WO2014147702A1 - 回転電機システム及びその制御方法 - Google Patents

回転電機システム及びその制御方法 Download PDF

Info

Publication number
WO2014147702A1
WO2014147702A1 PCT/JP2013/057628 JP2013057628W WO2014147702A1 WO 2014147702 A1 WO2014147702 A1 WO 2014147702A1 JP 2013057628 W JP2013057628 W JP 2013057628W WO 2014147702 A1 WO2014147702 A1 WO 2014147702A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical machine
rotating electrical
rotating
rotor
machine system
Prior art date
Application number
PCT/JP2013/057628
Other languages
English (en)
French (fr)
Inventor
順弘 楠野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2015506388A priority Critical patent/JP5941216B2/ja
Priority to PCT/JP2013/057628 priority patent/WO2014147702A1/ja
Publication of WO2014147702A1 publication Critical patent/WO2014147702A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • H02J3/42Synchronising a generator for connection to a network or to another generator with automatic parallel connection when synchronisation is achieved

Definitions

  • the present invention relates to a rotating electrical machine system and a control method therefor, and more particularly, an electric power converter is mounted on a rotor of the rotating electric machine, and excessive excitation caused by initial excitation and initial charging of a winding of the rotating electric machine and a smoothing capacitor of the power converter.
  • the present invention relates to a rotating electrical machine system suitable for controlling current and a control method thereof.
  • a new winding-type rotating electrical machine (hereinafter referred to as a rotating exciter, referred to as a normal exciting rotating electrical machine, coaxially with a normal exciting rotating electrical machine).
  • the power converter is mounted on the part that rotates on the same axis as the rotors of both rotary electric machines, and the rotor winding of the newly provided rotary exciter and the power converter of the power converter are installed.
  • the stator winding of the rotary exciter is connected to the power system through a device that opens and closes the electric circuit such as a circuit breaker, and the rotor winding is smoothed to the DC voltage section. It is configured by being connected to a power conversion device having a capacitor.
  • the rotary exciter needs to be excited, and the DC smoothing capacitor of the power converter mounted on the rotor has a desired Must be charged to voltage.
  • an exciting inrush current when a rotating electrical machine such as an induction machine or a transformer is connected to an electric power system, a large exciting current for exciting a winding reactor constituting them may flow, which is called an exciting inrush current.
  • a large initial charging current when the power converter is connected to the power system, a large initial charging current may flow if the smoothing capacitor mounted on the DC unit is in an uncharged state.
  • the circuit breaker provided at the connection point with the power system detects an overcurrent due to a large current at the start of these devices, and the electrical system is disconnected from the power system by opening the circuit for the purpose of protection. There is.
  • Patent Document 1 a circuit breaker in which a resistor is connected in series with a main circuit breaker connected to a transformer is provided, and an exciting current is rapidly increased by turning on a circuit breaker to which a resistor is connected first.
  • Patent Document 2 the phase of the residual magnetic flux in the transformer core is estimated, and the closing timing of the circuit breaker is controlled to a timing at which the magnitude of the residual magnetic flux in each phase is close to zero.
  • Patent Document 2 the phase of the residual magnetic flux in the transformer core is estimated, and the closing timing of the circuit breaker is controlled to a timing at which the magnitude of the residual magnetic flux in each phase is close to zero.
  • a technique for suppressing the inflow is described.
  • Patent Document 3 discloses a circuit device in which a transformer having a smaller capacity than a main transformer and having a small secondary voltage and a circuit switch device such as a resistor and a circuit breaker are connected in series as necessary. Connected in parallel to the transformer, charged the DC smoothing capacitor of the power converter with a small current via a rectifier, charged to a voltage higher than a predetermined voltage, and then reduced by a circuit switching device connected in series with a small-capacity transformer. It is described that the charging current is limited by disconnecting the transformer of the capacity and electrically connecting the main transformer.
  • Patent Document 4 a circuit device in which a resistor and an electric circuit switching device are connected in parallel is provided in a positive potential electric circuit at a connection portion between a rectifying unit and a DC unit smoothing capacitor, and a predetermined voltage is charged through the resistor. It is described that the charging current is limited by closing the switch after charging as described above.
  • the stator winding of the rotary exciter is electrically connected to the power system through a device that opens and closes an electric circuit such as a circuit breaker, which is a method of supplying excitation power without using the slip ring and brush described above, and the rotation
  • a smoothing capacitor is connected to the child winding via a rectifier
  • the stator winding of the rotary exciter is electrically connected to the power system, and at the same time, the excitation current of the winding reactor of the rotary exciter Since the charging current of the DC smoothing capacitor of the power converter flows, the technique described in Patent Document 1 requires a large current limiting resistor.
  • the present invention has been made in view of the above points, and its object is to suppress overcurrent at startup without increasing the number of components such as a current limiting device mounted on the rotor side of the rotating machine.
  • An object of the present invention is to provide a rotating electrical machine system and a control method thereof.
  • a rotating electrical machine system of the present invention includes a rotating machine, a power converter mounted on the rotor of the rotating machine and connected to an AC terminal of the rotor winding of the rotating machine, A rotating electrical machine system including a smoothing capacitor connected to a DC terminal of the power converter, wherein a stator winding of the rotating machine is electrically connected to an electric power system via an opening / closing device that opens and closes an electric circuit.
  • a rotational speed detector for monitoring the rotational speed of the rotating machine, and adjusting the speed of the rotor of the rotating machine by increasing or decreasing the speed within a predetermined rotational speed range based on a detection value of the rotational speed detector.
  • a control device for controlling the stator winding of the rotating machine to be connected to the power system by closing the switchgear.
  • the rotating electrical machine system of the present invention includes a first stator having a first stator winding, a first rotor winding, and the first stator.
  • a first rotating electric machine composed of a first rotor disposed with a predetermined gap therebetween, a second stator having a second stator winding, and a second rotor winding,
  • a second rotating electrical machine comprising a second rotor arranged with a predetermined gap in the second stator, electrically connected to the first and second rotor windings; and
  • a power converter installed to rotate when the first and second rotors rotate, and a smoothing capacitor connected to a DC terminal of the power converter, the second stator winding Is a rotating electrical machine system that is electrically connected to an electric power system through an opening / closing device that opens and closes an electric circuit,
  • a rotation speed detector for monitoring the rotation speed of the second rotating electrical machine, and adjusting the speed by increasing or decreasing the speed of the second rotor within a predetermined rotation speed range
  • the method for controlling a rotating electrical machine system of the present invention is mounted on a rotating machine and a rotor of the rotating machine, and is connected to an AC terminal of a rotor winding of the rotating machine.
  • a power converter and a smoothing capacitor connected to a DC terminal of the power converter, and the stator winding of the rotating machine is electrically connected to the power system via an opening / closing device that opens and closes an electric circuit
  • a method of controlling a rotating electrical machine system wherein a rotational speed detector monitors a rotational speed of the rotating machine and a control device rotates a rotor of the rotating machine to a predetermined rotation based on a detection value of the rotational speed detector.
  • the speed control is performed by increasing or decreasing in several ranges, and the switchgear is closed to control the stator winding of the rotating machine to be connected to the power system.
  • the method for controlling a rotating electrical machine system includes a first stator having a first stator winding, a first rotor winding, and the first stator winding.
  • a first rotating electric machine composed of a first rotor arranged with a predetermined gap in the stator, a second stator having a second stator winding, and a second rotor winding.
  • a second rotating electric machine comprising a second rotor arranged with a predetermined gap in the second stator, and electrically connected to the first and second rotor windings
  • a power converter installed to rotate when the first and second rotors rotate, and a smoothing capacitor connected to a DC terminal of the power converter
  • the second fixed A rotating electrical machine system in which a child winding is electrically connected to an electric power system via an opening / closing device that opens and closes an electric circuit
  • the rotation speed detector monitors the rotation speed of the second rotating electrical machine, and the control device sets the second rotor to a predetermined rotation speed based on the detection value of the rotation speed detector. The speed is adjusted by increasing or decreasing to a range, and the switchgear is closed to control to connect the second stator winding to the power system.
  • the present invention there is no need to mount components on the rotor side to limit the overcurrent at the start of the rotating electrical machine system, the circuit breaker that suppresses the overcurrent at the start and connects to the power system, etc. It is possible to prevent the overcurrent protection function from operating.
  • Example 1 of the rotary electric machine system of this invention is a block diagram which shows the example which used the AC / DC power converter as a power converter.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is Example 1 of the rotary electric machine system of this invention, and is a block diagram which shows the example which uses DC-DC power converter etc. as a power converter. It is a figure which shows the detail of the rotation exciter in the rotary electric machine system of Example 1 shown in FIG.1 and FIG.2. It is a state transition diagram which shows the starting procedure for charging the direct current
  • FIG. 1 It is a figure which shows schematic structure of the rotation speed instruction
  • FIG. 1 and 2 show a first embodiment of the rotating electrical machine system of the present invention.
  • the rotating electrical machine system 1 of this embodiment includes a main generator 2 that is a first rotating electrical machine that sends generated power to an electric power system 16, and a second that is installed coaxially with the main generator 2. And a rotary exciter 3 of an auxiliary generator which is a rotating electric machine.
  • the main generator 2 includes a main generator stator 4, a main generator rotor 6 disposed with a predetermined gap on the inner diameter side of the main generator stator 4, and slots provided in the main generator stator 4 (
  • the main generator stator winding 5 is a three-phase winding wound in two layers with a short-pitch winding in a not-shown), and all the nodes are in slots (not shown) provided in the main-generator rotor 6.
  • the three-phase main generator stator winding 5 and the three-phase main generator rotor winding 7 are arranged on the circumference at intervals of 120 degrees.
  • the rotation exciter 3 includes a rotation exciter stator 11, a rotation exciter rotor 13 disposed with a predetermined gap on the inner diameter side of the rotation exciter stator 11, and a rotation exciter stator. 11 in a slot (not shown) provided with a three-phase stator winding 12 for a rotary exciter and wound in a rotor 13 for a rotary exciter. (Not shown), a three-phase rotor exciter rotor winding 14 wound in two layers in a full-pitch winding, and a rotor exciter rotor winding arranged on a rotor exciter rotor 13. An AC / DC power converter 10B connected to the line 14 is provided.
  • the three-phase rotary exciter stator winding 12 and the three-phase rotor exciter rotor winding 14 are arranged on the circumference at intervals of 120 degrees.
  • the stator winding 12 for the rotary exciter is electrically connected to the power system 16 via the switchgear 15 such as a circuit breaker, a disconnector, etc.
  • the switchgear 15 such as a circuit breaker, a disconnector, etc.
  • a plurality of semiconductor switching units in which a power semiconductor switching element such as an IGBT (Insulated Gate Bipolar Transistor) and a diode element that is a reflux rectifier element are connected in reverse parallel are connected in series and parallel to the rotor 11 for a rotary exciter.
  • the AC / DC power converter 10 ⁇ / b> B configured as described above is mounted.
  • the AC / DC power converter 10B is generally a two-level converter or a three-level converter, and the AC terminal of the AC / DC power converter 10B is connected to the rotor winding 14 for a rotary exciter and connected to the DC terminal.
  • a direct current smoothing capacitor 17 is connected.
  • FIG. 1 shows a rotating electrical machine system in which a main generator rotor 6 is operated by being AC-excited by an AC / DC power converter 10A that converts DC power supplied and supplied by the rotary exciter 3 into AC power again.
  • FIG. 2 The configuration of FIG. 2 is almost the same as that of FIG. 1, but the power converter 10 disposed on the main generator rotor 6 and connected to the main generator rotor winding 7 is a DC-DC power converter 18. The difference is that an AC-AC power converter 19 is arranged in the middle of the electric circuit connecting the stator winding 5 for the main generator and the power system 16.
  • the rotor 8 of the excitation-type rotating electrical machine is DC-excited by DC power supplied and supplied by the rotary exciter 3 described above or by DC power appropriately controlled by a DC-DC power converter 18 or the like. It is the rotary electric machine system 1 operated by this.
  • 20 is a converter control device that detects and controls the state of the power conversion device 10
  • 21 is a host control device that controls the rotation speed of the rotary exciter 3 with the rotation speed control mechanism 22
  • Reference numeral 23 denotes a rotation speed detector for monitoring the rotation speed of the rotor 8 of the excitation type rotating electrical machine.
  • the converter control device 20 and the host control device 21 constitute a control device, and this control device is a rotation speed detector 23. Based on the detected value, the rotational exciter 3 is accelerated or decelerated within a predetermined rotational speed range, and the switching device 15 is closed to connect the rotational exciter stator winding 12 to the power system 16. It controls to do.
  • FIG. 3 shows details of a common rotary exciter in the rotating electrical machine system of the first embodiment shown in FIGS.
  • the stator winding 12 for the rotary exciter is electrically connected to the power system 16 via the switchgear 15.
  • a rectifier 24 composed of a diode element having a rectifying function configured as a part of the AC / DC power converter 10B is mounted on the rotary exciter rotor 13, and the AC terminal thereof is the rotor for the rotary exciter
  • the DC smoothing capacitor 17 is connected to the winding 14 and connected to the DC terminal.
  • any rotating electrical machine system that has the rotary exciter 3 having the above-described configuration and uses the electric power supplied and supplied by the rotary exciter within the rotor is within the scope of application of the present invention regardless of its application.
  • the capacitor non-charged state (1) is an initial state of the rotating electrical machine system 1 of the present embodiment, and means a state where the rotating machine winding is not energized.
  • the speed is adjusted until the relative speed at which the magnetic field interlinks with the rotor winding 14 for the rotary exciter becomes close to zero.
  • the rotating electrical machine system 1 of the present embodiment closes the switchgear 15 and applies a voltage to the stator winding 12 for the rotary exciter to energize it.
  • a rotating magnetic field is generated in the rotary exciter 3. Since the relative speed at which the rotating magnetic field interlinks with the rotor coil 14 for rotary exciter is close to 0 by the above-described operation, a small voltage is induced in the rotor coil 14 for rotary exciter.
  • Charging of the DC unit smoothing capacitor 17 is started via the rectifier circuit of the converter 10. Thereby, the state transits to the charging state (3).
  • the charging state (3) the voltage induced in the rotor winding 14 for the rotary exciter is increased by further increasing the above-mentioned interlaced relative speed from the vicinity of 0 by the rotation speed control mechanism 22.
  • charging of the DC unit smoothing capacitor 17 is continued, and when a predetermined voltage necessary for the operation of the rotating electrical machine system 1 is reached, the state transitions to the capacitor charging completion state (4) so that normal operation can be performed. Become. Devices and means for realizing these operations will be described in detail below.
  • a control system (control device) for controlling the rotating electrical machine system 1 of the present embodiment includes a converter control device 20 for detecting and controlling the state of the power conversion device 10 mounted on the rotor 8 of the excitation-type rotating electrical machine, and the rotational speed. And a host control device 21 that controls the above.
  • This section is an explanatory section, and in the implementation, it may be an electronic circuit device implemented as a single device or a control software incorporated in a single arithmetic device, and the other functions appear in the same manner. If it is a system, the realization method is not limited.
  • the information transmission between the rotating system and the non-rotating system is realized by a non-contact communication method such as wireless or optical, and the drive power source for the control system mounted on the rotating system is a separate non-contact power supply. It is assumed that power is supplied from a power source such as a capacitor or a battery mounted in a system or a rotating system.
  • FIG. 5 shows the rotational speed command value calculator 26 provided in the above-described host control device 21.
  • the host controller 21 transmits the start command S2 to the converter controller 20 (see FIG. 3), and in the initial state, the state selector 27 of the rotation speed command calculator 26 indicates that the stator coil 12 for the rotary exciter is
  • the rotational (alternating) magnetic field of the rotary exciter 3 generated depending on the number of pole pairs of the rotary exciter 3 is applied to the aforementioned rotor exciter rotor winding 14 at a relative speed of about 0.
  • the desired rotation speed range 28 that is linked with the rotation speed range 28 is selected, and the rotation speed command value S1 * that becomes the rotation speed range 28 is input as input via the governor 29 and the rotation speed control signal change rate limiter 32.
  • a rotation speed control signal S4 is transmitted.
  • the rotational speed control mechanism 22 operated to control the rotational speed is, for example, a blade angle (pitch angle) with respect to the wind direction in a wind power generation system, or a guide vane or runner that adjusts a water flow rate in a hydroelectric power generation system.
  • the rotation speed control signal S4 corresponds to vane opening / closing, for example, a command value such as a pitch angle in a wind power generation system, and a command value such as an opening angle of various valves in a hydroelectric power generation system.
  • the host controller 21 starts speed regulation by transmitting the rotation speed control signal S4, and monitors the status signal S3 from the converter controller 20.
  • the rotation speed detection value S1 by the rotation speed detector 23 is input to the converter control device 20 and the host control device 21, and it is determined that the speed has been adjusted to the above-described rotation speed range 28. Any of the control devices 21 transmits an opening / closing operation signal S5 serving as a closing command to the opening / closing device 15.
  • an induced voltage depending on the rotation speed range 28 is generated in the rotation excitation rotor winding 14, and the DC part smoothing capacitor 17 is supplied with a charging current.
  • the converter control device 20 After the closing operation of the switching device 15, the converter control device 20 notifies the host control device 21 of the transition to the closing state by the state signal S 3, and the state selector 27 operates to detect the voltage detection value S 6 of the DC unit smoothing capacitor 17.
  • rotation speed command value S1 * according governor 29 from the rotation speed command value calculator 30 for calculating a rotational speed instruction value S1 * is operated by.
  • the above-described closing signal S5 is illustrated as being transmitted from the converter control device 20, but may be transmitted from the host control device 21, and in this case, the state The selector 27 does not require the status signal S3 as an input from the converter control device 20 to the host control device 21, and the determination can be made in the rotation speed command value calculator 26. Since the above-described difference does not affect the manifestation of the effect, the rotational speed command value calculator 26 having the above-described configuration is not illustrated.
  • the rotation speed command value calculator 30 for calculating the rotation speed command value S1 * based on the voltage detection value S6 of the DC unit smoothing capacitor 17 and the rotation speed command value change rate limiter 31 are used to determine a predetermined rotor near the aforementioned relative speed 0. By increasing or decreasing the speed from the rotational speed range, the rotational speed command value S1 * is calculated in the direction of increasing the magnitude of the relative speed.
  • the induced voltage induced in the rotor winding 14 for the rotary exciter is increased, and the DC portion smoothing capacitor 17 is continuously charged.
  • the capacitance of the DC smoothing capacitor 17 is C
  • the induced voltage induced in the rotor winding 14 for the rotary exciter is proportional to the rate of change of the interlinking magnetic field, and the rate of change is proportional to the number of revolutions. Therefore, the voltage increase rate is the rate of change of the number of revolutions. Is proportional to
  • the rotational speed command value change rate limiter 31 reduces the change rate of the rotational speed command value S1 * below a predetermined value. Limit to.
  • FIG. 5 the control for suppressing the overcurrent by the rotation speed command value change rate limiter 31 is shown. However, even if the mechanism for limiting the voltage increase rate by the rotation speed command value calculator 30 is included, the effect is achieved. Has no effect.
  • control target such as the pitch angle for controlling the speed after starting the wind power generation system is close to the normal operation state, so that the shift to the normal operation is facilitated.
  • the selection criterion for increasing or decreasing the rotor speed may be appropriately determined according to the system to which the control method of the present invention is applied. Good and not limited to the ease of transition to normal operation.
  • the converter control device 20 monitors the voltage of the DC unit smoothing capacitor 17, senses that the voltage has risen to a predetermined voltage value, and sends a start completion signal S3 to the host control device 21.
  • the above-mentioned predetermined voltage value may be determined at the time of operation by a relational expression between natural conditions such as wind speed and a voltage necessary for operation or a reference table indicating the correspondence as in a wind power generation system, or determined in advance. It may be a fixed value.
  • the rotation excitation system is activated by these series of control methods, and the host controller 21 shifts to normal operation control upon receipt of the activation completion signal.
  • the initial excitation current for exciting the winding reactors (rotor exciter stator winding 12 and rotation exciter rotor winding 14) of the rotary exciter 3 at the time of startup
  • the switch 15 provided at the connection point with the power system 16 by the combined current with the initial charging current of the direct current smoothing capacitor 17 of the power converter 10 mounted on the rotor 8 is used for overcurrent protection. Can be prevented from disconnecting from the electric power system 16.
  • the main generator rotor 6 is arranged with a predetermined gap on the inner diameter side of the main generator stator 4 .
  • the main generator rotor is located outside the main generator stator. Even if the present invention is applied to the outer rotor type arranged with a predetermined gap on the radial side, the same effect can be obtained.
  • FIG. 6 shows details of the rotary exciter 3 in Embodiment 2 of the rotating electrical machine system of the present invention.
  • the configuration of the present embodiment shown in the figure is an AC / DC power conversion configured by a power semiconductor switching element 35 such as an IGBT being connected in reverse parallel to a diode element 34 which is a rectifying element. And a voltage sensor 36 for monitoring the voltage at the connection point 25 between the stator winding 12 for rotary exciter and the power system 16 is added.
  • a power semiconductor switching element 35 such as an IGBT being connected in reverse parallel to a diode element 34 which is a rectifying element.
  • a voltage sensor 36 for monitoring the voltage at the connection point 25 between the stator winding 12 for rotary exciter and the power system 16 is added.
  • FIG. 7 shows the converter control device 20 using the voltage detection value S8 at the connection point 25 with the power system 16 detected by the voltage sensor 36.
  • the control method in the present embodiment is the same as that in the first embodiment until the closing operation of the opening / closing device 15 described above, and only different operation portions thereafter will be described here.
  • the voltage detection value S8 at the connection point 25 with the power system 16 by the voltage sensor 36 is input to the amplitude phase calculator 37 and the voltage at the connection point 25 with the power system 16 is shown.
  • the amplitude and phase are calculated.
  • the calculated values of the amplitude and phase calculated by the amplitude phase calculator 37 are input to the output voltage calculator 38, and the output voltage calculator 38 outputs an output voltage command necessary for obtaining a predetermined charging current command value S9 *.
  • the value S10 * is calculated.
  • the pulse calculator 39 includes the voltage amplitude and phase at the connection point 25 between the rotation speed detection value S1 and the power system 16, the output voltage command value S10 * calculated by the output voltage calculator 38, and the DC unit smoothing capacitor.
  • the pulse calculator 39 may stop driving the power semiconductor switching element 35.
  • the host control device 21 is excited in a direction to increase the magnitude of the relative speed by increasing or decreasing the speed from the rotational speed range of the rotor 8 of the predetermined excitation type rotating electrical machine near the relative speed 0 described above.
  • the rotation speed of the rotor 8 of the rotary electric machine is controlled.
  • the DC unit smoothing capacitor 17 can be formed by a circuit of only the rectifier 24 composed of the diode elements shown in the first embodiment.
  • an AC voltage synchronized with the voltage of the power system 16 is generated at the connection end of the rotor winding 14 for the rotary exciter, so that the stator winding 12 for the rotary exciter and the rotary exciter are used. Harmonic components with respect to the commercial frequency of the charging current flowing through the rotor winding 14 can be reduced.
  • FIG. 8 shows details of the rotary exciter 3 in Embodiment 3 of the rotating electrical machine system of the present invention.
  • the voltage sensor 36 for monitoring the voltage at the connection point 25 with the power system 16 is provided.
  • the rotor winding 14 for the rotary exciter and AC / DC conversion are performed.
  • a reactor 41 is provided between the reactors 10B, and a voltage sensor 36 for monitoring a voltage at a connection portion between the reactor 41 and the rotor winding 14 for a rotary exciter is provided.
  • the aforementioned reactor 41 is a reactor necessary to divide the voltage output from the power conversion device 10 and the induced voltage of the rotor winding 14 for the rotary exciter.
  • the control method of the present embodiment is the same as that of the second embodiment except that the voltage at the interconnection point 25 with the power system 16 is estimated from the voltage detection value S8 of the rotor winding 14 for the rotary exciter detected by the voltage sensor 36. Are the same.
  • the above-described voltage sensor 36 may be connected in the middle of the rotor winding 14 for the rotary exciter, and a part of the rotor winding 14 for the rotary exciter may be substituted for the above-described reactor 41, as shown in FIG. As described above, the voltage sensor 36 may be provided on the electric circuit drawn from the rotor winding 14 for the rotary exciter.
  • FIG. 10 shows a schematic configuration of the converter control device and the host control device employed in the fourth embodiment of the rotating electrical machine system of the present invention.
  • the present embodiment is characterized in that the converter control device 20 sends a rotational speed command value change signal S11 for changing the relative speed to the host control device 21. .
  • the pulse width calculated by the pulse calculator 39 is long, and the conduction time of the power semiconductor switching element 35 is long.
  • the long voltage means that the voltage of the DC smoothing capacitor 17 is large, and the induced voltage induced in the rotor winding 14 for the rotary exciter cannot sufficiently supply the charging current.
  • the rotation speed command value change signal S11 may be output based on a determination criterion that the calculated pulse width is longer than a predetermined pulse width. Further, host controller 21 updates the rotational speed command value at a change rate equal to or less than a predetermined rotational speed change rate only when receiving rotational speed command value change signal S11 from converter control device 20.
  • the above-mentioned output determination standard of the rotational speed command value change signal S11 takes into account the temperature specified by the power semiconductor switching element 35, and specifies the pulse width so as not to exceed the temperature specified by the conduction time. Alternatively, it may be defined by restrictions imposed due to the operation of the AC / DC power converter 10B.
  • FIG. 11 shows details of the rotary exciter in Embodiment 5 of the rotating electrical machine system of the present invention.
  • a sensor 42 is provided.
  • Other configurations are the same as those of the second embodiment shown in FIG.
  • FIG. 12 shows a schematic configuration of the converter control device employed in the fifth embodiment of the rotating electrical machine system of the present invention. That is, the current detection value S9 detected by the current sensor 42 shown in FIG. 11 is converted into a component (effective current component) in phase with the voltage at the connection point 25 with the power system 16 by the dp component calculator 43. It is decomposed into components (reactive current components) having different phases by 90 degrees.
  • Winding a reactor (rotating exciter for stator windings 12, rotating exciter rotor for winding 14) Neglecting losses in resistance of the effective current component be a charging current S9 d of the DC portion smoothing capacitor 17 a excitation current S9 q reactive current component windings reactor (rotating exciter for stator windings 12, rotating exciter rotor for winding 14).
  • the difference between the current command value S9 * equal to or less than the predetermined current value and the above-described calculated value is input to the dq component controller 44 and subjected to feedback control.
  • the same effects as those of the above-described embodiment can be obtained.
  • only the charging current can be controlled, and the second and third embodiments are fed.
  • the output voltage command value is computed by feedback control, so that controllability can be improved.
  • FIG. 13 shows a schematic configuration of the converter control device employed in the sixth embodiment of the rotating electrical machine system of the present invention.
  • an excitation current component S9 q is input, and the command value calculator 45 causes the charge current command to be such that the absolute value of the combined current of the charge current S9 d and the excitation current S9 q is not more than a predetermined value. Except for determining the value S9 * d , it is the same as the fifth embodiment, and detailed description thereof is omitted.
  • FIG. 14 shows a schematic configuration of the converter control device employed in the seventh embodiment of the rotating electrical machine system of the present invention.
  • the excitation current convergence determination unit 46 determines whether the excitation current component S9 q has reached a steady state, and if so, the DC unit smoothing capacitor 17 starts charging. except that the absolute value of the composite current of the charging current S9 d and excitation current S9 q by command value calculator 45 determines a charging current command value S9 * d equal to or less than the predetermined value, the same as in example 6, Detailed description is omitted.
  • FIG. 15 shows details of the rotary exciter in the eighth embodiment of the rotating electrical machine system of the present invention.
  • the present embodiment is the same as the fifth to seventh embodiments except that the current value flowing through the power system 16 is estimated using the current detection value S9 of the current sensor 42 provided at the above-described location. Description of is omitted.
  • the rotation speed for the converter control device 20 described in the fourth embodiment to change the relative speed with respect to the host control device 21.
  • This is a control method characterized by sending a command value change signal S11, and the rotation speed command value change signal S11 may utilize the excitation current convergence determination in addition to the determination by the pulse calculator 39. Details thereof are the same as those in Examples 4 to 8, and are omitted.
  • the excitation currents of the winding reactors of the rotary exciter 3 (the stator winding 12 for the rotary exciter and the rotor winding 14 for the rotary exciter)
  • the combined current of the charging currents of the DC unit smoothing capacitor 17 mounted on the rotor 8 of the excitation-type rotating electrical machine becomes a large value, and the switchgear 15 installed at the connection point 25 with the power system 16 provides overcurrent protection.
  • the method and the structure for preventing the opening operation for the purpose have been described.
  • the switching device 16 connected to the electric power system 16 is closed, and after the closing operation, the DC unit smoothing capacitor 17 is set to a predetermined speed by increasing or decreasing the speed from the vicinity of the synchronous speed.
  • a control method for charging up to a voltage of 2 is described.
  • the electrical exciter 3 described in the present invention can be regarded as having the same configuration as the power supply and demand unit, and is activated according to the control method described above.
  • An application example in which the received power is further used by a device mounted on the rotor 8 of the excitation-type rotating electrical machine can be regarded as the scope of the present invention.
  • the command value S9 * q for the exciting current is shown as zero. This corresponds to controlling the power factor at the interconnection point 25 with the power system 16 to 1, but the current command value S9 * q is set to non-in order to control it to an arbitrary power factor according to an instruction from the system operator or the like. It may be zero.
  • 16 and 17 show details of the rotary exciter in the eleventh embodiment of the rotating electrical machine system of the present invention.
  • the permanent magnet type stator 48 is used instead of the stator winding 12 for the rotary exciter in the configuration of the embodiment 1 shown in FIG. 3, and the embodiment shown in FIG. In the configuration of the second embodiment shown in FIG. 1, a permanent magnet type stator 48 is used instead of the stator winding 12 for the rotary exciter.
  • an alternating magnetic field is provided to the rotor winding 14 for the rotary exciter by the permanent magnet type stator 48.
  • the above-described excitation type is used.
  • an AC voltage can be generated from the rotor side, and the DC portion smoothing is performed while suppressing the charging current of the DC portion smoothing capacitor 17 by operating in the same manner as in the second and subsequent embodiments.
  • the voltage of the capacitor 17 can be increased.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Converter control device 21 ... Host control device, 22 ... Rotational speed control mechanism, 23 ... Rotational speed detector, 24 ... Rectifier, 25 ... Linkage point, 26 ... Rotational speed command value calculator, 27 ... State selector of the rotational speed command value calculator, 28 ... Rotational speed range, 29 ... Speed governor, 30 ... Rotational speed command value calculator 31 ... Rotational speed command value change rate limiter 32 ... Rotational speed control signal change rate limiter 33 ... Rotational speed command value calculator during operation 34 ... Diode element 35 ... Semiconductor switching element 36 ... Voltage sensor 37 ... Amplitude phase calculator 38 ... Output voltage calculator 39 ... Pulse calculator 40 ... Charge completion determiner 41 ...
  • Reactor 42 ... Current sensor 43 ... dp component calculator 44 ... dq component controller 45 ... command value calculator 46 ... excitation current convergence determiner 47 ... secondary side converter 48 ... permanent magnet type stator S1 ... rotation speed detection value S1 * ... rotation speed command value , S2 ... Start command from the host controller to the converter controller, S3 ... Status signal from the converter controller, S4 ... Speed control signal, S5 ... Opening / closing operation signal, S6 ... Voltage detection value of the DC unit smoothing capacitor, S7 Control signal from converter control device to power converter, S8 ... voltage detection value, S9 ... current detection value (subscript d: active current component, subscript q: reactive current component), S9 * ... current command value (subscript d: Active current component, subscript q: reactive current component), S10: output voltage signal, S10 *: output voltage command value, S11: rotation speed command value change signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 本発明は、回転機の回転子側に実装する部品を増加させることなく、起動時の過電流を抑制することができる回転電機システムを提供する。 本発明の回転電機システムは、回転機と、該回転機の回転子に実装され、前記回転機の回転子巻線の交流端子に接続された電力変換器と、該電力変換器の直流端子に接続された平滑コンデンサとを備え、前記回転機の固定子巻線が、電路を開閉する開閉装置を介して電力系統に電気的に接続される回転電機システムであって、前記回転機の回転数を監視する回転数検出器と、該回転数検出器の検出値に基づいて前記回転機の回転子を所定の回転数範囲に増速若しくは減速して調速し、前記開閉装置を閉動作させて前記回転機の固定子巻線を前記電力系統に接続するように制御する制御装置とを更に備えていることを特徴とする。

Description

回転電機システム及びその制御方法
 本発明は回転電機システム及びその制御方法に係り、特に、回転電機の回転子に電力変換器を実装し、回転電機の巻線及び電力変換器の平滑コンデンサの初励磁、初充電に起因する過電流を抑制するものに好適な回転電機システム及びその制御方法に関するものである。
 近年、エネルギー資源問題や地球温暖化防止への関心の高まりから、風力発電システムと言った自然エネルギーを利用した発電システムが急速に普及している。そして、風力発電システムでは、励磁式回転電機システム(巻線型2次励磁方式)が広く採用されている。
 この励磁式回転電機システムを採用する場合、発電運転中は回転している回転子内の回転子巻線に励磁電力を供給する必要がある。通常は、回転子巻線に電力を供給するためにスリップリングとブラシを設け、回転するスリップリングにブラシを接触させ静止系に設置された電力変換器から励磁電力を供給する様にしている。
 しかし、発電運転を行うためのエネルギーは大きく、発電運転を行う上での励磁電力供給用にスリップリング及びブラシを設けると、ブラシの摩耗が進んでしまうため、定期的なメンテナンスが必要となる。特に、風力発電システムにおいては、励磁式回転電機システムは、風車のタワー上部にあるナセル内に設置されるため、限られた空間内でメンテナンスを行う必要があり、メンテナンスの軽減方法が求められている。
 このようなことから、スリップリングとブラシを用いない励磁電力の供給方法として、通常の励磁式回転電機と同軸に新たに巻線型回転電機(以下、回転励磁機と呼び、通常の励磁式回転電機と区別する)を設け、これら両回転電機の回転子と同一軸で回転する部位に電力変換装置を実装し、新たに設けた回転励磁機の回転子巻線と電力変換装置の電力変換器を接続し、回転励磁機の固定子巻線が発生させる回転磁界に同期する回転磁界を発生させるように、電力変換装置によって回転励磁機の回転子巻線を励磁することで非接触に電力を需給し、励磁式回転電機システムの発電運転に必要となる電力を得る方式が検討されている。
 本方式の励磁式回転電機システムでは、回転励磁機の固定子巻線が、遮断器等の電路を開閉する装置を介して電力系統に接続され、その回転子巻線は、直流電圧部に平滑コンデンサを有する電力変換装置に接続されることで構成される。この方式による励磁式回転電機システムが発電運転を開始するためには、回転励磁機が励磁されている必要があり、かつ、回転子に実装された電力変換器の直流部平滑コンデンサが、所望の電圧に充電されている必要がある。
 一般に、誘導機等の回転電機や変圧器が電力系統に接続される際に、それらを構成する巻線リアクトルを励磁するための大きな励磁電流が流れることがあり、励磁突入電流と呼ばれる。同様に、電力変換器が電力系統に接続される際に、直流部に実装された平滑コンデンサが無電荷状態であれば大きな初充電電流が流れることがある。
 これら機器の起動時の大きな電流により、電力系統との接続点に設けられた遮断器が過電流を検出し、保護を目的に電路を開くことで電機システムが電力系統から解列してしまうことがある。
 このような起動時の過電流を抑制する方法として、さまざまな限流機構が提案されている。例えば、変圧器に用いられる限流機構として例えば特許文献1及び特許文献2に記載されたものがある。
 即ち、特許文献1には、変圧器に接続される主遮断器と並列に抵抗が直列接続された遮断器を設け、先に抵抗が接続された遮断器を投入することで励磁電流の急激な流入を抑制し、十分に励磁された後に主遮断器を投入する技術が記載されている。また、特許文献2には、変圧器鉄心の残留磁束の位相を推定し遮断器の投入タイミングを各相の残留磁束の大きさがそれぞれ0近傍となるタイミングに制御することで、励磁電流の急激な流入を抑制する技術が記載されている。
 更に、電力変換器に用いられる限流機構として、例えば、特許文献3及び特許文献4に記載されたものがある。
 即ち、特許文献3には、主変圧器に比べて容量が小さく、必要に応じて2次側電圧の小さい変圧器と抵抗器及び遮断器等の電路開閉装置を直列接続した回路装置を主変圧器に対して並列に接続し、整流器を介して小さな電流で電力変換器の直流部平滑コンデンサを充電し、所定の電圧以上に充電した後に小容量の変圧器に直列接続した電路開閉装置によって小容量の変圧器を解列し、かつ、主変圧器を電気的に接続することで充電電流を限流することが記載されている。また、特許文献4には、整流部と直流部平滑コンデンサの接続部の正電位電路に、抵抗器と電路開閉装置を並列接続した回路装置を設け、その抵抗器を介して充電し所定の電圧以上に充電した後にスイッチを閉じることで充電電流を限流することが記載されている。
特開2008-160100号公報 特開2002-75145号公報 特開2002-345258号公報 特開2011-87378号公報
 しかしながら、上述したスリップリングとブラシを用いない励磁電力の供給方法である遮断器等の電路を開閉する装置を介して電力系統に回転励磁機の固定子巻線が電気的に接続され、その回転子巻線に整流器を介して平滑コンデンサが接続される方式においては、回転励磁機の固定子巻線が電力系統に電気的に接続されると同時に、回転励磁機の巻線リアクトルの励磁電流と電力変換器の直流部平滑コンデンサの充電電流が流れるため、上記特許文献1に記載の技術では、大きな限流抵抗器が必要となる。また、上記特許文献2に記載の技術では、巻線リアクトルの励磁電流は無効電流成分であるため、残留磁束の大きさが0近傍となるタイミングで電流は最小化されるが、平滑コンデンサの充電電流は有効電流成分であるため電流は最小化されない。更に、上記特許文献3及び特許文献4に記載の技術では、回転励磁機の回転子側に実装する部品(限流器等)点数が増加するという問題がある。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、回転機の回転子側に実装する限流器等の部品を増加させることなく、起動時の過電流を抑制することができる回転電機システム及びその制御方法を提供することにある。
 本発明の回転電機システムは、上記目的を達成するために、回転機と、該回転機の回転子に実装され、前記回転機の回転子巻線の交流端子に接続された電力変換器と、該電力変換器の直流端子に接続された平滑コンデンサとを備え、前記回転機の固定子巻線が、電路を開閉する開閉装置を介して電力系統に電気的に接続される回転電機システムであって、前記回転機の回転数を監視する回転数検出器と、該回転数検出器の検出値に基づいて前記回転機の回転子を所定の回転数範囲に増速若しくは減速して調速し、前記開閉装置を閉動作させて前記回転機の固定子巻線を前記電力系統に接続するように制御する制御装置とを更に備えていることを特徴とする。
 また、本発明の回転電機システムは、上記目的を達成するために、第1の固定子巻線を有する第1の固定子、第1の回転子巻線を有すると共に、前記第1の固定子に所定の間隙を設けて配置された第1の回転子から成る第1の回転電機と、第2の固定子巻線を有する第2の固定子、第2の回転子巻線を有すると共に、前記第2の固定子に所定の間隙を設けて配置された第2の回転子とから成る第2の回転電機と、前記第1及び第2の回転子巻線に電気的に接続され、かつ、前記第1及び第2の回転子の回転時には回転するように設置された電力変換器と、該電力変換器の直流端子に接続された平滑コンデンサとを備え、前記第2の固定子巻線が、電路を開閉する開閉装置を介して電力系統に電気的に接続される回転電機システムであって、前記第2の回転電機の回転数を監視する回転数検出器と、該回転数検出器の検出値に基づいて前記第2の回転子を所定の回転数範囲に増速若しくは減速して調速し、前記開閉装置を閉動作させて前記第2の固定子巻線を前記電力系統に接続するように制御する制御装置とを更に備えていることを特徴とする。
 更に、本発明の回転電機システムの制御方法は、上記目的を達成するために、回転機と、該回転機の回転子に実装され、前記回転機の回転子巻線の交流端子に接続された電力変換器と、該電力変換器の直流端子に接続された平滑コンデンサとを備え、前記回転機の固定子巻線が、電路を開閉する開閉装置を介して電力系統に電気的に接続される回転電機システムの制御方法であって、回転数検出器で前記回転機の回転数を監視すると共に、制御装置で前記回転数検出器の検出値に基づいて前記回転機の回転子を所定の回転数範囲に増速若しくは減速して調速し、前記開閉装置を閉動作させて前記回転機の固定子巻線を前記電力系統に接続するように制御することを特徴とする。
 また、本発明の回転電機システムの制御方法は、上記目的を達成するために、第1の固定子巻線を有する第1の固定子、第1の回転子巻線を有すると共に、前記第1の固定子に所定の間隙を設けて配置された第1の回転子から成る第1の回転電機と、第2の固定子巻線を有する第2の固定子、第2の回転子巻線を有すると共に、前記第2の固定子に所定の間隙を設けて配置された第2の回転子とから成る第2の回転電機と、前記第1及び第2の回転子巻線に電気的に接続され、かつ、前記第1及び第2の回転子の回転時には回転するように設置された電力変換器と、該電力変換器の直流端子に接続された平滑コンデンサとを備え、前記第2の固定子巻線が、電路を開閉する開閉装置を介して電力系統に電気的に接続される回転電機システムの制御方法であって、回転数検出器で前記第2の回転電機の回転数を監視すると共に、制御装置で前記回転数検出器の検出値に基づいて前記第2の回転子を所定の回転数範囲に増速若しくは減速して調速し、前記開閉装置を閉動作させて前記第2の固定子巻線を前記電力系統に接続するように制御することを特徴とする。
 本発明によれば、回転子側に回転電機システムの起動時の過電流を限流のために部品を実装する必要が無く、起動時の過電流を抑制し、電力系統に接続する遮断器等の過電流保護機能が動作することを防止することができる。
本発明の回転電機システムの実施例1であり、電力変換器として交直電力変換器を使用した例を示す構成図である。 本発明の回転電機システムの実施例1であり、電力変換器として直流―直流電力変換器等を使用した例を示す構成図である。 図1及び図2に示した実施例1の回転電機システムにおける回転励磁機の詳細を示す図である。 本発明の実施例1の回転電機システムにおける直流部平滑コンデンサを所望の電圧まで充電するための起動手順を示す状態遷移図である。 本発明の回転電機システムの実施例1に採用される上位制御装置が具備する回転数指令演算器の概略構成を示す図である。 本発明の回転電機システムの実施例2における回転励磁機の詳細を示す図である。 本発明の回転電機システムの実施例2に採用される変換器制御装置の概略構成を示す図である。 本発明の回転電機システムの実施例3における回転励磁機の詳細を示す図である。 本発明の回転電機システムの実施例3における回転励磁機の他の例の詳細を示す図である。 本発明の回転電機システムの実施例4に採用される変換器制御装置及び上位制御装置の概略構成を示す図である。 本発明の回転電機システムの実施例5における回転励磁機の詳細を示す図である。 本発明の回転電機システムの実施例5に採用される変換器制御装置の概略構成を示す図である。 本発明の回転電機システムの実施例6に採用される変換器制御装置の概略構成を示す図である。 本発明の回転電機システムの実施例7に採用される変換器制御装置の概略構成を示す図である。 本発明の回転電機システムの実施例8における回転励磁機の詳細を示す図である。 本発明の回転電機システムの実施例11における回転励磁機の詳細を示す図である。 本発明の回転電機システムの実施例11における回転励磁機の他の例の詳細を示す図である。
 以下、図示した実施例に基づいて本発明の回転電機システム及びその制御方法を説明する。なお、各実施例において、共通する部分には同一の符号を付し、重複した説明を省略する。
 図1及び図2は、本発明の回転電機システムの実施例1を示すものである。
 図1に示すように、本実施例の回転電機システム1は、電力系統16に発電電力を送る第1の回転電機である主発電機2と、主発電機2と同軸に設置された第2の回転電機である補助発電機の回転励磁機3とから概略構成されている。
 主発電機2は、主発電機固定子4と、主発電機固定子4の内径側に所定の間隙をもって配置された主発電機回転子6と、主発電機固定子4に設けたスロット(図示せず)内に短節巻にして二層に巻回される三相の主発電機固定子巻線5と、主発電機回転子6に設けたスロット(図示せず)内に全節巻にして二層に巻回される三相の主発電機回転子巻線7と、主発電機回転子6に配置されて主発電機回転子巻線7と接続される交直電力変換器10Aとを備えている。なお、三相の主発電機固定子巻線5及び三相の主発電機回転子巻線7は、円周上に120度間隔で配置されている。
 また、回転励磁機3は、回転励磁機用固定子11と、回転励磁機用固定子11の内径側に所定の間隙をもって配置された回転励磁機用回転子13と、回転励磁機用固定子11に設けたスロット(図示せず)内に短節巻にして二層に巻回される三相の回転励磁機用固定子巻線12と、回転励磁機用回転子13に設けたスロット(図示せず)内に全節巻にして二層に巻回される三相の回転励磁機用回転子巻線14と、回転励磁機用回転子13に配置されて回転励磁機用回転子巻線14と接続される交直電力変換器10Bとを備えている。なお、三相の回転励磁機用固定子巻線12及び三相の回転励磁機用回転子巻線14は、円周上に120度間隔で配置されている。
 そして、本実施例に係る回転励磁機3は、回転励磁機用固定子巻線12が、遮断器、断路器等の電路を開閉装置15を介して電力系統16に電気的に接続され、その回転励磁機用回転子11には、IGBT(Insulated Gate Bipolar Transistor)等の電力用半導体スイッチング素子と還流用整流素子であるダイオード素子が逆並列接続された半導体スイッチングユニットが複数ユニット直列接続及び並列接続されることで構成される交直電力変換器10Bが実装されている。
 この交直電力変換器10Bは、一般に2レベル変換器や3レベル変換器等であり、交直電力変換器10Bの交流端子が回転励磁機用回転子巻線14に接続され、かつ、その直流端子に直流部平滑コンデンサ17が接続されている。
 図1は、主発電機回転子6が、前述の回転励磁機3によって需給される直流電力を、再び交流電力に変換する交直電力変換器10Aによって交流励磁されることで運転される回転電機システム1である。
 図2の構成は、図1と殆ど同様であるが、主発電機回転子6に配置されて主発電機回転子巻線7と接続される電力変換装置10が直流-直流電力変換器18であることと、主発電機用固定子巻線5と電力系統16を結ぶ電路の途中に交流-交流電力変換器19を配置した点が異なる。この図2は、励磁式回転電機の回転子8が前述の回転励磁機3によって需給される直流電力によって、若しくは直流-直流電力変換器18等によって適切に制御された直流電力によって、直流励磁されることで運転される回転電機システム1である。
 また、図1及び図2において、20は電力変換装置10の状態を検知して制御する変換器制御装置、21は回転励磁機3の回転数を回転数制御機構22で制御する上位制御装置、23は励磁式回転電機の回転子8の回転数を監視する回転数検出器であり、変換器制御装置20と上位制御装置21で制御装置を構成し、この制御装置は、回転数検出器23の検出値に基づいて回転励磁機3を所定の回転数範囲に増速若しくは減速して調速し、開閉装置15を閉動作させて回転励磁機用固定子巻線12を電力系統16に接続するように制御するものである。
 図1及び図2に示した実施例1の回転電機システムにおける共通する回転励磁機の詳細を図3に示す。
 励磁式回転電機の回転子8に実装された直流部平滑コンデンサ17を充電するための共通する回路構成として、回転励磁機用固定子巻線12が開閉装置15を介して電力系統16に電気的に接続され、回転励磁機用回転子13に交直電力変換器10Bの一部として構成される整流機能を有するダイオード素子によって構成される整流器24が実装され、その交流端子が回転励磁機用回転子巻線14に接続され、かつ、その直流端子に直流部平滑コンデンサ17が接続される点が共通している。
 前述の共通構成を有する回転電機システム1であれば、起動時に遮断器等の開閉装置15によって電力系統16に電気的に接続することで、巻線リアクトル(回転励磁機用固定子巻線12、回転励磁機用回転子巻線14)の初励磁電流と直流部平滑コンデンサ17の初充電電流が同時に流れることによる過電流が発生する。従って、前述の構成の回転励磁機3を有し、それにより需給する電力を回転子内で使用する回転電機システムであれば、その応用に係らず本発明の適用範囲となる。
 次に、本実施例の回転電機システム1の起動時の過電流を抑制しつつ、励磁式回転電機の回転子8に実装された直流部平滑コンデンサ17を所望の電圧まで充電するための起動手順を、図4を用いて説明する。
 該図において、コンデンサ無電荷状態(1)は、本実施例の回転電機システム1の初期状態であり、回転機巻線にも通電がなされていない状態を意味する。このコンデンサ無電荷状態(1)から回転数制御機構22によって調速し、回転励磁機用固定子巻線12が電力系統16と電気的に接続した場合に、回転励磁機3内に発生させる回転磁界が回転励磁機用回転子巻線14と鎖交する相対速度が0近傍となるまで速度を調速する。前述の調速が完了することで、調速完了状態(2)に遷移する。調速完了状態(2)に遷移したことを受けて、本実施例の回転電機システム1は開閉装置15を閉路し、回転励磁機用固定子巻線12に電圧を印加し通電する。この動作により回転励磁機3内に回転磁界が発生する。前述の操作により回転磁界が回転励磁機用回転子巻線14と鎖交する相対速度が0近傍であるため、回転励磁機用回転子巻線14には小さな電圧が誘起され、この電圧により電力変換装置10の整流回路を介して直流部平滑コンデンサ17の充電が開始される。これにより充電中状態(3)へと遷移する。充電中状態(3)において、更に回転数制御機構22により前述の鎖交する相対速度の大きさを0近傍から大きくすることで、回転励磁機用回転子巻線14に誘起される電圧を大きくすることで直流部平滑コンデンサ17の充電を継続し、回転電機システム1の運転に必要な所定の電圧に達することでコンデンサ充電完了状態(4)へと遷移し、通常の運転を実施できるようになる。これら動作を実現する装置及び手段を、以下に詳述する。
 本実施例の回転電機システム1を制御する制御系(制御装置)を、励磁式回転電機の回転子8に実装された電力変換装置10の状態検知及び制御する変換器制御装置20と、回転数を制御する上位制御装置21とに区分する。本区分は説明上の区分であり、実施においては単一の機器として実装された電子回路装置若しくは単一の演算装置内に組み込まれた制御ソフトウェアであってもよく、その他、同一機能の発現する方式であれば、その実現方法を限定しない。
 ただし、回転系と非回転系との情報伝達には、無線や光等の非接触の通信方法により実現されるものとし、回転系に実装された制御系の駆動電源は、別途非接触の給電方式若しくは回転系に実装されたコンデンサや電池等の電力源から供給されるものとする。
 前述の上位制御装置21に具備される回転数指令値演算器26を図5に示す。
 上位制御装置21は、変換器制御装置20に起動指令S2を送信する(図3参照)と共に、初期状態では回転数指令演算器26の状態セレクタ27は、回転励磁機用固定子巻線12が電力系統16に接続した場合に、回転励磁機3の極対数に依存して発生する回転励磁機3の回転(交番)磁界が、前述の回転励磁機用回転子巻線14に相対速度0近傍で鎖交するような所望の回転数範囲28を選択しており、この回転数範囲28となる回転数指令値S1*を入力として調速器29及び回転数制御信号変化率リミッター32を介して回転数制御信号S4を送信する。回転数を制御するために操作する回転数制御機構22は、例えば、風力発電システムであれば、風向に対する翼角度(ピッチ角)、水力発電システムであれば、水流量を調整するガイドベーンやランナーベーンの開閉に相当し、回転数制御信号S4は、例えば、風力発電システムであればピッチ角度等の指令値であり、水力発電システムでは各種弁の開閉角度等の指令値である。上位制御装置21は、回転数制御信号S4を送信することで調速を開始し、変換器制御装置20からの状態信号S3を監視する。
 回転数検出器23による回転数検出値S1は、変換器制御装置20及び上位制御装置21に入力され、前述の回転数範囲28に調速したことを判定して、変換器制御装置20若しくは上位制御装置21のいずれかが、開閉装置15へ閉指令となる開閉動作信号S5を送信する。開閉装置15の閉動作により、回転励磁機3の初励磁電流を通電させることで、回転励磁用回転子巻線14に前述の回転数範囲28に依存する誘起電圧を発生させ、直流部平滑コンデンサ17に充電電流を供給する。
 開閉装置15の閉路動作の後、変換器制御装置20から上位制御装置21へ状態信号S3によって閉路状態に遷移したことが伝達され状態セレクタ27が動作し、直流部平滑コンデンサ17の電圧検出値S6によって回転数指令値S1*を算出する回転数指令値演算器30からの回転数指令値S1*に従って調速器29が動作する。
 なお、本発明の全ての図において、前述の閉路信号S5が変換器制御装置20から送信されるように図示しているが、上位制御装置21から送信されても良く、その場合には、状態セレクタ27は変換器制御装置20から上位制御装置21へ状態信号S3を入力として必要とせず、回転数指令値演算器26内でその判定が可能である。前述の差異によってその効果の発現に影響しないため、顕わに前述の構成となる回転数指令値演算器26は、図示しない。
 直流部平滑コンデンサ17の電圧検出値S6によって回転数指令値S1*を算出する回転数指令値演算器30及び回転数指令値変化率リミッター31によって、前述の相対速度0近傍の所定の回転子の回転数範囲から増速若しくは減速させることで、その相対速度の大きさを増加させる方向に回転数指令値S1*を演算する。
 これにより回転励磁機用回転子巻線14に誘起される誘起電圧を上昇させ、直流部平滑コンデンサ17の充電を継続する。この際、直流部平滑コンデサ17の静電容量をCとすると、その電流i及び電圧増加率dV/dtには、i=C*dV/dtの関係があることから、電流を所定の値未満に制限するためには、電圧増加率を制限する必要がある。回転励磁機用回転子巻線14に誘起される誘起電圧は、鎖交する磁界の変化率に比例し、変化率は回転数と比例の関係があるため、電圧増加率は回転数の変化率と比例の関係となる。
 従って、開閉装置15が保護を目的に開動作する電流値未満の値に電流値を抑制するため、回転数指令値変化率リミッター31によって、回転数指令値S1*の変化率を所定の値以下に制限する。
 なお、図5では、回転数指令値変化率リミッター31によって過電流を抑制する制御を示したが、回転数指令値演算器30によって電圧増加率を制限する機構を内包しても、その効果には影響しない。
 また、風力発電システムのように、回転子を回転させるエネルギーが自然条件に依存するシステムの場合、前述の回転数を増速させるか減速させるかは、自然条件によって決定することで、回転電機システムの起動完了後の通常運転への移行を容易にすることができる。例えば、風力発電システムの場合に、風速が通常運転状態において相対速度0近傍で運転する風速より低風速の場合には、減速することで相対速度を増加させ、風速が通常運転状態において相対速度0近傍で運転する風速よりも高風速の場合には、増速することで相対速度を増加させる。
 これにより、風力発電システムを起動した後の速度を制御するためのピッチ角等の制御対象が通常運転状態に近い状態となるため、通常運転への移行が容易になる。
 ただし、前述の相対速度を増加させるために、回転子速度を増速するか或いは減速するかの選択基準は、本発明の制御方法を適用するシステムに応じて、適宜その利便性を考慮すれば良く、通常運転への移行の容易性に限ることはない。
 更に、変換器制御装置20は直流部平滑コンデンサ17の電圧を監視して、所定の電圧値まで上昇したことを感知し、上位制御装置21へ起動完了信号S3を発信する。前述の所定の電圧値は、風力発電システムのように、風速等の自然条件と運転に必要な電圧との関係式若しくはそれら対応を示す参照テーブル等によって運転時に決定しても良いし、予め決定しておいた固定値であっても良い。
 これら一連の制御方法により回転励磁システムは起動され、上位制御装置21は起動完了信号の受信により通常運転制御へ移行する。
 これにより、起動時の回転励磁機3の巻線リアクトル(回転励磁機用固定子巻線12、回転励磁機用回転子巻線14)を励磁するための初励磁電流と、励磁式回転電機の回転子8に実装された電力変換装置10の直流部平滑コンデンサ17の初充電電流との合成電流によって、電力系統16との接続点に設けられた開閉装置15が、過電流保護を目的に電路を開くことで電機システムが電力系統16から解列してしまうことを防止できる。
 従って、本実施例の構成とすることにより、励磁式回転電機の回転子8側に限流器等を実装する必要がなくなり部品を増加させることなく、起動時の過電流を抑制することができる効果がある。
 なお、上述した実施例では、主発電機固定子4の内径側に所定の間隙をもって主発電機回転子6を配置した例について説明したが、主発電機回転子が主発電機固定子の外径側に所定の間隙をもって配置されるアウターロータタイプに、本発明を適用しても同様な効果が得られる。
 図6に、本発明の回転電機システムの実施例2における回転励磁機3の詳細を示す。
 該図に示す本実施例の構成は、図3に示した構成に代えて、整流素子であるダイオード素子34にIGBT等の電力用半導体スイッチング素子35が逆並列接続されて構成される交直電力変換器10Bとしたこと、並びに回転励磁機用固定子巻線12と電力系統16との連系点25での電圧を監視する電圧センサ36を追加した構成としたものである。
 図7は、電圧センサ36で検出した電力系統16との連系点25での電圧検出値S8を用いた変換器制御装置20を示す。本実施例での制御方法については、上述した開閉装置15の閉動作までは実施例1と同一であり、ここでは、それ以降の異なる動作部分のみについて説明する。
 図6及び図7において、電圧センサ36による電力系統16との連系点25での電圧検出値S8は、振幅位相演算器37に入力され、電力系統16との連系点25での電圧の振幅及び位相が演算される。振幅位相演算器37で演算された振幅及び位相の演算値は、出力電圧演算器38に入力され、出力電圧演算器38では、所定の充電電流指令値S9を得るために必要な出力電圧指令値S10が演算される。パルス演算器39は、回転数検出値S1と電力系統16との連系点25での電圧の振幅及び位相と出力電圧演算器38で演算された出力電圧指令値S10、及び直流部平滑コンデンサ17の電圧検出値S6を入力として、電力系統16の電圧に同期した交流電圧を回転励磁機用回転子巻線14の接続端に発生させるために、電力用半導体スイッチング素子35を駆動する駆動パルスS7を演算し、電力用半導体スイッチング素子35が前述のパルスに従って駆動されることで、所望の充電電流を得る。
 ただし、直流部平滑コンデンサ17の電圧検出値S6が、パルス駆動するために十分な大きさでない場合は、パルス演算器39は、電力用半導体スイッチング素子35の駆動を停止しても良い。
 また、上位制御装置21は、前述した相対速度0近傍の所定の励磁式回転電機の回転子8の回転数範囲から増速若しくは減速させることで、その相対速度の大きさを増加させる方向に励磁式回転電機の回転子8の回転数を制御する。
 これにより、回転励磁機用回転子巻線14に誘起される誘起電圧を上昇させ、直流部平滑コンデンサ17の充電が継続される。この動作は、交直電力変換器10Bがスイッチング動作する以外は、実施例1と同一であり、以降の動作も同一である。
 このような本実施例の構成とすることにより、実施例1と同様な効果が得られることは勿論、実施例1に示すダイオード素子で構成される整流器24のみの回路によって直流部平滑コンデンサ17を充電する場合に比べて、電力系統16の電圧に同期した交流電圧を回転励磁機用回転子巻線14の接続端に発生させることで、回転励磁機用固定子巻線12及び回転励磁機用回転子巻線14を流れる充電電流の商用周波数に対する高調波成分を低減することができる。
 図8に、本発明の回転電機システムの実施例3における回転励磁機3の詳細を示す。
 図6に示す実施例2では、電力系統16との連系点25での電圧を監視する電圧センサ36を設けているが、本実施例では、回転励磁機用回転子巻線14と交直変換器10Bの間にリアクトル41を設け、このリアクトル41と回転励磁機用回転子巻線14との接続部の電圧を監視する電圧センサ36を設けたものである。前述のリアクトル41は、電力変換装置10が出力する電圧と、回転励磁機用回転子巻線14の誘起電圧を分圧するために必要なリアクトルである。
 本実施例の制御方法は、電圧センサ36によって検出した回転励磁機用回転子巻線14の電圧検出値S8から電力系統16との連系点25における電圧を推定する以外は、実施例2と同一である。
 また、前述の電圧センサ36を回転励磁機用回転子巻線14の途中に接続し、回転励磁機用回転子巻線14の一部で前述のリアクトル41の代わりとしても良く、図9に示すように、回転励磁機用回転子巻線14から引き出した電路に電圧センサ36を設けても良い。
 このような本実施例の構成とすることにより、実施例2と同様な効果が得られる。
 図10に、本発明の回転電機システムの実施例4に採用される変換器制御装置及び上位制御装置の概略構成を示す。
 該図に示すように、本実施例は、変換器制御装置20が上位制御装置21に対して相対速度を変更するための回転数指令値変更信号S11を送付することを特徴とするものである。
 例えば、交直電力変換器10Bが昇圧動作で直流部平滑コンデンサ17に充電電流を供給している場合に、パルス演算器39で演算されたパルス幅が長く、電力用半導体スイッチング素子35の導通時間が長いことは、直流部平滑コンデンサ17の電圧が大きく、回転励磁機用回転子巻線14に誘起される誘起電圧では、十分に充電電流が供給できないことを意味しており、パルス演算器39で演算されたパルス幅が所定のパルス幅よりも長いことを判定基準として、回転数指令値変更信号S11を出力しても良い。また、上位制御装置21は、変換器制御装置20からの回転数指令値変更信号S11を受信した場合においてのみ、所定の回転数変化率以下の変化率で回転数指令値を更新する。
 前述の回転数指令値変更信号S11の出力判定基準は、電力用半導体スイッチング素子35によって規定される温度を考慮して、その導通時間によって規定される温度を超えないようにパルス幅を規定しても良く、その他、交直電力変換器10Bの動作に起因する制約事項によって規定しても良い。
 このような本実施例の構成とすることにより、上述した実施例と同様な効果が得られることは勿論、充電状態や電力用半導体スイッチング素子等の交直電力変換器10Bの動作環境を反映した回転数制御が可能となり、励磁式回転電機の回転子8に実装された電力変換装置10に過剰な電圧が印加され、過電流になることを防ぐことができる。
 図11に、本発明の回転電機システムの実施例5における回転励磁機の詳細を示す。
 該図に示す本実施例では、回転励磁機用固定子巻線12と電力系統16を接続する電路の途中で、開閉装置15の電力系統16側に、電力系統16に流れる電流を監視する電流センサ42を設けたものである。他の構成は、図6に示した実施例2と同様である。
 なお、図8及び図9に示した実施例3に係る構成に、前述した電流センサ42を追加した構成は顕わに図示しないが、以下に述べる効果が同様に発現するため、図11をもって説明を代用する。
 図12に、本発明の回転電機システムの実施例5に採用される変換器制御装置の概略構成を示す。即ち、図11に示した電流センサ42で検出された電流検出値S9は、dp成分演算器43によって、電力系統16との連系点25での電圧と同位相の成分(有効電流成分)と90度位相が異なる成分(無効電流成分)に分解される。巻線リアクトル(回転励磁機用固定子巻線12、回転励磁機用回転子巻線14)の抵抗等の損失を無視すれば、有効電流成分が直流部平滑コンデンサ17の充電電流S9であり、無効電流成分が巻線リアクトル(回転励磁機用固定子巻線12、回転励磁機用回転子巻線14)の励磁電流S9である。所定の電流値以下の電流指令値S9と前述の演算値の差分が、dq成分制御器44に入力されフィードバック制御される。
 このような本実施例の構成とすることにより、上述した実施例と同様な効果が得られることは勿論、本実施例では充電電流のみを制御でき、また、実施例2及び実施例3がフィードフォーワード制御によって出力電圧指令値を演算することに対して、本実施例では、フィードバック制御によって出力電圧指令値を演算するため、制御性の向上を図ることができる。
 図13に、本発明の回転電機システムの実施例6に採用される変換器制御装置の概略構成を示す。
 該図に示す本実施例は、励磁電流成分S9qを入力として指令値演算器45によって、充電電流S9と励磁電流S9の合成電流の絶対値が所定値以下になるように充電電流指令値S9 を決定することを除いて、実施例5と同一であり、詳細の説明は省略する。
 このような本実施例の構成とすることにより、上述した実施例5と同様な効果を得ることができる。
 図14に、本発明の回転電機システムの実施例7に採用される変換器制御装置の概略構成を示す。
 該図に示す本実施例は、励磁電流収束判定器46によって励磁電流成分S9qが定常状態に達しているかを判定し、達している場合に直流部平滑コンデンサ17が充電を開始するように、指令値演算器45によって充電電流S9と励磁電流S9の合成電流の絶対値が所定値以下となる充電電流指令値S9 を決定することを除いて、実施例6と同一であり、詳細の説明は省略する。
 このような本実施例の構成とすることにより、上述した実施例6と同様な効果を得ることができる。
 図15に、本発明の回転電機システムの実施例8における回転励磁機の詳細を示す。
 該図に示す本実施例では、図11に示す実施例5の電力系統16に流れる電流を監視する電流センサに代えて、回転励磁機用固定子巻線12と交直電力系統16を接続する電路の途中に、回転励磁機用固定子巻線12に流れる電流を監視する電流センサ42を設けたものである。他の構成は、図11に示した実施例5と同様である。
 本実施例では、前述の箇所に設けられた電流センサ42の電流検出値S9を用いて、電力系統16に流れる電流値を推定することを除いて、実施例5~7と同一であり、詳細の説明は省略する。
 このような本実施例の構成とすることにより、上述した実施例5と同様な効果を得ることができる。
 実施例9は、特に図示しないが、実施例5~8の制御方式に加えて、実施例4に記載の変換器制御装置20が上位制御装置21に対して相対速度を変更するための回転数指令値変更信号S11を送付することを特徴とする制御方式であり、回転数指令値変更信号S11は、パルス演算器39による判定に加えて、励磁電流の収束判定を活用しても良い。その詳細は、実施例4~8と同一であり省略する。
 上述した実施例1~9は、回転励磁機3の起動時に、回転励磁機3の巻線リアクトル(回転励磁機用固定子巻線12、回転励磁機用回転子巻線14)の励磁電流と、励磁式回転電機の回転子8に実装された直流部平滑コンデンサ17の充電電流の合成電流が大きな値となり、電力系統16との連系点25に設置された開閉装置15が、過電流保護を目的に開動作することを防止する方法及び構成について説明した。
 本発明は、同期速度近傍まで調速した後に、電力系統16と接続する開閉装置16を閉動作させ、閉動作の後に同期速度近傍から増速若しくは減速することで直流部平滑コンデンサ17を、所定の電圧まで充電する制御方法について述べるものであり、本発明で述べた回転励磁機3と電力需給部の構成が同一と看做し得る電機機器で、かつ、前述の制御方法に沿って起動し、受給した電力を、更に励磁式回転電機の回転子8に実装された機器によって使用される応用例は本発明の範囲と看做し得る。
 また、本発明の制御方法の説明に用いた図12~14において、励磁電流に対する指令値S9 は零と図示した。これは電力系統16との連系点25での力率を1に制御することに相当するが、系統運用者等の指示により任意の力率に制御するため、電流指令値S9 を非零としても良い。
 図16及び図17に、本発明の回転電機システムの実施例11における回転励磁機の詳細を示す。
 図16に示す実施例は、図3に示した実施例1の構成において、回転励磁機用固定子巻線12の代わりに永久磁石型固定子48を、図17に示す実施例は、図6に示した実施例2の構成において、回転励磁機用固定子巻線12の代わりに永久磁石型固定子48を、それぞれ用いたものである。
 図16及び図17に示す実施例11では、永久磁石型固定子48によって交番磁界が回転励磁機用回転子巻線14に提供されるが、このような回転電機システムにおいても、上述した励磁式回転電機の回転子8の回転数制御を、回転数0速度から実施することで、回転励磁機用回転子巻線14に誘起される電圧を最小化でき、上述した各実施例と同様に回転数速度を増加さえることで、直流部平滑コンデンサ17の充電電流を抑制ながら直流部平滑コンデンサ17の電圧を高めることができる。
 更に、図17の構成では、回転子側から交流電圧を発生させることができ、上述した実施例2以降と同様に動作させることで、直流部平滑コンデンサ17の充電電流を抑制しながら直流部平滑コンデンサ17の電圧を高めることができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…回転電機システム、2…主発電機、3…回転励磁機、4…主発電機固定子、5…主発電機固定子巻線、6…主発電機回転子、7…主発電機回転子巻線、8…励磁式回転電機の回転子、10…電力変換装置、10A、10B…交直電力変換器、11…回転励磁機用固定子、12…回転励磁機用固定子巻線、13…回転励磁機用回転子、14…回転励磁機用回転子巻線、15…開閉装置、16…電力系統、17…直流部平滑コンデンサ、18…直流-直流電力変換器、19…交流-交流電力変換器、20…変換器制御装置、21…上位制御装置、22…回転数制御機構、23…回転数検出器、24…整流器、25…連系点、26…回転数指令値演算器、27…回転数指令値演算器の状態セレクタ、28…回転数範囲、29…調速器、30…回転数指令値演算器、31…回転数指令値変化率リミッター、32…回転数制御信号変化率リミッター、33…運転時の回転数指令値演算器、34…ダイオード素子、35…半導体スイッチング素子、36…電圧センサ、37…振幅位相演算器、38…出力電圧演算器、39…パルス演算器、40…充電完了判定器、41…リアクトル、42…電流センサ、43…dp成分演算器、44…dq成分制御器、45…指令値演算器、46…励磁電流収束判定器、47…2次側換算器、48…永久磁石型固定子、S1…回転数検出値、S1*…回転数指令値、S2…上位制御装置から変換器制御装置への起動指令、S3…変換器制御装置から状態信号、S4…回転数制御信号、S5…開閉動作信号、S6…直流部平滑コンデンサの電圧検出値、S7…変換器制御装置から電力変換器への制御信号、S8…電圧検出値、S9…電流検出値(添字d:有効電流成分, 添字q:無効電流成分)、S9*…電流指令値(添字d:有効電流成分, 添字q:無効電流成分)、S10…出力電圧信号、S10*…出力電圧指令値、S11…回転数指令値変更信号。

Claims (31)

  1.  回転機と、該回転機の回転子に実装され、前記回転機の回転子巻線の交流端子に接続された電力変換器と、該電力変換器の直流端子に接続された平滑コンデンサとを備え、前記回転機の固定子巻線が、電路を開閉する開閉装置を介して電力系統に電気的に接続される回転電機システムであって、
     前記回転機の回転数を監視する回転数検出器と、該回転数検出器の検出値に基づいて前記回転機の回転子を所定の回転数範囲に増速若しくは減速して調速し、前記開閉装置を閉動作させて前記回転機の固定子巻線を前記電力系統に接続するように制御する制御装置とを更に備えていることを特徴とする回転電機システム。
  2.  第1の固定子巻線を有する第1の固定子、第1の回転子巻線を有すると共に、前記第1の固定子に所定の間隙を設けて配置された第1の回転子から成る第1の回転電機と、第2の固定子巻線を有する第2の固定子、第2の回転子巻線を有すると共に、前記第2の固定子に所定の間隙を設けて配置された第2の回転子とから成る第2の回転電機と、前記第1及び第2の回転子巻線に電気的に接続され、かつ、前記第1及び第2の回転子の回転時には回転するように設置された電力変換器と、該電力変換器の直流端子に接続された平滑コンデンサとを備え、前記第2の固定子巻線が、電路を開閉する開閉装置を介して電力系統に電気的に接続される回転電機システムであって、
     前記第2の回転電機の回転数を監視する回転数検出器と、該回転数検出器の検出値に基づいて前記第2の回転子を所定の回転数範囲に増速若しくは減速して調速し、前記開閉装置を閉動作させて前記第2の固定子巻線を前記電力系統に接続するように制御する制御装置とを更に備えていることを特徴とする回転電機システム。
  3.  請求項1又は2に記載の回転電機システムにおいて、
     前記制御装置は、前記電力変換器の状態を検知して制御する変換器制御装置と、前記回転機又は第2の回転電機の回転数を制御する上位制御装置とから成り、前記回転数検出器による検出値が前記変換器制御装置及び上位制御装置に入力され、前記回転機の回転子又は第2の回転子の回転数が、前記回転数範囲に調速されたことを判定して、前記変換器制御装置と上位制御装置のいずれかが、前記開閉装置に閉指令を送信することを特徴とする回転電機システム。
  4.  請求項3に記載の回転電機システムにおいて、
     前記上位制御装置は回転数指令値演算器を備えると共に、該回転数指令値演算器は状態セレクタ、調速機及び回転数制御信号変化率リミッターを有し、前記上位制御装置が前記変換器制御装置に起動指令を送信すると共に、初期状態では前記回転数指令演算器の状態セレクタは、前記回転機の固定子巻線又は第2の固定子巻線が前記電力系統に接続した場合に、前記回転機又は第2の回転電機の極対数に依存して発生する該回転機又は第2の回転電機の回転磁界が、前記回転機の回転子巻線又は第2の回転子巻線に相対速度0近傍で鎖交する回転数範囲を選択し、かつ、前記回転数範囲となる回転数指令値を入力として前記調速器及び回転数制御信号変化率リミッターを介して回転数制御信号を、前記回転機又は第2の回転電機の回転数を制御する回転数制御機構に送信することを特徴とする回転電機システム。
  5.  請求項4に記載の回転電機システムにおいて、
     前記開閉装置が閉動作したら前記変換器制御装置から前記上位制御装置へ閉状態に遷移したことが伝達されて前記状態セレクタが動作し、前記平滑コンデンサの電圧検出値によって回転数指令値を算出する回転数指令値演算器からの回転数指令値に従って前記調速器が動作することを特徴とする回転電機システム。
  6.  請求項5に記載の回転電機システムにおいて、
     前記回転数指令値演算器及び前記回転数制御信号変化率リミッターによって、前記相対速度0近傍の前記回転器又は第2の回転電機の回転数範囲から増速若しくは減速させることで、前記相対速度の大きさを増加させる方向に前記回転数指令値を演算することを特徴とする回転電機システム。
  7.  請求項1乃至6のいずれか1項に記載の回転電機システムにおいて、
     前記平滑コンデンサは、前記開閉装置を閉動作させて前記回転機の回転子巻線又は第2の回転子巻線に初期励磁電流が通電され、前記回転子巻線又は第2の回転子巻線に前記回転数範囲に依存する誘起電圧を発生させることで充電電流が供給されることを特徴とする回転電機システム。
  8.  請求項1乃至7のいずれか1項に記載の回転電機システムにおいて、
     前記電力変換器は、整流器又は交直電力変換器であることを特徴とする回転電機システム。
  9.  請求項8に記載の回転電機システムにおいて、
     前記交直電力変換器は、ダイオード素子に半導体スイッチング素子が逆並列接続されて構成されていることを特徴とする回転電機システム。
  10.  請求項1乃至9のいずれか1項に記載の回転電機システムにおいて、
     前記回転機又は第2の回転電機と前記電力系統との連系部に、該連係部の電圧を検出する電圧センサが設置されていることを特徴とする回転電機システム。
  11.  請求項10に記載の回転電機システムにおいて、
     前記電圧センサで検出された前記連係部の電圧検出値が入力され、前記連係部での電圧の振幅及び位相を演算する振幅位相演算器と、該振幅位相演算器で演算された振幅と位相の演算値が入力され、所定の充電電流指令値を得るために必要な出力電圧指令値を演算する出力電圧演算器と、前記回転数検出器で検出された回転数検出値、前記電圧センサで検出された前記連係部での電圧の振幅と位相、前記出力電圧演算器で演算された出力電圧指令値及び前記平滑コンデンサの電圧検出値を入力として、前記電圧系統の電圧に同期した交流電圧を前記回転子巻線又は第2の回転子巻線の接続端に発生させるために前記半導体スイッチング素子を駆動する駆動パルスを演算するパルス演算器とを備えていることを特徴とする回転電機システム。
  12.  請求項1乃至9のいずれか1項に記載の回転電機システムにおいて、
     前記回転子巻線又は第2の回転子巻線と前記電力系統との間にリアクトルを設け、該リアクトルと前記回転子巻線又は第2の回転子巻線との接続部の電圧を検出する電圧センサが設置されていることを特徴とする回転電機システム。
  13.  請求項1乃至9のいずれか1項に記載の回転電機システムにおいて、
     前記回転子巻線又は第2の回転子巻線に、該回転子巻線又は第2の回転子巻線の電圧を検出する電圧センサが設置されていることを特徴とする回転電機システム。
  14.  請求項11に記載の回転電機システムにおいて、
     前記パルス演算器は、演算されたパルス幅が所定のパルス幅よりも長いことを判定基準として前記上位制御装置の前記回転数指令値演算器に回転数指令値変更信号を出力し、前記上位制御装置の回転数指令値演算器は、前記パルス演算器からの回転数指令値変更信号を受信した場合に、所定の回転数変化率以下の変化率で回転数指令値を更新することを特徴とする回転電機システム。
  15.  請求項14に記載の回転電機システムにおいて、
     前記回転数指令値変更信号の出力判定基準は、前記半導体スイッチング素子の導通時間によって規定される温度を超えないようにパルス幅を規定することを特徴とする回転電機システム。
  16.  請求項10に記載の回転電機システムにおいて、
     前記回転機又は第2の回転電機と前記電力系統を接続し前記電圧センサが設置されている電路に、該電路の電流を検出する電流センサが設置されていることを特徴とする回転電機システム。
  17.  請求項12に記載の回転電機システムにおいて、
     前記回転子巻線又は第2の回転子巻線と前記リアクトルとの接続部の電圧を検出する電圧センサが設置されている電路に、該電路の電流を検出する電流センサが設置されていることを特徴とする回転電機システム。
  18.  請求項13に記載の回転電機システムにおいて、
     前記回転子巻線又は第2の回転子巻線の電圧を検出する電圧センサが設置されている電路に、該電路の電流を検出する電流センサが設置されていることを特徴とする回転電機システム。
  19.  請求項10に記載の回転電機システムにおいて、
     前記回転機の回転子巻線又は第2の回転子巻線と前記電力変換器を接続する電路に、前記回転子巻線又は第2の回転子巻線を流れる電流を検出する電流センサが設置されていることを特徴とする回転電機システム。
  20.  回転機と、該回転機の回転子に実装され、前記回転機の回転子巻線の交流端子に接続された電力変換器と、該電力変換器の直流端子に接続された平滑コンデンサとを備え、前記回転機の固定子巻線が、電路を開閉する開閉装置を介して電力系統に電気的に接続される回転電機システムの制御方法であって、
     回転数検出器で前記回転機の回転数を監視すると共に、制御装置で前記回転数検出器の検出値に基づいて前記回転機の回転子を所定の回転数範囲に増速若しくは減速して調速し、前記開閉装置を閉動作させて前記回転機の固定子巻線を前記電力系統に接続するように制御することを特徴とする回転電機システムの制御方法。
  21.  第1の固定子巻線を有する第1の固定子、第1の回転子巻線を有すると共に、前記第1の固定子に所定の間隙を設けて配置された第1の回転子から成る第1の回転電機と、第2の固定子巻線を有する第2の固定子、第2の回転子巻線を有すると共に、前記第2の固定子に所定の間隙を設けて配置された第2の回転子とから成る第2の回転電機と、前記第1及び第2の回転子巻線に電気的に接続され、かつ、前記第1及び第2の回転子の回転時には回転するように設置された電力変換器と、該電力変換器の直流端子に接続された平滑コンデンサとを備え、前記第2の固定子巻線が、電路を開閉する開閉装置を介して電力系統に電気的に接続される回転電機システムの制御方法であって、
     回転数検出器で前記第2の回転電機の回転数を監視すると、制御装置で前記回転数検出器の検出値に基づいて前記第2の回転子を所定の回転数範囲に増速若しくは減速して調速し、前記開閉装置を閉動作させて前記第2の固定子巻線を前記電力系統に接続するように制御することを特徴とする回転電機システムの制御方法。
  22.  請求項20又は21に記載の回転電機システムの制御方法において、
     前記制御装置は、前記回転機の回転子又は第2の回転子が所定の回転数範囲に増速若しくは減速したことを感知して、前記開閉装置を閉動作させることを特徴とする回転電機システムの制御方法。
  23.  請求項20乃至22のいずれか1項に記載の回転電機システムの制御方法において、
     前記制御装置は、前記回転機の回転子又は第2の回転子を所定の回転数範囲から増速若しくは減速させる際に、回転数変化率の大きさが所定の値以下となるように制御することを特徴する回転電機システムの制御方法。
  24.  請求項20乃至23のいずれか1項に記載の回転電機システムの制御方法において、
     前記制御装置は、前記電力変換器の状態を検知して制御する変換器制御装置と、前記回転機又は第2の回転電機の回転数を制御する上位制御装置とから成り、前記回転数検出器による検出値が前記変換器制御装置及び上位制御装置に入力され、前記回転機の回転子又は第2の回転子の回転数が、前記回転数範囲に調速されたことを判定して、前記変換器制御装置と上位制御装置のいずれかが、前記開閉装置に閉指令を送信することを特徴とする回転電機システムの制御方法。
  25.  請求項24に記載の回転電機システムの制御方法において、
     前記上位制御装置は回転数指令値演算器を備えると共に、該回転数指令値演算器は状態セレクタ、調速機及び回転数制御信号変化率リミッターを有し、前記上位制御装置が前記変換器制御装置に起動指令を送信すると共に、初期状態では前記回転数指令演算器の状態セレクタは、前記回転機の固定子巻線又は第2の固定子巻線が前記電力系統に接続した場合に、前記回転機又は第2の回転電機の極対数に依存して発生する該回転機又は第2の回転電機の回転磁界が、前記回転機の回転子巻線又は第2の回転子巻線に相対速度0近傍で鎖交する回転数範囲を選択し、かつ、前記回転数範囲となる回転数指令値を入力として前記調速器及び回転数制御信号変化率リミッターを介して回転数制御信号を、前記回転機又は第2の回転電機の回転数を制御する回転数制御機構に送信することを特徴とする回転電機システムの制御方法。
  26.  請求項25に記載の回転電機システムの制御方法において、
     前記開閉装置が閉動作したら前記変換器制御装置から前記上位制御装置へ閉状態に遷移したことが伝達されて前記状態セレクタが動作し、前記平滑コンデンサの電圧検出値によって回転数指令値を算出する回転数指令値演算器からの回転数指令値に従って前記調速器が動作することを特徴とする回転電機システムの制御方法。
  27.  請求項26に記載の回転電機システムの制御方法において、
     前記回転数指令値演算器及び前記回転数制御信号変化率リミッターによって、前記相対速度0近傍の前記回転器又は第2の回転電機の回転数範囲から増速若しくは減速させることで、前記相対速度の大きさを増加させる方向に前記回転数指令値を演算することを特徴とする回転電機システムの制御方法。
  28.  請求項20乃至27のいずれか1項に記載の回転電機システムの制御方法において、
     前記開閉装置を閉動作させて前記回転機の回転子巻線又は第2の回転子巻線に初期励磁電流が通電され、前記回転子巻線又は第2の回転子巻線に前記回転数範囲に依存する誘起電圧を発生させることで、前記平滑コンデンサに充電電流が供給されることを特徴とする回転電機システムの制御方法。
  29.  請求項20乃至28のいずれか1項に記載の回転電機システムの制御方法において、
     前記回転機又は第2の回転電機と前記電力系統との連系部に、該連係部の電圧を検出する電圧センサが設置され、該電圧センサで検出された前記連係部の電圧検出値が振幅位相演算器に入力されて前記連係部での電圧の振幅及び位相を演算され、前記該振幅位相演算器で演算された振幅と位相の演算値が出力電圧演算器入力されて、所定の充電電流指令値を得るために必要な出力電圧指令値を演算し、前記回転数検出器で検出された回転数検出値、前記電圧センサで検出された前記連係部での電圧の振幅と位相、前記出力電圧演算器で演算された出力電圧指令値及び前記平滑コンデンサの電圧検出値をパルス演算器に入力し、該パルス演算器で前記電圧系統の電圧に同期した交流電圧を前記回転子巻線又は第2の回転子巻線の接続端に発生させるために前記半導体スイッチング素子を駆動する駆動パルスを演算することを特徴とする回転電機システムの制御方法。
  30.  請求項29に記載の回転電機システムの制御方法において、
     前記パルス演算器は、演算されたパルス幅が所定のパルス幅よりも長いことを判定基準として前記上位制御装置の前記回転数指令値演算器に回転数指令値変更信号を出力し、前記上位制御装置の回転数指令値演算器は、前記パルス演算器からの回転数指令値変更信号を受信した場合に、所定の回転数変化率以下の変化率で回転数指令値を更新することを特徴とする回転電機システムの制御方法。
  31.  請求項30に記載の回転電機システムの制御方法において、
     前記回転数指令値変更信号の出力判定基準は、前記半導体スイッチング素子の導通時間によって規定される温度を超えないようにパルス幅を規定することを特徴とする回転電機システムの制御方法。
PCT/JP2013/057628 2013-03-18 2013-03-18 回転電機システム及びその制御方法 WO2014147702A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015506388A JP5941216B2 (ja) 2013-03-18 2013-03-18 回転電機システム及びその制御方法
PCT/JP2013/057628 WO2014147702A1 (ja) 2013-03-18 2013-03-18 回転電機システム及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057628 WO2014147702A1 (ja) 2013-03-18 2013-03-18 回転電機システム及びその制御方法

Publications (1)

Publication Number Publication Date
WO2014147702A1 true WO2014147702A1 (ja) 2014-09-25

Family

ID=51579440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057628 WO2014147702A1 (ja) 2013-03-18 2013-03-18 回転電機システム及びその制御方法

Country Status (2)

Country Link
JP (1) JP5941216B2 (ja)
WO (1) WO2014147702A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453903B2 (ja) 2020-12-24 2024-03-21 ザ・パック株式会社 運搬体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136191A (ja) * 2000-10-23 2002-05-10 Kobe Steel Ltd 発電電動機の二次励磁装置
JP2009531011A (ja) * 2006-03-17 2009-08-27 インヘテアム エネルヒイ ソシエダー アニノマ 励磁機及び系統に接続されていない電力変換器を有する可変速風力タービン
JP2012231607A (ja) * 2011-04-26 2012-11-22 Fuji Electric Co Ltd 風力発電装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE514818C2 (sv) * 1999-04-30 2001-04-30 Abb Ab Konstantfrekvensmaskin med varierande/varierbart varvtal samt förfarande vid dylik maskin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136191A (ja) * 2000-10-23 2002-05-10 Kobe Steel Ltd 発電電動機の二次励磁装置
JP2009531011A (ja) * 2006-03-17 2009-08-27 インヘテアム エネルヒイ ソシエダー アニノマ 励磁機及び系統に接続されていない電力変換器を有する可変速風力タービン
JP2012231607A (ja) * 2011-04-26 2012-11-22 Fuji Electric Co Ltd 風力発電装置

Also Published As

Publication number Publication date
JPWO2014147702A1 (ja) 2017-02-16
JP5941216B2 (ja) 2016-06-29

Similar Documents

Publication Publication Date Title
US7554302B2 (en) Slip-controlled, wound-rotor induction machine for wind turbine and other applications
US9982555B2 (en) Gas turbine power generation system
US8350397B2 (en) Current source converter-based wind energy system
JP2019149936A (ja) 可変状況で作動するアセンブリ
US9018783B2 (en) Doubly-fed induction generator wind turbine system having solid-state stator switch
CN101345464B (zh) 一种采用交直交变流器调速的双馈电动机及其启动控制方法
JP2010515417A (ja) 励磁機と、送電系統に接続されない電力変換器とを有する可変速風力タービンのための電圧低下対応ライドスルーシステム
CN104393672B (zh) 一种基于残压预估的电机无缝切换供电方法
US20180226908A1 (en) Method and system for adjusting wind turbine power take-off
KR102409164B1 (ko) 사이리스터 기동 장치
WO2021169520A1 (zh) 单相同步发电机、单相电源、消弧系统及消弧方法
US9494139B2 (en) System and method for controlling a power output of a wind turbine generator
US20090021020A1 (en) Variable speed drive system
JP5988750B2 (ja) 発電システム
RU2518907C1 (ru) Система бесперебойного и гарантированного электроснабжения для наиболее ответственных потребителей электроэнергии
JP5941216B2 (ja) 回転電機システム及びその制御方法
JP2011217574A (ja) 風力発電システム、回転機の制御装置および制御方法
CN113659629B (zh) 一种同步电机化的电力电子并网装置及其控制方法
CN105140969B (zh) 一种抽水蓄能机组在抽水工况下并网参数的整定方法
CN104779846B (zh) 开关磁阻电机调速装置、开关磁阻电机及调速方法
KR102554511B1 (ko) 사이리스터 기동 장치
WO2014141436A1 (ja) 電力変換システム及びその制御方法
JP2014045649A (ja) 電気機械、および、電気機械の動作方法
JP2014239594A (ja) 交流ブラシレス励磁装置および発電システム
EP3840212B1 (en) Selective crowbar response for a power converter to mitigate device failure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878604

Country of ref document: EP

Kind code of ref document: A1