溶け込むことが可能となり、嫌気性処理槽内の有機性排水の酸化還元電位の上昇を抑制することができる。
 本発明によれば、嫌気性処理槽内の有機性排水の酸化還元電位の上昇を抑制し、好適に嫌気性処理を行うことができる嫌気性処理システム及び嫌気性処理方法が提供される。
本実施形態に係る嫌気性処理システムの構成を説明する図である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
 図1は、本発明の一実施形態に係る嫌気性処理システムの構成を示す概略図である。嫌気性処理システム1は、原水流入管L1を通ってきた有機性排水を受け入れる調整槽9と、その後段の酸生成槽11と、更にその後段の嫌気性処理槽12と、を備える。
 調整槽(還元槽)9は、後段に送出する有機性排水の流量調整処理を行う槽である。また、調整槽9は、還元処理を行う還元槽としての機能を有している。調整槽9では、有機性排水の酸化還元電位を低下させる。有機性排水の酸化還元電位を低下させる方法としては、硫化ナトリウム等の還元剤や硫酸塩等を調整槽9内の有機性排水と混合させる方法が挙げられる。調整槽9からは、送水管L2を通じて酸生成槽11に所定の流量で有機性排水が送られる。
 酸生成槽(前段処理槽)11は、酸生成菌により有機性排水に含まれる有機物を酢酸等に分解する。また、酸生成槽11において、中和剤としてアルカリ剤(例えば、水酸化ナトリウム)を添加することも好ましい。酸生成槽11には、送水管L3が接続されており、酸生成槽11内の有機性排水が上向流式の嫌気性処理槽12に流入するようになっている。
 嫌気性処理槽12は、直方体状や円柱状の容器等からなり、EGSB(Expanded Granular Sludge Bed)反応槽などと呼ばれるタイプの水処理槽である。嫌気性処理槽12の下部には、流入部13が設けられている。流入部13は、送水管L3に連絡しており有機性排水Wを嫌気性処理槽12内に流入させる。流入部13は、例えば、長手方向に均一に穴部が設けられた送水管である。嫌気性処理槽12内には、嫌気性汚泥が粒状化してなるグラニュール汚泥が収納されている。有機性排水Wは、グラニュール汚泥に接触することにより、グラニュール汚泥中の嫌気性菌によって嫌気性処理される。このようなグラニュール汚泥が、有機性排水中で下部に沈降して溜まることにより、嫌気性処理槽12の下部にはグラニュール汚泥層14が形成されている。
 嫌気性処理槽12では、その下部に設けられた流入部13から有機性排水Wを内部に導入することによって上向きの流動を生じさせ、嫌気性微生物が凝集しているグラニュール汚泥層14に有機性排水Wを通して、有機性排水Wを嫌気性処理する。グラニュール汚泥層14の上部には、当該グラニュール汚泥層14を通過し嫌気性処理を経た有機性排水Wの液層が形成されている。この液層の有機性排水Wには、グラニュール汚泥層14から浮上した浮上グラニュール汚泥や、嫌気性処理によって発生したバイオガス(例えば、メタンガス)が含まれている。なお、浮上グラニュール汚泥は、グラニュール汚泥が浮いたものであり、例えば、グラニュール汚泥にガスが付着したり、ガスが内包されたりなどしたものである。バイオガスの主な構成成分はメタンと二酸化炭素であり、硫化水素、窒素、水素等の他の成分も少量含まれる。
 また、嫌気性処理槽12の上部には、有機性排水Wと浮上グラニュール汚泥とバイオガスとを分離するための三相分離部18が、配置されている。
 三相分離部18の下端部には、有機性排水Wを三相分離部18の内部に導入する導入口18aが形成されている。この導入口18aに有機性排水Wを導くために、三相分離部18の下方であって導入口18aの周囲には、三相分離部18の底部に沿って設置された導入板19が設けられている。また、導入板19には、導入口18aに導入されなかった有機性排水Wを下側に返送するための返送口19aが形成されている。また、導入板19の更に下方には、導入板19の返送口19aを通って返送される有機性排水Wの流れを整えるための整流板20が設けられている。
 有機性排水Wは、上記グラニュール汚泥層14を通過し上向きに流動し、導入板19によって導入板19と三相分離部18との間に形成された導入路に外側から流入する。上記導入路を通った有機性排水Wの一部は、導入口18aから三相分離部18内に流入し、他の部分は、導入板19の返送口19aから下側に流れるようになっている。
 三相分離部18内に流入した有機性排水Wは、三相分離部18の側壁18bから外側に溢れ、処理水として処理水排出部23に集められる。側壁18bの上端の高さに、有機性排水Wの液面Hが形成される。処理水排出部23の処理水の一部は、処理水返送路L4を通じて酸生成槽11に返送され、処理水排出部23の処理水の残部は、排水管L5を通じて系外に排出される。三相分離部18において、三相分離部18の側壁18bの内側には、導入口18aから流入した有機性排水Wが直接処理水排出部23に流入しないようにするための隔壁24が設けられている。
 また、嫌気性処理槽12内で、液面Hよりも上方の閉鎖空間31には、前述のバイオガスが一時的に貯留される。液面H下の嫌気性処理空間33には、有機性排水Wが貯留される。
 嫌気性処理槽12では、嫌気性処理空間33で有機性排水Wの嫌気性処理が行われ、バイオガスが発生する。当該バイオガスが浮上し液面Hまで到達することで、ガス貯留空間31にバイオガスが一時的に貯留される。ガス貯留空間31のバイオガスは、ガス回収ラインL6を通じて外部に排出され有用なエネルギー源として回収される。
 さらにガス回収ラインL6から分岐してバイオガスを前段に返送するための返送ラインL7(ガス返送手段)が設けられている。ガス返送ラインL7は、更にバイオガスの一部を調整槽9に返送するガス返送ラインL8(ガス返送手段:第2のガス返送路)とバイオガスの一部を酸生成槽11へ返送するガス返送ラインL9(ガス返送手段:第1のガス返送路)とに分岐する。なお、ガス返送ラインL8,L9の調整槽9,酸生成槽11側の端部は、各槽に貯留される有機性排水の内部とし、有機性排水中に返送されるバイオガスを吹き込む構成であることが好ましい。このような構成を有することにより、ガス返送ラインL8,L9により返送されるバイオガスが各槽内の有機性排水と好適に混合される。
 また、ガス返送ラインL8,L9には、それぞれ、ラインを開閉可能とするバルブV8,V9が設けられている。
 続いて、上記嫌気性処理システム1による嫌気性処理方法について説明する。
(還元処理工程/前段処理工程)
 調整槽9に有機性排水が導入されると、調整槽9では、還元剤等を添加することで還元処理が行われる。これにより調整槽9内の有機性排水の酸化還元電位が低下される。還元処理後の有機性排水は、流量を調整されながら、調整槽9から酸生成槽11へ送られる。
(酸生成槽処理工程)
 調整槽9で調整された流量で、酸生成槽11に対し有機性排水が導入されると、酸生成槽11では、酸生成菌により有機性排水に含まれる有機物が酢酸等に分解される。これにより酢酸等の有機酸を多く含む有機性排水が、酸生成槽11から嫌気性処理槽12に送られる。
(嫌気性処理工程)
 嫌気性処理槽12の流入部13から導入された有機性排水Wは、嫌気性処理空間33内を上向きに流動する。このとき、有機性排水Wは、グラニュール汚泥層14を通過しながらグラニュール汚泥に接触し、嫌気性処理される。
(処理水排出工程)
 その後、液面Hまで到達した有機性排水Wは、側壁18bの上端を越えて処理水排出部23に溢れ、処理水として排水管L5を通じて系外に排出される。なお、排出された処理水には、後段で更なる所定の水処理が施される。
(ガス回収工程)
 上記嫌気性処理工程では、嫌気性反応によるバイオガス(メタンガス、二酸化炭素等)が発生し、液面Hまで浮上することでガス貯留空間31に一時的に貯留され、バイオガスの量が増加すると、ガス貯留空間31のバイオガスが、ガス貯留空間31の圧力によってガス回収ラインL6を流動し排出される。
(ガス返送工程)
 ガス回収ラインL6から分岐されたガス返送ラインL7、さらにガス返送ラインL7から分岐されたガス返送ラインL8を通って、バイオガスが調整槽9に送られる。また、ガス返送ラインL7から分岐されたガス返送ラインL9を通って、バイオガスが酸生成槽11に送られる。ガス返送ラインL8,L9へのバイオガスの返送量の調節は、バルブV8,V9によって行われる。
 続いて、以上説明した嫌気性処理システム1及び嫌気性処理方法による作用効果について説明する。
 嫌気性処理槽12における嫌気性処理は、還元状態において進行するメタン生成菌等の嫌気性菌(偏性嫌気性菌)による生物反応である。したがって、酸化還元電位が-200mV以上の酸化状態になると、生物反応が停止する。嫌気性菌による嫌気性処理を好適に行うためには、有機性排水に酸素が混入していない状態で嫌気性処理を行うことが好ましい。しかし、実際には、有機性排水に多少酸素が混入していても、グラニュール汚泥層14の汚泥に存在する微生物(通性嫌気性菌)が有機物の分解時に酸素を消費することから、若干量の酸素が有機性排水に混入していてもメタン発酵は進行し、嫌気性処理が好適に行われる。
 ただし、嫌気性処理槽に一定量以上の酸素が供給された場合、酸素を消費しきることができず、酸化還元電位は上昇し、その結果嫌気性処理が好適に行われないことが考えられる。酸化還元電位が上昇する例として、有機性排水に含まれる有機物の濃度が低く、酸素を消費するための微生物の活動が十分に行われない場合が挙げられる。微生物による有機物分解の活動量が少ない場合には、その活動量の減少に応じて消費される酸素が減少する。また、5~20℃の低温域において嫌気性処理をする場合には、中温域(30~40℃)や高温域(50~60℃)の場合と比べて、有機性排水中の溶存酸素濃度が高くなり、微生物による酸素の分解を十分に行うことができない場合が考えられる。このように、有機性排水中の酸素の除去が十分に行われず、酸化還元電位が上昇し、-200mVを上回ると、嫌気性処理が十分に行われなくなり、処理水の水質が悪化する可能性がある。
 これに対して、本実施形態に係る嫌気性処理システム1では、嫌気性処理槽12における嫌気性処理で発生したバイオガスの一部を嫌気性処理槽12より前段の調整槽9及び酸生成槽11に返送する構成を備える。
 これにより、バイオガスに含まれる硫化水素が有機性排水に溶け込む。硫化水素は還元性の高いガスであり、これが有機性排水に溶け込んで有機性排水中の硫化物イオンの濃度を高めることにより、有機性排水の酸化還元電位を低く維持することができる。したがって、有機性排水中の有機物濃度が低い場合や、低温での嫌気性処理等、微生物による有機物分解が十分に行われず酸素の消費が十分ではない場合であっても、有機性排水の酸化還元電位の上昇を抑制し、嫌気性処理を好適に行うことができる。
 また、嫌気性処理槽12のグラニュール汚泥層14の汚泥には、硫酸還元反応を行う微生物も含まれていて、嫌気性処理によって有機性排水中の硫酸塩類は、硫黄イオン等の還元性硫黄に変化し、これにより有機性排水の酸化還元電位低く保たれる。しかしながら、有機性排水中の有機物濃度が低い場合や、低温での嫌気性処理等、有機物分解が十分に行われず酸素の消費が十分ではない環境は、硫酸還元反応を行う微生物にとっても活発に活動できない環境である。したがって、嫌気性処理槽12よりも前段において、バイオガスに含まれる硫化水素が有機性排水に溶け込む構成とすることで、有機性排水中の硫化水素の欠乏を防止し、排水の酸化還元電位を低く維持することができる。
 なお、バイオガスは、図1に示す嫌気性処理システム1のように、調整槽9と酸生成槽11との双方に返送する構成としてもよいし、いずれか一方にのみ返送する構成としてもよい。
 また、調整槽9と酸生成槽11とを比較した場合、酸生成槽11では酸生成菌により有機性排水に含まれる有機物を酢酸等に分解する工程が行われるため、有機性排水のpHが調整槽9と比較して低くなる。このようにpHが低くなると、バイオガス中の硫化水素が有機性排水に溶け込みにくくなるため、有機性排水のpHがより高い調整槽9にバイオガスを返送する構成とすることで、バイオガスの硫化水素が有機性排水に溶け込みやすくなると考えられる。
 また、酸生成槽11において硫化水素の溶解が不十分である場合には、例えば、ガス返送ラインL9に加えて、酸生成槽11の上部のガスを回収して調整槽9に送るガス移送路であるガス移送ラインL10(図1では破線で示す)をさらに設ける構成としてもよい。なお、ガス移送ラインL10を有する構成とする場合は、酸生成槽11へのガス返送ラインL9が設けられることが前提である。嫌気性処理槽12からのバイオガスを酸生成槽11に返送し、さらにその酸生成槽11におけるガスを調整槽9へ移送する構成とすることで、調整槽9に直接バイオガスを返送するガス返送ラインL8を備えずとも、調整槽9においてもバイオガスと有機性排水とが接触可能となり、有機性排水に硫化水素が溶け込むことが可能となる。
 また、送水管L2又は送水管L3にガス返送ラインを接続し、送水管内を流れる有機性排水とバイオガスを混合させる構成としてもよい。すなわち、嫌気性処理槽12よりも前段において、嫌気性処理槽12から返送されるバイオガスと有機性排水とを混合させることによって、硫化水素が有機性排水に溶け込むことで酸化還元電位が低下する。この構成を有することで、嫌気性処理槽12における有機性排水の酸化還元電位の上昇を抑制することができ、嫌気性処理を好適に行うことができる。
 また、有機性排水の酸化還元電位に応じて、例えば、バルブV8,V9の開閉等によって、返送するバイオガスの返送量を調整する構成としてもよい。
 以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を変更しない範囲で様々な変更が可能である。例えば、嫌気性処理槽12は、EGSB反応槽に限られず、例えばUASB(Upflow Anaerobic Sludge Blanket)反応槽であってもよい。
 また、上記実施形態では、調整槽9において還元剤を有機性排水中に添加する構成について説明したが、還元剤の添加等の還元処理を調整槽9で行わず、流量の調整のみを行う構成としてもよい。
 1…嫌気性処理システム、9…調整槽(還元槽)、11…酸生成槽(前段処理槽)、12…嫌気性処理槽、L6…ガス回収ライン、L7,L8,L9…ガス返送ライン、W…有機性排水。

Claims (5)

  1.  有機性排水を嫌気性処理することでバイオガスを発生させる嫌気性処理槽と、
     前記有機性排水を前記嫌気性処理槽の前段で処理する前段処理槽と、
     前記嫌気性処理槽で発生した前記バイオガスの少なくとも一部を前記嫌気性処理槽より前段に返送するガス返送手段と、
     を備えたことを特徴とする嫌気性処理システム。
  2.  前記ガス返送手段は、前記バイオガスの少なくとも一部を前記前段処理槽へ返送する第1のガス返送路を有することを特徴とする請求項1記載の嫌気性処理システム。
  3.  前記前段処理槽の前段に設けられ、前記有機性排水を還元処理する還元槽を更に備え、
     前記ガス返送手段は、前記バイオガスの少なくとも一部を前記還元槽へ返送する第2のガス返送路を有することを特徴とする請求項1又は2記載の嫌気性処理システム。
  4.  前記前段処理槽の前段に設けられ、前記有機性排水を還元処理する還元槽を更に備え、
     前記ガス返送手段は、前記前段処理槽内のガスの一部を前記還元槽へ移送するガス移送路を有することを特徴とする請求項2に記載の嫌気性処理システム。
  5.  嫌気性処理槽において有機性排水を嫌気性処理することでバイオガスを発生させる嫌気性処理工程と、
     前記有機性排水を前記嫌気性処理槽の前段で処理する前段処理工程と、
     前記嫌気性処理槽で発生した前記バイオガスの少なくとも一部を前記嫌気性処理槽よりも前段に返送するガス返送工程と、
     を備えたことを特徴とする嫌気性処理方法。
PCT/JP2014/057577 2013-03-22 2014-03-19 嫌気性処理システム及び嫌気性処理方法 WO2014148565A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157030432A KR20150143521A (ko) 2013-03-22 2014-03-19 혐기성 처리시스템 및 혐기성 처리방법
CN201480013244.1A CN105164062B (zh) 2013-03-22 2014-03-19 厌氧处理系统及厌氧处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-060363 2013-03-22
JP2013060363A JP6019333B2 (ja) 2013-03-22 2013-03-22 嫌気性処理システム及び嫌気性処理方法

Publications (1)

Publication Number Publication Date
WO2014148565A1 true WO2014148565A1 (ja) 2014-09-25

Family

ID=51580238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057577 WO2014148565A1 (ja) 2013-03-22 2014-03-19 嫌気性処理システム及び嫌気性処理方法

Country Status (4)

Country Link
JP (1) JP6019333B2 (ja)
KR (1) KR20150143521A (ja)
CN (1) CN105164062B (ja)
WO (1) WO2014148565A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12031166B2 (en) 2019-05-28 2024-07-09 Tekniska Verken I Linköping Ab (Publ) Method for the production of biogas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540837A (zh) * 2016-03-04 2016-05-04 苏州苏沃特环境科技有限公司 三段式沼气反应器
GB2551344B (en) * 2016-06-13 2022-01-19 Woxford Environmental Tech Uk Ltd Anaerobic reactor
CN108101208A (zh) * 2017-12-13 2018-06-01 同济大学 一种高浓度有机废水的低温厌氧处理装置及其处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118192A (ja) * 1984-11-13 1986-06-05 Ngk Insulators Ltd 有機性廃水の嫌気性処理法
JPH05254801A (ja) * 1992-03-11 1993-10-05 Ishikawajima Harima Heavy Ind Co Ltd 生物学的水素製造方法及びその装置
JP2000218288A (ja) * 1999-02-01 2000-08-08 Kurita Water Ind Ltd 回分式嫌気性処理方法および装置
JP2000263084A (ja) * 1999-03-16 2000-09-26 Sumitomo Heavy Ind Ltd 廃水処理設備及び廃水処理方法
JP2001276881A (ja) * 2000-03-28 2001-10-09 Sumitomo Heavy Ind Ltd 嫌気性処理装置
JP2002292393A (ja) * 2001-03-30 2002-10-08 Sumitomo Heavy Ind Ltd メタン発酵処理装置および処理方法
JP2005224692A (ja) * 2004-02-12 2005-08-25 Sumitomo Heavy Ind Ltd 排水処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2966166B2 (ja) * 1991-12-04 1999-10-25 株式会社東芝 嫌気性水処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118192A (ja) * 1984-11-13 1986-06-05 Ngk Insulators Ltd 有機性廃水の嫌気性処理法
JPH05254801A (ja) * 1992-03-11 1993-10-05 Ishikawajima Harima Heavy Ind Co Ltd 生物学的水素製造方法及びその装置
JP2000218288A (ja) * 1999-02-01 2000-08-08 Kurita Water Ind Ltd 回分式嫌気性処理方法および装置
JP2000263084A (ja) * 1999-03-16 2000-09-26 Sumitomo Heavy Ind Ltd 廃水処理設備及び廃水処理方法
JP2001276881A (ja) * 2000-03-28 2001-10-09 Sumitomo Heavy Ind Ltd 嫌気性処理装置
JP2002292393A (ja) * 2001-03-30 2002-10-08 Sumitomo Heavy Ind Ltd メタン発酵処理装置および処理方法
JP2005224692A (ja) * 2004-02-12 2005-08-25 Sumitomo Heavy Ind Ltd 排水処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12031166B2 (en) 2019-05-28 2024-07-09 Tekniska Verken I Linköping Ab (Publ) Method for the production of biogas

Also Published As

Publication number Publication date
JP2014184382A (ja) 2014-10-02
CN105164062A (zh) 2015-12-16
CN105164062B (zh) 2017-08-01
JP6019333B2 (ja) 2016-11-02
KR20150143521A (ko) 2015-12-23

Similar Documents

Publication Publication Date Title
CN102745868B (zh) 一种去除废水中碳氮硫的方法
WO2014148565A1 (ja) 嫌気性処理システム及び嫌気性処理方法
Phan et al. Thermophilic anaerobic digestion and emerging methods for organic waste treatment: A review
US8163179B2 (en) Apparatus for removing dissolved hydrogen sulfide in anaerobic treatment
JP2010012446A (ja) 油脂含有排水処理装置
JP5262735B2 (ja) 嫌気処理方法及び装置
JP2006272252A (ja) 窒素含有有機性排水の処理方法
CN103359897B (zh) 一种处理高浓度硫酸根纺织印染废水的工艺及装置
CN206014899U (zh) 同时去除有机污染物和硫的废水处理系统
CN101693577B (zh) 电解-生物厌氧反应器及其工艺
JP2013169523A (ja) メタン発酵装置およびその装置における原液供給停止時の返水制御方法
JP4866570B2 (ja) 排水処理装置
JP2001038378A (ja) 有機性排水の嫌気性処理方法及び設備
KR101204993B1 (ko) 유기폐기물의 터널형 혐기성 소화 및 메탄화 장치기
JP2005329377A (ja) 有機性廃水の嫌気性処理装置、及び嫌気性処理方法
JP4299168B2 (ja) 嫌気性処理装置
JP5930798B2 (ja) 有機排水の処理方法および装置
JP2001232388A (ja) 廃液処理方法及び装置
CN105541025A (zh) 一种基于besi技术的炼化脱硫废水深度处理方法
CN201517060U (zh) 电解-生物厌氧反应器
US20140305852A1 (en) Anaerobic treatment system and anaerobic treatment method
KR100663765B1 (ko) 맥동순환형 혐기성 메탄발효 장치
JP2006035094A (ja) 高濃度排水処理方法及び装置
JP5329499B2 (ja) 生物学的排水処理装置
CN210457644U (zh) 一种有机废水厌氧处理系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013244.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769135

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030432

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14769135

Country of ref document: EP

Kind code of ref document: A1