WO2014132919A1 - 診断用組成物 - Google Patents

診断用組成物 Download PDF

Info

Publication number
WO2014132919A1
WO2014132919A1 PCT/JP2014/054326 JP2014054326W WO2014132919A1 WO 2014132919 A1 WO2014132919 A1 WO 2014132919A1 JP 2014054326 W JP2014054326 W JP 2014054326W WO 2014132919 A1 WO2014132919 A1 WO 2014132919A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
disease
composition
brain
diagnosing
Prior art date
Application number
PCT/JP2014/054326
Other languages
English (en)
French (fr)
Inventor
英郎 佐治
小野 正博
匡史 猪原
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2015502909A priority Critical patent/JPWO2014132919A1/ja
Publication of WO2014132919A1 publication Critical patent/WO2014132919A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0455Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0459Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with two nitrogen atoms as the only ring hetero atoms, e.g. piperazine

Definitions

  • the present invention relates to a composition for diagnosing a conformational disease such as Alzheimer's disease, and particularly to a composition used for single photon tomography.
  • AD Alzheimer's disease
  • AD has clinical symptoms such as memory and cognitive decline and brain atrophy at the onset stage and mild cognitive impairment (MCI) stage.
  • MCI mild cognitive impairment
  • a ⁇ ⁇ -amyloid protein
  • Senile plaque deposits are formed by aggregation and fibrosis of A ⁇ (1-40) and A ⁇ (1-42), which are sequentially excised from amyloid precursor protein by ⁇ -secretase and ⁇ -secretase, which are degrading enzymes. .
  • Neurofibrillary tangles occur when tau protein is phosphorylated excessively and loses its ability to bind to microtubules, and free tau proteins aggregate together.
  • a ⁇ is important in the early diagnosis of AD and the development of therapeutic agents Target molecules.
  • the nuclear medicine molecular imaging method is considered to be a method suitable for early clinical diagnosis of AD because it can perform quantitative evaluation with high accuracy and high sensitivity by making use of the permeability of radiation.
  • Many A ⁇ imaging probes for positron tomography (PET) have been developed so far.
  • PET positron tomography
  • (E) -4- (2- (6- (2- (2- (2- [ 18 F] fluoroethoxy ) Ethoxy) ethoxy) pyridin-3-yl) vinyl l) -N-methylaniline (AV-45) was approved by the US Food and Drug Administration (FDA) in April 2012 and is now in clinical use in the United States.
  • This compound showed affinity for the synthesized aggregates of A ⁇ peptide and selectively bound to amyloid plaques in brain sections of AD patients, but there was a significant difference in biodistribution between AD patients and healthy individuals. Not shown (Newberg AB, Wintering NA, Plossl K, Hochold J, Stabin MG, et al. (2006) J Nucl Med 47: 748-754). This is thought to be due to the high lipophilicity of IMPY and low in vivo stability. As described above, several A ⁇ imaging probes for SPECT have already been developed, but at present there are no clinically practical ones.
  • Non-patent Document 1 a pyridylbenzofuran derivative (Non-patent Document 1) or a pyridylbenzoxazole derivative (Non-patent Document 2) labeled with 18 F can be used as an A ⁇ imaging probe for PET.
  • Non-patent Document 2 a pyridylbenzofuran derivative
  • Non-patent Document 2 a pyridylbenzoxazole derivative
  • a ⁇ is a typical amyloid related to a disease, but many other amyloids related to a disease are known besides A ⁇ .
  • amyloid is also deposited on pancreatic islets of Langerhans in patients with type 2 diabetes (Opie E, J. Exp. Med., 5: 527-541, 1991).
  • the main component of this amyloid is a peptide called amylin, and human amylin has a ⁇ -sheet structure that is important for deposition as amyloid (Glenner GG, Eanes ED, Wiley CA, Biochem). Biophys. Res. Comm., 155: 608-614, 1988).
  • An object of the present invention is to provide a clinically practical A ⁇ imaging probe for SPECT. Another object of the present invention is to provide an imaging probe for diagnosing diabetes.
  • the present inventor administered a pyridylbenzofuran derivative or a pyridylbenzoxazole derivative containing radioactive iodine to AD model mice and wild type mice, and performed SPECT imaging. It was found that there is a clear difference in radioactivity accumulation in the mouse brain, that is, the derivative can be a clinically practical A ⁇ imaging probe for SPECT.
  • a pyridylbenzofuran derivative or a pyridylbenzoxazole derivative as an A ⁇ imaging probe for PET.
  • these derivatives could be used as an A ⁇ imaging probe for SPECT.
  • iodine has a higher molecular weight than fluorine, it changes the properties of the substance to be labeled.
  • pyridyl benzofuran derivatives labeled with radioactive iodine may not exhibit the same properties as pyridyl benzofuran derivatives labeled with radioactive fluorine.
  • a pyridylbenzofuran derivative or a pyridylbenzoxazole derivative containing iodine is similar in structure to IMPY (both contain iodine, and are composed of a condensed ring of 6-membered ring and 6-membered ring and a 6-membered ring). Similarly, it was expected that there would be no difference in biodistribution between AD patients and healthy individuals.
  • the present inventor has also found that the above-mentioned pyridylbenzofuran derivative containing radioactive iodine also binds to amylin, which is a main component of amyloid found in patients with type 2 diabetes.
  • the present invention has been completed based on the above findings.
  • any one of R 1 , R 2 , R 3 , and R 4 represents a radioactive iodine atom, the other represents a hydrogen atom, and R 5 , R 6 , R 7 , and R 8 are Independently, it represents a hydrogen atom, an amino group, a methylamino group, a dimethylamino group, a methoxy group, or a hydroxy group, and X represents CH or N.
  • R 1 , R 2 , R 3 , and R 4 represents a radioactive iodine atom
  • the other represents a hydrogen atom
  • R 5 , R 6 , R 7 , and R 8 are Independently, it represents a hydrogen atom, an amino group, a methylamino group, a dimethylamino group, a methoxy group, or a hydroxy group
  • X represents CH or N.
  • a composition for diagnosing a conformational disease comprising: (2) The composition for diagnosis of conformation disease according to (1), wherein R 3 in the general formula (I) is a radioactive iodine atom, and R 1 , R 2 , and R 4 are hydrogen atoms. . (3) R 7 in the general formula (I) is an amino group, methylamino group, or dimethylamino group, R 5, R 6, and R 8 is characterized in that it is a hydrogen atom (1) or ( The composition for diagnosis of conformation disease according to 2). (4) The composition for diagnosis of conformation disease according to any one of (1) to (3), wherein the radioactive iodine atom is 123 I or 125 I.
  • composition for diagnosing conformation disease according to any one of (1) to (4) which is used for single photon tomography.
  • the composition for diagnosis of conformation disease according to any one of (1) to (4) is administered to an animal, an image of a brain of the animal is taken, and the image is represented by the general formula (I)
  • a method for diagnosing Alzheimer's disease comprising diagnosing Alzheimer's disease based on the state of a compound.
  • composition for diagnosis of conformation disease according to any one of (1) to (4) is administered to an animal, an image of the pancreas of the animal is taken, and the image is represented by the general formula (I)
  • a method for diagnosing type 2 diabetes comprising diagnosing type 2 diabetes based on the state of the compound.
  • the present invention provides a clinically practical A ⁇ imaging probe for SPECT.
  • the present invention also provides an imaging probe for diagnosing diabetes.
  • the numbers in the figure indicate the compound numbers.
  • the numbers in the figure indicate the compound numbers.
  • the numbers in the figure indicate the compound numbers.
  • R 1 , R 2 , and R 4 in the general formula (I) are preferably hydrogen atoms.
  • R 3 in the general formula (I) is preferably a radioactive iodine atom.
  • R 5 , R 6 and R 8 in the general formula (I) are preferably hydrogen atoms.
  • R 7 in the general formula (I) is preferably an amino group, a methylamino group, or a dimethylamino group, more preferably a methylamino group when X is CH, and when X is N. Is a dimethylamino group.
  • the radioactive iodine atom is preferably 123 I or 125 I, and more preferably 123 I.
  • Typical compounds among the compounds represented by the general formula (I) are shown in the following table.
  • “Me” represents a methyl group
  • “I” represents a radioactive iodine atom.
  • preferred compounds are I-12 (Compound 7), I-13 (Compound 8), I-14 (Compound 9), I-33 (Compound 29), I-34 (Compound 30), I -35 (Compound 31) can be mentioned, and more preferred compounds include I-13 and I-35.
  • the compound represented by the general formula (I) can be synthesized according to the method described in the examples or according to a method in which those methods are appropriately modified or modified with reference to the description.
  • a pharmaceutically acceptable salt of the compound represented by the general formula (I) may be used instead of the compound represented by the general formula (I).
  • examples of such salts include alkali metal salts (sodium salt, potassium salt, lithium salt), alkaline earth metal salts (calcium salt, magnesium salt), sulfate, hydrochloride, nitrate, phosphate, and the like.
  • “conformation disease” means a disease group caused by a protein abnormalized by conformational transformation such as A ⁇ , tau protein, prion, amylin, etc.
  • a ⁇ protein abnormalized by conformational transformation
  • tau protein prion
  • amylin etc.
  • genetics associated with Down's syndrome and Dutch amyloidosis Hereditary cerebral hemorrhage with amyloidosis-Dutch type: HCHWA-D, Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (BSE), and type 2 diabetes.
  • diseases to be diagnosed include precursor symptoms of diseases that are generally not recognized as “diseases”. Examples of prodromal symptoms of such diseases include mild cognitive impairment (MCI) seen before the onset of AD.
  • MCI mild cognitive impairment
  • the diagnosis of conformation disease using the above composition is usually performed by administering this composition to an animal, and then taking an image of the organ of the animal, and the state (quantity) of the compound represented by the general formula (I) in the image. , Distribution, etc.). Specifically, it can be diagnosed by SPECT or the like.
  • the target animal may be a human (diagnostic subject) or a non-human animal (such as a laboratory animal such as a mouse, rat, or rabbit).
  • the organ to be imaged may be determined according to the conformation disease to be diagnosed. For example, if AD is diagnosed, a brain image is taken, and if type 2 diabetes is diagnosed, a pancreas image is taken. .
  • the method of administration of the composition is not particularly limited and can be appropriately determined according to the type of compound, the type of labeling substance, etc., but is usually intradermal, intraperitoneal, intravenous, arterial or spinal fluid injection or Administer by infusion.
  • the dose of the composition is not particularly limited, and can be appropriately determined according to the type of compound, the type of labeling substance, etc.
  • the compound represented by the general formula (I) is 10 ⁇ 10 per day. It is preferable to administer ⁇ 10 -3 mg, more preferably 10 -8 to 10 -5 mg.
  • this composition since this composition is usually administered by injection or infusion, it may contain components usually contained in injection solutions or infusion solutions.
  • Such components include liquid carriers (for example, potassium phosphate buffer, physiological saline, Ringer's solution, distilled water, polyethylene glycol, vegetable oils, ethanol, glycerin, dimethyl sulfoxide, propylene glycol, etc.), antibacterial agents And local anesthetics (eg, procaine hydrochloride, dibucaine hydrochloride, etc.), buffer solutions (eg, Tris-HCl buffer solution, Hepes buffer solution, etc.), osmotic pressure regulators (eg, glucose, sorbitol, sodium chloride, etc.) .
  • liquid carriers for example, potassium phosphate buffer, physiological saline, Ringer's solution, distilled water, polyethylene glycol, vegetable oils, ethanol, glycerin, dimethyl sulfoxide, propylene glycol, etc.
  • Multiplicity is defined by s (single line), d (double line), t (triple line), and m (multiple line). Mass spectra were obtained with Shimadzu GC-MS-QP2010 Plus (ESI). Fluorescence observation was performed with a microscope using a BV-2A filter set (Nikon, Eclipse 80i) (excitation, 400-440 nm; dichroic mirror, 455 nm; long pass filter, 470 nm).
  • Micro-SPECT / CT for small animals was performed at the Radioisotope Research Center (Kyoto University). All animal experiments were conducted according to the inventor's organizational guidelines and were approved by the Kyoto University Animal Care Committee.
  • Radioactive synthesis The radioactive iodine labeled body of the pyridyl benzofuran derivative was synthesize
  • IC 50 half-maximal inhibitory concentration
  • SPECT / CT for small animals SPECT and CT data were acquired and processed using a preclinical imaging system FX3300 (Gamma Medica) equipped with a multi-modality preclinical imaging platform FLEX Triumph (Gamma Medica).
  • FX3300 Gamma Medica
  • FLEX Triumph Gamma Medica
  • Tg2576 transgenic mice (28 months old, female) and wild type mice (28 months old, female) were used as models for Alzheimer's disease and age-matched controls, respectively.
  • Compound [ 123 I] 8 (20.5-26.5 MBq) in 10% EtOH aqueous solution containing 0.1% Tween80 was injected into the tail vein.
  • mice were anesthetized with isoflurane (2.0% isoflurane) 10 minutes after dosing and a 4-head detector camera was used to perform a tomographic spiral SPECT scan of the anesthetized mouse. Acquisition parameters were as follows: rotation angle, 360 °; projection time, 90 seconds; number of projections, 32; collimator, multi-pinhole collimator (N5F75A10); turning radius, 35mm. Immediately after obtaining SPECT, CT of anesthetized mice was obtained.
  • Acquisition parameters were as follows: gantry rotation in continuous flying mode; tube voltage, 61 kV; tube current, 305 ⁇ A; spot size, 50 ⁇ m; 2 ⁇ 2 binning and 1184 ⁇ 1120 projection matrix size, 360 ° With a complete scan, a total of 512 images / frame was acquired.
  • a modified 3D cone-beam felt kamp algorithm obtained with a voxel size of 0.177 x 0.177 x 0.177 mm (512 x 512 x 512 image volume) was used to reconstruct the CT projection.
  • SPECT projection determination was processed for the generation of quantitative images.
  • a 20% energy window centered at 159 keV was used for 123 I acquisition.
  • To reconstruct the SPECT projection a 3D ordered subset expectation maximization algorithm (5 iterations, 8 subsets) that yields an 80x80x80 image matrix with a voxel size of 0.835x0.826x0.598 mm used.
  • Amira's 3D data analysis and visualization software (Mercury Computer Systems) was used to perform image analysis.
  • Ex vivo autoradiography of transgenic mouse brain Animals were killed by decapitation after SPECT analysis. The brain was immediately removed and frozen in a dry ice / hexane bath. A 20 ⁇ m section was cut out and exposed to a BAS imaging plate (Fuji Film, Tokyo, Japan) overnight. Ex vivo film autoradiogram was obtained. After autoradiographic examination, the same sections were stained with thioflavin-S to confirm the presence of A ⁇ plaques. For staining of thioflavin-S, sections were immersed in a 0.125% thioflavin-S solution containing 50% EtOH for 5 minutes and washed with 50% ethanol. After drying, the sections were examined using a microscope (Nikon Eclipse 80i) equipped with a B-2A filter set (excitation, 450-490 nm; dichroic mirror, 505 nm; long pass filter, 520 nm).
  • tributyltin derivatives were immediately reacted with iodine in chloroform at room temperature to give iodine derivatives (7-9) in yields of 52.0%, 65.1%, and 45.6%, respectively. Furthermore, these tributyltin derivatives can also be used as starting materials for radioiodine labeling in the preparation of compound [ 125I ] 7, compound [ 123I / 125I ] 8, and compound [ 125I ] 9.
  • a novel radioiodine labeled pyridylbenzofuran derivative was obtained by iodination destannyl reaction using hydrogen peroxide as an oxidant (FIG. 2).
  • the brain 2min / brain 60min ratio as an index is used to compare the outflow ratio from the brain.
  • the ratio of brain 2 min / brain 60 min of compound [ 125 I] 7, compound [ 125 I] 8, and compound [ 125 I] 9 was 1.30, 3.21 and 1.12.
  • radioactivity was also distributed to other organs such as the liver, kidney, stomach and intestine. The stomach and intestine showed radioactivity accumulation over time, while the liver and kidney showed high initial uptake and efflux over time (Figure 3).
  • SPECT / CT for small animals
  • SPECT / CT was performed in Tg2576 transgenic and wild type mice after intravenous injection of compound [ 123 I] 8. Due to significant A ⁇ deposition in the brain, Tg2576 transgenic mice have been widely used for evaluation of A ⁇ imaging agents in vitro and in vivo (Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, et al (1996) Science 274). A clear difference in radioactivity accumulation in the brain was observed between the Tg2576 mouse and the wild-type mouse in the SPECT image of the cross section (FIG. 4).
  • the medium pressure preparative liquid chromatography apparatus used was a pump PUMP 580D purchased from Yamazen Co., Ltd., an ultraviolet detector prep UV-254D, and a fraction collector Parallel Frac FR-260.
  • a liquid chromatograph LC-20AD equipped with an ultraviolet-visible detector SPD-20A manufactured by Shimadzu Corporation was used for UV-visible spectroscopic analysis using high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • NDW-101 manufactured by Aloka was used for radioactivity analysis using HPLC.
  • a Cosmosil 5C 18 -AR-II column (4.6 ⁇ 150 mm) manufactured by Nacalai Tesque was used.
  • a microtome CM1900 manufactured by Leica was used, and BZ-9000 manufactured by KEYENCE was used for the fluorescence microscope.
  • the mixture was extracted by adding ethyl acetate, passed through a Pasteur pipette filled with anhydrous sodium sulfate and dehydrated, and then the solvent was distilled off by nitrogen stream.
  • a ⁇ (1-42) was prepared to a concentration of 0.25 mg / mL.
  • An A ⁇ (1-42) aggregate solution was prepared by incubating at 37 ° C. for 42 hours. The aggregate solution was stored at ⁇ 80 ° C. until used for experiments.
  • an anti-A ⁇ (1-42) monoclonal antibody (clone No. BC05) was used as an antibody for immunostaining. After treatment with formic acid (90%), it was washed with purified water for 5 minutes. Further, the plate was washed with PBS-Tween 20 for 2 minutes and then incubated with a 0.05% trypsin solution for 15 minutes. The plate was washed twice with PBS-Tween 20 for 5 minutes and then incubated with blocking serum for 30 minutes. Thereafter, the cells were incubated overnight with an anti-A ⁇ (1-42) antibody at room temperature.
  • the plate was washed with PBS-Tween 20 for 3 minutes for 2 minutes and incubated with a streptavidin biotin peroxidase complex solution for 3 hours.
  • the plate was washed with PBS-Tween 20 for 3 minutes for 2 minutes and then incubated with a diaminobenzidine solution at room temperature for 10 minutes. It was washed with distilled water for 1 minute, and observed with a microscope after enclosing.
  • 125 I-labeled pyridylbenzoxazole derivative in the body in vivo radioactivity distribution experiment [ 125 I] -labeled 10% EtOH-containing physiological saline or 0.1% Tween 80 and 19-37 kBq / mL Dilute with 10% EtOH containing saline.
  • One group of five 5-week-old ddY male mice (20-25 g) was prepared by adding Compound [ 125 I] 29, Compound [ 125 I] 30 and Compound [ 125 I] 30 prepared from 1.9-3.7 kBq (100 ⁇ L) from the tail vein.
  • 125 I] 31 PBOX-3) was administered, sacrificed at 2, 10, 30, and 60 minutes, blood was collected, and the major organs were removed. Next, after immediately measuring the weight of blood and organs, the radioactivity was measured with a gamma counter.
  • mice 100 minutes after administration, the mice were sacrificed, the brains were removed, embedded in SCEM, and frozen in a hexane bath.
  • Serial sections with a thickness of 20 mM were prepared using a microtome, fixed on a BAS imaging plate for 12 hours, and then analyzed using a BAS5000 scanner system. The same section was stained with thioflavin S solution and observed with a fluorescence microscope.
  • FIG. 7 shows a synthetic route for pyridylbenzoxazole derivatives.
  • the synthesis of the pyridylbenzoxazole skeleton was performed according to a previously reported method (Qiao, JX; Wang, TC; Hu, C .; Li, J .; Wexler, RR; Lam, PY Org. Lett. 2011, 13 , 1804-7).
  • 2-Amino-4-bromophenol and 5- (trifluoromethyl) pyridin-2-amine were reacted in a 1 M aqueous sodium hydroxide solution to obtain Compound 23 in a yield of 71%.
  • FIG. 8 shows 125 I labeling and 123 I labeling routes.
  • the target compound [ 125 I] 29, compound [ 125 I] 30, compound [ 125 I] 31 (PBOX-3) and compound [ 123 I] 31 (PBOX-3) use H 2 O 2 as an oxidizing agent. And obtained with a radiochemical yield of 30-50% and a radiochemical purity of 95% or more.
  • Identification of 125 I-labeled substance and 123 I-labeled substance was performed by reversed-phase HPLC using a corresponding non-radioactive compound.
  • FIG. 9 shows the results of in vivo radioactivity distribution after administration of pyridylbenzoxazole derivatives to normal mice
  • FIG. 10 shows the radioactivity distribution in the brain.
  • Compound [ 125 I] 29, Compound [ 125 I] 30 and Compound [ 125 I] 31 (PBOX-3) all showed high brain migration of 4.7-6.6% ID / g 2 minutes after administration.
  • the value in the brain at 60 minutes after administration was 0.4-1.4% ID / g, indicating that the pyridylbenzoxazole derivative is rapidly cleared after transfer into the brain. From this result, it was revealed that the pyridylbenzoxazole derivative improved the radioactivity behavior in the brain, which was a problem of the 2-phenylindole derivative.
  • SPECT imaging SPECT / CT imaging using 25-month-old Tg2576 mice and wild-type mice was performed, and the usefulness of 31 (PBOX-3) as an A ⁇ imaging probe for SPECT was evaluated.
  • An arrow cross-section (Sagittal) and a transverse cross-section (transverse) image are shown in FIG.
  • SPECT image of the brain of a 25-month-old Tg2576 mouse higher radioactivity accumulation was observed compared to the brain of a wild-type mouse of the same age. From this result, it was revealed that amyloid plaques accumulated in the mouse brain can be imaged by SPECT imaging using PBOX-3.
  • non-specific binding was carried out in DMSO solution (50 ⁇ L) of non-radioactive compound 9 at a final concentration of 50 nM and 10% DMSO-containing aqueous solution (850 ⁇ L) in which thioflavin T (Wako) was dissolved to a final concentration of 10 mM. ) was added.
  • DMSO solution 50 ⁇ L
  • 10% DMSO-containing aqueous solution 850 ⁇ L
  • thioflavin T Wi-Fi
  • a ⁇ imaging reagents for the purpose of AD diagnosis, development support for therapeutic agents targeting A ⁇ , and disease state determination using A ⁇ accumulation in AD patients as an index.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

 臨床的に実用可能なSPECT用β-アミロイドタンパク質イメージングプローブ及び糖尿病を診断するためのイメージングプローブを提供することを目的として、一般式(I)〔式中、R、R、R、及びRは、いずれか一つが放射性ヨウ素原子を表し、他は水素原子を表し、R、R、R、及びRは、互いに独立して、水素原子、アミノ基、メチルアミノ基、ジメチルアミノ基、メトキシ基、又はヒドロキシ基を表し、XはCH又はNを表す。〕 で表される化合物、又はこれらの化合物の医薬上許容される塩を含有することを特徴とするコンフォメーション病診断用組成物が提供される。

Description

診断用組成物
 本発明は、アルツハイマー病などのコンフォメーション病を診断するための組成物に関し、特に、シングルフォトン断層撮像法に用いられる組成物に関する。
 近年、先進諸国における認知症患者の増加は大きな社会問題となっている。アルツハイマー病(AD)は認知症の中で最も大きな割合を占めており、全世界におけるADの患者数は、2006年の時点で2660万人と推定される。今後、急速に高齢化が進むことに伴い、2050年にはADの患者数が1億680万人に達すると予測されており、その早期診断法および根本治療薬の開発が強く望まれている。
 ADは、その発症段階や軽度認知障害(MCI)の段階で、記憶・認知機能の低下などの臨床症状や脳萎縮が認められる。一方、ADの脳内における特徴的病理学的変化である、シート構造をとったβ-アミロイドタンパク質(Aβ)を主構成成分とする老人斑と過剰リン酸化されたタウタンパク質からなる神経原線維変化の蓄積は、認知機能が正常な段階から認められ、臨床症状が認められる時点ではほぼ一定に達していることが知られている。老人斑の沈着はアミロイド前駆タンパク質から、分解酵素であるβ-セクレターゼ、γ-セクレターゼによって順次切り出されたAβ(1-40)、Aβ(1-42)が凝集、線維化することで形成される。また、神経原線維変化は、タウタンパク質が過剰にリン酸化されることで微小管との結合能を失い、遊離したタウタンパク質が互いに凝集することで起こる。特に、Aβ凝集体を主構成成分とする老人斑の沈着はAD発症過程の最も初期段階より始まり、また、疾患特異性が高いことから、AβはADの早期診断法および治療薬の開発における重要な標的分子となっている。
 核医学分子イメージング法は、放射線の透過性を活かした、高精度かつ高感度な定量評価を行えることから、ADの早期臨床診断に適した手法であると考えられる。これまでに多くのポジトロン断層撮像法(PET)用Aβイメージングプローブが開発されており、中でも (E)-4-(2-(6-(2-(2-(2-[18F]フルオロエトキシ)エトキシ)エトキシ)ピリジン-3-イル)ビニルl)-N-メチルアニリン(AV-45)は2012年4月にアメリカ食品医薬品局(FDA)に認可され、現在米国において臨床使用が開始されている(Cselenyi Z, Jonhagen ME, Forsberg A, Halldin C, Julin P, et al. (2012) J Nucl Med 53: 415-424)。しかしながら、PET用プローブの問題点として、PET装置を有する施設が少ないことや、使用する放射性核種の物理的半減期が短いことが挙げられる。
 今後、一層の患者数の増加が予測されるADの診断に対応するために、PETに比べ、施設数が多く、物理的半減期の長い放射性核種を使用できるという点で汎用性に優れるシングルフォトン断層撮像法 (SPECT)の利用が期待されている。これまでに放射性ヨウ素を含む化合物や99mTcで標識された化合物が、SPECT用Aβイメージングプローブとして開発されてきた。[123I]6-ヨード-2-(4'-ジメチルアミノ)フェニル-イミダゾ[1,2-a]ピリジン(IMPY)は、ヒトで試験された最初のSPECT用Aβイメージングプローブである(Kung MP, Hou C, Zhuang ZP, Zhang B, Skovronsky D, et al. (2002) Brain Res 956: 202-210、Kung MP, Hou C, Zhuang ZP, Cross AJ, Maier DL, et al. (2004) Eur J Nucl Med Mol Imaging 31: 1136-1145、Newberg AB, Wintering NA, Plossl K, Hochold J, Stabin MG, et al. (2006) J Nucl Med 47: 748-754)。この化合物は、合成されたAβペプチドの凝集体に対し親和性を示し、AD患者の脳切片においてアミロイドプラークに選択的に結合したが、AD患者と健常者間で、生体分布に有意な差を示さなかった(Newberg AB, Wintering NA, Plossl K, Hochold J, Stabin MG, et al. (2006) J Nucl Med 47: 748-754)。この原因は、IMPYの親油性が高いことや生体内での安定性が低いことによると考えられる。このように、SPECT用Aβイメージングプローブは既に幾つか開発されているが、現在のところ、臨床的に実用化されたものは存在しない。
 最近、本発明者らは、18Fで標識されたピリジルベンゾフラン誘導体(非特許文献1)やピリジルベンゾオキサゾール誘導体(非特許文献2)がPET用Aβイメージングプローブとして利用できることを報告している。しかし、これらの誘導体をSPECT用Aβイメージングプローブとして利用することについての報告はない。
 上記のようにAβは疾患と関連する代表的なアミロイドであるが、Aβ以外にも疾患と関連するアミロイドは数多く知られている。例えば、二型糖尿病の患者の膵臓ランゲルハンス島にも、アミロイドが沈着することが知られている(Opie E, J. Exp. Med., 5:527-541, 1991)。このアミロイドの主要構成成分は、アミリンと呼ばれるペプチドであり、ヒトのアミリンは、アミロイドとして沈着するのに重要な構造であるβ-sheet構造を持っている(Glenner GG, Eanes ED, Wiley CA, Biochem. Biophys. Res. Comm., 155:608-614, 1988)。
 ADだけでなく、糖尿病についても、PETやSPECTにより、診断する試みは以前からなされている。例えば、膵臓のβ細胞に分布するGLP-1R(グルカゴン様ペプチド1受容体)と結合するペプチドを元にイメージングプローブを作製し、このプローブにより、膵島量を測定し、糖尿病を診断する方法が報告されている(特許文献1)。しかし、上述したアミリンを標的とするイメージングプローブや糖尿病の診断法は、これまでに報告されていない。
国際公開WO2010/032509
Ono M, Cheng Y, Kimura H, Cui M, Kagawa S, et al. (2011) J Med Chem 54: 2971-2979 Cui, M.; Wang, X.; Yu, P.; Zhang, J.; Li, Z.; Zhang, X.; Yang, Y.; Ono, M.; Jia, H.;    Saji, H.; Liu, B. J. Med. Chem. 2012, 55, 9283-96
 本発明は、臨床的に実用可能なSPECT用Aβイメージングプローブを提供することを目的とする。また、本発明は、糖尿病を診断するためのイメージングプローブを提供することも目的とする。
 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、放射性ヨウ素を含むピリジルベンゾフラン誘導体又はピリジルベンゾオキサゾール誘導体をADモデルマウスと野生型マウスに投与し、SPECT撮像を行ったところ、両マウスの脳において放射能集積に明確な差異があること、即ち、前記誘導体が臨床的に実用可能なSPECT用Aβイメージングプローブとなり得ることを見出した。
 前述したように、ピリジルベンゾフラン誘導体やピリジルベンゾオキサゾール誘導体をPET用Aβイメージングプローブとして利用することは既に知られている。しかし、以下の理由から、本願出願時において、これらの誘導体をSPECT用Aβイメージングプローブとして利用できるとは予測されなかった。
1)ヨウ素は、フッ素に比べ分子量が大きいため、標識される物質の性質を変えてしまう。このため、放射性ヨウ素で標識されたピリジルベンゾフラン誘導体等は、放射性フッ素で標識されたピリジルベンゾフラン誘導体等と同様の性質を示さない可能性があった。
2)上述したように、IMPYの生体分布は、AD患者と健常者間で有意な差を示さなかった。ヨウ素を含むピリジルベンゾフラン誘導体又はピリジルベンゾオキサゾール誘導体は、IMPYと構造が類似しているため(共にヨウ素を含み、5員環と6員環の縮合環と6員環とからなる。)、IMPYと同様にAD患者と健常者間で生体分布に差異を示さないだろうと予想された。
 また、本発明者は、上述した放射性ヨウ素を含むピリジルベンゾフラン誘導体が、二型糖尿病患者に見られるアミロイドの主要構成成分であるアミリンとも結合することを見出した。
 本発明は、以上の知見に基づいて、完成されたものである。
 即ち、本発明は、以下の(1)~(9)を提供する。
(1)一般式(I)
Figure JPOXMLDOC01-appb-C000002
〔式中、R、R、R、及びRは、いずれか一つが放射性ヨウ素原子を表し、他は水素原子を表し、R、R、R、及びRは、互いに独立して、水素原子、アミノ基、メチルアミノ基、ジメチルアミノ基、メトキシ基、又はヒドロキシ基を表し、XはCH又はNを表す。〕
で表される化合物、又はこれらの化合物の医薬上許容される塩を含有することを特徴とするコンフォメーション病診断用組成物。
(2)一般式(I)におけるRが放射性ヨウ素原子であり、R、R、及びRが水素原子であることを特徴とする(1)に記載のコンフォメーション病診断用組成物。
(3)一般式(I)におけるRがアミノ基、メチルアミノ基、又はジメチルアミノ基であり、R、R、及びRが水素原子であることを特徴とする(1)又は(2)に記載のコンフォメーション病診断用組成物。
(4)放射性ヨウ素原子が、123I又は125Iであることを特徴とする(1)乃至(3)のいずれかに記載のコンフォメーション病診断用組成物。
(5)シングルフォトン断層撮像法に用いられることを特徴とする(1)乃至(4)のいずれかに記載のコンフォメーション病診断用組成物。
(6)コンフォメーション病が、アルツハイマー病である(1)乃至(5)のいずれかに記載のコンフォメーション病診断用組成物。
(7)コンフォメーション病が、二型糖尿病である(1)乃至(5)のいずれかに記載のコンフォメーション病診断用組成物。
(8)(1)乃至(4)のいずれかに記載のコンフォメーション病診断用組成物を動物に投与し、その動物の脳の画像を撮影し、画像における一般式(I)で表される化合物の状態に基づいて、アルツハイマー病の診断を行うことを特徴とするアルツハイマー病の診断方法。
(9)(1)乃至(4)のいずれかに記載のコンフォメーション病診断用組成物を動物に投与し、その動物の膵臓の画像を撮影し、画像における一般式(I)で表される化合物の状態に基づいて、二型糖尿病の診断を行うことを特徴とする二型糖尿病の診断方法。
 本発明は、臨床的に実用可能なSPECT用Aβイメージングプローブを提供する。また、本発明は、糖尿病を診断するためのイメージングプローブも提供する。
ヨウ素を含むピリジルベンゾフラン誘導体の合成経路を示す図。図中の番号は化合物の番号を示す。 放射性ヨウ素を含むピリジルベンゾフラン誘導体の合成経路を示す図。図中の番号は化合物の番号を示す。 放射性ヨウ素を含むピリジルベンゾフラン誘導体を投与したマウスの各臓器における放射能の変化を示す図。 化合物[123I]8投与後のTg2576マウス(A)及び野生型マウス(B)の脳SPECT画像。 化合物[123I]8投与後のTg2576マウス(A)及び野生型マウス(B)の脳切片のex vivo オートラジオグラム。A及びBと同じ脳切片のチオフラビンSによる蛍光染色画像を、それぞれC及びDに示した。 化合物[125I]7(A)、化合物[125I]8(B)、及び化合物[125I]9(C)とインキュベートしたAD脳切片のin vitro オートラジオグラム。Aβプラークを免疫染色によって確認した(D)。 ヨウ素を含むピリジルベンゾオキサゾール誘導体の合成経路を示す図。図中の番号は化合物の番号を示す。 放射性ヨウ素を含むピリジルベンゾオキサゾール誘導体の合成経路を示す図。図中の番号は化合物の番号を示す。 放射性ヨウ素を含むピリジルベンゾオキサゾール誘導体を投与したマウスの各臓器における放射能の変化を示す図。 化合物[125I]29(○)、化合物[125I]30(△)、又は化合物[125I]31(◇)を投与した正常マウスの脳における放射能の変化を示す図。 化合物[125I]29(A)、化合物[125I]30(B)、及び化合物[125I]31(C)とインキュベートしたAD脳切片のin vitro オートラジオグラム。Aβプラークを免疫染色によって確認した(D)。 化合物[123I]31を投与した16ヶ月齢Tg2576マウス(A)、25ヶ月齢Tg2576マウス(D)、16ヶ月齢野生型マウス(C)、及び25ヶ月齢野生型マウス(F)の脳切片のex vivo オートラジオグラム。Tg2576マウスの脳切片と同じ脳切片をチオフラビンSによって染色した(B及びE)。 化合物[123I]31投与後の25ヶ月齢Tg2576マウス(A)及び25ヶ月齢野生型マウス(B)の脳SPECT画像。 化合物[125I]9のアミリン凝集体への結合飽和実験の結果を示す図。 化合物[125I]9とインキュベートした膵臓切片のin vitro オートラジオグラム。
 以下、本発明を詳細に説明する。
 一般式(I)におけるR、R、及びRは、好適には、水素原子である。
 一般式(I)におけるRは、好適には、放射性ヨウ素原子である。
 一般式(I)におけるR、R、及びRは、好適には、水素原子である。
 一般式(I)におけるRは、好適には、アミノ基、メチルアミノ基、又はジメチルアミノ基であり、より好適には、XがCHのときはメチルアミノ基であり、XがNのときはジメチルアミノ基である。
 放射性ヨウ素原子は、好適には、123I又は125Iであり、より好適には、123Iである。
 一般式(I)で表される化合物のうち代表的なものを下表に示す。なお、表中の「Me」はメチル基を表し、「I」は放射性ヨウ素原子を表す。
Figure JPOXMLDOC01-appb-T000003
 上記化合物のうちで、好ましい化合物としてI-12(化合物7)、I-13(化合物8)、I-14(化合物9)、I-33(化合物29)、I-34(化合物30)、I-35(化合物31)を挙げることができ、より好ましい化合物として、I-13、I-35を挙げることができる。
 一般式(I)で表される化合物は、実施例に記載された方法に従って、あるいはその記述を参照しつつそれらの方法に適宜に改変や修飾を加えた方法に従って合成することができる。
 本発明のコンフォメーション病診断用組成物には、一般式(I)で表される化合物の代わりに、一般式(I)で表される化合物の医薬上許容される塩を使用してもよい。このような塩としては、アルカリ金属塩(ナトリウム塩、カリウム塩、リチウム塩)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩)、硫酸塩、塩酸塩、硝酸塩、リン酸塩などを例示できる。
 本発明において「コンフォメーション病」とは、Aβ、タウタンパク質、プリオン、アミリンなどコンフォメーション変換によって異常化したタンパク質が原因の疾患群を意味し、ADのほか、ダウン症候群、オランダ型アミロイドーシスを伴う遺伝性脳出血症(hereditary cerebral hemorrhage with amyloidosis─Dutch type: HCHWA-D)、クロイツフェルト・ヤコブ病(CJD)やウシ海綿状脳症(BSE)、二型糖尿病などが含まれる。また、診断対象となる疾患には、一般には「疾患」と認識されない疾患の前駆症状も含まれる。このような疾患の前駆症状としては、ADの発症前にみられる軽度認知障害(MCI)などを例示できる。
 上記組成物によるコンフォメーション病の診断は、通常、この組成物を動物に投与し、その後、その動物の臓器の画像を撮影し、画像における一般式(I)で表される化合物の状態(量、分布等)に基づいて行う。具体的には、SPECTなどにより診断することができる。対象とする動物はヒト(診断対象者)であっても、ヒト以外の動物(マウス、ラット、ウサギなどの実験動物など)であってもよい。撮影する臓器は、診断対象とするコンフォメーション病に応じて決めればよく、例えば、ADを診断するのであれば脳の画像を撮影し、二型糖尿病を診断するのであれば膵臓の画像を撮影する。
 組成物の投与方法は特に限定されず、化合物の種類、標識物質の種類などに応じて適宜決めることができるが、通常は、皮内、腹腔内、静脈、動脈、又は脊髄液への注射又は点滴等によって投与する。組成物の投与量は特に限定されず、化合物の種類、標識物質の種類などに応じて適宜決めることができるが、成人の場合、一般式(I)で表される化合物を1日当たり10-10~10-3mg投与するのが好ましく、10-8~10-5 mg投与するのが更に好ましい。
 上記のようにこの組成物は、通常、注射又は点滴によって投与するので、注射液や点滴液に通常含まれる成分を含んでいてもよい。このような成分としては、液体担体(例えば、リン酸カリウム緩衝液、生理食塩水、リンゲル液、蒸留水、ポリエチレングリコール、植物性油脂、エタノール、グリセリン、ジメチルスルホキサイド、プロピレングリコールなど)、抗菌剤、局所麻酔剤(例えば、塩酸プロカイン、塩酸ジブカインなど)、緩衝液(例えば、トリス-塩酸緩衝液、ヘペス緩衝液など)、浸透圧調節剤(例えば、グルコース、ソルビトール、塩化ナトリウムなど)を例示できる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕 ピリジルベンゾフラン誘導体の合成及びその応用
〔実験方法〕
(1)試薬、機器等
 合成において使われるすべての試薬は、ナカライテスク社、和光純薬工業社またはアルドリッチ社から購入され、更なる精製なしで使われた。1H-NMRスペクトル(400MHz)は、TMSを内部の標準とし、室温で、JEOL JNM-AL400 NMR分光計によって得られた。化学シフトは、内部のTMSと比較してδ値(ppm)として報告される。結合定数は、ヘルツで報告される。多重度は、s(一重線)、d(二重線)、t(三重線)、m(多重線)によって定義される。質量スペクトルは、島津GC-MS-QP2010 Plus(ESI)で得られた。蛍光観察は、BV-2Aフィルターセットを用いた顕微鏡(ニコン社、Eclipse 80i)で実行された(励起, 400-440 nm; ダイクロイックミラー, 455 nm; ロングパスフィルター, 470 nm)。逆相HPLC、並びに放射性標識及び非放射性類似物の分析は、流量1.0 mL/minで供給される移動相(アセトニトリル:水= 7:3)を用いたCosmosil C18カラム(ナカライテスク社、5C18-AR-II、4.6 mm×150 mm)と島津システム(SPD-10A紫外線検出器(λ= 254 nm)を持つLC-10ATポンプ)で、行われた。ddYマウス(5週齢、22-25 g、雄)は、清水実験材料株式会社から購入された。Tg2576トランスジェニックマウス及び野生型マウスは、タコニック・ファームズ社から購入された。小動物用micro-SPECT/CT(FX3300、ガンマ・メディカ・アイデアズ社)は、放射性同位元素総合センター(京都大学)で行われた。すべての動物実験は、本発明者の組織のガイドラインに従って行われ、Kyoto University Animal Care Committeeの承認を得た。
(2)ピリジルベンゾフラン誘導体の合成
5-(5-ブロモベンゾフラン-2-イル)ピリジン-2-アミン(化合物1)の合成
 2 MのNa2CO3(水溶液)/ジオキサン(150ml、1:1)を溶媒とする5-ブロモベンゾフラン-2-ボロン酸(722 mg、3.0 mmol)、2-アミノ-5 -ヨードピリジン(660 mg、3.0 mmol)、及びPd(Ph3P)4(366 mg、0.3 mmol)の溶液を一晩還流させながら攪拌した。混合物を室温まで冷却し、1MのNaOH(20 mL)を追加した。酢酸エチルで抽出した後、有機相をNa2SO4で乾燥させ、濾過した。濾液を濃縮し、残渣をシリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=1:6)により精製し、273 mgの化合物1を得た(31.5%)。1H NMR (400 MHz, CDCl3): δ 4.66 (s, 2H), 6.57 (d, 1H, J = 8.4 Hz), 6.79 (s, 1H), 7.32 (d, 1H, J = 2.4 Hz), 7.33 (d, 1H, J = 2.0 Hz), 7.66 (d, 1H, J = 1.6 Hz), 7.86 (dd, 1H, J1 = 8.8 Hz, J2 = 2.4 Hz), 8.58 (d, 1H, J = 2.4 Hz). MS: m/z 290 (M++H).
5-(5-ブロモベンゾフラン-2-イル)-N-メチルピリジン-2-アミン(化合物2)の合成
 2 MのNa2CO3(水溶液)/ジオキサン(20 ml、1:1)を溶媒とする5-ブロモベンゾフラン-2-ボロン酸(120 mg、0.5 mmol)、5-ヨード-N-メチルピリジン-2-アミン(117 mg、0.5 mmol)及びPd(PH3P)4(61 mg、0.05 mmol)の溶液を一晩還流させながら攪拌した。混合物を室温まで冷却し、1 MのNaOH(20 mL)を追加した。酢酸エチルで抽出した後、有機相をNa2SO 4で乾燥させ、濾過した。濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)により精製し、57.6 mgの化合物2を得た(38.0%)。1H NMR (400 MHz, CDCl3): δ 2.98 (d, 3H, J = 5.2 Hz), 4.80 (s, 1H), 6.45 (d, 1H, J = 8.8 Hz), 6.75 (s, 1H), 7.32 (d, 1H, J = 7.2 Hz), 7.52 (d, 1H, J = 8.4 Hz), 7.64 (d, 1H, J = 2.0 Hz), 7.87 (dd, 1H, J1 = 8.8 Hz, J2 = 2.4 Hz), 8.60 (d, 1H, J = 2.8 Hz). MS: m/z 304 (M++H).
5-(5-ブロモベンゾフラン-2-イル)-N,N-ジメチルピリジン-2-アミン(化合物3)の合成
 2 MのNa2CO3(水溶液)/ジオキサン(20 ml、1:1)を溶媒とする5-ブロモベンゾフラン-2-ボロン酸(120 mg、0.5mmol)、5-ヨード-N,N-ジメチルピリジン-2-アミン(124 mg、0.5mmol)、及びPd(Ph3P)4(61 mg、0.05 mmol)の溶液を一晩還流させながら攪拌した。混合物を室温まで冷却し、1MのNaOH(20 mL)を追加した。酢酸エチルで抽出した後、有機相をNa2SO4で乾燥させ、濾過した。濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=7:3)により精製し、59.0 mgの化合物3を得た(37.2%)。1H NMR (400 MHz, CDCl3): δ 3.14 (s, 6H), 6.55 (d, 1H, J = 8.8 Hz), 6.71 (s, 1H), 7.17 (dd, 1H, J1 = 8.8 Hz, J2 = 2.4 Hz), 7.32 (d, 1H, J = 2.4 Hz), 7.53 (d, 1H, J = 8.8 Hz), 7.88 (dd, 1H, J1 = 8.8 Hz, J2 = 2.4 Hz), 8.65 (d, 1H, J = 2.4 Hz). MS: m/z 318 (M++H).
5-(5-(トリブチルスタンニル)ベンゾフラン-2-イル)ピリジン-2-アミン(化合物4)の合成
 混合溶媒(40 mL、3:1ジオキサン/トリエチルアミン混合物)中の化合物1(273 mg、0.95 mmol)、ビス(トリブチルスズ)(0.8 mL)、及び(Ph3P)4PD(100 mg)の混合物を、一晩90℃で攪拌した。酢酸エチルで抽出した後、有機相をNa2SO4で乾燥させ、濾過した。濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)により精製して、115.6 mgの化合物4を得た(24.6%)。NMR (400 MHz, CDCl3): δ 0.87-0.91 (m, 9H), 1.06-1.10 (m, 6H), 1.32-1.39 (m, 6H), 1.54-1.62 (m, 6H), 4.75 (s, 2H), 6.54 (d, 1H, J = 8.0 Hz), 6.82 (s, 1H), 7.31 (d, 1H, J = 8.0 Hz), 7.47 (d, 1H, J = 8.4 Hz), 7.63 (s, 1H), 7.85 (dd, 1H, J1 = 8.4 Hz, J2 = 2.4 Hz), 8.59 (d, 1H, J = 2.4 Hz). HRMS (EI): m/z calcd for C25H36N2OSn (M+) 500.1849, found 500.1847.
N-メチル-5-(5-(トリブチルスタンニル)ベンゾフラン-2-イル)ピリジン-2-アミン(化合物5)の合成
 化合物4の調製のための上記と同様の反応を用い、27.7 mgの化合物5を28.4%の収率で化合物2から得た。1H NMR (400 MHz, CDCl3): δ 0.89 (t, 9H, J = 7.2 Hz), 1.32-1.35 (m, 12H), 1.62-1.66 (m, 6H), 3.04 (s, 3H), 6.75 (d, 1H, J = 8.8 Hz), 6.87 (s, 1H), 7.32 (d, 1H, J = 7.2 Hz), 7.46 (d, 1H, J = 8.4 Hz), 7.64 (d, 1H, J = 2.0 Hz), 8.05 (d, 1H, J = 8.4 Hz), 8.40 (d, 1H, J = 3.2 Hz). HRMS (EI): m/z calcd for C26H38N2OSn (M+) 514.2006, found 514.1998.
N,N-ジメチル-5-(5-(トリブチルスタンニル)ベンゾフラン-2-イル)ピリジン-2-アミン(化合物6)の合成
 化合物4の調製のための上記と同様の反応を用い、88.9 mgの化合物6を25.1%の収率で化合物3から得た。1H NMR (400 MHz, CDCl3): δ 0.89 (t, 9H, J = 7.2 Hz), 1.04-1.12 (m, 6H), 1.30-1.39 (m, 6H), 1.53-1.60 (m, 6H), 3.14 (s, 6H), 6.57 (d, 1H, J = 9.6 Hz), 6.79 (s, 1H), 7.29 (d, 1H, J = 8.0 Hz), 7.47 (d, 1H, J = 8.4 Hz), 7.62 (s, 1H), 7.88 (dd, 1H, J1 = 9.6 Hz, J2 = 2.4 Hz), 8.67 (d, 1H, J = 2.4 Hz). HRMS (EI): m/z calcd for C27H40N2OSn (M+) 528.2162, found 528.2158.
5-(5-ヨードベンゾフラン-2-イル)ピリジン-2-アミン(化合物7)
 CHCl3(5 mL)中の化合物4(100 mg、0.20 mmol)の溶液に、室温でCHCl3(0.5 mL、1 M)中のヨウ素溶液を加えた。混合物を10分間室温で撹拌した。NaHSO3溶液(3ml、水中5%)を順次加えた。混合物を5分間攪拌した後、有機相を分離した。水相をCHCl3で抽出し、合わせた有機相をNa2SO4で乾燥させ、濾過した。濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)により精製して、34.9 mgの化合物7を得た(52.0%)。1H NMR (400 MHz, CDCl3): δ 4.66 (s, 2H), 6.57 (d, 1H, J = 8.4 Hz), 6.77 (s, 1H), 7.27 (s, 1H), 7.51 (d, 1H, J = 8.0 Hz), 7.84 (s, 1H), 7.85 (d, 1H, J = 2.4 Hz), 8.58 (d, 1H, J = 2.4 Hz). HRMS (EI): m/z calcd for C13H9IN2O (M+) 335.9760, found 335.9752.
5-(5-ヨードベンゾフラン-2-イル)-N-メチルピリジン-2-アミン(化合物8)
 化合物7の調製のための上記と同様の反応を用い、50.2 mgの化合物8を65.1%の収率で化合物5から得た。1H NMR (400 MHz, CDCl3): δ 2.98 (d, 3H, J = 4.8 Hz), 4.79 (s, 1H), 6.45 (d, 1H, J = 8.8 Hz), 6.74 (s, 1H), 7.30 (s, 1H), 7.50 (d, 1H, J = 8.4 Hz), 7.85 (s, 1H), 7.87 (d, 1H, J = 2.4 Hz), 8.60 (d, 1H, J = 2.4 Hz). HRMS (EI): m/z calcd for C14H11IN2O (M+) 349.9916, found 349.9923.
5-(5-ヨードベンゾフラン-2-イル)-N,N-ジメチルピリジン-2-アミン(化合物9)
 化合物7の調製のための上記と同様の反応を用い、32.8 mgの化合物9を45.6%の収率で化合物6から得た。1H NMR (400 MHz, CDCl3): δ 3.14 (s, 6H), 6.55 (d, 1H, J = 8.8 Hz), 6.70 (s, 1H), 7.25 (d, 1H, J = 4.0 Hz), 7.47 (d, 1H, J = 8.4 Hz), 7.82 (s, 1H), 7.84 (d, 1H, J = 2.4 Hz), 8.65 (d, 1H, J = 2.4 Hz). HRMS (EI): m/z calcd for C15H13IN2O (M+) 364.0073, found 364.0065.
(3)放射性合成
 ピリジルベンゾフラン誘導体の放射性ヨウ素標識体は、対応するトリブチルスズ誘導体から合成した。簡単に言えば、反応を開始するために、100μLのH2O2(3%)が、密封したバイアル中のトリブチルスズ誘導体(0.5 mg/100μLのEtOH)、7.4 MBqの[123I]又は0.74 MBqの[125I]、及び1N の100μLのHClの混合物に加えられた。反応物を10分間室温で進行させ、NaHSO3の添加により終了させた。重炭酸ナトリウムで中和した後、反応混合物を酢酸エチルで抽出した。抽出液を、無水Na2SO4カラムを通過させて乾燥させ、窒素ガス流で乾燥させた。放射性標識されたリガンドはHPLCによって精製された。
(4)溶液中での凝集Aβペプチドを用いたin vitro結合分析
 Aβ(1-42)は、ペプチド研究所(大阪、日本)から購入した。凝集は、10 mMリン酸ナトリウム及び1 mM EDTAを含む緩衝液(pH7.4)中に、ペプチド(0.25 mg / ml)を穏やかに溶解させることにより行った。穏やかに一定に振とうさせながら、溶液を37℃で、42時間インキュベートした。50μLのヨウ素化されたピリジルベンゾフラン誘導体(10%EtOH中0.008 pM-400μM)と50μLの[125I]IMPY(0.02 nM)と50μLのAβ(1-42)凝集体と850μLの10% EtOHを含む混合物を3時間室温でインキュベートした。次いで、混合物を、ブランデルM-24セルハーベスターを用いたワットマンGF/Bフィルターを通して濾過し、そして結合した125Iリガンドを含有するフィルターの放射能をγカウンターで測定した。半最大阻害濃度(IC50)の値は、GraphPad Prismは5.0を使用して、3つの独立した実験の置換曲線から決定し、阻害定数(Ki)のためのそれらは、Cheng-Prusoffの式 (Cheng Y, Prusoff WH (1973) Biochem Pharmacol 22: 3099-3108):Ki=IC50/(1+[L]/Kd)を用いて計算された(ここで、[L]はアッセイで使用された[125I]IMPYの濃度であり、KdはIMPY(4.2 nM)の解離定数である。)。
(5)正常マウスにおける生体内分布
 2 %イソフルラン麻酔下で、ddYマウスの尾静脈に、125I標識ピリジルベンゾフラン誘導体(37 kBq)を含む10%エタノール(100μL)を直接注入した。マウス(各時点でn =5)は、注射後、2分、10分、30分、及び60分で屠殺した。目的の臓器を摘出して秤量し、放射能を自動ガンマカウンター(COBRAII、パッカード)で測定した。臓器ごとの線量の割合は、注入物の適宜希釈されたアリコートに、組織の数値を比較することにより算出した。サンプルのグラム当たりの線量の割合は、サンプルの数値を、希釈された初期線量の数値と比較することによって計算した。
(6)小動物用SPECT/CT
 マルチモダリティ前臨床イメージングプラットフォームFLEX Triumph(ガンマ・メディカ社)を備えた前臨床イメージングシステムFX3300(ガンマ・メディカ社)を用いて、SPECT及びCTのデータを取得し、処理した。Tg2576トランスジェニックマウス(28ヶ月齢、雌)及び野生型マウス(28ヶ月齢、雌)を、それぞれ、アルツハイマー病のモデル及び年齢を一致させた対照として使用した。0.1% Tween80を含む10%EtOH水溶液中の化合物[123I]8(20.5-26.5 MBq)を、尾静脈に注射した。投与から10分後にマウスをイソフルラン(2.0%イソフルラン)で麻酔し、麻酔したマウスの断層スパイラルSPECTスキャンを実行するため、4ヘッド検出機カメラを使用した。取得パラメータは以下の通りであった:回転角度, 360°; 投影時間, 90秒; 投影回数, 32; コリメータ、マルチピンホールコリメータ(N5F75A10); 回転半径, 35mm。SPECTの取得後直ちに、麻酔したマウスのCT取得を行った。取得パラメータは以下の通りであった:連続フライングモードでのガントリ回転; 管電圧, 61 kV; 管電流, 305μA; スポットサイズ, 50μm; 2×2ビニングと1184×1120投影行列サイズで、360°の完全なスキャンで、合計512映像/1フレームを取得した。
 0.177×0.177×0.177 mmのボクセルサイズ(512×512×512のイメージボリューム)で得られた修正3Dコーンビームフェルトカムプアルゴリズムを、CT投影を再構築するために使用した。SPECT投影決定を定量的画像の生成のために処理した。159 keVを中心とした20%のエネルギーウィンドウを、123Iの取得のために使用した。0.835×0.826×0.598 mmのボクセルサイズで、80×80×80イメージ行列が生じる3Dの順序付けられたサブセット期待値最大化アルゴリズム(5回の反復、8サブセット)を、SPECT投影を再構築するために使用した。Amiraの3Dデータ解析と可視化ソフトウェア(マーキュリーコンピュータシステムズ社)を、画像分析を実行するために使用した。
(7)トランスジェニックマウス脳のex vivoオートラジオグラフィー
 動物はSPECT分析の後断頭により殺された。脳をすぐに取り外し、ドライアイス/ヘキサンバスで凍結させた。20μmの切片を切り出し、一晩BASイメージングプレート(富士フィルム社、東京、日本)に暴露した。ex vivoでのフィルムオートラジオグラムを得た。オートラジオグラフィー検査後、同じ切片を、Aβプラークの存在を確認するために、チオフラビン-Sで染色した。チオフラビン-Sの染色のために、切片を、5分間、50%EtOHを含む0.125 %チオフラビン-S溶液中に浸漬し、50%エタノールで洗浄した。乾燥後、切片をB-2Aフィルターセット(励起, 450-490 nm; ダイクロイックミラー, 505 nm; ロングパスフィルター, 520 nm)を備えた顕微鏡(ニコン社、Eclipse 80i)を使用して調べた。
(8)ヒトAD脳切片を用いたin vitroオートラジオグラフィー
 ADの剖検確認例(93歳、女性)の死後脳組織を、京都大学大学院医学研究科から得た。パラフィン包埋ブロックの6マイクロメートルの厚さの連続切片を、in vitroオートラジオグラフィーのために使用した。切片を、室温で1時間125I標識トレーサー(444 kBq/50μL)と共にインキュベートし、次いで、40% EtOH中の飽和Li2CO3中に浸漬し(2回の2分洗浄)、40% EtOHで洗浄し(1回の2分洗浄)、30秒間水洗した。乾燥後、125I標識切片を一晩BASイメージングプレート(富士フィルム社、東京、日本)に暴露した。オートラジオグラフィー画像はBAS5000スキャナシステム(富士フィルム社)を用いて得られた。オートラジオグラフィー検査後、同じ切片は、アミロイドβタンパク質免疫組織染色キット(和光純薬社)を用いて免疫染色された。
〔実験結果〕
(1)ピリジルベンゾフラン誘導体の合成
 ピリジルベンゾフラン骨格の形成に重要なステップは、鈴木カップリング反応によって達成された(図1)(Miyaura N, Yamada K, Suzuki A (1979) Tetrahedron Lett 36: 3437-3440)。鈴木カップリングによって、希望する化合物1-3を、それぞれ収率31.5%、38.0%、及び37.2%で得られた。ブロモ化合物(1-3)を、触媒としてPd(0)を使用して、ビス(トリブチルスズ)と反応させ、対応するトリブチルスズ誘導体(4-6)を、それぞれ24.6%、28.4%、及び25.1%の収率で得た。これらのトリブチルスズ誘導体を直ちに室温でクロロホルム中のヨウ素と反応させ、ヨウ素誘導体(7-9)を、それぞれ52.0%、65.1%、及び45.6%の収率で得た。さらに、これらのトリブチルスズ誘導体は、化合物[125I]7、化合物[123I/125I]8、及び化合物[125I]9の調製における放射性ヨウ素標識のための出発物質として使用することもできる。新規な放射性ヨウ素標識ピリジルベンゾフラン誘導体は、酸化剤として過酸化水素を使用してヨウ素化脱スタンニル反応によって得られた(図2)。担体無添加合成は、125I(81.4 TBq/mmol)と同様の理論上の特異的活性をもつ最終的な製品になるだろうと予想された。放射性ヨウ素標識リガンドの放射化学的同一性は、HPLCプロファイルによって非放射性化合物との共注入によって、それらのHPLCプロファイルから確認された。化合物[125I]7、化合物[123I/125I]8、及び化合物[125I]9は、HPLCの精製後に、61-89 %の放射化学収率で、>99%の放射化学的純度で得られた。
(2)Aβ(1-42)凝集体へのin vitro結合分析
 ヨウ素化されたピリジルベンゾフラン誘導体の親和性の初期スクリーニングは、競合放射性リガンドとして[125I]IMPYを使用して、Aβ(1-42)凝集体について行った(Cheng Y, Ono M, Kimura H, Kagawa S, Nishii R, et al. (2010) ACS Med Chem Lett 1: 321-325、Ono M, Haratake M, Saji H, Nakayama M (2008) Bioorg Med Chem Lett 16: 6867-6872)。
これらの誘導体は、ナノモル範囲のKi値(Ki=2.4-10.3 nM)で、[125I]の結合を阻害した。このことは、それらが、Aβ(1-42)凝集体に対する優れた親和性を有していたことを示す(表2)。コントロールとしてのIMPYとPIBのKi値は、それぞれ、10.5 nMおよび9.0 nMであった。
Figure JPOXMLDOC01-appb-T000004
(3)正常マウスにおけるin vivo生体内分布
 本発明者は、正常なマウスにおいて、化合物[125I]7、化合物[125I]8、及び化合物[125I] 9の静脈内注射後の放射能の生体内分布を決定した(図3)。これらのすべての125I標識誘導体は、注射後直ちに(注射後2分で4.14-4.67 %ID/g)血液脳関門(BBB)を通過し、放射能が時間とともに脳から除去された(注射後60分で1.30-3.69 %ID/g)。化合物[125I]8は、注射後2分でピークに達し、化合物[125I]7、化合物[125I]9は、注射後10分でピークに達した。一般的に、インデックスとしてのbrain2min/brain60min比は、脳からの流出比を比較するために使用されている。化合物[125I]7、化合物[125I]8、及び化合物[125I]9のbrain2min/brain60min比は、それぞれ、1.30、3.21及び1.12であった。放射能は、脳内の蓄積に加えて、例えば、肝臓、腎臓、胃、腸などの他の臓器にも分布した。胃や腸が時間をかけた放射能の蓄積を示す一方、肝臓や腎臓は初期の高い取り込みと経時的な流出を示した(図3)。
(4)小動物用SPECT/CT
 in vivoでのAβイメージングの実現可能性を証明するために、SPECT/CTは、化合物[123I]8の静脈内注射後Tg2576トランスジェニックマウスと野生型マウスで行った。脳における顕著なAβ沈着から、Tg2576トランスジェニックマウスが、in vitro及びin vivoでのAβイメージング剤の評価に広く使用されてきた(Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, et al. (1996) Science 274)。横断面のSPECT画像で、脳内の放射能の蓄積の明確な違いが、Tg2576マウスと野生型マウス間で観察された(図4)。
(5)トランスジェニックマウス脳のex vivoオートラジオグラフィー
 化合物[123I]8の脳内Aβプラークへの特異的結合の更なる特徴付けをするために、ex vivoオートラジオグラフィーのため、SPECT/CT実験後直ちに、脳を取り外し、凍結させ、切片化した(図5)。オートラジオグラフィーの画像は、Tg2576マウスの脳において(図5A)、Aβプラークの広範なラベルを示したが、野生型のコントロールにおいては(図5B)、そのようなものを示さなかった。Aβプラークの標識が同じ切片のチオフラビン-S(アミロイド染色一般的に使用される病理染料)による共染色によって確認された(図5C)。
(6)死後のAD脳切片のオートラジオグラフィー
 AD脳切片を125I標識ピリジルベンゾフランとインキュベートしたとき、オートラジオグラフィー画像は、最小限のバックグラウンドノイズで、Aβプラークの優れた可視化を明らかにした(図6)。化合物[125I]8と化合物[125I]9の間で、ADの脳切片における放射能の蓄積に顕著な差は観察されなかった(図6B及び6C)。しかしながら、化合物[125I]7は、Aβプラークを標識した一方、脳の白質において非特異的結合放射能を示した(図6A)。皮質における化合物[125I]8由来の放射能スポットは、Aβ抗体による同じ脳切片の免疫染色により確認された(図6D)。
〔実施例2〕 ピリジルベンゾオキサゾール誘導体の合成及びその応用
〔実験方法〕
(1)試薬および機器
 [125I]NaIはMP Biomedical, Inc 製Iodine-125を、[123I]NH4Iは日本メジフィジックス社製を用いた。Aβ (Human, 1-42)[TFA form]は、ペプチド研究所より購入したものを用いた。トランスジェニック(Tg2576)マウスおよび野生型マウスは、Taconic社より購入し、飼育後用いた。その他の試薬は、市販の一般試薬または特級試薬を用いた。
 中圧分取液体クロマトグラフィー装置には、山善株式会社より購入したポンプ PUMP 580D、紫外検出器 prep UV-254Dおよびフラクションコレクター Parallel Frac FR-260を使用した。高速液体クロマトグラフィー(HPLC)を用いた紫外可視分光分析には、島津製作所製紫外可視検出器SPD-20Aを装着した液体クロマトグラフLC-20ADを使用した。また、HPLCを用いた放射能分析には、アロカ社製NDW-101を使用した。カラムは、ナカライテスク社製Cosmosil 5C18-AR-IIカラム(4.6 × 150 mm)を用いた。
 マウス凍結脳切片の作製には、Leica社製ミクロトームCM1900を使用し、蛍光顕微鏡には、KEYENCE社製BZ-9000を用いた。
 1H NMRはJEOL JNM-LM400を用い、テトラメチルシランを内標準物質として測定した。質量分析は、SHIMADZU GCMS-QP2010を用いて測定した。放射能の測定には、パーキンエルマー社製 Wizard2 1470を用いた。オートラジオグラフィーの解析には、FujiFilm社製のBASイメージングプレートおよびBAS5000スキャナーシステムを使用した。SPECT/CTによる画像の収集は、GMI FX-3300 Pre-Clinical Imaging Systemを用いて行い、データ解析にはOSEMを使用した。Aβ凝集体を用いた結合実験における吸引濾過には、Brandel社製M-24R cell harvesterならびにWhatman社製GF/Bfilter を用いた。
(2)ピリジルベンゾオキサゾール誘導体の合成
5-(5-ブロモベンゾ[d]オキサゾール-2-イル)ピリジン-2-アミン(化合物23)の合成
 2-アミノ-4-ブロモフェノール (376 mg, 2 mmol)と5-(トリフルオロメチル)ピリジン-2-アミン(486 mg, 3 mmol) を1 M水酸化ナトリウム水溶液 (10 mL) に溶解し、90℃で加熱しながら3時間撹拌した。析出した固体を吸引瀘取することで412 mg (収率 : 71.2%) の化合物23を得た。1H NMR (400 MHz, CDCl3) δ4.87 (s, 2H), 6.60 (d, J = 9.4 Hz, 1H), 7.42 (s, 1H), 7.84 (t, J = 1.1 Hz, 1H), 8.22 (dd, J = 8.7, 2.3 Hz, 1H), 8.94 (d, J = 1.8 Hz, 1H).
5-(5-ブロモベンゾ[d]オキサゾール-2-イル)-N-メチルピリジン-2-アミン (化合物24)の合成
 化合物23 (184 mg, 0.64 mmol) とパラホルムアルデヒド (115 mg, 3.84 mmol) をメタノール (10 mL)に溶解し、ナトリウムメトキシドのメタノール溶液 (0.512 mL, 5 M) を加え、1時間還流した。室温に戻した後、水素化ホウ素ナトリウム(121 mg, 3.2 mmol)を撹拌しながらゆっくり加え、2時間還流した。室温に戻し、飽和炭酸水素ナトリウム水溶液を加えた後、クロロホルムで抽出し無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣を酢酸エチル : ヘキサン = 1 : 1を溶出溶媒とする中圧分取カラムクロマトグラフィーによって精製し、150 mg (収率 : 77.5%)の化合物24を得た。1H NMR (400 MHz, CDCl3) δ3.03 (d, J = 5.3 Hz, 3H), 5.03 (s, 1H), 6.49 (d, J = 9.4 Hz, 1H), 7.41 (s, 2H), 7.83 (s, 1H), 8.21 (dd, J = 8.9, 2.5 Hz, 1H), 8.94 (d, J = 2.3 Hz, 1H).
5-(5-ブロモベンゾ[d]オキサゾール-2-イル)-N,N-ジメチルピリジン-2-アミン(化合物25)の合成
 化合物23 (350 mg, 1.21 mmol)とパラホルムアルデヒド (436 mg, 14.5 mmol)を酢酸(7 mL)に溶解し、水素化シアノホウ素ナトリウム (608 mg, 9.68 mmol)を撹拌しながらゆっくり加え、室温で21時間撹拌した。飽和炭酸水素ナトリウム水溶液を加えた後、クロロホルムで抽出し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣を酢酸エチル : ヘキサン = 1 : 1を溶出溶媒とする中圧分取カラムクロマトグラフィーによって精製し、109 mg (収率 : 28.4%) の化合物25を得た。1H NMR (400 MHz, CDCl3) δ 0.87-1.66 (m, 27H), 3.20 (s, 6H), 6.60 (d, J = 9.2 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.81 (s, 1H), 8.23 (dd, J = 8.9, 2.5 Hz, 1H), 9.01 (d, J = 2.3 Hz, 1H).
5-(5-(トリブチルスタンニル)ベンゾ[d]オキサゾール-2-イル)ピリジン-2-アミン(化合物26)の合成
 化合物23 (320 mg, 1.11 mmol) を1,4-ジオキサン (10 mL) に溶解し、ビス(トリブチルスズ) (1.1 mL)、テトラキストリフェニルホスフィンパラジウム (509 mg, 0.44 mmol)、トリエチルアミン (5 mL) を加え、45分間還流した。反応溶媒を減圧留去後、残渣を酢酸エチル : ヘキサン = 1 : 1を溶出溶媒とする中圧分取カラムクロマトグラフィーにより精製し、196 mg (収率 : 35.3%)の化合物26を得た。1H NMR (400 MHz, CDCl3) δ0.87-1.64 (m, 27H), 4.85 (s, 2H), 6.60 (d, J = 9.2 Hz, 1H), 7.38 (dd, J = 7.8, 0.9 Hz, 1H), 7.54 (d, J = 7.3 Hz, 1H), 7.83 (s, 1H), 8.24 (dd, J = 8.7, 2.3 Hz, 1H), 8.96 (d, J = 1.6 Hz, 1H).
N-メチル-5-(5-(トリブチルスタンニル)ベンゾ[d]オキサゾール-2-イル)ピリジン-2-アミン(化合物27)の合成
 化合物24 (345 mg, 1.14 mmol) を1,4-ジオキサン (10 mL) に溶解し、ビス(トリブチルスズ) (1.1 mL)、テトラキストリフェニルホスフィンパラジウム (527 mg, 0.46 mmol)、トリエチルアミン (5 mL) を加え、45分間還流した。反応溶媒を減圧留去後、残渣を酢酸エチル : ヘキサン = 1 : 1を溶出溶媒とする中圧分取カラムクロマトグラフィーにより精製し、161 mg (収率 : 27.4%)の化合物27を得た。1H NMR (400 MHz, CDCl3) δ 0.87-1.60 (m, 27H), 3.02 (d, J = 5.3 Hz, 3H), 5.06 (s, 1H), 6.49 (d, J = 8.7 Hz, 1H), 7.36 (d, J = 8.7 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.82 (s, 1H), 8.24 (dd, J = 8.7, 2.3 Hz, 1H), 8.97 (d, J = 2.1 Hz, 1H).
N,N-ジメチル-5-(5-(トリブチルスタンニル)ベンゾ[d]オキサゾール-2-イル)ピリジン-2-アミン(化合物28)の合成
 化合物25 (55 mg, 0.17 mmol) を1,4-ジオキサン (10 mL) に溶解し、ビス(トリブチルスズ) (0.17 mL)、テトラキストリフェニルホスフィンパラジウム (78.6 mg, 0.07 mmol)、トリエチルアミン (5 mL) を加え、45分間還流した。反応溶媒を減圧留去後、残渣を酢酸エチル : ヘキサン = 1 : 3を溶出溶媒とする中圧分取カラムクロマトグラフィーにより精製し、20.7 mg (収率 : 23.0%)の化合物28を得た。1H NMR (400 MHz, CDCl3) δ 0.87-1.66 (m, 27H), 3.20 (s, 6H), 6.60 (d, J = 9.2 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.81 (s, 1H), 8.23 (dd, J = 8.9, 2.5 Hz, 1H), 9.01 (d, J = 2.3 Hz, 1H).
5-(5-ヨードベンゾ[d]オキサゾール-2-イル)ピリジン-2-アミン(化合物29)の合成
 化合物26 (195 mg, 0.39 mmol) をクロロホルム (5 mL) に溶解し、ヨウ素のクロロホルム溶液 (1.5 mL, 0.2 M) を加え、室温で15分間撹拌した。飽和亜硫酸水素ナトリウム水溶液を加えて反応を停止させた後、クロロホルム層を分液し、無水硫酸ナトリウムで脱水した後、溶媒を減圧留去した。残渣を酢酸エチル : ヘキサン = 1 : 1 を溶出溶媒とする中圧分取カラムクロマトグラフィーによって精製し、24.8 mg (収率 : 18.9%)の化合物29を得た。1H NMR (400 MHz, CDCl3) δ4.87 (s, 2H), 6.60 (d, J = 8.5 Hz, 1H), 7.31 (d, J = 8.5 Hz, 1H), 7.61 (dd, J = 10.9, 1.8 Hz, 1H), 8.04 (d, J = 1.8 Hz, 1H), 8.22 (dd, J = 8.7, 2.1 Hz, 1H), 8.93 (d, J = 1.8 Hz, 1H). MS m/z 337 (M+).
5-(5-ヨードベンゾ[d]オキサゾール-2-イル)-N-メチルピリジン-2-アミン(化合物30)の合成
 化合物27 (160 mg, 0.31 mmol) をクロロホルム (5 mL) に溶解し、ヨウ素のクロロホルム溶液 (1.5 mL, 0.2 M) を加え、室温で15分間撹拌した。飽和亜硫酸水素ナトリウム水溶液を加えて反応を停止させた後、クロロホルム層を分液し、無水硫酸ナトリウムで脱水した後、溶媒を減圧留去した。残渣を酢酸エチル : ヘキサン = 1 : 1 を溶出溶媒とする中圧分取カラムクロマトグラフィーによって精製し、61.2 mg (収率 : 56.2%)の化合物30を得た。1H NMR (400 MHz, CDCl3) δ 3.03 (d, J = 5.3 Hz, 3H), 5.01 (s, 1H), 6.49 (d, J = 8.5 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.59 (dd, J = 8.5, 1.6 Hz, 1H), 8.02 (d, J = 1.6 Hz, 1H), 8.21 (dd, J = 8.9, 2.3 Hz, 1H), 8.94 (d, J = 2.3 Hz, 1H). MS m/z 351 (M+).
5-(5-ヨードベンゾ[d]オキサゾール-2-イル)-N,N-ジメチルピリジン-2-アミン(化合物31: PBOX-3)の合成
 化合物28 (20 mg, 0.04 mmol) をクロロホルム (5 mL) に溶解し、ヨウ素のクロロホルム溶液 (1.5 mL, 0.2 M) を加え、室温で15分間撹拌した。飽和亜硫酸水素ナトリウム水溶液を加えて反応を停止させた後、クロロホルム層を分液し、無水硫酸ナトリウムで脱水した後、溶媒を減圧留去した。残渣を酢酸エチル : ヘキサン = 1 : 3を溶出溶媒とする中圧分取カラムクロマトグラフィーによって精製し、13.9 mg (収率 : 100%)の化合物31を得た。1H NMR (400 MHz, CDCl3) δ 3.20 (s, 6H), 6.60 (d, J = 8.9 Hz, 1H), 7.30 (d, J = 8.5 Hz, 1H), 7.57 (dd, J = 8.5, 1.4 Hz, 1H), 8.01 (d, J = 1.6 Hz, 1H), 8.19 (dd, J = 8.9, 2.5 Hz, 1H), 8.98 (d, J = 2.3 Hz, 1H). MS m/z 365 (M+).
(3)125I 標識ピリジルベンゾオキサゾール誘導体の合成
 各化合物の標識前駆体であるトリブチルスズ化合物のエタノール溶液(50 μL, 1 mg/mL)に[125I]NaI (3.7-7.4 MBq)、1 M HCl (50 μL)、3% (w/v) H2O2 (50 μL)を加え、5分間室温で反応させた。続いて、飽和亜硫酸ナトリウム水溶液 (100 μL) を加えて反応を停止させ、飽和炭酸水素ナトリウム水溶液 (100 μL) を加えて反応溶液を中和した。酢酸エチルを加えて抽出し、無水硫酸ナトリウムを充填したパスツールピペットに通液して脱水した後、窒素気流化で溶媒を留去した。放射性ヨウ素標識化合物は、それぞれ対応する非放射性化合物を標品として逆相HPLC (水 : アセトニトリル = 4 : 6-1 : 1)で分離精製した。
(4)123I 標識PBOX-3の合成
 化合物30のエタノール溶液 (50 mL, 1 mg/mL)に[123I]NH4I (148 MBq)、1 M HCl (50 mL)、3% (w/v) H2O2 (50 mL)を加え、15分間室温で反応させた。続いて、飽和亜硫酸ナトリウム水溶液 (100 μL) を加えて反応を停止させ、飽和炭酸水素ナトリウム水溶液 (100 μL) を加えて反応溶液を中和した。酢酸エチルを加えて抽出し、無水硫酸ナトリウムを充填したパスツールピペットに通液して脱水した後、窒素気流化で溶媒を留去した。放射性ヨウ素標識化合物は、それぞれ対応する非放射性化合物を標品として逆相HPLC (水 : アセトニトリル = 4 : 6)で分離精製した。
(5)Aβ(1-42)凝集体の調製
 PBS (pH 7.4)を用い、Aβ(1-42)が 0.25 mg/mL の濃度になるように調製した。37℃で42時間インキュベートすることにより、Aβ(1-42)凝集体溶液を調製した。凝集体溶液は実験に用いるまで、-80℃で保存した。
(6)Aβ凝集体を用いた競合阻害実験によるKiの算出
 Kiの算出は実施例1と同様の方法で行った。
(7)AD患者脳切片を用いたin vitroオートラジオグラフィー
 AD患者脳切片は、京都大学大学院医学研究科より提供されたものを使用した (6 μm, 78歳、女性)。キシレン洗浄 (10分×2)、100% EtOH (1分×2)、 90% EtOH、80% EtOH、70% EtOH 洗浄 各 (1分×1)および精製水洗浄 (30秒×1)をすることで脱パラフィン処理を行った。化合物を10% EtOH溶液を用いて15 kBq/mLに希釈した。調製した放射性リガンドを切片上に滴下し1時間インキュベートした。その後、50% EtOHで1分間×2回洗浄した。BASイメージングプレートに24時間固定した後、BAS5000スキャナーシステムを用い分析を行った。
(8)抗Aβ抗体を用いた免疫染色
 免疫染色における抗体には、抗Aβ(1-42)モノクローナル抗体 (クローンNo. BC05)を使用した。ギ酸 (90%)処理の後、精製水で5分間洗浄した。さらに、 PBS-Tween 20で2分間洗浄後0.05% トリプシン溶液と15分間インキュベートさせた。PBS-Tween 20で5分間×2回洗浄した後、ブロッキング用血清と30分間インキュベートさせた。その後、抗Aβ(1-42)抗体と室温で一晩インキュベートさせた。PBS-Tween 20で2分間×3回洗浄し、ストレプトアビジンビオチンペルオキシダーゼ複合体溶液と3時間インキュベートさせた。PBS-Tween 20で2分間×3回洗浄後、ジアミノベンジジン溶液と室温で10分間インキュベートした。蒸留水で1分間洗浄し、封入後顕微鏡で観察した。
(9)125I標識ピリジルベンゾオキサゾール誘導体の正常マウスにおける体内放射能分布実験
 [125I]標識体を19-37 kBq/mL となるように、10% EtOH含有生理食塩水もしくは0.1% Tween 80および10% EtOH含有生理食塩水を用いて希釈した。1群5匹の5週齢ddY系雄性マウス (20-25 g) に、尾静脈より1.9-3.7 kBq (100 μL) に調製した化合物[125I]29、化合物[125I]30及び化合物[125I]31 (PBOX-3)を投与し、2、10、30、60 分後に屠殺、採血後、主要な臓器を取り出した。次いで速やかに血液および臓器の重量を測定後、放射能をガンマカウンターで測定した。
(10)Tg2576マウスを用いたSPECT撮像およびex vivoオートラジオグラフィー
 0.1% Tween 80および10% EtOH含有生理食塩水に溶解した[123I]PBOX-3溶液(13-15もしくは35-53 MBq)をTg2576マウス(雌性、16もしくは25ヶ月齢)および野生型マウス(雌性、16もしくは25ヶ月齢)に尾静脈より投与した。投与5分後に3% イソフルラン吸入により麻酔下においた。投与10分後より50分間SPECT撮像を行った後、CT撮像(管電流 ; 310 mA、管電圧 ; 60 kV)を行った。投与100分後に屠殺、脳を摘出後、SCEMで包埋し、ヘキサンバスにより凍結させた。ミクロトームを用いて厚さ20 mMの連続切片を作製し、BASイメージングプレートに12時間固定した後、BAS5000スキャナーシステムを用い分析した。同一切片をチオフラビンS溶液で染色し、蛍光顕微鏡で観察を行った。
〔実験結果〕
(1)ピリジルベンゾオキサゾール誘導体の合成
 図7にピリジルベンゾオキサゾール誘導体の合成経路を示す。ピリジルベンゾオキサゾール骨格の合成は、以前に報告された方法に従って行った(Qiao, J. X.; Wang, T. C.; Hu, C.; Li, J.; Wexler, R. R.; Lam, P. Y. Org. Lett. 2011, 13, 1804-7)。2-アミノ-4-ブロモフェノールと5-(トリフルオロメチル)ピリジン-2-アミンを1 Mの水酸化ナトリウム水溶液中で反応させることで化合物23を収率71%で得た。化合物23を水素化ホウ素ナトリウム、ナトリウムメトキシドおよびパラホルムアルデヒドを用いてメチル化することで、モノメチル基を導入した化合物24を、水素化シアノホウ素ナトリウムおよびパラホルムアルデヒドを用いることで、ジメチルアミノ基を導入した化合物25をそれぞれ収率78%、28%で得た。トリブチルスズ誘導体26-28は、対応するブロモ化合物より、Pd(0)を触媒とするブロモ-スズ交換反応によって得た (収率 23-35%)。合成したトリブチルスズ体26-28とヨウ素をクロロホルム溶媒下、室温で反応させることによって対応するヨウ素化合物29-31を得た (収率 19-100%)。
(2)ピリジルベンゾオキサゾール誘導体の放射性ヨウ素標識
 図8に125I標識および123I標識経路を示す。目的とする化合物[125I]29、化合物[125I]30、化合物[125I]31 (PBOX-3)及び化合物[123I]31 (PBOX-3)はH2O2を酸化剤として用いたスズ-ヨウ素交換反応によって行い、放射化学的収率30-50%、放射化学的純度95%以上で得た。125I標識体および123I標識体の同定は、それぞれに対応する非放射性化合物を用いた逆相HPLCによって行った。
(3)ピリジルベンゾオキサゾール誘導体のAβ(1-42)凝集体に対する結合親和性の検討
 合成した種々のピリジルベンゾオキサゾール誘導体のAβ(1-42)凝集体への結合性を検討するため、[125I]IMPYを競合リガンドに用いたin vitro競合阻害実験を行い、GraphPad Prism 4.0を用いて阻害実験を作製しIC50を算出した (表3)。阻害定数は、Ki = IC50/(1+[L]/Kd)の式を用いて算出した。
 競合阻害実験の結果、化合物29、化合物30、及び化合物31 (PBOX-3)は濃度依存的に[125I]IMPYの結合を阻害したことから、いずれのピリジルベンゾオキサゾール誘導体もAβ(1-42)凝集体に対する結合親和性を有することが明らかになった。また、導入した置換基の種類により結合性に差が認められ、1級、2級、3級アミンの順に結合性は向上し、PBOX-3は最も強い結合親和性を示した。
Figure JPOXMLDOC01-appb-T000005
(4)脳移行性、脳からの消失性および体内放射能分布についての評価
 正常マウスを用いた体内放射能分布実験を行うことでピリジルベンゾオキサゾール誘導体の脳への取り込みとその後のクリアランスについて検討した。ピリジルベンゾオキサゾール誘導体を正常マウスに投与後の体内放射能分布の結果を図9に、脳における放射能分布を図10に示す。化合物[125I]29、化合物[125I]30及び化合物[125I]31 (PBOX-3)はいずれも投与2分後に4.7-6.6% ID/gの高い脳移行性を示した。また、投与60分後における脳内の値は0.4-1.4% ID/gであり、ピリジルベンゾオキサゾール誘導体が脳内へ移行後、速やかにクリアランスされることが示された。この結果より、ピリジルベンゾオキサゾール誘導体は、2-フェニルインドール誘導体の問題点であった脳内放射能挙動を改善したことが明らかとなった。
(5)AD患者脳切片上の老人斑に対する結合性の検討
 AD患者脳切片を用いたin vitro オートラジオグラフィーを行い、AD患者脳切片上に蓄積した老人斑への結合性について検討した (図11)。その結果、化合物31 (PBOX-3)はAD患者脳切片上に多数の放射能集積を認めた。この部位は、抗Aβ抗体を用いた免疫染色による染色部位と一致したことから、PBOX-3がAD患者脳切片上に蓄積した老人斑に結合性を有することが示された。一方、化合物29を用いた検討においては脳切片上に放射能集積は認められず、また、化合物30の放射能集積は不明瞭であった。これらの結果は、in vitro競合阻害実験において算出されたKi値を反映するものであった。
(6)ex vivo におけるアミロイド斑への結合性の検討
 SPECT用Aβイメージングプローブとして最も適した性質を有していると考えられた化合物31 (PBOX-3)について、Tg2576マウスおよび野生型マウスを用いたex vivo オートラジオグラフィーを行った(図12)。Tg2576マウス脳内におけるアミロイド斑の蓄積は、12ヶ月齢よりはじまり23ヶ月齢においてはその蓄積が顕著に認められることが知られていることから(Kawarabayashi, T.; Younkin, L. H.; Saido, T. C.; Shoji, M.; Ashe, K. H.; Younkin, S.       G. J. Neurosci. 2001, 21, 372-81)、本検討では、16および25ヶ月齢のTg2576マウスおよび野生型マウスを用いた。16ヶ月齢のTg2576マウス脳切片上にはチオフラビンSによる染色部位はほとんど認められず、ex vivo オートラジオグラフィーにおいても野生型マウスとの放射能集積の差は認められなかった。一方、25ヶ月齢のTg2576マウス脳切片上には、野生型マウス脳切片上には認められない多数の放射能集積が観察され、その集積部位はチオフラビンSの蛍光染色部位と一致した。以上の結果より、脳内での非特異結合が認められたものの、PBOX-3がマウス生体内においてアミロイド斑に対して結合性を有することが明らかとなった。
(7)SPECT撮像
 25ヶ月齢のTg2576マウスおよび野生型マウスを用いたSPECT/CT撮像を行い、31 (PBOX-3)のSPECT用Aβイメージングプローブとしての有用性についての評価を行った。矢印断面(Sagittal)及び横断面(transverse)画像を図13に示す。25ヶ月齢のTg2576マウスの脳のSPECT画像において、同月齢の野生型マウスの脳に比べ高い放射能集積が観察された。この結果より、PBOX-3を用いてSPECT撮像を行うことで、マウス脳内に蓄積したアミロイド斑を画像化できることが明らかとなった。
〔実施例3〕 放射性ヨウ素標識ピリジルベンゾフラン誘導体のアミリン凝集体への結合性の検討
〔実験方法〕
(1)アミリン凝集体の作製
 アミリン凝集体の作製は、Langmuir 2010, 26, 3453-3461を参考にして行った。
 アミリン(Human) (0.5 mg、ペプチド研究所, 4219-v)をDMSO (100 μL)と 20 mM Tris-HCl, 100 mM NaCl (pH7.5) (900 μL)の混合溶液に溶解した。さらに20 mM Tris-HCl, 100 mM NaCl (pH7.5)で100 μMに希釈し、ストック溶液とした。
(2)結合飽和実験
 化合物[125I]9 (EtOH溶液)(500,000 cpm)、および非放射性化合物9(DMSO溶液)(250 nM)、それぞれを順次希釈し、16,000-500,000 cpm、7.8-250 nMの溶液に調製した。ガラスチューブに種々の濃度の[化合物[125I]9(50 μL)、種々の濃度の非放射性化合物9溶液(50 μL)、アミリン凝集体(最終濃度25 nM、50 μL)、10%DMSO含有水溶液(850 μL)を加え、3時間室温で静置した。また、非特異的結合は、最終濃度50 nMの非放射性化合物9のDMSO溶液(50 μL)および最終濃度10 mMとなるようにチオフラビンT(Wako)を溶解させた10%DMSO含有水溶液(850 μL)を加えることで算出した。静置後、反応溶液をM-24 cell harvesterを用いてGF/B filterに透過させた。フィルターに残存した放射能をγカウンターで計測し、得られたデータをGraphPad Prismで解析し、解離定数Kdを算出した。
(3)膵臓切片を用いたin vitroオートラジオグラフィー
 10 μCi/1 mLに調製した化合物[125I]9の10%EtOH含有水溶液を二型糖尿病患者膵臓切片(BioChain, Female, 69 years old)および健常者膵臓切片(BioChain, male, 71 years old)それぞれに添加し、室温で1時間静置した。その後、50%EtOH含有水溶液(1 min x 2)、水(30 sec)で洗浄し、イメージングプレート(BAS-SR、 富士写真フィルム社)に3時間露光後、画像解析装置(Bio Imaging Analyzer BAS5000、富士フィルム社)を用いて、それぞれのオートラジオグラムを得た。同一切片をチオフラビンS (100 μM)で染色し、洗浄後、蛍光顕微鏡にて観察を行った。
〔実験結果〕
(1)結合飽和実験
 得られた飽和曲線(図14)からスキャチャード解析を行い、結合解離定数(Kd)を算出したところ、Kd = 8.11 nMとなり、化合物[125I]9がアミリン凝集体に高い結合性を示すことが明らかとなった。
(2)膵臓切片を用いたin vitroオートラジオグラフィー
 健常者の膵臓組織切片(図15右)に比べて、糖尿病患者切片(図15左)上には顕著な放射能集積が確認された。この放射能集積はアミロイド染色剤のチオフラビンSの蛍光像と一致したことから、化合物[125I]9が糖尿病患者組織に沈着したアミロイドに結合性を有することが示唆された。
 ADの診断を目的としたAβのイメージング試薬の開発、Aβを標的とする治療薬の開発支援、AD患者のAβの蓄積を指標とした病状判定、などに利用できる。
 本明細書は、本願の優先権の基礎である日本国特許出願(特願2013-38304)の明細書および/または図面に記載されている内容を包含する。また、本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (9)

  1.  一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R、R、R、及びRは、いずれか一つが放射性ヨウ素原子を表し、他は水素原子を表し、R、R、R、及びRは、互いに独立して、水素原子、アミノ基、メチルアミノ基、ジメチルアミノ基、メトキシ基、又はヒドロキシ基を表し、XはCH又はNを表す。〕
    で表される化合物、又はこれらの化合物の医薬上許容される塩を含有することを特徴とするコンフォメーション病診断用組成物。
  2.  一般式(I)におけるRが放射性ヨウ素原子であり、R、R、及びRが水素原子であることを特徴とする請求項1に記載のコンフォメーション病診断用組成物。
  3.  一般式(I)におけるRがアミノ基、メチルアミノ基、又はジメチルアミノ基であり、R、R、及びRが水素原子であることを特徴とする請求項1又は2に記載のコンフォメーション病診断用組成物。
  4.  放射性ヨウ素原子が、123I又は125Iであることを特徴とする請求項1乃至3のいずれか一項に記載のコンフォメーション病診断用組成物。
  5.  シングルフォトン断層撮像法に用いられることを特徴とする請求項1乃至4のいずれか一項に記載のコンフォメーション病診断用組成物。
  6.  コンフォメーション病が、アルツハイマー病である請求項1乃至5のいずれか一項に記載のコンフォメーション病診断用組成物。
  7.  コンフォメーション病が、二型糖尿病である請求項1乃至5のいずれか一項に記載のコンフォメーション病診断用組成物。
  8.  請求項1乃至4のいずれか一項に記載のコンフォメーション病診断用組成物を動物に投与し、その動物の脳の画像を撮影し、画像における一般式(I)で表される化合物の状態に基づいて、アルツハイマー病の診断を行うことを特徴とするアルツハイマー病の診断方法。
  9.  請求項1乃至4のいずれかに一項に記載のコンフォメーション病診断用組成物を動物に投与し、その動物の膵臓の画像を撮影し、画像における一般式(I)で表される化合物の状態に基づいて、二型糖尿病の診断を行うことを特徴とする二型糖尿病の診断方法。
PCT/JP2014/054326 2013-02-28 2014-02-24 診断用組成物 WO2014132919A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015502909A JPWO2014132919A1 (ja) 2013-02-28 2014-02-24 診断用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013038304 2013-02-28
JP2013-038304 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014132919A1 true WO2014132919A1 (ja) 2014-09-04

Family

ID=51428184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054326 WO2014132919A1 (ja) 2013-02-28 2014-02-24 診断用組成物

Country Status (2)

Country Link
JP (1) JPWO2014132919A1 (ja)
WO (1) WO2014132919A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106631908A (zh) * 2016-09-13 2017-05-10 厦门大学 一种放射性碘标记方法
CN115361961A (zh) * 2020-01-28 2022-11-18 斯坦福大学托管董事会 通过上调人组织蛋白酶抑制素ll-37以抑制胰岛淀粉样蛋白多肽(iapp)自组装来预防或治疗胰腺功能障碍或糖尿病的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541309A (ja) * 2006-06-19 2009-11-26 アストラゼネカ・アクチエボラーグ 新規なヘテロアリール置換ベンゾオキサゾール
WO2012017891A1 (ja) * 2010-08-06 2012-02-09 国立大学法人京都大学 ピリジルベンゾフラン誘導体
JP2012507534A (ja) * 2008-10-31 2012-03-29 メルク・シャープ・エンド・ドーム・コーポレイション 新規置換アザベンゾオキサゾール類

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541309A (ja) * 2006-06-19 2009-11-26 アストラゼネカ・アクチエボラーグ 新規なヘテロアリール置換ベンゾオキサゾール
JP2012507534A (ja) * 2008-10-31 2012-03-29 メルク・シャープ・エンド・ドーム・コーポレイション 新規置換アザベンゾオキサゾール類
WO2012017891A1 (ja) * 2010-08-06 2012-02-09 国立大学法人京都大学 ピリジルベンゾフラン誘導体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAHIRO ONO ET AL.: "Novel 18F-Labeled Benzofuran Derivatives with Improved Properties for Positron Emission Tomography (PET) Imaging of beta-Amyloid Plaques in Alzheimer's Brains", JOURNAL OF MEDICINAL CHEMISTRY, vol. 54, no. 8, 2011, pages 2971 - 2979 *
MENGCHAO CUI ET AL.: "Synthesis and Evaluation of Novel 18F Labeled 2-Pyridinylbenzoxazole and 2-Pyridinylbenzothiazole Derivatives as Ligands for Positron Emission Tomography (PET) Imaging of beta-Amyloid Plaques", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 21, 2012, pages 9283 - 9296 *
ZHI-PING ZHUANG ET AL.: "IBOX (2-(4'- dimethylaminophenyl)-6-iodobenzoxazole): a ligand for imaging amyloid plaques in the brain", NUCLEAR MEDICINE AND BIOLOGY, vol. 28, 2001, pages 887 - 94 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106631908A (zh) * 2016-09-13 2017-05-10 厦门大学 一种放射性碘标记方法
CN106631908B (zh) * 2016-09-13 2018-10-19 厦门大学 一种放射性碘标记方法
CN115361961A (zh) * 2020-01-28 2022-11-18 斯坦福大学托管董事会 通过上调人组织蛋白酶抑制素ll-37以抑制胰岛淀粉样蛋白多肽(iapp)自组装来预防或治疗胰腺功能障碍或糖尿病的方法

Also Published As

Publication number Publication date
JPWO2014132919A1 (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
US7700616B2 (en) Compounds and amyloid probes thereof for therapeutic and imaging uses
JP5684893B2 (ja) 神経性疾患の検出のためのイメージング剤
JP5719903B2 (ja) 神経学的障害を検知するためのイメージング剤
Cheng et al. Technetium-99m labeled pyridyl benzofuran derivatives as single photon emission computed tomography imaging probes for β-amyloid plaques in Alzheimer’s brains
Ono et al. Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer’s brains
US20120263646A1 (en) Imaging agents and their use for the diagnostic in vivo of neurodegenerative diseases, notably alzheimer's disease and derivative diseases
Cui et al. Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of β-amyloid plaques in Alzheimer's disease
JP5272110B2 (ja) 新規アミロイド親和性化合物
Ono et al. Development of novel 123I-labeled pyridyl benzofuran derivatives for SPECT imaging of β-amyloid plaques in Alzheimer’s disease
EP2218464A1 (en) Compounds for non-invasive measurement of aggregates of amyloid peptides
Matsumura et al. Synthesis and biological evaluation of novel styryl benzimidazole derivatives as probes for imaging of neurofibrillary tangles in Alzheimer’s disease
BRPI0808503B1 (pt) Composto, uso de um composto, e, composição farmacêutica
Nguyen et al. IBETA: A new aβ plaque positron emission tomography imaging agent for Alzheimer’s disease
Nan et al. 6-Methoxy-indanone derivatives as potential probes for β-amyloid plaques in Alzheimer's disease
Watanabe et al. Synthesis and biological evaluation of 123 I-labeled pyridyl benzoxazole derivatives: novel β-amyloid imaging probes for single-photon emission computed tomography
Kaide et al. 18F-labeled benzimidazopyridine derivatives for PET imaging of tau pathology in Alzheimer’s disease
US20090123373A1 (en) Amyloid-imaging agents
WO2014132919A1 (ja) 診断用組成物
AU2012274639B2 (en) Novel compound with amyloid affinity
JP2013237655A (ja) コンフォメーション病診断用分子プローブ
KR20090087037A (ko) 오론 유도체 함유 진단용 조성물
Li et al. Novel 18F-labeled dibenzylideneacetone derivatives as potential positron emission tomography probes for in vivo imaging of β-amyloid plaques
Jia et al. Discovery of Diphenoxy Derivatives with Flexible Linkers as Ligands for β-Amyloid Plaques
JP5825608B2 (ja) ピリジルベンゾフラン誘導体
WO2019168170A1 (ja) クロモン誘導体及びアミロイド関連疾患診断用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757634

Country of ref document: EP

Kind code of ref document: A1