WO2014132395A1 - Control device for ac rotating machine - Google Patents

Control device for ac rotating machine Download PDF

Info

Publication number
WO2014132395A1
WO2014132395A1 PCT/JP2013/055427 JP2013055427W WO2014132395A1 WO 2014132395 A1 WO2014132395 A1 WO 2014132395A1 JP 2013055427 W JP2013055427 W JP 2013055427W WO 2014132395 A1 WO2014132395 A1 WO 2014132395A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
current
rotating machine
axis
voltage
Prior art date
Application number
PCT/JP2013/055427
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 正人
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/055427 priority Critical patent/WO2014132395A1/en
Publication of WO2014132395A1 publication Critical patent/WO2014132395A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to a control device for an AC rotating machine.
  • an adaptive observer converts a d-axis voltage command, a q-axis voltage command, a d-axis current id, and a q-axis current iq on two rotation axis coordinates (dq axes). Based on this, it is described that the angular frequency of the rotor is obtained and outputted, and the integrator obtains and outputs the rotational position of the rotor by integrating the angular frequency of the rotor.
  • the adaptive observer since the adaptive observer is configured on the rotating biaxial coordinates, the frequency component of the voltage input to the adaptive observer can be made direct current even when operating at a high rotational speed, and is inexpensive. Even when a computer is used, the synchronous motor can be controlled at a high rotational speed.
  • Patent Document 2 in a rotating machine control device, a winding resistance is calculated by applying a constant d-axis voltage to the winding when the motor is started, and dividing the d-axis voltage command value by the d-axis current detection value. It is described that the rotational phase angle of the rotor is estimated and calculated using this winding resistance during the operation of the motor. Thereby, according to Patent Document 2, it is said that the rotational phase angle can be estimated with high accuracy even when the temperature of the motor changes.
  • the speed information of an AC rotating machine is obtained by observing the state of the AC rotating machine from a mathematical model of the AC rotating machine using rotating machine constants such as resistance and inductance of the AC rotating machine. And location information. That is, in the technique described in Patent Document 1, it is assumed that the resistance of the AC rotating machine is a predetermined constant value.
  • Patent Document 2 is considered to be a method of calculating resistance by applying a DC voltage to an AC rotating machine and dividing the DC voltage by the current detected at that time.
  • the technique described in Patent Document 2 is premised on that the winding resistance can be accurately calculated as long as a constant d-axis voltage is applied to the winding.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an AC rotating machine control device that can accurately estimate the resistance value of an AC rotating machine during operation of the AC rotating machine.
  • an AC rotating machine control device is an AC rotating machine control device having a permanent magnet.
  • Current detection means for detecting current
  • current command setting means for setting and outputting a current command that is a current target value to be passed through the AC rotating machine, and the AC rotating machine based on the current command and the rotating machine current
  • Control means for calculating and outputting a voltage command to be applied
  • voltage applying means for applying a voltage to the AC rotating machine based on the voltage command
  • Resistance estimation means for calculating a resistance value, wherein the current command setting means outputs a first current command that is non-zero and a second current command that is zero, and the control means is configured to output the first current command.
  • the resistance estimation means is configured to output the first current command, the first voltage command, and the second voltage command.
  • the resistance value of the AC rotating machine is estimated based on the voltage command of No. 2.
  • one of the two types of current commands (second current command) is set to zero, and the voltage command at that time is changed to an induced voltage generated when the AC rotating machine rotates. It can be equivalent. Therefore, the influence of the induced voltage component can be reduced by subtracting the induced voltage component from the voltage command when the non-zero current command (first current command) is given. Further, by dividing the subtraction result by a non-zero current command, the resistance value R can be estimated with high accuracy even when the AC rotating machine is rotating. That is, the resistance value of the AC rotating machine can be accurately estimated during the operation of the AC rotating machine.
  • FIG. 1 is a diagram illustrating a configuration of a control device for an AC rotating machine according to a first embodiment.
  • FIG. 2 is a flowchart illustrating the operation of the control device for the AC rotating machine according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the control device for the AC rotating machine according to the second embodiment.
  • FIG. 4 is a flowchart illustrating the operation of the control device for the AC rotating machine according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration of the control device 1 of the AC rotating machine M. As illustrated in FIG.
  • the control device 1 of the AC rotating machine M performs position sensorless control. That is, the control device 1 of the AC rotating machine M obtains the position information of the rotor of the AC rotating machine M without using the position sensor, and controls the AC rotating machine M according to the position information of the rotor.
  • the AC rotating machine M is, for example, a permanent magnet synchronous machine having a three-phase winding and a permanent magnet.
  • the AC rotating machine M is, for example, a surface magnet type permanent magnet synchronous machine or a salient pole type permanent magnet synchronous machine.
  • the AC rotating machine M is a surface magnet type permanent magnet synchronous machine.
  • the AC rotating machine M is a salient pole type permanent magnet synchronous machine. The same effect can be obtained also in the case of.
  • the control device 1 operates the AC rotating machine M by supplying AC power (for example, three-phase AC power) to the AC rotating machine M.
  • the control device 1 includes a current detection unit 2, a voltage application unit 3, a control unit 4, a current command setting unit 5, and a resistance estimation unit 6.
  • the current detection means 2 detects the rotating machine current flowing in the winding of the AC rotating machine M.
  • the current detection means 2 detects the current flowing through at least two phase power lines among the three-phase power lines Lu, Lv, Lw connecting the voltage application means 3 and the AC rotation machine M, so that the AC rotation machine M Detects three-phase rotating machine current flowing in the winding.
  • FIG. 1 illustrates the case where the current detection means 2 detects the U-phase rotating machine current iu and the W-phase rotating machine current iw.
  • the current detection means 2 includes a current detector 2u and a current detector 2w.
  • the current detector 2u detects the rotating machine current flowing through the U-phase power line Lu.
  • the current detection means 2 may detect other two phases or may detect all three phases.
  • the current detection means 2 supplies the detection result to the coordinate converter 44.
  • the voltage applying means 3 applies a voltage to the AC rotating machine M based on the three-phase voltage commands Vu *, Vv *, Vw * which are the outputs of the control means 4.
  • the control means 4 receives the current command i ⁇ * from the current command setting means 5 and receives the detected rotating machine currents iu and iw from the current detection means 2.
  • the control means 4 calculates and outputs voltage commands Vu *, Vv *, Vw * to be applied to the AC rotating machine M based on the current command i ⁇ * and the rotating machine currents iu, iw.
  • control means 4 includes a coordinate converter 44, an adder / subtractor 41, a current controller 42, a voltage command setter 46, and a coordinate converter 43.
  • the coordinate converter 44 receives the detected rotating machine currents iu and iw from the current detection means 2. For example, when the detected current is a two-phase current, the coordinate converter 44 estimates the remaining one-phase current (for example, using the symmetry of the three phases) and determines the fixed coordinate system (U The current vector (iu, iv, iw) of (-VW coordinate system) is obtained. The coordinate converter 44 converts a current vector (iu, iv, iw) in a fixed three-axis orthogonal coordinate system (UVW coordinate system) into a current vector in an arbitrary fixed two-axis orthogonal coordinate system ( ⁇ - ⁇ coordinate system). Coordinates are converted to (i ⁇ , i ⁇ ). The coordinate converter 44 supplies the converted ⁇ -axis current i ⁇ to the adder / subtractor 41.
  • the adder / subtractor 41 receives the ⁇ -axis current command i ⁇ * from the current command setting means 5 and receives the ⁇ -axis current i ⁇ from the coordinate converter 44.
  • the adder / subtractor 41 calculates an ⁇ -axis current difference ⁇ i ⁇ that is a difference between the ⁇ -axis current command i ⁇ * and the ⁇ -axis current i ⁇ , and outputs it to the current controller 42.
  • the current controller 42 receives the ⁇ -axis current difference ⁇ i ⁇ from the adder / subtractor 41.
  • the current controller 42 performs proportional-integral control so that the ⁇ -axis current difference ⁇ i ⁇ becomes zero (that is, the difference between the ⁇ -axis current command i ⁇ * and the ⁇ -axis current i ⁇ substantially disappears).
  • the coordinate converter 43 calculates three-phase voltage commands Vu *, Vv *, and Vw * from the ⁇ -axis voltage command V ⁇ * and the ⁇ -axis voltage command V ⁇ *. That is, the coordinate converter 43 converts the voltage command vector (V ⁇ *, V ⁇ *) in an arbitrary fixed 2-axis orthogonal coordinate system ( ⁇ - ⁇ coordinate system) into a fixed 3-axis orthogonal coordinate system (UVW coordinate system).
  • the coordinates are converted into voltage command vectors (Vu *, Vv *, Vw *) at.
  • the coordinate converter 43 outputs the converted three-phase voltage commands Vu *, Vv *, Vw * to the voltage applying means 3.
  • the current command setting means 5 sets the ⁇ -axis current command i ⁇ * and outputs it to the control means 4.
  • the value of iset is, for example, an arbitrary non-zero value, but is preferably a value within the rated current of the AC rotating machine M.
  • the ⁇ -axis voltage command V ⁇ * that is the output of the current controller 42 of the control means 4
  • the second The voltage command V ⁇ 2 * corresponds to the current command i ⁇ 2 *.
  • the resistance estimation means 6 may hold and store the first voltage command V ⁇ 1 * and the second current command V ⁇ 2 * when received. Then, the resistance estimation unit 6 determines the resistance of the AC rotating machine M based on the ⁇ -axis current command i ⁇ * (first current command i ⁇ 1 *), the first voltage command V ⁇ 1 *, and the second current command V ⁇ 2 *. Estimate the value R. Details of the process of estimating the resistance value R by the resistance estimating means 6 will be described below. Note that “ ⁇ ” in the resistance value “R ⁇ ” shown in FIG. 1 indicates that the resistance value R is a calculated value.
  • the following equation (1) is a circuit equation of a surface magnet type permanent magnet synchronous machine (AC rotating machine M) on fixed biaxial orthogonal coordinates when voltage and current are constant.
  • Equation (1) R: resistance value, ⁇ re: rotational speed, ⁇ f: magnetic flux of permanent magnet, ⁇ : angle formed by ⁇ axis and magnetic pole direction.
  • FIG. 2 is a flowchart showing the operation of the control device 1 in the present embodiment.
  • the current command i ⁇ * set that is output from the current command setting means 5, that is, when the first current command i ⁇ 1 * is given, the ⁇ -axis voltage command that is output from the current controller 42 is the first voltage command V ⁇ 1 *, the current command.
  • the first current command i ⁇ 1 * is output from the current command setting means 5 to the control means 4, and the first voltage command V ⁇ 1 * corresponding to the first current command i ⁇ 1 * is the current controller 42 of the control means 4.
  • the resistance estimation means 6 stores the first current command i ⁇ 1 * and the first voltage command V ⁇ 1 *.
  • the resistance value R is calculated as in the following equation (6).
  • the resistance value R is obtained using V ⁇ 2 *.
  • the control means 4 outputs a first voltage command V ⁇ 1 * corresponding to the first current command i ⁇ 1 * and a second voltage command V ⁇ 2 * corresponding to the second current command i ⁇ 2 *.
  • the resistance estimation means 6 estimates the resistance value R of the AC rotating machine M based on the first current command i ⁇ 1 *, the first voltage command V ⁇ 1 *, and the second voltage command V ⁇ 2 *.
  • one of the two types of current commands i ⁇ 1 * and i ⁇ 2 * (first current command i ⁇ 1 *) is set to zero, and the second voltage command V ⁇ 2 * at that time is changed to the AC rotating machine M.
  • the influence of the induced voltage component can be reduced by subtracting the induced voltage component V ⁇ 2 * from the first voltage command V ⁇ 1 * when the first current command i ⁇ 1 * that is not zero is given.
  • the resistance value R can be accurately estimated even when the AC rotating machine M is rotating. That is, the resistance value R of the AC rotating machine M can be accurately estimated during the operation of the AC rotating machine M.
  • the resistance value R of the AC rotating machine M can be estimated while the operation of the AC rotating machine M is continued. Thereby, since it is not necessary to wait until the AC rotating machine M stops, the resistance value R can be estimated in a short time.
  • the resistance estimation means 6 subtracts the second voltage command V ⁇ 2 * from the first voltage command V ⁇ 1 *, and the subtraction result is converted to the first current.
  • the first current command i ⁇ 1 * and the second current command i ⁇ 2 * output by the current command setting means 5 are arbitrary orthogonal coordinates. This is a current command for the ⁇ axis of the ⁇ axis and the ⁇ axis.
  • the first voltage command V ⁇ 1 * and the second voltage command V ⁇ 2 * are ⁇ -axis voltage commands.
  • the configuration related to the ⁇ axis and the configuration related to the ⁇ axis may be interchanged.
  • the first current command i ⁇ 1 * and the second current command i ⁇ 2 * output by the current command setting means 5 are an ⁇ -axis that is arbitrary orthogonal coordinates and This is the current command for the ⁇ axis of the ⁇ axis.
  • the first voltage command V ⁇ 1 * and the second voltage command V ⁇ 2 * are ⁇ -axis voltage commands. Even in this case, since the value of one coordinate axis can be used as a control amount for obtaining two types of current commands and two types of voltage commands, the control device 1 can be simply configured.
  • Embodiment 2 the control device 100 for the AC rotating machine M according to the second embodiment will be described. Below, it demonstrates focusing on a different part from Embodiment 1.
  • FIG. 1 the control device 100 for the AC rotating machine M according to the second embodiment.
  • the first current command i ⁇ 1 * is changed using the fact that the voltage command (second voltage command) V ⁇ 2 * when the second current command i ⁇ 2 * is given is equivalent to the induced voltage component.
  • the induced voltage component obtained by the above equation (4) includes “ ⁇ ” (the angle between the ⁇ axis and the magnetic pole position of the AC rotating machine, that is, the phase angle), the rotation of the AC rotating machine M
  • the angle between the ⁇ axis and the magnetic pole position of the AC rotating machine, that is, the phase angle
  • the value of the phase angle ⁇ changes between when the first current command i ⁇ 1 * is given and when the second current command i ⁇ 2 * is given.
  • the value of sin ⁇ in the above equation (4) changes, the induced voltage component calculated by the above equation (4) is shifted by that amount, and an error may occur in the estimated resistance value R. is there.
  • the accuracy is high.
  • a method capable of estimating the resistance value R well is provided.
  • control device 100 of the AC rotating machine M replaces the control unit 4, the current command setting unit 5, and the resistance estimation unit 6 (see FIG. 1) with a control unit 104, a current command setting unit 105, and a resistance estimation. Means 106 are provided.
  • control means 104 In the control means 104, the difference from FIG. 1 is that an adder / subtractor and a current controller are also added to the ⁇ axis. That is, the control means 104 has an adder / subtractor 145 and a current controller 146 instead of the voltage command setter 46 (see FIG. 1).
  • the adder / subtractor 145 receives the ⁇ -axis current command i ⁇ * from the current command setting means 105 and receives the ⁇ -axis current i ⁇ from the coordinate converter 44.
  • the adder / subtractor 145 calculates a ⁇ -axis current difference ⁇ i ⁇ , which is a difference between the ⁇ -axis current command i ⁇ * and the ⁇ -axis current i ⁇ , and outputs it to the current controller 146.
  • the current controller 146 receives the ⁇ -axis current difference ⁇ i ⁇ from the adder / subtractor 145.
  • the current controller 146 performs proportional-integral control so that the ⁇ -axis current difference ⁇ i ⁇ becomes zero (that is, the difference between the ⁇ -axis current command i ⁇ * and the ⁇ -axis current i ⁇ is substantially eliminated).
  • the current command setting means 105 sets the ⁇ -axis current command i ⁇ * and the ⁇ -axis current command i ⁇ * and outputs them to the control means 104.
  • the command i ⁇ * 0 is output as the second current command i2 *.
  • the first voltage command V ⁇ 1 * and the first voltage command V ⁇ 1 * are designated as the second voltage command V ⁇ 2 * and the second voltage command V ⁇ 2 *, respectively, corresponding to the second current command i2 *.
  • the angle (phase angle) formed between the ⁇ axis and the magnetic pole position when the first current command i1 * is given is ⁇ 1, and the ⁇ axis and the magnetic pole position when the second current command i2 * is given.
  • the angle (phase angle) is ⁇ 2.
  • the phase angle ⁇ 1 can be calculated as in the following equation (13). That is, by using the first voltage commands V ⁇ 1 * and V ⁇ 1 * and the second voltage commands V ⁇ 2 * and V ⁇ 2 *, the ⁇ axis and the AC rotating machine M when the first current command i1 * is given.
  • the angle (phase angle) ⁇ 1 formed by can be calculated.
  • the resistance value R includes the value iset of the first current command i1 *, the phase angle ⁇ 1 obtained by the above equation (13), and the following equation (14) which is the square root of the above equation (11).
  • the phase angle ⁇ 1 can be calculated accurately, the induced voltage component can also be accurately determined, and as a result, the resistance value R can also be accurately determined.
  • FIG. 4 is a flowchart showing the operation of the control device 100 in the present embodiment.
  • the first current command i1 * is output from the current command setting means 105 to the control means 104
  • the first voltage command V ⁇ 1 * corresponding to the first current command i1 * is the current controller 42 of the control means 104.
  • From the current controller 146 of the control unit 104 to the resistance estimation unit 106 From the current controller 146 of the control unit 104 to the resistance estimation unit 106.
  • the first voltage command V ⁇ 1 * corresponding to the first current command i1 * is output from the current controller 146 to the resistance estimation unit 106.
  • the resistance estimation means 106 stores the first current command i1 * and the first voltage commands V ⁇ 1 * and V ⁇ 1 *.
  • the current controller 42 outputs the second voltage command V ⁇ 2 * corresponding to the second current command i2 * from the current controller 146 of the control means 104 to the resistance estimation means 106. That is, the resistance estimation means 106 acquires the second voltage commands V ⁇ 2 * and V ⁇ 2 *. At this time, the resistance estimating means 106 may store the second voltage commands V ⁇ 2 * and V ⁇ 2 *.
  • the resistance value R is obtained using the ⁇ -axis and ⁇ -axis second voltage commands V ⁇ 2 * and V ⁇ 2 * such that the ⁇ -axis current is equal to zero.
  • the value of the phase angle ⁇ changes between when the AC rotating machine M is rotating at a high speed and the first current command i1 * is given and when the second current command i2 * is given. Even in this case, the resistance value R can be accurately obtained in accordance with the change in the value of the phase angle ⁇ .
  • the current command setting unit 105 sets the ⁇ -axis current command for the ⁇ -axis and ⁇ -axis, which are arbitrary orthogonal coordinates, to i ⁇ * and ⁇
  • the control means 104 includes an ⁇ -axis voltage command (first voltage command) V ⁇ 1 *, a ⁇ -axis voltage command (first voltage command) V ⁇ 1 * corresponding to the first current command i1 *, and a second current command i2.
  • the resistance value R can be estimated while taking into account the change in the value of the phase angle ⁇ .
  • the value of the phase angle ⁇ changes between when the AC rotating machine M is rotating at a high speed and the first current command i1 * is given and when the second current command i2 * is given. Even in this case, the resistance value R can be accurately obtained in accordance with the change in the value of the phase angle ⁇ .
  • control device for an AC rotating machine is useful for position sensorless control.
  • 1,100 control device 2 current detection means, 3 voltage application means, 4 control means, 5 current command setting means, 6 resistance estimation means.

Abstract

A control device for an AC rotating machine having a permanent magnet comprises: a current detection means for detecting the rotating machine current flowing in the AC rotating machine; a current command setting means for setting and outputting a current command representing a target value for the current flowing in the AC rotating machine; a control means for calculating and outputting a voltage command which is applied to the AC rotating machine on the basis of the current command and the rotating machine current; a voltage application means for applying voltage to the AC rotating machine on the basis of the voltage command; and a resistance estimation means for calculating the resistance value of the AC rotating machine on the basis of the current command and the voltage command. The current command setting means outputs a first current command which is nonzero and a second current command which is zero. The control means outputs a first voltage command corresponding to the first current command and a second voltage command corresponding to the second current command. The resistance estimation means estimates the resistance value of the AC rotating machine on the basis of the first current command, the first voltage command, and the second voltage command.

Description

交流回転機の制御装置AC rotating machine control device
 本発明は、交流回転機の制御装置に関する。 The present invention relates to a control device for an AC rotating machine.
 回転子に永久磁石を有する交流回転機の速度や位置を精度良く制御する場合、永久磁石の磁極位置を把握する必要がある。エンコーダやレゾルバなどの位置センサを取り付けることで、磁極位置を把握することが可能となる。しかしながら、位置センサを取り付けることにより、コストアップ、配線が必要であり、また、位置センサ分体積の増加などのデメリットが生じる。これらのデメリットを解決する方法として、位置センサレス制御がある。 When accurately controlling the speed and position of an AC rotating machine having a permanent magnet in the rotor, it is necessary to grasp the magnetic pole position of the permanent magnet. By attaching a position sensor such as an encoder or resolver, the magnetic pole position can be grasped. However, mounting the position sensor requires cost increase and wiring, and causes disadvantages such as an increase in volume for the position sensor. As a method for solving these disadvantages, there is position sensorless control.
 特許文献1には、同期電動機の制御装置において、適応オブザーバが、回転二軸座標(d-q軸)上のd軸電圧指令、q軸電圧指令、d軸電流id、及びq軸電流iqに基づいて回転子の角周波数を求めて出力し、積分器が回転子の角周波数を積分して回転子の回転位置を求めて出力することが記載されている。これにより、特許文献1によれば、適応オブザーバを回転二軸座標上で構成しているので、高い回転速度で運転する時でも適応オブザーバに入力される電圧の周波数成分を直流にでき、安価な計算機を用いる場合であっても、高い回転速度で同期電動機を制御できるとされている。 In Patent Document 1, in a control apparatus for a synchronous motor, an adaptive observer converts a d-axis voltage command, a q-axis voltage command, a d-axis current id, and a q-axis current iq on two rotation axis coordinates (dq axes). Based on this, it is described that the angular frequency of the rotor is obtained and outputted, and the integrator obtains and outputs the rotational position of the rotor by integrating the angular frequency of the rotor. Thus, according to Patent Document 1, since the adaptive observer is configured on the rotating biaxial coordinates, the frequency component of the voltage input to the adaptive observer can be made direct current even when operating at a high rotational speed, and is inexpensive. Even when a computer is used, the synchronous motor can be controlled at a high rotational speed.
 特許文献2には、回転機制御装置において、モータの起動時に巻線に一定のd軸電圧を印加し、d軸電圧指令値をd軸電流検出値で除することにより巻線抵抗を算出し、モータの動作時にこの巻線抵抗を用いてロータの回転位相角を推定演算することが記載されている。これにより、特許文献2によれば、モータの温度が変化する場合でも回転位相角を高精度に推定することができるとされている。 In Patent Document 2, in a rotating machine control device, a winding resistance is calculated by applying a constant d-axis voltage to the winding when the motor is started, and dividing the d-axis voltage command value by the d-axis current detection value. It is described that the rotational phase angle of the rotor is estimated and calculated using this winding resistance during the operation of the motor. Thereby, according to Patent Document 2, it is said that the rotational phase angle can be estimated with high accuracy even when the temperature of the motor changes.
特許4672236号公報Japanese Patent No. 4672236 特開2006-141123号公報JP 2006-141123 A
 特許文献1に記載の技術では、交流回転機の抵抗、インダクタンスなどの回転機定数を用いて、交流回転機の数式モデルから、交流回転機の状態を観測することで、交流回転機の速度情報や位置情報を推定していると考えられる。すなわち、特許文献1に記載の技術では、交流回転機の抵抗が予め定められた一定の値であることが前提となっている。 In the technique described in Patent Document 1, the speed information of an AC rotating machine is obtained by observing the state of the AC rotating machine from a mathematical model of the AC rotating machine using rotating machine constants such as resistance and inductance of the AC rotating machine. And location information. That is, in the technique described in Patent Document 1, it is assumed that the resistance of the AC rotating machine is a predetermined constant value.
 しかし、特許文献1に記載の技術では、実際の抵抗が温度により変化するため、周囲温度の影響を受けて、交流回転機の回転機定数(抵抗)に大幅な誤差が発生するので、回転子の回転位置を正確に推定することが困難であると考えられる。すなわち、交流回転機の抵抗が実際の抵抗と大幅に異なっている可能性がある。 However, in the technique described in Patent Document 1, since the actual resistance changes depending on the temperature, a large error occurs in the rotating machine constant (resistance) of the AC rotating machine due to the influence of the ambient temperature. It is thought that it is difficult to accurately estimate the rotation position. In other words, the resistance of the AC rotating machine may be significantly different from the actual resistance.
 特許文献2に記載の技術では、交流回転機に直流電圧を印加し、その直流電圧をその時検出した電流で除算することで抵抗を算出する方法であると考えられる。特許文献2に記載の技術では、巻線に一定のd軸電圧を印加しさえすれば、巻線抵抗を正確に算出できることが前提となっている。 The technique described in Patent Document 2 is considered to be a method of calculating resistance by applying a DC voltage to an AC rotating machine and dividing the DC voltage by the current detected at that time. The technique described in Patent Document 2 is premised on that the winding resistance can be accurately calculated as long as a constant d-axis voltage is applied to the winding.
 しかし、特許文献2に記載の発明は、交流回転機の磁極位置と同一方向に電圧を印加しない場合、印加した電圧によって、トルクが発生して交流回転機が回転する可能性がある。トルクが発生して交流回転機が回転すると、交流回転機に誘起電圧が生じ、d軸電圧指令値をd軸電流検出値で除した値は、実際の巻線抵抗と大幅に異なっている可能性がある。 However, in the invention described in Patent Document 2, when no voltage is applied in the same direction as the magnetic pole position of the AC rotating machine, there is a possibility that torque is generated by the applied voltage and the AC rotating machine rotates. When torque is generated and the AC rotating machine rotates, an induced voltage is generated in the AC rotating machine, and the value obtained by dividing the d-axis voltage command value by the d-axis current detection value may be significantly different from the actual winding resistance. There is sex.
 本発明は、上記に鑑みてなされたものであって、交流回転機の動作時に交流回転機の抵抗値を正確に推定できる交流回転機の制御装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an AC rotating machine control device that can accurately estimate the resistance value of an AC rotating machine during operation of the AC rotating machine.
 上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかる交流回転機の制御装置は、永久磁石を有する交流回転機の制御装置において、前記交流回転機に流れる回転機電流を検出する電流検出手段と、前記交流回転機に流す電流目標値である電流指令を設定し出力する電流指令設定手段と、前記電流指令及び前記回転機電流に基づいて、前記交流回転機に印加する電圧指令を演算し出力する制御手段と、前記電圧指令に基づいて、前記交流回転機に電圧を印加する電圧印加手段と、前記電流指令及び前記電圧指令に基づいて、前記交流回転機の抵抗値を演算する抵抗推定手段とを備え、前記電流指令設定手段は、非ゼロの第1の電流指令、及びゼロである第2の電流指令を出力し、前記制御手段は、前記第1の電流指令に対応する第1の電圧指令、及び前記第2の電流指令に対応する第2の電圧指令を出力し、前記抵抗推定手段は、前記第1の電流指令、前記第1の電圧指令、及び前記第2の電圧指令に基づいて、前記交流回転機の抵抗値を推定することを特徴とする。 In order to solve the above-described problems and achieve the object, an AC rotating machine control device according to one aspect of the present invention is an AC rotating machine control device having a permanent magnet. Current detection means for detecting current, current command setting means for setting and outputting a current command that is a current target value to be passed through the AC rotating machine, and the AC rotating machine based on the current command and the rotating machine current Control means for calculating and outputting a voltage command to be applied, voltage applying means for applying a voltage to the AC rotating machine based on the voltage command, and the AC rotating machine based on the current command and the voltage command Resistance estimation means for calculating a resistance value, wherein the current command setting means outputs a first current command that is non-zero and a second current command that is zero, and the control means is configured to output the first current command. Current command A corresponding first voltage command and a second voltage command corresponding to the second current command are output, and the resistance estimation means is configured to output the first current command, the first voltage command, and the second voltage command. The resistance value of the AC rotating machine is estimated based on the voltage command of No. 2.
 本発明によれば、2種類の電流指令のうち、1つ(第2の電流指令)はゼロとすることで、そのときの電圧指令を、交流回転機が回転することで発生する誘起電圧と等価なものとすることができる。よって、ゼロでない電流指令(第1の電流指令)を与えたときの電圧指令から誘起電圧分を減算することで、誘起電圧成分の影響を低減することができる。また、その減算結果をゼロでない電流指令で除算することで、交流回転機が回転していても精度よく抵抗値Rを推定することができる。すなわち、交流回転機の動作時に交流回転機の抵抗値を正確に推定できる。 According to the present invention, one of the two types of current commands (second current command) is set to zero, and the voltage command at that time is changed to an induced voltage generated when the AC rotating machine rotates. It can be equivalent. Therefore, the influence of the induced voltage component can be reduced by subtracting the induced voltage component from the voltage command when the non-zero current command (first current command) is given. Further, by dividing the subtraction result by a non-zero current command, the resistance value R can be estimated with high accuracy even when the AC rotating machine is rotating. That is, the resistance value of the AC rotating machine can be accurately estimated during the operation of the AC rotating machine.
図1は、実施の形態1にかかる交流回転機の制御装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a control device for an AC rotating machine according to a first embodiment. 図2は、実施の形態1にかかる交流回転機の制御装置の動作を示すフローチャートである。FIG. 2 is a flowchart illustrating the operation of the control device for the AC rotating machine according to the first embodiment. 図3は、実施の形態2にかかる交流回転機の制御装置の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of the control device for the AC rotating machine according to the second embodiment. 図4は、実施の形態2にかかる交流回転機の制御装置の動作を示すフローチャートである。FIG. 4 is a flowchart illustrating the operation of the control device for the AC rotating machine according to the second embodiment.
 以下に、本発明にかかる交流回転機の制御装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a control device for an AC rotating machine according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 実施の形態1にかかる交流回転機Mの制御装置1について図1を用いて説明する。図1は、交流回転機Mの制御装置1の構成を示す図である。
Embodiment 1 FIG.
A control device 1 for an AC rotating machine M according to a first embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating a configuration of the control device 1 of the AC rotating machine M. As illustrated in FIG.
 交流回転機Mの制御装置1は、位置センサレス制御を行う。すなわち、交流回転機Mの制御装置1は、位置センサを用いることなく交流回転機Mの回転子の位置情報を得て、回転子の位置情報に応じて交流回転機Mを制御する。交流回転機Mは、例えば、3相巻線及び永久磁石を有する永久磁石同期機である。交流回転機Mは、例えば、表面磁石型の永久磁石同期機、又は突極型の永久磁石同期機である。なお、以下では、説明を簡単にするために、交流回転機Mが表面磁石型の永久磁石同期機である場合について例示的に説明するが、交流回転機Mが突極型の永久磁石同期機である場合についても同様の効果を得ることが出来る。 The control device 1 of the AC rotating machine M performs position sensorless control. That is, the control device 1 of the AC rotating machine M obtains the position information of the rotor of the AC rotating machine M without using the position sensor, and controls the AC rotating machine M according to the position information of the rotor. The AC rotating machine M is, for example, a permanent magnet synchronous machine having a three-phase winding and a permanent magnet. The AC rotating machine M is, for example, a surface magnet type permanent magnet synchronous machine or a salient pole type permanent magnet synchronous machine. In the following, in order to simplify the description, the case where the AC rotating machine M is a surface magnet type permanent magnet synchronous machine will be described as an example. However, the AC rotating machine M is a salient pole type permanent magnet synchronous machine. The same effect can be obtained also in the case of.
 制御装置1は、交流回転機Mに交流電力(例えば、3相交流電力)を供給することで、交流回転機Mを動作させる。例えば、制御装置1は、電流検出手段2、電圧印加手段3、制御手段4、電流指令設定手段5、及び抵抗推定手段6を備える。 The control device 1 operates the AC rotating machine M by supplying AC power (for example, three-phase AC power) to the AC rotating machine M. For example, the control device 1 includes a current detection unit 2, a voltage application unit 3, a control unit 4, a current command setting unit 5, and a resistance estimation unit 6.
 電流検出手段2は、交流回転機Mの巻線に流れる回転機電流を検出する。例えば、電流検出手段2は、電圧印加手段3及び交流回転機Mを接続する3相の電力線Lu,Lv,Lwのうち少なくとも2相の電力線に流れる電流を検出することで、交流回転機Mの巻線に流れる3相の回転機電流を検出する。 The current detection means 2 detects the rotating machine current flowing in the winding of the AC rotating machine M. For example, the current detection means 2 detects the current flowing through at least two phase power lines among the three-phase power lines Lu, Lv, Lw connecting the voltage application means 3 and the AC rotation machine M, so that the AC rotation machine M Detects three-phase rotating machine current flowing in the winding.
 例えば、図1では、電流検出手段2がU相の回転機電流iuとW相の回転機電流iwを検出する場合について例示している。電流検出手段2は、電流検出器2u及び電流検出器2wを有する。電流検出器2uは、U相の電力線Luに流れる回転機電流を検出する。なお、電流検出手段2は、他の2相を検出するものでもよいし、3相すべてを検出するものでも構わない。 For example, FIG. 1 illustrates the case where the current detection means 2 detects the U-phase rotating machine current iu and the W-phase rotating machine current iw. The current detection means 2 includes a current detector 2u and a current detector 2w. The current detector 2u detects the rotating machine current flowing through the U-phase power line Lu. The current detection means 2 may detect other two phases or may detect all three phases.
 電流検出手段2は、検出結果を座標変換器44へ供給する。 The current detection means 2 supplies the detection result to the coordinate converter 44.
 電圧印加手段3は、制御手段4の出力である3相電圧指令Vu*,Vv*,Vw*に基づいて、交流回転機Mに電圧を印加する。 The voltage applying means 3 applies a voltage to the AC rotating machine M based on the three-phase voltage commands Vu *, Vv *, Vw * which are the outputs of the control means 4.
 制御手段4は、電流指令iα*を電流指令設定手段5から受けるとともに、検出された回転機電流iu,iwを電流検出手段2から受ける。制御手段4は、電流指令iα*、及び回転機電流iu,iwに基づいて、交流回転機Mに印加する電圧指令Vu*,Vv*,Vw*を演算し出力する。 The control means 4 receives the current command iα * from the current command setting means 5 and receives the detected rotating machine currents iu and iw from the current detection means 2. The control means 4 calculates and outputs voltage commands Vu *, Vv *, Vw * to be applied to the AC rotating machine M based on the current command iα * and the rotating machine currents iu, iw.
 例えば、制御手段4は、座標変換器44、加減算器41、電流制御器42、電圧指令設定器46、及び座標変換器43を有する。 For example, the control means 4 includes a coordinate converter 44, an adder / subtractor 41, a current controller 42, a voltage command setter 46, and a coordinate converter 43.
 座標変換器44は、検出された回転機電流iu,iwを電流検出手段2から受ける。座標変換器44は、例えば、検出されたのが2相の電流である場合、(例えば、3相の対称性等を利用して)残りの1相の電流を推定し、固定座標系(U-V-W座標系)の電流ベクトル(iu,iv,iw)を求める。座標変換器44は、固定3軸直交座標系(U-V-W座標系)における電流ベクトル(iu,iv,iw)を任意の固定2軸直交座標系(α―β座標系)における電流ベクトル(iα,iβ)に座標変換する。座標変換器44は、変換されたα軸電流iαを加減算器41へ供給する。 The coordinate converter 44 receives the detected rotating machine currents iu and iw from the current detection means 2. For example, when the detected current is a two-phase current, the coordinate converter 44 estimates the remaining one-phase current (for example, using the symmetry of the three phases) and determines the fixed coordinate system (U The current vector (iu, iv, iw) of (-VW coordinate system) is obtained. The coordinate converter 44 converts a current vector (iu, iv, iw) in a fixed three-axis orthogonal coordinate system (UVW coordinate system) into a current vector in an arbitrary fixed two-axis orthogonal coordinate system (α-β coordinate system). Coordinates are converted to (iα, iβ). The coordinate converter 44 supplies the converted α-axis current iα to the adder / subtractor 41.
 加減算器41は、α軸電流指令iα*を電流指令設定手段5から受け、α軸電流iαを座標変換器44から受ける。加減算器41は、α軸電流指令iα*とα軸電流iαとの差分であるα軸電流差分Δiαを演算し電流制御器42へ出力する。 The adder / subtractor 41 receives the α-axis current command iα * from the current command setting means 5 and receives the α-axis current iα from the coordinate converter 44. The adder / subtractor 41 calculates an α-axis current difference Δiα that is a difference between the α-axis current command iα * and the α-axis current iα, and outputs it to the current controller 42.
 電流制御器42は、α軸電流差分Δiαを加減算器41から受ける。電流制御器42は、α軸電流差分Δiαがゼロになるように(すなわち、α軸電流指令iα*とα軸電流iαとの差分が実質的に無くなるように)比例積分制御する。これにより、電流制御器42は、iα=iα*となるように固定2軸直交座標上のα軸電圧指令Vα*を演算し座標変換器43及び抵抗推定手段6へ出力する。 The current controller 42 receives the α-axis current difference Δiα from the adder / subtractor 41. The current controller 42 performs proportional-integral control so that the α-axis current difference Δiα becomes zero (that is, the difference between the α-axis current command iα * and the α-axis current iα substantially disappears). As a result, the current controller 42 calculates the α-axis voltage command Vα * on the fixed biaxial orthogonal coordinates so that iα = iα *, and outputs the α-axis voltage command Vα * to the coordinate converter 43 and the resistance estimating means 6.
 電圧指令設定器46は、固定2軸直交座標上のβ軸電圧指令Vβ*(=0)を設定し座標変換器43へ出力する。 The voltage command setter 46 sets a β-axis voltage command Vβ * (= 0) on fixed two-axis orthogonal coordinates and outputs it to the coordinate converter 43.
 座標変換器43は、α軸電圧指令Vα*を電流制御器42から受け、β軸電圧指令Vβ*(=0)を電圧指令設定器46から受ける。座標変換器43は、α軸電圧指令Vα*及びβ軸電圧指令Vβ*から3相電圧指令Vu*,Vv*,Vw*を演算する。すなわち、座標変換器43は、任意の固定2軸直交座標系(α―β座標系)における電圧指令ベクトル(Vα*,Vβ*)を固定3軸直交座標系(U-V-W座標系)における電圧指令ベクトル(Vu*,Vv*,Vw*)に座標変換する。座標変換器43は、変換された3相電圧指令Vu*,Vv*,Vw*を電圧印加手段3へ出力する。 The coordinate converter 43 receives the α-axis voltage command Vα * from the current controller 42 and receives the β-axis voltage command Vβ * (= 0) from the voltage command setter 46. The coordinate converter 43 calculates three-phase voltage commands Vu *, Vv *, and Vw * from the α-axis voltage command Vα * and the β-axis voltage command Vβ *. That is, the coordinate converter 43 converts the voltage command vector (Vα *, Vβ *) in an arbitrary fixed 2-axis orthogonal coordinate system (α-β coordinate system) into a fixed 3-axis orthogonal coordinate system (UVW coordinate system). The coordinates are converted into voltage command vectors (Vu *, Vv *, Vw *) at. The coordinate converter 43 outputs the converted three-phase voltage commands Vu *, Vv *, Vw * to the voltage applying means 3.
 電流指令設定手段5は、α軸電流指令iα*を設定し制御手段4へ出力する。本実施の形態では、電流指令設定手段5は、α軸電流指令iα*=isetを第1の電流指令iα1*として出力し、α軸電流指令iα*=0を第2の電流指令iα2*として出力する。isetの値は、例えば非ゼロの任意の値であるが、交流回転機Mの定格電流以内の値であることが望ましい。 The current command setting means 5 sets the α-axis current command iα * and outputs it to the control means 4. In the present embodiment, the current command setting means 5 outputs the α-axis current command iα * = set as the first current command iα1 *, and the α-axis current command iα * = 0 as the second current command iα2 *. Output. The value of iset is, for example, an arbitrary non-zero value, but is preferably a value within the rated current of the AC rotating machine M.
 なお、制御手段4の電流制御器42の出力であるα軸電圧指令Vα*において、第1の電流指令iα1*(=iset)に対応するものを第1の電圧指令Vα1*とし、第2の電流指令iα2*に対応するものを第2の電圧指令Vα2*とする。 In the α-axis voltage command Vα * that is the output of the current controller 42 of the control means 4, the one corresponding to the first current command iα1 * (= set) is defined as the first voltage command Vα1 *, and the second The voltage command Vα2 * corresponds to the current command iα2 *.
 抵抗推定手段6は、α軸電流指令iα*を電流指令設定手段5から受け、α軸電圧指令Vα*を制御手段4の電流制御器42から受ける。例えば、抵抗推定手段6は、α軸電流指令iα*=isetに応じて電流制御器42で生成されたα軸電圧指令Vα*を、第1の電流指令iα1*に対応する第1の電圧指令Vα1*として電流制御器42から受ける。例えば、抵抗推定手段6は、α軸電流指令iα*=0に応じて電流制御器42で生成されたα軸電圧指令Vα*を、第2の電流指令iα2*に対応する第2の電流指令Vα2*として電流制御器42から受ける。このとき、抵抗推定手段6は、第1の電圧指令Vα1*及び第2の電流指令Vα2*をそれぞれ受けた際に保持し記憶してもよい。そして、抵抗推定手段6は、α軸電流指令iα*(第1の電流指令iα1*)、第1の電圧指令Vα1*、及び第2の電流指令Vα2*に基づいて、交流回転機Mの抵抗値Rを推定する。以下に抵抗推定手段6による抵抗値Rの推定処理の詳細を記す。なお、図1に示す抵抗値「R^」の「^」は、抵抗値Rが演算値であることを表している。 Resistance estimation means 6 receives α-axis current command iα * from current command setting means 5 and receives α-axis voltage command Vα * from current controller 42 of control means 4. For example, the resistance estimation means 6 uses the α-axis voltage command Vα * generated by the current controller 42 in response to the α-axis current command iα * = set as the first voltage command corresponding to the first current command iα1 *. Received from the current controller 42 as Vα1 *. For example, the resistance estimation means 6 uses the α-axis voltage command Vα * generated by the current controller 42 in response to the α-axis current command iα * = 0 as the second current command corresponding to the second current command iα2 *. Received from the current controller 42 as Vα2 *. At this time, the resistance estimation means 6 may hold and store the first voltage command Vα1 * and the second current command Vα2 * when received. Then, the resistance estimation unit 6 determines the resistance of the AC rotating machine M based on the α-axis current command iα * (first current command iα1 *), the first voltage command Vα1 *, and the second current command Vα2 *. Estimate the value R. Details of the process of estimating the resistance value R by the resistance estimating means 6 will be described below. Note that “^” in the resistance value “R ^” shown in FIG. 1 indicates that the resistance value R is a calculated value.
 まず、交流回転機Mが回転しても正確に抵抗値Rを演算できる原理について説明する。 First, the principle that the resistance value R can be accurately calculated even when the AC rotating machine M rotates will be described.
 次の(1)式は、電圧、電流が一定であるときの、固定2軸直交座標上での表面磁石型の永久磁石同期機(交流回転機M)の回路方程式である。 The following equation (1) is a circuit equation of a surface magnet type permanent magnet synchronous machine (AC rotating machine M) on fixed biaxial orthogonal coordinates when voltage and current are constant.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (1)式において、R:抵抗値、ωre:回転速度、φf:永久磁石の磁束、θ:α軸と磁極方向のなす角である。 In equation (1), R: resistance value, ωre: rotational speed, φf: magnetic flux of permanent magnet, θ: angle formed by α axis and magnetic pole direction.
 交流回転機Mが回転しない場合、つまり、回転速度ωre=0の時は、(1)式のα軸の方程式は、次の(2)式のようになるため、α軸電圧Vαとα軸電流iαとから抵抗値Rを演算することが出来る。 When the AC rotating machine M does not rotate, that is, when the rotational speed ωre = 0, the α-axis equation of the equation (1) becomes the following equation (2), so the α-axis voltage Vα and the α-axis The resistance value R can be calculated from the current iα.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 次に、交流回転機Mが回転した場合を考える。交流回転機Mが回転した場合、上記の(2)式と同様にα軸電圧Vαをα軸電流iαで除算して抵抗値Rを演算した場合、次の(3)式に示されるように、右辺第2項の((ωre・φf・sinθ)/iα)が誤差成分となり、正確に抵抗値Rを求めることが出来ないことが分かる。この右辺第2項が交流回転機Mの誘起電圧成分である。 Next, consider the case where the AC rotating machine M rotates. When the AC rotating machine M rotates, when the resistance value R is calculated by dividing the α-axis voltage Vα by the α-axis current iα as in the above equation (2), as shown in the following equation (3): It can be seen that ((ωre · φf · sinθ) / iα) in the second term on the right side is an error component and the resistance value R cannot be obtained accurately. The second term on the right side is an induced voltage component of the AC rotating machine M.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、上記の(1)式のα軸電流iα=0である場合を考える。上記の(3)式と区別するために、α軸電流iα=0のときのα軸電圧をVα2とする。α軸電流iα=0の場合の回路方程式は、次の(4)式のように抵抗値Rに関する項が消えるため、α軸電圧Vα2=誘起電圧成分となることが分かる。 Here, consider the case where the α-axis current iα = 0 in the above equation (1). In order to distinguish from the above equation (3), the α-axis voltage when the α-axis current iα = 0 is Vα2. In the circuit equation when the α-axis current iα = 0, the term relating to the resistance value R disappears as in the following equation (4), and it can be seen that α-axis voltage Vα2 = induced voltage component.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 これにより、次の(5)式のように、α軸電流iα≠0のときのα軸電圧をVα1とすると、α軸電圧Vα1からα軸電流iα=0のときのα軸電圧指令Vα2を減算し、iα≠0のα軸電流iαで除算することで、誘起電圧成分を消すことができ、正確に抵抗値Rを演算することが出来る。 As a result, as shown in the following equation (5), if the α-axis voltage when α-axis current iα ≠ 0 is Vα1, the α-axis voltage command Vα2 when α-axis current iα = 0 is obtained from α-axis voltage Vα1. By subtracting and dividing by the α-axis current iα where iα ≠ 0, the induced voltage component can be eliminated and the resistance value R can be calculated accurately.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 以上が、交流回転機Mが回転しても抵抗値Rを正確に演算(推定)することができる原理の説明である。 The above is the explanation of the principle that the resistance value R can be accurately calculated (estimated) even if the AC rotating machine M rotates.
 次に、抵抗値Rの推定処理を実現するための動作について図2を用いて説明する。図2は、本実施の形態における制御装置1の動作を示すフローチャートである。 Next, the operation for realizing the resistance value R estimation process will be described with reference to FIG. FIG. 2 is a flowchart showing the operation of the control device 1 in the present embodiment.
 電流指令設定手段5から出力する電流指令iα*=isetすなわち第1の電流指令iα1*が与えられたときに電流制御器42から出力するα軸電圧指令を第1の電圧指令Vα1*、電流指令iα*=0すなわち第2の電流指令iα2*が与えられたときに電流制御器42から出力するα軸電圧指令を第2の電圧指令Vα2*とする。 The current command iα * = set that is output from the current command setting means 5, that is, when the first current command iα1 * is given, the α-axis voltage command that is output from the current controller 42 is the first voltage command Vα1 *, the current command. The α-axis voltage command output from the current controller 42 when iα * = 0, that is, the second current command iα2 * is given is defined as a second voltage command Vα2 *.
 図2に示すステップS1では、まず第1の電流指令iα1*(=iset≠0)が電流指令設定手段5から抵抗推定手段6へ出力される。それとともに、第1の電流指令iα1*が電流指令設定手段5から制御手段4へ出力され、第1の電流指令iα1*に対応する第1の電圧指令Vα1*が制御手段4の電流制御器42から抵抗推定手段6へ出力される。このとき、抵抗推定手段6において第1の電流指令iα1*と第1の電圧指令Vα1*とを記憶する。 2, first, the first current command iα1 * (= set ≠≠ 0) is output from the current command setting unit 5 to the resistance estimation unit 6. At the same time, the first current command iα1 * is output from the current command setting means 5 to the control means 4, and the first voltage command Vα1 * corresponding to the first current command iα1 * is the current controller 42 of the control means 4. To the resistance estimation means 6. At this time, the resistance estimation means 6 stores the first current command iα1 * and the first voltage command Vα1 *.
 ステップS2では、第2の電流指令iα2*(=0)が電流指令設定手段5から制御手段4へ出力され、第2の電流指令iα2*に対応する第2の電圧指令Vα2*が電流制御器42から抵抗推定手段6へ出力される。すなわち、抵抗推定手段6は、第2の電圧指令Vα2*を取得する。このとき、抵抗推定手段6において第2の電圧指令Vα2*を記憶してもよい。 In step S2, the second current command iα2 * (= 0) is output from the current command setting unit 5 to the control unit 4, and the second voltage command Vα2 * corresponding to the second current command iα2 * is output from the current controller. 42 to the resistance estimation means 6. That is, the resistance estimation unit 6 acquires the second voltage command Vα2 *. At this time, the resistance estimation means 6 may store the second voltage command Vα2 *.
 ステップS3では、抵抗推定手段6において、ステップS1で記憶された第1の電流指令iα1*(=iset)及び第1の電圧指令Vα1*と、ステップS2で取得された第2の電圧指令Vα2*とより、次の(6)式のように、抵抗値Rを演算する。 In step S3, the resistance estimation means 6 uses the first current command iα1 * (= set) and the first voltage command Vα1 * stored in step S1, and the second voltage command Vα2 * acquired in step S2. Thus, the resistance value R is calculated as in the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このように、本実施の形態による交流回転機Mの制御装置1は、固定2軸直交座標上において、α軸の電流指令が非ゼロの第1の電流指令iα1*(=iset)と、交流回転機Mのα軸電流がisetに一致するようなα軸の第1の電圧指令Vα1*と、交流回転機Mに流れるα軸電流がゼロに一致するようなα軸の第2の電圧指令Vα2*とを用いて、抵抗値Rを求める。すなわち、交流回転機Mの制御装置1は、第2の電圧指令Vα2*から第1の電圧指令Vα1*を減算した値を第1の電流指令iα1*(=iset)で除算して抵抗値Rを求める。これにより、交流回転機Mが回転しても、誘起電圧成分の影響を低減することができ、抵抗値Rを精度良く求めることができる。 As described above, the control device 1 of the AC rotating machine M according to the present embodiment has the first current command iα1 * (= iset) in which the α-axis current command is non-zero on the fixed two-axis orthogonal coordinate and the AC An α-axis first voltage command Vα1 * such that the α-axis current of the rotating machine M coincides with the set, and an α-axis second voltage command such that the α-axis current flowing through the AC rotating machine M matches zero. The resistance value R is obtained using Vα2 *. That is, the control device 1 of the AC rotating machine M divides the value obtained by subtracting the first voltage command Vα1 * from the second voltage command Vα2 * by the first current command iα1 * (= set), and thereby determines the resistance value R. Ask for. Thereby, even if the AC rotating machine M rotates, the influence of the induced voltage component can be reduced, and the resistance value R can be obtained with high accuracy.
 以上のように、実施の形態1では、交流回転機Mの制御装置1において、電流指令設定手段5が、非ゼロの第1の電流指令iα1*(=iset)、及びゼロである第2の電流指令iα2*(=0)を出力する。制御手段4は、第1の電流指令iα1*に対応する第1の電圧指令Vα1*、及び第2の電流指令iα2*に対応する第2の電圧指令Vα2*を出力する。抵抗推定手段6は、第1の電流指令iα1*、第1の電圧指令Vα1*、及び第2の電圧指令Vα2*に基づいて、交流回転機Mの抵抗値Rを推定する。これにより、2種類の電流指令iα1*,iα2*のうち、1つ(第1の電流指令iα1*)はゼロとすることで、そのときの第2の電圧指令Vα2*を、交流回転機Mが回転することで発生する誘起電圧Vefと等価なものとすることができる。よって、ゼロでない第1の電流指令iα1*を与えたときの第1の電圧指令Vα1*から誘起電圧分Vα2*を減算することで、誘起電圧成分の影響を低減することができる。また、その減算結果をゼロでない第1の電流指令iα1*(=iset)で除算することで、交流回転機Mが回転していても精度よく抵抗値Rを推定することができる。すなわち、交流回転機Mの動作時に交流回転機Mの抵抗値Rを正確に推定できる。 As described above, in the first embodiment, in the control device 1 for the AC rotating machine M, the current command setting means 5 is the first non-zero first current command iα1 * (= set) and the second that is zero. The current command iα2 * (= 0) is output. The control means 4 outputs a first voltage command Vα1 * corresponding to the first current command iα1 * and a second voltage command Vα2 * corresponding to the second current command iα2 *. The resistance estimation means 6 estimates the resistance value R of the AC rotating machine M based on the first current command iα1 *, the first voltage command Vα1 *, and the second voltage command Vα2 *. Accordingly, one of the two types of current commands iα1 * and iα2 * (first current command iα1 *) is set to zero, and the second voltage command Vα2 * at that time is changed to the AC rotating machine M. Can be equivalent to the induced voltage Vef generated by rotation. Therefore, the influence of the induced voltage component can be reduced by subtracting the induced voltage component Vα2 * from the first voltage command Vα1 * when the first current command iα1 * that is not zero is given. Further, by dividing the subtraction result by the first current command iα1 * (= iset) that is not zero, the resistance value R can be accurately estimated even when the AC rotating machine M is rotating. That is, the resistance value R of the AC rotating machine M can be accurately estimated during the operation of the AC rotating machine M.
 したがって、交流回転機の抵抗、インダクタンスなどの回転機定数を用いて、交流回転機の数式モデルから、交流回転機の状態を観測することで、交流回転機の速度情報や位置情報を推定する際の精度、すなわち位置センサレス制御の精度を向上できる。 Therefore, when estimating the speed information and position information of the AC rotating machine by observing the state of the AC rotating machine from the mathematical model of the AC rotating machine using the rotating machine constants such as resistance and inductance of the AC rotating machine. Accuracy, that is, the accuracy of position sensorless control can be improved.
 また、実施の形態1では、交流回転機Mの動作を継続しながら交流回転機Mの抵抗値Rを推定できる。これにより、交流回転機Mが停止するまで待つ必要がないため、短時間で抵抗値Rを推定することが可能となる。 In Embodiment 1, the resistance value R of the AC rotating machine M can be estimated while the operation of the AC rotating machine M is continued. Thereby, since it is not necessary to wait until the AC rotating machine M stops, the resistance value R can be estimated in a short time.
 また、実施の形態1では、交流回転機Mの制御装置1において、抵抗推定手段6が、第1の電圧指令Vα1*から第2の電圧指令Vα2*を減算し、減算結果を第1の電流指令iα1*(=iset)で除することにより、交流回転機Mの抵抗値Rを推定する。これにより、誘起電圧成分の影響を低減でき、抵抗値Rを精度良く求めることができる。 Further, in the first embodiment, in the control device 1 of the AC rotating machine M, the resistance estimation means 6 subtracts the second voltage command Vα2 * from the first voltage command Vα1 *, and the subtraction result is converted to the first current. The resistance value R of the AC rotating machine M is estimated by dividing by the command iα1 * (= set). Thereby, the influence of an induced voltage component can be reduced and the resistance value R can be calculated | required accurately.
 また、実施の形態1では、交流回転機Mの制御装置1において、電流指令設定手段5が出力する第1の電流指令iα1*と第2の電流指令iα2*とは、任意の直交座標であるα軸及びβ軸のうちのα軸の電流指令である。第1の電圧指令Vα1*と第2の電圧指令Vα2*とは、α軸の電圧指令である。これにより、2種類の電流指令及び2種類の電圧指令を得るための制御量として1つの座標軸の値を用いることができるので、制御装置1を簡易に構成することができる。 In the first embodiment, in the control device 1 of the AC rotating machine M, the first current command iα1 * and the second current command iα2 * output by the current command setting means 5 are arbitrary orthogonal coordinates. This is a current command for the α axis of the α axis and the β axis. The first voltage command Vα1 * and the second voltage command Vα2 * are α-axis voltage commands. Thereby, since the value of one coordinate axis can be used as a control amount for obtaining two types of current commands and two types of voltage commands, the control device 1 can be simply configured.
 なお、実施の形態1において、α軸に関する構成とβ軸に関する構成とを入れ替えてもよい。例えば、この場合、交流回転機Mの制御装置1において、電流指令設定手段5が出力する第1の電流指令iβ1*と第2の電流指令iβ2*とは、任意の直交座標であるα軸及びβ軸のうちのβ軸の電流指令である。第1の電圧指令Vβ1*と第2の電圧指令Vβ2*とは、β軸の電圧指令である。この場合であっても、2種類の電流指令及び2種類の電圧指令を得るための制御量として1つの座標軸の値を用いることができるので、制御装置1を簡易に構成することができる。 In the first embodiment, the configuration related to the α axis and the configuration related to the β axis may be interchanged. For example, in this case, in the control device 1 of the AC rotating machine M, the first current command iβ1 * and the second current command iβ2 * output by the current command setting means 5 are an α-axis that is arbitrary orthogonal coordinates and This is the current command for the β axis of the β axis. The first voltage command Vβ1 * and the second voltage command Vβ2 * are β-axis voltage commands. Even in this case, since the value of one coordinate axis can be used as a control amount for obtaining two types of current commands and two types of voltage commands, the control device 1 can be simply configured.
実施の形態2.
 次に、実施の形態2にかかる交流回転機Mの制御装置100について説明する。以下では、実施の形態1と異なる部分を中心に説明する。
Embodiment 2. FIG.
Next, the control device 100 for the AC rotating machine M according to the second embodiment will be described. Below, it demonstrates focusing on a different part from Embodiment 1. FIG.
 実施の形態1では、第2の電流指令iα2*を与えたときの電圧指令(第2の電圧指令)Vα2*が誘起電圧成分と同等になることを利用し、第1の電流指令iα1*を与えたときの電圧指令(第1の電圧指令)Vα1*から第2の電圧指令Vα2*を減算することで、交流回転機Mが回転することで生じる誘起電圧成分を消去して、精度よく抵抗値Rを求めるものである。 In the first embodiment, the first current command iα1 * is changed using the fact that the voltage command (second voltage command) Vα2 * when the second current command iα2 * is given is equivalent to the induced voltage component. By subtracting the second voltage command Vα2 * from the applied voltage command (first voltage command) Vα1 *, the induced voltage component generated by the rotation of the AC rotating machine M is eliminated, and the resistance is accurately detected. The value R is obtained.
 しかしながら、上記の(4)式で求める誘起電圧成分には「θ」(α軸と交流回転機の磁極位置とのなす角、すなわち位相角)が含まれているため、交流回転機Mの回転速度が大きい場合、第1の電流指令iα1*を与えた時と、第2の電流指令iα2*を与えた時とで、位相角θの値が変化している可能性がある。この場合、上記の(4)式のsinθの値が変化するため、その分だけ上記の(4)式で計算する誘起電圧成分がズレてしまい、推定する抵抗値Rに誤差が生じる可能性がある。 However, since the induced voltage component obtained by the above equation (4) includes “θ” (the angle between the α axis and the magnetic pole position of the AC rotating machine, that is, the phase angle), the rotation of the AC rotating machine M When the speed is high, there is a possibility that the value of the phase angle θ changes between when the first current command iα1 * is given and when the second current command iα2 * is given. In this case, since the value of sin θ in the above equation (4) changes, the induced voltage component calculated by the above equation (4) is shifted by that amount, and an error may occur in the estimated resistance value R. is there.
 そこで、本実施の形態では、交流回転機Mの回転速度が大きく、第1の電流指令を与えた時と第2の電流指令を与えた時とで位相角θが変化していても、精度良く抵抗値Rを推定できる方法を提供する。 Therefore, in the present embodiment, even if the rotational speed of the AC rotating machine M is high and the phase angle θ changes between when the first current command is given and when the second current command is given, the accuracy is high. Provided is a method capable of estimating the resistance value R well.
 具体的には、交流回転機Mの制御装置100は、制御手段4、電流指令設定手段5、抵抗推定手段6(図1参照)に代えて、制御手段104、電流指令設定手段105、抵抗推定手段106を備える。 Specifically, the control device 100 of the AC rotating machine M replaces the control unit 4, the current command setting unit 5, and the resistance estimation unit 6 (see FIG. 1) with a control unit 104, a current command setting unit 105, and a resistance estimation. Means 106 are provided.
 制御手段104において、図1と異なる部分は、β軸にも加減算器と電流制御器を追加している点である。すなわち、制御手段104は、電圧指令設定器46(図1参照)に代えて、加減算器145及び電流制御器146を有する。 In the control means 104, the difference from FIG. 1 is that an adder / subtractor and a current controller are also added to the β axis. That is, the control means 104 has an adder / subtractor 145 and a current controller 146 instead of the voltage command setter 46 (see FIG. 1).
 加減算器145は、β軸電流指令iβ*を電流指令設定手段105から受け、β軸電流iβを座標変換器44から受ける。加減算器145は、β軸電流指令iβ*とβ軸電流iβとの差分であるβ軸電流差分Δiβを演算し電流制御器146へ出力する。 The adder / subtractor 145 receives the β-axis current command iβ * from the current command setting means 105 and receives the β-axis current iβ from the coordinate converter 44. The adder / subtractor 145 calculates a β-axis current difference Δiβ, which is a difference between the β-axis current command iβ * and the β-axis current iβ, and outputs it to the current controller 146.
 電流制御器146は、β軸電流差分Δiβを加減算器145から受ける。電流制御器146は、β軸電流差分Δiβがゼロになるように(すなわち、β軸電流指令iβ*とβ軸電流iβとの差分が実質的に無くなるように)比例積分制御する。これにより、電流制御器146は、iβ=iβ*となるように固定2軸直交座標上のβ軸電圧指令Vβ*を演算し座標変換器43及び抵抗推定手段106へ出力する。 The current controller 146 receives the β-axis current difference Δiβ from the adder / subtractor 145. The current controller 146 performs proportional-integral control so that the β-axis current difference Δiβ becomes zero (that is, the difference between the β-axis current command iβ * and the β-axis current iβ is substantially eliminated). As a result, the current controller 146 calculates the β-axis voltage command Vβ * on the fixed two-axis orthogonal coordinates so that iβ = iβ *, and outputs it to the coordinate converter 43 and the resistance estimation means 106.
 電流指令設定手段105は、α軸電流指令iα*及びβ軸電流指令iβ*を設定し制御手段104へ出力する。本実施の形態では、電流指令設定手段105は、α軸電流指令iα*=β軸電流指令iβ*=isetを第1の電流指令i1*として出力し、α軸電流指令iα*=β軸電流指令iβ*=0を第2の電流指令i2*として出力する。 The current command setting means 105 sets the α-axis current command iα * and the β-axis current command iβ * and outputs them to the control means 104. In the present embodiment, the current command setting means 105 outputs the α-axis current command iα * = β-axis current command iβ * = set as the first current command i1 *, and the α-axis current command iα * = β-axis current. The command iβ * = 0 is output as the second current command i2 *.
 なお、制御手段104の電流制御器42及び電流制御器146の出力であるα軸電圧指令Vα*、β軸電圧指令Vβ*において、第1の電流指令i1*(=iset)に対応するものを第1の電圧指令Vα1*及び第1の電圧指令Vβ1*とし、第2の電流指令i2*に対応するものを第2の電圧指令Vα2*と第2の電圧指令Vβ2*とする。 Of the α-axis voltage command Vα * and β-axis voltage command Vβ *, which are the outputs of the current controller 42 and the current controller 146 of the control means 104, those corresponding to the first current command i1 * (= set). The first voltage command Vα1 * and the first voltage command Vβ1 * are designated as the second voltage command Vα2 * and the second voltage command Vβ2 *, respectively, corresponding to the second current command i2 *.
 抵抗推定手段106は、α軸電流指令iα*を電流指令設定手段105から受け、α軸電圧指令Vα*を制御手段104の電流制御器42から受け、β軸電圧指令Vβ*を制御手段104の電流制御器146から受ける。例えば、抵抗推定手段106は、α軸電流指令iα*=isetに応じて電流制御器42で生成されたα軸電圧指令Vα*を、第1の電流指令i1*に対応する第1の電圧指令Vα1*として電流制御器42から受ける。例えば、抵抗推定手段106は、β軸電流指令iβ*=isetに応じて電流制御器146で生成されたβ軸電圧指令Vβ*を、第1の電流指令i1*に対応する第1の電圧指令Vβ1*として電流制御器146から受ける。例えば、抵抗推定手段106は、α軸電流指令iα*=0に応じて電流制御器42で生成されたα軸電圧指令Vα*を、第2の電流指令i2*に対応する第2の電圧指令Vα2*として電流制御器42から受ける。例えば、抵抗推定手段106は、β軸電流指令iβ*=0に応じて電流制御器146で生成されたβ軸電圧指令Vβ*を、第2の電流指令i2*に対応する第2の電圧指令Vβ2*として電流制御器146から受ける。このとき、抵抗推定手段106は、第1の電圧指令Vα1*,Vβ1*及び第2の電圧指令Vα2*,Vβ2*をそれぞれ受けた際に保持し記憶してもよい。そして、抵抗推定手段106は、α軸電流指令iα*(第1の電流指令i1*)、第1の電圧指令Vα1*,Vβ1*、及び第2の電圧指令Vα2*,Vβ2*に基づいて、交流回転機Mの抵抗値Rを推定する。以下に抵抗推定手段106による抵抗値Rの推定処理の詳細を記す。 The resistance estimation unit 106 receives the α-axis current command iα * from the current command setting unit 105, receives the α-axis voltage command Vα * from the current controller 42 of the control unit 104, and receives the β-axis voltage command Vβ * of the control unit 104. Received from the current controller 146. For example, the resistance estimation unit 106 uses the α-axis voltage command Vα * generated by the current controller 42 in response to the α-axis current command iα * = set as a first voltage command corresponding to the first current command i1 *. Received from the current controller 42 as Vα1 *. For example, the resistance estimation unit 106 uses the β-axis voltage command Vβ * generated by the current controller 146 in response to the β-axis current command iβ * = set as the first voltage command corresponding to the first current command i1 *. Received from the current controller 146 as Vβ1 *. For example, the resistance estimating means 106 uses the α-axis voltage command Vα * generated by the current controller 42 in response to the α-axis current command iα * = 0 as the second voltage command corresponding to the second current command i2 *. Received from the current controller 42 as Vα2 *. For example, the resistance estimation unit 106 uses the β-axis voltage command Vβ * generated by the current controller 146 in response to the β-axis current command iβ * = 0 as the second voltage command corresponding to the second current command i2 *. Received from the current controller 146 as Vβ2 *. At this time, the resistance estimation means 106 may hold and store the first voltage commands Vα1 * and Vβ1 * and the second voltage commands Vα2 * and Vβ2 *, respectively. Then, the resistance estimating means 106 is based on the α-axis current command iα * (first current command i1 *), the first voltage commands Vα1 * and Vβ1 *, and the second voltage commands Vα2 * and Vβ2 *. The resistance value R of the AC rotating machine M is estimated. Details of the process of estimating the resistance value R by the resistance estimating means 106 will be described below.
 次の(7)式は、第1の電流指令i1*(=iset)を与えた時のα軸及びβ軸の交流回転機Mの回路方程式である。次の(8)式は、第2の電流指令i2*(=0)を与えた時のα軸及びβ軸の交流回転機Mの回路方程式である。なお、第1の電流指令i1*を与えたときのα軸と磁極位置とのなす角(位相角)をθ1、第2の電流指令i2*を与えたときのα軸と磁極位置とのなす角(位相角)をθ2とする。 The following formula (7) is a circuit equation of the α-axis and β-axis AC rotating machine M when the first current command i1 * (= set) is given. The following equation (8) is a circuit equation of the α-axis and β-axis AC rotating machine M when the second current command i2 * (= 0) is given. The angle (phase angle) formed between the α axis and the magnetic pole position when the first current command i1 * is given is θ1, and the α axis and the magnetic pole position when the second current command i2 * is given. The angle (phase angle) is θ2.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記の(7)式より、Vα1×Vβ2、及びVα1+Vβ1を演算すると、それぞれ、次の(9)式、及び(10)式となる。 When Vα1 × Vβ2 and Vα1 2 + Vβ1 2 are calculated from the above equation (7), the following equations (9) and (10) are obtained, respectively.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記の(8)式より、Vα1+Vβ1を演算すると、次の(11)式となる。 When Vα1 2 + Vβ1 2 is calculated from the above equation (8), the following equation (11) is obtained.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 次に、(9)式~(11)式を用いて、(10)式+(11)式-2×(9)式を演算すると、次の(12)式となる。 Next, when the equations (10) + (11) −2 × (9) are calculated using the equations (9) to (11), the following equation (12) is obtained.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 さらに、上記の(12)式より、次の(13)式のように位相角θ1を演算することができる。つまり、第1の電圧指令Vα1*,Vβ1*と第2の電圧指令Vα2*,Vβ2*とを用いることで、第1の電流指令i1*を与えたときの、α軸と交流回転機Mとのなす角(位相角)θ1を演算することができる。 Furthermore, from the above equation (12), the phase angle θ1 can be calculated as in the following equation (13). That is, by using the first voltage commands Vα1 * and Vβ1 * and the second voltage commands Vα2 * and Vβ2 *, the α axis and the AC rotating machine M when the first current command i1 * is given. The angle (phase angle) θ1 formed by can be calculated.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 抵抗値Rは、第1の電流指令i1*の値isetと、上記の(13)式で求めた位相角θ1と、上記の(11)式の平方根である次の(14)式とを上記の(7)式に代入することで、次の(15)式、(16)式のように演算することができる。 The resistance value R includes the value iset of the first current command i1 *, the phase angle θ1 obtained by the above equation (13), and the following equation (14) which is the square root of the above equation (11). By substituting in the equation (7), it is possible to calculate as in the following equations (15) and (16).
 つまり、位相角θ1を正確に演算できるがゆえに、誘起電圧成分も正確に求めることができ、その結果、抵抗値Rも正確に求めることが出来る。 That is, since the phase angle θ1 can be calculated accurately, the induced voltage component can also be accurately determined, and as a result, the resistance value R can also be accurately determined.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 以上が、第1の電流指令を与えた時と第2の電流指令を与えた時とで位相角θが変化していても、精度良く抵抗値Rを演算(推定)することができる原理の説明である。 The above is the principle that the resistance value R can be calculated (estimated) with high accuracy even when the phase angle θ changes between when the first current command is given and when the second current command is given. It is an explanation.
 次に、抵抗値Rの推定処理を実現するための動作について図4を用いて説明する。図4は、本実施の形態における制御装置100の動作を示すフローチャートである。 Next, the operation for realizing the resistance value R estimation process will be described with reference to FIG. FIG. 4 is a flowchart showing the operation of the control device 100 in the present embodiment.
 ステップS11では、まず第1の電流指令i1*(=iset≠0)が電流指令設定手段105から抵抗推定手段106へ出力される。それとともに、第1の電流指令i1*が電流指令設定手段105から制御手段104へ出力され、第1の電流指令i1*に対応する第1の電圧指令Vα1*が制御手段104の電流制御器42から抵抗推定手段106へ出力され、第1の電流指令i1*に対応する第1の電圧指令Vβ1*が制御手段104の電流制御器146から抵抗推定手段106へ出力される。このとき、抵抗推定手段106において第1の電流指令i1*と第1の電圧指令Vα1*,Vβ1*とを記憶する。 In step S11, first, the first current command i1 * (= set ≠≠ 0) is output from the current command setting means 105 to the resistance estimation means 106. At the same time, the first current command i1 * is output from the current command setting means 105 to the control means 104, and the first voltage command Vα1 * corresponding to the first current command i1 * is the current controller 42 of the control means 104. From the current controller 146 of the control unit 104 to the resistance estimation unit 106. The first voltage command Vβ1 * corresponding to the first current command i1 * is output from the current controller 146 to the resistance estimation unit 106. At this time, the resistance estimation means 106 stores the first current command i1 * and the first voltage commands Vα1 * and Vβ1 *.
 ステップS12では、第2の電流指令i2*(=0)が電流指令設定手段105から制御手段104へ出力され、第2の電流指令i2*に対応する第2の電圧指令Vα2*が制御手段104の電流制御器42から抵抗推定手段106へ出力され、第2の電流指令i2*に対応する第2の電圧指令Vβ2*が制御手段104の電流制御器146から抵抗推定手段106へ出力される。すなわち、抵抗推定手段106は、第2の電圧指令Vα2*,Vβ2*を取得する。このとき、抵抗推定手段106において第2の電圧指令Vα2*,Vβ2*を記憶してもよい。 In step S12, the second current command i2 * (= 0) is output from the current command setting unit 105 to the control unit 104, and the second voltage command Vα2 * corresponding to the second current command i2 * is output from the control unit 104. The current controller 42 outputs the second voltage command Vβ2 * corresponding to the second current command i2 * from the current controller 146 of the control means 104 to the resistance estimation means 106. That is, the resistance estimation means 106 acquires the second voltage commands Vα2 * and Vβ2 *. At this time, the resistance estimating means 106 may store the second voltage commands Vα2 * and Vβ2 *.
 ステップS13では、抵抗推定手段106において、ステップS11で記憶された第1の電流指令i1*(=iset)及び第1の電圧指令Vα1*,Vβ1*と、ステップS12で取得された第2の電圧指令Vα2*,Vβ2*とより、上記の(15)、(16)式のように、抵抗値Rを演算する。 In step S13, the resistance estimation means 106 uses the first current command i1 * (= set) and the first voltage commands Vα1 * and Vβ1 * stored in step S11, and the second voltage acquired in step S12. From the commands Vα2 * and Vβ2 *, the resistance value R is calculated as in the above equations (15) and (16).
 このように、本実施の形態による交流回転機Mの制御装置100は、固定2軸直交座標上において、α軸及びβ軸の電流指令が同一で非ゼロの第1の電流指令i1*(=iset)と、交流回転機Mのα軸電流及びβ軸電流がisetに一致するようなα軸及びβ軸の第1の電圧指令Vα1*,Vβ1*と、交流回転機Mに流れるα軸電流及びβ軸電流がゼロに一致するようなα軸及びβ軸の第2の電圧指令Vα2*,Vβ2*とを用いて、抵抗値Rを求める。これにより、交流回転機Mが高い速度で回転していて、第1の電流指令i1*を与えた時と、第2の電流指令i2*を与えた時とで、位相角θの値が変化している場合でも、位相角θの値の変化に応じて抵抗値Rを精度良く求めることができる。 As described above, the control device 100 of the AC rotating machine M according to the present embodiment has the first current command i1 * (= iset), α-axis and β-axis first voltage commands Vα1 * and Vβ1 * such that the α-axis current and β-axis current of AC rotating machine M coincide with iset, and the α-axis current flowing in AC rotating machine M. The resistance value R is obtained using the α-axis and β-axis second voltage commands Vα2 * and Vβ2 * such that the β-axis current is equal to zero. Thereby, the value of the phase angle θ changes between when the AC rotating machine M is rotating at a high speed and the first current command i1 * is given and when the second current command i2 * is given. Even in this case, the resistance value R can be accurately obtained in accordance with the change in the value of the phase angle θ.
 以上のように、実施の形態2では、交流回転機Mの制御装置100において、電流指令設定手段105が、任意の直交座標であるα軸及びβ軸についてのα軸電流指令をiα*としβ軸電流指令をiβ*とするとき、非ゼロでiα*=iβ*の第1の電流指令i1*と、iα*=iβ*=0の第2の電流指令i2*とを出力する。制御手段104は、第1の電流指令i1*に対応するα軸電圧指令(第1の電圧指令)Vα1*とβ軸電圧指令(第1の電圧指令)Vβ1*と、第2の電流指令i2*に対応するα軸電圧指令(第2の電圧指令)Vα2*とβ軸電圧指令(第2の電圧指令)Vβ2*とを出力する。抵抗推定手段106は、第1の電流指令i1*(=iset)、α軸電圧指令(第1の電圧指令)Vα1*、β軸電圧指令(第1の電圧指令)Vβ1*、α軸電圧指令(第2の電圧指令)Vα2*、及びβ軸電圧指令(第2の電圧指令)Vβ2*に基づいて、交流回転機Mの抵抗値Rを推定する。これにより、上記の(13)、(15)、(16)式に示されるように、位相角θの値の変化を考慮しながら抵抗値Rを推定できる。この結果、交流回転機Mが高い速度で回転していて、第1の電流指令i1*を与えた時と、第2の電流指令i2*を与えた時とで、位相角θの値が変化している場合でも、位相角θの値の変化に応じて抵抗値Rを精度良く求めることができる。 As described above, in the second embodiment, in the control device 100 of the AC rotating machine M, the current command setting unit 105 sets the α-axis current command for the α-axis and β-axis, which are arbitrary orthogonal coordinates, to iα * and β When the shaft current command is iβ *, a first current command i1 * of iα * = iβ * and a second current command i2 * of iα * = iβ * = 0 is output non-zero. The control means 104 includes an α-axis voltage command (first voltage command) Vα1 *, a β-axis voltage command (first voltage command) Vβ1 * corresponding to the first current command i1 *, and a second current command i2. An α-axis voltage command (second voltage command) Vα2 * and a β-axis voltage command (second voltage command) Vβ2 * corresponding to * are output. The resistance estimation means 106 includes a first current command i1 * (= iset), an α-axis voltage command (first voltage command) Vα1 *, a β-axis voltage command (first voltage command) Vβ1 *, an α-axis voltage command. Based on the (second voltage command) Vα2 * and the β-axis voltage command (second voltage command) Vβ2 *, the resistance value R of the AC rotating machine M is estimated. As a result, as shown in the above equations (13), (15), and (16), the resistance value R can be estimated while taking into account the change in the value of the phase angle θ. As a result, the value of the phase angle θ changes between when the AC rotating machine M is rotating at a high speed and the first current command i1 * is given and when the second current command i2 * is given. Even in this case, the resistance value R can be accurately obtained in accordance with the change in the value of the phase angle θ.
 以上のように、本発明にかかる交流回転機の制御装置は、位置センサレス制御に有用である。 As described above, the control device for an AC rotating machine according to the present invention is useful for position sensorless control.
 1,100 制御装置、2 電流検出手段、3 電圧印加手段、4 制御手段、5 電流指令設定手段、6 抵抗推定手段。 1,100 control device, 2 current detection means, 3 voltage application means, 4 control means, 5 current command setting means, 6 resistance estimation means.

Claims (5)

  1.  永久磁石を有する交流回転機の制御装置において、
     前記交流回転機に流れる回転機電流を検出する電流検出手段と、
     前記交流回転機に流す電流目標値である電流指令を設定し出力する電流指令設定手段と、
     前記電流指令及び前記回転機電流に基づいて、前記交流回転機に印加する電圧指令を演算し出力する制御手段と、
     前記電圧指令に基づいて、前記交流回転機に電圧を印加する電圧印加手段と、
     前記電流指令及び前記電圧指令に基づいて、前記交流回転機の抵抗値を演算する抵抗推定手段とを備え、
     前記電流指令設定手段は、非ゼロの第1の電流指令、及びゼロである第2の電流指令を出力し、
     前記制御手段は、前記第1の電流指令に対応する第1の電圧指令、及び前記第2の電流指令に対応する第2の電圧指令を出力し、
     前記抵抗推定手段は、前記第1の電流指令、前記第1の電圧指令、及び前記第2の電圧指令に基づいて、前記交流回転機の抵抗値を推定する
     ことを特徴とする交流回転機の制御装置。
    In a control device for an AC rotating machine having a permanent magnet,
    Current detecting means for detecting rotating machine current flowing in the AC rotating machine;
    Current command setting means for setting and outputting a current command which is a current target value to be passed through the AC rotating machine;
    Control means for calculating and outputting a voltage command to be applied to the AC rotating machine based on the current command and the rotating machine current;
    Voltage application means for applying a voltage to the AC rotating machine based on the voltage command;
    Resistance estimation means for calculating a resistance value of the AC rotating machine based on the current command and the voltage command;
    The current command setting means outputs a first current command that is non-zero and a second current command that is zero,
    The control means outputs a first voltage command corresponding to the first current command and a second voltage command corresponding to the second current command,
    The resistance estimating means estimates a resistance value of the AC rotating machine based on the first current command, the first voltage command, and the second voltage command. Control device.
  2.  前記抵抗推定手段は、前記第1の電圧指令から前記第2の電圧指令を減算し、減算結果を前記第1の電流指令で除することにより、前記交流回転機の抵抗値を推定する
     ことを特徴とする請求項1に記載の交流回転機の制御装置。
    The resistance estimation means estimates the resistance value of the AC rotating machine by subtracting the second voltage command from the first voltage command and dividing the subtraction result by the first current command. The control device for an AC rotating machine according to claim 1, wherein the control device is an AC rotating machine.
  3.  前記電流指令設定手段が出力する前記第1の電流指令と前記第2の電流指令とは、任意の直交座標であるα軸及びβ軸のうちのα軸の電流指令であり、
     前記第1の電圧指令と前記第2の電圧指令とは、α軸の電圧指令である
     ことを特徴とする請求項1又は2に記載の交流回転機の制御装置。
    The first current command and the second current command output by the current command setting means are α-axis current commands among α-axis and β-axis which are arbitrary orthogonal coordinates,
    The control apparatus for an AC rotating machine according to claim 1 or 2, wherein the first voltage command and the second voltage command are α-axis voltage commands.
  4.  前記電流指令設定手段が出力する前記第1の電流指令と前記第2の電流指令とは、任意の直交座標であるα軸及びβ軸のうちのβ軸の電流指令であり、
     前記第1の電圧指令と前記第2の電圧指令とは、β軸の電圧指令である
     ことを特徴とする請求項1又は2に記載の交流回転機の制御装置。
    The first current command and the second current command output by the current command setting means are β-axis current commands among α-axis and β-axis which are arbitrary orthogonal coordinates,
    The control apparatus for an AC rotating machine according to claim 1 or 2, wherein the first voltage command and the second voltage command are β-axis voltage commands.
  5.  前記電流指令設定手段は、任意の直交座標であるα軸及びβ軸についてのα軸電流指令をiα*としβ軸電流指令をiβ*とするとき、非ゼロでiα*=iβ*の第1の電流指令と、iα*=iβ*=0の第2の電流指令とを出力し、
     前記制御手段は、前記第1の電流指令に対応するα軸電圧指令Vα1*とβ軸電圧指令Vβ1*と、前記第2の電流指令に対応するα軸電圧指令Vα2*とβ軸電圧指令Vβ2*とを出力し、
     前記抵抗推定手段は、前記第1の電流指令、前記α軸電圧指令Vα1*、前記β軸電圧指令Vβ1*、前記α軸電圧指令Vα2*、及び前記β軸電圧指令Vβ2*に基づいて、前記交流回転機の抵抗値を推定する
     ことを特徴とする請求項1に記載の交流回転機の制御装置。
    The current command setting means is a non-zero first value of iα * = iβ * when the α-axis current command for the α-axis and β-axis, which are arbitrary orthogonal coordinates, is iα * and the β-axis current command is iβ *. And a second current command with iα * = iβ * = 0 are output,
    The control means includes an α-axis voltage command Vα1 * and a β-axis voltage command Vβ1 * corresponding to the first current command, an α-axis voltage command Vα2 * and a β-axis voltage command Vβ2 corresponding to the second current command. * And
    The resistance estimating means is based on the first current command, the α-axis voltage command Vα1 *, the β-axis voltage command Vβ1 *, the α-axis voltage command Vα2 *, and the β-axis voltage command Vβ2 *. The control device for an AC rotating machine according to claim 1, wherein a resistance value of the AC rotating machine is estimated.
PCT/JP2013/055427 2013-02-28 2013-02-28 Control device for ac rotating machine WO2014132395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055427 WO2014132395A1 (en) 2013-02-28 2013-02-28 Control device for ac rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055427 WO2014132395A1 (en) 2013-02-28 2013-02-28 Control device for ac rotating machine

Publications (1)

Publication Number Publication Date
WO2014132395A1 true WO2014132395A1 (en) 2014-09-04

Family

ID=51427696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055427 WO2014132395A1 (en) 2013-02-28 2013-02-28 Control device for ac rotating machine

Country Status (1)

Country Link
WO (1) WO2014132395A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141123A (en) * 2004-11-11 2006-06-01 Toshiba Corp Dynamo-electric machine controller, dynamo-electric machine controlling method and washing machine
JP2007159212A (en) * 2005-12-02 2007-06-21 Hitachi Ltd Vector control device for permanent-magnet synchronous motor, inverter module, and permanent-magnet synchronous motor constant indication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141123A (en) * 2004-11-11 2006-06-01 Toshiba Corp Dynamo-electric machine controller, dynamo-electric machine controlling method and washing machine
JP2007159212A (en) * 2005-12-02 2007-06-21 Hitachi Ltd Vector control device for permanent-magnet synchronous motor, inverter module, and permanent-magnet synchronous motor constant indication system

Similar Documents

Publication Publication Date Title
JP4519864B2 (en) AC rotating machine electrical constant measuring method and AC rotating machine control apparatus used for carrying out this measuring method
JP5130031B2 (en) Position sensorless control device for permanent magnet motor
US9929683B2 (en) Motor drive device and brushless motor
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
KR102108911B1 (en) Drive system and inverter device
JP5351859B2 (en) Vector control device and motor control system
JP6637185B2 (en) Inverter control device and drive system
JP3253004B2 (en) Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position
JP5800763B2 (en) AC rotating machine control device
JP5190155B2 (en) AC rotating machine control device and control method
JP2004266885A (en) Motor controller and method of detecting deviation from controlled state
JP6433387B2 (en) AC rotating machine control device and method for calculating moment of inertia of AC rotating machine
JPH1118499A (en) Sensorless revolution control method for permanent magnet type synchronous motor and step-out detection method for the same
JP2006230200A (en) Control unit of ac motor
JP2008005646A (en) Initial magnetic pole position estimating apparatus of permanent-magnet synchronous motor
JP2016220364A (en) Control device for permanent magnet synchronous motor
JP5768255B2 (en) Control device for permanent magnet synchronous motor
TW201907089A (en) Drive apparatus for oil-pump motor and drive control method for oil-pump motor
JP7251424B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
WO2014132395A1 (en) Control device for ac rotating machine
JP2010028981A (en) Rotor position estimating method for synchronous motor, and controller for the synchronous motor
JP4987032B2 (en) Rotor angle estimation device
JP2009112104A (en) Sensorless controller of brushless motor
JP5854057B2 (en) Step-out detection device and motor drive system
JP2015192463A (en) Motor control device and power generator control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP