WO2014132463A1 - Catheter system - Google Patents

Catheter system Download PDF

Info

Publication number
WO2014132463A1
WO2014132463A1 PCT/JP2013/071648 JP2013071648W WO2014132463A1 WO 2014132463 A1 WO2014132463 A1 WO 2014132463A1 JP 2013071648 W JP2013071648 W JP 2013071648W WO 2014132463 A1 WO2014132463 A1 WO 2014132463A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
power
liquid
control unit
ablation
Prior art date
Application number
PCT/JP2013/071648
Other languages
French (fr)
Japanese (ja)
Inventor
小島 康弘
修一 堀内
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to KR1020157023085A priority Critical patent/KR101652659B1/en
Priority to CN201380062659.3A priority patent/CN104822336B/en
Publication of WO2014132463A1 publication Critical patent/WO2014132463A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00029Cooling or heating of the probe or tissue immediately surrounding the probe with fluids open
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1467Probes or electrodes therefor using more than two electrodes on a single probe

Definitions

  • the present invention relates to a catheter system including an irrigation mechanism that is used for treatment of, for example, arrhythmia and that causes a liquid such as physiological saline to flow during ablation of an affected part in the treatment.
  • the electrode catheter is inserted into the body (for example, the inside of the heart) through a blood vessel, and is used for arrhythmia examination and treatment.
  • the shape of the vicinity of the distal end (distal end) inserted into the body is the operation of the operation unit attached to the proximal end (proximal end, rear end, hand side) disposed outside the body. In response to this, it changes (deflects, curves) in one direction or both directions.
  • the shape near the tip is fixed.
  • ablation catheter in the case of such an electrode catheter for treatment (so-called ablation catheter), the following problems may occur during ablation of the affected area. That is, during ablation surgery for the heart or the like, problems may arise such that the temperature of the treatment portion increases too much and damage occurs, or a blood clot sticks to the treatment portion.
  • the present invention has been made in view of such problems, and an object thereof is to provide a catheter system capable of performing an appropriate irrigation operation.
  • the catheter system of the present invention includes an ablation catheter having an irrigation mechanism, a power supply unit that supplies electric power during ablation to the ablation catheter, a liquid supply unit that supplies irrigation liquid to the ablation catheter, And a control unit for controlling the power supply operation in the power supply unit and the liquid supply operation in the liquid supply unit.
  • the control unit performs control so that a large flow rate operation with a relatively high liquid flow rate is performed in a high power state where the set power at the time of ablation is equal to or higher than the threshold power, while the set power is less than the threshold power. In the low power state, control is performed such that the liquid flow rate is a small flow rate operation.
  • the control unit when the control unit shifts from the low power state to the high power state, the control unit quickly switches from the small flow rate operation to the high flow rate operation.
  • the control unit when transitioning from the high power state to the low power state, if the low power state continues for the first standby time during the transition, the large flow rate operation is maintained after the first standby time is maintained. Switch to small flow rate operation. As a result, it is possible to avoid a situation where the flow rate of the liquid is too small (liquid shortage situation) during power transfer.
  • the control unit accepts an instruction signal for starting ablation only when it is determined that the standby flow rate operation after the liquid flow rate is very small.
  • the ablation catheter for example, the lumen for flowing liquid
  • the control unit starts the power supply operation after switching from the standby flow operation to the small flow operation or the large flow operation. It is more desirable to do so.
  • the control unit when the control unit stops the power supply operation, the control unit shifts to the standby flow rate operation after the second standby time has elapsed since the power supply operation stopped. It is desirable to do so. In such a configuration, the occurrence of insufficient cooling due to the liquid due to the high temperature state continuing for a certain period even after the supply of power is stopped, and a more appropriate irrigation operation can be realized.
  • the ablation catheter has a temperature measurement mechanism near its distal end, and the control unit is connected to the power supply unit so that the temperature measured by the temperature measurement mechanism is maintained substantially constant. It is desirable to adjust the output power.
  • the actual output power is adjusted so that the temperature near the distal end of the ablation catheter (near the affected area during ablation) is kept substantially constant. That is, output power is supplied after appropriate power adjustment is performed based on the input set power.
  • the liquid supply section is provided in the liquid supply apparatus, and the power supply section and the control section are provided in a power supply apparatus that is separate from the liquid supply apparatus.
  • each device liquid supply device and power supply device
  • each of the liquid supply unit, the power supply unit, and the control unit may be provided in a single device.
  • the catheter system of the present invention when the transition from the high power state to the low power state is performed, if the low power state continues for the first waiting time during the transition, the large flow operation is performed in the first state. Since the switching to the small flow rate operation is performed after the standby time is maintained, it is possible to avoid the occurrence of a liquid shortage situation during power transfer. Therefore, an appropriate irrigation operation can be performed during ablation.
  • FIG. 1 is a block diagram schematically illustrating an overall configuration example of a catheter system according to an embodiment of the present invention. It is a schematic diagram showing the detailed structural example of the ablation catheter shown in FIG. It is a schematic diagram showing an example of the relationship between the set electric power state and the flow volume operation
  • FIG. 1 is a block diagram schematically showing an example of the entire configuration of a catheter system (catheter system 5) according to an embodiment of the present invention.
  • the catheter system 5 is a system used for treating arrhythmia or the like in a patient (patient 9 in this example), and includes an ablation catheter 1, a liquid supply device 2, a power supply device 3, and a counter electrode plate 4. That is, in the catheter system 5 of the present embodiment, the liquid supply device 2 and the power supply device 3 are configured separately.
  • the ablation catheter 1 is an electrode catheter that is inserted into the body of a patient 9 through a blood vessel and performs treatment such as arrhythmia by ablating the affected area.
  • the ablation catheter 1 also has an irrigation mechanism that causes a predetermined irrigation liquid (such as physiological saline) to flow out (inject) from the distal end P1 side during such ablation.
  • a predetermined irrigation liquid such as physiological saline
  • the catheter system 5 is a catheter system with such an irrigation mechanism.
  • FIG. 2 schematically shows a schematic configuration example of the ablation catheter 1.
  • the ablation catheter 1 has a shaft 11 (catheter shaft) as a catheter body and an operation unit 12 attached to the proximal end of the shaft 11.
  • the shaft 11 is composed of a flexible tubular structure (tubular member) and has a shape extending along its own axial direction (Z-axis direction). Further, the shaft 11 has a so-called single lumen structure in which one lumen (pore, through-hole) is formed so as to extend along its own axial direction, or a plurality of (for example, four) lumens are formed. So-called multi-lumen structure. In the shaft 11, both a region having a single lumen structure and a region having a multi-lumen structure may be provided. Various kinds of thin wires (not shown) (conductive wires, operation wires, etc.) are inserted through such lumens while being electrically insulated from each other.
  • the lumen for flowing the irrigation liquid L is formed in the shaft 11 so as to extend along the axial direction.
  • a mechanism (temperature measurement mechanism) for measuring the temperature near the tip P1 (around the affected area) is provided near the tip P1 of the shaft 11.
  • a thermocouple or the like as a temperature sensor for measuring such temperature is inserted through the lumen inside the shaft 11. The temperature in the vicinity of the distal end P1 measured in this manner is supplied from the ablation catheter 1 to the power supply device 3 as measured temperature information Tm.
  • Such a shaft 11 is made of, for example, a synthetic resin such as polyolefin, polyamide, polyether polyamide, or polyurethane.
  • the axial length of the shaft 11 is about 500 to 1200 mm (for example, 1170 mm), and the outer diameter of the shaft 11 (the outer diameter of the XY cross section) is about 0.6 to 3 mm (for example, 2). 0.0 mm).
  • a plurality of electrodes are provided near the tip P1 of the shaft 11, as shown in the enlarged view near the tip P1 in FIG. 2, a plurality of electrodes (here, three ring electrodes 111a, 111b, 111c and one tip electrode 112) are provided. Is provided. Specifically, the ring-shaped electrodes 111 a, 111 b, 111 c and the tip electrode 112 are arranged at a predetermined interval in this order toward the most distal side of the shaft 11 in the vicinity of the tip P 1.
  • the ring electrodes 111 a, 111 b, and 111 c are each fixedly disposed on the outer peripheral surface of the shaft 11, while the tip electrode 112 is fixedly disposed at the forefront of the shaft 11.
  • Electrodes are electrically connected to the operation unit 12 through a plurality of conductive wires (not shown) inserted into the lumen of the shaft 11 described above. Further, from the vicinity of the tip of the tip electrode 112, the irrigation liquid L described above flows out as indicated by the arrow in FIG.
  • Such ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 are electrically conductive, such as aluminum (Al), copper (Cu), stainless steel (SUS), gold (Au), platinum (Pt), respectively. It is comprised with the metal material with favorable property. In addition, in order to make the contrast property with respect to X-rays favorable at the time of use of the ablation catheter 1, it is preferable to be comprised with platinum or its alloy. Further, the outer diameters of the ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 are not particularly limited, but are preferably approximately the same as the outer diameter of the shaft 11 described above.
  • the operation unit 12 is attached to the proximal end of the shaft 11 and includes a handle 121 (gripping unit) and a rotating plate 122.
  • the handle 121 is a portion that is gripped (gripped) by an operator (doctor) when the ablation catheter 1 is used. Inside the handle 121, the various thin wires described above extend from the inside of the shaft 11.
  • the rotating plate 122 is a member for performing a deflection movement operation (swing operation), which is an operation for deflecting the vicinity of the tip of the shaft 11. Specifically, here, as shown by the arrow in FIG. 2, an operation of rotating the rotating plate 122 along the rotation direction d1 is possible.
  • a deflection movement operation tilt operation
  • the liquid supply device 2 is a device that supplies the irrigation liquid L described above to the ablation catheter 1, and has a liquid supply portion 21 as shown in FIG.
  • the liquid supply unit 21 supplies the liquid L having a flow rate defined by a control signal CTL2 described later to the ablation catheter 1 as needed.
  • This liquid supply part 21 is comprised including the liquid pump etc., for example.
  • the power supply device 3 supplies power during ablation (for example, output power Pout composed of radio frequency (RF)) to the ablation catheter 1 and the counter electrode plate 4 and also supplies the liquid L in the liquid supply device 2. It is a device that controls. As illustrated in FIG. 1, the power supply device 3 includes an input unit 31, a power supply unit 32, a voltage measurement unit 33, a current measurement unit 34, a control unit 35, and a display unit 36.
  • ablation for example, output power Pout composed of radio frequency (RF)
  • RF radio frequency
  • the input unit 31 is a part for inputting various setting values and an instruction signal for instructing a predetermined operation to be described later.
  • threshold power Pth threshold power Pth
  • target temperature Tt liquid flow rate Fh during “HIGH” flow rate operation
  • LOW Examples of the liquid flow rate Fl during the flow rate operation
  • the liquid flow rate Fst during the “Standby” flow rate operation and various waiting times.
  • These set values are input by an operator (for example, an engineer) of the power supply device 3.
  • the threshold power Pth is not input by the operator, but may be set in the power supply device 3 in advance at the time of shipment of the product.
  • the set value input by the input unit 31 is supplied to the control unit 35.
  • the set power Ps is shown as a representative.
  • Such an input unit 31 is configured using, for example, a predetermined dial, button, touch panel, or the like.
  • the power supply unit 32 is a part that supplies the above-described output power Pout to the ablation catheter 1 and the counter electrode plate 4 in accordance with a control signal CTL1 described later.
  • a power supply part 32 is comprised using the predetermined power supply circuit (for example, switching regulator etc.).
  • the output power Pout is high frequency power, the frequency is, for example, about 450 kHz to 550 kHz (for example, 500 kHz).
  • the voltage measurement unit 33 is a part that measures (detects) the voltage at the output power Pout output from the power supply unit 32 as needed, and is configured using a predetermined voltage detection circuit. The voltage (measured voltage Vm) measured by the voltage measuring unit 33 in this way is output to the control unit 35.
  • the current measurement unit 34 is a part that measures the current in the output power Pout output from the power supply unit 32 as needed, and is configured using a predetermined current detection circuit.
  • the current (measured current Im) measured by the current measuring unit 34 in this way is output to the control unit 35.
  • the control unit 35 is a part that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured using, for example, a microcomputer. Specifically, the control unit 35 first has a function of calculating an actually measured power Pm (corresponding to the power value of the output power Pout) described below. Further, the control unit 35 uses the control signal CTL1 to control the supply operation of the output power Pout in the power supply unit 32 (power supply control function), and uses the control signal CTL2 to control the liquid L in the liquid supply unit 21. And a function for controlling the supply operation (liquid supply control function).
  • the control unit 35 generates the control signal CTL1 based on the above-described measured temperature information Tm, and outputs the control signal CTL1 to the power supply unit 32, thereby adjusting (fine adjustment) the magnitude of the output power Pout.
  • the control unit 35 generates the control signal CTL1 based on the above-described measured temperature information Tm, and outputs the control signal CTL1 to the power supply unit 32, thereby adjusting (fine adjustment) the magnitude of the output power Pout.
  • Tm the temperature near the tip P1 of the shaft 11 indicated by the actually measured temperature information Tm substantially constant (preferably constant), in other words, this temperature is substantially equal to the preset target temperature Tt.
  • the magnitude of the output power Pout is adjusted so as to become (preferably equal).
  • control unit 35 performs control so that the value of the output power Pout increases when the temperature near the tip P1 is equal to or lower than the target temperature Tt.
  • control is performed so that the value of the output power Pout decreases.
  • the actual output power Pout is supplied after appropriate power adjustment is made based on the input set power Ps. In other words, it can be said that the value of the set power Ps and the value of the actual output power Pout (measured power Pm) do not necessarily match.
  • the liquid supply control function described above is as follows. That is, the control unit 35 controls the flow rate of the liquid L by generating the control signal CTL2 based on the set power Ps described above and outputting the control signal CTL2 to the liquid supply unit 21.
  • the control unit 35 controls the flow rate of the liquid L (liquid flow rate F) based on the set power Ps, for example, as shown in FIG. That is, the liquid flow rate F defined in the control signal CTL2 is compared by comparing the values of the set power Ps and a predetermined threshold power Pth (for example, 31 W (Watt)) set in advance (in accordance with the comparison result).
  • a predetermined threshold power Pth for example, 31 W (Watt) set in advance
  • the display unit 36 is a part (monitor) that displays various information and outputs it to the outside.
  • Examples of the information to be displayed include the above-described various set values (set power Ps and the like) input from the input unit 31, the measured power Pm supplied from the control unit 35, and the measured temperature supplied from the ablation catheter 1.
  • Information Tm etc. are mentioned.
  • the information to be displayed is not limited to these information, and other information may be displayed instead of or in addition to other information.
  • Such a display part 36 is comprised using the display (For example, a liquid crystal display, a CRT (Cathode
  • Counter electrode 4 For example, as shown in FIG. 1, the counter electrode plate 4 is used while being attached to the body surface of the patient 9 during ablation. As will be described in detail later, high-frequency energization is performed between the counter electrode plate 4 and the electrode of the electrode catheter 1 inserted into the body of the patient 9 during ablation.
  • power (output power Pout) at the time of ablation is supplied to the ablation catheter 1 and the counter electrode 4 from the power supply device 3 (power supply unit 32).
  • the counter electrode 4 mounted on the body surface of the patient 9 and the electrodes of the ablation catheter 1 inserted into the body of the patient 9 (the tip electrode 112 and the ring electrode 111a, 111b, 111c).
  • a site to be treated (treatment part) in the patient 9 is selectively ablated, and percutaneous therapy such as arrhythmia is performed.
  • irrigation liquid L is supplied from the liquid supply device 2 (liquid supply unit 21) to the ablation catheter 1. Further, the power supply device 3 (the control unit 35) controls the supply operation of the liquid L in the liquid supply device 2 using the control signal CTL2. Thereby, the liquid L for irrigation spouts from the vicinity of the front-end
  • the flow rate of the liquid L discharged to the treatment portion is too large, the temperature of the treatment portion is lowered and there is a possibility that the treatment at the time of treatment may be hindered. Moreover, if the liquid L enters the body too much, the burden on the patient may increase. On the other hand, when the flow rate of the liquid L is too small, there is a possibility that the effect of cooling the treatment portion and improving the blood retention will be insufficient. In particular, when the power at the time of ablation is high, the above-mentioned tendency is increased because tissue damage and thrombus due to excessive ablation are likely to occur. In addition, during actual ablation, the operator of the power supply device 3 changes the value of the set power Ps as needed according to the treatment status. That is, the set power Ps is not a fixed value but changes according to the situation. For these reasons, in a catheter system with an irrigation mechanism, it is required to adjust the flow rate of the liquid according to the state of use and realize an appropriate irrigation operation.
  • the ablation operation is performed after adjusting (controlling) the flow rate of the irrigation liquid L as follows.
  • control operation of the output power Pout using the above-described measured temperature information Tm is omitted for the sake of simplicity.
  • FIG. 4 is a flowchart showing an example of the ablation operation of the present embodiment.
  • the “Standby” flow rate operation described above is started as follows (step S101). That is, when an instruction signal for starting the “Standby” flow rate operation is input to the control unit 35 via the input unit 31 by the operator of the power supply device 3, the control unit 35 performs the “Standby” flow rate operation.
  • the operation of the liquid supply unit 21 is controlled so as to be started.
  • the control unit 35 accepts an instruction signal for starting this ablation only when it is determined that the “Standby” flow rate operation has started. In other words, if it is determined that the “Standby” flow rate operation is not yet started, the control unit 35 causes the power supply unit 32 to start ablation even if such an instruction signal is input.
  • the control signal CTL1 is not output.
  • the ablation catheter 1 for example, the lumen for flowing the liquid L
  • the ablation catheter 1 can be filled with the liquid L before the start of ablation.
  • the risk that blood flows into the inside from the distal end portion of the ablation catheter 1 (for example, the outflow hole of the liquid L) and the thrombus is clogged inside (for example, the lumen) is avoided.
  • control unit 35 compares the values of the set power Ps and the threshold power Pth. Specifically, in this example, it is determined whether or not the set power Ps is a value (Ps ⁇ Pth) that is equal to or greater than the threshold power Pth (step S104).
  • step S104 N, in the low power state
  • step S106 After a predetermined ablation start waiting time has elapsed since the start of such a “LOW” flow rate operation, supply of output power Pout (for example, high frequency output) from the power supply unit 32 to the ablation catheter 1 and the counter electrode plate 4. Is started (step S106). Thereby, the ablation of the treatment portion by the low power state and the “LOW” flow rate operation is started on the principle described above.
  • the waiting time at the start of ablation is preferably about 1 to 10 seconds, and 5 seconds is a preferable example.
  • control unit 35 after switching from the “Standby” flow rate operation to the “LOW” flow rate operation, control is performed so that the supply operation of the output power Pout at the time of ablation in the power supply unit 32 is started.
  • the control unit 35 determines whether an instruction signal for stopping the output of the output power Pout is input via the input unit 31 by the operator of the power supply device 3 (step S107). If it is determined that an output stop instruction signal has been input (step S107: Y), the control unit 35 outputs a control signal CTL1 to that effect to the power supply unit 32, thereby outputting the output power Pout (high frequency output). ) Is stopped (step S108). Then, after a predetermined power supply stop standby time (second standby time) has elapsed after the supply of the output power Pout is stopped, the control unit 35 shifts from the “LOW” flow rate operation to the “Standby” flow rate operation. Control is performed (step S109), and the entire ablation operation shown in FIG. 4 is completed.
  • the standby time when the power supply is stopped is preferably about 1 to 5 seconds, and is 2 seconds if a suitable example is shown.
  • step S107: N If it is determined that the output stop instruction signal is not input (step S107: N), the control unit 35 next again sets the value of the set power Ps to be equal to or greater than the threshold power Pth (Ps ⁇ Pth). ) Is determined (step S110). If it is determined that Ps ⁇ Pth (step S110: N, in the low power state), the control unit 35 performs control so that the “LOW” flow rate operation is continued, and returns to step S107. On the other hand, when it is determined that Ps ⁇ Pth (step S110: Y, in the high power state), the control unit 35 determines that the liquid flow rate F is relatively large from the current “LOW” flow rate operation.
  • the control unit 35 quickly switches from the “LOW” flow rate operation to the “HIGH” flow rate operation (without waiting for the elapse of a predetermined flow rate operation switching standby time to be described later). In this way, by immediately switching to the “HIGH” flow rate operation, it is possible to avoid a situation where the liquid flow rate is too low (liquid shortage situation) during the transition from the low power state to the high power state. .
  • step S113 After the above-described waiting time at the start of ablation elapses after the start of the “HIGH” flow rate operation, supply of output power Pout (for example, high frequency output) from the power supply unit 32 to the ablation catheter 1 and the counter electrode plate 4. Is started (step S113). Thereby, the ablation of the treatment part by the high power state and the “HIGH” flow rate operation is started based on the principle described above.
  • the control unit 35 switches from the “Standby” flow rate operation to the “HIGH” flow rate operation, the control unit 35 performs control so that the supply operation of the output power Pout at the time of ablation in the power supply unit 32 is started. The same advantages as when operating at “LOW” flow rate are obtained.
  • the control unit 35 determines whether or not an instruction signal for stopping the output of the output power Pout is input in the same manner as in Step S107 described above (Step S114). If it is determined that an output stop instruction signal has been input (step S114: Y), the control unit 35 outputs a control signal CTL1 to that effect to the power supply unit 32, thereby outputting the output power Pout (high frequency output). ) Is stopped (step S115). Then, after the supply of output power Pout stops, the control unit 35 performs control so as to shift from the “HIGH” flow rate operation to the “Standby” flow rate operation after the standby time at the time of power supply stop has elapsed (step S1). S116), the entire ablation operation shown in FIG. 4 is completed.
  • step S114 N
  • the control unit 35 next again sets the set power Ps to a value equal to or greater than the threshold power Pth (Ps ⁇ Pth). ) Is determined (step S117). If it is determined that Ps ⁇ Pth (step S117: Y, high power state), the control unit 35 returns to step S114 while performing control so that the “HIGH” flow rate operation is continued.
  • step S117: N when it is determined that Ps ⁇ Pth (step S117: N, in the low power state), the control unit 35 then presets this (Ps ⁇ Pth) state (low power state). It is then determined whether or not the predetermined time (predetermined waiting time when switching the flow rate operation; first waiting time) has continued (step S118). When it is determined that the waiting time for switching the flow rate operation has not been continued (step S118: N), the process returns to step S114 described above.
  • the waiting time for switching the flow rate operation is preferably about 1 to 10 seconds, and 5 seconds is shown as a suitable example.
  • the control unit 35 controls the flow rate operation of the liquid L as follows. That is, when the low power state continues at the above-described waiting time for switching the flow rate operation at the time of transition, the control unit 35 maintains the “HIGH” flow rate operation for the waiting time for switching the flow rate operation, and then performs the “LOW” flow rate operation. Switch to. In other words, after waiting for the elapse of such a waiting time for switching the flow rate operation, the “HIGH” flow rate operation is switched to the “LOW” flow rate operation. This avoids the occurrence of a situation where the flow rate of the liquid is too small (liquid shortage situation) during the transition from the high power state to the low power state.
  • the risk (treatment portion) when the liquid flow rate F is too small compared to the risk when the liquid flow rate F is too large (the temperature of the treatment portion is lowered and the treatment during treatment is hindered).
  • the above-described control is performed because the effect of cooling the blood and improving blood retention is insufficient (the problem is serious). That is, in consideration of the magnitude relationship of such risks, the period during which the liquid flow rate F is relatively high during the transition of the set power Ps is maintained, while the period during which the liquid flow rate F is high is long. In order not to be too much, the liquid flow rate F is switched to be relatively small after the waiting time at the time of switching the flow rate operation.
  • step S108: N the control unit 35 does not switch from the “HIGH” flow rate operation to the “LOW” flow rate operation (continues the “HIGH” flow rate operation).
  • the control unit 35 does not switch from the “HIGH” flow rate operation to the “LOW” flow rate operation (continues the “HIGH” flow rate operation).
  • an appropriate irrigation operation is realized even in a situation where the value of the set power Ps changes with time so as to increase and decrease near the threshold power Pth. .
  • the control unit 35 quickly switches from the “LOW” flow rate operation to the “HIGH” flow rate operation when the set power Ps shifts from the low power state to the high power state.
  • the ⁇ HIGH '' flow rate operation is maintained after the standby time for switching the flow rate operation is maintained. Since the operation is switched to the “LOW” flow rate operation, it is possible to avoid the occurrence of a liquid shortage during power transfer. Therefore, an appropriate irrigation operation can be performed during ablation.
  • control unit 35 adjusts the output power Pout so that the temperature measured by the temperature measurement mechanism in the ablation catheter 1 is kept substantially constant, the following effects can also be obtained. That is, it is possible to supply the actual output power Pout after performing appropriate power adjustment based on the input set power Ps.
  • the liquid supply device 2 and the power supply device 3 are configured as separate bodies, it is possible to arrange each device individually according to the usage situation, so that the catheter system 5 as a whole is convenient. Can be improved. Specifically, for example, as shown in FIG. 1, the liquid supply device 2 is relatively disposed near the patient 9, so that the liquid supply tube connecting the liquid supply device 2 and the ablation catheter 1 is shortened. This makes it easier for doctors to operate. At the same time, the power supply device 3 is relatively distant from the patient 9 so that an engineer or the like can easily operate. In this way, it is possible to arrange the apparatus according to the usage situation.
  • FIG. 7 is a block diagram schematically showing an example of the overall configuration of a catheter system (catheter system 5A) according to a modification of the above embodiment.
  • the catheter system 5A of this modification is also a system used in the treatment of arrhythmia or the like in the patient 9, and includes an ablation catheter 1, a control device 6, and a counter electrode plate 4.
  • the control device 6 is configured as a single device by integrating the liquid supply device 2 and the power supply device 3 described in the above embodiment, and each block included in the liquid supply device 2 and the power supply device 3 is provided. is doing. That is, the control device 6 includes a liquid supply unit 21, an input unit 31, a power supply unit 32, a voltage measurement unit 33, a current measurement unit 34, a control unit 35, and a display unit 36.
  • the functions of the liquid supply device 2 and the power supply device 3 are integrated to form a single device (control device 6). It is configured.
  • the liquid supply unit 21, the input unit 31, the power supply unit 32, the voltage measurement unit 33, the current measurement unit 34, the control unit 35, and the display unit 36 are each provided in the control device 6 that is a single device. Yes.
  • the functions of the liquid supply device 2 and the power supply device 3 are integrated to form a single device (control device 6). Simplification can be realized.
  • each layer and each member described in the above embodiments are not limited, and other materials may be used.
  • the structure of the ablation catheter 1 (shaft 11) was specifically mentioned and demonstrated, it is not necessary to necessarily provide all the members and you may further provide other members.
  • a leaf spring that can be deformed in the bending direction may be provided inside the shaft 11 as a swinging member.
  • the configuration of the electrodes in the shaft 11 is not limited to those described in the above embodiments.
  • the ablation catheter of the type in which the shape near the tip P1 of the shaft 11 changes in one direction according to the operation of the operation unit 12 has been described as an example, but the present invention is not limited thereto. . That is, the present invention can be applied to, for example, an ablation catheter of a type in which the shape of the shaft 11 near the tip P1 changes in both directions according to the operation of the operation unit 12, and in this case, the operation wire Will be used. The present invention can also be applied to an ablation catheter of a type in which the shape near the tip P1 of the shaft 11 is fixed. In this case, the operation wire, the rotating plate 122, and the like are unnecessary. Become. That is, the operation unit is configured only by the handle 121.
  • the block configurations of the liquid supply device 2 and the power supply device 3 have been specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment and the like. Other blocks may be further provided. Further, the entire catheter system may further include other devices in addition to the devices described in the above embodiments. Specifically, for example, a relay for supplying the liquid may be further provided on the liquid supply line between the liquid supply unit 21 (the liquid supply device 2 or the control device 6) and the ablation catheter 1.
  • each process in the ablation operation has been specifically described with reference to a flowchart. However, it is not always necessary to perform all the processes described in the above-described embodiment. The above process may be further performed. Specifically, at least one of the “Standby” flow rate operation and the control operation of the output power Pout using the actually measured temperature information Tm described in the above-described embodiment and the like may not be performed depending on circumstances.

Abstract

Provided is a catheter system capable of performing a suitable irrigation operation. The catheter system (5) comprises: an ablation catheter (1) having an irrigation mechanism; a power supply unit (32) that supplies electrical power to the ablation catheter (1) during ablation; a fluid supply unit (21) that supplies irrigation fluid to the ablation catheter (1); and a control unit (35). The control unit (35) controls so as to achieve a high flowrate operation when a set power (Ps) during ablation is in a high-power state at or above a threshold power (Pth), and controls so as to achieve a low flowrate operation when a set power (Ps) is in a low-power state below the threshold power (Pth). Furthermore, the control unit (35) quickly switches from a low flowrate operation to a high flowrate operation upon a transition from the low-power state to the high-power state and, upon a transition from the high-power state to the low-power state, if at the time of transition the low-power state has continued for a first standby time, the control unit (35) switches to a low flowrate operation after maintaining a high flowrate operation for the first standby time.

Description

カテーテルシステムCatheter system
 本発明は、例えば不整脈等の治療に用いられると共に、その治療における患部の焼灼(アブレーション)の際に生理食塩水等の液体を流す灌注機構を備えたカテーテルシステムに関する。 The present invention relates to a catheter system including an irrigation mechanism that is used for treatment of, for example, arrhythmia and that causes a liquid such as physiological saline to flow during ablation of an affected part in the treatment.
 電極カテーテルは、血管を通して体内(例えば心臓の内部)に挿入され、不整脈の検査や治療等に用いられるものである。このような電極カテーテルでは一般に、体内に挿入された先端(遠位端)付近の形状が、体外に配置される基端(近位端,後端,手元側)に装着された操作部の操作に応じて、片方向あるいは両方向に変化(偏向,湾曲)するようになっている。また、このように先端の形状が操作に応じて任意に変化するタイプの他にも、先端付近の形状が固定になっているタイプのものも存在する。 The electrode catheter is inserted into the body (for example, the inside of the heart) through a blood vessel, and is used for arrhythmia examination and treatment. In such an electrode catheter, generally, the shape of the vicinity of the distal end (distal end) inserted into the body is the operation of the operation unit attached to the proximal end (proximal end, rear end, hand side) disposed outside the body. In response to this, it changes (deflects, curves) in one direction or both directions. In addition to the type in which the shape of the tip is arbitrarily changed according to the operation as described above, there is a type in which the shape near the tip is fixed.
 ところで、このような電極カテーテルのうちの治療用のもの(いわゆるアブレーションカテーテル)では、患部のアブレーションの際に、以下のような問題が生じ得る。すなわち、心臓等のアブレーション手術の際に、処置部分の温度が上昇しすぎて損傷が起こったり、処置部分に血栓がこびりついたりするなどの問題が生じ得る。 By the way, in the case of such an electrode catheter for treatment (so-called ablation catheter), the following problems may occur during ablation of the affected area. That is, during ablation surgery for the heart or the like, problems may arise such that the temperature of the treatment portion increases too much and damage occurs, or a blood clot sticks to the treatment portion.
 そこで、このような問題を解決する手法として、アブレーションの際に生理食塩水等の液体を流す灌注機構を備えたカテーテルシステムが挙げられる(例えば、特許文献1,2)。このカテーテルシステムでは、アブレーションの際にアブレーションカテーテルの先端電極から上記液体が流れ出ることで、患部を冷却したり、血栓が生じたりしないようにすることが可能となる。 Therefore, as a technique for solving such a problem, there is a catheter system including an irrigation mechanism for flowing a liquid such as physiological saline during ablation (for example, Patent Documents 1 and 2). In this catheter system, when the liquid flows out from the distal electrode of the ablation catheter at the time of ablation, it is possible to prevent the affected part from being cooled and to prevent thrombus formation.
特開2006-239414号公報JP 2006-239414 A 特開2012-176119号公報JP 2012-176119 A
 ところで、上記した灌注機構付きのカテーテルシステムでは一般に、処置部分へ放出される液体の流量が多過ぎる場合、処置部分の温度が低下し、治療の際の処置に支障が生じてしまうおそれがある。また、液体が体内に入り過ぎると、患者への負担が大きくなってしまうおそれもある。一方、逆に液体の流量が少な過ぎる場合には、処置部分の冷却や血液滞留の改善の効果が不十分となってしまうおそれがある。これらのことから、使用状況に応じて液体の流量を調整(管理)し、適切な灌注動作を実現することが求められる。 By the way, in the above catheter system with an irrigation mechanism, when the flow rate of the liquid discharged to the treatment portion is too large, the temperature of the treatment portion is lowered, and there is a possibility that the treatment at the time of treatment may be hindered. Moreover, if the liquid enters the body too much, the burden on the patient may increase. On the other hand, if the flow rate of the liquid is too small, the effect of cooling the treatment portion and improving blood retention may be insufficient. For these reasons, it is required to adjust (manage) the flow rate of the liquid according to the use situation and to realize an appropriate irrigation operation.
 本発明はかかる問題点に鑑みてなされたもので、その目的は、適切な灌注動作を行うことが可能なカテーテルシステムを提供することにある。 The present invention has been made in view of such problems, and an object thereof is to provide a catheter system capable of performing an appropriate irrigation operation.
 本発明のカテーテルシステムは、灌注機構を有するアブレーションカテーテルと、このアブレーションカテーテルに対してアブレーションの際の電力を供給する電源部と、アブレーションカテーテルに対して灌注用の液体を供給する液体供給部と、電源部における電力の供給動作および液体供給部における液体の供給動作をそれぞれ制御する制御部とを備えたものである。制御部は、アブレーションの際の設定電力が閾値電力以上である高電力状態のときには、液体の流量が相対的に多い大流量動作となるように制御する一方、設定電力が上記閾値電力未満である低電力状態のときには、液体の流量が相対的に少ない小流量動作となるように制御する。また、上記低電力状態から上記高電力状態へ移行する際には、上記小流量動作から上記大流量動作へと速やかに切り替える一方、上記高電力状態から上記低電力状態へ移行する際には、その移行時に低電力状態が第1の待機時間継続した場合に、上記大流量動作を上記第1の待機時間維持した後に上記小流量動作へと切り替える。 The catheter system of the present invention includes an ablation catheter having an irrigation mechanism, a power supply unit that supplies electric power during ablation to the ablation catheter, a liquid supply unit that supplies irrigation liquid to the ablation catheter, And a control unit for controlling the power supply operation in the power supply unit and the liquid supply operation in the liquid supply unit. The control unit performs control so that a large flow rate operation with a relatively high liquid flow rate is performed in a high power state where the set power at the time of ablation is equal to or higher than the threshold power, while the set power is less than the threshold power. In the low power state, control is performed such that the liquid flow rate is a small flow rate operation. Further, when transitioning from the low power state to the high power state, while quickly switching from the small flow rate operation to the large flow rate operation, when transitioning from the high power state to the low power state, When the low power state continues for the first standby time at the time of the transition, the large flow rate operation is switched to the small flow rate operation after the first standby time is maintained.
 本発明のカテーテルシステムでは、上記制御部が、上記低電力状態から上記高電力状態へ移行する際には、上記小流量動作から上記大流量動作へと速やかに切り替える。一方、上記高電力状態から上記低電力状態へ移行する際には、その移行時に低電力状態が第1の待機時間継続した場合に、上記大流量動作を上記第1の待機時間維持した後に上記小流量動作へと切り替える。これにより、電力移行の際に液体の流量が少な過ぎる状況(液体不足状況)が発生するのが回避される。 In the catheter system of the present invention, when the control unit shifts from the low power state to the high power state, the control unit quickly switches from the small flow rate operation to the high flow rate operation. On the other hand, when transitioning from the high power state to the low power state, if the low power state continues for the first standby time during the transition, the large flow rate operation is maintained after the first standby time is maintained. Switch to small flow rate operation. As a result, it is possible to avoid a situation where the flow rate of the liquid is too small (liquid shortage situation) during power transfer.
 本発明のカテーテルシステムでは、上記制御部が、液体の流量が微量であるスタンバイ流量動作の開始後であると判断した場合にのみ、アブレーションを開始させるための指示信号を受け付けるようにするのが望ましい。このように構成した場合、アブレーションの開始前に、アブレーションカテーテル内(例えば液体を流すためのルーメン内)を液体で満たしておくようにすることができる。これにより、例えば、アブレーションカテーテルの先端部分(例えば液体の流出孔)から内部へ血液が流入し、内部(例えば上記ルーメン内)に血栓が詰まってしまうというおそれが回避される。また、この場合において、上記制御部が、上記指示信号を受け付けた場合に、上記スタンバイ流量動作から上記小流量動作または前記大流量動作へと切り替えた後に、上記電力の供給動作を開始させるようにするのが更に望ましい。このように構成した場合、一般に電力と比べて液体のほうが供給(到達)時間を要することから、そのような供給時間の相違に起因した液体不足状況の発生が回避され、より適切な灌注動作が実現可能となる。 In the catheter system according to the present invention, it is desirable that the control unit accepts an instruction signal for starting ablation only when it is determined that the standby flow rate operation after the liquid flow rate is very small. . When configured in this manner, the ablation catheter (for example, the lumen for flowing liquid) can be filled with liquid before the start of ablation. Thereby, for example, the risk that blood flows into the inside from the distal end portion (for example, the liquid outflow hole) of the ablation catheter and the inside (for example, the lumen) is clogged with blood clots is avoided. In this case, when the control unit receives the instruction signal, the control unit starts the power supply operation after switching from the standby flow operation to the small flow operation or the large flow operation. It is more desirable to do so. When configured in this way, since the liquid generally requires a supply (arrival) time compared to the electric power, the occurrence of a liquid shortage due to such a difference in the supply time is avoided, and a more appropriate irrigation operation is performed. It becomes feasible.
 本発明のカテーテルシステムでは、上記制御部が、上記電力の供給動作を停止させる際には、電力の供給動作が停止してから第2の待機時間が経過した後に、上記スタンバイ流量動作へと移行させるようにするのが望ましい。このように構成した場合、電力の供給停止後においてもある程度の期間は高温状態が継続することに起因した、液体による冷却不足の発生が回避され、より適切な灌注動作が実現可能となる。 In the catheter system of the present invention, when the control unit stops the power supply operation, the control unit shifts to the standby flow rate operation after the second standby time has elapsed since the power supply operation stopped. It is desirable to do so. In such a configuration, the occurrence of insufficient cooling due to the liquid due to the high temperature state continuing for a certain period even after the supply of power is stopped, and a more appropriate irrigation operation can be realized.
 本発明のカテーテルシステムでは、上記アブレーションカテーテルがその先端付近に温度測定機構を有し、上記制御部が、この温度測定機構により測定された温度が略一定に保たれるように、電源部からの出力電力を調整するのが望ましい。このように構成した場合、アブレーションカテーテルの先端付近(アブレーションの際の患部付近)の温度が略一定に保たれるように、実際の出力電力が調整される。つまり、入力された設定電力を基に適切な電力調整がなされたうえで、出力電力が供給される。 In the catheter system of the present invention, the ablation catheter has a temperature measurement mechanism near its distal end, and the control unit is connected to the power supply unit so that the temperature measured by the temperature measurement mechanism is maintained substantially constant. It is desirable to adjust the output power. When configured in this way, the actual output power is adjusted so that the temperature near the distal end of the ablation catheter (near the affected area during ablation) is kept substantially constant. That is, output power is supplied after appropriate power adjustment is performed based on the input set power.
 本発明のカテーテルシステムでは、上記液体供給部を液体供給装置内に設けると共に、上記電源部および上記制御部をそれぞれ、この液体供給装置とは別体である電源装置内に設けるようにすることが可能である。このように構成した場合、使用状況に応じて各装置(液体供給装置および電源装置)を個別に配置することが可能となるため、システム全体としての利便性が向上する。あるいは、上記液体供給部、上記電源部および上記制御部をそれぞれ、単一の装置内に設けるようにすることも可能である。このように構成した場合、システム全体の構成の簡素化が実現される。 In the catheter system of the present invention, the liquid supply section is provided in the liquid supply apparatus, and the power supply section and the control section are provided in a power supply apparatus that is separate from the liquid supply apparatus. Is possible. When configured in this manner, each device (liquid supply device and power supply device) can be individually arranged in accordance with the use situation, so that the convenience of the entire system is improved. Alternatively, each of the liquid supply unit, the power supply unit, and the control unit may be provided in a single device. When configured in this way, simplification of the configuration of the entire system is realized.
 本発明のカテーテルシステムによれば、上記高電力状態から上記低電力状態へ移行する際には、その移行時に低電力状態が第1の待機時間継続した場合に、上記大流量動作を上記第1の待機時間維持した後で上記小流量動作へと切り替えるようにしたので、電力移行の際の液体不足状況の発生を回避することができる。よって、アブレーションの際に適切な灌注動作を行うことが可能となる。 According to the catheter system of the present invention, when the transition from the high power state to the low power state is performed, if the low power state continues for the first waiting time during the transition, the large flow operation is performed in the first state. Since the switching to the small flow rate operation is performed after the standby time is maintained, it is possible to avoid the occurrence of a liquid shortage situation during power transfer. Therefore, an appropriate irrigation operation can be performed during ablation.
本発明の一実施の形態に係るカテーテルシステムの全体構成例を模式的に表すブロック図である。1 is a block diagram schematically illustrating an overall configuration example of a catheter system according to an embodiment of the present invention. 図1に示したアブレーションカテーテルの詳細構成例を表す模式図である。It is a schematic diagram showing the detailed structural example of the ablation catheter shown in FIG. 設定された電力状態と液体の流量動作との関係の一例を表す模式図である。It is a schematic diagram showing an example of the relationship between the set electric power state and the flow volume operation | movement of a liquid. 図1に示したカテーテルシステムの動作の一例を表す流れ図である。It is a flowchart showing an example of operation | movement of the catheter system shown in FIG. 流量動作の移行時の制御動作の一例を表す模式図である。It is a mimetic diagram showing an example of control operation at the time of transfer of flow operation. 流量動作の移行時の制御動作の他の例を表す模式図である。It is a schematic diagram showing the other example of control operation at the time of transfer of flow operation. 本発明の変形例に係るカテーテルシステムの全体構成例を模式的に表すブロック図である。It is a block diagram showing typically the example of whole composition of the catheter system concerning the modification of the present invention.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(液体供給装置と電源装置とが別体として設けられた例)
2.変形例(各機能が一体化されて単一の装置として設けられた例)
3.その他の変形例
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (example in which a liquid supply device and a power supply device are provided separately)
2. Modified example (example in which each function is integrated and provided as a single device)
3. Other variations
<実施の形態>
[全体構成]
 図1は、本発明の一実施の形態に係るカテーテルシステム(カテーテルシステム5)の全体構成例を模式的にブロック図で表したものである。このカテーテルシステム5は、患者(この例では患者9)における不整脈等の治療の際に用いられるシステムであり、アブレーションカテーテル1、液体供給装置2、電源装置3および対極板4を備えている。すなわち、本実施の形態のカテーテルシステム5では、液体供給装置2と電源装置3とが別体として構成されている。
<Embodiment>
[overall structure]
FIG. 1 is a block diagram schematically showing an example of the entire configuration of a catheter system (catheter system 5) according to an embodiment of the present invention. The catheter system 5 is a system used for treating arrhythmia or the like in a patient (patient 9 in this example), and includes an ablation catheter 1, a liquid supply device 2, a power supply device 3, and a counter electrode plate 4. That is, in the catheter system 5 of the present embodiment, the liquid supply device 2 and the power supply device 3 are configured separately.
(アブレーションカテーテル1)
 アブレーションカテーテル1は、血管を通して患者9の体内に挿入され、患部をアブレーションすることで不整脈等の治療を行うための電極カテーテルである。アブレーションカテーテル1はまた、そのようなアブレーションの際に所定の灌注用の液体(例えば、生理食塩水等)を先端P1側から流し出す(噴射させる)灌注機構を有している。換言すると、カテーテルシステム5は、そのような灌注機構付きのカテーテルシステムとなっている。
(Ablation catheter 1)
The ablation catheter 1 is an electrode catheter that is inserted into the body of a patient 9 through a blood vessel and performs treatment such as arrhythmia by ablating the affected area. The ablation catheter 1 also has an irrigation mechanism that causes a predetermined irrigation liquid (such as physiological saline) to flow out (inject) from the distal end P1 side during such ablation. In other words, the catheter system 5 is a catheter system with such an irrigation mechanism.
 図2は、アブレーションカテーテル1の概略構成例を模式的に表したものである。このアブレーションカテーテル1は、カテーテル本体としてのシャフト11(カテーテルシャフト)と、このシャフト11の基端に装着された操作部12とを有している。 FIG. 2 schematically shows a schematic configuration example of the ablation catheter 1. The ablation catheter 1 has a shaft 11 (catheter shaft) as a catheter body and an operation unit 12 attached to the proximal end of the shaft 11.
 シャフト11は、可撓性を有する管状構造(管状部材)からなり、自身の軸方向(Z軸方向)に沿って延伸する形状となっている。また、シャフト11は、自身の軸方向に沿って延在するように内部に1つのルーメン(細孔,貫通孔)が形成されたいわゆるシングルルーメン構造、あるいは複数(例えば4つ)のルーメンが形成されたいわゆるマルチルーメン構造を有している。なお、シャフト11の内部において、シングルルーメン構造からなる領域とマルチルーメン構造からなる領域との双方が設けられていてもよい。このようなルーメンには、図示しない各種の細線(導線や操作用ワイヤ等)がそれぞれ、互いに電気的に絶縁された状態で挿通されている。 The shaft 11 is composed of a flexible tubular structure (tubular member) and has a shape extending along its own axial direction (Z-axis direction). Further, the shaft 11 has a so-called single lumen structure in which one lumen (pore, through-hole) is formed so as to extend along its own axial direction, or a plurality of (for example, four) lumens are formed. So-called multi-lumen structure. In the shaft 11, both a region having a single lumen structure and a region having a multi-lumen structure may be provided. Various kinds of thin wires (not shown) (conductive wires, operation wires, etc.) are inserted through such lumens while being electrically insulated from each other.
 シャフト11の内部には、そのような各種の細線を挿通させるためのルーメンに加え、上記した灌注用の液体Lを流すためのルーメンが軸方向に沿って延伸するように形成されている。また、シャフト11の先端P1付近には、その先端P1付近(患部周辺)の温度を測定するための機構(温度測定機構)が設けられている。具体的には、シャフト11の内部のルーメンに、そのような温度を測定するための温度センサとしての熱電対等が挿通されている。なお、このようにして測定された先端P1付近の温度は、実測温度情報Tmとしてアブレーションカテーテル1から電源装置3へと供給されるようになっている。 In addition to the lumen for inserting such various thin wires, the lumen for flowing the irrigation liquid L is formed in the shaft 11 so as to extend along the axial direction. In addition, a mechanism (temperature measurement mechanism) for measuring the temperature near the tip P1 (around the affected area) is provided near the tip P1 of the shaft 11. Specifically, a thermocouple or the like as a temperature sensor for measuring such temperature is inserted through the lumen inside the shaft 11. The temperature in the vicinity of the distal end P1 measured in this manner is supplied from the ablation catheter 1 to the power supply device 3 as measured temperature information Tm.
 このようなシャフト11は、例えば、ポリオレフィン、ポリアミド、ポリエーテルポリアミド、ポリウレタン等の合成樹脂により構成されている。また、シャフト11の軸方向の長さは、約500~1200mm程度(例えば1170mm)であり、シャフト11の外径(X-Y断面の外径)は、約0.6~3mm程度(例えば2.0mm)である。 Such a shaft 11 is made of, for example, a synthetic resin such as polyolefin, polyamide, polyether polyamide, or polyurethane. The axial length of the shaft 11 is about 500 to 1200 mm (for example, 1170 mm), and the outer diameter of the shaft 11 (the outer diameter of the XY cross section) is about 0.6 to 3 mm (for example, 2). 0.0 mm).
 シャフト11の先端P1付近には、図2中の先端P1付近の拡大図に示したように、複数の電極(ここでは、3つのリング状電極111a,111b,111cおよび1つの先端電極112)が設けられている。具体的には、先端P1付近において、リング状電極111a,111b,111cおよび先端電極112が、シャフト11の最先端側に向かってこの順で所定の間隔をおいて配置されている。また、リング状電極111a,111b,111cはそれぞれ、シャフト11の外周面上に固定配置される一方、先端電極112は、シャフト11の最先端に固定配置されている。これらの電極は、前述したシャフト11のルーメン内に挿通された複数の導線(図示せず)を介して、操作部12と電気的に接続されるようになっている。また、先端電極112の先端付近からは、図2中の矢印で示したように、前述した灌注用の液体Lが流れ出るようになっている。 Near the tip P1 of the shaft 11, as shown in the enlarged view near the tip P1 in FIG. 2, a plurality of electrodes (here, three ring electrodes 111a, 111b, 111c and one tip electrode 112) are provided. Is provided. Specifically, the ring-shaped electrodes 111 a, 111 b, 111 c and the tip electrode 112 are arranged at a predetermined interval in this order toward the most distal side of the shaft 11 in the vicinity of the tip P 1. The ring electrodes 111 a, 111 b, and 111 c are each fixedly disposed on the outer peripheral surface of the shaft 11, while the tip electrode 112 is fixedly disposed at the forefront of the shaft 11. These electrodes are electrically connected to the operation unit 12 through a plurality of conductive wires (not shown) inserted into the lumen of the shaft 11 described above. Further, from the vicinity of the tip of the tip electrode 112, the irrigation liquid L described above flows out as indicated by the arrow in FIG.
 このようなリング状電極111a,111b,111cおよび先端電極112はそれぞれ、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、金(Au)、白金(Pt)等の、電気伝導性の良好な金属材料により構成されている。なお、アブレーションカテーテル1の使用時におけるX線に対する造影性を良好にするためには、白金またはその合金により構成されていることが好ましい。また、これらのリング状電極111a,111b,111cおよび先端電極112の外径は、特には限定されないが、上記したシャフト11の外径と同程度であることが望ましい。 Such ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 are electrically conductive, such as aluminum (Al), copper (Cu), stainless steel (SUS), gold (Au), platinum (Pt), respectively. It is comprised with the metal material with favorable property. In addition, in order to make the contrast property with respect to X-rays favorable at the time of use of the ablation catheter 1, it is preferable to be comprised with platinum or its alloy. Further, the outer diameters of the ring-shaped electrodes 111a, 111b, 111c and the tip electrode 112 are not particularly limited, but are preferably approximately the same as the outer diameter of the shaft 11 described above.
 操作部12は、シャフト11の基端に装着されており、ハンドル121(把持部)および回転板122を有している。 The operation unit 12 is attached to the proximal end of the shaft 11 and includes a handle 121 (gripping unit) and a rotating plate 122.
 ハンドル121は、アブレーションカテーテル1の使用時に操作者(医師)が掴む(握る)部分である。このハンドル121の内部には、シャフト11の内部から前述した各種の細線がそれぞれ延伸している。 The handle 121 is a portion that is gripped (gripped) by an operator (doctor) when the ablation catheter 1 is used. Inside the handle 121, the various thin wires described above extend from the inside of the shaft 11.
 回転板122は、シャフト11の先端付近を偏向させる際の操作である、偏向移動操作(首振り操作)を行うための部材である。具体的には、ここでは図2中の矢印で示したように、回転方向d1に沿って回転板122を回転させる操作が可能となっている。 The rotating plate 122 is a member for performing a deflection movement operation (swing operation), which is an operation for deflecting the vicinity of the tip of the shaft 11. Specifically, here, as shown by the arrow in FIG. 2, an operation of rotating the rotating plate 122 along the rotation direction d1 is possible.
(液体供給装置2)
 液体供給装置2は、アブレーションカテーテル1に対して前述した灌注用の液体Lを供給する装置であり、図1に示したように、液体供給部21を有している。
(Liquid supply device 2)
The liquid supply device 2 is a device that supplies the irrigation liquid L described above to the ablation catheter 1, and has a liquid supply portion 21 as shown in FIG.
 液体供給部21は、後述する制御信号CTL2により規定される流量の液体Lを、アブレーションカテーテル1に対して随時供給するものである。この液体供給部21は、例えば液体ポンプ等を含んで構成されている。 The liquid supply unit 21 supplies the liquid L having a flow rate defined by a control signal CTL2 described later to the ablation catheter 1 as needed. This liquid supply part 21 is comprised including the liquid pump etc., for example.
(電源装置3)
 電源装置3は、アブレーションカテーテル1および対極板4に対してアブレーションの際の電力(例えば高周波(RF;Radio Frequency)からなる出力電力Pout)を供給すると共に、液体供給装置2における液体Lの供給動作を制御する装置である。この電源装置3は、図1に示したように、入力部31、電源部32、電圧測定部33、電流測定部34、制御部35および表示部36を有している。
(Power supply 3)
The power supply device 3 supplies power during ablation (for example, output power Pout composed of radio frequency (RF)) to the ablation catheter 1 and the counter electrode plate 4 and also supplies the liquid L in the liquid supply device 2. It is a device that controls. As illustrated in FIG. 1, the power supply device 3 includes an input unit 31, a power supply unit 32, a voltage measurement unit 33, a current measurement unit 34, a control unit 35, and a display unit 36.
 入力部31は、各種の設定値や、後述する所定の動作を指示するための指示信号を入力する部分である。各種の設定値としては、詳細は後述するが、例えば、設定電力Ps(=出力電力Poutにおける最大電力)、閾値電力Pth、目標温度Tt、「HIGH」流量動作時の液体流量Fh、「LOW」流量動作時の液体流量Fl、「Standby」流量動作時の液体流量Fst、各種の待機時間等が挙げられる。これらの設定値は、電源装置3の操作者(例えば技師等)によって入力されるようになっている。ただし、例えば閾値電力Pthについては、操作者によって入力されるのではなく、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。また、入力部31により入力された設定値は、制御部35へ供給されるようになっている。なお、図1中では、これらの各種の設定値のうち、設定電力Psを代表して示している。このような入力部31は、例えば所定のダイヤルやボタン、タッチパネル等を用いて構成されている。 The input unit 31 is a part for inputting various setting values and an instruction signal for instructing a predetermined operation to be described later. As various set values, details will be described later. For example, set power Ps (= maximum power in output power Pout), threshold power Pth, target temperature Tt, liquid flow rate Fh during “HIGH” flow rate operation, “LOW” Examples of the liquid flow rate Fl during the flow rate operation, the liquid flow rate Fst during the “Standby” flow rate operation, and various waiting times. These set values are input by an operator (for example, an engineer) of the power supply device 3. However, for example, the threshold power Pth is not input by the operator, but may be set in the power supply device 3 in advance at the time of shipment of the product. Further, the set value input by the input unit 31 is supplied to the control unit 35. In FIG. 1, among these various set values, the set power Ps is shown as a representative. Such an input unit 31 is configured using, for example, a predetermined dial, button, touch panel, or the like.
 電源部32は、後述する制御信号CTL1に従って、上記した出力電力Poutをアブレーションカテーテル1および対極板4に対して供給する部分である。このような電源部32は、所定の電源回路(例えばスイッチングレギュレータ等)を用いて構成されている。なお、出力電力Poutが高周波電力からなる場合、その周波数は、例えば450kHz~550kHz程度(例えば500kHz)である。 The power supply unit 32 is a part that supplies the above-described output power Pout to the ablation catheter 1 and the counter electrode plate 4 in accordance with a control signal CTL1 described later. Such a power supply part 32 is comprised using the predetermined power supply circuit (for example, switching regulator etc.). When the output power Pout is high frequency power, the frequency is, for example, about 450 kHz to 550 kHz (for example, 500 kHz).
 電圧測定部33は、電源部32から出力される出力電力Poutにおける電圧を随時測定(検出)する部分であり、所定の電圧検出回路を用いて構成されている。このようにして電圧測定部33により測定された電圧(実測電圧Vm)は、制御部35へ出力されるようになっている。 The voltage measurement unit 33 is a part that measures (detects) the voltage at the output power Pout output from the power supply unit 32 as needed, and is configured using a predetermined voltage detection circuit. The voltage (measured voltage Vm) measured by the voltage measuring unit 33 in this way is output to the control unit 35.
 電流測定部34は、電源部32から出力される出力電力Poutにおける電流を随時測定する部分であり、所定の電流検出回路を用いて構成されている。このようにして電流測定部34により測定された電流(実測電流Im)は、制御部35へ出力されるようになっている。 The current measurement unit 34 is a part that measures the current in the output power Pout output from the power supply unit 32 as needed, and is configured using a predetermined current detection circuit. The current (measured current Im) measured by the current measuring unit 34 in this way is output to the control unit 35.
 制御部35は、電源装置3全体を制御すると共に所定の演算処理を行う部分であり、例えばマイクロコンピュータ等を用いて構成されている。具体的には、制御部35は、まず、以下説明する実測電力Pm(出力電力Poutの電力値に相当)の算出機能を有している。また、制御部35は、制御信号CTL1を用いて、電源部32における出力電力Poutの供給動作を制御する機能(電力供給制御機能)と、制御信号CTL2を用いて、液体供給部21における液体Lの供給動作を制御する機能(液体供給制御機能)とを有している。 The control unit 35 is a part that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured using, for example, a microcomputer. Specifically, the control unit 35 first has a function of calculating an actually measured power Pm (corresponding to the power value of the output power Pout) described below. Further, the control unit 35 uses the control signal CTL1 to control the supply operation of the output power Pout in the power supply unit 32 (power supply control function), and uses the control signal CTL2 to control the liquid L in the liquid supply unit 21. And a function for controlling the supply operation (liquid supply control function).
 まず、実測電力Pmの算出機能は、以下の通りである。すなわち、制御部35は、電圧測定部33から出力される実測電圧Vmと、電流測定部34から出力される実測電流Imとに基づいて、実測電力Pmを随時算出する。具体的には、制御部35は、以下の演算式(1)を用いて実測電力Pmを算出する。このようにして制御部35により算出された実測電力Pmは、この例では表示部36へ出力されるようになっている。
Pm=(Vm×Im) ……(1)
First, the calculation function of the actually measured power Pm is as follows. That is, the control unit 35 calculates the measured power Pm as needed based on the measured voltage Vm output from the voltage measuring unit 33 and the measured current Im output from the current measuring unit 34. Specifically, the control unit 35 calculates the actually measured power Pm using the following arithmetic expression (1). The measured power Pm calculated by the control unit 35 in this way is output to the display unit 36 in this example.
Pm = (Vm × Im) (1)
 次いで、上記した電力供給制御機能は、以下の通りである。すなわち、制御部35は、前述した実測温度情報Tmに基づいて制御信号CTL1を生成すると共に、その制御信号CTL1を電源部32へ出力することにより、出力電力Poutの大きさを調整(微調整)する。具体的には、実測温度情報Tmが示すシャフト11の先端P1付近の温度が略一定(望ましくは一定)に保たれるように、換言すると、この温度が予め設定された目標温度Ttと略等しくなる(望ましくは等しくなる)ように、出力電力Poutの大きさを調整する。 Next, the power supply control function described above is as follows. That is, the control unit 35 generates the control signal CTL1 based on the above-described measured temperature information Tm, and outputs the control signal CTL1 to the power supply unit 32, thereby adjusting (fine adjustment) the magnitude of the output power Pout. To do. Specifically, in order to keep the temperature near the tip P1 of the shaft 11 indicated by the actually measured temperature information Tm substantially constant (preferably constant), in other words, this temperature is substantially equal to the preset target temperature Tt. The magnitude of the output power Pout is adjusted so as to become (preferably equal).
 詳細には、制御部35は、先端P1付近の温度が目標温度Tt以下である場合には、出力電力Poutの値が増加するように制御する。一方、先端P1付近の温度が目標温度Ttを超えている場合には、出力電力Poutの値が減少するように制御する。このようにして、入力された設定電力Psを基に適切な電力調整がなされたうえで、実際の出力電力Poutが供給されるようになっている。換言すると、設定電力Psの値と、実際の出力電力Pout(実測電力Pm)の値とは、必ずしも一致していないと言える。 Specifically, the control unit 35 performs control so that the value of the output power Pout increases when the temperature near the tip P1 is equal to or lower than the target temperature Tt. On the other hand, when the temperature near the tip P1 exceeds the target temperature Tt, control is performed so that the value of the output power Pout decreases. In this manner, the actual output power Pout is supplied after appropriate power adjustment is made based on the input set power Ps. In other words, it can be said that the value of the set power Ps and the value of the actual output power Pout (measured power Pm) do not necessarily match.
 また、上記した液体供給制御機能は、以下の通りである。すなわち、制御部35は、前述した設定電力Psに基づいて制御信号CTL2を生成すると共に、その制御信号CTL2を液体供給部21へ出力することにより、液体Lの流量を制御する。 Also, the liquid supply control function described above is as follows. That is, the control unit 35 controls the flow rate of the liquid L by generating the control signal CTL2 based on the set power Ps described above and outputting the control signal CTL2 to the liquid supply unit 21.
 具体的には、制御部35は例えば図3に示したようにして、設定電力Psに基づいて液体Lの流量(液体流量F)を制御する。すなわち、設定電力Psと予め設定された所定の閾値電力Pth(例えば、31W(ワット))との値の大小を比較することにより(比較結果に応じて)、制御信号CTL2において規定する液体流量Fの値(液体供給部21における流量動作の種類)を設定する。詳細には、制御部35は、設定電力Psが閾値電力Pth以上(Ps≧Pth)である高電力状態のときには、液体流量Fが相対的に多い大流量動作(F=Fhである「HIGH」流量動作)となるように制御する。一方、設定電力Psが閾値電力Pth未満(Ps<Pth)である低電力状態のときには、液体流量Fが相対的に少ない小流量動作(F=Fl(<Fh)である「LOW」流量動作)となるように制御する。また、後述する所定の場合においては、液体流量Fが微量であるスタンバイ流量動作(F=Fst(0<Fst<Fl)である「Standby」流量動作)となるように制御する。なお、上記したFh,Fl,Fstの値の具体例としては、Fh=30cc、Fl=17cc、Fst=2ccがそれぞれ挙げられる。また、このような液体供給制御機能(液体流量Fの制御動作)の詳細については、後述する(図4~図6)。 Specifically, the control unit 35 controls the flow rate of the liquid L (liquid flow rate F) based on the set power Ps, for example, as shown in FIG. That is, the liquid flow rate F defined in the control signal CTL2 is compared by comparing the values of the set power Ps and a predetermined threshold power Pth (for example, 31 W (Watt)) set in advance (in accordance with the comparison result). (The type of flow rate operation in the liquid supply unit 21) is set. Specifically, when the set power Ps is in a high power state where the set power Ps is equal to or greater than the threshold power Pth (Ps ≧ Pth), the liquid flow rate F is relatively high (“HIGH” where F = Fh). (Flow rate operation). On the other hand, in the low power state where the set power Ps is less than the threshold power Pth (Ps <Pth), the liquid flow rate F is relatively small (“LOW” flow rate operation where F = Fl (<Fh)). Control to be Further, in a predetermined case to be described later, control is performed so that the standby flow rate operation (F = Fst (0 <Fst <Fl) “Standby” flow rate operation) in which the liquid flow rate F is very small). Specific examples of the values of Fh, Fl, and Fst described above include Fh = 30 cc, Fl = 17 cc, and Fst = 2 cc, respectively. Details of such a liquid supply control function (control operation of the liquid flow rate F) will be described later (FIGS. 4 to 6).
 表示部36は、各種の情報を表示して外部へと出力する部分(モニター)である。表示対象の情報としては、例えば、入力部31から入力される前述の各種の設定値(設定電力Ps等)や、制御部35から供給される実測電力Pm、アブレーションカテーテル1から供給される実測温度情報Tmなどが挙げられる。ただし、表示対象の情報としてはこれらの情報には限られず、他の情報を代わりに、あるいは他の情報を加えて表示するようにしてもよい。このような表示部36は、各種の方式によるディスプレイ(例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイ、有機EL(Electro Luminescence)ディスプレイなど)を用いて構成されている。 The display unit 36 is a part (monitor) that displays various information and outputs it to the outside. Examples of the information to be displayed include the above-described various set values (set power Ps and the like) input from the input unit 31, the measured power Pm supplied from the control unit 35, and the measured temperature supplied from the ablation catheter 1. Information Tm etc. are mentioned. However, the information to be displayed is not limited to these information, and other information may be displayed instead of or in addition to other information. Such a display part 36 is comprised using the display (For example, a liquid crystal display, a CRT (Cathode | Ray * Tube) display, an organic EL (Electro * Luminescence) display, etc.) by various systems.
(対極板4)
 対極板4は、例えば図1に示したように、アブレーションの際に患者9の体表に装着された状態で用いられるものである。詳細は後述するが、アブレーションの際には、この対極板4と、患者9の体内に挿入された電極カテーテル1の電極との間で、高周波通電がなされるようになっている。
(Counter electrode 4)
For example, as shown in FIG. 1, the counter electrode plate 4 is used while being attached to the body surface of the patient 9 during ablation. As will be described in detail later, high-frequency energization is performed between the counter electrode plate 4 and the electrode of the electrode catheter 1 inserted into the body of the patient 9 during ablation.
[作用・効果]
(A.基本動作)
 このカテーテルシステム5では、不整脈等の治療の際に、アブレーションカテーテル1のシャフト11が血管を通して患者9の体内に挿入される。このとき、操作者による操作部12の操作に応じて、体内に挿入されたシャフト11の先端P1付近の形状が、例えば片方向あるいは両方向に変化する。具体的には、操作者の指によって、例えば図2中の矢印で示した回転方向d1に沿って回転板122が回転されると、シャフト11内で図示しない操作用ワイヤが、基端側へ引っ張られる。その結果、シャフト11の先端付近が、図1中の矢印で示した方向d2に沿って湾曲する。
[Action / Effect]
(A. Basic operation)
In the catheter system 5, the shaft 11 of the ablation catheter 1 is inserted into the body of the patient 9 through the blood vessel when treating arrhythmia or the like. At this time, according to the operation of the operation unit 12 by the operator, the shape of the vicinity of the tip P1 of the shaft 11 inserted into the body changes, for example, in one direction or both directions. Specifically, when the rotating plate 122 is rotated by the operator's finger along, for example, the rotation direction d1 indicated by the arrow in FIG. 2, an operation wire (not shown) in the shaft 11 moves to the proximal end side. Be pulled. As a result, the vicinity of the tip of the shaft 11 is curved along the direction d2 indicated by the arrow in FIG.
 ここで、このようなアブレーションカテーテル1および対極板4に対し、電源装置3(電源部32)からアブレーションの際の電力(出力電力Pout)が供給される。これにより、上記した不整脈等の治療の際に、患者9の体表に装着された対極板4と、患者9の体内に挿入されたアブレーションカテーテル1の電極(先端電極112やリング状電極111a,111b,111c)との間で、高周波通電がなされる。このような高周波通電によって、患者9における治療対象の部位(処置部分)が選択的にアブレーションされ、不整脈等の経皮的治療がなされる。 Here, power (output power Pout) at the time of ablation is supplied to the ablation catheter 1 and the counter electrode 4 from the power supply device 3 (power supply unit 32). Thus, during the treatment of the above-described arrhythmia and the like, the counter electrode 4 mounted on the body surface of the patient 9 and the electrodes of the ablation catheter 1 inserted into the body of the patient 9 (the tip electrode 112 and the ring electrode 111a, 111b, 111c). By such high-frequency energization, a site to be treated (treatment part) in the patient 9 is selectively ablated, and percutaneous therapy such as arrhythmia is performed.
 このようなアブレーションの際に、液体供給装置2(液体供給部21)からアブレーションカテーテル1に対して灌注用の液体Lが供給される。また、電源装置3(制御部35)は、制御信号CTL2を用いて、そのような液体供給装置2における液体Lの供給動作を制御する。これにより、アブレーションカテーテル1における先端電極112の先端付近から、灌注用の液体Lが噴出する(図2中の矢印参照)。その結果、アブレーションの際の処置部分の温度が上昇しすぎて損傷が起こったり、処置部分に血栓がこびりついたりすることが回避される(血液滞留が改善される)。 During such ablation, irrigation liquid L is supplied from the liquid supply device 2 (liquid supply unit 21) to the ablation catheter 1. Further, the power supply device 3 (the control unit 35) controls the supply operation of the liquid L in the liquid supply device 2 using the control signal CTL2. Thereby, the liquid L for irrigation spouts from the vicinity of the front-end | tip of the front-end | tip electrode 112 in the ablation catheter 1 (refer the arrow in FIG. 2). As a result, it is avoided that the temperature of the treatment portion during the ablation increases excessively, causing damage and thrombus sticking to the treatment portion (blood retention is improved).
 しかしながら、処置部分へ放出される液体Lの流量が多過ぎる場合、処置部分の温度が低下し、治療の際の処置に支障が生じてしまうおそれがある。また、液体Lが体内に入り過ぎると、患者への負担が大きくなってしまうおそれもある。一方、逆に液体Lの流量が少な過ぎる場合には、処置部分の冷却や血液滞留の改善の効果が不十分となってしまうおそれがある。特に、アブレーションの際の電力が高い場合には、過度のアブレーションによる組織の損傷や血栓が生じやすいため、上記の傾向が高くなる。加えて、実際のアブレーションの際には、治療状況に応じて、電源装置3の操作者が設定電力Psの値を随時変化させる。つまり、この設定電力Psは固定値ではなく、状況に応じて変化するものである。これらのことから、灌注機構付きのカテーテルシステムでは、使用状況に応じて液体の流量を調整し、適切な灌注動作を実現することが求められる。 However, when the flow rate of the liquid L discharged to the treatment portion is too large, the temperature of the treatment portion is lowered and there is a possibility that the treatment at the time of treatment may be hindered. Moreover, if the liquid L enters the body too much, the burden on the patient may increase. On the other hand, when the flow rate of the liquid L is too small, there is a possibility that the effect of cooling the treatment portion and improving the blood retention will be insufficient. In particular, when the power at the time of ablation is high, the above-mentioned tendency is increased because tissue damage and thrombus due to excessive ablation are likely to occur. In addition, during actual ablation, the operator of the power supply device 3 changes the value of the set power Ps as needed according to the treatment status. That is, the set power Ps is not a fixed value but changes according to the situation. For these reasons, in a catheter system with an irrigation mechanism, it is required to adjust the flow rate of the liquid according to the state of use and realize an appropriate irrigation operation.
(B.アブレーション動作の詳細)
 そこで本実施の形態のカテーテルシステム5では、以下のようにして灌注用の液体Lの流量を調整(制御)したうえでアブレーション動作を行う。以下、そのようなアブレーション動作について詳細に説明する。なお、以下の図4を用いた説明では、前述した実測温度情報Tmを利用した出力電力Poutの制御動作については、説明の簡便化のため省略している。
(B. Details of Ablation Operation)
Therefore, in the catheter system 5 of the present embodiment, the ablation operation is performed after adjusting (controlling) the flow rate of the irrigation liquid L as follows. Hereinafter, such an ablation operation will be described in detail. In the following description using FIG. 4, the control operation of the output power Pout using the above-described measured temperature information Tm is omitted for the sake of simplicity.
 図4は、本実施の形態のアブレーション動作の一例を流れ図で表わしたものである。このアブレーション動作では、まず、以下のようにして、前述した「Standby」流量動作が開始される(ステップS101)。すなわち、電源装置3の操作者によって、入力部31を介して制御部35に対し「Standby」流量動作を開始させるための指示信号が入力されると、制御部35は、この「Standby」流量動作が開始されるように液体供給部21の動作を制御する。これにより、アブレーションカテーテル1における先端電極112の先端付近から処置部分に、液体流量F=Fstの微量の灌注用の液体Lが放出される。 FIG. 4 is a flowchart showing an example of the ablation operation of the present embodiment. In this ablation operation, first, the “Standby” flow rate operation described above is started as follows (step S101). That is, when an instruction signal for starting the “Standby” flow rate operation is input to the control unit 35 via the input unit 31 by the operator of the power supply device 3, the control unit 35 performs the “Standby” flow rate operation. The operation of the liquid supply unit 21 is controlled so as to be started. As a result, a small amount of irrigation liquid L with a liquid flow rate F = Fst is released from the vicinity of the distal end of the distal electrode 112 in the ablation catheter 1 to the treatment portion.
 続いて、電源装置3の操作者によって、入力部31からアブレーションの際の設定電力Psおよび目標温度Ttの値が入力されると、これらの値が制御部35へ供給されることで、値の設定がなされる(ステップS102)。そして、操作者によって、入力部31からアブレーション(焼灼動作)の開始が設定(指示)される(ステップS103)。つまり、入力部31を介して制御部35に対し、アブレーションを開始させるための指示信号が入力される。 Subsequently, when values of the set power Ps and the target temperature Tt at the time of ablation are input from the input unit 31 by the operator of the power supply device 3, these values are supplied to the control unit 35. Settings are made (step S102). Then, the operator sets (instructs) the start of ablation (cautery operation) from the input unit 31 (step S103). That is, an instruction signal for starting ablation is input to the control unit 35 via the input unit 31.
 ここで制御部35は、「Standby」流量動作の開始後であると判断した場合にのみ、このアブレーションを開始させるための指示信号を受け付けるようにするのが望ましい。逆に言うと、「Standby」流量動作の開始前であると判断した場合には、制御部35は、そのような指示信号が入力されたとしても、電源部32に対してアブレーションを開始させるための制御信号CTL1を出力しないようにする。これにより、アブレーションの開始前に、アブレーションカテーテル1内(例えば液体Lを流すためのルーメン内)を液体Lで満たしておくようにすることができる。その結果、例えば、アブレーションカテーテル1の先端部分(例えば液体Lの流出孔)から内部へ血液が流入し、内部(例えば上記ルーメン内)に血栓が詰まってしまうというおそれが回避される。 Here, it is desirable that the control unit 35 accepts an instruction signal for starting this ablation only when it is determined that the “Standby” flow rate operation has started. In other words, if it is determined that the “Standby” flow rate operation is not yet started, the control unit 35 causes the power supply unit 32 to start ablation even if such an instruction signal is input. The control signal CTL1 is not output. Thereby, the ablation catheter 1 (for example, the lumen for flowing the liquid L) can be filled with the liquid L before the start of ablation. As a result, for example, the risk that blood flows into the inside from the distal end portion of the ablation catheter 1 (for example, the outflow hole of the liquid L) and the thrombus is clogged inside (for example, the lumen) is avoided.
 次に、制御部35は、設定電力Psと閾値電力Pthとの値の大小を比較する。具体的には、この例では、設定電力Psが閾値電力Pth以上の値(Ps≧Pth)であるのか否かを判定する(ステップS104)。 Next, the control unit 35 compares the values of the set power Ps and the threshold power Pth. Specifically, in this example, it is determined whether or not the set power Ps is a value (Ps ≧ Pth) that is equal to or greater than the threshold power Pth (step S104).
(「LOW」流量動作)
 ここで、Ps<Pthであると判定した場合(ステップS104:N、低電力状態のとき)には、制御部35は、前述したように液体流量Fが相対的に少ない小流量動作(F=Flである「LOW」流量動作)が開始されるように制御する(ステップS105)。これにより、アブレーションカテーテル1における先端電極112の先端付近から処置部分に、液体流量F=Flの液体Lが放出される。
("LOW" flow rate operation)
Here, when it is determined that Ps <Pth (step S104: N, in the low power state), the control unit 35 performs a small flow rate operation (F = Control is performed so that the “LOW” flow rate operation that is Fl is started (step S105). Thereby, the liquid L with the liquid flow rate F = Fl is discharged from the vicinity of the distal end of the distal electrode 112 in the ablation catheter 1 to the treatment portion.
 次いで、このような「LOW」流量動作が開始されてから所定のアブレーション開始時待機時間が経過したのち、電源部32からアブレーションカテーテル1および対極板4への出力電力Pout(例えば高周波出力)の供給が開始される(ステップS106)。これにより前述した原理にて、低電力状態かつ「LOW」流量動作による処置部分のアブレーションが開始される。ここで、アブレーション開始時待機時間は、1~10秒程度であることが好ましく、好適な一例を示せば5秒である。 Next, after a predetermined ablation start waiting time has elapsed since the start of such a “LOW” flow rate operation, supply of output power Pout (for example, high frequency output) from the power supply unit 32 to the ablation catheter 1 and the counter electrode plate 4. Is started (step S106). Thereby, the ablation of the treatment portion by the low power state and the “LOW” flow rate operation is started on the principle described above. Here, the waiting time at the start of ablation is preferably about 1 to 10 seconds, and 5 seconds is a preferable example.
 このように、制御部35において、「Standby」流量動作から「LOW」流量動作へと切り替えた後に、電源部32におけるアブレーションの際の出力電力Poutの供給動作が開始するように制御することで、以下の利点が得られる。すなわち、一般に電力と比べて液体のほうが供給時間を要することから、そのような供給時間の相違に起因した液体不足状況の発生が回避され、より適切な灌注動作が実現可能となる。 Thus, in the control unit 35, after switching from the “Standby” flow rate operation to the “LOW” flow rate operation, control is performed so that the supply operation of the output power Pout at the time of ablation in the power supply unit 32 is started. The following advantages are obtained. That is, since the liquid generally requires a supply time as compared with the electric power, the occurrence of the liquid shortage due to the difference in the supply time is avoided, and a more appropriate irrigation operation can be realized.
 続いて、制御部35は、電源装置3の操作者によって、入力部31を介して出力電力Poutの出力を停止させるための指示信号が入力されたか否かを判断する(ステップS107)。ここで、出力停止の指示信号が入力されたと判断した場合(ステップS107:Y)には、制御部35はその旨の制御信号CTL1を電源部32へ出力することにより、出力電力Pout(高周波出力)の供給が停止される(ステップS108)。そして、出力電力Poutの供給が停止してから所定の電力供給停止時待機時間(第2の待機時間)が経過したのち、制御部35が「LOW」流量動作から「Standby」流量動作へと移行するように制御し(ステップS109)、図4に示したアブレーション動作全体が終了となる。ここで、電力供給停止時待機時間は、1~5秒程度であることが好ましく、好適な一例を示せば2秒である。 Subsequently, the control unit 35 determines whether an instruction signal for stopping the output of the output power Pout is input via the input unit 31 by the operator of the power supply device 3 (step S107). If it is determined that an output stop instruction signal has been input (step S107: Y), the control unit 35 outputs a control signal CTL1 to that effect to the power supply unit 32, thereby outputting the output power Pout (high frequency output). ) Is stopped (step S108). Then, after a predetermined power supply stop standby time (second standby time) has elapsed after the supply of the output power Pout is stopped, the control unit 35 shifts from the “LOW” flow rate operation to the “Standby” flow rate operation. Control is performed (step S109), and the entire ablation operation shown in FIG. 4 is completed. Here, the standby time when the power supply is stopped is preferably about 1 to 5 seconds, and is 2 seconds if a suitable example is shown.
 このように、制御部35においてアブレーションの際の電力供給(出力電力Poutの供給)を停止させる際には、出力電力Poutの供給動作が停止してから電力供給停止時待機時間が経過した後に「Standby」流量動作へと移行させることで、以下の利点が得られる。すなわち、出力電力Poutの供給停止後においてもある程度の期間は処置部分の高温状態が継続することに起因した、灌注用の液体Lによる冷却不足の発生が回避され、より適切な灌注動作が実現可能となる。 Thus, when stopping the power supply (supply of output power Pout) at the time of ablation in the control unit 35, after the standby time when the power supply is stopped after the supply operation of the output power Pout stops, “ The transition to “Standby” flow rate operation provides the following advantages: That is, even after the supply of the output power Pout is stopped, the occurrence of insufficient cooling due to the irrigation liquid L due to the high temperature state of the treatment part continuing for a certain period can be avoided, and a more appropriate irrigation operation can be realized. It becomes.
 また、上記した出力停止の指示信号が入力されていないと判断した場合(ステップS107:N)には、次に制御部35は、再び、設定電力Psが閾値電力Pth以上の値(Ps≧Pth)であるのか否かを判定する(ステップS110)。Ps<Pthであると判定した場合(ステップS110:N、低電力状態のとき)には、制御部35は「LOW」流量動作が継続されるように制御しつつ、ステップS107へと戻る。一方、Ps≧Pthであると判定した場合(ステップS110:Y、高電力状態のとき)には、制御部35は、現在の「LOW」流量動作から、液体流量Fが相対的に多い大流量動作(F=Fhである「HIGH」流量動作)へと切り替わるように制御する(ステップS111)。これにより、アブレーションカテーテル1における先端電極112の先端付近から処置部分に、液体流量F=Fhの液体Lが放出されるようになる。なお、その後は、後述するステップS114へと移行する。 If it is determined that the output stop instruction signal is not input (step S107: N), the control unit 35 next again sets the value of the set power Ps to be equal to or greater than the threshold power Pth (Ps ≧ Pth). ) Is determined (step S110). If it is determined that Ps <Pth (step S110: N, in the low power state), the control unit 35 performs control so that the “LOW” flow rate operation is continued, and returns to step S107. On the other hand, when it is determined that Ps ≧ Pth (step S110: Y, in the high power state), the control unit 35 determines that the liquid flow rate F is relatively large from the current “LOW” flow rate operation. Control is performed so as to switch to the operation (“HIGH” flow rate operation in which F = Fh) (step S111). Thereby, the liquid L with the liquid flow rate F = Fh is discharged from the vicinity of the distal end of the distal electrode 112 in the ablation catheter 1 to the treatment portion. Thereafter, the process proceeds to step S114 described later.
 ここで例えば図5に示したように、このような設定電力Psの低電力状態から高電力状態への移行の際には、後述する高電力状態から低電力状態への移行の際とは異なり、制御部35は、「LOW」流量動作から「HIGH」流量動作へと速やかに(後述する所定の流量動作切替時待機時間の経過を待たずに)切り替えている。このように、すぐさま「HIGH」流量動作へと切り替えることで、低電力状態から高電力状態への移行の際に、液体の流量が少な過ぎる状況(液体不足状況)が発生するのが回避される。 Here, as shown in FIG. 5, for example, when the set power Ps is shifted from the low power state to the high power state, it is different from the transition from the high power state to the low power state described later. The control unit 35 quickly switches from the “LOW” flow rate operation to the “HIGH” flow rate operation (without waiting for the elapse of a predetermined flow rate operation switching standby time to be described later). In this way, by immediately switching to the “HIGH” flow rate operation, it is possible to avoid a situation where the liquid flow rate is too low (liquid shortage situation) during the transition from the low power state to the high power state. .
(「HIGH」流量動作)
 また、前述したステップS104において、Ps≧Pthであると判定した場合(ステップS104:Y、高電力状態のとき)には、制御部35は前述した「HIGH」流量動作が開始されるように制御する(ステップS112)。これにより、アブレーションカテーテル1における先端電極112の先端付近から処置部分に、液体流量F=Fhの液体Lが放出される。
("HIGH" flow rate operation)
If it is determined in step S104 described above that Ps ≧ Pth (step S104: Y, high power state), the control unit 35 performs control so that the above-described “HIGH” flow rate operation is started. (Step S112). Thereby, the liquid L with the liquid flow rate F = Fh is discharged from the vicinity of the distal end of the distal electrode 112 in the ablation catheter 1 to the treatment portion.
 次いで、このような「HIGH」流量動作が開始されてから前述したアブレーション開始時待機時間が経過したのち、電源部32からアブレーションカテーテル1および対極板4への出力電力Pout(例えば高周波出力)の供給が開始される(ステップS113)。これにより前述した原理にて、高電力状態かつ「HIGH」流量動作による処置部分のアブレーションが開始される。なお、制御部35において、「Standby」流量動作から「HIGH」流量動作へと切り替えた後に、電源部32におけるアブレーションの際の出力電力Poutの供給動作が開始するように制御することで、前述した「LOW」流量動作時の場合と同様の利点が得られる。 Next, after the above-described waiting time at the start of ablation elapses after the start of the “HIGH” flow rate operation, supply of output power Pout (for example, high frequency output) from the power supply unit 32 to the ablation catheter 1 and the counter electrode plate 4. Is started (step S113). Thereby, the ablation of the treatment part by the high power state and the “HIGH” flow rate operation is started based on the principle described above. In addition, after the control unit 35 switches from the “Standby” flow rate operation to the “HIGH” flow rate operation, the control unit 35 performs control so that the supply operation of the output power Pout at the time of ablation in the power supply unit 32 is started. The same advantages as when operating at “LOW” flow rate are obtained.
 続いて、制御部35は、前述したステップS107と同様にして、出力電力Poutの出力を停止させるための指示信号が入力されたか否かを判断する(ステップS114)。ここで、出力停止の指示信号が入力されたと判断した場合(ステップS114:Y)には、制御部35はその旨の制御信号CTL1を電源部32へ出力することにより、出力電力Pout(高周波出力)の供給が停止される(ステップS115)。そして、出力電力Poutの供給が停止してから前述の電力供給停止時待機時間が経過したのち、制御部35は「HIGH」流量動作から「Standby」流量動作へと移行するように制御し(ステップS116)、図4に示したアブレーション動作全体が終了となる。 Subsequently, the control unit 35 determines whether or not an instruction signal for stopping the output of the output power Pout is input in the same manner as in Step S107 described above (Step S114). If it is determined that an output stop instruction signal has been input (step S114: Y), the control unit 35 outputs a control signal CTL1 to that effect to the power supply unit 32, thereby outputting the output power Pout (high frequency output). ) Is stopped (step S115). Then, after the supply of output power Pout stops, the control unit 35 performs control so as to shift from the “HIGH” flow rate operation to the “Standby” flow rate operation after the standby time at the time of power supply stop has elapsed (step S1). S116), the entire ablation operation shown in FIG. 4 is completed.
 このように「HIGH」流量動作を行っている場合においても、制御部35において出力電力Poutの供給を停止する際には、出力電力Poutの供給動作が停止してから電力供給停止時待機時間が経過した後に「Standby」流量動作へと移行させている。これにより、前述した「LOW」流量動作時の場合と同様の利点が得られる。 Even when the “HIGH” flow rate operation is performed in this way, when the supply of the output power Pout is stopped in the control unit 35, the standby time when the power supply is stopped after the supply operation of the output power Pout is stopped. After the elapse of time, it is shifted to “Standby” flow rate operation. As a result, the same advantages as those in the above-described “LOW” flow rate operation can be obtained.
 また、上記した出力停止の指示信号が入力されていないと判断した場合(ステップS114:N)には、次に制御部35は、再び、設定電力Psが閾値電力Pth以上の値(Ps≧Pth)であるのか否かを判定する(ステップS117)。Ps≧Pthであると判定した場合(ステップS117:Y、高電力状態のとき)には、制御部35は「HIGH」流量動作が継続されるように制御しつつ、ステップS114へと戻る。 If it is determined that the output stop instruction signal is not input (step S114: N), the control unit 35 next again sets the set power Ps to a value equal to or greater than the threshold power Pth (Ps ≧ Pth). ) Is determined (step S117). If it is determined that Ps ≧ Pth (step S117: Y, high power state), the control unit 35 returns to step S114 while performing control so that the “HIGH” flow rate operation is continued.
 一方、Ps<Pthであると判定した場合(ステップS117:N、低電力状態のとき)には、次に制御部35は、この(Ps<Pth)の状態(低電力状態)が予め設定された所定時間(所定の流量動作切替時待機時間;第1の待機時間)継続したか否かを判断する(ステップS118)。まだ流量動作切替時待機時間継続していないと判断した場合(ステップS118:N)には、前述したステップS114へと戻る。ここで、流量動作切替時待機時間は、1~10秒程度であることが好ましく、好適な一例を示せば5秒である。 On the other hand, when it is determined that Ps <Pth (step S117: N, in the low power state), the control unit 35 then presets this (Ps <Pth) state (low power state). It is then determined whether or not the predetermined time (predetermined waiting time when switching the flow rate operation; first waiting time) has continued (step S118). When it is determined that the waiting time for switching the flow rate operation has not been continued (step S118: N), the process returns to step S114 described above. Here, the waiting time for switching the flow rate operation is preferably about 1 to 10 seconds, and 5 seconds is shown as a suitable example.
 一方、流量動作切替時待機時間継続したと判断した場合(ステップS118:Y)には、次に制御部35は、現在の「HIGH」流量動作から「LOW」流量動作へと切り替わるように制御する(ステップS119)。これにより、アブレーションカテーテル1における先端電極112の先端付近から処置部分に、液体流量F=Flの液体Lが放出されるようになる。なお、その後は、前述したステップS107へと移行する。 On the other hand, if it is determined that the standby time for switching the flow rate operation has continued (step S118: Y), the control unit 35 controls to switch from the current “HIGH” flow rate operation to the “LOW” flow rate operation. (Step S119). As a result, the liquid L having the liquid flow rate F = Fl is discharged from the vicinity of the distal end of the distal electrode 112 in the ablation catheter 1 to the treatment portion. Thereafter, the process proceeds to step S107 described above.
 ここで例えば図6に示したように、このような設定電力Psの高電力状態から低電力状態への移行の際には、前述した低電力状態から高電力状態への移行の際とは異なり、制御部35は以下のようにして液体Lの流量動作を制御する。すなわち、制御部35は、その移行時に低電力状態が上記した流量動作切替時待機時間継続した場合には、「HIGH」流量動作をその流量動作切替時待機時間維持した後に、「LOW」流量動作へと切り替える。換言すると、そのような流量動作切替時待機時間の経過を待ってから、「HIGH」流量動作から「LOW」流量動作へと切り替えている。これにより、高電力状態から低電力状態への移行の際に、液体の流量が少な過ぎる状況(液体不足状況)が発生するのが回避される。 Here, as shown in FIG. 6, for example, when the set power Ps shifts from the high power state to the low power state, it differs from the above-described transition from the low power state to the high power state. The control unit 35 controls the flow rate operation of the liquid L as follows. That is, when the low power state continues at the above-described waiting time for switching the flow rate operation at the time of transition, the control unit 35 maintains the “HIGH” flow rate operation for the waiting time for switching the flow rate operation, and then performs the “LOW” flow rate operation. Switch to. In other words, after waiting for the elapse of such a waiting time for switching the flow rate operation, the “HIGH” flow rate operation is switched to the “LOW” flow rate operation. This avoids the occurrence of a situation where the flow rate of the liquid is too small (liquid shortage situation) during the transition from the high power state to the low power state.
 具体的には、まず、電源装置3の操作者が誤って設定電力Psを下げてしまったような場合(誤って高電力状態から低電力状態へと設定電力Psを切り替えてしまったような場合)であっても、すぐには「LOW」流量動作へは切り替わらない。したがって、そのような誤設定に起因した液体不足状況の発生が回避される。 Specifically, first, when the operator of the power supply device 3 accidentally decreases the set power Ps (when the set power Ps is accidentally switched from the high power state to the low power state). ) Does not immediately switch to “LOW” flow rate operation. Therefore, occurrence of a liquid shortage due to such an erroneous setting is avoided.
 また、前述した液体流量Fが多過ぎる場合のリスク(処置部分の温度が低下して治療の際の処置に支障が生じてしまう等)と比べ、液体流量Fが少な過ぎる場合のリスク(処置部分の冷却や血液滞留の改善の効果が不十分となってしまう)のほうが大きい(問題が深刻である)ことから、上記のような制御としている。すなわち、そのようなリスクの大小関係を考慮して、設定電力Psの移行の際には液体流量Fが相対的に多くなる期間を保持しつつも、そのような液体流量Fが多い期間が長すぎることとならないよう、流量動作切替時待機時間の経過後には液体流量Fが相対的に少なくなるように切り替えているのである。 In addition, the risk (treatment portion) when the liquid flow rate F is too small compared to the risk when the liquid flow rate F is too large (the temperature of the treatment portion is lowered and the treatment during treatment is hindered). The above-described control is performed because the effect of cooling the blood and improving blood retention is insufficient (the problem is serious). That is, in consideration of the magnitude relationship of such risks, the period during which the liquid flow rate F is relatively high during the transition of the set power Ps is maintained, while the period during which the liquid flow rate F is high is long. In order not to be too much, the liquid flow rate F is switched to be relatively small after the waiting time at the time of switching the flow rate operation.
 なお、例えば図6中の一点鎖線および「×」印で示したように、高電力状態から低電力状態への移行の際であっても、その移行時に低電力状態が流量動作切替時待機時間継続しない場合には(ステップS108:Nの場合に相当)、以下のようになる。すなわち、そのような場合には、制御部35は、「HIGH」流量動作から「LOW」流量動作への切り替えを行わない(「HIGH」流量動作を継続させる)ようにしている。これにより、この図6中の例で示したように、設定電力Psの値が閾値電力Pth付近で上下するように時間変化している状況等であっても、適切な灌注動作が実現される。 Note that, for example, as indicated by the alternate long and short dash line in FIG. 6 and the “x” mark, even during the transition from the high power state to the low power state, the low power state during the transition is the waiting time for switching the flow rate operation. When it does not continue (corresponding to the case of step S108: N), it becomes as follows. That is, in such a case, the control unit 35 does not switch from the “HIGH” flow rate operation to the “LOW” flow rate operation (continues the “HIGH” flow rate operation). As a result, as shown in the example in FIG. 6, an appropriate irrigation operation is realized even in a situation where the value of the set power Ps changes with time so as to increase and decrease near the threshold power Pth. .
 以上のように本実施の形態では、制御部35において、設定電力Psの低電力状態から高電力状態へ移行する際には「LOW」流量動作から「HIGH」流量動作へと速やかに切り替える一方、高電力状態から低電力状態へ移行する際には、その移行時に低電力状態が流量動作切替時待機時間継続した場合に、「HIGH」流量動作をその流量動作切替時待機時間維持した後で「LOW」流量動作へと切り替えるようにしたので、電力移行の際の液体不足状況の発生を回避することができる。よって、アブレーションの際に適切な灌注動作を行うことが可能となる。 As described above, in the present embodiment, the control unit 35 quickly switches from the “LOW” flow rate operation to the “HIGH” flow rate operation when the set power Ps shifts from the low power state to the high power state. When transitioning from the high power state to the low power state, if the low power state continues for the standby time when switching to the flow rate operation at the time of transition, the `` HIGH '' flow rate operation is maintained after the standby time for switching the flow rate operation is maintained. Since the operation is switched to the “LOW” flow rate operation, it is possible to avoid the occurrence of a liquid shortage during power transfer. Therefore, an appropriate irrigation operation can be performed during ablation.
 また、制御部35において、アブレーションカテーテル1内の温度測定機構により測定された温度が略一定に保たれるように出力電力Poutを調整するようにしたので、以下の効果も得られる。すなわち、入力された設定電力Psを基に適切な電力調整を行ったうえで、実際の出力電力Poutを供給することが可能となる。 In addition, since the control unit 35 adjusts the output power Pout so that the temperature measured by the temperature measurement mechanism in the ablation catheter 1 is kept substantially constant, the following effects can also be obtained. That is, it is possible to supply the actual output power Pout after performing appropriate power adjustment based on the input set power Ps.
 更に、液体供給装置2と電源装置3とが別体として構成されているようにしたので、使用状況に応じて各装置を個別に配置することが可能となるため、カテーテルシステム5全体としての利便性を向上させることができる。具体的には、例えば図1に示したように、液体供給装置2を相対的に患者9の近くに配置させることで、液体供給装置2とアブレーションカテーテル1とを繋ぐ液体供給用のチューブが短くて済むため、医師が操作し易いようになる。また、それと同時に、電源装置3を相対的に患者9から遠方に配置させることで、技師等が操作し易いようになる。このようにして、使用状況に応じた装置配置が可能となる。 Furthermore, since the liquid supply device 2 and the power supply device 3 are configured as separate bodies, it is possible to arrange each device individually according to the usage situation, so that the catheter system 5 as a whole is convenient. Can be improved. Specifically, for example, as shown in FIG. 1, the liquid supply device 2 is relatively disposed near the patient 9, so that the liquid supply tube connecting the liquid supply device 2 and the ablation catheter 1 is shortened. This makes it easier for doctors to operate. At the same time, the power supply device 3 is relatively distant from the patient 9 so that an engineer or the like can easily operate. In this way, it is possible to arrange the apparatus according to the usage situation.
<変形例>
 続いて、上記実施の形態の変形例について説明する。なお、実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
<Modification>
Then, the modification of the said embodiment is demonstrated. In addition, the same code | symbol is attached | subjected to the same thing as the component in embodiment, and description is abbreviate | omitted suitably.
 図7は、上記実施の形態の変形例に係るカテーテルシステム(カテーテルシステム5A)の全体構成例を模式的にブロック図で表したものである。本変形例のカテーテルシステム5Aもまた、患者9における不整脈等の治療の際に用いられるシステムであり、アブレーションカテーテル1、制御装置6および対極板4を備えている。 FIG. 7 is a block diagram schematically showing an example of the overall configuration of a catheter system (catheter system 5A) according to a modification of the above embodiment. The catheter system 5A of this modification is also a system used in the treatment of arrhythmia or the like in the patient 9, and includes an ablation catheter 1, a control device 6, and a counter electrode plate 4.
 制御装置6は、上記実施の形態で説明した液体供給装置2および電源装置3を一体化して単一の装置として構成したものであり、液体供給装置2および電源装置3に含まれる各ブロックを有している。すなわち、制御装置6は、液体供給部21、入力部31、電源部32、電圧測定部33、電流測定部34、制御部35および表示部36を有している。 The control device 6 is configured as a single device by integrating the liquid supply device 2 and the power supply device 3 described in the above embodiment, and each block included in the liquid supply device 2 and the power supply device 3 is provided. is doing. That is, the control device 6 includes a liquid supply unit 21, an input unit 31, a power supply unit 32, a voltage measurement unit 33, a current measurement unit 34, a control unit 35, and a display unit 36.
 このように本変形例のカテーテルシステム5Aでは、上記実施の形態のカテーテルシステム5とは異なり、液体供給装置2および電源装置3の各機能が一体化され、単一の装置(制御装置6)として構成されている。換言すると、液体供給部21、入力部31、電源部32、電圧測定部33、電流測定部34、制御部35および表示部36がそれぞれ、単一の装置である制御装置6内に設けられている。 As described above, in the catheter system 5A of this modification, unlike the catheter system 5 of the above-described embodiment, the functions of the liquid supply device 2 and the power supply device 3 are integrated to form a single device (control device 6). It is configured. In other words, the liquid supply unit 21, the input unit 31, the power supply unit 32, the voltage measurement unit 33, the current measurement unit 34, the control unit 35, and the display unit 36 are each provided in the control device 6 that is a single device. Yes.
 このような構成の本変形例においても、基本的には上記実施の形態と同様の作用により同様の効果を得ることが可能である。すなわち、電力移行の際の液体不足状況の発生を回避することができ、アブレーションの際に適切な灌注動作を行うことが可能となる。 Also in this modified example having such a configuration, basically the same effect can be obtained by the same operation as in the above embodiment. That is, it is possible to avoid the occurrence of a liquid shortage during power transfer, and to perform an appropriate irrigation operation during ablation.
 また、特に本変形例では、液体供給装置2および電源装置3の各機能が一体化されて単一の装置(制御装置6)として構成されているようにしたので、カテーテルシステム5A全体の構成の簡素化を実現することができる。 In particular, in this modification, the functions of the liquid supply device 2 and the power supply device 3 are integrated to form a single device (control device 6). Simplification can be realized.
<その他の変形例>
 以上、実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等に限定されず、種々の変形が可能である。
<Other variations>
While the present invention has been described with reference to the embodiments and modifications, the present invention is not limited to these embodiments and the like, and various modifications can be made.
 例えば、上記実施の形態等において説明した各層および各部材の材料等は限定されるものではなく、他の材料としてもよい。また、上記実施の形態では、アブレーションカテーテル1(シャフト11)の構成を具体的に挙げて説明したが、必ずしも全ての部材を備える必要はなく、また、他の部材を更に備えていてもよい。具体的には、例えばシャフト11の内部に、首振り部材として、撓み方向に変形可能な板バネが設けられているようにしてもよい。また、シャフト11における電極の構成(リング状電極および先端電極の配置や形状、個数等)は、上記実施の形態等で挙げたものには限られない。 For example, the materials and the like of each layer and each member described in the above embodiments are not limited, and other materials may be used. Moreover, in the said embodiment, although the structure of the ablation catheter 1 (shaft 11) was specifically mentioned and demonstrated, it is not necessary to necessarily provide all the members and you may further provide other members. Specifically, for example, a leaf spring that can be deformed in the bending direction may be provided inside the shaft 11 as a swinging member. Further, the configuration of the electrodes in the shaft 11 (arrangement, shape, number, and the like of the ring-shaped electrode and the tip electrode) is not limited to those described in the above embodiments.
 また、上記実施の形態等では、シャフト11における先端P1付近の形状が操作部12の操作に応じて片方向に変化するタイプのアブレーションカテーテルを例に挙げて説明したが、これには限られない。すなわち、本発明は、例えば、シャフト11における先端P1付近の形状が操作部12の操作に応じて両方向に変化するタイプのアブレーションカテーテルにも適用することが可能であり、この場合には操作用ワイヤを複数本用いることとなる。また、本発明は、シャフト11における先端P1付近の形状が固定となっているタイプのアブレーションカテーテルにも適用することが可能であり、この場合には、操作用ワイヤや回転板122等が不要となる。すなわち、ハンドル121のみで操作部が構成されることになる。 In the above-described embodiment and the like, the ablation catheter of the type in which the shape near the tip P1 of the shaft 11 changes in one direction according to the operation of the operation unit 12 has been described as an example, but the present invention is not limited thereto. . That is, the present invention can be applied to, for example, an ablation catheter of a type in which the shape of the shaft 11 near the tip P1 changes in both directions according to the operation of the operation unit 12, and in this case, the operation wire Will be used. The present invention can also be applied to an ablation catheter of a type in which the shape near the tip P1 of the shaft 11 is fixed. In this case, the operation wire, the rotating plate 122, and the like are unnecessary. Become. That is, the operation unit is configured only by the handle 121.
 更に、上記実施の形態等では、液体供給装置2および電源装置3のブロック構成を具体的に挙げて説明したが、上記実施の形態等で説明した各ブロックを必ずしも全て備える必要はなく、また、他のブロックを更に備えていてもよい。また、カテーテルシステム全体としても、上記実施の形態等で説明した各装置に加えて他の装置を更に備えていてもよい。具体的には、例えば液体供給部21(液体供給装置2または制御装置6)とアブレーションカテーテル1との間の液体供給ライン上に、液体供給の際の中継器を更に備えていてもよい。 Furthermore, in the above-described embodiment and the like, the block configurations of the liquid supply device 2 and the power supply device 3 have been specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment and the like. Other blocks may be further provided. Further, the entire catheter system may further include other devices in addition to the devices described in the above embodiments. Specifically, for example, a relay for supplying the liquid may be further provided on the liquid supply line between the liquid supply unit 21 (the liquid supply device 2 or the control device 6) and the ablation catheter 1.
 加えて、上記実施の形態等では、アブレーション動作の際の各処理を流れ図を用いて具体的に説明したが、上記実施の形態等で説明した各処理を必ずしも全て行う必要はなく、また、他の処理を更に行うようにしてもよい。具体的には、上記実施の形態等で説明した「Standby」流量動作および実測温度情報Tmを利用した出力電力Poutの制御動作のうちの少なくとも一方を、場合によっては行わないようにしてもよい。 In addition, in each of the above-described embodiments, each process in the ablation operation has been specifically described with reference to a flowchart. However, it is not always necessary to perform all the processes described in the above-described embodiment. The above process may be further performed. Specifically, at least one of the “Standby” flow rate operation and the control operation of the output power Pout using the actually measured temperature information Tm described in the above-described embodiment and the like may not be performed depending on circumstances.

Claims (7)

  1.  灌注機構を有するアブレーションカテーテルと、
     前記アブレーションカテーテルに対してアブレーションの際の電力を供給する電源部と、
     前記アブレーションカテーテルに対して灌注用の液体を供給する液体供給部と、
     前記電源部における前記電力の供給動作および前記液体供給部における前記液体の供給動作をそれぞれ制御する制御部と
     を備え、
     前記制御部は、
     前記アブレーションの際の設定電力が閾値電力以上である高電力状態のときには、前記液体の流量が相対的に多い大流量動作となるように制御する一方、
     前記設定電力が前記閾値電力未満である低電力状態のときには、前記液体の流量が相対的に少ない小流量動作となるように制御すると共に、
     前記低電力状態から前記高電力状態へ移行する際には、前記小流量動作から前記大流量動作へと速やかに切り替える一方、
     前記高電力状態から前記低電力状態へ移行する際には、その移行時に前記低電力状態が第1の待機時間継続した場合に、前記大流量動作を前記第1の待機時間維持した後に前記小流量動作へと切り替える
     カテーテルシステム。
    An ablation catheter having an irrigation mechanism;
    A power supply for supplying power during ablation to the ablation catheter;
    A liquid supply unit for supplying irrigation liquid to the ablation catheter;
    A control unit that controls the power supply operation in the power supply unit and the liquid supply operation in the liquid supply unit, respectively.
    The controller is
    In the high power state where the set power during the ablation is equal to or higher than the threshold power, the liquid is controlled so that the flow rate of the liquid is relatively large.
    In the low power state where the set power is less than the threshold power, the liquid flow rate is controlled to be a relatively small flow rate operation, and
    When transitioning from the low power state to the high power state, while quickly switching from the small flow rate operation to the large flow rate operation,
    When transitioning from the high power state to the low power state, if the low power state continues for the first standby time during the transition, the small flow rate operation is maintained after the first standby time is maintained. A catheter system that switches to flow operation.
  2.  前記制御部は、前記液体の流量が微量であるスタンバイ流量動作の開始後であると判断した場合にのみ、前記アブレーションを開始させるための指示信号を受け付ける
     請求項1に記載のカテーテルシステム。
    2. The catheter system according to claim 1, wherein the control unit receives an instruction signal for starting the ablation only when it is determined that the standby flow operation is started after the liquid flow rate is very small.
  3.  前記制御部は、前記指示信号を受け付けた場合、前記スタンバイ流量動作から前記小流量動作または前記大流量動作へと切り替えた後に、前記電力の供給動作を開始させる
     請求項2に記載のカテーテルシステム。
    The catheter system according to claim 2, wherein when the instruction signal is received, the control unit starts the power supply operation after switching from the standby flow operation to the small flow operation or the large flow operation.
  4.  前記制御部は、前記電力の供給動作を停止させる際には、前記電力の供給動作が停止してから第2の待機時間が経過した後に、前記液体の流量が微量であるスタンバイ流量動作へと移行させる
     請求項1ないし請求項3のいずれか1項に記載のカテーテルシステム。
    When the control unit stops the power supply operation, after the second standby time has elapsed since the power supply operation stopped, the control unit switches to a standby flow rate operation in which the liquid flow rate is very small. The catheter system according to any one of claims 1 to 3, wherein the catheter system is transferred.
  5.  前記アブレーションカテーテルは、その先端付近に温度測定機構を有し、
     前記制御部は、前記温度測定機構により測定された温度が略一定に保たれるように、前記電源部からの出力電力を調整する
     請求項1ないし請求項4のいずれか1項に記載のカテーテルシステム。
    The ablation catheter has a temperature measurement mechanism near its tip,
    The catheter according to any one of claims 1 to 4, wherein the control unit adjusts output power from the power supply unit so that the temperature measured by the temperature measurement mechanism is maintained substantially constant. system.
  6.  前記液体供給部が液体供給装置内に設けられると共に、
     前記電源部および前記制御部がそれぞれ、前記液体供給装置とは別体である電源装置内に設けられている
     請求項1ないし請求項5のいずれか1項に記載のカテーテルシステム。
    The liquid supply unit is provided in the liquid supply device,
    The catheter system according to any one of claims 1 to 5, wherein the power supply unit and the control unit are each provided in a power supply device that is separate from the liquid supply device.
  7.  前記液体供給部、前記電源部および前記制御部がそれぞれ、単一の装置内に設けられている
     請求項1ないし請求項5のいずれか1項に記載のカテーテルシステム。
    The catheter system according to any one of claims 1 to 5, wherein the liquid supply unit, the power supply unit, and the control unit are each provided in a single device.
PCT/JP2013/071648 2013-02-28 2013-08-09 Catheter system WO2014132463A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157023085A KR101652659B1 (en) 2013-02-28 2013-08-09 Catheter system
CN201380062659.3A CN104822336B (en) 2013-02-28 2013-08-09 conduit system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013039599A JP5737765B2 (en) 2013-02-28 2013-02-28 Catheter system
JP2013-039599 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014132463A1 true WO2014132463A1 (en) 2014-09-04

Family

ID=51427757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071648 WO2014132463A1 (en) 2013-02-28 2013-08-09 Catheter system

Country Status (5)

Country Link
JP (1) JP5737765B2 (en)
KR (1) KR101652659B1 (en)
CN (1) CN104822336B (en)
TW (1) TWI562796B (en)
WO (1) WO2014132463A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105179B2 (en) 2016-05-02 2018-10-23 Affera, Inc. Catheter sensing and irrigating
USD1014762S1 (en) 2021-06-16 2024-02-13 Affera, Inc. Catheter tip with electrode panel(s)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6608260B2 (en) * 2015-12-07 2019-11-20 日本ライフライン株式会社 Catheter system
US11478298B2 (en) 2018-01-24 2022-10-25 Medtronic Ardian Luxembourg S.A.R.L. Controlled irrigation for neuromodulation systems and associated methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501609A (en) * 2001-09-05 2005-01-20 ティシューリンク・メディカル・インコーポレーテッド Fluid-assisted medical device, fluid supply system and controller and method for the device
JP2008520382A (en) * 2004-11-23 2008-06-19 ティシューリンク メディカル,インコーポレイティド Fluid-assisted electrosurgical device using pump, electrosurgical unit and method of using the same
US20100168736A1 (en) * 2008-12-30 2010-07-01 Huisun Wang Controlled irrigated catheter ablation systems and methods thereof
WO2011139589A2 (en) * 2010-04-26 2011-11-10 Medtronic Ardian Llc Catheter apparatuses, systems, and methods for renal neuromodulation
JP2012517864A (en) * 2009-02-17 2012-08-09 ボストン サイエンティフィック サイムド,インコーポレイテッド Apparatus and method for supplying fluid to an electrophysiological device
JP2013027707A (en) * 2011-07-28 2013-02-07 Biosense Webster (Israel) Ltd Integrated ablation system using catheter with multiple irrigation lumens
JP2013031659A (en) * 2011-07-30 2013-02-14 Biosense Webster (Israel) Ltd Catheter with flow balancing valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918851B2 (en) 2005-02-14 2011-04-05 Biosense Webster, Inc. Irrigated tip catheter and method for manufacturing therefor
US8734440B2 (en) * 2007-07-03 2014-05-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheter
KR101057974B1 (en) * 2008-11-20 2011-08-19 (주)아이티시 Electrotherapy device with high frequency therapy and low frequency therapy
JP4672802B1 (en) * 2010-03-25 2011-04-20 日本ライフライン株式会社 Intracardiac defibrillation catheter system
KR101830466B1 (en) * 2010-12-24 2018-02-20 니혼라이프라인 가부시키가이샤 Electrode catheter
JP2012176119A (en) 2011-02-25 2012-09-13 Japan Lifeline Co Ltd Electrode catheter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501609A (en) * 2001-09-05 2005-01-20 ティシューリンク・メディカル・インコーポレーテッド Fluid-assisted medical device, fluid supply system and controller and method for the device
JP2008520382A (en) * 2004-11-23 2008-06-19 ティシューリンク メディカル,インコーポレイティド Fluid-assisted electrosurgical device using pump, electrosurgical unit and method of using the same
US20100168736A1 (en) * 2008-12-30 2010-07-01 Huisun Wang Controlled irrigated catheter ablation systems and methods thereof
JP2012517864A (en) * 2009-02-17 2012-08-09 ボストン サイエンティフィック サイムド,インコーポレイテッド Apparatus and method for supplying fluid to an electrophysiological device
WO2011139589A2 (en) * 2010-04-26 2011-11-10 Medtronic Ardian Llc Catheter apparatuses, systems, and methods for renal neuromodulation
JP2013027707A (en) * 2011-07-28 2013-02-07 Biosense Webster (Israel) Ltd Integrated ablation system using catheter with multiple irrigation lumens
JP2013031659A (en) * 2011-07-30 2013-02-14 Biosense Webster (Israel) Ltd Catheter with flow balancing valve

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10105179B2 (en) 2016-05-02 2018-10-23 Affera, Inc. Catheter sensing and irrigating
US10219860B2 (en) 2016-05-02 2019-03-05 Affera, Inc. Catheter sensing and irrigating
US10507057B2 (en) 2016-05-02 2019-12-17 Affera, Inc. Catheter sensing and irrigating
US10842558B2 (en) 2016-05-02 2020-11-24 Affera, Inc. Catheter sensing and irrigating
US10856937B2 (en) 2016-05-02 2020-12-08 Affera, Inc. Catheter sensing and irrigating
US10869719B2 (en) 2016-05-02 2020-12-22 Affera, Inc. Pulsed radiofrequency ablation
US10932850B2 (en) 2016-05-02 2021-03-02 Affera, Inc. Lesion formation
US10939956B2 (en) 2016-05-02 2021-03-09 Affera, Inc. Pulsed radiofrequency ablation
US11246656B2 (en) 2016-05-02 2022-02-15 Affera, Inc. Therapeutic catheter with imaging
US11471216B2 (en) 2016-05-02 2022-10-18 Affera, Inc. Catheter insertion
US11759255B2 (en) 2016-05-02 2023-09-19 Affera, Inc. Lesion formation
US11793567B2 (en) 2016-05-02 2023-10-24 Affera, Inc. Catheter insertion
US11826095B2 (en) 2016-05-02 2023-11-28 Affera, Inc. Catheter with deformable electrode
USD1014762S1 (en) 2021-06-16 2024-02-13 Affera, Inc. Catheter tip with electrode panel(s)

Also Published As

Publication number Publication date
CN104822336A (en) 2015-08-05
JP2014166236A (en) 2014-09-11
CN104822336B (en) 2017-08-18
KR20150113076A (en) 2015-10-07
JP5737765B2 (en) 2015-06-17
TWI562796B (en) 2016-12-21
TW201433325A (en) 2014-09-01
KR101652659B1 (en) 2016-08-30

Similar Documents

Publication Publication Date Title
CN107019554B (en) Temperature controlled short duration ablation
JP5737765B2 (en) Catheter system
CN106994043B (en) Temperature controlled short duration ablation
JP6980390B2 (en) Temperature-controlled short-time ablation
JP2021166802A (en) Temperature controlled short duration ablation
JP5757586B2 (en) Catheter system
JP5641591B1 (en) Catheter system
WO2014208200A1 (en) Catheter system
WO2020174651A1 (en) Catheter system
WO2020174650A1 (en) Catheter system
US20230229176A1 (en) Electromedical device control system and method of controlling electromedical device system
JP7352011B2 (en) Ablation control system
WO2017056551A1 (en) Catheter system
JP6608260B2 (en) Catheter system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023085

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876646

Country of ref document: EP

Kind code of ref document: A1