Connect public, paid and private patent data with Google Patents Public Datasets

Scalable flow and congestion control in a network

Info

Publication number
WO2014141006A1
WO2014141006A1 PCT/IB2014/059459 IB2014059459W WO2014141006A1 WO 2014141006 A1 WO2014141006 A1 WO 2014141006A1 IB 2014059459 W IB2014059459 W IB 2014059459W WO 2014141006 A1 WO2014141006 A1 WO 2014141006A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
switch
data
congestion
network
flow
Prior art date
Application number
PCT/IB2014/059459
Other languages
French (fr)
Other versions
WO2014141006A9 (en )
Inventor
Casimer Decusatis
Rajaram Krishnamurthy
Fabrizio Petrini
Original Assignee
International Business Machines Corporation
Ibm United Kingdom Limited
Ibm (China) Investment Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/25Rate modification upon detection by the source of changing network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/11Congestion identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/12Congestion avoidance or recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/21Flow control or congestion control using leaky bucket
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic regulation in packet switching networks
    • H04L47/10Flow control or congestion control
    • H04L47/21Flow control or congestion control using leaky bucket
    • H04L47/215Token bucket

Abstract

A method of performing congestion management in a network includes monitoring a congestion status at a switch in the network. It is determined at the switch that the congestion status indicates that there is congestion at the switch. Based on the congestion being related to data received at the switch from a source at a first rate, a first message is transmitted from the switch to the source requesting the source to send the data at a second rate that is slower than the first rate. Based on the congestion being related to data requests received at the switch from a destination at third rate, a second message is transmitted from the switch to the destination requesting the destination to request the data at a fourth rate slower than the third rate.

Description

SCALABLE FLOW AND CONGESTION CONTROL IN A NETWORK

TECHNICAL FIELD

[0001] The present invention relates to computer networks, and more specifically, to scalable flow and congestion control in a network.

BACKGROUND

[0002] Ethernet networks are typically employed in local area networks (LANs) that include a plurality of network switches. A number of communication protocols have been developed and continue to evolve to enhance Ethernet network performance for various environments. For example, an enhancement to Ethernet, called data center bridging (DCB), converged enhanced Ethernet (CEE) or data center Ethernet (DCE), supports the

convergence of LANs with storage area networks (SANs). Other protocols that can be used in a data center environment in conjunction with Ethernet include, for instance, Fibre Channel over Ethernet (FCoE), Internet Wide Area Remote direct memory access Protocol (iWARP), Remote direct memory access over Converged Ethernet (RoCE).

[0003] In OpenFlow network environments, switches are connected via secure links to respective controllers, in order to control switch configuration and routing. Such controllers typically provide such control via data packets sent over the secure link, which maintain higher levels of data integrity than conventional Ethernet fabrics.

[0004] Typically, when data packets are forwarded by a switch through a specified port, the packets are queued in a switch buffer when there is an imbalance between incoming and outgoing packet rates. Network congestion is a problem that occurs when the switch carries so much data that buffer queue entries are exhausted or buffers are filled to some level relative to the buffer size. Such congestion results in a reduction of quality of service, causing packets to be dropped, or queuing and/or transmission of packets to be delayed. SUMMARY

[0005] Aspects of the present invention include a method, computer program product, and system for performing congestion management in a network that includes monitoring a congestion status at a switch in the network. It is determined that the congestion status indicates that there is congestion at the switch. Based on the congestion status being related to data received at the switch from a source at a first rate, a first message is transmitted from the switch to the source requesting the source to send the data at a second rate that is slower than the first rate. Based on the congestion status being related to data requests received at the switch from a destination at a third rate, a second message is transmitted from the switch to the destination requesting the destination to send the data requests at a fourth rate slower than the third rate.

[0006] Additional features and advantages are realized through the embodiments described herein. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with the advantages and the features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Embodiment s) of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

FIG. 1 depicts a block diagram of a system including a network with OpenFlow-capable switches that may be implemented according to an embodiment;

FIG. 2 depicts a block diagram of an OpenFlow-capable switch according to an

embodiment;

FIG. 3 depicts an example of an OpenFlow flow switching definition that can be used in embodiments; and

FIG. 4 depicts a process for performing congestion management at a switch in accordance with an embodiment. DETAILED DESCRIPTION

[0008] Embodiments are directed to providing scalable flow and congestion control at a switch in a network. Network congestion can occur when a data flow is received (e.g., at a network switch) from a source at a faster rate than the flow can be outputted or routed. In an embodiment where the network is an OpenFlow network, when data packets are forwarded by a switch through a specified port, the packets are queued in a switch buffer when there is an imbalance between incoming and outgoing packet rates. Network becomes a problem when the switch carries so much data that buffer queue entries are exhausted or buffers are filled to some level relative to the buffer size. Such congestion results in a reduction of quality of service, causing packets to be dropped, or queuing and/or transmission of packets to be delayed.

[0009] In contemporary OpenFlow networks, flow and congestion control is managed by an OpenFlow controller that is connected to all of the switches in the network. This centralized approach to flow and congestion control is contrasted with embodiments described herein where all or a portion of the flow and congestion control is managed by an OpenFlow-capable switch (also referred to herein as an "OpenFlow switch"). In an embodiment, an OpenFlow switch that detects congestion sends messages, independently of the OpenFlow controller, to sources and/or destinations that may be causing congestion at the switch. Relieving congestion at a switch may lead to less congestion in the overall network.

[0010] Turning now to FIG. 1, an example of a system 100 including a network 101 that supports OpenFlow (i.e., an OpenFlow network) will now be described in greater detail. In the example depicted in FIG. 1, the system 100 is a data center environment including a plurality of servers 102 and client systems 104 configured to communicate over the network 101 using switches 106 that are OpenFlow-capable. In exemplary embodiments, the servers 102, also referred as hosts or host systems, are high-speed processing devices (e.g., mainframe computers, desktop computers, laptop computers, hand-held devices, embedded computing devices, or the like) including at least one processing circuit (e.g., a computer processor/CPU) capable of reading and executing instructions, and handling interactions with various components of the system 100. The servers 102 may be storage system servers configured to access and store large amounts of data to one or more data storage systems 108.

[0011] The client systems 104 can include a variety of desktop, laptop, general-purpose computer devices, mobile computing devices, and/or networked devices with processing circuits and input/output (I/O) interfaces, such as keys/buttons, a touch screen, audio input, a display device and audio output. The client systems 104 can be linked directly to one or more of the switches 106 or wirelessly through one or more wireless access points 110.

[0012] The data storage systems 108 refer to any type of computer readable storage media and may include one or more secondary storage elements, e.g., hard disk drive (HDD), solid-state memory, tape, or a storage subsystem that is internal or external to the servers 102. Types of data that may be stored in the data storage systems 108 include, for example, various files and databases. There may be multiple data storage systems 108 utilized by each of the servers 102, which can be distributed in various locations of the system 100.

[0013] The system 100 also includes a network controller 112 that is a central software defined network controller configured to make routing decisions within the network 101. The network controller 112 establishes one or more secure links 103 to configure the switches 106 and establish communication properties of links 105 between the switches 106. For example, the network controller 112 can configure the switches 106 to control packet routing paths for data flows between the servers 102 and client systems 104, as well as one or more firewalls 114 and one or more load balancers 116. The one or more firewalls 114 restrict access and the flow of network traffic between the network 101 and one or more external networks 118. The one or more load balancers 116 can distribute workloads across multiple computers, such as between the servers 102.

[0014] The servers 102, client systems 104, and network controller 112 can include various computer/communication hardware and software technology known in the art, such as one or more processing units or circuits, volatile and non- volatile memory including removable media, power supplies, network interfaces, support circuitry, operating systems, and the like. Although the network controller 112 is depicted as a separate component, it will be understood that network configuration functionality can alternatively be implemented in one or more of the servers 102 or client systems 104 in a standalone or distributed format.

[0015] The network 101 can include a combination of wireless, wired, and/or fiber optic links. The network 101 as depicted in FIG. 1 represents a simplified example for purposes of explanation. Embodiments of the network 101 can include numerous switches 106 (e.g., hundreds) with dozens of ports and links per switch 106. The network 101 may support a variety of known communication standards that allow data to be transmitted between the servers 102, client systems 104, switches 106, network controller 112, firewalls(s) 114, and load balancer(s) 116. Communication protocols are typically implemented in one or more layers, such as a physical layer (layer-1), a link layer (layer-2), a network layer (layer-3), a transport layer (layer-4), and an application layer (layer-5). In exemplary embodiments, the network 101 supports OpenFlow as a layer-2 protocol. The switches 106 can be dedicated OpenFlow switches or OpenFlow-enabled general purpose switches that also support layer-2 and layer-3 Ethernet.

[0016] FIG. 2 depicts a block diagram of the switch 106 of FIG. 1 that supports

OpenFlow. The switch 106 includes switch logic 202, congestion notification logic 218, secure channel 204, protocol support 205, flow table 206, buffers 208a-208n including various queues 209a-209n, and ports 210a-210n. The switch 106 includes various counters or timers 211, such as timers associated with queues 209a-209n, the flow table 206 and/or flow table entries. The switch logic 202 and the congestion notification logic 218 may be implemented in one or more processing circuits, where a computer readable storage medium is configured to hold instructions for the switch logic 202, as well as various variables and constants to support operation of the switch 106. The switch logic 202 forwards packets between the ports 210a-210n as flows defined by the network controller 112 of FIG. 1. An embodiment of the congestion notification logic 218, which may be included in the switch logic 202, monitors the switch 106 for congestion and takes corrective actions if congestion is detected at the switch 106. [0017] The secure channel 204 connects the switch 106 to the network controller 112 of FIG. 1. The secure channel 204 allows commands and packets to be communicated between the network controller 112 and the switch 106 via the OpenFlow protocol. The secure channel 204 can be implemented in software as executable instructions stored within the switch 106. Protocol details to establish a protocol definition for an implementation of OpenFlow and other protocols can be stored in the protocol support 205. The protocol support 205 may be software that defines one or more supported protocol formats. The protocol support 205 can be embodied in a computer readable storage medium, for instance, flash memory, which is configured to hold instructions for execution by the switch logic 202. Implementing the protocol support 205 as software enables updates in the field for new versions or variations of protocols and can provide OpenFlow as an enhancement to existing conventional routers or switches.

[0018] The flow table 206 defines supported connection types associated with particular addresses, virtual local area networks or switch ports, and is used by the switch to process data flows received at the switch. A data flow is a sequence of data packets grouped in some manner, e.g., by source and/or destination, or otherwise defined by selected criteria. Each data flow may be mapped to a port and associated queue based on the flow table 206. For example, a data flow is defined as all packets that match a particular header format.

[0019] Each entry 211 in the flow table 206 can include one or more rules 212, actions 214, and statistics 216 associated with a particular flow. The rules 212 define each flow and can be determined by packet headers. The actions 214 define how packets are processed. The statistics 216 track information such as the size of each flow (e.g., number of bytes), the number of packets for each flow, and time since the last matching packet of the flow or connection time. Examples of actions include instructions for forwarding packets of a flow to one or more specific ports 210a-210n (e.g., unicast or multicast), encapsulating and forwarding packets of a flow to the network controller 112 of FIG. 1, and dropping packets of the flow. Entries 211 in the flow table 206 can be added and removed by the network controller 112 of FIG. 1 via the secure channel 204. The network controller 112 of FIG. 1 can pre-populate the entries 211 in the flow table 206. Additionally, the switch 106 can request creation of an entry 211 from the network controller 112 upon receiving a flow without a corresponding entry 211 in the flow table 206.

[0020] The buffers 208a-208n provide temporary storage in queues 209a-209n for flows as packets are sent between the ports 210a-210n. In a lossless configuration, rather than dropping packets when network congestion is present, the buffers 208a-208n temporarily store packets until the associated ports 210a-210n and links 105 of FIG. 1 are available. Each of the buffers 208a-208n may be associated with a particular port, flow, or subnetwork. Each of the buffers 208a-208n is logically separate but need not be physically independent. Accordingly, when one of the buffers 208a-208n is full, it does not adversely impact the performance of the other buffers 208a-208n within the switch 106.

[0021] For example, in an OpenFlow switch, each port 210a-210n is attached to a respective queue 209a-209n. In operation, when the switch 106 receives a packet, the switch 106 attempts to match the packet by comparing fields (referred to as "match fields") to corresponding fields in flow entries of each flow table 206. Exemplary match fields include ingress port and metadata fields, as well as header fields such as those described below in reference to FIG. 3. In one embodiment, matching starts at the first flow table and may continue to additional flow tables.

[0022] If no match is found, the switch 106 may perform an action based on the switch configuration, e.g., the packet may be forwarded to the controller or dropped. If the packet matches a flow entry in a flow table, the corresponding instruction set is executed based on the flow entry, e.g., the actions field 214. For example, when a packet is matched to a flow entry including an output action, the packet is forwarded to one of ports 210a-210n specified in the flow entry.

[0023] In one embodiment, forwarding the packet to a port includes mapping packets in a flow to a queue attached to the port. Such flows are treated according to the queue's configuration (e.g., minimum rate). [0024] FIG. 3 depicts an example of an OpenFlow flow switching definition 300 that can be used in embodiments. The OpenFlow flow switching definition 300 is a packet header that defines the flow (also referred to herein as the "data flow") and includes a number of fields. In this example, the switching definition 300 is a flow header that includes up to eleven tuples or fields; however, not all tuples need to be defined depending upon particular flows. In the example of FIG. 3, the OpenFlow flow switching definition 300 includes tuples for identifying an ingress port 302, an Ethernet destination address 304, an Ethernet source address 306, an Ethernet type 308, a virtual local area network (VLAN) priority 310, a VLAN identifier 312, an Internet protocol (IP) source address 314, an IP destination address 316, an IP protocol 318, a transmission control protocol (TCP) / user datagram protocol (UDP) source port 320, a TCP/UDP destination port 322, a forward congestion flag 324, and a backward congestion flag 326. The Ethernet destination address 304 may represent a layer-2 Ethernet hardware address or media access control (MAC) address used in legacy switching and routing. The IP destination address 316 may represent a layer-3 IP address used in legacy switching and routing. Flow switching can be defined for any combination of tuples in the OpenFlow flow switching definition 300, with a particular combination of tuples serving as a key. For example, flows can be defined in a rule 212 of FIG. 2 by exact matching or wildcard matching for aggregated MAC-subnets, IP-subnets, ports, VLAN identifiers, and the like. In an embodiment, the forward congestion flag 324 is used to indicate that a source of data for a data flow associated with the entry is sending data more quickly than the switch can process the data. In an embodiment, the backward congestion flag 326 is used to indicate that a destination of data requests for the data flow is requesting the data more quickly than the switch can process the data requests.

[0025] FIG. 4 depicts a process for performing congestion management at a switch in a network in accordance with an embodiment. In an embodiment, the process shown in FIG. 4 is performed by the congestion notification logic 218. At block 402, a congestion status at a switch is monitored. In an embodiment, the monitoring is performed by examining all or a subset of the buffers 208a-208n and/or queues 209a-209n located on the switch. In an OpenFlow network each data flow may be mapped, e.g., by the flow table 206, to an associated buffer or queue. In an embodiment, when a data packet for a data flow is received at the switch, one or more queues associated with the data flow is examined to determine if it contains more than a specified number of entries. The specified number of entries may be expressed in terms of an actual number and/or in terms of a percent of the queue that is full. When the queue is determined to be over the specified number of entries either the forward congestion flag 324 or the backward congestion flag 326 is set (e.g., based on whether the queue stores data or data requests) in the header associated with the data flow. In another embodiment, all or a subset of the queues 209a-209n are examined periodically and based on determining that a queue contains more than a specified number of entries (this number may be different for different queues), it is determined which data flow is associated with the queue, and a flag (e.g., a forward congestion flag 324, a backward congestion flag 326) is set in the entry (e.g., the header or rule 212) for the data flow in the flow table 208.

[0026] In an embodiment, the switch (attached e.g., to a server, client system, a controller, another switch, or other component connected to the network) is an OpenFlow switch and the network is an OpenFlow network. In an embodiment the source and destination switches (attached e.g., to a server, client system, a controller, another switch, or other component connected to the network) may include one or both of OpenFlow-enabled switches and non-OpenFlow-enabled switches.

[0027] At block 404, it is determined that there is congestion at the switch. In an embodiment, this is determined by examining the flags (e.g., the forward congestion flag 324, the backward congestion flag 326) associated with a data flow. In an embodiment, the flags are examined each time (or every x number of times) that that a packet for the data flow is received at the switch. In another embodiment, the flags are examined periodically. In a further embodiment, a notification is sent when the flags are set.

[0028] At block 406, it is determined whether the congestion is related to data received from a source. In an embodiment, the congestion is related to data received from a source when the forward congestion flag 324 is set. [0029] Block 408 is performed if it is determined, at block 406, that the congestion is related to data received from a source. Alternatively, block 410 is performed if it is determined, at block 406, that the congestion is not related to data received from a source.

[0030] At block 408, a message is transmitted to the source requesting the source to slow down data transmission to the switch. In an embodiment, once the message is sent to source, the switch continues to monitor the congestion status. If it is determined that the congestion no longer exists for the data flow at the switch, a message is transmitted to the source requesting the source to send data at a faster rate (e.g., the same as the original rate, or some other rate). Processing then continues at block 410.

[0031] At block 410, it is determined whether the congestion is related to data requests received from a destination. In an embodiment, the congestion is related to data requests received from a destination when the backward congestion flag 326 is set.

[0032] Block 412 is performed if it is determined, at block 410, that the congestion is related to data requests received from a destination. Alternatively, processing continues at block 402 if it is determined, at block 410, that the congestion is not related to data requests received from a destination.

[0033] At block 412, a message is transmitted to the destination requesting the destination to slow down data request transmissions to the switch. In an embodiment, once the message is sent to destination, the switch continues to monitor the congestion status. If it is determined that the congestion no longer exists for the data flow at the switch, a message is transmitted to the destination requesting the destination to send data requests at a faster rate (e.g., the same as the original rate, or some other rate). Processing then continues at block 402.

[0034] In an embodiment, one or more of the messages requesting a source or destination to slow down (or to speed up) transmission of data or data packets are inserted into a physical frame and sent to the source (e.g., a switch or component attached to a switch) via the network. In an embodiment, the physical frames are forward explicit congestion notification (FECN) or backward explicit congestion notification (BECN) frames. Because FECN and BECN frames are control frames, they may be given a higher priority by the network and/or at the receiving switch and therefore processed with a higher priority than (e.g., before) data or data request frames, thus resulting in a lower latency for these messages. The different priorities may be implemented in an SDN by utilizing a virtual plane for data and a separate virtual plane for control.

[0035] In an embodiment, the logic performing the monitoring and flag setting (e.g., block 402) executes independently of the logic that is determining whether to send messages and sending the messages (e.g., block 404-412).

[0036] In an embodiment, the monitoring sets a flag that indicates that the switch can handle an incoming data or requests at a faster rate (e.g., the queue is below a threshold value). In this case, the switch may request the source and/or destination to send data at a faster rate than the current rate.

[0037] Technical effects include the ability to implement flow control and congestion management at a switch in a network (e.g., an OpenFlow network).

[0038] As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a "circuit," "module" or "system." Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.

[0039] Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible and non-transitory storage medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.

[0040] A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.

[0041] Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.

[0042] Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the "C" programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).

[0043] Aspects of the present invention are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.

[0044] These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.

[0045] The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.

[0046] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.

[0047] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms

"comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one more other features, integers, steps, operations, element components, and/or groups thereof.

[0048] The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated [0049] The flow diagrams depicted herein are just one example. There may be many variations to this diagram or the steps (or operations) described therein without departing from the spirit of the invention. For instance, the steps may be performed in a differing order or steps may be added, deleted or modified. All of these variations are considered a part of the claimed invention.

[0050] While the preferred embodiment to the invention had been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.

Claims

1. A method of performing congestion management in a network, the method comprising:
monitoring a congestion status at a switch in the network;
determining, at the switch, that the congestion status indicates that there is congestion at the switch;
based on the congestion being related to data received at the switch from a source at a first rate, transmitting a first message from the switch to the source requesting the source to send the data at a second rate that is slower than the first rate; and
based on the congestion being related to data requests received at the switch from a destination at a third rate, transmitting a second message from the switch to the destination requesting the destination to send the data requests at a fourth rate that is slower than the third rate.
2. The method of claim 1, further comprising:
based on transmitting the first message:
monitoring the congestion status at the switch in the network; and
based on determining that the congestion status indicates that there is no longer congestion at the switch related to data received at the switch from the source, transmitting a third message from the switch to the source requesting the source to send the data at a fifth rate that is faster than the second rate.
3. The method of claim 1 or claim 2, further comprising:
based on transmitting the second message:
monitoring the congestion status at the switch in the network; and
based on determining that the congestion status indicates that there is no longer congestion at the switch related to data requests received at the switch from the destination, transmitting a fourth message from the switch to the destination requesting the destination to send the data requests at a sixth rate that is faster than the fourth rate.
4. The method of any preceding claim, wherein the switch is an OpenFlow switch and the network is an OpenFlow network.
5. The method of claim 4, wherein the source and destination are OpenFlow switches.
6. The method of any of claims 1 to 3, wherein the switch is an OpenFlow switch and the determining includes examining a flag in a header field of an entry in a flow table at the switch.
7. The method of claim 6, wherein the flag is set to indicate congestion at the switch related to data received at the switch based on a queue at the switch that stores the data received exceeding a specified capacity.
8. The method of clam 6, wherein the flag is set to indicate congestion at the switch related to data requests received at the switch based on a queue at the switch that stores the data requests exceeding a specified capacity.
9. A computer program product for congestion management in a network, the computer program product comprising a storage medium readable by a processing circuit and storing instructions for execution by the processing circuit for performing the method according to any preceding claim.
10. A system for performing congestion management in a network, the system comprising:
a switch configured to connect to the network, the switch comprising:
a memory having computer readable computer instructions; and
a processor for executing the computer readable instructions to:
monitor a congestion status at the switch;
determine that the congestion status indicates that there is congestion at the switch; based on the congestion being related to data received at the switch from a source at a first rate, transmit a first message to the source requesting the source to send the data at a second rate that is slower than the first rate; and based on the congestion being related to data requests received at the switch from a destination at a third rate, transmit a second message to the destination requesting the destination to send the data requests at a fourth rate that is slower than the third rate.
11. The system of claim 10, wherein the instructions further include:
based on transmitting the first message:
monitoring the congestion status; and
based on determining that the congestion status indicates that there is no longer congestion at the switch related to data received at the switch from the source, transmitting a third message to the source requesting the source to send the data at a fifth rate that is faster than the second rate.
12. The system of claim 10 or claim 11, wherein the instructions further include:
based on transmitting the second message:
monitoring the congestion status; and
based on determining that the congestion status indicates that there is no longer congestion at the switch related to data requests received at the switch from the destination, transmitting a fourth message to the destination requesting the destination to send the data requests at a sixth rate that is faster than the fourth rate.
13. The system of any of claims 10 to 12, wherein the switch, source and destination are OpenFlow switches and the network is an OpenFlow network.
14. The system of claim 10, wherein the switch is an OpenFlow switch and the determining includes examining a flag in a header field of an entry in a flow table at the switch.
15. The apparatus of claim 14, wherein the flag is set to indicate congestion at the switch related to data received at the switch based on a queue at the switch that stores the data received exceeding a specified capacity.
16. The apparatus of claim 14, wherein the flag is set to indicate congestion at the switch related to data requests received at the switch based on a queue at the switch that stores the data requests exceeding a specified capacity.
PCT/IB2014/059459 2013-03-15 2014-03-05 Scalable flow and congestion control in a network WO2014141006A9 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13833952 US9444748B2 (en) 2013-03-15 2013-03-15 Scalable flow and congestion control with OpenFlow
US13/833,952 2013-03-15

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE201411000322 DE112014000322T5 (en) 2013-03-15 2014-03-05 Scalable flow and congestion control in a network
JP2015562451A JP2016516333A (en) 2013-03-15 2014-03-05 Scalable flow and congestion control in the network
GB201516352A GB2525832B (en) 2013-03-15 2014-03-05 Scalable flow and congestion control in a network
CN 201480009707 CN105027506A (en) 2013-03-15 2014-03-05 Scalable flow and congestion control in a network

Publications (2)

Publication Number Publication Date
WO2014141006A1 true true WO2014141006A1 (en) 2014-09-18
WO2014141006A9 true WO2014141006A9 (en) 2014-12-18

Family

ID=51526633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/059459 WO2014141006A9 (en) 2013-03-15 2014-03-05 Scalable flow and congestion control in a network

Country Status (6)

Country Link
US (2) US9444748B2 (en)
JP (1) JP2016516333A (en)
CN (1) CN105027506A (en)
DE (1) DE112014000322T5 (en)
GB (1) GB2525832B (en)
WO (1) WO2014141006A9 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929334A (en) * 2013-01-11 2014-07-16 华为技术有限公司 Network abnormity notification method and apparatus
US20150208277A1 (en) * 2014-01-20 2015-07-23 Vodafone Ip Licensing Limited Congestion management
KR20170084776A (en) * 2016-01-13 2017-07-21 삼성전자주식회사 Method and apparatus for transmitting control message in mobile communication system based on software defined network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208619B1 (en) * 1997-03-27 2001-03-27 Kabushiki Kaisha Toshiba Packet data flow control method and device
WO2009113106A2 (en) * 2008-02-29 2009-09-17 Gaurav Raina Network communication
CN101997644A (en) * 2009-08-24 2011-03-30 华为技术有限公司 Speed adjusting method, system and coding scheme selection method and system thereof
CN102291389A (en) * 2011-07-14 2011-12-21 南京邮电大学 A satellite network congestion control method of cross-layer

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187230B2 (en) * 1993-09-06 2001-07-11 株式会社東芝 Congestion control method and congestion control device
JP3686493B2 (en) 1996-03-07 2005-08-24 富士通株式会社 Feedback control method and apparatus in Atm exchanger
US5905711A (en) * 1996-03-28 1999-05-18 Lucent Technologies Inc. Method and apparatus for controlling data transfer rates using marking threshold in asynchronous transfer mode networks
GB9610337D0 (en) 1996-05-17 1996-07-24 Motorola Ltd Method and apparatus for transmitting data
US6504821B2 (en) 1996-06-12 2003-01-07 At&T Corp. Flexible bandwidth negotiation for the block transfer of data
US5966546A (en) * 1996-09-12 1999-10-12 Cabletron Systems, Inc. Method and apparatus for performing TX raw cell status report frequency and interrupt frequency mitigation in a network node
US6356944B1 (en) 1997-03-31 2002-03-12 Compaq Information Technologies Group, L.P. System and method for increasing write performance in a fibre channel environment
EP0876023A1 (en) 1997-04-30 1998-11-04 Sony Corporation Transmitter and transmitting method, receiver and receiving method, and transceiver and transmitting/receiving method
WO1999030462A3 (en) 1997-12-12 1999-09-02 3Com Corp A forward error correction system for packet based real-time media
US6570876B1 (en) 1998-04-01 2003-05-27 Hitachi, Ltd. Packet switch and switching method for switching variable length packets
FR2782218B1 (en) 1998-08-06 2002-05-17 Alsthom Cge Alkatel Call routing with overflows in a private network
WO2000013379A1 (en) * 1998-08-31 2000-03-09 Fujitsu Limited Service assigning apparatus
US6795399B1 (en) 1998-11-24 2004-09-21 Lucent Technologies Inc. Link capacity computation methods and apparatus for designing IP networks with performance guarantees
US6504818B1 (en) 1998-12-03 2003-01-07 At&T Corp. Fair share egress queuing scheme for data networks
US6529301B1 (en) 1999-07-29 2003-03-04 Nortel Networks Limited Optical switch and protocols for use therewith
US6990606B2 (en) 2000-07-28 2006-01-24 International Business Machines Corporation Cascading failover of a data management application for shared disk file systems in loosely coupled node clusters
US6975592B1 (en) * 2000-11-22 2005-12-13 Nortel Networks Limited Configurable rule-engine for layer-7 and traffic characteristic-based classification
US6947380B1 (en) 2000-12-01 2005-09-20 Cisco Technology, Inc. Guaranteed bandwidth mechanism for a terabit multiservice switch
US7072297B2 (en) 2001-04-30 2006-07-04 Networks Physics, Inc. Method for dynamical identification of network congestion characteristics
US8160020B2 (en) * 2001-06-25 2012-04-17 Airvana Network Solutions, Inc. Radio network control
US7305492B2 (en) 2001-07-06 2007-12-04 Juniper Networks, Inc. Content service aggregation system
US7171124B2 (en) 2001-07-19 2007-01-30 Lucent Technologies Inc. Wavelength routing and switching mechanism for a photonic transport network
US6922791B2 (en) 2001-08-09 2005-07-26 Dell Products L.P. Failover system and method for cluster environment
EP1324628B1 (en) 2001-12-13 2009-11-11 Sony Deutschland GmbH Adaptive quality-of-service reservation and pre-allocation for mobile systems
US7187652B2 (en) 2001-12-26 2007-03-06 Tropic Networks Inc. Multi-constraint routing system and method
US7408876B1 (en) * 2002-07-02 2008-08-05 Extreme Networks Method and apparatus for providing quality of service across a switched backplane between egress queue managers
US7024580B2 (en) 2002-11-15 2006-04-04 Microsoft Corporation Markov model of availability for clustered systems
US8161145B2 (en) 2003-02-27 2012-04-17 International Business Machines Corporation Method for managing of denial of service attacks using bandwidth allocation technology
US20040179476A1 (en) * 2003-03-10 2004-09-16 Sung-Ha Kim Apparatus and method for controlling a traffic switching operation based on a service class in an ethernet-based network
US7746816B2 (en) 2003-03-13 2010-06-29 Qualcomm Incorporated Method and system for a power control in a communication system
US7336605B2 (en) 2003-05-13 2008-02-26 Corrigent Systems, Inc. Bandwidth allocation for link aggregation
US7234073B1 (en) 2003-09-30 2007-06-19 Emc Corporation System and methods for failover management of manageable entity agents
JP4556592B2 (en) * 2003-10-02 2010-10-06 パナソニック株式会社 Router selection method and router device
WO2005106546A3 (en) 2004-04-15 2006-05-11 Infinera Corp COOLERLESS AND FLOATING WAVELENGTH GRID PHOTONIC INTEGRATED CIRCUITS (PICs) FOR WDM TRANSMISSION NETWORKS
US7460468B2 (en) 2004-04-22 2008-12-02 At&T Intellectual Property I, L.P. Method and system for automatically tracking the rerouting of logical circuit data in a data network
JP4353005B2 (en) 2004-06-29 2009-10-28 株式会社日立製作所 System switching method of cluster configuration computer system
US20060209695A1 (en) 2005-03-15 2006-09-21 Archer Shafford R Jr Load balancing in a distributed telecommunications platform
DE102004057496B4 (en) 2004-11-29 2006-08-24 Siemens Ag Method and device for the automatic readjustment of limits for access controls for restricting the traffic in a communication network
US7626926B2 (en) * 2004-12-09 2009-12-01 Airvana, Inc. Traffic management in a wireless data network
US20060187874A1 (en) * 2005-02-24 2006-08-24 Interdigital Technology Corporation Method and apparatus for supporting data flow control in a wireless mesh network
US9185036B2 (en) 2005-03-23 2015-11-10 Alcatel Lucent Method and apparatus for flow control of data in a network
US7961621B2 (en) 2005-10-11 2011-06-14 Cisco Technology, Inc. Methods and devices for backward congestion notification
US7877485B2 (en) 2005-12-02 2011-01-25 International Business Machines Corporation Maintaining session states within virtual machine environments
KR100757872B1 (en) * 2006-02-06 2007-09-11 삼성전자주식회사 Apparatus and method of backward congestion notification on network
US20070204266A1 (en) 2006-02-28 2007-08-30 International Business Machines Corporation Systems and methods for dynamically managing virtual machines
US8042108B2 (en) 2006-03-18 2011-10-18 International Business Machines Corporation Virtual machine migration between servers
US7496579B2 (en) 2006-03-30 2009-02-24 International Business Machines Corporation Transitioning of database service responsibility responsive to server failure in a partially clustered computing environment
US8509077B2 (en) * 2006-04-05 2013-08-13 Xyratex Technology Limited Method for congestion management of a network, a switch, and a network
US7843831B2 (en) 2006-08-22 2010-11-30 Embarq Holdings Company Llc System and method for routing data on a packet network
US8369821B2 (en) 2006-09-08 2013-02-05 Logicmark, Llc List-based emergency calling device
US20080137669A1 (en) 2006-12-12 2008-06-12 Nokia Corporation Network of nodes
EP1936880A1 (en) * 2006-12-18 2008-06-25 British Telecommunications Public Limited Company Method and system for congestion marking
JP5168699B2 (en) 2007-02-06 2013-03-21 エントロピック・コミュニケーションズ・インコーポレイテッドEntropic Communications, Inc. Parameterized quality of service architecture in the network
US8116200B2 (en) 2007-03-16 2012-02-14 Cisco Technology, Inc. Source routing approach for network performance and availability measurement of specific paths
US20080298248A1 (en) 2007-05-28 2008-12-04 Guenter Roeck Method and Apparatus For Computer Network Bandwidth Control and Congestion Management
US8121038B2 (en) 2007-08-21 2012-02-21 Cisco Technology, Inc. Backward congestion notification
EP2028798B1 (en) 2007-08-22 2012-05-02 Telefonaktiebolaget L M Ericsson (publ) Data transmission control methods and devices
US7996510B2 (en) * 2007-09-28 2011-08-09 Intel Corporation Virtual clustering for scalable network control and management
US20100214970A1 (en) 2007-09-28 2010-08-26 Nec Europe Ltd Method and system for transmitting data packets from a source to multiple receivers via a network
US8191063B2 (en) 2007-09-30 2012-05-29 Symantex Corporation Method for migrating a plurality of virtual machines by associating files and state information with a single logical container
CN101849391B (en) 2007-11-01 2012-10-10 艾利森电话股份有限公司 Efficient flow control in a radio network controller (RNC)
US7773519B2 (en) 2008-01-10 2010-08-10 Nuova Systems, Inc. Method and system to manage network traffic congestion
US7876751B2 (en) 2008-02-21 2011-01-25 International Business Machines Corporation Reliable link layer packet retry
US7843817B2 (en) 2008-03-11 2010-11-30 Cisco Technology, Inc. Congestion control in wireless mesh networks
CN101534519B (en) 2008-03-14 2014-03-12 摩托罗拉移动公司 Method for displaying package switching congestion state of wireless communication network
US7949893B1 (en) 2008-04-30 2011-05-24 Netapp, Inc. Virtual user interface failover
GB2461132B (en) 2008-06-27 2013-02-13 Gnodal Ltd Method of data delivery across a network
US8045463B2 (en) 2008-07-30 2011-10-25 Microsoft Corporation Path estimation in a wireless mesh network
US8102781B2 (en) 2008-07-31 2012-01-24 Cisco Technology, Inc. Dynamic distribution of virtual machines in a communication network
ES2332397B1 (en) 2008-08-01 2011-02-09 Telefonica, S.A. Access point sends information geographic positioning access point to mobile terminals and mobile terminal receiving said information and estimates its position based on it.
US7978607B1 (en) 2008-08-29 2011-07-12 Brocade Communications Systems, Inc. Source-based congestion detection and control
US20100070722A1 (en) 2008-09-16 2010-03-18 Toshio Otani Method and apparatus for storage migration
JP5232602B2 (en) 2008-10-30 2013-07-10 株式会社日立製作所 Storage device, and data paths of the storage controller internal network failover method
JP4648447B2 (en) 2008-11-26 2011-03-09 株式会社日立製作所 Failure recovery method, program and management server
US8897139B2 (en) * 2008-12-05 2014-11-25 Hewlett-Packard Development Company, L.P. Packet processing indication
JP4727714B2 (en) 2008-12-05 2011-07-20 株式会社日立製作所 Control method and apparatus for server failover, as well as the computer system unit
EP2200229B1 (en) 2008-12-18 2012-03-07 Alcatel Lucent Method and apparatus for delivering error-critical traffic through a packet-switched network
US8285900B2 (en) * 2009-02-17 2012-10-09 The Board Of Regents Of The University Of Texas System Method and apparatus for congestion-aware routing in a computer interconnection network
WO2010107350A1 (en) 2009-03-20 2010-09-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and devices for automatic tuning in wdm-pon
US20120030306A1 (en) 2009-04-28 2012-02-02 Nobuharu Kami Rapid movement system for virtual devices in a computing system, management device, and method and program therefor
US8429287B2 (en) * 2009-04-29 2013-04-23 Rangecast Technologies, Llc Network audio distribution system and method
WO2010138545A1 (en) 2009-05-27 2010-12-02 Yin Zhang Method and system for resilient routing reconfiguration
US8774411B2 (en) 2009-05-29 2014-07-08 Alcatel Lucent Session key generation and distribution with multiple security associations per protocol instance
US8238234B2 (en) 2009-06-03 2012-08-07 Qualcomm Incorporated Switching between MIMO and receiver beam forming in a peer-to-peer network
US8385231B2 (en) 2009-07-30 2013-02-26 Roberto Rojas-Cessa Disseminating link state information to nodes of a network
US20110031082A1 (en) 2009-08-06 2011-02-10 Chen-Lung Chi Wheeled luggage device with brake
WO2011019992A1 (en) 2009-08-13 2011-02-17 New Jersey Institute Of Technology Scheduling wdm pon with tunable lasers with different tuning times
CN104065555A (en) 2009-09-24 2014-09-24 日本电气株式会社 Identification System For Inter-virtual-server Communication And Identification Method For Inter-virtual-server Communication
JP5446040B2 (en) 2009-09-28 2014-03-19 日本電気株式会社 Computer system, and the migration process of the virtual machine
WO2011040511A1 (en) * 2009-09-30 2011-04-07 日本電気株式会社 Billing processing system, network switch, network management server, billing processing method, and billing processing program
EP2484146B1 (en) * 2009-10-01 2017-12-06 LG Electronics Inc. Method of controlling data flow in wireless communication system
US8780721B2 (en) * 2009-10-06 2014-07-15 Nec Corporation Network system, controller, method, and program
US20110085444A1 (en) 2009-10-13 2011-04-14 Brocade Communications Systems, Inc. Flow autodetermination
WO2011049135A1 (en) 2009-10-23 2011-04-28 日本電気株式会社 Network system, control method thereof, and controller
US20120250496A1 (en) 2009-11-26 2012-10-04 Takeshi Kato Load distribution system, load distribution method, and program
US20110299389A1 (en) 2009-12-04 2011-12-08 Telcordia Technologies, Inc. Real Time Monitoring, Onset Detection And Control Of Congestive Phase-Transitions in Communication Networks
US20110137772A1 (en) 2009-12-07 2011-06-09 At&T Mobility Ii Llc Devices, Systems and Methods for SLA-Based Billing
US20110135301A1 (en) 2009-12-08 2011-06-09 Vello Systems, Inc. Wavelocker for Improving Laser Wavelength Accuracy in WDM Networks
US8270831B2 (en) 2009-12-11 2012-09-18 Cisco Technology, Inc. Use of pre-validated paths in a WDM network
WO2011074630A1 (en) 2009-12-17 2011-06-23 日本電気株式会社 Load distribution system, load distribution method, device and program constituting load distribution system
WO2011080870A1 (en) 2009-12-28 2011-07-07 日本電気株式会社 Communications system and port information collection method
WO2011083682A1 (en) 2010-01-05 2011-07-14 日本電気株式会社 Switch network system, controller, and control method
WO2011083846A1 (en) * 2010-01-08 2011-07-14 日本電気株式会社 Communication system, forwarding nodes, path management server and communication method
WO2011087085A1 (en) * 2010-01-14 2011-07-21 日本電気株式会社 Calculator, network connection switching method, and program
US8429651B2 (en) 2010-01-20 2013-04-23 International Business Machines Corporation Enablement and acceleration of live and near-live migration of virtual machines and their associated storage across networks
JP5521614B2 (en) 2010-02-15 2014-06-18 日本電気株式会社 Network system, and the packet speculative transfer method
WO2011118575A1 (en) 2010-03-24 2011-09-29 日本電気株式会社 Communication system, control device and traffic monitoring method
US8538327B2 (en) 2010-04-15 2013-09-17 Alcatel Lucent User equipment adjustment of uplink satellite communications
US20110261696A1 (en) 2010-04-22 2011-10-27 International Business Machines Corporation Network data congestion management probe system
DE102010017935A1 (en) 2010-04-22 2011-10-27 Siemens Aktiengesellschaft Apparatus and method for stabilizing an electricity purchases
US8537846B2 (en) 2010-04-27 2013-09-17 Hewlett-Packard Development Company, L.P. Dynamic priority queue level assignment for a network flow
US8504718B2 (en) 2010-04-28 2013-08-06 Futurewei Technologies, Inc. System and method for a context layer switch
US8503307B2 (en) 2010-05-10 2013-08-06 Hewlett-Packard Development Company, L.P. Distributing decision making in a centralized flow routing system
EP2572473B1 (en) 2010-05-19 2014-02-26 Telefonaktiebolaget L M Ericsson (PUBL) Methods and apparatus for use in an openflow network
US8224957B2 (en) 2010-05-20 2012-07-17 International Business Machines Corporation Migrating virtual machines among networked servers upon detection of degrading network link operation
US8559332B2 (en) 2010-05-25 2013-10-15 Telefonaktiebolaget L M Ericsson (Publ) Method for enhancing table lookups with exact and wildcards matching for parallel environments
US9535762B2 (en) * 2010-05-28 2017-01-03 At&T Intellectual Property I, L.P. Methods to improve overload protection for a home subscriber server (HSS)
WO2011155392A1 (en) 2010-06-07 2011-12-15 日本電気株式会社 Congestion control system, congestion control method and signalling device
US8737405B2 (en) 2010-06-11 2014-05-27 Marvell World Trade Ltd. Method and apparatus for determining channel bandwidth
US8995836B2 (en) 2010-07-13 2015-03-31 Futurewei Technologies, Inc. Passive optical network with adaptive filters for upstream transmission management
US8456984B2 (en) 2010-07-19 2013-06-04 Ciena Corporation Virtualized shared protection capacity
WO2012011467A1 (en) * 2010-07-20 2012-01-26 シャープ株式会社 Data distribution system, data distribution method, data relay device on distribution side, and data relay device on reception side
JP5846199B2 (en) * 2010-09-03 2016-01-20 日本電気株式会社 Controller, a communication system, a communication method, and communication program
US8929218B2 (en) 2010-09-10 2015-01-06 Brocade Communication Systems, Inc. Congestion notification across multiple layer-2 domains
RU2576480C2 (en) 2010-10-28 2016-03-10 Нек Корпорейшн Network system and communication traffic control method
US8842536B2 (en) 2010-12-23 2014-09-23 Brocade Communications Systems, Inc. Ingress rate limiting
JP5538257B2 (en) 2011-02-02 2014-07-02 アラクサラネットワークス株式会社 Bandwidth monitoring device, and the packet relay apparatus
US8467294B2 (en) * 2011-02-11 2013-06-18 Cisco Technology, Inc. Dynamic load balancing for port groups
WO2012127894A1 (en) * 2011-03-18 2012-09-27 日本電気株式会社 Network system, and switching method
US8429282B1 (en) * 2011-03-22 2013-04-23 Amazon Technologies, Inc. System and method for avoiding system overload by maintaining an ideal request rate
EP2689562B1 (en) * 2011-03-24 2017-05-03 Nec Corporation Method for operating a flow-based switching system and switching system
US9231876B2 (en) * 2011-03-29 2016-01-05 Nec Europe Ltd. User traffic accountability under congestion in flow-based multi-layer switches
US9608908B2 (en) 2011-03-29 2017-03-28 Nec Corporation Network system and VLAN tag data acquiring method
US9590922B2 (en) 2011-05-12 2017-03-07 Microsoft Technology Licensing, Llc Programmable and high performance switch for data center networks
US8923294B2 (en) * 2011-06-28 2014-12-30 Polytechnic Institute Of New York University Dynamically provisioning middleboxes
US8964563B2 (en) 2011-07-08 2015-02-24 Telefonaktiebolaget L M Ericsson (Publ) Controller driven OAM for OpenFlow
US8762501B2 (en) * 2011-08-29 2014-06-24 Telefonaktiebolaget L M Ericsson (Publ) Implementing a 3G packet core in a cloud computer with openflow data and control planes
JP5915454B2 (en) * 2011-09-01 2016-05-11 富士通株式会社 Network system
US8630307B2 (en) 2011-09-13 2014-01-14 Qualcomm Incorporated Methods and apparatus for traffic contention resource allocation
JP5937806B2 (en) * 2011-11-10 2016-06-22 株式会社Nttドコモ Mobile communication method, the policy and charging rules server apparatus and a mobile management node
US8953453B1 (en) * 2011-12-15 2015-02-10 Amazon Technologies, Inc. System and method for throttling service requests using work-based tokens
US8971338B2 (en) * 2012-01-09 2015-03-03 Telefonaktiebolaget L M Ericsson (Publ) Expanding network functionalities for openflow based split-architecture networks
US8868735B2 (en) 2012-02-02 2014-10-21 Cisco Technology, Inc. Wide area network optimization
US8862744B2 (en) 2012-02-14 2014-10-14 Telefonaktiebolaget L M Ericsson (Publ) Optimizing traffic load in a communications network
WO2013134937A1 (en) 2012-03-14 2013-09-19 华为技术有限公司 Method, switch, server, and system for transmitting an establish connection request
US9350671B2 (en) * 2012-03-22 2016-05-24 Futurewei Technologies, Inc. Supporting software defined networking with application layer traffic optimization
JP2013207748A (en) 2012-03-29 2013-10-07 Fujitsu Ltd Network system ad node device
US8730806B2 (en) 2012-04-03 2014-05-20 Telefonaktiebolaget L M Ericsson (Publ) Congestion control and resource allocation in split architecture networks
US9013995B2 (en) * 2012-05-04 2015-04-21 Telefonaktiebolaget L M Ericsson (Publ) Congestion control in packet data networking
US20140006630A1 (en) * 2012-06-28 2014-01-02 Yigang Cai Session initiation protocol (sip) for message throttling
US20140040526A1 (en) * 2012-07-31 2014-02-06 Bruce J. Chang Coherent data forwarding when link congestion occurs in a multi-node coherent system
US9210079B2 (en) 2012-08-14 2015-12-08 Vmware, Inc. Method and system for virtual and physical network integration
US9548920B2 (en) * 2012-10-15 2017-01-17 Cisco Technology, Inc. System and method for efficient use of flow table space in a network environment
US8995277B2 (en) 2012-10-30 2015-03-31 Telefonaktiebolaget L M Ericsson (Publ) Method for dynamic load balancing of network flows on LAG interfaces
US9301029B2 (en) * 2012-11-05 2016-03-29 Broadcom Corporation Data rate control in an optical line terminal
US9094126B2 (en) 2012-11-07 2015-07-28 Nec Laboratories America, Inc. QoS-aware united control protocol for optical burst switching in software defined optical networks
US8942128B2 (en) 2012-11-27 2015-01-27 At&T Mobility Ii Llc Detection and prevention of heavy congestion in a wireless network
US8976697B2 (en) * 2012-12-17 2015-03-10 Broadcom Corporation Network status mapping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208619B1 (en) * 1997-03-27 2001-03-27 Kabushiki Kaisha Toshiba Packet data flow control method and device
WO2009113106A2 (en) * 2008-02-29 2009-09-17 Gaurav Raina Network communication
CN101997644A (en) * 2009-08-24 2011-03-30 华为技术有限公司 Speed adjusting method, system and coding scheme selection method and system thereof
CN102291389A (en) * 2011-07-14 2011-12-21 南京邮电大学 A satellite network congestion control method of cross-layer

Also Published As

Publication number Publication date Type
US20140269320A1 (en) 2014-09-18 application
GB2525832A (en) 2015-11-04 application
US9444748B2 (en) 2016-09-13 grant
GB201516352D0 (en) 2015-10-28 grant
GB2525832B (en) 2017-03-01 grant
US9503382B2 (en) 2016-11-22 grant
US20150055476A1 (en) 2015-02-26 application
WO2014141006A9 (en) 2014-12-18 application
DE112014000322T5 (en) 2015-11-05 application
JP2016516333A (en) 2016-06-02 application
CN105027506A (en) 2015-11-04 application

Similar Documents

Publication Publication Date Title
US7610330B1 (en) Multi-dimensional computation distribution in a packet processing device having multiple processing architecture
US20130148546A1 (en) Support for converged traffic over ethernet link aggregation (lag)
US20150244617A1 (en) Physical path determination for virtual network packet flows
US20120278804A1 (en) Virtual machine and application movement over a wide area network
US20130028072A1 (en) Method and system for management of flood traffic over multiple 0:n link aggregation groups
US20050276263A1 (en) Traffic distribution control device
US20120246637A1 (en) Distributed load balancer in a virtual machine environment
US20090300209A1 (en) Method and system for path based network congestion management
US20130339544A1 (en) Systems and methods for using ecmp routes for traffic distribution
US20120140626A1 (en) Methods and apparatus for flow control associated with a switch fabric
US20060203730A1 (en) Method and system for reducing end station latency in response to network congestion
Koerner et al. Multiple service load-balancing with OpenFlow
US20130329584A1 (en) Finding latency through a physical network in a virtualized network
US20130235870A1 (en) Methods, Systems, and Fabrics Implementing a Distributed Network Operating System
US20140098669A1 (en) Method and apparatus for accelerating forwarding in software-defined networks
CN102594697A (en) Load balancing method and device
US20100333189A1 (en) Method and system for enforcing security policies on network traffic
US20130304915A1 (en) Network system, controller, switch and traffic monitoring method
US20130215754A1 (en) Servers, Switches, and Systems with Switching Module Implementing a Distributed Network Operating System
US20140241345A1 (en) Source routing with fabric switches in an ethernet fabric network
US20090144424A1 (en) Network bandwidth detection and distribution
US20140181267A1 (en) Methods and systems to split equipment control between local and remote processing units
US20130246655A1 (en) Communication path control system, path control device, communication path control method, and path control program
US20140281669A1 (en) OpenFlow Controller Master-slave Initialization Protocol
US20130242983A1 (en) Servers, Switches, and Systems with Virtual Interface to External Network Connecting Hardware and Integrated Networking Driver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase in:

Ref document number: 2015562451

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase in:

Ref document number: 1516352

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140305

WWE Wipo information: entry into national phase

Ref document number: 1516352.0

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 14764283

Country of ref document: EP

Kind code of ref document: A1