WO2014142324A1 - Continuous direct synthesis/recovery method for hydrogen peroxide using catalyst-coated reaction tube, and device therefor - Google Patents

Continuous direct synthesis/recovery method for hydrogen peroxide using catalyst-coated reaction tube, and device therefor Download PDF

Info

Publication number
WO2014142324A1
WO2014142324A1 PCT/JP2014/056980 JP2014056980W WO2014142324A1 WO 2014142324 A1 WO2014142324 A1 WO 2014142324A1 JP 2014056980 W JP2014056980 W JP 2014056980W WO 2014142324 A1 WO2014142324 A1 WO 2014142324A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen peroxide
tube
reaction tube
reaction
palladium
Prior art date
Application number
PCT/JP2014/056980
Other languages
French (fr)
Japanese (ja)
Inventor
慎一朗 川▲崎▼
鈴木 明
鈴木 敏重
ラハット ジャウィド
健一 柴田
鈴木 一弘
Original Assignee
独立行政法人産業技術総合研究所
三徳化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 三徳化学工業株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to SG11201507269VA priority Critical patent/SG11201507269VA/en
Publication of WO2014142324A1 publication Critical patent/WO2014142324A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/007Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/243Tubular reactors spirally, concentrically or zigzag wound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • B01J37/0226Oxidation of the substrate, e.g. anodisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating

Definitions

  • the present invention relates to a method and apparatus for continuous direct synthesis and recovery of hydrogen peroxide using a catalyst-coated reaction tube, and more specifically, a noble metal thin film of a catalyst is coated on the inner wall of a hollow tube by electroless plating or the like.
  • a method for directly synthesizing hydrogen peroxide by directly synthesizing hydrogen peroxide from hydrogen and oxygen using a reaction tube, and further continuously recovering the hydrogen peroxide synthesized directly as hydrogen peroxide water, and It relates to the device.
  • a reaction tube in which a hollow inner wall of a catalyst is coated with a noble metal thin film of a catalyst may be referred to as a catalyst-coated reaction tube.
  • Hydrogen peroxide is an oxidant with a low environmental impact that becomes water after reaction with an object to be treated. For example, in a field such as water treatment, sterilization, bleaching, and cleaning, particularly in a field such as semiconductor cleaning. It's being used. At present, almost all hydrogen peroxide on the market is synthesized by a sequential oxidation / reduction method (anthraquinone method) of anthraquinone, which is an aromatic organic compound. Since the anthraquinone method is a multistage reaction and consumes a large amount of organic reagents and organic solvents, the problem of environmental pollution due to them has been pointed out in recent years.
  • the liquid flows as a film on the surface of the solid catalyst particles, the gas forms a continuous phase, and it is possible to secure the production amount of hydrogen peroxide by a continuous process.
  • the method involves reducing the amount of hydrogen and oxygen involved in the synthesis, the possibility that the synthesized hydrogen peroxide will come into contact with the catalyst again and decompose, and packing the catalyst in a column. There are problems such as an increase in the amount of catalyst used and an increase in load resistance due to mass transfer in the column.
  • the heterogeneous catalyst used for direct synthesis includes, for example, various kinds of catalysts such as single metal particles and alloy particles, activated carbon, metal oxide supported catalyst, and metal complex modified catalyst.
  • various proposals have been made on metals such as catalysts supporting Pd, Pt, Au, PdO, and Pd / C, Pd / Al 2 O 3 (for example, cited references 4 to 6).
  • any catalyst has a problem that it is required to be used as fine particles or a colloid in order to increase the specific surface area.
  • the synthesis catalyst in general, in the direct synthesis of hydrogen peroxide, can also be a decomposition catalyst for hydrogen peroxide, there is a risk of explosion due to a gas continuous phase containing hydrogen and oxygen, load resistance in mass transfer From the standpoint of the need for reduction of the above, it is considered that the application of the filling type solid catalyst is not preferable.
  • JP 2007-84372 A JP-A-6-183703 WO2010 / 044271 JP-A-5-213607 Japanese translation of publication No. 2004-516721 Japanese Patent Laid-Open No. 51-4097
  • the present inventors in view of the above-mentioned prior art, as a result of intensive research aimed at solving the above-mentioned problems in the prior art, resulted in the noble metal of the catalyst on the hollow tube inner wall.
  • a reaction tube coated with a thin film by electroless plating, etc. it is possible to ensure smooth mass transfer and to form a suitable or optimal three-phase interface consisting of the catalyst surface, liquid phase, and gas phase.
  • the present inventors divide the mixed gas of hydrogen and oxygen, which is the squeal gas, into a liquid by forming a slag flow in which the gaseous gas phase and the liquid liquid phase state are alternately continued. As a result, it was found that the safety of the direct synthesis of hydrogen peroxide can be ensured, and further research has been made to complete the present invention.
  • An object of the present invention is to provide a clean, safe and industrializable production process for hydrogen peroxide production that can replace the conventional anthraquinone method with high energy consumption and possible environmental pollution. It is. That is, the present invention forms a suitable three-phase interface consisting of a catalyst surface, a liquid phase, and a gas phase, and establishes a method for directly synthesizing hydrogen peroxide safely from hydrogen and oxygen. An object of the present invention is to provide an industrializable direct hydrogen peroxide synthesis method and apparatus capable of operating safely and stably while reducing the amount of noble metal catalyst used and ensuring the productivity of the target product. is there.
  • the present invention comprises the following technical means.
  • (1) A method for directly synthesizing hydrogen peroxide from hydrogen and oxygen Using a reaction tube in which a hollow tube inner wall is coated with a noble metal thin film, a raw material gas hydrogen, an oxygen or air gas phase, and a reaction medium aqueous phase are supplied to a flow path inside the reaction tube, Under the reaction temperature and reaction pressure conditions, hydrogen peroxide is continuously synthesized directly from hydrogen and oxygen inside the reaction tube, and the synthesized hydrogen peroxide is continuously recovered as hydrogen peroxide water.
  • Direct synthesis method of hydrogen peroxide Using a reaction tube in which a hollow tube inner wall is coated with a noble metal thin film, a raw material gas hydrogen, an oxygen or air gas phase, and a reaction medium aqueous phase are supplied to a flow path inside the reaction tube, Under the reaction temperature and reaction pressure conditions, hydrogen peroxide is continuously synthesized directly from hydrogen and oxygen inside the reaction tube, and the synthesized hydrogen peroxide is continuously recovered as hydrogen peroxide water.
  • a thin film comprising at least one of palladium, an alloy of palladium and gold, a gold nanoparticle deposited on the surface of the palladium thin film, an alloy of palladium and silver, and a porous palladium film.
  • the method for directly synthesizing hydrogen peroxide according to (1) above, wherein a reaction tube coated with is used.
  • a stainless steel tube As the hollow tube, a stainless steel tube, an Inconel tube, a Hastelloy tube, a titanium tube, a corrosion-resistant tube selected from the above, or an inner surface titanium-lined stainless steel tube, an Inconel tube, a Hastelloy tube
  • (6) The method for directly synthesizing hydrogen peroxide according to any one of (1) to (4), wherein a fumed silica tube is used as the hollow tube.
  • a thin film comprising at least one of palladium, an alloy of palladium and gold, a gold nanoparticle deposited on the surface of the palladium thin film, an alloy of palladium and silver, and a porous palladium film as the reaction tube.
  • the oxide film of the base metal is produced by high-temperature oxidation at 600 ° C. or higher or supercritical water oxidation at 374 ° C. or higher.
  • Direct synthesis method of hydrogen oxide (8) The peroxidation according to any one of (1) to (7), wherein the inner diameter of the reaction tube is 10 mm or less, 0.05 mm or more, or 5 mm or less and 0.1 mm or more. Direct synthesis method of hydrogen.
  • the reaction temperature is in the range of 0 to 80 ° C., or in the range of 5 to 50 ° C.
  • the reaction pressure is in the range of 0.1 to 50 MPa, or is in the range of 0.1 to 20 MPa.
  • the water or acid aqueous solution for recovering hydrogen peroxide synthesized inside the reaction tube contains one or more ions of fluoride ion, chloride ion, bromide ion, and iodide ion.
  • the acidic aqueous solution contains at least one of fluorine, chlorine, bromine and iodine, and all of the materials have a total concentration in the acidic aqueous solution in the range of 0.01 to 100 mg / L.
  • the volume mixing ratio of gas and liquid is gas 5 to 50: liquid 1, and the volume flow rate ratio of the raw material gas phase and the recovered water phase is 50 or less with respect to the water phase 1 or water
  • the inner diameter of the outflow part of the mixer that mixes the gas of the raw material gas phase and the liquid of the aqueous phase, the inner diameter of the reaction tube and the inner diameter of the reaction tube joint, and the slag flow size is not changed by the flow path.
  • a mass flow controller is used for the raw material gas phase and a metering pump is used for the aqueous phase, and the flow rate and discharge pressure are controlled using a micromixer.
  • the volume mixing ratio of hydrogen and oxygen is 10 to 33% hydrogen and 90 to 67% oxygen, and the ratio of oxygen to hydrogen in the source gas phase (oxygen / hydrogen) is 1.6 or more, or The method for directly synthesizing hydrogen peroxide according to any one of (1) to (13), wherein the ratio of oxygen to hydrogen is 2.0 or more. (19) The method for directly synthesizing hydrogen peroxide according to any one of (10) to (18), wherein the recovered aqueous phase from the reaction tube is recycled to the reaction tube.
  • An apparatus for continuously and directly synthesizing hydrogen peroxide from hydrogen and oxygen A reaction tube in which the inner wall of a hollow tube is coated with a noble metal thin film, a means for supplying hydrogen as a raw material gas and a gas phase of oxygen or air, a means for supplying a water phase of a reaction medium, and a reaction tube
  • An apparatus for directly synthesizing hydrogen peroxide comprising means for continuously recovering hydrogen peroxide synthesized immediately after synthesis with water or an aqueous acid solution.
  • reaction tube in which a noble metal thin film is coated on the inner wall of the tube by electroless plating, the reaction tube is coated with a thin film composed of at least one of palladium, an alloy of palladium and gold, an alloy of palladium and silver, and a porous film of palladium.
  • a stainless steel tube As the hollow tube, a stainless steel tube, an Inconel tube, a Hastelloy tube, a titanium tube, a corrosion resistant tube selected from the above, or an inner surface titanium-lined stainless steel tube, an Inconel tube, a Hastelloy tube
  • the hydrogen peroxide direct synthesis apparatus according to any one of (20) to (22), wherein a fumed silica tube is used as the hollow tube.
  • a thin film comprising at least one of palladium, an alloy of palladium and gold, a palladium nanoparticle deposited with gold nanoparticles, an alloy of palladium and silver, and a porous palladium film as the reaction tube. Is produced by electroless plating inside the reaction tube, and a metal oxide film used as a base is manufactured by high-temperature oxidation at 600 ° C. or higher or supercritical water oxidation at 374 ° C. or higher (23 ) Direct hydrogen peroxide synthesis apparatus.
  • the present invention uses a reaction tube having a hollow tube inner wall coated with a noble metal thin film, and directly synthesizes hydrogen peroxide from hydrogen and oxygen inside the reaction tube.
  • the present invention provides a method and an apparatus for directly synthesizing hydrogen peroxide comprising continuously recovering hydrogen water.
  • the reaction tube used in the present invention is composed of a hollow reaction tube, that is, a tubular hollow tubule, and it is preferable to increase the coverage area of the noble metal thin film in the internal space of the hollow tubule.
  • a hollow thin tube having an inner diameter of 0.05 mm to 10 mm is used as the reaction tube. That is, the inner diameter of the reaction tube is 10 mm or less, preferably 5 mm or less. Further, in order to ensure sufficient material diffusion and thermal diffusion inside the hollow thin tube, the inner diameter of the reaction tube is 1 mm or less and 0.1 mm. The above is desirable, and further considering the pressure loss, it is desirable that the thickness is 0.25 mm or more.
  • the length of the hollow thin tube constituting the reaction tube is an important factor that determines the contact time of the catalyst with the noble metal thin film in the reaction. From this, the longer the hollow tube is, the higher the hydrogen conversion efficiency is. However, if it is too long, hydrogen peroxide once synthesized may be decomposed again. Further, since the pressure loss increases as the length of the hollow thin tube increases, a length at which these are suitable or optimal is selected. Specifically, since the volume of the hollow thin tube constituting the reaction tube changes depending on the inner diameter of the reaction tube used, the reaction time (gas average residence time) varies even with the same length. It cannot be decided in general.
  • the reaction results differ depending on the inner diameter even with the same volume (same reaction time), and a suitable or optimal reaction time for each inner diameter. That is, the length of the hollow tubule is selected.
  • the reaction time is selected within 2 minutes, preferably within 1 minute.
  • an electroless plating technique that can be achieved relatively simply by introducing the plating solution into the hollow thin tube is applied. Can do.
  • This method of electroless plating is advantageous because the thickness of the plating film can be controlled by the concentration of the plating solution and the amount of liquid flow.
  • This electroless plating method has an advantage that a metal thin film can be coated even when the material of the hollow thin tube constituting the reaction tube is a surface of non-conductive glass, ceramics, plastic, etc. in addition to metal. is doing.
  • the material for the tube-shaped hollow thin tube constituting the reaction tube used in the present invention for example, metals, alloys, glass, ceramics, plastics and the like can be preferably used. Corrosion-resistant titanium, nickel alloy, chromium alloy, and iron alloy are used as the metallic hollow tubule. Furthermore, in order to improve chemical resistance, a titanium or titanium alloy lining is used.
  • the hollow tube is preferably a corrosion resistant tube selected from, for example, a stainless tube, an Inconel tube, a Hastelloy tube, a titanium tube, or a stainless tube, an Inconel tube, a Hastelloy tube provided with an inner surface titanium lining. A fumed silica tube can be used.
  • a silane coupling treatment is performed as a pretreatment for electroless plating.
  • the oxidation treatment of the titanium surface it is preferable to form a strong oxide film by high-temperature oxidation treatment at 600 ° C. or higher or supercritical water oxidation treatment at 374 ° C. or higher.
  • silica glass capillaries used for gas chromatography columns for ceramics, tubes of alumina, titania, zirconia, etc., for plastics, tubes of polypropylene, polyethylene, polyamide, etc. are used as suitable materials.
  • the reaction tube is a thin film made of at least one of palladium, an alloy of palladium and gold, a gold nanoparticle deposited on the surface of the palladium thin film, an alloy of palladium and silver, and a porous film of palladium.
  • a reaction tube coated with is used.
  • the inner wall of the tubular hollow thin tube constituting the reaction tube is coated with the noble metal thin film of the catalyst by adding a seed of palladium to the inner wall of the tube, and then a plating solution containing a complexing agent, a noble metal salt and a reducing agent. This is achieved by passing the liquid through the hollow thin tube and performing electroless plating.
  • the electroless plating solution to be used use metal salts such as palladium, silver, platinum, rhodium, etc., these metal complexes, complexing agents that can dissolve them stably, and reducing agents in an appropriate solvent. Can do.
  • the film thickness of the noble metal thin film of the catalyst can be controlled by the flow rate of the electroless plating solution used.
  • the flow rate of the electroless plating solution is selected in the range of 0.1 to 5 ⁇ m. It is.
  • the thickness of the noble metal thin film of the catalyst is more preferably in the range of 0.5 to 2 ⁇ m.
  • the hydrogen of the source gas, the gas phase of oxygen or air, and the aqueous phase of the reaction medium are supplied to the flow path inside the reaction tube, and inside the reaction tube under the predetermined reaction temperature and reaction pressure conditions. Sequentially directly synthesize hydrogen peroxide from hydrogen and oxygen.
  • the gas of the raw material gas phase and the liquid of the aqueous phase are mixed with a micromixer, that is, hydrogen and
  • a micromixer that is, hydrogen
  • the mixed gas of oxygen with the acidic aqueous solution
  • a slag flow in which the gas phase and the liquid phase from the outlet of the mixer are alternately formed is formed, and the slag flow is used to synthesize it inside the reaction tube.
  • Hydrogen peroxide immediately after synthesis can be continuously recovered as hydrogen peroxide water.
  • the slag flow is introduced into a reaction tube coated with a noble metal thin film of a catalyst, and hydrogen peroxide is synthesized in the gas phase and continuously recovered in the liquid phase.
  • a T-shaped micromixer is preferably used as the micromixer.
  • the gas phase and liquid phase exiting the reaction tube can be appropriately returned to the front of the mixer and circulated.
  • the stoichiometric ratio of hydrogen peroxide synthesis is hydrogen 5: oxygen 5.
  • hydrogen 10 to 33% and oxygen 90 to 67% in order to suppress reduction by hydrogen, which is a side reaction of the following 4, preferably hydrogen 10 to 33% and oxygen 90 to 67%.
  • the slag flow requires stable continuous supply of the raw material gas phase and the liquid phase and its means, and the volume of the slag flow in the gas phase and liquid phase is determined by the flow rate ratio of both. Therefore, it is preferable to control the flow rate using a mass flow controller for the gas phase and a metering pump for the liquid phase.
  • the stability of the slag volume is maintained because the inner diameter of the flow path does not change, so the gas phase inlet inner diameter, liquid phase inlet inner diameter, mixer outlet inner diameter, reaction tube inner diameter, reaction tube inner diameter does not change, It is important that these diameters are constant. If these diameters are constant, the slag volume is stably maintained.
  • the reduction reaction with hydrogen which is the side reaction 4 described below, is performed when the oxygen ratio (oxygen / hydrogen) in the raw material gas is excessive (1 or less). Therefore, it is desirable to ensure a condition with an oxygen ratio of 1.6 or more, preferably 2.0 or more.
  • the acidic aqueous solution preferably contains one or more inorganic acids selected from hydrochloric acid, sulfuric acid, phosphoric acid and the like.
  • a saturated aqueous solution of carbon dioxide containing one or more inorganic acids can be used.
  • the pH of the aqueous solution is 1 to 4, preferably 2 to 3.
  • the synthesis efficiency of hydrogen peroxide can be increased by adding at least one of fluorine, chlorine, bromine and iodine to the acidic aqueous solution.
  • Any of the substances preferably has a total concentration in an acidic aqueous solution in the range of 0.01 to 100 mg / L.
  • the mixer is not particularly limited, such as a micro mixer, a T-shaped mixer, a static mixer, a swirl mixer, and a multi-laminar flow contact type mixer, but a slag in which a gas phase gas and a liquid phase liquid phase alternately continue When the flow is stably generated, it is preferable to use a T-shaped mixer or a T-shaped mixer micromixer.
  • the volume mixing ratio of gas and liquid is gas 100: liquid 1, preferably 5 to 50: liquid 1, more preferably gas 5 to 10: liquid 1.
  • the reaction temperature is preferably in the range of 0 to 80 ° C., more preferably in the range of 5 to 50 ° C. Since hydrogen peroxide is synthesized from hydrogen and oxygen gas, in order to increase the concentration of the synthesized hydrogen peroxide, it is required to increase the gas density. It is not preferable.
  • the reaction pressure is an especially important factor in increasing the gas density, and high pressure conditions are preferable for increasing the concentration of synthesized hydrogen peroxide. However, from the viewpoint of safe industrialization, ultrahigh pressure is avoided, and the reaction pressure is preferably adjusted to a range of 0.1 to 50 MPa, particularly 0.1 to 20 MPa.
  • the reaction time is controlled by the sum of the diameter and length of the reaction tube and the supply flow rate of the gas phase and aqueous solution phase. In this case, it is possible to employ a process in which the aqueous solution phase is circulated until the concentration of the target hydrogen peroxide solution is reached.
  • the reaction tube coated with the catalyst noble metal thin film can be preferably produced by a method in which the inner wall of the reaction tube is coated with the catalyst noble metal thin film by electroless plating.
  • a method for producing a reaction tube in which a noble metal thin film is coated by electroless plating the method described in the literature (Japanese Patent No. 4986174) can be applied.
  • the hydrogen conversion rate can be improved.
  • the reaction tube for example, when a 2 ⁇ m-thick palladium film is coated on a hollow thin tube having an inner diameter of 0.5 mm ⁇ 1000 mm constituting the reaction tube, 37 mg of palladium is used. However, this amount is considerably smaller than 1 g of 5% Pd-supported activated carbon (Pd: 50 mg).
  • a reaction tube in which a hollow fiber bundled in parallel is coated with a noble metal thin film of a catalyst by electroless plating can be used, whereby the reaction tube can be scaled up.
  • the apparatus for directly synthesizing hydrogen peroxide according to the present invention includes a reaction tube having a hollow tube inner wall coated with a noble metal thin film and the reaction tube.
  • a means for collecting In the present invention, a reaction tube in which a noble metal thin film is coated by electroless plating can be used as the reaction tube.
  • the apparatus preferably includes, for example, a reaction tube in which a noble metal thin film is coated on the inner wall of the tube by electroless plating, such as palladium, an alloy of palladium and gold, an alloy of palladium and silver, and a porous membrane of palladium.
  • a reaction tube in which a noble metal thin film is coated on the inner wall of the tube by electroless plating, such as palladium, an alloy of palladium and gold, an alloy of palladium and silver, and a porous membrane of palladium.
  • An apparatus including a reaction tube covered with a thin film made of any one or more of them is used.
  • the hollow tube for example, a stainless tube, an Inconel tube, a Hastelloy tube, a titanium tube, a corrosion-resistant tube selected from the above, or an internal titanium lining, a stainless tube, an Inconel tube
  • the flow path entering the reaction tube includes a mixer that forms a slag flow in which the phase states of the raw material gas phase and the aqueous phase are alternately continued, and the mixer that mixes the raw material gas and the recovered water.
  • the inner diameter of the outflow part, the inner diameter of the reaction tube, and the inner diameter of the reaction tube joint are the same, and the hydrogen peroxide synthesized inside the reaction tube is continuously recovered as hydrogen peroxide with water or an acid aqueous solution.
  • the provision of the means is a preferred embodiment.
  • the apparatus includes a mass flow controller for controlling the supply of the raw material gas phase, a metering pump for controlling the supply of the water phase, and a micro gas for mixing the raw material gas phase and the water phase downstream of the mass flow controller and the metering pump.
  • a mixer was installed to generate a slag flow in which the phase state of the raw material gas phase and the aqueous phase were alternately continued, and a stable slag flow was produced using a T-shaped micromixer for the micromixer.
  • a preferred embodiment is that it is generated and that a recirculation means for recirculating the recovered aqueous phase from the reaction tube to the reaction tube is provided.
  • FIG. 1 shows a basic concept of hydrogen peroxide synthesis and hydrogen peroxide recovery in a hollow thin tube whose inner wall is coated with a catalyst noble metal thin film. This is because the raw material gas (hydrogen and oxygen or air, or hydrogen and oxygen and inert gas) and the recovered water become, for example, a slag flow in which the gas and liquid phase states are alternately continued by a mixer. Shows that the hydrogen peroxide synthesis reaction proceeds with the catalyst of the noble metal thin film coated on the inner wall of the tube, and the synthesized hydrogen peroxide is recovered before being decomposed in the recovered water portion immediately after. is there.
  • the raw material gas hydrogen and oxygen or air, or hydrogen and oxygen and inert gas
  • FIG. 1 is a flow diagram of a hydrogen peroxide direct synthesis apparatus that synthesizes hydrogen peroxide continuously from hydrogen and oxygen, and shows an example of an apparatus that implements the direct hydrogen peroxide synthesis method of the present invention. It is.
  • B-1 hydrogen gas cylinder
  • B-2 air gas cylinder
  • B-3 oxygen gas cylinder
  • R-1 to 3 pressure reducing valve
  • MFC-1 to 3 mass flow controller
  • V-1 to 3 Stop valve
  • CV-1 to 5 Check valve
  • SV-1 to 2 Safety valve
  • P1 to 3 Pressure gauge
  • AT-1 Recovery liquid (acid aqueous solution) tank
  • BV-1 Ball valve
  • LP- 1 Metering liquid supply pump
  • M-1 mixer
  • T-1 to 2 thermometer
  • CR-1 catalytic reaction tube
  • S-1 gas-liquid separator
  • NV-1 needle valve
  • BPR1-2 A back pressure valve
  • MFM-1 mass flow meter
  • G-1 gas collection bag
  • the hydrogen peroxide direct synthesis apparatus and its operation will be described in detail.
  • the source gases, hydrogen and oxygen are supplied from separate high-pressure gas cylinders (B-1 to 2) and reduced to a predetermined pressure by the pressure reducing valves (R-1 to 3), and then the mass flow controllers (MFC1 to 3). ) To adjust to a predetermined gas flow rate.
  • the flow rate ratio of hydrogen to oxygen may theoretically be hydrogen 5: oxygen 5, but oxygen can be added excessively.
  • the raw material gas mixed at a predetermined flow rate is heated to a predetermined temperature in the water tank and then introduced into the mixer (M-1).
  • the recovered aqueous phase for quickly recovering the hydrogen peroxide synthesized in the reaction tube into the aqueous phase is supplied from the recovered liquid tank (AT-1) to the suction of the metered liquid supply pump (LP-1). .
  • the recovered liquid is heated to a predetermined temperature in the water tank and then introduced into the mixer (M-1) in the same manner as the raw material gas.
  • the recovered water used here may be pure water, but for the purpose of improving the yield and selectivity of the synthesized hydrogen peroxide by re-decomposition and reaction, sulfuric acid, phosphoric acid, hydrochloric acid and other acids are used. Addition and addition of fluoride ions, chloride ions, bromide ions, iodide ions, and the like can be performed.
  • the mixer (M-1) is, for example, a T-shaped mixer or a Y-shaped mixer for the purpose of forming a slag flow in which the phase states of the raw material gas phase and the recovered water aqueous phase are alternately continued. It is done.
  • the flow rate of the raw material gas is controlled by a mass flow controller so that it is 10 times or less, preferably 5 times or less of the recovered water amount, and the recovered liquid is controlled by a metering pump.
  • the raw material gas and the recovered liquid are supplied to the catalyst reaction tube (CR-1) in the state of a slag flow in which the gas phase and the water phase alternately and continuously flow.
  • the raw material gas is converted into hydrogen peroxide by the action of the noble metal catalyst coated on the inner wall of the reaction tube, and is quickly recovered in the aqueous phase immediately after the gas phase to become hydrogen peroxide solution. It is collected and stored in the separator (S-1).
  • the reaction temperature is preferably set to 0 to 80 ° C., more preferably 5 to 50 ° C.
  • the reaction pressure is preferably set in the range of 0.1 to 50 MPa, more preferably in the range of 0.1 to 20 MPa.
  • the reaction time depends on the inner diameter of the reaction tube, but when the inner diameter is 1 mm, it is set within 2 minutes, preferably within 1 minute.
  • the inner diameter of the reaction tube used here is preferably set to 10 mm or less in order to stably form a slag flow. Further, from the viewpoint of safety, the hydrogen extinguishing diameter is preferably 1 mm or less. Set to.
  • the noble metal catalyst for example, palladium, an alloy of palladium and gold, a material in which gold nanoparticles are deposited on the surface of a palladium thin film, an alloy of palladium and silver, or a porous film of palladium is preferably used.
  • the needle valve (NV-1) at the outlet of the gas-liquid separator (S-1) is closed, and the recovered liquid tank (AT-1) is removed from the circulation line (CL-1). It is also possible to arrange a circulation line for returning the recovered liquid to ().
  • the noble metal that is a hydrogen peroxide synthesis catalyst also acts as a decomposition catalyst for the synthesized hydrogen peroxide, it is necessary to pay attention to its circulation. It is also possible to arrange a line for recirculating the gas after the reaction, and this can be carried out as appropriate in consideration of the conversion rate of the reaction gas.
  • the present invention By using the hydrogen peroxide direct synthesis technology of the present invention, it is possible to achieve a reduction in the amount of catalyst used, which was a problem of the known technology. (2) By using a reaction tube coated with a noble metal thin film of the catalyst by electroless plating, etc., the surface of the noble metal effective as a catalyst can be formed from a thin film of micron order, and sufficient surface of the catalyst necessary for the reaction is secured. However, the amount of expensive noble metal used can be reduced.
  • a hollow thin tube having an inner diameter of 1 mm or less as the reaction tube it is possible to realize the concept of so-called extinguishing diameter, thereby suppressing the explosion of the mixed gas of hydrogen and oxygen.
  • a flow diagram of a hydrogen peroxide direct synthesis apparatus that continuously synthesizes hydrogen peroxide directly from hydrogen and oxygen is shown.
  • the visualization flow figure for verifying stabilization of the flow state of slag flow is shown.
  • combination hydrogen peroxide of Example 1 is shown.
  • the results of hydrogen conversion, hydrogen peroxide selectivity, and hydrogen peroxide yield during the synthesis of hydrogen peroxide in Example 1 are shown.
  • concentration of the synthesized hydrogen peroxide of Example 2 is shown.
  • the results of hydrogen conversion, hydrogen peroxide selectivity, and hydrogen peroxide yield during the synthesis of hydrogen peroxide in Example 1 are shown.
  • the connection form of the PFA visualization tube for verifying the stabilization of the flow state of the slag flow is shown.
  • Production Example 1 (Formation of palladium seed nuclei on the inner wall of a titanium-lined nickel alloy tube reaction tube) (1) Manufacture of titanium-lined nickel alloy tube reaction tube As the material of the outer tube of the double tube composed of the outer tube and the inner tube, Inconel 625 (trade name) of nickel alloy is used, and as the material of the inner tube, Titanium-lined nickel alloy tube consisting of a double tube of hollow thin tubes with a hollow portion by using pure titanium, inserting a pure titanium inner tube inside a nickel alloy outer tube, rolling and fitting A reaction tube was manufactured. A stainless steel tube and a Hastelloy tube to which an inner surface titanium lining was applied were similarly manufactured by the same method.
  • the resulting titanium-lined nickel alloy tube reaction tube consisting of a double tube composed of nickel alloy-pure titanium-titanium oxide has an inner diameter of 1 mm, an outer diameter of 1.5 mm, a length of 100 cm, and an inner surface area. It was 31.4 cm 2 .
  • silane coupling agent for fixing palladium and titanium oxide to a titanium-lined nickel alloy tube reaction tube composed of a double tube composed of the above nickel alloy-pure titanium-titanium oxide.
  • silane coupling agent for fixing palladium and titanium oxide to a titanium-lined nickel alloy tube reaction tube composed of a double tube composed of the above nickel alloy-pure titanium-titanium oxide.
  • 1% 3-trimethoxysilylpropyldiethylenetriamine dissolved in toluene was introduced and held at 70 ° C. for 16 hours in a sealed state.
  • a titanium-lined nickel alloy tube reaction tube composed of a double tube composed of the above nickel alloy-pure titanium-titanium oxide is subjected to palladium on its titanium oxide surface.
  • a seed seed was attached. Specifically, 5 ml of a 0.1 M palladium acetate aqueous solution is passed through the inner wall of the reaction tube to be adsorbed, and further 5 ml of a 1 M hydrazine aqueous solution is passed through it to seed palladium particles on the inner wall surface. As precipitated.
  • Production Example 2 Electroless plating of palladium on the inner wall of a titanium-lined nickel alloy tube reaction tube
  • the hollow-tubular titanium-lined nickel alloy tube reaction tube with the seeds of palladium particles produced in the production example 1 was immersed in a water bath at 60 ° C., and 4 mM [Pd (NH 3 ) 4 ] Cl 2 , 50 ° C. plating solution containing 0.15 M EDTA, 1M ammonia 10 mM hydrazine was passed at a flow rate of 0.5 ml per minute, and 200 ml of plating solution was supplied. The liquid was stopped.
  • the plating solution flowing out from the end of the tube was collected, and the amount of palladium contained in the flowing plating solution was analyzed by ICP emission spectroscopy. As a result, the amount of palladium consumed was 57 mg, which was plated on the surface of the inner wall of the tube. Palladium with an initial concentration of 380 ppm decreased to 10 ppm or less and flowed out. As a result of SEM observation of the cross section of the tube, the thickness of the palladium layer was 3.5 ⁇ m.
  • Production Example 3 Electroless plating of palladium and silver on the inner wall of a titanium-lined nickel alloy tube reaction tube
  • the hollow tube titanium-lined nickel alloy tube reaction tube with a seed of palladium particles produced in the process of Production Example 1 is immersed in a 60 ° C. water bath, and 9 mM acetic acid is used as a plating solution from the tip of the tube of the hollow tube.
  • An aqueous solution at 60 ° C. containing palladium, 1 mM silver nitrate, 0.15 M EDTA, 4 M ammonia and 10 mM hydrazine was passed at a flow rate of 0.5 ml per minute.
  • the composition of the plating solution in this case was such that the ratio of palladium to silver was 90:10 by mass ratio.
  • 110 ml of the plating solution was passed through the tip of the hollow thin tube, it was washed with water.
  • the plating solution flowing out from the end of the tube was collected, and the amounts of palladium and silver contained in the flowing plating were analyzed by ICP emission spectroscopy.
  • the amount of palladium consumed and the amount of silver were 67.7 mg and 10.1 mg, respectively, and these were plated on the inner wall of the tube. These corresponded to 87% and 13% in mass ratio, respectively.
  • Production Example 4 (Formation of porous palladium membrane by selective elution removal of silver) 4M nitric acid was added to a titanium-lined nickel alloy tube reaction tube of a hollow thin tube coated with 67.7 mg (87% by mass): 10.1 mg (13% by mass) of palladium and silver produced in the step of Production Example 3. 700 ml was passed at 25 ° C. at a flow rate of 0.5 ml per minute, and silver was selectively eluted and removed to form a porous palladium membrane. The amount of eluted palladium and silver was analyzed by ICP emission spectroscopy. As a result, the remaining palladium was 48.1 mg (94% by mass), and silver was 2.9 mg (5.7% by mass).
  • Production Example 5 (Formation of an alloy film of palladium and silver by heat treatment)
  • a hollow thin tube titanium-lined nickel alloy tube reaction tube coated with 67.7 mg (87% by mass): 10.1 mg (13% by mass) of palladium and silver produced in the process of Production Example 3 has an inner diameter of 4 cm. It was inserted into a quartz tube and the whole was placed in a tubular furnace. While flowing hydrogen from one end of the hollow thin tube, it was heated at 600 ° C. for 3 hours to form an alloy film of palladium and silver.
  • Example 1 (Description of direct synthesizer) The direct synthesis of hydrogen peroxide was performed using the direct synthesizer shown in FIG. The direct synthesis apparatus of FIG. 1 will be described. The apparatus shown in the dotted line in FIG. 1 was submerged in a water tank for ensuring safety and controlling the reaction temperature. The synthesis temperature of hydrogen peroxide was set to 40 ° C., the reaction pressure was set to 0.8 MPa with a pressure gauge (PT; P-1, P-2, P-3), and back pressure valves (BPR-1, BPR-2) ) To control. In addition, a liquid circulation line (CL-1) is installed in the direct synthesizer so that the synthesized hydrogen peroxide solution can be circulated.
  • a pressure gauge PT; P-1, P-2, P-3
  • BPR-1, BPR-2 back pressure valves
  • the source gas used for the synthesis of hydrogen peroxide is hydrogen cylinder (B-1), air cylinder (B-2), and oxygen cylinder (B-3) if necessary.
  • the supply amount of the raw material gas was controlled by the mass flow controller (MFC; MFC-1, MFC-2, MFC-3).
  • MFC mass flow controller
  • the aqueous acid solution used for the recovery of hydrogen peroxide is an aqueous solution of 0.02 mol / L sulfuric acid and 26 ppm sodium bromide.
  • the aqueous acid solution is charged in advance in an acid aqueous solution tank (Acid tank; AT-1) and pump (LP-1 ).
  • the total supply amount of the raw material gas is 7 ml / min (0.8 MPa, 40 ° C.), and the supply amount of the acid aqueous solution (0.02 mol / L sulfuric acid and bromine 20 ppm added) is 1 ml / min. It was. Before these were directly introduced into the reaction tube of the synthesizer, the raw material gas and the acid aqueous solution were mixed with a 1/8 inch T-shaped mixer of the mixer. The raw material gas and the acid aqueous solution are supplied to the reaction tube by forming a slag flow in which the gaseous gas phase and the liquid aqueous phase are alternately continued. After the synthesis and recovery are performed continuously, the reaction is performed.
  • a reaction tube coated with electroless plating of a palladium single layer was used as a synthesis catalyst.
  • the reaction time was 64 seconds.
  • the reaction tube was 2 m ⁇ 5 and 10 m, and the outer diameter of the reaction tube was 1/8 inch, similar to the gas-liquid mixing T-shaped mixer.
  • the inner diameter of the union of the reaction tube joint for connecting the reaction tubes was made the same as the inner diameter of the reaction tube to prevent the slag flow phase state from being disturbed by the change of the inner diameter.
  • the concentration of hydrogen peroxide synthesized by iodine coulometric titration (hydrogen peroxide counter HP-300, manufactured by Hiranuma Sangyo Co., Ltd.) was quantified.
  • the residual gas collected in the gas bag (G-1) was analyzed by TCD gas chromatography (manufactured by Shimadzu Corporation, GC-8A) to determine the hydrogen conversion rate.
  • the concentration of the synthesized hydrogen peroxide was 10940 ppm under the conditions of 21.4 vol% hydrogen and 42.9 vol% oxygen.
  • the hydrogen conversion rate under these conditions is 95.7%, and the hydrogen peroxide selectivity is 63.6%.
  • Yield hydrogen conversion ⁇ hydrogen peroxide selectivity / 100
  • the hydrogen peroxide yield determined in (1) was 60.9%.
  • Example 2 (Direct synthesis of hydrogen peroxide from hydrogen, air and oxygen 2) 1 was used under the same conditions as in Example 1 except that the composition of the raw material gas was changed from a hydrogen concentration of 13.6 vol% and an oxygen ratio of 0.5 to 4.0 using the direct synthesis apparatus of FIG. Was synthesized.
  • the concentration of the synthesized hydrogen peroxide increases as the oxygen concentration in the raw material gas increases.
  • oxygen ratio oxygen / hydrogen
  • the selectivity dropped sharply.
  • the selectivity for hydrogen peroxide slightly increased as the oxygen ratio increased.
  • the concentration of synthesized hydrogen peroxide was 4903 ppm, and in 2 cycles it was 7710 ppm. From this, it was confirmed that the concentration of the synthesized hydrogen peroxide can be increased by circulating only the synthesized hydrogen peroxide solution.
  • Example 4 Stabilization of slag flow
  • PFA Tube PFA visualization tube
  • M-2 A 1/8 inch T-shaped mixer (M-2) is used as a mixer (Mixer) for mixing the gas and water of the raw material gas and water, and a 1/8 inch PFA visualization tube (PFA Tube, PFA Tube, (Inner diameter; 1.6 mm) was connected.
  • a gas-liquid separator (Separator; S-2) is connected to the outlet of the PFA visualization tube, and only the gas is discharged out of the system via the back pressure valve (BPR; BPR-3), and the liquid is the gas-liquid separator.
  • BPR back pressure valve
  • the entire apparatus was pressurized with air (Ar), and the pressure of the entire apparatus was maintained at 0.8 MPa with a back pressure valve (BPR-3) while the air was circulated.
  • add colored food and supply colored water at 1 ml / min, and change the air supply rate to 1.2 ml / min, 2 ml / min, 6 ml / min, and 12 ml / min.
  • the flow state of the slag flow was observed and confirmed with each of the tube connected with the straight union and the seamless tube without the union.
  • the present invention relates to a method and apparatus for continuous direct synthesis and recovery of hydrogen peroxide using a catalyst-coated reaction tube, and by using a reaction tube coated with a noble metal thin film of a catalyst.
  • the surface of the noble metal effective as a catalyst can be formed from a micron-order thin film, and the amount of expensive noble metal used can be reduced while sufficiently securing the surface of the catalyst necessary for the reaction.
  • the hydrogen peroxide direct synthesis apparatus of the present invention by using a tube-shaped reaction field, load resistance due to mass transfer is reduced, reaction runaway in the reaction field is eliminated, and uniform synthesis reaction is possible.
  • a mixed gas of hydrogen and oxygen is divided into an alternating continuous slag flow with an aqueous solution, a method in which hydrogen or oxygen is mixed with an aqueous solution in advance and supplied to a reaction field, and nitrogen or dioxide as an inert gas. It is possible to ensure the safety of the direct synthesis of hydrogen peroxide by any method of simultaneously supplying carbon.
  • the present invention uses a catalyst-coated reaction tube in which a hollow tube inner wall is coated with a catalyst noble metal thin film to directly and continuously synthesize hydrogen peroxide from hydrogen and oxygen. The present invention is useful for providing a new method and apparatus for continuously recovering hydrogen oxide water.
  • B Gas cylinder (B-1; hydrogen, B-2; air, B-3; oxygen, B-4; nitrogen)
  • R cylinder regulator
  • MFC mass flow controller
  • V Valve (V-1, V-2, V-3, V-4)
  • CV Check valve (CV-1, CV-2, CV-3, CV-4, CV-5, CV-6, CV-7)
  • PT Pressure gauge
  • SV Safety valve (SV-1, SV-2) AT-1: Acid tank; Acid aqueous solution tank
  • BV-1 Ball valve
  • LP Liquid pump (LP-1, LP-2)
  • TI Thermometer (T-1, T-2)
  • CR-1 Catalytic reactor; Palladium-catalyzed reaction tube
  • S Gas-liquid separator (Separator; S-1, S-2)
  • NV Needle valve (NV-1)
  • BPR Back pressure valve (BPR-1, BPR-2, BPR-3)
  • MFM Mass Flow Meter

Abstract

The present invention provides a continuous direct synthesis/recovery method for hydrogen peroxide, and a device therefor. This method is characterized by: using a reaction tube obtained by coating the interior wall of a hollow tube with a precious-metal thin film; continuously directly synthesizing hydrogen peroxide from hydrogen and oxygen inside the reaction tube; and continuously recovering the synthesized hydrogen peroxide as hydrogen peroxide. This device is characterized by being equipped with: a reaction tube obtained by coating the interior wall of a hollow tube with a precious-metal thin film; a means for supplying the reaction tube with hydrogen as a starting-material gas and oxygen or air in the gas-phase; a means for supplying a reaction medium in the aqueous phase; and a means for continuously recovering hydrogen peroxide synthesized inside the reaction tube immediately after synthesis thereof, from water or from an acid-water solution. As a result, the present invention is capable of producing and supplying highly pure hydrogen peroxide intended for semiconductors and hydrogen peroxide free of organic materials and intended for microanalysis reagents.

Description

触媒被覆反応管を用いた過酸化水素の連続直接合成・回収方法及びその装置Method and apparatus for continuous direct synthesis and recovery of hydrogen peroxide using a catalyst-coated reaction tube
 本発明は、触媒被覆反応管を用いた過酸化水素の連続直接合成・回収方法及びその装置に関するものであり、更に詳しくは、中空の管内壁に触媒の貴金属薄膜を無電解メッキなどにより被覆した反応管を利用して、水素と酸素から過酸化水素を直接連続合成し、更に、該直接連続合成した過酸化水素を過酸化水素水として連続的に回収する、過酸化水素の直接合成方法及びその装置に関するものである。本明細書では、中空の管内壁に触媒の貴金属薄膜を被覆した反応管を触媒被覆反応管と記載することがある。 The present invention relates to a method and apparatus for continuous direct synthesis and recovery of hydrogen peroxide using a catalyst-coated reaction tube, and more specifically, a noble metal thin film of a catalyst is coated on the inner wall of a hollow tube by electroless plating or the like. A method for directly synthesizing hydrogen peroxide by directly synthesizing hydrogen peroxide from hydrogen and oxygen using a reaction tube, and further continuously recovering the hydrogen peroxide synthesized directly as hydrogen peroxide water, and It relates to the device. In the present specification, a reaction tube in which a hollow inner wall of a catalyst is coated with a noble metal thin film of a catalyst may be referred to as a catalyst-coated reaction tube.
 過酸化水素は、被処理物との反応後には水となる、環境負荷の小さい酸化剤として、例えば、水処理、殺菌、漂白、洗浄などの分野、特に、半導体洗浄などの分野で、広範囲に利用されている。現在、市場に流通している過酸化水素のほぼ全ては、芳香族有機化合物であるアントラキノンの逐次酸化・還元法(アントラキノン法)によって合成されている。当該アントラキノン法は、多段反応であること、有機試薬、有機溶媒を多量に消費することなどから、近年、それらによる環境汚染の問題が指摘されている。 Hydrogen peroxide is an oxidant with a low environmental impact that becomes water after reaction with an object to be treated. For example, in a field such as water treatment, sterilization, bleaching, and cleaning, particularly in a field such as semiconductor cleaning. It's being used. At present, almost all hydrogen peroxide on the market is synthesized by a sequential oxidation / reduction method (anthraquinone method) of anthraquinone, which is an aromatic organic compound. Since the anthraquinone method is a multistage reaction and consumes a large amount of organic reagents and organic solvents, the problem of environmental pollution due to them has been pointed out in recent years.
 一方、水素と酸素から過酸化水素を直接合成するプロセスは、環境負荷の小さいシンプルな合成プロセスとして期待されている。そして、この直接合成について、種々の貴金属触媒などを用いて、水素と酸素から過酸化水素を直接合成する方法が、様々な視点から検討されている。 On the other hand, the process of directly synthesizing hydrogen peroxide from hydrogen and oxygen is expected as a simple synthesis process with low environmental impact. And about this direct synthesis, the method of directly synthesize | combining hydrogen peroxide from hydrogen and oxygen using various noble metal catalysts etc. is examined from various viewpoints.
 水素と酸素から過酸化水素を直接合成する技術における課題としては、水素と酸素の混合気体である、いわゆる爆鳴気を安全に取り扱うことが最も重要になっている。加えて、この技術の工業化に向けての課題としては、過酸化水素の生産量の確保と、高濃度化、並びに、高価な貴金属触媒の使用量の削減が重要になっている。これまで、これらの課題を克服するべく様々な技術開発や提案がなされており、近年では、先行技術として、例えば、水素、酸素、窒素の混合気体を、金属触媒コロイド分散液に連続的に供給し、液中に過酸化水素を蓄積する直接合成法が提案されている(引用文献1)。 As a problem in the technology for directly synthesizing hydrogen peroxide from hydrogen and oxygen, it is most important to handle so-called squeal gas, which is a mixed gas of hydrogen and oxygen, safely. In addition, as challenges for the industrialization of this technology, securing the production amount of hydrogen peroxide, increasing the concentration, and reducing the amount of expensive noble metal catalyst used are important. Up to now, various technological developments and proposals have been made to overcome these problems. In recent years, as a prior art, for example, a mixed gas of hydrogen, oxygen, and nitrogen is continuously supplied to a metal catalyst colloid dispersion. However, a direct synthesis method for accumulating hydrogen peroxide in the liquid has been proposed (Cited document 1).
 この方法では、窒素を用いることで、過酸化水素の直接合成の安全性を確保し、固定された液に原料ガスの混合気体を連続的に導入することで、高濃度化を図っている。しかし、この方法は、バッチ式であるため、該方法には、生産量を確保することが難しいこと、金属触媒コロイドを合成過酸化水素水中からの回収する方法が必要となること、生成した過酸化水素の再分解が生じること、などの問題があった。 In this method, nitrogen is used to secure the safety of direct synthesis of hydrogen peroxide, and the concentration of the mixture is increased by continuously introducing a mixed gas of the raw material gas into the fixed liquid. However, since this method is a batch type, it is difficult to secure the production amount, and a method for recovering the metal catalyst colloid from the synthetic hydrogen peroxide solution is required. There were problems such as re-decomposition of hydrogen oxide.
 他の先行技術として、過酸化水素を連続的に合成する際に、液体(水)と、気体の水素、酸素、窒素を、カラムに充填した固体触媒に同時に供給し、該カラム充填固体触媒を用いて、連続的に過酸化水素を合成する方法が提案されている(引用文献2)。 As another prior art, in the continuous synthesis of hydrogen peroxide, liquid (water) and gaseous hydrogen, oxygen, and nitrogen are simultaneously supplied to the solid catalyst packed in the column, A method for continuously synthesizing hydrogen peroxide by using it has been proposed (Cited document 2).
 この方法では、固体触媒粒子の表面に液体が膜となって流動し、気体は連続相を形成し、連続式プロセスで過酸化水素の生産量を確保することが可能である。しかし、この方法では、安全性の確保のために、不活性ガスの導入量を多くする必要がある。そのために、該方法には、合成に関わる水素と酸素の量が減少すること、合成された過酸化水素が再度触媒に接触して分解する可能性が高いこと、触媒をカラムに充填することで触媒の使用量が増大すること、カラム内での物質移動による負荷抵抗が増大すること、などの問題があった。 In this method, the liquid flows as a film on the surface of the solid catalyst particles, the gas forms a continuous phase, and it is possible to secure the production amount of hydrogen peroxide by a continuous process. However, with this method, it is necessary to increase the amount of inert gas introduced in order to ensure safety. For this purpose, the method involves reducing the amount of hydrogen and oxygen involved in the synthesis, the possibility that the synthesized hydrogen peroxide will come into contact with the catalyst again and decompose, and packing the catalyst in a column. There are problems such as an increase in the amount of catalyst used and an increase in load resistance due to mass transfer in the column.
 また、他の先行技術として、連続式の、例えば、微細な流路を持つマイクロチャンネルに固体触媒を充填した連続合成法も提案されている(引用文献3)。この方法では、マイクロチャンネルを用いて水素消炎距離を確保し、気体と液体を同時供給することで、反応場の水が消炎距離の延長を促し、安全性を確保している。しかし、該方法には、触媒金属粒子をマイクロチャンネル内に充填することによる物質移動における負荷抵抗が増大すること、反応場の、触媒表面、液相、気相の三相における反応性の制御が複雑になること、などの問題があった。 Also, as another prior art, a continuous synthesis method in which a solid catalyst is filled in a continuous microchannel having, for example, a fine channel has been proposed (Cited document 3). In this method, the hydrogen quenching distance is secured using microchannels, and the gas and liquid are supplied simultaneously, so that water in the reaction field promotes the extension of the quenching distance and ensures safety. However, this method increases the load resistance in mass transfer by filling the catalyst metal particles in the microchannel, and controls the reactivity of the reaction field in the three phases of the catalyst surface, liquid phase, and gas phase. There were problems such as being complicated.
 先行技術において、直接合成に用いられる不均一触媒には、例えば、単一金属粒子、合金粒子の他、活性炭や金属酸化物担持触媒、金属錯体修飾触媒など、様々の触媒種がある。これらのうち、金属としては、Pd,Pt,Au,PdO,及びPd/C,Pd/Alなどを担持した触媒など、種々の提案がなされている(例えば、引用文献4~6)。しかし、何れの触媒も、比表面積を大きくするために、微細粒子やコロイドとして使用することが必要とされる、という問題があった。 In the prior art, the heterogeneous catalyst used for direct synthesis includes, for example, various kinds of catalysts such as single metal particles and alloy particles, activated carbon, metal oxide supported catalyst, and metal complex modified catalyst. Among these, various proposals have been made on metals such as catalysts supporting Pd, Pt, Au, PdO, and Pd / C, Pd / Al 2 O 3 (for example, cited references 4 to 6). . However, any catalyst has a problem that it is required to be used as fine particles or a colloid in order to increase the specific surface area.
 これらの方法では、充填型の固体触媒が使用される。しかし、一般的に、過酸化水素の直接合成では、合成触媒が過酸化水素の分解触媒にもなること、水素と酸素を含む気体連続相による爆発の危険性があること、物質移動における負荷抵抗の低減が求められること、などの観点から、充填型の固体触媒の適用は、余り好ましくないと考えられる。 In these methods, a packed solid catalyst is used. However, in general, in the direct synthesis of hydrogen peroxide, the synthesis catalyst can also be a decomposition catalyst for hydrogen peroxide, there is a risk of explosion due to a gas continuous phase containing hydrogen and oxygen, load resistance in mass transfer From the standpoint of the need for reduction of the above, it is considered that the application of the filling type solid catalyst is not preferable.
特開2007-84372号公報JP 2007-84372 A 特開平6-183703号公報JP-A-6-183703 WO2010/044271号公報WO2010 / 044271 特開平5-213607号公報JP-A-5-213607 特表2004-516921号公報Japanese translation of publication No. 2004-516721 特開昭51-4097号公報Japanese Patent Laid-Open No. 51-4097
 このような状況の中で、本発明者らは、上記従来技術に鑑みて、上述の従来技術における諸問題を解決することを目標として鋭意研究を積み重ねた結果、中空の管内壁に触媒の貴金属薄膜を無電解メッキなどにより被覆した反応管を使用することで、円滑な物質移動を確保し、触媒表面、液相、気相からなる好適ないし最適な三相界面を形成することが可能であることを見出した。更に、本発明者らは、気体の気相と液体の液相の相状態を交互に連続させたスラグ流を形成させることにより、爆鳴気である水素と酸素の混合気体を液体で分割して、それにより、過酸化水素の直接合成の安全性を確保することができることを見出し、更に研究を重ねて、本発明を完成するに至った。 Under such circumstances, the present inventors, in view of the above-mentioned prior art, as a result of intensive research aimed at solving the above-mentioned problems in the prior art, resulted in the noble metal of the catalyst on the hollow tube inner wall. By using a reaction tube coated with a thin film by electroless plating, etc., it is possible to ensure smooth mass transfer and to form a suitable or optimal three-phase interface consisting of the catalyst surface, liquid phase, and gas phase. I found out. Furthermore, the present inventors divide the mixed gas of hydrogen and oxygen, which is the squeal gas, into a liquid by forming a slag flow in which the gaseous gas phase and the liquid liquid phase state are alternately continued. As a result, it was found that the safety of the direct synthesis of hydrogen peroxide can be ensured, and further research has been made to complete the present invention.
 本発明は、従来のエネルギー多消費型で、環境汚染の可能性があるアントラキノン法に代替できる、クリーンで、安全な、過酸化水素製造の工業化可能な製造プロセスを提供することを目的とするものである。すなわち、本発明は、触媒表面、液相、気相からなる好適な三相界面を形成し、水素と酸素から、安全に、過酸化水素を直接合成する方法を確立し、それにより、高価な貴金属触媒の使用量を削減し、目的生成物の生産性を確保しつつ、安全かつ安定して運転できる工業化可能な過酸化水素の直接合成方法及びその装置を提供することを目的とするものである。 An object of the present invention is to provide a clean, safe and industrializable production process for hydrogen peroxide production that can replace the conventional anthraquinone method with high energy consumption and possible environmental pollution. It is. That is, the present invention forms a suitable three-phase interface consisting of a catalyst surface, a liquid phase, and a gas phase, and establishes a method for directly synthesizing hydrogen peroxide safely from hydrogen and oxygen. An object of the present invention is to provide an industrializable direct hydrogen peroxide synthesis method and apparatus capable of operating safely and stably while reducing the amount of noble metal catalyst used and ensuring the productivity of the target product. is there.
 上記課題を解決するために、本発明は以下の技術的手段から構成される。
(1)水素と酸素から過酸化水素を直接合成する方法であって、
 中空の管内壁に貴金属薄膜を被覆した反応管を用いて、該反応管内部の流路に原料ガスの水素と、酸素又は空気のガス相、及び反応媒体の水相とを供給し、所定の反応温度及び反応圧力条件下で、反応管内部で水素と酸素から過酸化水素を連続的に直接合成し、合成された過酸化水素を、過酸化水素水として連続的に回収することを特徴とする過酸化水素の直接合成方法。
(2)上記反応管として、パラジウム、パラジウムと金の合金、パラジウム薄膜表面に金ナノ粒子を析出させたもの、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜で被覆された反応管を用いる、前記(1)に記載の過酸化水素の直接合成方法。
(3)上記反応管の貴金属薄膜を無電解メッキにより被覆した反応管を用いる、前記(1)に記載の過酸化水素の直接合成方法。
(4)上記貴金属薄膜の膜厚が、0.5~2μmの範囲である、前記(1)又は(3)に記載の過酸化水素の直接合成方法。
(5)上記中空の管として、ステンレス管、インコネル管、ハステロイ管、チタン管、の中から選択された耐食管、又は内面チタンライニングを施した、ステンレス管、インコネル管、ハステロイ管、の中から選択された耐食二重管、の何れかを用いる、前記(1)から(4)の何れか1項に記載の過酸化水素の直接合成方法。
(6)上記中空の管として、フュームドシリカチューブを用いる、前記(1)から(4)の何れか1項に記載の過酸化水素の直接合成方法。
(7)上記反応管として、パラジウム、パラジウムと金の合金、パラジウム薄膜表面に金ナノ粒子を析出させたもの、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜を反応管内部に無電解メッキで作製する際、ベースとなる金属の酸化被膜を600℃以上の高温酸化、若しくは374℃以上の超臨界水酸化法により製造する、前記(5)に記載の過酸化水素の直接合成方法。
(8)上記反応管の内径が、10mm以下で、0.05mm以上か、又は5mm以下で、0.1mm以上である、前記(1)から(7)の何れか1項に記載の過酸化水素の直接合成方法。
(9)反応温度が0~80℃の範囲であるか、又は5~50℃の範囲であり、反応圧力が0.1~50MPaの範囲であるか、又は0.1~20MPaの範囲である、前記(1)から(8)の何れか1項に記載の過酸化水素の直接合成方法。
(10)反応管内部で合成された過酸化水素を、水若しくは酸水溶液によって過酸化水素水として連続的に回収する、前記(1)から(9)の何れか1項に記載の過酸化水素の直接合成方法。
(11)反応管内部で合成された過酸化水素を回収する水若しくは酸水溶液が、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、の何れか1種類以上のイオンを含む、前記(10)に記載の過酸化水素の直接合成方法。
(12)上記酸性水溶液が、フッ素、塩素、臭素、ヨウ素の何れか1種以上の物質を含み、何れの物質も、酸性水溶液中での総濃度が0.01~100mg/Lの範囲である、前記(11)に記載の過酸化水素の直接合成方法。
(13)反応管内部で合成された過酸化水素を連続的に回収する際に、原料ガス相の気体と水相の液体をミキサーで混合して、その体積流量比を調整することにより、原料ガス相と水相の相状態を交互に連続させたスラグ流を形成させ、該スラグ流を用いて、反応管内部で合成された合成直後の過酸化水素を、過酸化水素水として連続的に回収する、前記(10)又は(11)に記載の過酸化水素の直接合成方法。
(14)気体と液体の体積混合比が、気体5~50:液体1であり、原料ガス相と回収水相の体積流量比を、水相1に対してガス相を50以下として、又は水相1に対してガス相を10以下としてスラグ流を形成させる、前記(13)に記載の過酸化水素の直接合成方法。 
(15)原料ガス相の気体と水相の液体を混合するミキサーの流出部内径と、反応管内径と反応管継手内径を同じ径とし、スラグ流サイズを流路により変化させないようにする、前記(13)又は(14)に記載の過酸化水素の直接合成方法。
(16)原料ガス相にはマスフローコントローラーを使用し、水相には定量ポンプを使用してそれぞれの流量及び吐出圧力を制御しつつ、マイクロミキサーで原料ガス相の気体と水相の液体を混合することによりスラグ流を発生させる、前記(13)から(15)の何れか1項に記載の過酸化水素の直接合成方法。
(17)上記マイクロミキサーにT字型マイクロミキサーを用いて、安定したスラグ流を発生させる、前記(13)から(16)の何れか1項に記載の過酸化水素の直接合成方法。
(18)水素と酸素の体積混合比が、水素10~33%、酸素90~67%であり、原料ガス相の酸素と水素の比率(酸素/水素)を1.6以上とするか、又は酸素と水素の比率を2.0以上とする、前記(1)から(13)の何れか1項に記載の過酸化水素の直接合成方法。
(19)反応管からの回収水相を、反応管に再循環する、前記(10)から(18)の何れか1項に記載の過酸化水素を直接合成する方法。
(20)水素と酸素から過酸化水素を連続的に直接合成する装置であって、
 中空の管内壁に貴金属薄膜を被覆した反応管と、該反応管に原料ガスの水素と、酸素又は空気のガス相を供給する手段と、反応媒体の水相とを供給する手段と、反応管内部で合成された合成直後の過酸化水素を水若しくは酸水溶液によって連続的に回収する手段とを備えたことを特徴とする過酸化水素の直接合成装置。
(21)管内壁に貴金属薄膜を無電解メッキにより被覆した反応管として、パラジウム、パラジウムと金の合金、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜で被覆された反応管を備えた、前記(20)に記載の過酸化水素の直接合成装置。
(22)上記反応管の貴金属薄膜を無電解メッキにより被覆した反応管を用いる、前記(20)に記載の過酸化水素の直接合成装置。
(23)上記中空の管として、ステンレス管、インコネル管、ハステロイ管、チタン管、の中から選択された耐食管、又は内面チタンライニングを施した、ステンレス管、インコネル管、ハステロイ管、の中から選択された耐食二重管、の何れかを用いた、前記(20)から(22)の何れか1項に記載の過酸化水素の直接合成装置。
(24)上記中空の管として、フュームドシリカチューブを用いた、前記(20)から(22)の何れか1項に記載の過酸化水素の直接合成装置。
(25)上記反応管として、パラジウム、パラジウムと金の合金、パラジウム薄膜表面に金ナノ粒子を析出させたもの、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜を反応管内部に無電解メッキで作製する際、ベースとなる金属の酸化被膜として、600℃以上の高温酸化、若しくは374℃以上の超臨界水酸化法により製造したものを用いた、前記(23)に記載の過酸化水素の直接合成装置。
(26)反応管に入る流路に、原料ガス相と水相の相状態を交互に連続させたスラグ流を形成するミキサーを備えた、前記(20)から(25)の何れか1項に記載の過酸化水素の直接合成装置。
(27)原料ガスと回収水を混合するミキサーの流出部内径と、反応管内径と、反応管継手内径が、同じ径のものである、前記(20)から(24)の何れか1項に記載の過酸化水素の直接合成装置。
(28)反応管内部で合成された過酸化水素を、水若しくは酸水溶液によって過酸化水素水として連続的に回収する手段を備えた、前記(20)から(27)の何れか1項に記載の過酸化水素の直接合成装置。
(29)原料ガス相の供給を制御するマスフローコントローラー、水相の供給を制御する定量ポンプを備え、上記マスフローコントローラー及び上記定量ポンプの下流に原料ガス相と水相とを混合するマイクロミキサーを配設して、原料ガス相と水相の相状態を交互に連続させたスラグ流を発生させるようにした、前記(20)から(28)の何れか1項に記載の過酸化水素の直接合成装置。
(30)上記マイクロミキサーにT字型マイクロミキサーを用いて、安定したスラグ流を発生させるようにした、前記(26)から(29)の何れか1項に記載の過酸化水素の直接合成装置。
(31)反応管から出た回収水相を、反応管に再循環させる再循環手段を備えた、前記(20)から(29)の何れか1項以上に記載の過酸化水素の直接合成装置。
In order to solve the above problems, the present invention comprises the following technical means.
(1) A method for directly synthesizing hydrogen peroxide from hydrogen and oxygen,
Using a reaction tube in which a hollow tube inner wall is coated with a noble metal thin film, a raw material gas hydrogen, an oxygen or air gas phase, and a reaction medium aqueous phase are supplied to a flow path inside the reaction tube, Under the reaction temperature and reaction pressure conditions, hydrogen peroxide is continuously synthesized directly from hydrogen and oxygen inside the reaction tube, and the synthesized hydrogen peroxide is continuously recovered as hydrogen peroxide water. Direct synthesis method of hydrogen peroxide.
(2) A thin film comprising at least one of palladium, an alloy of palladium and gold, a gold nanoparticle deposited on the surface of the palladium thin film, an alloy of palladium and silver, and a porous palladium film. The method for directly synthesizing hydrogen peroxide according to (1) above, wherein a reaction tube coated with is used.
(3) The method for directly synthesizing hydrogen peroxide according to (1), wherein a reaction tube in which the noble metal thin film of the reaction tube is coated by electroless plating is used.
(4) The method for directly synthesizing hydrogen peroxide according to (1) or (3), wherein the noble metal thin film has a thickness in the range of 0.5 to 2 μm.
(5) As the hollow tube, a stainless steel tube, an Inconel tube, a Hastelloy tube, a titanium tube, a corrosion-resistant tube selected from the above, or an inner surface titanium-lined stainless steel tube, an Inconel tube, a Hastelloy tube The method for directly synthesizing hydrogen peroxide according to any one of (1) to (4), wherein any one of the selected corrosion-resistant double pipes is used.
(6) The method for directly synthesizing hydrogen peroxide according to any one of (1) to (4), wherein a fumed silica tube is used as the hollow tube.
(7) A thin film comprising at least one of palladium, an alloy of palladium and gold, a gold nanoparticle deposited on the surface of the palladium thin film, an alloy of palladium and silver, and a porous palladium film as the reaction tube. Is produced by electroless plating inside the reaction tube, the oxide film of the base metal is produced by high-temperature oxidation at 600 ° C. or higher or supercritical water oxidation at 374 ° C. or higher. Direct synthesis method of hydrogen oxide.
(8) The peroxidation according to any one of (1) to (7), wherein the inner diameter of the reaction tube is 10 mm or less, 0.05 mm or more, or 5 mm or less and 0.1 mm or more. Direct synthesis method of hydrogen.
(9) The reaction temperature is in the range of 0 to 80 ° C., or in the range of 5 to 50 ° C., and the reaction pressure is in the range of 0.1 to 50 MPa, or is in the range of 0.1 to 20 MPa. The method for directly synthesizing hydrogen peroxide according to any one of (1) to (8).
(10) The hydrogen peroxide according to any one of (1) to (9), wherein the hydrogen peroxide synthesized inside the reaction tube is continuously recovered as hydrogen peroxide water with water or an acid aqueous solution. Direct synthesis method.
(11) The water or acid aqueous solution for recovering hydrogen peroxide synthesized inside the reaction tube contains one or more ions of fluoride ion, chloride ion, bromide ion, and iodide ion. The method for directly synthesizing hydrogen peroxide according to 10).
(12) The acidic aqueous solution contains at least one of fluorine, chlorine, bromine and iodine, and all of the materials have a total concentration in the acidic aqueous solution in the range of 0.01 to 100 mg / L. The method for directly synthesizing hydrogen peroxide according to (11) above.
(13) When continuously recovering the hydrogen peroxide synthesized in the reaction tube, the raw material gas phase gas and the aqueous phase liquid are mixed with a mixer, and the volume flow rate ratio is adjusted, whereby the raw material A slag flow in which the phase states of the gas phase and the aqueous phase are alternately continued is formed, and using the slag flow, the hydrogen peroxide immediately after synthesis synthesized in the reaction tube is continuously used as a hydrogen peroxide solution. The method for directly synthesizing hydrogen peroxide according to (10) or (11), wherein the hydrogen peroxide is recovered.
(14) The volume mixing ratio of gas and liquid is gas 5 to 50: liquid 1, and the volume flow rate ratio of the raw material gas phase and the recovered water phase is 50 or less with respect to the water phase 1 or water The method for directly synthesizing hydrogen peroxide according to (13), wherein a slag flow is formed with a gas phase of 10 or less with respect to phase 1.
(15) The inner diameter of the outflow part of the mixer that mixes the gas of the raw material gas phase and the liquid of the aqueous phase, the inner diameter of the reaction tube and the inner diameter of the reaction tube joint, and the slag flow size is not changed by the flow path. (13) The method for directly synthesizing hydrogen peroxide according to (14).
(16) A mass flow controller is used for the raw material gas phase and a metering pump is used for the aqueous phase, and the flow rate and discharge pressure are controlled using a micromixer. The method for directly synthesizing hydrogen peroxide according to any one of (13) to (15), wherein a slag flow is generated.
(17) The method for directly synthesizing hydrogen peroxide according to any one of (13) to (16), wherein a stable slag flow is generated using a T-shaped micromixer as the micromixer.
(18) The volume mixing ratio of hydrogen and oxygen is 10 to 33% hydrogen and 90 to 67% oxygen, and the ratio of oxygen to hydrogen in the source gas phase (oxygen / hydrogen) is 1.6 or more, or The method for directly synthesizing hydrogen peroxide according to any one of (1) to (13), wherein the ratio of oxygen to hydrogen is 2.0 or more.
(19) The method for directly synthesizing hydrogen peroxide according to any one of (10) to (18), wherein the recovered aqueous phase from the reaction tube is recycled to the reaction tube.
(20) An apparatus for continuously and directly synthesizing hydrogen peroxide from hydrogen and oxygen,
A reaction tube in which the inner wall of a hollow tube is coated with a noble metal thin film, a means for supplying hydrogen as a raw material gas and a gas phase of oxygen or air, a means for supplying a water phase of a reaction medium, and a reaction tube An apparatus for directly synthesizing hydrogen peroxide, comprising means for continuously recovering hydrogen peroxide synthesized immediately after synthesis with water or an aqueous acid solution.
(21) As a reaction tube in which a noble metal thin film is coated on the inner wall of the tube by electroless plating, the reaction tube is coated with a thin film composed of at least one of palladium, an alloy of palladium and gold, an alloy of palladium and silver, and a porous film of palladium. The apparatus for directly synthesizing hydrogen peroxide according to the above (20), comprising a reaction tube.
(22) The apparatus for directly synthesizing hydrogen peroxide according to (20), wherein a reaction tube in which the noble metal thin film of the reaction tube is coated by electroless plating is used.
(23) As the hollow tube, a stainless steel tube, an Inconel tube, a Hastelloy tube, a titanium tube, a corrosion resistant tube selected from the above, or an inner surface titanium-lined stainless steel tube, an Inconel tube, a Hastelloy tube The apparatus for directly synthesizing hydrogen peroxide according to any one of (20) to (22), wherein any one of the selected corrosion-resistant double pipes is used.
(24) The hydrogen peroxide direct synthesis apparatus according to any one of (20) to (22), wherein a fumed silica tube is used as the hollow tube.
(25) A thin film comprising at least one of palladium, an alloy of palladium and gold, a palladium nanoparticle deposited with gold nanoparticles, an alloy of palladium and silver, and a porous palladium film as the reaction tube. Is produced by electroless plating inside the reaction tube, and a metal oxide film used as a base is manufactured by high-temperature oxidation at 600 ° C. or higher or supercritical water oxidation at 374 ° C. or higher (23 ) Direct hydrogen peroxide synthesis apparatus.
(26) The method according to any one of (20) to (25), further including a mixer that forms a slag flow in which a phase state of a raw material gas phase and an aqueous phase are alternately continued in a flow path entering the reaction tube. An apparatus for directly synthesizing hydrogen peroxide as described.
(27) In any one of the above (20) to (24), the inner diameter of the outlet of the mixer for mixing the raw material gas and the recovered water, the inner diameter of the reaction tube, and the inner diameter of the reaction tube joint are the same. An apparatus for directly synthesizing hydrogen peroxide as described.
(28) The method according to any one of (20) to (27), further comprising means for continuously recovering the hydrogen peroxide synthesized in the reaction tube as a hydrogen peroxide solution using water or an aqueous acid solution. Hydrogen peroxide direct synthesis equipment.
(29) A mass flow controller for controlling the supply of the raw material gas phase and a metering pump for controlling the supply of the aqueous phase, and a micromixer for mixing the raw material gas phase and the aqueous phase are disposed downstream of the mass flow controller and the metering pump. The direct synthesis of hydrogen peroxide according to any one of (20) to (28), wherein a slag flow in which the phase states of the raw material gas phase and the aqueous phase are alternately continued is generated. apparatus.
(30) The hydrogen peroxide direct synthesis apparatus according to any one of (26) to (29), wherein a T-shaped micromixer is used as the micromixer to generate a stable slag flow. .
(31) The apparatus for directly synthesizing hydrogen peroxide according to any one of (20) to (29), further comprising a recirculation means for recirculating the recovered aqueous phase discharged from the reaction tube to the reaction tube .
 次に、本発明について更に詳細に説明する。
 本発明は、中空の管内壁に貴金属薄膜を被覆した反応管を用いて、該反応管内部で水素と酸素から過酸化水素を連続的に直接合成し、合成された過酸化水素を、過酸化水素水として連続的に回収することからなる過酸化水素の直接合成方法及びその装置を提供するものである。
Next, the present invention will be described in more detail.
The present invention uses a reaction tube having a hollow tube inner wall coated with a noble metal thin film, and directly synthesizes hydrogen peroxide from hydrogen and oxygen inside the reaction tube. The present invention provides a method and an apparatus for directly synthesizing hydrogen peroxide comprising continuously recovering hydrogen water.
 本発明で用いられる反応管は、中空の反応管、すなわちチューブ状の中空細管から構成され、該中空細管の内部空間において、貴金属薄膜の被覆面積を広くすることが好ましい。面積/体積の比率を高くするために、反応管として、その内径が0.05mm~10mmの中空細管が用いられる。すなわち、反応管の内径は、10mm以下、好ましくは5mm以下であり、更に、中空細管の内部の充分な物質拡散と熱拡散を保障するために、反応管の内径は1mm以下で、0.1mm以上のものが望ましく、更に、圧損を考慮すると、0.25mm以上のものが望ましい。 The reaction tube used in the present invention is composed of a hollow reaction tube, that is, a tubular hollow tubule, and it is preferable to increase the coverage area of the noble metal thin film in the internal space of the hollow tubule. In order to increase the area / volume ratio, a hollow thin tube having an inner diameter of 0.05 mm to 10 mm is used as the reaction tube. That is, the inner diameter of the reaction tube is 10 mm or less, preferably 5 mm or less. Further, in order to ensure sufficient material diffusion and thermal diffusion inside the hollow thin tube, the inner diameter of the reaction tube is 1 mm or less and 0.1 mm. The above is desirable, and further considering the pressure loss, it is desirable that the thickness is 0.25 mm or more.
 また、反応管を構成する中空細管の長さは、反応における触媒の貴金属薄膜との接触時間を決定付ける重要な因子となる。このことから、中空細管の長さは長いほど水素の転換効率は高くなるが、長すぎると一度合成された過酸化水素が再分解する可能性がある。また、中空細管の長さは長いほど圧力損失が大きくなることから、これらが好適ないし最適になる長さが選択される。具体的には、反応管を構成する中空細管の長さは、使用される反応管の内径により体積が変化するため、同じ長さであっても反応時間(ガス平均滞留時間)が異なるので、一概には決定できない。 Also, the length of the hollow thin tube constituting the reaction tube is an important factor that determines the contact time of the catalyst with the noble metal thin film in the reaction. From this, the longer the hollow tube is, the higher the hydrogen conversion efficiency is. However, if it is too long, hydrogen peroxide once synthesized may be decomposed again. Further, since the pressure loss increases as the length of the hollow thin tube increases, a length at which these are suitable or optimal is selected. Specifically, since the volume of the hollow thin tube constituting the reaction tube changes depending on the inner diameter of the reaction tube used, the reaction time (gas average residence time) varies even with the same length. It cannot be decided in general.
 更に、内径により内面積(触媒被覆面積)/体積(比表面積)が変化するため、同じ体積(同じ反応時間)としても、内径の違いにより反応結果は異なり、内径毎に好適ないし最適な反応時間、すなわち、中空細管の長さが選択される。内径を1mmとした場合には、反応時間が2分以内、好ましくは、1分以内が選択される。 Furthermore, since the inner area (catalyst covering area) / volume (specific surface area) changes depending on the inner diameter, the reaction results differ depending on the inner diameter even with the same volume (same reaction time), and a suitable or optimal reaction time for each inner diameter. That is, the length of the hollow tubule is selected. When the inner diameter is 1 mm, the reaction time is selected within 2 minutes, preferably within 1 minute.
 このような反応管を構成する中空細管の内表面への触媒の貴金属薄膜の被覆には、メッキ溶液を中空細管内に導入することにより比較的簡便に達成できる無電解メッキの手法を適用することができる。この無電解メッキの手法は、メッキ液の濃度と通液量によってメッキ膜の厚さを制御できることからも優位な手法である。この無電解メッキ法は、反応管を構成する中空細管の材質が、金属の他、電導性のないガラス、セラミックス、プラスチックなどの表面の場合にも、金属薄膜を被覆することができる利点を有している。 For the coating of the catalyst noble metal thin film on the inner surface of the hollow thin tube constituting such a reaction tube, an electroless plating technique that can be achieved relatively simply by introducing the plating solution into the hollow thin tube is applied. Can do. This method of electroless plating is advantageous because the thickness of the plating film can be controlled by the concentration of the plating solution and the amount of liquid flow. This electroless plating method has an advantage that a metal thin film can be coated even when the material of the hollow thin tube constituting the reaction tube is a surface of non-conductive glass, ceramics, plastic, etc. in addition to metal. is doing.
 本発明で用いる反応管を構成するチューブ状の中空細管の材質としては、好適には、例えば、金属、合金、ガラス、セラミックス、プラスチックなどを利用することができる。金属性の中空細管としては、耐食性の、チタン、ニッケル合金、クロム合金、鉄合金が用いられる。更に、耐薬品性を向上させるために、チタン若しくはチタン合金を内張りしたものが用いられる。上記中空管としては、好適には、例えば、ステンレス管、インコネル管、ハステロイ管、チタン管、の中から選択された耐食管、又は内面チタンライニングを施した、ステンレス管、インコネル管、ハステロイ管、フュームドシリカチューブなどを利用することができる。 As the material for the tube-shaped hollow thin tube constituting the reaction tube used in the present invention, for example, metals, alloys, glass, ceramics, plastics and the like can be preferably used. Corrosion-resistant titanium, nickel alloy, chromium alloy, and iron alloy are used as the metallic hollow tubule. Furthermore, in order to improve chemical resistance, a titanium or titanium alloy lining is used. The hollow tube is preferably a corrosion resistant tube selected from, for example, a stainless tube, an Inconel tube, a Hastelloy tube, a titanium tube, or a stainless tube, an Inconel tube, a Hastelloy tube provided with an inner surface titanium lining. A fumed silica tube can be used.
 チタン若しくはチタン合金を内張りに用いる場合、無電解メッキの前処理として、シランカップリング処理を行うが、その際、チタン表面を酸化処理することが好ましい。チタン表面の酸化処理として、600℃以上の高温酸化処理、若しくは374℃以上の超臨界水酸化処理により、強固な酸化被膜を形成することが好ましい。 When titanium or a titanium alloy is used for the lining, a silane coupling treatment is performed as a pretreatment for electroless plating. In this case, it is preferable to oxidize the titanium surface. As the oxidation treatment of the titanium surface, it is preferable to form a strong oxide film by high-temperature oxidation treatment at 600 ° C. or higher or supercritical water oxidation treatment at 374 ° C. or higher.
 ガラスでは、ガスクロマトグラフィーのカラムに用いるシリカガラスキャピラリーが、セラミックスでは、アルミナ、チタニア、ジルコニアなどのチューブが、プラスチックでは、ポリプロピレン、ポリエチレン、ポリアミドなどのチューブが、それぞれ好適な素材として用いられる。 For glass, silica glass capillaries used for gas chromatography columns, for ceramics, tubes of alumina, titania, zirconia, etc., for plastics, tubes of polypropylene, polyethylene, polyamide, etc. are used as suitable materials.
 本発明では、反応管として、パラジウム、パラジウムと金の合金、パラジウム薄膜表面に金ナノ粒子を析出させたもの、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜で被覆された反応管が用いられる。反応管を構成するチューブ状の中空細管の管内壁への触媒の貴金属薄膜の被覆は、該管内壁にパラジウムの種核を付与した後、錯形成剤、貴金属塩、還元剤を含むメッキ液を、該中空細管の内部に通液して、無電解メッキすることで達成される。用いる無電解メッキ溶液には、パラジウム、銀、白金、ロジウムなどの金属塩や、これらの金属錯体、これを安定に溶存させる錯形成剤、並びに、還元剤を、適当な溶媒に溶かして用いることができる。 In the present invention, the reaction tube is a thin film made of at least one of palladium, an alloy of palladium and gold, a gold nanoparticle deposited on the surface of the palladium thin film, an alloy of palladium and silver, and a porous film of palladium. A reaction tube coated with is used. The inner wall of the tubular hollow thin tube constituting the reaction tube is coated with the noble metal thin film of the catalyst by adding a seed of palladium to the inner wall of the tube, and then a plating solution containing a complexing agent, a noble metal salt and a reducing agent. This is achieved by passing the liquid through the hollow thin tube and performing electroless plating. For the electroless plating solution to be used, use metal salts such as palladium, silver, platinum, rhodium, etc., these metal complexes, complexing agents that can dissolve them stably, and reducing agents in an appropriate solvent. Can do.
 該触媒の貴金属薄膜の膜厚は、用いる無電解メッキ溶液の通液量により制御することができ、好適には、該無電解メッキ溶液の通液量は、0.1~5μmの範囲が選ばれる。貴金属の使用量を少なくし、かつ均一なメッキ被膜を確保するために、触媒の貴金属薄膜の膜厚は、0.5~2μmの範囲がより好適である。 The film thickness of the noble metal thin film of the catalyst can be controlled by the flow rate of the electroless plating solution used. Preferably, the flow rate of the electroless plating solution is selected in the range of 0.1 to 5 μm. It is. In order to reduce the amount of noble metal used and to ensure a uniform plating film, the thickness of the noble metal thin film of the catalyst is more preferably in the range of 0.5 to 2 μm.
 本発明では、反応管内部の流路に原料ガスの水素と、酸素又は空気のガス相、及び反応媒体の水相とを供給し、所定の反応温度及び反応圧力条件下で、反応管内部で水素と酸素から過酸化水素を連続的に直接合成する。その際に、好適には、例えば、原料ガス相と水相のそれぞれの流量及び吐出圧力を制御しつつ、マイクロミキサーで原料ガス相の気体と水相の液体を混合すること、すなわち、水素と酸素の混合気体を酸性水溶液と混合することにより、ミキサーの出口からの気相と液相の相状態が交互に連続するスラグ流を形成させ、該スラグ流を用いて、反応管内部で合成された合成直後の過酸化水素を、過酸化水素水として連続的に回収することができる。つまり、上記スラグ流を、触媒の貴金属薄膜を被覆した反応管に導入し、気相で過酸化水素を合成しつつ、液相で連続して回収する。安定したスラグ流を発生させるには、好適には、例えば、マイクロミキサーにT字型マイクロミキサーが用いられる。反応管を出た気相及び液相は、それぞれ混合器の前に戻して循環させることも適宜可能である。水素と酸素の体積混合比については、過酸化水素合成の量論比は、水素5:酸素5であるが、下記の4の副反応である水素による還元を抑えるために、好適には、水素10~33%、酸素90~67%である。 In the present invention, the hydrogen of the source gas, the gas phase of oxygen or air, and the aqueous phase of the reaction medium are supplied to the flow path inside the reaction tube, and inside the reaction tube under the predetermined reaction temperature and reaction pressure conditions. Sequentially directly synthesize hydrogen peroxide from hydrogen and oxygen. In that case, for example, while controlling the flow rate and discharge pressure of the raw material gas phase and the aqueous phase, respectively, the gas of the raw material gas phase and the liquid of the aqueous phase are mixed with a micromixer, that is, hydrogen and By mixing the mixed gas of oxygen with the acidic aqueous solution, a slag flow in which the gas phase and the liquid phase from the outlet of the mixer are alternately formed is formed, and the slag flow is used to synthesize it inside the reaction tube. Hydrogen peroxide immediately after synthesis can be continuously recovered as hydrogen peroxide water. That is, the slag flow is introduced into a reaction tube coated with a noble metal thin film of a catalyst, and hydrogen peroxide is synthesized in the gas phase and continuously recovered in the liquid phase. In order to generate a stable slag flow, for example, a T-shaped micromixer is preferably used as the micromixer. The gas phase and liquid phase exiting the reaction tube can be appropriately returned to the front of the mixer and circulated. Regarding the volume mixing ratio of hydrogen and oxygen, the stoichiometric ratio of hydrogen peroxide synthesis is hydrogen 5: oxygen 5. However, in order to suppress reduction by hydrogen, which is a side reaction of the following 4, preferably hydrogen 10 to 33% and oxygen 90 to 67%.
 スラグ流は、原料ガス相と液相の安定的な連続供給とその手段が重要であり、両者の流量比率により、スラグ流の気相、液相の容積が決定する。そのため、気相はマスフローコントローラー、液相は定量ポンプを使用して流量を制御することが好ましい。また、スラグ容積の安定性は、流路の内径が変化しないことにより保持されるため、気相入口内径、液相入口内径、ミキサー出口内径、反応管内径、反応管継手内径が変化せず、これらの径が一定であることが重要である。これらの径が一定であれば、スラグ容積は安定して保持される。 The slag flow requires stable continuous supply of the raw material gas phase and the liquid phase and its means, and the volume of the slag flow in the gas phase and liquid phase is determined by the flow rate ratio of both. Therefore, it is preferable to control the flow rate using a mass flow controller for the gas phase and a metering pump for the liquid phase. In addition, the stability of the slag volume is maintained because the inner diameter of the flow path does not change, so the gas phase inlet inner diameter, liquid phase inlet inner diameter, mixer outlet inner diameter, reaction tube inner diameter, reaction tube inner diameter does not change, It is important that these diameters are constant. If these diameters are constant, the slag volume is stably maintained.
 本発明の過酸化水素の直接連続合成の反応系では、下記の4の副反応である水素による還元の反応は、原料ガス中の酸素比率(酸素/水素)が、水素過剰(1以下)となる条件で顕著となるため、酸素比率1.6以上、好ましくは2.0以上の条件を確保することが望ましい。 In the reaction system for direct continuous synthesis of hydrogen peroxide according to the present invention, the reduction reaction with hydrogen, which is the side reaction 4 described below, is performed when the oxygen ratio (oxygen / hydrogen) in the raw material gas is excessive (1 or less). Therefore, it is desirable to ensure a condition with an oxygen ratio of 1.6 or more, preferably 2.0 or more.
 過酸化水素の直接連続合成では、以下の1~4の反応が生じる。
   1:H+O→H(目的反応:Hの合成)
   2:H+1/2O→HO(副反応:酸化による燃焼)
   3:H→HO+1/2O(副反応:Hの分解)
   4:H+H→HO(副反応:水素による還元)
In the direct continuous synthesis of hydrogen peroxide, the following reactions 1 to 4 occur.
1: H 2 + O 2 → H 2 O 2 (target reaction: synthesis of H 2 O 2 )
2: H 2 + 1 / 2O 2 → H 2 O (side reaction: combustion by oxidation)
3: H 2 O 2 → H 2 O + 1 / 2O 2 (side reaction: decomposition of H 2 O 2 )
4: H 2 O 2 + H 2 → H 2 O (side reaction: reduction with hydrogen)
 酸性水溶液は、塩酸、硫酸、リン酸などから選ばれる無機酸を1種類以上含むことが好ましく、例えば、上記無機酸を1種類以上含む二酸化炭素の飽和水溶液を使用することができる。無機酸を使用する場合は、水溶液のpHは1~4、好ましくは2~3である。更に、この酸性水溶液に、フッ素、塩素、臭素、ヨウ素の何れか1種類以上の物質を添加することで、過酸化水素の合成効率を上げることができる。何れの物質も、酸性水溶液中での総濃度が0.01~100mg/Lの範囲であることが好ましい。 The acidic aqueous solution preferably contains one or more inorganic acids selected from hydrochloric acid, sulfuric acid, phosphoric acid and the like. For example, a saturated aqueous solution of carbon dioxide containing one or more inorganic acids can be used. When an inorganic acid is used, the pH of the aqueous solution is 1 to 4, preferably 2 to 3. Furthermore, the synthesis efficiency of hydrogen peroxide can be increased by adding at least one of fluorine, chlorine, bromine and iodine to the acidic aqueous solution. Any of the substances preferably has a total concentration in an acidic aqueous solution in the range of 0.01 to 100 mg / L.
 ミキサーは、マイクロミキサー、T字型ミキサー、スタティクミキサー、スワールミキサー、多薄層流接触型ミキサーなど、特に制約されないが、気相の気体と液相の液体の相状態が交互に連続するスラグ流を安定して発生させる場合においては、T字型ミキサー若しくはT字型ミキサーのマイクロミキサーを用いることが好ましい。気体と液体の体積混合比は、気体100:液体1、好ましくは、5~50:液体1、より好ましくは、気体5~10:液体1である。 The mixer is not particularly limited, such as a micro mixer, a T-shaped mixer, a static mixer, a swirl mixer, and a multi-laminar flow contact type mixer, but a slag in which a gas phase gas and a liquid phase liquid phase alternately continue When the flow is stably generated, it is preferable to use a T-shaped mixer or a T-shaped mixer micromixer. The volume mixing ratio of gas and liquid is gas 100: liquid 1, preferably 5 to 50: liquid 1, more preferably gas 5 to 10: liquid 1.
 反応温度は、0~80℃の範囲が好ましく、5~50℃の範囲が更に好適である。過酸化水素は、水素と酸素の気体から合成されるため、合成された過酸化水素を高濃度化するには、気体密度を高めることが求められ、このことからも、高温条件下における反応は好ましくない。 The reaction temperature is preferably in the range of 0 to 80 ° C., more preferably in the range of 5 to 50 ° C. Since hydrogen peroxide is synthesized from hydrogen and oxygen gas, in order to increase the concentration of the synthesized hydrogen peroxide, it is required to increase the gas density. It is not preferable.
 反応圧力は、特に、気体密度を高める上で重要な因子であり、合成された過酸化水素を高濃度化するには、高圧の条件下が好ましい。しかし、安全な工業化の観点からは、超高圧は、敬遠され、反応圧力は、0.1~50MPaの範囲、特に、0.1~20MPaの範囲に調整することが好ましい。 The reaction pressure is an especially important factor in increasing the gas density, and high pressure conditions are preferable for increasing the concentration of synthesized hydrogen peroxide. However, from the viewpoint of safe industrialization, ultrahigh pressure is avoided, and the reaction pressure is preferably adjusted to a range of 0.1 to 50 MPa, particularly 0.1 to 20 MPa.
 反応時間については、反応管の径及び長さと、気相及び水溶液相の供給流量の和で制御する。この場合、目的の過酸化水素水の濃度に達するまで、水溶液相を循環させるプロセスを採用することが可能である。 The reaction time is controlled by the sum of the diameter and length of the reaction tube and the supply flow rate of the gas phase and aqueous solution phase. In this case, it is possible to employ a process in which the aqueous solution phase is circulated until the concentration of the target hydrogen peroxide solution is reached.
 触媒の貴金属薄膜を被覆した反応管は、好適には、反応管内壁に触媒の貴金属薄膜を無電解メッキにより被覆する手法で作製することができる。貴金属薄膜を無電解メッキにより被覆した反応管の製造方法としては、文献(特許第4986174号)に記載された方法を適用することができる。メッキ貴金属としては、パラジウム、パラジウムと金の合金、パラジウム薄膜表面に金ナノ粒子を析出させたもの、パラジウムと銀の合金、パラジウムの多孔質膜など、パラジウムを主体とした貴金属合金が有効なものとして例示され、特に、金の存在下では、水素の変換率を向上させることが可能である。 The reaction tube coated with the catalyst noble metal thin film can be preferably produced by a method in which the inner wall of the reaction tube is coated with the catalyst noble metal thin film by electroless plating. As a method for producing a reaction tube in which a noble metal thin film is coated by electroless plating, the method described in the literature (Japanese Patent No. 4986174) can be applied. Palladium, noble metal alloys mainly composed of palladium, such as palladium, alloys of palladium and gold, those in which gold nanoparticles are deposited on the surface of a palladium thin film, alloys of palladium and silver, porous palladium films, etc. In particular, in the presence of gold, the hydrogen conversion rate can be improved.
 また、無電解メッキ法では、例えば、反応管を構成する内径0.5mm×1000mmの中空細管に、膜厚2μmのパラジウムを全面に被膜した場合、37mgのパラジウムを使用することになる。しかし、これは、5%Pd担持活性炭1g(Pd:50mg)と比較しても、かなり少ない量である。また、反応管として、並列に束ねた中空糸に触媒の貴金属薄膜を無電解メッキにより被覆した反応管を用いることも可能であり、これにより、反応管のスケールアップが可能となる。 Further, in the electroless plating method, for example, when a 2 μm-thick palladium film is coated on a hollow thin tube having an inner diameter of 0.5 mm × 1000 mm constituting the reaction tube, 37 mg of palladium is used. However, this amount is considerably smaller than 1 g of 5% Pd-supported activated carbon (Pd: 50 mg). Further, as the reaction tube, a reaction tube in which a hollow fiber bundled in parallel is coated with a noble metal thin film of a catalyst by electroless plating can be used, whereby the reaction tube can be scaled up.
 次に、水素と酸素から過酸化水素を連続的に直接合成する装置について説明すると、本発明の過酸化水素の直接合成装置は、中空の管内壁に貴金属薄膜を被覆した反応管と、該反応管に原料ガスの水素と、酸素又は空気のガス相を供給する手段と、水相とを供給する手段と、反応管内部で合成された合成直後の過酸化水素を水若しくは酸水溶液によって連続的に回収する手段とを備えたことを特徴とするものである。
 本発明では、上記反応管として、貴金属薄膜を無電解メッキにより被覆した反応管を用いることができる。
 そして、上記装置には、好適には、例えば、管内壁に貴金属薄膜を無電解メッキにより被覆した反応管として、パラジウム、パラジウムと金の合金、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜で被覆された反応管を備えた装置が用いられる。
Next, an apparatus for continuously directly synthesizing hydrogen peroxide from hydrogen and oxygen will be described. The apparatus for directly synthesizing hydrogen peroxide according to the present invention includes a reaction tube having a hollow tube inner wall coated with a noble metal thin film and the reaction tube. A means for supplying a raw material gas hydrogen, an oxygen or air gas phase, a means for supplying an aqueous phase, and a hydrogen peroxide immediately after synthesis synthesized inside the reaction tube by water or an acid aqueous solution. And a means for collecting.
In the present invention, a reaction tube in which a noble metal thin film is coated by electroless plating can be used as the reaction tube.
The apparatus preferably includes, for example, a reaction tube in which a noble metal thin film is coated on the inner wall of the tube by electroless plating, such as palladium, an alloy of palladium and gold, an alloy of palladium and silver, and a porous membrane of palladium. An apparatus including a reaction tube covered with a thin film made of any one or more of them is used.
 上記装置では、好適には、例えば、記中空の管として、ステンレス管、インコネル管、ハステロイ管、チタン管、の中から選択された耐食管、又は内面チタンライニングを施した、ステンレス管、インコネル管、ハステロイ管、の中から選択された耐食二重管、の何れかを用いた装置が用いられる。また、上記装置では、反応管に入る流路に、原料ガス相と水相の相状態を交互に連続させたスラグ流を形成するミキサーを備えたこと、原料ガスと回収水を混合するミキサーの流出部内径と、反応管内径と、反応管継手内径が同じ径のものであること、反応管内部で合成された過酸化水素を、水若しくは酸水溶液によって過酸化水素水として連続的に回収する手段を備えたこと、を好ましい実施の態様としている。 In the above apparatus, preferably, as the hollow tube, for example, a stainless tube, an Inconel tube, a Hastelloy tube, a titanium tube, a corrosion-resistant tube selected from the above, or an internal titanium lining, a stainless tube, an Inconel tube A device using any one of the corrosion-resistant double pipes selected from Hastelloy pipes is used. In the above apparatus, the flow path entering the reaction tube includes a mixer that forms a slag flow in which the phase states of the raw material gas phase and the aqueous phase are alternately continued, and the mixer that mixes the raw material gas and the recovered water. The inner diameter of the outflow part, the inner diameter of the reaction tube, and the inner diameter of the reaction tube joint are the same, and the hydrogen peroxide synthesized inside the reaction tube is continuously recovered as hydrogen peroxide with water or an acid aqueous solution. The provision of the means is a preferred embodiment.
 更に、上記装置では、原料ガス相の供給を制御するマスフローコントローラー、水相の供給を制御する定量ポンプを備え、上記マスフローコントローラー及び上記定量ポンプの下流に原料ガス相と水相とを混合するマイクロミキサーを配設して、原料ガス相と水相の相状態を交互に連続させたスラグ流を発生させるようにしたこと、上記マイクロミキサーにT字型マイクロミキサーを用いて、安定したスラグ流を発生させるようにしたこと、反応管から出た回収水相を、反応管に再循環させる再循環手段を備えたこと、を好ましい実施の態様としている。 Further, the apparatus includes a mass flow controller for controlling the supply of the raw material gas phase, a metering pump for controlling the supply of the water phase, and a micro gas for mixing the raw material gas phase and the water phase downstream of the mass flow controller and the metering pump. A mixer was installed to generate a slag flow in which the phase state of the raw material gas phase and the aqueous phase were alternately continued, and a stable slag flow was produced using a T-shaped micromixer for the micromixer. A preferred embodiment is that it is generated and that a recirculation means for recirculating the recovered aqueous phase from the reaction tube to the reaction tube is provided.
 次に、添付した図面を参照して、本発明の好ましい一実施形態を具体的に説明する。
 図1に、管内壁に触媒の貴金属薄膜が被覆された中空細管内における過酸化水素合成と過酸化水素回収の基本コンセプトを示した。これは、原料ガス(水素と、酸素又は空気、若しくは水素と酸素と不活性ガス)と回収水は、例えば、ミキサーにより気体と液体の相状態を交互に連続させたスラグ流となり、原料ガス部分では管内壁に被覆された貴金属薄膜の触媒により過酸化水素合成反応が進行し、ここで合成された過酸化水素が直後の回収水部分で分解を受ける前に回収されることを示したものである。
Next, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a basic concept of hydrogen peroxide synthesis and hydrogen peroxide recovery in a hollow thin tube whose inner wall is coated with a catalyst noble metal thin film. This is because the raw material gas (hydrogen and oxygen or air, or hydrogen and oxygen and inert gas) and the recovered water become, for example, a slag flow in which the gas and liquid phase states are alternately continued by a mixer. Shows that the hydrogen peroxide synthesis reaction proceeds with the catalyst of the noble metal thin film coated on the inner wall of the tube, and the synthesized hydrogen peroxide is recovered before being decomposed in the recovered water portion immediately after. is there.
 図1は、水素と酸素から過酸化水素を連続的に直接合成する過酸化水素の直接合成装置のフロー図であり、本発明の過酸化水素の直接合成法を実現する装置の一例を示すものである。 FIG. 1 is a flow diagram of a hydrogen peroxide direct synthesis apparatus that synthesizes hydrogen peroxide continuously from hydrogen and oxygen, and shows an example of an apparatus that implements the direct hydrogen peroxide synthesis method of the present invention. It is.
 図中の符号は、以下に示す手段を示す。すなわち、該符号は、B-1:水素ガスボンベ、B-2:空気ガスボンベ、B-3:酸素ガスボンベ、R-1~3:減圧弁、MFC-1~3:マスフローコントローラー、V-1~3:ストップバルブ、CV-1~5:逆止弁、SV-1~2:安全弁、P1~3:圧力計、AT-1:回収液(酸水溶液)タンク、BV-1:ボール弁、LP-1:定量液供給ポンプ、M-1:ミキサー、T-1~2:温度計、CR-1:触媒反応管、S-1:気液分離器、NV-1:ニードル弁、BPR1~2:背圧弁、MFM-1:マスフローメーター、G-1:ガス捕集バック、をそれぞれ示す。また、図1の点線内の手段は、水槽内に水没されており、水槽内の水を恒温サーキュレーターで温度制御することにより反応温度を制御している。 The symbols in the figure indicate the means shown below. That is, the symbols are: B-1: hydrogen gas cylinder, B-2: air gas cylinder, B-3: oxygen gas cylinder, R-1 to 3: pressure reducing valve, MFC-1 to 3: mass flow controller, V-1 to 3 : Stop valve, CV-1 to 5: Check valve, SV-1 to 2: Safety valve, P1 to 3: Pressure gauge, AT-1: Recovery liquid (acid aqueous solution) tank, BV-1: Ball valve, LP- 1: Metering liquid supply pump, M-1: mixer, T-1 to 2: thermometer, CR-1: catalytic reaction tube, S-1: gas-liquid separator, NV-1: needle valve, BPR1-2: A back pressure valve, MFM-1: mass flow meter, and G-1: gas collection bag are shown. 1 is submerged in the water tank, and the reaction temperature is controlled by controlling the temperature of the water in the water tank with a constant temperature circulator.
 上記過酸化水素の直接合成装置及びその動作について詳しく説明する。
 原料ガスである水素と酸素は、別々の高圧ガスボンベ(B-1~2)から供給され、減圧弁(R-1~3)により所定の圧力に減圧された後、マスフローコンローラー(MFC1~3)により所定のガス流量に調整される。
The hydrogen peroxide direct synthesis apparatus and its operation will be described in detail.
The source gases, hydrogen and oxygen, are supplied from separate high-pressure gas cylinders (B-1 to 2) and reduced to a predetermined pressure by the pressure reducing valves (R-1 to 3), and then the mass flow controllers (MFC1 to 3). ) To adjust to a predetermined gas flow rate.
 この際、水素と酸素の流量比は、理論的には、水素5:酸素5で良いが、酸素を過剰に加えることも可能である。また、安全性をより向上させるために、必要に応じて、B-2のガスボンベを窒素や二酸化炭素などの不活性ガスに変更することも可能である。所定の流量比で混合された原料ガスは、水槽内で所定の温度に昇温された後、ミキサー(M-1)に導入される。 At this time, the flow rate ratio of hydrogen to oxygen may theoretically be hydrogen 5: oxygen 5, but oxygen can be added excessively. In order to further improve safety, it is possible to change the gas cylinder of B-2 to an inert gas such as nitrogen or carbon dioxide if necessary. The raw material gas mixed at a predetermined flow rate is heated to a predetermined temperature in the water tank and then introduced into the mixer (M-1).
 一方、反応管内で合成された過酸化水素を速やかに水相に回収するための回収水相は、回収液タンク(AT-1)から定量液供給ポンプ(LP-1)のサクションに供給される。回収液は、水槽内で所定の温度に昇温された後、原料ガスと同様に、ミキサー(M-1)に導入される。ここで使用される回収水は、単なる純水でも良いが、合成された過酸化水素の再分解や反応の収率や選択性を向上することを目的として、硫酸や燐酸、塩酸などの酸の添加や、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどの添加を行うことが可能である。 On the other hand, the recovered aqueous phase for quickly recovering the hydrogen peroxide synthesized in the reaction tube into the aqueous phase is supplied from the recovered liquid tank (AT-1) to the suction of the metered liquid supply pump (LP-1). . The recovered liquid is heated to a predetermined temperature in the water tank and then introduced into the mixer (M-1) in the same manner as the raw material gas. The recovered water used here may be pure water, but for the purpose of improving the yield and selectivity of the synthesized hydrogen peroxide by re-decomposition and reaction, sulfuric acid, phosphoric acid, hydrochloric acid and other acids are used. Addition and addition of fluoride ions, chloride ions, bromide ions, iodide ions, and the like can be performed.
 ミキサー(M-1)は、原料ガス相と回収水の水相の相状態を交互に連続させたスラグ流を形成させる目的の場合には、例えば、T字型ミキサーやY字型ミキサーが用いられる。安定したスラグ流を形成するには、原料ガスの流量が回収水量の10倍以下、好ましくは5倍以下となるようにマスフローコントローラーで制御し、回収液は、定量ポンプを使用して流量を制御する。原料ガスと回収液は、そのガス相と水相の相状態が交互に連続して流れるスラグ流の状態で触媒反応管(CR-1)に供給される。次いで、原料ガスは、反応管の管内壁に被覆されている貴金属触媒の作用で過酸化水素に変換され、そのガス相の直後の水相で速やかに回収され、過酸化水素水となり、気液分離器(S-1)に回収され、貯蔵される。 The mixer (M-1) is, for example, a T-shaped mixer or a Y-shaped mixer for the purpose of forming a slag flow in which the phase states of the raw material gas phase and the recovered water aqueous phase are alternately continued. It is done. In order to form a stable slag flow, the flow rate of the raw material gas is controlled by a mass flow controller so that it is 10 times or less, preferably 5 times or less of the recovered water amount, and the recovered liquid is controlled by a metering pump. To do. The raw material gas and the recovered liquid are supplied to the catalyst reaction tube (CR-1) in the state of a slag flow in which the gas phase and the water phase alternately and continuously flow. Next, the raw material gas is converted into hydrogen peroxide by the action of the noble metal catalyst coated on the inner wall of the reaction tube, and is quickly recovered in the aqueous phase immediately after the gas phase to become hydrogen peroxide solution. It is collected and stored in the separator (S-1).
 上記過酸化水素の直接合成装置における合成反応の条件については、反応温度は、好ましくは0~80℃に設定され、更に好ましくは、5~50℃に設定される。反応圧力は、好ましくは、0.1~50MPaの範囲に設定され、更に好ましくは、0.1~20MPaの範囲に設定される。反応時間は、反応管の内径に依存するが、内径が1mmの場合には、2分以内、好ましくは1分以内に設定される。 Regarding the conditions of the synthesis reaction in the hydrogen peroxide direct synthesizer, the reaction temperature is preferably set to 0 to 80 ° C., more preferably 5 to 50 ° C. The reaction pressure is preferably set in the range of 0.1 to 50 MPa, more preferably in the range of 0.1 to 20 MPa. The reaction time depends on the inner diameter of the reaction tube, but when the inner diameter is 1 mm, it is set within 2 minutes, preferably within 1 minute.
 ここで用いる反応管の内径は、スラグ流を安定的に形成するためには、好ましくは、10mm以下に設定し、更に、安全性の観点から、好適には、水素の消炎直径である1mm以下に設定する。貴金属触媒としては、好適には、例えば、パラジウム、パラジウムと金の合金、パラジウム薄膜表面に金ナノ粒子を析出させたもの、パラジウムと銀の合金、パラジウムの多孔質膜が用いられる。 The inner diameter of the reaction tube used here is preferably set to 10 mm or less in order to stably form a slag flow. Further, from the viewpoint of safety, the hydrogen extinguishing diameter is preferably 1 mm or less. Set to. As the noble metal catalyst, for example, palladium, an alloy of palladium and gold, a material in which gold nanoparticles are deposited on the surface of a palladium thin film, an alloy of palladium and silver, or a porous film of palladium is preferably used.
 回収液の過酸化水素濃度を高める目的で、気液分離器(S-1)の出口のニードル弁(NV-1)を閉じて、循環ライン(CL-1)から回収液タンク(AT-1)に回収液を戻す循環ラインを配設することも可能である。ただし、過酸化水素合成触媒である貴金属は、合成された過酸化水素の分解触媒としても作用するので、その循環には、注意が必要である。また、反応後のガスを再循環するラインを配設することも可能であり、反応ガスの転換率などを考慮して、適宜実施することが可能である。 In order to increase the concentration of hydrogen peroxide in the recovered liquid, the needle valve (NV-1) at the outlet of the gas-liquid separator (S-1) is closed, and the recovered liquid tank (AT-1) is removed from the circulation line (CL-1). It is also possible to arrange a circulation line for returning the recovered liquid to (). However, since the noble metal that is a hydrogen peroxide synthesis catalyst also acts as a decomposition catalyst for the synthesized hydrogen peroxide, it is necessary to pay attention to its circulation. It is also possible to arrange a line for recirculating the gas after the reaction, and this can be carried out as appropriate in consideration of the conversion rate of the reaction gas.
 本発明により、以下のような効果が奏される。
(1)本発明の過酸化水素の直接合成技術により、公知技術の課題であった触媒使用量の削減を実現することができる。
(2)触媒の貴金属薄膜を無電解メッキなどにより被覆した反応管を用いることで、触媒として有効な貴金属表面をミクロンオーダーの薄膜から形成させることができ、反応に必要な触媒表面を十分に確保しつつ、高価な貴金属の使用量を削減させることができる。
The following effects are exhibited by the present invention.
(1) By using the hydrogen peroxide direct synthesis technology of the present invention, it is possible to achieve a reduction in the amount of catalyst used, which was a problem of the known technology.
(2) By using a reaction tube coated with a noble metal thin film of the catalyst by electroless plating, etc., the surface of the noble metal effective as a catalyst can be formed from a thin film of micron order, and sufficient surface of the catalyst necessary for the reaction is secured. However, the amount of expensive noble metal used can be reduced.
(3)チューブ形状の反応場を備えた過酸化水素の直接合成装置を用いることにより、物質移動による負荷抵抗が低減され、反応場における反応暴走がなくなり、過酸化水素の均一な合成反応を行うことが可能である。 (3) By using a hydrogen peroxide direct synthesis device equipped with a tube-shaped reaction field, the load resistance due to mass transfer is reduced, reaction runaway in the reaction field is eliminated, and hydrogen peroxide is uniformly synthesized. It is possible.
(4)水素と酸素の混合気体を、水溶液で、その相状態が交互に連続するスラグ流に分割する方法、又は水素若しくは酸素を事前に水溶液と混合して反応場に供給する方法、又は不活性ガスとして窒素や二酸化炭素を同時供給する方法、の何れかの方法で、過酸化水素の直接合成の安全性を確保することが可能となる。
(5)反応管に内径1mm以下の中空細管を用いることで、いわゆる消炎直径の概念を実現することができ、それにより、水素と酸素の混合気体の爆発を抑制することが可能となる。
(4) A method in which a mixed gas of hydrogen and oxygen is divided into a slag flow in which an aqueous solution is alternately phased, or a method in which hydrogen or oxygen is mixed with an aqueous solution in advance and supplied to the reaction field, or Safety of direct synthesis of hydrogen peroxide can be ensured by any method of simultaneously supplying nitrogen or carbon dioxide as the active gas.
(5) By using a hollow thin tube having an inner diameter of 1 mm or less as the reaction tube, it is possible to realize the concept of so-called extinguishing diameter, thereby suppressing the explosion of the mixed gas of hydrogen and oxygen.
(6)物質移動による負荷抵抗が少ないチューブ形状の反応場を用いることで、合成された過酸化水素が触媒に再接触して分解することを抑制することができ、かつ連続流通式の反応により、目的生成物の生産性を飛躍的に向上させることができる。 (6) By using a tube-shaped reaction field with low load resistance due to mass transfer, it is possible to prevent the synthesized hydrogen peroxide from re-contacting and decomposing to the catalyst, and by a continuous flow reaction. The productivity of the target product can be dramatically improved.
(7)現在、市場で流通している過酸化水素には、製法由来の有機物が不可避的に含まれているが、本発明により、純度要求の厳しい半導体向けの超高純度過酸化水素や、微量分析用試薬としての有機物フリーの過酸化水素を製造し、提供することができる。 (7) Currently, hydrogen peroxide that is distributed in the market inevitably contains organic substances derived from the manufacturing method, but according to the present invention, ultra-high purity hydrogen peroxide for semiconductors with strict purity requirements, Organic substance-free hydrogen peroxide as a reagent for microanalysis can be produced and provided.
水素と酸素から過酸化水素を連続的に直接合成する過酸化水素の直接合成装置のフロー図を示す。A flow diagram of a hydrogen peroxide direct synthesis apparatus that continuously synthesizes hydrogen peroxide directly from hydrogen and oxygen is shown. スラグ流の流動状態の安定化を検証するための可視化フロー図を示す。The visualization flow figure for verifying stabilization of the flow state of slag flow is shown. 実施例1の合成された過酸化水素の濃度の結果を示す。The result of the density | concentration of the synthetic | combination hydrogen peroxide of Example 1 is shown. 実施例1の過酸化水素合成時の水素の転換率と過酸化水素の選択率、過酸化水素の収率の結果を示す。The results of hydrogen conversion, hydrogen peroxide selectivity, and hydrogen peroxide yield during the synthesis of hydrogen peroxide in Example 1 are shown. 実施例2の合成された過酸化水素の濃度の結果を示す。The result of the density | concentration of the synthesized hydrogen peroxide of Example 2 is shown. 実施例1の過酸化水素合成時の水素の転換率と過酸化水素の選択率、過酸化水素の収率の結果を示す。The results of hydrogen conversion, hydrogen peroxide selectivity, and hydrogen peroxide yield during the synthesis of hydrogen peroxide in Example 1 are shown. スラグ流の流動状態の安定化を検証するためのPFA可視化チューブの接続形態を示す。The connection form of the PFA visualization tube for verifying the stabilization of the flow state of the slag flow is shown.
 次に、製造例及び実施例に基づいて本発明を具体的に説明するが、本発明は以下の製造例及び実施例によって何ら限定されるものではない。 Next, the present invention will be specifically described based on production examples and examples, but the present invention is not limited to the following production examples and examples.
製造例1
(チタン内張りニッケル合金チューブ反応管内壁へのパラジウム種核の形成)
(1)チタン内張りニッケル合金チューブ反応管の製造
 外管と内管から構成される二重管の外管の材料として、ニッケル合金のインコネル625(商品名)を使用し、内管の材料として、純チタンを使用し、純チタン製の内管をニッケル合金製の外管の内側に挿入し、圧延、嵌合することにより、中空部を有する中空細管の二重管からなるチタン内張りニッケル合金チューブ反応管を製造した。内面チタンライニングを施した、ステンレス管、ハステロイ管についても、同様の方法で同様に製造した。
Production Example 1
(Formation of palladium seed nuclei on the inner wall of a titanium-lined nickel alloy tube reaction tube)
(1) Manufacture of titanium-lined nickel alloy tube reaction tube As the material of the outer tube of the double tube composed of the outer tube and the inner tube, Inconel 625 (trade name) of nickel alloy is used, and as the material of the inner tube, Titanium-lined nickel alloy tube consisting of a double tube of hollow thin tubes with a hollow portion by using pure titanium, inserting a pure titanium inner tube inside a nickel alloy outer tube, rolling and fitting A reaction tube was manufactured. A stainless steel tube and a Hastelloy tube to which an inner surface titanium lining was applied were similarly manufactured by the same method.
(2)チタン表面の酸化処理
 上記二重管からなるチタン内張りニッケル合金チューブ反応管の入口から、高温高圧条件(500℃、30MPa)の超臨界水の存在下で、0.3wt%の過酸化水素水を供給した。該過酸化水素から分解した酸素は、超臨界水と均一相を形成して良好な酸化環境を生起し、それによって、内管の純チタンの表面は酸化されて酸化チタンの皮膜が均一に形成され、約100μmの厚さのチタン酸化物の層となった。
(2) Oxidation treatment of titanium surface 0.3 wt% peroxidation in the presence of supercritical water under high temperature and high pressure conditions (500 ° C., 30 MPa) from the inlet of the titanium-lined nickel alloy tube reaction tube composed of the above double tube Hydrogen water was supplied. Oxygen decomposed from the hydrogen peroxide forms a homogeneous phase with supercritical water to create a good oxidizing environment, which oxidizes the surface of pure titanium in the inner tube and forms a uniform titanium oxide film. Thus, a titanium oxide layer having a thickness of about 100 μm was formed.
 得られたニッケル合金-純チタン-チタン酸化物から構成される二重管からなるチタン内張りニッケル合金チューブ反応管は、内径が1mm、外径が1.5mm、長さが100cmで、内表面積が31.4cmであった。 The resulting titanium-lined nickel alloy tube reaction tube consisting of a double tube composed of nickel alloy-pure titanium-titanium oxide has an inner diameter of 1 mm, an outer diameter of 1.5 mm, a length of 100 cm, and an inner surface area. It was 31.4 cm 2 .
(3)シランカップリング剤の導入
 上記ニッケル合金―純チタン―チタン酸化物から構成される二重管からなるチタン内張りニッケル合金チューブ反応管に、パラジウムと酸化チタンを定着させるためのシランカップリング剤として、3-トリメトキシシリルプロピルジエチレントリアミンをトルエンに1%溶解したものを導入し、70℃で、16時間封入した状態で、保持した。
(3) Introduction of silane coupling agent Silane coupling agent for fixing palladium and titanium oxide to a titanium-lined nickel alloy tube reaction tube composed of a double tube composed of the above nickel alloy-pure titanium-titanium oxide. As a solution, 1% 3-trimethoxysilylpropyldiethylenetriamine dissolved in toluene was introduced and held at 70 ° C. for 16 hours in a sealed state.
(4)パラジウム種核の形成
 上記ニッケル合金―純チタン―チタン酸化物から構成される二重管からなるチタン内張りニッケル合金チューブ反応管に、無電解メッキの前処理として、その酸化チタン表面にパラジウム粒子の種核を付けた。具体的には、反応管の内壁に、0.1Mの酢酸パラジウムの水溶液5mlを通液して吸着させ、更に、1Mのヒドラジン水溶液を5ml通液し、該内壁の表面にパラジウム粒子を種核として析出させた。
(4) Formation of palladium seed nuclei As a pretreatment for electroless plating, a titanium-lined nickel alloy tube reaction tube composed of a double tube composed of the above nickel alloy-pure titanium-titanium oxide is subjected to palladium on its titanium oxide surface. A seed seed was attached. Specifically, 5 ml of a 0.1 M palladium acetate aqueous solution is passed through the inner wall of the reaction tube to be adsorbed, and further 5 ml of a 1 M hydrazine aqueous solution is passed through it to seed palladium particles on the inner wall surface. As precipitated.
製造例2
(チタン内張りニッケル合金チューブ反応管内壁へのパラジウムの無電解メッキ)
 製造例1の工程で作製したパラジウム粒子の種核を付けた中空細管のチタン内張りニッケル合金チューブ反応管を、60℃の水浴に浸し、中空細管のチューブの先端から、メッキ液として、4mM[Pd(NH]Cl、0.15MのEDTA、1Mアンモニア10mMヒドラジンを含む50℃のメッキ水溶液を、毎分0.5mlの流速で通液し、200mlのメッキ液を供給した時点で通液を止めた。
Production Example 2
(Electroless plating of palladium on the inner wall of a titanium-lined nickel alloy tube reaction tube)
The hollow-tubular titanium-lined nickel alloy tube reaction tube with the seeds of palladium particles produced in the production example 1 was immersed in a water bath at 60 ° C., and 4 mM [Pd (NH 3 ) 4 ] Cl 2 , 50 ° C. plating solution containing 0.15 M EDTA, 1M ammonia 10 mM hydrazine was passed at a flow rate of 0.5 ml per minute, and 200 ml of plating solution was supplied. The liquid was stopped.
 通液中に、該チューブの末端から流出するメッキ液を分取し、該流出メッキ液に含まれるパラジウム量をICP発光分光分析法で分析した。その結果、消費されたパラジウム量は、57mgであり、これが、上記チューブの内壁の表面にメッキされた。初濃度380ppmのパラジウムは、10ppm以下に減少して流出した。上記チューブの断面をSEM観察した結果、パラジウム層の厚さは、3.5μmであった。 During the flow, the plating solution flowing out from the end of the tube was collected, and the amount of palladium contained in the flowing plating solution was analyzed by ICP emission spectroscopy. As a result, the amount of palladium consumed was 57 mg, which was plated on the surface of the inner wall of the tube. Palladium with an initial concentration of 380 ppm decreased to 10 ppm or less and flowed out. As a result of SEM observation of the cross section of the tube, the thickness of the palladium layer was 3.5 μm.
製造例3
(チタン内張りニッケル合金チューブ反応管内壁へのパラジウムと銀の無電解メッキ)
 製造例1の工程で作製したパラジウム粒子の種核を付けた中空細管のチタン内張りニッケル合金チューブ反応管を、60℃の水浴に浸し、中空細管のチューブの先端から、メッキ液として、9mMの酢酸パラジウム、1mMの硝酸銀、0.15MのEDTA、4Mのアンモニア及び10mMのヒドラジンを含む60℃の水溶液を、毎分0.5mlの流速で通液した。
Production Example 3
(Electroless plating of palladium and silver on the inner wall of a titanium-lined nickel alloy tube reaction tube)
The hollow tube titanium-lined nickel alloy tube reaction tube with a seed of palladium particles produced in the process of Production Example 1 is immersed in a 60 ° C. water bath, and 9 mM acetic acid is used as a plating solution from the tip of the tube of the hollow tube. An aqueous solution at 60 ° C. containing palladium, 1 mM silver nitrate, 0.15 M EDTA, 4 M ammonia and 10 mM hydrazine was passed at a flow rate of 0.5 ml per minute.
 この場合のメッキ液の組成は、パラジウムと銀の比率が、質量比で90:10の組成のものであった。該メッキ液を、中空細管のチューブの先端から110ml通液した後、水を通して洗浄した。チューブの末端から流出するメッキ液を分取し、該流出メッキに含まれるパラジウムと銀の量をICP発光分光分析法で分析した。その結果、消費されたパラジウムの量並びに銀の量は、それぞれ67.7mg、10.1mgであり、これらが、上記チューブの管内壁にメッキされた。これらは、質量比でそれぞれ87%、13%に相当した。 The composition of the plating solution in this case was such that the ratio of palladium to silver was 90:10 by mass ratio. After 110 ml of the plating solution was passed through the tip of the hollow thin tube, it was washed with water. The plating solution flowing out from the end of the tube was collected, and the amounts of palladium and silver contained in the flowing plating were analyzed by ICP emission spectroscopy. As a result, the amount of palladium consumed and the amount of silver were 67.7 mg and 10.1 mg, respectively, and these were plated on the inner wall of the tube. These corresponded to 87% and 13% in mass ratio, respectively.
製造例4
(銀の選択的溶出除去による多孔質パラジウム膜の形成)
 製造例3の工程で作製したパラジウムと銀を、67.7mg(87質量%):10.1mg(13質量%)の割合で被覆した中空細管のチタン内張りニッケル合金チューブ反応管に、4Mの硝酸700mlを、25℃で、流速毎分0.5mlで通液し、銀を選択的に溶出させて除去して多孔質パラジウム膜を形成した。溶出したパラジウムと銀の量をICP発光分光分析法で分析した。その結果、残留したパラジウムは、48.1mg(94質量%)、銀は2.9mg(5.7質量%)であった。
Production Example 4
(Formation of porous palladium membrane by selective elution removal of silver)
4M nitric acid was added to a titanium-lined nickel alloy tube reaction tube of a hollow thin tube coated with 67.7 mg (87% by mass): 10.1 mg (13% by mass) of palladium and silver produced in the step of Production Example 3. 700 ml was passed at 25 ° C. at a flow rate of 0.5 ml per minute, and silver was selectively eluted and removed to form a porous palladium membrane. The amount of eluted palladium and silver was analyzed by ICP emission spectroscopy. As a result, the remaining palladium was 48.1 mg (94% by mass), and silver was 2.9 mg (5.7% by mass).
製造例5
(熱処理によるパラジウムと銀の合金膜の被覆の形成)
 製造例3の工程で作製したパラジウムと銀を、67.7mg(87質量%):10.1mg(13質量%)の割合で被覆した中空細管のチタン内張りニッケル合金チューブ反応管を、内径4cmの石英管に挿入し、全体を管状炉に入れた。中空細管のチューブの一端から水素を流しながら、600℃で、3時間加熱し、合金化して、パラジウムと銀の合金膜の被膜を形成した。加熱前にパラジウム(2θ=40.0°)と銀(2θ=38°)のX線回折ピークが観測されたが、上記加熱後にパラジウムと銀の合金膜の新規なピーク(2θ=39.5°)が観察された。
Production Example 5
(Formation of an alloy film of palladium and silver by heat treatment)
A hollow thin tube titanium-lined nickel alloy tube reaction tube coated with 67.7 mg (87% by mass): 10.1 mg (13% by mass) of palladium and silver produced in the process of Production Example 3 has an inner diameter of 4 cm. It was inserted into a quartz tube and the whole was placed in a tubular furnace. While flowing hydrogen from one end of the hollow thin tube, it was heated at 600 ° C. for 3 hours to form an alloy film of palladium and silver. Although X-ray diffraction peaks of palladium (2θ = 40.0 °) and silver (2θ = 38 °) were observed before heating, a new peak (2θ = 39.5) of an alloy film of palladium and silver was observed after the heating. °) was observed.
実施例1
(直接合成装置の説明)
 過酸化水素の直接合成は、図1に示した直接合成装置を用いて行った。図1の直接合成装置について説明する。図1の点線内に示した装置は、安全確保と反応温度の制御のため、水槽内に水没させた。過酸化水素の合成温度を40℃に設定し、反応圧力を、圧力計(PT;P-1、P-2、P-3)で0.8MPaとして、背圧弁(BPR-1、BPR-2)を使用して制御した。また、直接合成装置には、液循環ライン(CL-1)が設置されており、合成された過酸化水素水を循環させることも可能とした。
Example 1
(Description of direct synthesizer)
The direct synthesis of hydrogen peroxide was performed using the direct synthesizer shown in FIG. The direct synthesis apparatus of FIG. 1 will be described. The apparatus shown in the dotted line in FIG. 1 was submerged in a water tank for ensuring safety and controlling the reaction temperature. The synthesis temperature of hydrogen peroxide was set to 40 ° C., the reaction pressure was set to 0.8 MPa with a pressure gauge (PT; P-1, P-2, P-3), and back pressure valves (BPR-1, BPR-2) ) To control. In addition, a liquid circulation line (CL-1) is installed in the direct synthesizer so that the synthesized hydrogen peroxide solution can be circulated.
 過酸化水素の合成に使用する原料ガスは、水素ボンベ(B-1)と、空気ボンベ(B-2)、必要に応じて、酸素ボンベ(B-3)を使用して、各ボンベに設置したマスフローコントローラー(MFC;MFC-1,MFC-2、MFC-3)で、原料ガスの供給量を制御した。それにより、原料ガスの組成を任意に設定して定量供給できるようにした。過酸化水素の回収に使用する酸水溶液は、硫酸0.02mol/L、臭素ナトリウム26ppmの水溶液とし、該酸水溶液を予め酸水溶液タンク(Acid tank;AT-1)に仕込み、ポンプ(LP-1)で定量供給した。 The source gas used for the synthesis of hydrogen peroxide is hydrogen cylinder (B-1), air cylinder (B-2), and oxygen cylinder (B-3) if necessary. The supply amount of the raw material gas was controlled by the mass flow controller (MFC; MFC-1, MFC-2, MFC-3). As a result, the composition of the raw material gas can be arbitrarily set and supplied quantitatively. The aqueous acid solution used for the recovery of hydrogen peroxide is an aqueous solution of 0.02 mol / L sulfuric acid and 26 ppm sodium bromide. The aqueous acid solution is charged in advance in an acid aqueous solution tank (Acid tank; AT-1) and pump (LP-1 ).
 (水素と酸素と空気からの過酸化水素の直接合成 1)
 図1に記載した直接合成装置を使用し、過酸化水素の合成に使用する原料ガス中の水素濃度を21.4vol%とした。酸素濃度は、空気と酸素を使用して、酸素比率(酸素/水素)で1、1.6、及び2.0に変化させた。何れの条件においても、不活性ガスである窒素を30vol%以上含む原料ガスの組成とした。
(Direct synthesis of hydrogen peroxide from hydrogen, oxygen and air 1)
The direct synthesis apparatus shown in FIG. 1 was used, and the hydrogen concentration in the raw material gas used for the synthesis of hydrogen peroxide was 21.4 vol%. The oxygen concentration was changed to 1, 1.6, and 2.0 at an oxygen ratio (oxygen / hydrogen) using air and oxygen. In any condition, the composition of the raw material gas containing 30 vol% or more of nitrogen, which is an inert gas, was used.
 過酸化水素の合成と回収は、原料ガスの総供給量を7ml/min(0.8MPa、40℃)とし、酸水溶液(0.02mol/L硫酸、臭素20ppm添加)の供給量を1ml/minとした。これらを直接合成装置の反応管に導入する前に、原料ガスと酸水溶液をミキサーの1/8インチT字ミキサーで混合した。原料ガスと酸水溶液は、気体のガス相と液体の水相の相状態を交互に連続させたスラグ流を形成して反応管に供給され、連続的に合成と回収が行われた後に、反応管から流出するようにした。反応後の残ガス及び酸水溶液は、気液分離器(S-1)で分離した。合成された過酸化水素は、酸水溶液とともに、気液分離器(Separator;S-1)内に捕集し、残ガスを、背圧弁(BPR-1)とマスフローメーター(MFM;MFM-1)を経由して、ガスバック(G-1)に捕集した。 In the synthesis and recovery of hydrogen peroxide, the total supply amount of the raw material gas is 7 ml / min (0.8 MPa, 40 ° C.), and the supply amount of the acid aqueous solution (0.02 mol / L sulfuric acid and bromine 20 ppm added) is 1 ml / min. It was. Before these were directly introduced into the reaction tube of the synthesizer, the raw material gas and the acid aqueous solution were mixed with a 1/8 inch T-shaped mixer of the mixer. The raw material gas and the acid aqueous solution are supplied to the reaction tube by forming a slag flow in which the gaseous gas phase and the liquid aqueous phase are alternately continued. After the synthesis and recovery are performed continuously, the reaction is performed. I let it flow out of the tube. The residual gas and aqueous acid solution after the reaction were separated by a gas-liquid separator (S-1). The synthesized hydrogen peroxide together with the acid aqueous solution is collected in a gas-liquid separator (Separator; S-1), and the residual gas is collected as a back pressure valve (BPR-1) and a mass flow meter (MFM; MFM-1). And collected in a gas bag (G-1).
 図1の直接合成装置には、合成触媒として、パラジウム単層の無電解メッキにより被覆した反応管を用いた。反応時間は、64秒とした。反応管は、2m×5本で10mとし、該反応管の外径は、気液混合のT字ミキサー同様に、1/8インチとした。反応管を繋ぐための反応管継手のユニオンの内径は、反応管の内径と同一のものとし、内径の変化でスラグ流の相状態が乱れるのを防止した。 In the direct synthesis apparatus shown in FIG. 1, a reaction tube coated with electroless plating of a palladium single layer was used as a synthesis catalyst. The reaction time was 64 seconds. The reaction tube was 2 m × 5 and 10 m, and the outer diameter of the reaction tube was 1/8 inch, similar to the gas-liquid mixing T-shaped mixer. The inner diameter of the union of the reaction tube joint for connecting the reaction tubes was made the same as the inner diameter of the reaction tube to prevent the slag flow phase state from being disturbed by the change of the inner diameter.
 気液分離器(S-1)に捕集した酸水溶液を回収した後に、ヨウ素電量滴定法(平沼産業(株)製、過酸化水素カウンタHP-300)により、合成された過酸化水素の濃度を定量した。ガスバック(G-1)に捕集した残ガスを、TCDガスクロマトグラフィー((株)島津製作所製、GC-8A)により分析し、水素の転換率を求めた。 After collecting the acid aqueous solution collected in the gas-liquid separator (S-1), the concentration of hydrogen peroxide synthesized by iodine coulometric titration (hydrogen peroxide counter HP-300, manufactured by Hiranuma Sangyo Co., Ltd.) Was quantified. The residual gas collected in the gas bag (G-1) was analyzed by TCD gas chromatography (manufactured by Shimadzu Corporation, GC-8A) to determine the hydrogen conversion rate.
 その結果、水素21.4vol%、酸素42.9vol%の条件で、合成された過酸化水素の濃度は、10940ppmであった。また、この条件での水素の転換率は、95.7%、過酸化水素の選択率は、63.6%であり、収率=水素の転換率×過酸化水素の選択率/100の式で求めた過酸化水素の収率は、60.9%であった。 As a result, the concentration of the synthesized hydrogen peroxide was 10940 ppm under the conditions of 21.4 vol% hydrogen and 42.9 vol% oxygen. The hydrogen conversion rate under these conditions is 95.7%, and the hydrogen peroxide selectivity is 63.6%. Yield = hydrogen conversion × hydrogen peroxide selectivity / 100 The hydrogen peroxide yield determined in (1) was 60.9%.
実施例2
(水素と空気と酸素からの過酸化水素の直接合成 2)
 図1の直接合成装置を使用し、原料ガスの組成を、水素濃度13.6vol%、酸素比率0.5から4.0まで変化させた以外は、実施例1と同じ条件で、過酸化水素の合成を行った。
Example 2
(Direct synthesis of hydrogen peroxide from hydrogen, air and oxygen 2)
1 was used under the same conditions as in Example 1 except that the composition of the raw material gas was changed from a hydrogen concentration of 13.6 vol% and an oxygen ratio of 0.5 to 4.0 using the direct synthesis apparatus of FIG. Was synthesized.
 合成された過酸化水素の濃度は、原料ガス中の酸素濃度が高くなるに従って上昇し、原料ガス中の酸素比率(酸素/水素)が2未満では、酸素比率の低下に伴い、過酸化水素の選択率が急激に低下した。酸素比率が2以上の場合は、酸素比率の上昇に伴い、過酸化水素の選択率が微増した。 The concentration of the synthesized hydrogen peroxide increases as the oxygen concentration in the raw material gas increases. When the oxygen ratio (oxygen / hydrogen) in the raw material gas is less than 2, as the oxygen ratio decreases, The selectivity dropped sharply. When the oxygen ratio was 2 or more, the selectivity for hydrogen peroxide slightly increased as the oxygen ratio increased.
実施例3
(合成された過酸化水素水の循環による過酸化水素の濃度の上昇)
 図1の直接合成装置を使用し、原料ガスの組成を、水素13.6vol%、空気86.4%(酸素/水素=1.3)とした以外は、実施例1と同じ条件で、過酸化水素の合成(1サイクル)を行った。続いて、ここで得られる合成された過酸化水素を回収し、これを酸水溶液タンク(AT-1)に仕込み、1サイクルの場合と同じ条件で、酸水溶液のみ1サイクルで得られる合成された過酸化水素水に変えて、合成された過酸化水素を循環させる方法で、過酸化水素の合成(2サイクル)を行った。
Example 3
(Increase in hydrogen peroxide concentration by circulation of synthesized hydrogen peroxide solution)
1 was used under the same conditions as in Example 1 except that the composition of the raw material gas was changed to 13.6 vol% hydrogen and 86.4% air (oxygen / hydrogen = 1.3). Hydrogen oxide was synthesized (one cycle). Subsequently, the synthesized hydrogen peroxide obtained here was recovered, charged into an acid aqueous solution tank (AT-1), and synthesized under the same conditions as in one cycle, only an acid aqueous solution was obtained in one cycle. Hydrogen peroxide was synthesized (two cycles) by a method of circulating the synthesized hydrogen peroxide instead of the hydrogen peroxide solution.
 1サイクルでは、合成した過酸化水素の濃度が4903ppmであり、2サイクルでは7710ppmとなった。このことから、合成した過酸化水素水のみを循環させることで、合成した過酸化水素の濃度を上昇させることができることが確認された。 In one cycle, the concentration of synthesized hydrogen peroxide was 4903 ppm, and in 2 cycles it was 7710 ppm. From this, it was confirmed that the concentration of the synthesized hydrogen peroxide can be increased by circulating only the synthesized hydrogen peroxide solution.
実施例4
 (スラグ流の流動状態の安定化)
 ガス相と水相の相状態を交互に連続させたスラグ流の流動状態の安定化を検証するために、PFA可視化チューブ(PFA Tube)を用いて、図2に示す可視化フローで実験を行った。
 原料ガスと水の気液を混合するミキサー(Mixer)には、1/8インチのT字ミキサー(M-2)を使用し、該ミキサーの出口に1/8インチPFA可視化チューブ(PFA Tube、内径;1.6mm)を接続した。この1/8インチPFA可視化チューブを2mごとに反応管継手のストレートユニオン(Union;U-1、内径;2.3mm)で繋ぎ合わせて全長を10mとしたチューブと、該ストレートユニオンを使用しないで10mとしたチューブの2種類とを準備した。
Example 4
(Stabilization of slag flow)
In order to verify the stabilization of the flow state of the slag flow in which the gas phase and the water phase are alternately continued, an experiment was performed with the visualization flow shown in FIG. 2 using a PFA visualization tube (PFA Tube). .
A 1/8 inch T-shaped mixer (M-2) is used as a mixer (Mixer) for mixing the gas and water of the raw material gas and water, and a 1/8 inch PFA visualization tube (PFA Tube, PFA Tube, (Inner diameter; 1.6 mm) was connected. Connect this 1 / 8-inch PFA visualization tube every 2 m with a straight union (Union; U-1, inner diameter; 2.3 mm) of the reaction tube joint, and use a straight union with a total length of 10 m. Two types of tubes having a length of 10 m were prepared.
 PFA可視化チューブの出口に気液分離器(Separator;S-2)を接続し、気体のみが背圧弁(BPR;BPR-3)を経由して系外に排出され、液体が該気液分離器に蓄積するようにした。始めに、装置全体を空気(Ar)で昇圧し、該空気を流通させたまま、背圧弁(BPR-3)で装置全体の圧力を0.8MPaに保持した。可視化が容易になるように、食紅を添加して着色した水を1ml/minで供給し、空気供給量を1.2 ml/min、2ml/min、6ml/min、及び12ml/minと変化させ、ストレートユニオンで繋ぎ合わせたチューブと、ユニオンなしのシームレスチューブそれぞれで、スラグ流の流動状態を観察、確認した。 A gas-liquid separator (Separator; S-2) is connected to the outlet of the PFA visualization tube, and only the gas is discharged out of the system via the back pressure valve (BPR; BPR-3), and the liquid is the gas-liquid separator. To accumulate. First, the entire apparatus was pressurized with air (Ar), and the pressure of the entire apparatus was maintained at 0.8 MPa with a back pressure valve (BPR-3) while the air was circulated. In order to make visualization easier, add colored food and supply colored water at 1 ml / min, and change the air supply rate to 1.2 ml / min, 2 ml / min, 6 ml / min, and 12 ml / min. The flow state of the slag flow was observed and confirmed with each of the tube connected with the straight union and the seamless tube without the union.
 上述のストレートユニオンで繋ぎ合わせたチューブとシームレスチューブの何れの条件のチューブにおいても、PFA可視化チューブには、安定したスラグ流が吐出されたが、配管の内径変動が起こるユニオン通過後には、空気と液体それぞれが合一してしまい、均一なセグメント(分節)が崩れた。一方、ユニオンを設けていないチューブでは、入口のセグメントのサイズが10m先の出口まで保持されていた。この結果から、スラグ流の流動状態の継続性を保つためには、配管の内径を一定にすることが必須であることが示された。 In both the tube connected by the straight union described above and the seamless tube, a stable slag flow was discharged to the PFA visualization tube. The liquids coalesced and the uniform segment (segment) collapsed. On the other hand, in the tube not provided with the union, the size of the inlet segment was held up to the outlet 10 m ahead. From this result, in order to maintain the continuity of the flow state of the slag flow, it was shown that it is essential to keep the inner diameter of the pipe constant.
 以上詳述したように、本発明は、触媒被覆反応管を用いた過酸化水素の連続直接合成・回収方法及びその装置に係るものであり、触媒の貴金属薄膜を被覆した反応管を用いることで、触媒として有効な貴金属表面をミクロンオーダーの薄膜から形成させることができ、反応に必要な触媒表面を十分に確保しつつ、高価な貴金属の使用量を削減させることが可能となった。本発明の過酸化水素直接合成装置では、チューブ形状の反応場を用いることにより、物質移動による負荷抵抗が低減され、反応場における反応暴走がなくなり、均一な合成反応が可能となった。本発明では、水素と酸素の混合気体を、水溶液で、交互に連続するスラグ流に分割する方法、水素若しくは酸素を事前に水溶液と混合し反応場に供給する方法、不活性ガスとして窒素や二酸化炭素を同時供給する方法、の何れかの方法で、過酸化水素の直接合成の安全性を確保することを実現することが可能である。本発明は、中空の管内壁に触媒の貴金属薄膜を被覆した触媒被覆反応管を利用して、水素と酸素から過酸化水素を直接連続合成し、更に、合成した過酸化水素を水相で過酸化水素水として連続回収する新しい方法及びその装置を提供するものとして有用である。 As described above in detail, the present invention relates to a method and apparatus for continuous direct synthesis and recovery of hydrogen peroxide using a catalyst-coated reaction tube, and by using a reaction tube coated with a noble metal thin film of a catalyst. The surface of the noble metal effective as a catalyst can be formed from a micron-order thin film, and the amount of expensive noble metal used can be reduced while sufficiently securing the surface of the catalyst necessary for the reaction. In the hydrogen peroxide direct synthesis apparatus of the present invention, by using a tube-shaped reaction field, load resistance due to mass transfer is reduced, reaction runaway in the reaction field is eliminated, and uniform synthesis reaction is possible. In the present invention, a mixed gas of hydrogen and oxygen is divided into an alternating continuous slag flow with an aqueous solution, a method in which hydrogen or oxygen is mixed with an aqueous solution in advance and supplied to a reaction field, and nitrogen or dioxide as an inert gas. It is possible to ensure the safety of the direct synthesis of hydrogen peroxide by any method of simultaneously supplying carbon. The present invention uses a catalyst-coated reaction tube in which a hollow tube inner wall is coated with a catalyst noble metal thin film to directly and continuously synthesize hydrogen peroxide from hydrogen and oxygen. The present invention is useful for providing a new method and apparatus for continuously recovering hydrogen oxide water.
B:ガスボンベ(B-1;水素、B-2;空気、B-3;酸素、B-4;窒素)
R:ボンベレギュレーター
MFC:マスフローコントローラー(MFC-1、MFC-2、MFC-3、MFC-4)
V:バルブ(V-1、V-2、V-3、V-4)
CV:逆止弁(CV-1、CV-2、CV-3、CV-4、CV-5、CV-6、CV-7)
PT:圧力計(P-1、P-2、P-3、P-4)
SV:安全弁(SV-1、SV-2)
AT-1:Acid tank;酸水溶液タンク
BV-1:ボールバルブ
LP:液ポンプ(LP-1、LP-2)
TI:温度計(T-1、T-2)
CR-1:Catalytic reactor;パラジウム触媒反応管
S:気液分離器(Separator;S-1、S-2)
NV:ニードルバルブ(NV-1)
BPR:背圧弁(BPR-1、BPR-2、BPR-3)
MFM:マスフローメーター(MFM-1)
G-1:ガスバッグ
M:T字ミキサー(Mixer;M-1、M2)
WT-1:水タンク(Water tank)
Union:ストレートユニオン(U-1)
CL-1:循環ライン
B: Gas cylinder (B-1; hydrogen, B-2; air, B-3; oxygen, B-4; nitrogen)
R: cylinder regulator MFC: mass flow controller (MFC-1, MFC-2, MFC-3, MFC-4)
V: Valve (V-1, V-2, V-3, V-4)
CV: Check valve (CV-1, CV-2, CV-3, CV-4, CV-5, CV-6, CV-7)
PT: Pressure gauge (P-1, P-2, P-3, P-4)
SV: Safety valve (SV-1, SV-2)
AT-1: Acid tank; Acid aqueous solution tank BV-1: Ball valve LP: Liquid pump (LP-1, LP-2)
TI: Thermometer (T-1, T-2)
CR-1: Catalytic reactor; Palladium-catalyzed reaction tube S: Gas-liquid separator (Separator; S-1, S-2)
NV: Needle valve (NV-1)
BPR: Back pressure valve (BPR-1, BPR-2, BPR-3)
MFM: Mass Flow Meter (MFM-1)
G-1: Gas bag M: T-shaped mixer (Mixer; M-1, M2)
WT-1: Water tank
Union: Straight Union (U-1)
CL-1: Circulation line

Claims (31)

  1.  水素と酸素から過酸化水素を直接合成する方法であって、
     中空の管内壁に貴金属薄膜を被覆した反応管を用いて、該反応管内部の流路に原料ガスの水素と、酸素又は空気のガス相、及び反応媒体の水相とを供給し、所定の反応温度及び反応圧力条件下で、反応管内部で水素と酸素から過酸化水素を連続的に直接合成し、合成された過酸化水素を、過酸化水素水として連続的に回収することを特徴とする過酸化水素の直接合成方法。
    A method of directly synthesizing hydrogen peroxide from hydrogen and oxygen,
    Using a reaction tube in which a hollow tube inner wall is coated with a noble metal thin film, a raw material gas hydrogen, an oxygen or air gas phase, and a reaction medium aqueous phase are supplied to a flow path inside the reaction tube, Under the reaction temperature and reaction pressure conditions, hydrogen peroxide is continuously synthesized directly from hydrogen and oxygen inside the reaction tube, and the synthesized hydrogen peroxide is continuously recovered as hydrogen peroxide water. Direct synthesis method of hydrogen peroxide.
  2.  上記反応管として、パラジウム、パラジウムと金の合金、パラジウム薄膜表面に金ナノ粒子を析出させたもの、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜で被覆された反応管を用いる、請求項1に記載の過酸化水素の直接合成方法。 The reaction tube is coated with a thin film composed of at least one of palladium, an alloy of palladium and gold, a palladium thin film with gold nanoparticles deposited thereon, an alloy of palladium and silver, and a porous palladium film. The method for directly synthesizing hydrogen peroxide according to claim 1, wherein a reaction tube is used.
  3.  上記反応管の貴金属薄膜を無電解メッキにより被覆した反応管を用いる、請求項1に記載の過酸化水素の直接合成方法。 The method for directly synthesizing hydrogen peroxide according to claim 1, wherein a reaction tube in which the noble metal thin film of the reaction tube is coated by electroless plating is used.
  4.  上記貴金属薄膜の膜厚が、0.5~2μmの範囲である、請求項1又は3に記載の過酸化水素の直接合成方法。 4. The method for directly synthesizing hydrogen peroxide according to claim 1, wherein the noble metal thin film has a thickness in a range of 0.5 to 2 μm.
  5.  上記中空の管として、ステンレス管、インコネル管、ハステロイ管、チタン管、の中から選択された耐食管、又は内面チタンライニングを施した、ステンレス管、インコネル管、ハステロイ管、の中から選択された耐食二重管、の何れかを用いる、請求項1から4の何れか1項に記載の過酸化水素の直接合成方法。 The hollow tube was selected from a stainless steel tube, an Inconel tube, a Hastelloy tube, a corrosion-resistant tube selected from a stainless steel tube, an Inconel tube, a Hastelloy tube, a titanium tube, or a stainless steel tube, an Inconel tube, a Hastelloy tube, which has been subjected to internal titanium lining. The method for directly synthesizing hydrogen peroxide according to any one of claims 1 to 4, wherein any one of corrosion-resistant double pipes is used.
  6.  上記中空の管として、フュームドシリカチューブを用いる、請求項1から4の何れか1項に記載の過酸化水素の直接合成方法。 The method for directly synthesizing hydrogen peroxide according to any one of claims 1 to 4, wherein a fumed silica tube is used as the hollow tube.
  7.  上記反応管として、パラジウム、パラジウムと金の合金、パラジウム薄膜表面に金ナノ粒子を析出させたもの、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜を反応管内部に無電解メッキで作製する際、ベースとなる金属の酸化被膜を600℃以上の高温酸化、若しくは374℃以上の超臨界水酸化法により製造する、請求項5に記載の過酸化水素の直接合成方法。 As the reaction tube, a thin film made of at least one of palladium, an alloy of palladium and gold, a material in which gold nanoparticles are deposited on the surface of a palladium thin film, an alloy of palladium and silver, and a porous film of palladium is used as a reaction tube. 6. The direct hydrogen peroxide film according to claim 5, wherein a metal oxide film serving as a base is produced by high-temperature oxidation at 600 ° C. or higher, or supercritical water oxidation at 374 ° C. or higher when the electrode is produced by electroless plating. Synthesis method.
  8.  上記反応管の内径が、10mm以下で、0.05mm以上か、又は5mm以下で、0.1mm以上である、請求項1から7の何れか1項に記載の過酸化水素の直接合成方法。 The method for directly synthesizing hydrogen peroxide according to any one of claims 1 to 7, wherein the inner diameter of the reaction tube is 10 mm or less, 0.05 mm or more, or 5 mm or less and 0.1 mm or more.
  9.  反応温度が0~80℃の範囲であるか、又は5~50℃の範囲であり、反応圧力が0.1~50MPaの範囲であるか、又は0.1~20MPaの範囲である、請求項1から8の何れか1項に記載の過酸化水素の直接合成方法。 The reaction temperature is in the range of 0 to 80 ° C, or in the range of 5 to 50 ° C, and the reaction pressure is in the range of 0.1 to 50 MPa, or in the range of 0.1 to 20 MPa. 9. The method for directly synthesizing hydrogen peroxide according to any one of 1 to 8.
  10.  反応管内部で合成された過酸化水素を、水若しくは酸水溶液によって過酸化水素水として連続的に回収する、請求項1から9の何れか1項に記載の過酸化水素の直接合成方法。 The method for directly synthesizing hydrogen peroxide according to any one of claims 1 to 9, wherein the hydrogen peroxide synthesized inside the reaction tube is continuously recovered as hydrogen peroxide water with water or an aqueous acid solution.
  11.  反応管内部で合成された過酸化水素を回収する水若しくは酸水溶液が、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、の何れか1種類以上のイオンを含む、請求項10に記載の過酸化水素の直接合成方法。 The water or acid aqueous solution for recovering the hydrogen peroxide synthesized inside the reaction tube contains one or more kinds of ions selected from fluoride ion, chloride ion, bromide ion, and iodide ion. Method for direct synthesis of hydrogen peroxide.
  12.  上記酸性水溶液が、フッ素、塩素、臭素、ヨウ素の何れか1種以上の物質を含み、何れの物質も、酸性水溶液中での総濃度が0.01~100mg/Lの範囲である、請求項11に記載の過酸化水素の直接合成方法。 The acidic aqueous solution contains at least one substance selected from fluorine, chlorine, bromine, and iodine, and all the substances have a total concentration in the acidic aqueous solution in the range of 0.01 to 100 mg / L. 11. The method for directly synthesizing hydrogen peroxide according to 11.
  13.  反応管内部で合成された過酸化水素を連続的に回収する際に、原料ガス相の気体と水相の液体をミキサーで混合して、その体積流量比を調整することにより、原料ガス相と水相の相状態を交互に連続させたスラグ流を形成させ、該スラグ流を用いて、反応管内部で合成された合成直後の過酸化水素を、過酸化水素水として連続的に回収する、請求項10又は11に記載の過酸化水素の直接合成方法。 When continuously recovering the hydrogen peroxide synthesized in the reaction tube, the gas in the raw material gas phase and the liquid in the aqueous phase are mixed with a mixer, and the volume flow rate ratio is adjusted. A slag flow in which the phase state of the aqueous phase is alternately continued is formed, and using the slag flow, hydrogen peroxide immediately after synthesis synthesized inside the reaction tube is continuously recovered as a hydrogen peroxide solution. The method for directly synthesizing hydrogen peroxide according to claim 10 or 11.
  14.  気体と液体の体積混合比が、気体5~50:液体1であり、原料ガス相と回収水相の体積流量比を、水相1に対してガス相を50以下として、又は水相1に対してガス相を10以下としてスラグ流を形成させる、請求項13に記載の過酸化水素の直接合成方法。  The volume mixing ratio of gas and liquid is gas 5 to 50: liquid 1, and the volume flow rate ratio of the raw material gas phase and the recovered water phase is set to 50 or less with respect to the water phase 1 or to the water phase 1. The method for directly synthesizing hydrogen peroxide according to claim 13, wherein a slag flow is formed with a gas phase of 10 or less. *
  15.  原料ガス相の気体と水相の液体を混合するミキサーの流出部内径と、反応管内径と反応管継手内径を同じ径とし、スラグ流サイズを流路により変化させないようにする、請求項13又は14に記載の過酸化水素の直接合成方法。 The outflow part inside diameter of the mixer that mixes the gas in the raw material gas phase and the liquid in the water phase, the reaction pipe inside diameter and the reaction pipe joint inside diameter are the same diameter, and the slag flow size is not changed by the flow path. 14. The method for directly synthesizing hydrogen peroxide according to 14.
  16.  原料ガス相にはマスフローコントローラーを使用し、水相には定量ポンプを使用してそれぞれの流量及び吐出圧力を制御しつつ、マイクロミキサーで原料ガス相の気体と水相の液体を混合することによりスラグ流を発生させる、請求項13から15の何れか1項に記載の過酸化水素の直接合成方法。 By using a mass flow controller for the raw material gas phase and using a metering pump for the aqueous phase, and controlling the flow rate and discharge pressure of each, while mixing the gas of the raw material gas phase and the liquid of the aqueous phase with a micromixer The method for directly synthesizing hydrogen peroxide according to any one of claims 13 to 15, wherein a slag flow is generated.
  17.  上記マイクロミキサーにT字型マイクロミキサーを用いて、安定したスラグ流を発生させる、請求項13から16の何れか1項に記載の過酸化水素の直接合成方法。 The method for directly synthesizing hydrogen peroxide according to any one of claims 13 to 16, wherein a stable slag flow is generated using a T-shaped micromixer as the micromixer.
  18.  水素と酸素の体積混合比が、水素10~33%、酸素90~67%であり、原料ガス相の酸素と水素の比率(酸素/水素)を1.6以上とするか、又は酸素と水素の比率を2.0以上とする、請求項1から13の何れか1項に記載の過酸化水素の直接合成方法。 The volume mixing ratio of hydrogen and oxygen is 10 to 33% hydrogen and 90 to 67% oxygen, and the ratio of oxygen to hydrogen (oxygen / hydrogen) in the source gas phase is 1.6 or more, or oxygen and hydrogen The method for directly synthesizing hydrogen peroxide according to any one of claims 1 to 13, wherein the ratio of is set to 2.0 or more.
  19.  反応管からの回収水相を、反応管に再循環する、請求項10から18の何れか1項に記載の過酸化水素を直接合成する方法。 The method for directly synthesizing hydrogen peroxide according to any one of claims 10 to 18, wherein the recovered aqueous phase from the reaction tube is recycled to the reaction tube.
  20.  水素と酸素から過酸化水素を連続的に直接合成する装置であって、
     中空の管内壁に貴金属薄膜を被覆した反応管と、該反応管に原料ガスの水素と、酸素又は空気のガス相を供給する手段と、反応媒体の水相とを供給する手段と、反応管内部で合成された合成直後の過酸化水素を水若しくは酸水溶液によって連続的に回収する手段とを備えたことを特徴とする過酸化水素の直接合成装置。
    An apparatus for continuously synthesizing hydrogen peroxide from hydrogen and oxygen directly,
    A reaction tube in which the inner wall of a hollow tube is coated with a noble metal thin film, a means for supplying hydrogen as a raw material gas and a gas phase of oxygen or air, a means for supplying a water phase of a reaction medium, and a reaction tube An apparatus for directly synthesizing hydrogen peroxide, comprising means for continuously recovering hydrogen peroxide synthesized immediately after synthesis with water or an aqueous acid solution.
  21.  管内壁に貴金属薄膜を無電解メッキにより被覆した反応管として、パラジウム、パラジウムと金の合金、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜で被覆された反応管を備えた、請求項20に記載の過酸化水素の直接合成装置。 As a reaction tube in which a noble metal thin film is coated on the inner wall of the tube by electroless plating, the reaction is coated with a thin film composed of at least one of palladium, an alloy of palladium and gold, an alloy of palladium and silver, and a porous film of palladium. 21. The apparatus for directly synthesizing hydrogen peroxide according to claim 20, comprising a tube.
  22.  上記反応管の貴金属薄膜を無電解メッキにより被覆した反応管を用いる、請求項20に記載の過酸化水素の直接合成装置。 21. The apparatus for directly synthesizing hydrogen peroxide according to claim 20, wherein a reaction tube in which the noble metal thin film of the reaction tube is coated by electroless plating is used.
  23.  上記中空の管として、ステンレス管、インコネル管、ハステロイ管、チタン管、の中から選択された耐食管、又は内面チタンライニングを施した、ステンレス管、インコネル管、ハステロイ管、の中から選択された耐食二重管、の何れかを用いた、請求項20から22の何れか1項に記載の過酸化水素の直接合成装置。 The hollow tube was selected from a stainless steel tube, an Inconel tube, a Hastelloy tube, a corrosion-resistant tube selected from a stainless steel tube, an Inconel tube, a Hastelloy tube, a titanium tube, or a stainless steel tube, an Inconel tube, a Hastelloy tube, which has been subjected to internal titanium lining. The apparatus for directly synthesizing hydrogen peroxide according to any one of claims 20 to 22, wherein any one of corrosion-resistant double pipes is used.
  24.  上記中空の管として、フュームドシリカチューブを用いた、請求項20から22の何れか1項に記載の過酸化水素の直接合成装置。 The direct synthesis apparatus for hydrogen peroxide according to any one of claims 20 to 22, wherein a fumed silica tube is used as the hollow tube.
  25.  上記反応管として、パラジウム、パラジウムと金の合金、パラジウム薄膜表面に金ナノ粒子を析出させたもの、パラジウムと銀の合金、パラジウムの多孔質膜、の何れか1種以上からなる薄膜を反応管内部に無電解メッキで作製する際、ベースとなる金属の酸化被膜として、600℃以上の高温酸化、若しくは374℃以上の超臨界水酸化法により製造したものを用いた、請求項23に記載の過酸化水素の直接合成装置。 As the reaction tube, a thin film made of at least one of palladium, an alloy of palladium and gold, a material in which gold nanoparticles are deposited on the surface of a palladium thin film, an alloy of palladium and silver, and a porous film of palladium is used as a reaction tube. 24. The metal oxide film used as a base when produced by electroless plating inside, using a high-temperature oxidation of 600 ° C. or higher or a supercritical water oxidation method of 374 ° C. or higher. Hydrogen peroxide direct synthesizer.
  26.  反応管に入る流路に、原料ガス相と水相の相状態を交互に連続させたスラグ流を形成するミキサーを備えた、請求項20から25の何れか1項に記載の過酸化水素の直接合成装置。 The hydrogen peroxide solution according to any one of claims 20 to 25, further comprising a mixer that forms a slag flow in which a phase state of a raw material gas phase and an aqueous phase are alternately continued in a flow path entering the reaction tube. Direct synthesizer.
  27.  原料ガスと回収水を混合するミキサーの流出部内径と、反応管内径と、反応管継手内径が、同じ径のものである、請求項20から24の何れか1項に記載の過酸化水素の直接合成装置。 25. The hydrogen peroxide solution according to any one of claims 20 to 24, wherein an inner diameter of an outlet of the mixer for mixing the raw material gas and the recovered water, an inner diameter of the reaction tube, and an inner diameter of the reaction tube joint are the same. Direct synthesizer.
  28.  反応管内部で合成された過酸化水素を、水若しくは酸水溶液によって過酸化水素水として連続的に回収する手段を備えた、請求項20から27の何れか1項に記載の過酸化水素の直接合成装置。 The hydrogen peroxide synthesized directly according to any one of claims 20 to 27, comprising means for continuously recovering hydrogen peroxide synthesized inside the reaction tube as hydrogen peroxide water with water or an acid aqueous solution. Synthesizer.
  29.  原料ガス相の供給を制御するマスフローコントローラー、水相の供給を制御する定量ポンプを備え、上記マスフローコントローラー及び上記定量ポンプの下流に原料ガス相と水相とを混合するマイクロミキサーを配設して、原料ガス相と水相の相状態を交互に連続させたスラグ流を発生させるようにした、請求項20から28の何れか1項に記載の過酸化水素の直接合成装置。 A mass flow controller for controlling the supply of the raw material gas phase, a metering pump for controlling the supply of the aqueous phase, and a micromixer for mixing the raw material gas phase and the aqueous phase are arranged downstream of the mass flow controller and the metering pump. The hydrogen peroxide direct synthesis apparatus according to any one of claims 20 to 28, wherein a slag flow in which a phase state of a raw material gas phase and an aqueous phase are alternately continued is generated.
  30.  上記マイクロミキサーにT字型マイクロミキサーを用いて、安定したスラグ流を発生させるようにした、請求項26から29の何れか1項に記載の過酸化水素の直接合成装置。 30. The apparatus for directly synthesizing hydrogen peroxide according to any one of claims 26 to 29, wherein a T-shaped micromixer is used as the micromixer to generate a stable slag flow.
  31.  反応管から出た回収水相を、反応管に再循環させる再循環手段を備えた、請求項20から29の何れか1項以上に記載の過酸化水素の直接合成装置。 30. The apparatus for directly synthesizing hydrogen peroxide according to any one of claims 20 to 29, further comprising recirculation means for recirculating the recovered aqueous phase discharged from the reaction tube to the reaction tube.
PCT/JP2014/056980 2013-03-15 2014-03-14 Continuous direct synthesis/recovery method for hydrogen peroxide using catalyst-coated reaction tube, and device therefor WO2014142324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11201507269VA SG11201507269VA (en) 2013-03-15 2014-03-14 Continuous direct synthesis/recovery method for hydrogen peroxide using catalyst-coated reaction tube, and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-054265 2013-03-15
JP2013054265 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014142324A1 true WO2014142324A1 (en) 2014-09-18

Family

ID=51536971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056980 WO2014142324A1 (en) 2013-03-15 2014-03-14 Continuous direct synthesis/recovery method for hydrogen peroxide using catalyst-coated reaction tube, and device therefor

Country Status (4)

Country Link
JP (1) JP6387633B2 (en)
SG (1) SG11201507269VA (en)
TW (1) TWI600610B (en)
WO (1) WO2014142324A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI628146B (en) * 2016-11-28 2018-07-01 東聯化學股份有限公司 Preparation method and application of titanium-containing cerium oxide material with high thermal stability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011209A (en) * 1983-06-22 1985-01-21 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− Catalytic manufacture of hydrogen peroxide
JPS63156005A (en) * 1986-11-19 1988-06-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Manufacture of hydrogen peroxide
JPH06183703A (en) * 1992-07-15 1994-07-05 Solvay Interox Method of manufacturing hydrogen peroxide by direct synthesis from hydrogen and oxygen
JP2002201010A (en) * 2000-12-28 2002-07-16 Nok Corp Production apparatus of hydrogen peroxide
JP2007519601A (en) * 2004-01-27 2007-07-19 ヴェロシス,インク. Process for producing hydrogen peroxide using microchannel technology

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042804A (en) * 1994-08-16 2000-03-28 Advanced Peroxide Technology, Inc. Method for producing hydrogen peroxide from hydrogen and oxygen
DE10317451A1 (en) * 2003-04-16 2004-11-18 Degussa Ag Reactor for heterogeneously catalyzed reactions
EP1819436A1 (en) * 2004-11-03 2007-08-22 Velocys, Inc. Partial boiling in mini and micro-channels
WO2006113676A2 (en) * 2005-04-18 2006-10-26 Stevens Institute Of Technology Process for the production of hydrogen peroxide from hydrogen and oxygen
JP2007105668A (en) * 2005-10-14 2007-04-26 Mitsubishi Chemicals Corp Gas-liquid reaction method and apparatus therefor
JP4734544B2 (en) * 2007-03-10 2011-07-27 独立行政法人科学技術振興機構 Capillary, microreactor using the same, and solid-liquid-gas phase reaction method using the microreactor
JP4986174B2 (en) * 2008-10-30 2012-07-25 独立行政法人産業技術総合研究所 Reaction tube for microreactor and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011209A (en) * 1983-06-22 1985-01-21 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− Catalytic manufacture of hydrogen peroxide
JPS63156005A (en) * 1986-11-19 1988-06-29 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Manufacture of hydrogen peroxide
JPH06183703A (en) * 1992-07-15 1994-07-05 Solvay Interox Method of manufacturing hydrogen peroxide by direct synthesis from hydrogen and oxygen
JP2002201010A (en) * 2000-12-28 2002-07-16 Nok Corp Production apparatus of hydrogen peroxide
JP2007519601A (en) * 2004-01-27 2007-07-19 ヴェロシス,インク. Process for producing hydrogen peroxide using microchannel technology

Also Published As

Publication number Publication date
JP6387633B2 (en) 2018-09-12
TWI600610B (en) 2017-10-01
TW201441145A (en) 2014-11-01
SG11201507269VA (en) 2015-10-29
JP2014198665A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
Feng et al. High-performance gas-liquid-solid microreactor with polydopamine functionalized surface coated by Pd nanocatalyst for nitrobenzene hydrogenation
JP2019501764A5 (en)
El Hawa et al. Application of a Pd–Ru composite membrane to hydrogen production in a high temperature membrane reactor
JP4986174B2 (en) Reaction tube for microreactor and manufacturing method thereof
Todorovic et al. A comparative density functional theory study of the direct synthesis of H2O2 on Pd, Pt and Au surfaces
Chen et al. Gas–liquid–solid monolithic microreactor with Pd nanocatalyst coated on polydopamine modified nickel foam for nitrobenzene hydrogenation
JP2007105668A (en) Gas-liquid reaction method and apparatus therefor
Zhang et al. High-purity COx-free H2 generation from NH3 via the ultra permeable and highly selective Pd membranes
CN107216296B (en) Method for preparing propylene oxide in microchannel reactor
US10328412B2 (en) Hydrogen storage system by catalytic dehydrogenation of amines
Jun et al. Microfluidics‐Assisted Synthesis of Hierarchical Cu2O Nanocrystal as C2‐Selective CO2 Reduction Electrocatalyst
JP6387633B2 (en) Method and apparatus for continuous direct synthesis and recovery of hydrogen peroxide using a catalyst-coated reaction tube
JP4822461B2 (en) Method for continuous decomposition of hydrogen peroxide
Venezia et al. Catalytic Teflon AF-2400 membrane reactor with adsorbed ex situ synthesized Pd-based nanoparticles for nitrobenzene hydrogenation
Javaid et al. Continuous dehydrogenation of aqueous formic acid under sub-critical conditions by use of hollow tubular reactor coated with thin palladium oxide layer
Chen et al. A novel structured foam microreactor with controllable gas and liquid flow paths: Hydrodynamics and nitrobenzene conversion
Wu et al. Mesoscience in supported nano-metal catalysts based on molecular thermodynamic modeling: A mini review and perspective
Venezia et al. Slurry loop tubular membrane reactor for the catalysed aerobic oxidation of benzyl alcohol
Zhu et al. Core-shell structured Pd catalyst layer encapsulated by polydopamine for a gas-liquid-solid microreactor
CN106334469B (en) Static pipeline three-phase mixer and its application
US20060233695A1 (en) Process for the production of hydrogen peroxide from hydrogen and oxygen
Kim et al. Elucidating the alloying effect of PdAg/CNT catalysts on formic acid dehydrogenation with kinetic isotope effect
JP2014121700A (en) Confinement type runner reaction vessel system and method of producing catalyst or supporting material
JPS5832001A (en) Apparatus for preparation of hydrogen
JP7085530B2 (en) Hydrogen production equipment and hydrogen production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764610

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764610

Country of ref document: EP

Kind code of ref document: A1