WO2014132292A1 - Suction nozzle and surface mounting device - Google Patents

Suction nozzle and surface mounting device Download PDF

Info

Publication number
WO2014132292A1
WO2014132292A1 PCT/JP2013/001248 JP2013001248W WO2014132292A1 WO 2014132292 A1 WO2014132292 A1 WO 2014132292A1 JP 2013001248 W JP2013001248 W JP 2013001248W WO 2014132292 A1 WO2014132292 A1 WO 2014132292A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
cylinder
suction
nozzle
nozzle body
Prior art date
Application number
PCT/JP2013/001248
Other languages
French (fr)
Japanese (ja)
Inventor
之也 粟野
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2015502573A priority Critical patent/JP5913731B2/en
Priority to PCT/JP2013/001248 priority patent/WO2014132292A1/en
Priority to CN201380066615.8A priority patent/CN105359636B/en
Publication of WO2014132292A1 publication Critical patent/WO2014132292A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/0409Sucking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/041Incorporating a pick-up tool having multiple pick-up tools
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0413Pick-and-place heads or apparatus, e.g. with jaws with orientation of the component while holding it; Drive mechanisms for gripping tools, e.g. lifting, lowering or turning of gripping tools

Definitions

  • the present invention relates to a suction nozzle and a surface mounting machine, and more particularly to a suction nozzle and a surface mounting machine suitable for sucking small electronic components.
  • the surface mounter stops the printed circuit board at a board stop position set on the board transport line, and mounts an electronic component on the printed board stopped at the board stop position.
  • the surface mounter includes a head unit.
  • the head unit includes, for example, a plurality of suction nozzles. Each suction nozzle is moved by the head unit between a component supply position to which electronic components are supplied and the substrate stop position. At the component supply position, each suction nozzle picks up an electronic component (suction operation), and at the substrate stop position, each suction nozzle mounts the picked-up electronic component on the printed board (mounting operation).
  • the suction nozzle disclosed in the publication includes a nozzle body having a component suction surface, an air passage opening in the component suction surface, and a nozzle holder that holds the nozzle body so as to be movable up and down.
  • the air passage is set to a negative pressure.
  • the electronic component is sucked by the negative pressure of the air passage and is sucked by the component suction surface.
  • pressurized air is supplied to the air passage.
  • the electronic component adsorbed on the component adsorption surface is pressed onto the printed circuit board by pressurized air. After this pressing operation, the suction nozzle moves away from the mounted electronic component (separation operation).
  • the mounting process of electronic components on a printed circuit board has been diversified, and for example, there is an application example in which mounting is performed on a relatively low adhesive surface such as a flux application surface or a surface having no adhesiveness (ordinary solder paste) Is highly sticky).
  • a relatively low adhesive surface such as a flux application surface or a surface having no adhesiveness (ordinary solder paste) Is highly sticky.
  • the separation operation may be performed while the electronic component pressed against the printed circuit board is attached to the component suction surface of the suction nozzle (so-called “take-away operation”).
  • This “take-away operation” is caused by the negative pressure between the suction surface and the electronic component for a moment or when the nozzle is quickly raised, or the component is shifted due to a sudden inflow of air to the boundary surface. It is thought that there is a possibility. Further, even if the take-out operation is not reached, there is a possibility that the electronic component once mounted may be displaced or fall off due to the above-described electrostatic or vacuum attracting force. In addition, the above-mentioned problem becomes more prominent as the nozzle separating operation is quickened.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a suction nozzle and a surface mount capable of reliably performing an operation of separating an electronic component.
  • the present invention provides an adsorption operation for sucking and picking up an electronic component at a negative pressure, a mounting operation for mounting the electronic component picked up by supplying pressurized air on the printed circuit board,
  • a suction nozzle that performs a separation operation for separating from an electronic component mounted on the printed circuit board after a mounting operation, a nozzle body provided with a component suction surface that sucks the electronic component, and an air passage that opens to the component suction surface; Provided in the nozzle body and retracted into the nozzle body when the air passage is under negative pressure during the suction operation, while the nozzle body is separated from the mounted electronic component during the separation operation
  • the suction nozzle is provided with a pressing member protruding from the component suction surface.
  • the electronic component in the suction operation, the electronic component can be picked up and picked up on the component suction surface as in the case of the conventional suction nozzle, and in the mounting operation, the sucked electronic component is mounted on the printed circuit board. Can do.
  • the suction nozzle performs a separation operation after the mounting operation, the pressing element protrudes from the component suction surface of the nozzle body.
  • the electronic component mounted on the printed circuit board is pressed to the printed circuit board side by the pressing element.
  • the nozzle body With this pressing operation, the nozzle body can be separated from the electronic component. Therefore, the mounted electronic component does not move with the operation of the nozzle body.
  • the suction nozzle is slidably disposed in the air passage of the nozzle body, and the air passage is viewed in the supply direction of the pressurized air, and the first chamber on the upstream side and the second chamber on the downstream side.
  • the cylinder further includes a chamber partitioned into a chamber, and the pressing element is integrally formed at an end portion of the cylinder, and the cylinder is formed with a communication path that communicates the first chamber with the second chamber.
  • the communication passage is configured such that when the air passage is set to a negative pressure during the adsorption operation, the presser is retracted into the nozzle body, while the nozzle body is mounted after the separation operation.
  • restriction that generates a differential pressure between the first chamber and the second chamber so that the pressing element protrudes from the component suction surface when the electronic component is separated from the electronic component.
  • the cylinder moves in a direction in which the presser retracts into the nozzle body due to the differential pressure between the first chamber and the second chamber.
  • pressurized air is supplied to the air passage during the mounting operation, the presser is pressurized in a direction protruding from the component suction surface of the nozzle body due to the differential pressure between the first chamber and the second chamber.
  • the communication path forms a bypass communicating the second chamber and the atmosphere on the second chamber side with respect to the restriction, and the nozzle body is at least connected to the first chamber.
  • the nozzle body When pressurized air is supplied, it has a bypass passage communicating with the bypass.
  • the differential pressure between the first chamber and the second chamber can be generated using atmospheric pressure. Therefore, the control of the differential pressure is facilitated and the operation reliability of the suction nozzle is increased.
  • the air in the second chamber is released from the bypass through the bypass passage to the atmosphere even when the cylinder is lowered. Increases the internal pressure. Therefore, since the so-called air damper effect due to the air in the second chamber can be suppressed, it is possible to prevent the force that pushes down the cylinder from being hindered by the internal pressure of the second chamber.
  • the suction nozzle further includes a side cylinder integrally connected to the cylinder, wherein the nozzle body forms a side communication path that communicates the first chamber with the atmosphere. Is slidably mounted in the side communication path and divides the side communication path into the first chamber side and the atmosphere side.
  • a differential pressure is generated between the first chamber and the second chamber, and the chamber side of the side communication passage also has a negative pressure. Therefore, buoyancy is generated in the side cylinder.
  • the side cylinder is integrally connected with the cylinder which has a presser integrally.
  • the pressing element receives a force in the direction of retreating into the nozzle body more reliably.
  • pressurized air is supplied to the air passage, differential pressure is generated between the first chamber and the second chamber, and pressurized air is also supplied to the chamber side of the side communication passage. Therefore, the side cylinder is pressed together with the cylinder in a direction in which the presser protrudes from the component suction surface of the nozzle body. Therefore, the pressing element can receive the force in a direction in which the pressing element protrudes more reliably from the nozzle body.
  • the suction nozzle further includes a pin for connecting the cylinder and the side cylinder, and the nozzle body has a recess for defining a stroke of the pin outside the air passage.
  • the cylinder and the side cylinder can be connected by the pin, and the required operation can be realized.
  • the stroke of the pin is formed in the nozzle body outside the air passage, even if foreign matter is mixed in the air passage, the foreign matter does not adhere to the pin. For this reason, the stability and reliability of the operation of the cylinder or the side cylinder can be improved, and the frequency of maintenance work such as cleaning the air passage can be reduced.
  • Another aspect of the present invention is a surface mounter for mounting an electronic component on a printed board, wherein the suction nozzle is provided.
  • the nozzle body can be separated from the electronic component with the pressing operation of the pressing element.
  • the electronic component separating operation can be reliably performed.
  • FIG. 1 is a schematic plan view showing a schematic configuration of a surface mounter according to a first embodiment of the present invention. It is an external view of the suction nozzle employ
  • FIG. 3 is a schematic exploded sectional view of the suction nozzle of FIG. 2. FIG. 3 is a schematic exploded sectional view of the suction nozzle of FIG. 2.
  • the surface mounter according to the first embodiment includes a base 11 having a substantially rectangular shape in plan view.
  • a mounting area as a work area for mounting electronic components, a standby area set on the upstream side of the mounting area, and an exit area set on the downstream side of the mounting area are linear. Is set in series.
  • a horizontal direction in which each area is arranged is assumed to be an X-axis direction
  • a horizontal direction orthogonal to the X-axis direction is a Y-axis direction
  • a vertical direction is a Z-axis direction.
  • the substrate transport device 2 is disposed along the X-axis direction of the base 11, and the printed circuit board W is transported from the ⁇ X direction on the upstream side to the + X direction on the downstream side.
  • the substrate transport apparatus 2 includes a conveyor, a transport motor, and an encoder.
  • the conveyor is driven by a transport motor and transports the printed circuit board W from the upstream side to the downstream side.
  • the encoder detects the operation state of the transport motor and outputs it to the control unit.
  • the control unit can stop the printed circuit board W at an arbitrary position by controlling the transport motor based on the output of the encoder.
  • component supply units 13 are provided on both sides of the board transfer device 2, respectively.
  • Each component supply unit 13 includes a plurality of tape feeders 14.
  • Each tape feeder 14 supplies a predetermined electronic component.
  • the head unit 15 includes a head main body 16, a plurality of nozzle units 17 connected to the head main body 16, a component camera 18 attached to the head main body 16, and a suction nozzle provided for each nozzle unit 17. 20 (see FIG. 2 and subsequent figures), and an air pressure adjuster (not shown) capable of adjusting the air pressure for each nozzle unit 17.
  • the head unit 15 is configured to be movable in the X-axis direction and the Y-axis direction by a known transport mechanism.
  • Each of the plurality of nozzle units 17 is configured to be able to move up and down in the Z-axis direction and rotate around the Z-axis.
  • Such a surface mounter 1 performs a carry-in operation, a fixing operation, a suction operation, a mounting operation, a separation operation, and a carry-out operation.
  • the carry-in operation is an operation for carrying the printed circuit board W into the entrance area from an external or continuous printing device or the like.
  • the fixing operation is an operation of fixing the printed circuit board W carried into the entrance area to the mounting position in the mounting area after carrying it into the mounting area.
  • the suction operation is an operation of sucking the electronic component provided at the component supply position of the component supply unit 13 by the suction nozzle 20 of the corresponding nozzle unit 17.
  • the sucked electronic component C is transported above the printed circuit board W fixed at the mounting position, and the suction nozzle 20 is lowered to mount the electronic component C at a predetermined position on the printed circuit board W. It is.
  • the separation operation is preferably an operation in which the supply of pressurized air is stopped, and then the suction nozzle 20 is lifted and separated from the mounted electronic component C.
  • the carry-out operation is an operation in which the printed circuit board W on which the electronic component is mounted is transported to the exit area, and then is carried out to the downstream side of another mounting machine, an inspection device, a reflow furnace or the like that is externally or continuously provided. is there.
  • the suction nozzle 20 includes a nozzle body 21.
  • the nozzle body 21 is a metal member that integrally includes an engaging convex portion 22, a sleeve portion 23, a bulging portion 24, and a suction portion 25.
  • the nozzle body 21 has an air passage 30 that communicates with the engaging convex portion 22, the sleeve portion 23, the bulging portion 24, and the suction portion 25 along the axis of the nozzle body 21. Is formed.
  • the engaging convex portion 22 is a mounting portion provided on one end side of the nozzle body 21.
  • the engaging convex portion 22 has long sides 22a parallel to each other.
  • the nozzle main body 21 has the engaging projection 22 held by the nozzle unit 17.
  • the nozzle body 21 hangs down from the engagement convex portion 22 to the sleeve portion 23, the bulging portion 24, and the suction portion 25.
  • the top and bottom of the nozzle body 21 will be described with reference to the posture when the nozzle body 21 is mounted on the nozzle unit 17 along the vertical direction.
  • the direction parallel to the long side 22a is assumed to be the front-rear direction.
  • the sleeve portion 23 is a cylindrical body that extends downward from the central portion of the lower surface of the engaging convex portion 22.
  • the bulging portion 24 is a cylindrical member that is provided below the sleeve portion 23 and bulges radially outward from the sleeve portion 23.
  • the bulging part 24 is formed in a substantially circular shape.
  • grooves 24a that serve as both positioning and rotation prevention are formed at appropriate positions in the circumferential direction of the bulging portion 24 (two locations in the illustrated example). The positioning member of the nozzle unit 17 is engaged with the groove 24a.
  • the adsorbing part 25 has a rectangular parallelepiped appearance that hangs down from the center of the bulging part 24.
  • the bottom portion 25a of the suction portion 25 has three rows of grooves 25b in the front and rear and three rows on the left and right.
  • the groove 25b has a rectangular frame-like portion 25c formed at the outer edge at the bottom portion 25a.
  • channel 25b forms the projection part 25d scattered at four corners inside the frame-shaped part 25c.
  • the bottom surfaces of the frame-like portion 25c and the protruding portion 25d constitute a component suction surface that comes into contact with the electronic component.
  • an air inlet / outlet 26 is opened.
  • an air passage 30 communicating with the air inlet / outlet 26 is formed in the nozzle body 21 through the center of the engaging convex portion 22, the sleeve portion 23, and the bulging portion 24. Yes. That is, the air passage 30 is open to the component adsorption surface via the air inlet / outlet 26.
  • the air passage 30 includes a step portion 30a at the lower portion.
  • the step portion 30a is an annular portion that is concentric with the upper end side and is formed with a smaller diameter than the upper end side.
  • the air inlet / outlet 26 is open at the center of the bottom of the stepped portion 30a.
  • a cylinder 40 is slidably provided in the air passage 30.
  • the cylinder 40 is divided into a first chamber 31 on the upstream side of the air passage 30 and a second chamber on the downstream side.
  • the first chamber 31 on the upstream side is connected to the above-described unillustrated air pressure adjuster. Therefore, the inside of the first chamber 31 becomes negative pressure or pressurized air is supplied by the air pressure adjuster.
  • the second chamber 32 is a part including a step 30a on the lower end side. As described above, the step portion 30 a that is a part of the second chamber communicates with the air inlet / outlet port 26. Therefore, when the second chamber 32 is under a negative pressure, the electronic component C can be sucked.
  • the electronic component C With this suction force, the electronic component C is separated from the frame-like portion 25c constituting the component suction surface and the bottom surface of the protruding portion 25d. Adhere and hold.
  • the electronic component C held on the bottom surface of the frame-shaped portion 25c and the protruding portion 25d constituting the component suction surface is the frame-shaped portion 25c and the protruding portion 25d. And pressed to the opposite side.
  • the cylinder 40 includes a large-diameter portion 40a, a small-diameter portion 40b, and a rod 50 in this order from the top.
  • the large diameter portion 40 a is a portion that is in sliding contact with the air passage 30.
  • the small diameter part 40b is a part of a circular cross section that is formed integrally and concentrically with the lower part of the large diameter part 40a. Further, the small diameter portion 40 b is set to be slightly smaller in diameter than the step portion 30 a of the air passage 30, while being set to be larger in diameter than the air inlet / outlet 26.
  • the rod 50 is a shaft member having a predetermined length, and is formed concentrically with the small diameter portion 40b.
  • the cylinder 40 slides up and down within a stroke ST (see FIGS. 7 to 9) set in advance as will be described later.
  • a stroke ST see FIGS. 7 to 9 set in advance as will be described later.
  • the cylinder 40 including the rod 50, floats above the air inlet / outlet 26, and the air inlet / outlet 26 communicates with the second chamber 32 (see FIG. 7).
  • the small diameter portion 40b of the cylinder 40 is seated on the step portion 30a of the air passage 30 (see FIG. 9).
  • the specifications of each part are set so that a slight gap is formed between the step part 30a of the air passage 30 and the lower surface of the large diameter part 40a. Therefore, even if the cylinder 40 moves to the bottom dead center, the second chamber 32 maintains a slight volume. Further, at the bottom dead center, the rod 50 penetrates the air inlet / outlet 26 and protrudes to the lower surface (see FIG. 9).
  • the rod 50 retreats into the nozzle body 21 when the air passage 30 is at a negative pressure, and functions as a pressing member that protrudes from the component suction surface during the separation operation.
  • the rod 50 is an example of the presser of the present invention.
  • a communication path 41 is formed in the cylinder 40 to communicate the first chamber 31 and the second chamber 32.
  • the communication path 41 includes a throttle 42, a bypass 43, and a vertical path 44.
  • the aperture 42 opens toward the first chamber 31 and communicates the bypass 43 and the first chamber 31.
  • the throttle 42 is sufficiently small with respect to the air inlet / outlet 26.
  • the second chamber 32 is set to be sufficiently large so as to have a negative pressure.
  • the bypass 43 is a hole penetrating along the diameter direction along the left and right of the cylinder 40 at the time of assembly.
  • the bypass 43 is for connecting the communication passage 41 and the atmosphere when supplying pressurized air to the air passage 30.
  • a pair of passages 27 are formed in the bulging portion 24 of the nozzle body 21 as shown in FIG.
  • the passages 27 face each other on the diameter along the left and right sides of the bulging portion 24, extend vertically outside the sleeve portion 23 of the bulging portion 24, and communicate with the atmosphere at the upper end. Further, each passage 27 and the air passage 30 communicate with each other through a lateral passage 28.
  • the lateral path 28 is formed at a position where the bypass 40 communicates with the left and right when the cylinder 40 moves to the bottom dead center.
  • the specifications of each part are set so that the lateral path 28 and the bypass 43 do not communicate with each other.
  • the longitudinal path 44 extends in parallel with the central axis of the cylinder 40 and communicates the bypass 43 and the second chamber 32. In the illustrated example, two longitudinal paths 44 are formed. Each longitudinal path 44 is opposed to each other along the diameter direction of the bypass 43.
  • a side communication path 60 is formed in the bulging portion 24.
  • the side communication passage 60 extends in front of the adsorption portion 25 in parallel with the air passage 30 in the radial direction of the bulging portion 24.
  • the upper end side of the side communication path 60 communicates with the first chamber 31. Further, the lower end side of the side communication passage 60 communicates with the atmosphere in front of the adsorption portion 25.
  • a side cylinder 70 is provided in the side communication path 60.
  • the side cylinder 70 partitions the side communication path 60 into the first chamber 31 side and the atmosphere side.
  • the side cylinder 70 is formed with a through hole 71 that penetrates in the diameter direction of the side cylinder 70.
  • the through hole 71 is for allowing the connecting pin 72 to pass therethrough.
  • the connecting pin 72 passes through the through hole 71 of the side cylinder 70 through a slit 73 formed in the front surface of the bulging portion 24.
  • a bottomed hole 45 is formed in the front portion of the cylinder 40.
  • the rear end portion of the connecting pin 72 is fitted into the hole 45 and is fixed to the cylinder 40. Further, the cylinder 40 and the side cylinder 70 are integrally connected by the connecting pin 72.
  • the slit 73 is a long hole extending vertically.
  • the upper and lower ends of the slit 73 define the top dead center and the bottom dead center of the cylinder 40, respectively.
  • the width dimension of the slit 73 is set to a length suitable for the side portion of the connecting pin 72 to be in sliding contact.
  • the slit 73 is an example of a recess that defines the stroke ST of the connecting pin 72.
  • the processing hole generated at the time of processing such as forming the passage 27 and the lateral path 28 in the nozzle main body 21, is appropriately closed by a plug 29.
  • the printed circuit board W to be mounted is conveyed from the outside by the conveyor of the circuit board conveying device 2 through the entrance area, the printed circuit board W is mounted by a substrate fixing mechanism (not shown). Fixed to the mounting position in the area (fixing operation).
  • the head unit 15 moves toward the component supply unit 13 that supplies the electronic component C to be mounted, and the nozzle unit corresponding to the electronic component provided at the component supply position of the component supply unit 13. Adsorption is performed by the 17 adsorption nozzles 20 (adsorption operation).
  • the sucked electronic component C is transported above the printed circuit board W fixed at the mounting position, and the suction nozzle 20 is lowered to mount the electronic component C at a predetermined position on the printed circuit board W (mounting operation).
  • the air pressure adjuster stops the supply of pressurized air after the electronic component C is mounted.
  • the suction nozzle 20 is then levitated and the operation of separating the nozzle unit 17 that has supplied the electronic component C is performed.
  • both the cylinder 40 and the side cylinder 70 are maintained at the top dead center, so that the rod 50 retracts upward from the air inlet / outlet 26 and opens the air inlet / outlet 26. Therefore, since the second chamber 32 communicates with the air inlet / outlet 26 and is maintained in a state close to the atmosphere, the state of the internal pressure P1 ⁇ the internal pressure P2 is also maintained for the differential pressure. Further, the bypass 43 of the cylinder 40 and the lateral path 28 of the nozzle body 21 are blocked.
  • the internal pressure P1 of the first chamber 31 becomes higher than the internal pressure P2 of the second chamber 32, and the cylinder 40 and the side cylinder 70 are pushed down by the differential pressure.
  • the cylinders 40 and 60 are gradually lowered, and finally the rod 50 enters the air inlet / outlet 26 and comes into contact with the upper surface of the electronic component C (see timing t5 in FIG. 6).
  • the bypass 43 of the communication passage 41 and the lateral path 28 of the nozzle body 21 are generally communicated (see FIG. 8).
  • the second chamber 32 is also compressed as the cylinder 40 is lowered, but the internal pressure of the second chamber 32 is maintained at atmospheric pressure because the bypass 43 and the lateral path 28 are in general communication. Therefore, it is possible to suppress the lowering of the cylinder 40 from being inhibited by the internal pressure P2 of the second chamber 32.
  • the second embodiment is different from the first embodiment in that the side communication path 60 and the side cylinder 70 are omitted. Further, the lateral path 28 formed in the second embodiment is different from the first embodiment in that it is configured to always communicate with the second chamber 32.
  • the lateral path 28 in the second embodiment has an opening width that is small enough to suppress an increase in negative pressure (a decrease in suction force) during the suction operation.
  • the first chamber 31 has air. Suction is performed, and the internal pressure P1 becomes lower than the atmospheric pressure.
  • the second chamber 32 communicates with the first chamber 31 via the communication passage 41, air suction is suppressed by the throttle 42 of the communication passage 41, so that the second chamber 32 passes through the lateral passage 28 and the passage 27.
  • the internal pressure P2 is maintained relatively close to the atmospheric pressure. Therefore, the internal pressure P1 of the first chamber 31 becomes lower than the internal pressure P2 of the second chamber 32, and the cylinder 40 is lifted upward by the differential pressure.
  • the cylinder 40 is maintained at the top dead center, so that the rod 50 retreats upward from the air inlet / outlet 26 and opens the air inlet / outlet 26. Therefore, since the second chamber 32 communicates with the air inlet / outlet 26 and is maintained in a state close to the atmosphere, the state of the internal pressure P1 ⁇ the internal pressure P2 is also maintained for the differential pressure.
  • the cylinder 40 gradually descends, and finally the rod 50 enters the air inlet / outlet 26 and comes into contact with the upper surface of the electronic component C (see timing t5 in FIG. 6).
  • the second chamber 32 is always open to the atmosphere by the lateral path 28 and the passage 27. Therefore, even if the second chamber 32 is compressed as the cylinder 40 is lowered, the internal pressure of the second chamber 32 is maintained at atmospheric pressure. Therefore, it is possible to suppress the lowering of the cylinder 40 from being inhibited by the internal pressure P2 of the second chamber 32.
  • the electronic component C can be sucked and picked up on the component suction surface as in the case of the conventional suction nozzle 20, and at the time of the mounting operation.
  • the sucked electronic component C can be mounted on the printed circuit board W.
  • the suction nozzle 20 performs a separation operation after the mounting operation, the rod 50 protrudes from the component suction surface of the nozzle body 21.
  • the electronic component C mounted on the printed circuit board W is pressed to the printed circuit board W side by the rod 50.
  • the nozzle body 21 can be separated from the electronic component C. Therefore, the mounted electronic component C does not move with the operation of the nozzle body 21.
  • the rod 50 is integrally formed at the end of the cylinder 40.
  • the cylinder 40 is formed with a communication passage 41 that communicates the first chamber 31 and the second chamber 32.
  • the communication passage 41 is an air passage.
  • the rod 50 is retracted into the nozzle main body 21 when the pressure 30 is negative, while the rod 50 protrudes from the component suction surface during the detaching operation, between the first chamber 31 and the second chamber 32.
  • a throttle 42 for generating a differential pressure.
  • the cylinder 40 causes the rod 50 to retract into the nozzle body 21 due to the differential pressure between the first chamber 31 and the second chamber 32, that is, Move upward. Further, when pressurized air is supplied to the air passage 30, the rod 50 is pressurized in a direction protruding from the component suction surface of the nozzle body 21 due to the differential pressure between the first chamber 31 and the second chamber 32.
  • the communication path 41 forms the bypass 43 that communicates the second chamber 32 and the atmosphere on the second chamber 32 side with respect to the throttle 42, and the nozzle body 21 includes at least the first main body 21.
  • a bypass passage (passage 27, lateral passage 28) communicating with the bypass 43 is provided.
  • the differential pressure between the first chamber 31 and the second chamber 32 can be generated using atmospheric pressure. Therefore, the control of the differential pressure is facilitated and the operation reliability of the suction nozzle 20 is increased.
  • the air in the second chamber 32 passes from the bypass 43 to the bypass passage (passage 27, lateral passage 28) even if the piston descends. Since the second chamber 32 is released into the atmosphere, an increase in internal pressure is suppressed. Therefore, since the air damper effect by the air of the second chamber 32 can be suppressed, it is possible to prevent the force that pushes down the piston from being hindered by the internal pressure of the second chamber 32.
  • the bypass passage is disconnected from the bypass 43 when the first chamber is at a negative pressure. Therefore, a larger suction force can be exerted when the electronic component C is sucked.
  • the side cylinder 70 further connected integrally with the cylinder 40 is further provided, and the nozzle main body 21 forms the side communication path 60 which connects the 1st chamber 31 and air
  • the side cylinder 70 is slidably mounted in the side communication path 60 and divides the side communication path 60 into a chamber side and an atmosphere side. Therefore, in the present embodiment, when the air passage 30 is set to a negative pressure, a differential pressure is generated between the first chamber 31 and the second chamber 32, and the chamber side of the side communication passage 60 is also set to a negative pressure. . Therefore, buoyancy is generated in the side cylinder 70. Further, the side cylinder 70 is integrally connected to the cylinder 40 having the rod 50 integrally.
  • the rod 50 receives the force in the direction of retreating into the nozzle body 21 more reliably.
  • pressurized air is supplied to the air passage 30
  • a differential pressure is generated between the first chamber 31 and the second chamber 32, and pressurized air is also supplied to the chamber side of the side communication passage 60. Therefore, the side cylinder 70 is pressurized in a direction in which the rod 50 together with the cylinder 40 protrudes from the component suction surface of the nozzle body 21. Therefore, the rod 50 can receive force in a direction in which the rod 50 protrudes from the nozzle body 21 more reliably.
  • the pin which connects the cylinder 40 and the side cylinder 70 is further provided, and the nozzle main body 21 has the slit 73 as a recessed part which prescribes
  • the cylinder 40 and the side cylinder 70 can be connected by a pin to realize a required operation.
  • the pin stroke ST is formed in the nozzle body 21 outside the air passage 30, even if foreign matter enters the air passage 30, the foreign matter does not adhere to the pin.
  • the recess is not limited to the slit 73 and may be a bottomed groove.
  • the separation operation when the separation operation is performed after the mounting operation, the separation operation is performed after the supply of pressurized air is stopped. Therefore, in each embodiment, when the suction nozzle is separated from the electronic component, the pressurized air does not leak to the surroundings, and the pressurized air does not adversely affect the surrounding electronic components or the surface of the printed board.
  • the separation operation may be executed while the supply of pressurized air is continued.
  • the present invention can be suitably applied to equipment for automatically mounting electronic components on a printed circuit board.
  • it is suitable for application to various printed circuit board manufacturing processes, such as mounting electronic components on a relatively low-adhesion surface such as a flux application surface, or a surface having no adhesiveness.

Abstract

According to the present invention, a suction nozzle (20) performs a suction operation for picking up an electronic component (C) using negative pressure, and a mounting operation for mounting the picked-up electronic component (C) onto a printed substrate using pressurized air, and performs, after the mounting operation, a separation operation for separating from the electronic component (C) mounted on the printed substrate. The suction nozzle (20) is provided with: a main nozzle body (21) provided with a component suction surface for suctioning the electronic component (C), and an air passage (30) opening on the component suction surface; and a rod (50) functioning as a pressing element which retracts into the main nozzle body (21) when the air passage (30) is at a negative pressure and protrudes from the component suction surface during the separation operation.

Description

吸着ノズルおよび表面実装機Suction nozzle and surface mounter
 本発明は、吸着ノズルおよび表面実装機に関し、特に、小型の電子部品の吸着に好適な吸着ノズルおよび表面実装機に関する。 The present invention relates to a suction nozzle and a surface mounting machine, and more particularly to a suction nozzle and a surface mounting machine suitable for sucking small electronic components.
 電子部品をプリント基板に自動的に実装するために、表面実装機が使用される。表面実装機は、基板搬送ライン上に設定された基板停止位置にプリント基板を停止させるとともに、上記基板停止位置に停止しているプリント基板に電子部品を実装する。電子部品の実装のために、表面実装機は、ヘッドユニットを備えている。ヘッドユニットは、例えば、複数の吸着ノズルを備えている。各吸着ノズルは、ヘッドユニットによって、電子部品が供給される部品供給位置と上記基板停止位置との間を移動する。部品供給位置において、各吸着ノズルは、電子部品をピックアップし(吸着動作)、基板停止位置において、各吸着ノズルは、ピックアップした電子部品をプリント基板の上に実装する(実装動作)。 ∙ Surface mounters are used to automatically mount electronic components on printed circuit boards. The surface mounter stops the printed circuit board at a board stop position set on the board transport line, and mounts an electronic component on the printed board stopped at the board stop position. For mounting electronic components, the surface mounter includes a head unit. The head unit includes, for example, a plurality of suction nozzles. Each suction nozzle is moved by the head unit between a component supply position to which electronic components are supplied and the substrate stop position. At the component supply position, each suction nozzle picks up an electronic component (suction operation), and at the substrate stop position, each suction nozzle mounts the picked-up electronic component on the printed board (mounting operation).
 本件出願人は、たとえば特許文献1に記載されている装置を提案している。同公報に開示されている吸着ノズルは、部品吸着面と、この部品吸着面に開口する空気通路とを備えたノズル本体と、ノズル本体を昇降可能に保持するノズルホルダとを備えている。吸着動作時において、空気通路は負圧にされる。電子部品は、空気通路の負圧によって吸引され部品吸着面に吸着される。また、実装動作時において、空気通路には加圧空気が供給される。部品吸着面に吸着した電子部品は、加圧空気によって、プリント基板上に押し付けられる。この押し付け動作後に、吸着ノズルは、装着した電子部品から離れる(切り離し動作)。 The applicant of the present application has proposed an apparatus described in Patent Document 1, for example. The suction nozzle disclosed in the publication includes a nozzle body having a component suction surface, an air passage opening in the component suction surface, and a nozzle holder that holds the nozzle body so as to be movable up and down. During the adsorption operation, the air passage is set to a negative pressure. The electronic component is sucked by the negative pressure of the air passage and is sucked by the component suction surface. Further, during the mounting operation, pressurized air is supplied to the air passage. The electronic component adsorbed on the component adsorption surface is pressed onto the printed circuit board by pressurized air. After this pressing operation, the suction nozzle moves away from the mounted electronic component (separation operation).
特開2008-300598号公報JP 2008-300598 A
 ところが、近年、プリント基板に対する電子部品の実装プロセスの多様化が進み、例えば、フラックス塗布面など比較的低粘着の面や、全く粘着性の無い面へ搭載する応用例もある(通常のはんだペーストは粘着性が高い)。そのような実装プロセスにおいて、電子部品を実装する場合には、切り離し動作の際、トラブルが生じやすい。例えば、プリント基板に押圧した電子部品が吸着ノズルの部品吸着面に付着したまま、切り離し動作が行われる場合がある(いわゆる「持ち帰り動作」)。この「持ち帰り動作」は、ノズルをすばやく上昇させる際に、吸着面と電子部品との間が一瞬負圧になったり、あるいは境界面への急激な空気の流入により部品をずらしてしまうことに起因する可能性があると考えられる。また、持ち帰り動作に至らないまでも、上記静電気や真空による吸着力によって、切り離し動作の際に、一旦実装した電子部品に位置ずれが生じたり、脱落が生じたりするおそれもある。また、上記不具合は、ノズルの切り離し動作を素早くするほど、顕著に生じやすくなる。 However, in recent years, the mounting process of electronic components on a printed circuit board has been diversified, and for example, there is an application example in which mounting is performed on a relatively low adhesive surface such as a flux application surface or a surface having no adhesiveness (ordinary solder paste) Is highly sticky). In such a mounting process, when an electronic component is mounted, trouble is likely to occur during the separation operation. For example, the separation operation may be performed while the electronic component pressed against the printed circuit board is attached to the component suction surface of the suction nozzle (so-called “take-away operation”). This “take-away operation” is caused by the negative pressure between the suction surface and the electronic component for a moment or when the nozzle is quickly raised, or the component is shifted due to a sudden inflow of air to the boundary surface. It is thought that there is a possibility. Further, even if the take-out operation is not reached, there is a possibility that the electronic component once mounted may be displaced or fall off due to the above-described electrostatic or vacuum attracting force. In addition, the above-mentioned problem becomes more prominent as the nozzle separating operation is quickened.
 当然のことながら、上記持ち帰り動作や電子部品の位置ずれ等が生じると、不良品が発生し、生産効率が低下する。そのような不具合を解決するために、ノズルの切り離し動作をゆっくり行えば、瞬間的な負圧が部品吸着面と電子部品との間で生じにくくなるので、上記不具合は多少改善される。しかし、その場合は、確実な改善とはいいがたい上、タクトが長くなるという問題がある。 Of course, if the above-mentioned take-out operation or electronic component misalignment occurs, a defective product is generated and the production efficiency is lowered. If the nozzle separating operation is performed slowly in order to solve such a problem, an instantaneous negative pressure is less likely to be generated between the component suction surface and the electronic component, and thus the problem is somewhat improved. However, in this case, there is a problem that the tact is prolonged in addition to the reliable improvement.
 本発明は、上述した課題に鑑みてなされたものであり、電子部品の切り離し動作を確実に実行することのできる吸着ノズルおよび表面実装を提供することを課題としている。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a suction nozzle and a surface mount capable of reliably performing an operation of separating an electronic component.
 上記課題を解決するために、本発明は、電子部品を負圧で吸引してピックアップする吸着動作と、加圧空気を供給することによりピックアップした電子部品をプリント基板に実装する実装動作と、前記実装動作後に、前記プリント基板に装着した電子部品から離れる切り離し動作とを実行する吸着ノズルにおいて、電子部品を吸着する部品吸着面、及び前記部品吸着面に開口する空気通路を備えたノズル本体と、前記ノズル本体に設けられ、前記吸着動作の際に空気通路が負圧にされているときには前記ノズル本体内に退避する一方、前記切り離し動作の際に前記ノズル本体が実装後の電子部品から離れたときには前記部品吸着面から突出する押圧子とを備えていることを特徴とする吸着ノズルである。この態様では、吸着動作においては、従来の吸着ノズルと同様に、部品吸着面に電子部品を吸着し、ピックアップすることができるとともに、実装動作においては、吸着した電子部品をプリント基板に実装することができる。そして、吸着ノズルが実装動作の後、切り離し動作を行う際に、押圧子は、ノズル本体の部品吸着面から突出する。これにより、プリント基板に実装された電子部品は、押圧子によって、プリント基板側に押圧される。この押圧動作を伴って、ノズル本体は電子部品から離れることができる。よって、実装された電子部品がノズル本体の動作に連れ動きすることがなくなる。 In order to solve the above-described problems, the present invention provides an adsorption operation for sucking and picking up an electronic component at a negative pressure, a mounting operation for mounting the electronic component picked up by supplying pressurized air on the printed circuit board, In a suction nozzle that performs a separation operation for separating from an electronic component mounted on the printed circuit board after a mounting operation, a nozzle body provided with a component suction surface that sucks the electronic component, and an air passage that opens to the component suction surface; Provided in the nozzle body and retracted into the nozzle body when the air passage is under negative pressure during the suction operation, while the nozzle body is separated from the mounted electronic component during the separation operation Sometimes, the suction nozzle is provided with a pressing member protruding from the component suction surface. In this mode, in the suction operation, the electronic component can be picked up and picked up on the component suction surface as in the case of the conventional suction nozzle, and in the mounting operation, the sucked electronic component is mounted on the printed circuit board. Can do. When the suction nozzle performs a separation operation after the mounting operation, the pressing element protrudes from the component suction surface of the nozzle body. Thereby, the electronic component mounted on the printed circuit board is pressed to the printed circuit board side by the pressing element. With this pressing operation, the nozzle body can be separated from the electronic component. Therefore, the mounted electronic component does not move with the operation of the nozzle body.
 好ましい態様の吸着ノズルにおいて、前記ノズル本体の前記空気通路内に摺動可能に配置され、前記空気通路を、前記加圧空気の供給方向でみて、上流側の第1チェンバと下流側の第2チェンバとに区画するシリンダをさらに備え、前記押圧子は、前記シリンダの端部に一体形成されており、前記シリンダには、前記第1チェンバと前記第2チェンバとを連通する連通路が形成されており、前記連通路は、前記吸着動作の際に空気通路が負圧にされているときには前記押圧子が前記ノズル本体内に退避する一方、前記切り離し動作の際に前記ノズル本体が実装後の電子部品から離れたときには前記押圧子が前記部品吸着面から突出するように、前記第1チェンバと前記第2チェンバとの間に差圧を生成する絞り(orifice)を有するものである。この態様では、吸着動作の際に空気通路が負圧にされている場合、第1チェンバと第2チェンバの差圧により、シリンダは、押圧子がノズル本体内に退避する方向に移動する。また、実装動作の際に加圧空気を空気通路に供給した場合、第1チェンバと第2チェンバの差圧により、押圧子がノズル本体の部品吸着面から突出する方向に加圧される。この差圧は、シリンダの連通路に形成されている絞りによって生じているので、実装動作の後、加圧空気の供給が停止されても、押圧子がノズル本体の部品吸着面から突出する方向への圧力は、しばらくの間、維持される。そのため、加圧空気の供給を停止して切り離し動作を実行しても、押圧子はノズル本体と相対的に突出し、実装された電子部品をプリント基板へ押圧し続ける。従って、加圧空気の悪影響を回避しつつ、確実に切り離し動作を実行することができる。 In the suction nozzle according to a preferred aspect, the suction nozzle is slidably disposed in the air passage of the nozzle body, and the air passage is viewed in the supply direction of the pressurized air, and the first chamber on the upstream side and the second chamber on the downstream side. The cylinder further includes a chamber partitioned into a chamber, and the pressing element is integrally formed at an end portion of the cylinder, and the cylinder is formed with a communication path that communicates the first chamber with the second chamber. The communication passage is configured such that when the air passage is set to a negative pressure during the adsorption operation, the presser is retracted into the nozzle body, while the nozzle body is mounted after the separation operation. There is a restriction (orifice) that generates a differential pressure between the first chamber and the second chamber so that the pressing element protrudes from the component suction surface when the electronic component is separated from the electronic component. Than is. In this aspect, when the air passage is set to a negative pressure during the adsorption operation, the cylinder moves in a direction in which the presser retracts into the nozzle body due to the differential pressure between the first chamber and the second chamber. Further, when pressurized air is supplied to the air passage during the mounting operation, the presser is pressurized in a direction protruding from the component suction surface of the nozzle body due to the differential pressure between the first chamber and the second chamber. Since this differential pressure is generated by the throttle formed in the communication passage of the cylinder, the direction in which the presser protrudes from the component suction surface of the nozzle body even if the supply of pressurized air is stopped after the mounting operation The pressure on is maintained for a while. For this reason, even when the supply of pressurized air is stopped and the separation operation is performed, the pressing element projects relative to the nozzle body and continues to press the mounted electronic component against the printed circuit board. Therefore, it is possible to reliably perform the separation operation while avoiding the adverse effect of the pressurized air.
 好ましい態様の吸着ノズルにおいて、前記連通路は、前記絞りよりも前記第2チェンバ側で当該第2チェンバと大気とを連通するバイパスを形成しており、前記ノズル本体は、少なくとも前記第1チェンバに加圧空気が供給されている場合に、前記バイパスと連通するバイパス用通路を有している。この態様では、大気圧を利用して第1チェンバと第2チェンバの差圧を生成することができる。そのため、差圧の制御が容易になり、吸着ノズルの動作の信頼性が高くなる。特に、実装動作の際に加圧空気が第1チェンバに供給された場合、シリンダが降下しても第2チェンバの空気は、バイパスからバイパス用通路を経て大気へ放出されるので、第2チェンバは内圧の上昇が抑制される。そのため、第2チェンバの空気による、いわゆるエアダンパ効果を抑制できるので、シリンダを押し下げる力が第2チェンバの内圧によって、阻害されるのを防止することができる。 In the suction nozzle according to a preferred aspect, the communication path forms a bypass communicating the second chamber and the atmosphere on the second chamber side with respect to the restriction, and the nozzle body is at least connected to the first chamber. When pressurized air is supplied, it has a bypass passage communicating with the bypass. In this aspect, the differential pressure between the first chamber and the second chamber can be generated using atmospheric pressure. Therefore, the control of the differential pressure is facilitated and the operation reliability of the suction nozzle is increased. In particular, when pressurized air is supplied to the first chamber during the mounting operation, the air in the second chamber is released from the bypass through the bypass passage to the atmosphere even when the cylinder is lowered. Increases the internal pressure. Therefore, since the so-called air damper effect due to the air in the second chamber can be suppressed, it is possible to prevent the force that pushes down the cylinder from being hindered by the internal pressure of the second chamber.
 好ましい態様の吸着ノズルにおいて、前記シリンダと一体的に連結されるサイドシリンダをさらに備え、前記ノズル本体は、前記第1チェンバと大気とを連通するサイド連通路を形成するものであり、前記サイドシリンダは、前記サイド連通路内に摺動可能に装着されて、前記サイド連通路を前記第1チェンバ側と大気側とに区画するものである。この態様では、吸着動作の際に空気通路が負圧にされている場合、第1チェンバと第2チェンバとの間に差圧が生じるとともに、サイド連通路のチェンバ側も負圧になる。よって、サイドシリンダに浮力が生じる。また、サイドシリンダは、押圧子を一体的に有するシリンダと一体的に連結されている。よって、押圧子は、より確実にノズル本体内に退避する方向に力を受ける。一方、空気通路に加圧空気を供給した場合、第1チェンバと第2チェンバとの間に差圧が生じるとともに、サイド連通路のチェンバ側にも加圧空気が供給される。そのため、サイドシリンダは、シリンダとともに押圧子がノズル本体の部品吸着面から突出する方向に加圧される。よって、押圧子は、より確実にノズル本体から突出する方向に力を受けることができる。 In a preferred aspect of the suction nozzle, the suction nozzle further includes a side cylinder integrally connected to the cylinder, wherein the nozzle body forms a side communication path that communicates the first chamber with the atmosphere. Is slidably mounted in the side communication path and divides the side communication path into the first chamber side and the atmosphere side. In this aspect, when the air passage is set to a negative pressure during the adsorption operation, a differential pressure is generated between the first chamber and the second chamber, and the chamber side of the side communication passage also has a negative pressure. Therefore, buoyancy is generated in the side cylinder. Moreover, the side cylinder is integrally connected with the cylinder which has a presser integrally. Therefore, the pressing element receives a force in the direction of retreating into the nozzle body more reliably. On the other hand, when pressurized air is supplied to the air passage, differential pressure is generated between the first chamber and the second chamber, and pressurized air is also supplied to the chamber side of the side communication passage. Therefore, the side cylinder is pressed together with the cylinder in a direction in which the presser protrudes from the component suction surface of the nozzle body. Therefore, the pressing element can receive the force in a direction in which the pressing element protrudes more reliably from the nozzle body.
 好ましい態様の吸着ノズルにおいて、前記シリンダと前記サイドシリンダとを連結するピンをさらに備え、前記ノズル本体は、前記ピンのストロークを規定する凹部を前記空気通路の外側に有するものである。この態様では、ピンによって、シリンダとサイドシリンダとを連結し、所要の動作を実現することができる。しかも、ピンのストロークは、空気通路の外側でノズル本体に形成されているので、空気通路内に異物が混入したとしても、その異物がピンに付着するようなことがない。このため、シリンダないしサイドシリンダの動作の安定性、信頼性を高めることができ、空気通路を清掃する等、メンテナンス作業の頻度を低減することができる。 In a preferred aspect of the suction nozzle, the suction nozzle further includes a pin for connecting the cylinder and the side cylinder, and the nozzle body has a recess for defining a stroke of the pin outside the air passage. In this aspect, the cylinder and the side cylinder can be connected by the pin, and the required operation can be realized. Moreover, since the stroke of the pin is formed in the nozzle body outside the air passage, even if foreign matter is mixed in the air passage, the foreign matter does not adhere to the pin. For this reason, the stability and reliability of the operation of the cylinder or the side cylinder can be improved, and the frequency of maintenance work such as cleaning the air passage can be reduced.
 本発明の別の態様は、プリント基板に電子部品を実装する表面実装機において、前記吸着ノズルを備えていることを特徴とする表面実装機である。 Another aspect of the present invention is a surface mounter for mounting an electronic component on a printed board, wherein the suction nozzle is provided.
 以上説明したように、本発明によれば、吸着ノズルが実装動作の後、切り離し動作を行う際に、ノズル本体は、押圧子の押圧動作を伴って、電子部品から離れることができるので、実装された電子部品がノズル本体の動作に連れ動きすることがなくなる結果、電子部品の切り離し動作を確実に実行することができるという顕著な効果を奏する。 As described above, according to the present invention, when the suction nozzle performs the separation operation after the mounting operation, the nozzle body can be separated from the electronic component with the pressing operation of the pressing element. As a result of the fact that the electronic component thus moved does not move with the operation of the nozzle body, the electronic component separating operation can be reliably performed.
本発明の第1実施形態に係る表面実装機の概略構成を示す平面略図である。1 is a schematic plan view showing a schematic configuration of a surface mounter according to a first embodiment of the present invention. 図1の表面実装機に採用されている吸着ノズルの外観図であり、(A)は斜視図、(B)は平面図、(C)は底面図である。It is an external view of the suction nozzle employ | adopted as the surface mounting machine of FIG. 1, (A) is a perspective view, (B) is a top view, (C) is a bottom view. 図2の吸着ノズルの動作の態様を示す外観図であり、(A)は切り離し時の斜視図、(B)は実装動作時の斜視図である。It is an external view which shows the mode of operation | movement of the suction nozzle of FIG. 2, (A) is a perspective view at the time of isolation | separation, (B) is a perspective view at the time of mounting operation. 図2の吸着ノズルの分解断面略図である。FIG. 3 is a schematic exploded sectional view of the suction nozzle of FIG. 2. 図2の吸着ノズルの分解断面略図である。FIG. 3 is a schematic exploded sectional view of the suction nozzle of FIG. 2. 図2の吸着ノズルの各部の動作タイミングを示すタイミングチャートである。It is a timing chart which shows the operation timing of each part of the suction nozzle of FIG. 吸着動作時における吸着ノズルの断面略図である。It is a cross-sectional schematic diagram of the suction nozzle during the suction operation. 実装動作時における吸着ノズルの断面略図である。It is the cross-sectional schematic of the adsorption nozzle at the time of mounting operation. 切り離し動作時における吸着ノズルの断面略図である。It is a section schematic diagram of an adsorption nozzle at the time of separation operation. 第2実施形態に係る吸着動作時における吸着ノズルの断面略図である。It is a section schematic diagram of an adsorption nozzle at the time of adsorption operation concerning a 2nd embodiment. 第2実施形態に係る実装動作時における吸着ノズルの断面略図である。It is a section schematic diagram of a suction nozzle at the time of mounting operation concerning a 2nd embodiment. 第2実施形態に係る切り離し動作時における吸着ノズルの断面略図である。It is a section schematic diagram of an adsorption nozzle at the time of separation operation concerning a 2nd embodiment.
 以下、添付図面を参照して、本発明を実施するための最良の形態について説明する。なお、以下の説明では、各実施形態において、同等の部材には、同一の符号を付し、重複する説明を省略する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the accompanying drawings. In the following explanation, in each embodiment, the same numerals are given to an equivalent member, and the duplicate explanation is omitted.
(第1実施形態)
 まず、第1実施形態について、説明する。第1実施形態に係る表面実装機は、平面視略矩形の基台11を備えている。基台11には、電子部品を実装するための作業エリアとしての実装エリアと、この実装エリアの上流側に設定される待機エリアと、実装エリアの下流側に設定される出口エリアとが直線状に直列に設定されている。以下の説明では、各エリアが配列されている水平方向を仮にX軸方向とし、このX軸方向と直交する水平方向をY軸方向とし、鉛直方向をZ軸方向とする。本実施形態では、基台11のX軸方向に沿って基板搬送装置2が配設され、プリント基板Wは上流側となる-X方向から下流側となる+X方向に搬送される。
(First embodiment)
First, the first embodiment will be described. The surface mounter according to the first embodiment includes a base 11 having a substantially rectangular shape in plan view. On the base 11, a mounting area as a work area for mounting electronic components, a standby area set on the upstream side of the mounting area, and an exit area set on the downstream side of the mounting area are linear. Is set in series. In the following description, a horizontal direction in which each area is arranged is assumed to be an X-axis direction, a horizontal direction orthogonal to the X-axis direction is a Y-axis direction, and a vertical direction is a Z-axis direction. In the present embodiment, the substrate transport device 2 is disposed along the X-axis direction of the base 11, and the printed circuit board W is transported from the −X direction on the upstream side to the + X direction on the downstream side.
 具体的には図示していないが、周知の通り、基板搬送装置2は、コンベアと、搬送モータと、エンコーダとを備えている。コンベアは、搬送モータによって駆動され、プリント基板Wを上流側から下流側に搬送する。また、エンコーダは、搬送モータの運転状態を検出し、制御ユニットに出力する。このエンコーダの出力に基づいて、制御ユニットが搬送モータを制御することにより、任意の位置でプリント基板Wを停止することができるようになっている。 Although not specifically illustrated, as is well known, the substrate transport apparatus 2 includes a conveyor, a transport motor, and an encoder. The conveyor is driven by a transport motor and transports the printed circuit board W from the upstream side to the downstream side. The encoder detects the operation state of the transport motor and outputs it to the control unit. The control unit can stop the printed circuit board W at an arbitrary position by controlling the transport motor based on the output of the encoder.
 実装エリアにおいて、基板搬送装置2の両側には、それぞれ部品供給部13が設けられる。各部品供給部13は、複数のテープフィーダ14を備えている。各テープフィーダ14は、それぞれが、所定の電子部品を供給する。 In the mounting area, component supply units 13 are provided on both sides of the board transfer device 2, respectively. Each component supply unit 13 includes a plurality of tape feeders 14. Each tape feeder 14 supplies a predetermined electronic component.
 また、基台11の上方には、ヘッドユニット15が設けられる。ヘッドユニット15は、ヘッド本体16と、ヘッド本体16に連設される複数のノズルユニット17と、ヘッド本体16に取り付けられた部品カメラ18と、各ノズルユニット17にひとつずつ設けられている吸着ノズル20(図2以下参照)と、ノズルユニット17ごとに空気圧を調整可能な図略の空気圧調整機とを備えている。ヘッドユニット15は、公知の搬送機構により、X軸方向並びにY軸方向に移動することができるように構成されている。また、複数のノズルユニット17はそれぞれZ軸方向に昇降およびZ軸周りに回動することができるように構成されている。 Further, a head unit 15 is provided above the base 11. The head unit 15 includes a head main body 16, a plurality of nozzle units 17 connected to the head main body 16, a component camera 18 attached to the head main body 16, and a suction nozzle provided for each nozzle unit 17. 20 (see FIG. 2 and subsequent figures), and an air pressure adjuster (not shown) capable of adjusting the air pressure for each nozzle unit 17. The head unit 15 is configured to be movable in the X-axis direction and the Y-axis direction by a known transport mechanism. Each of the plurality of nozzle units 17 is configured to be able to move up and down in the Z-axis direction and rotate around the Z-axis.
 このような表面実装機1は、搬入動作、固定動作、吸着動作、実装動作、切り離し動作、並びに搬出動作を実行する。搬入動作は、プリント基板Wを外部のまたは連続して設けられた印刷装置等から入口エリアに搬入する動作である。固定動作は、入口エリアに搬入されたプリント基板Wを実装エリアに搬入した後、実装エリア内の実装位置に固定する動作である。吸着動作は、部品供給部13の部品供給位置に供されている電子部品を対応するノズルユニット17の吸着ノズル20によって吸着する動作である。実装動作は、吸着した電子部品Cを実装位置に固定されているプリント基板Wの上方に搬送し、さらに、吸着ノズル20を降下させて電子部品Cを当該プリント基板Wの所定位置に実装する動作である。切り離し動作は、好ましくは、加圧空気の供給を止め、その後、吸着ノズル20を浮揚させて実装後の電子部品Cから引き離す動作である。搬出動作は、電子部品が装着されたプリント基板Wを出口エリアに搬送した後、外部のまたは連続して設けられた他の実装機、検査装置、またはリフロー炉等の下流側に搬出する動作である。 Such a surface mounter 1 performs a carry-in operation, a fixing operation, a suction operation, a mounting operation, a separation operation, and a carry-out operation. The carry-in operation is an operation for carrying the printed circuit board W into the entrance area from an external or continuous printing device or the like. The fixing operation is an operation of fixing the printed circuit board W carried into the entrance area to the mounting position in the mounting area after carrying it into the mounting area. The suction operation is an operation of sucking the electronic component provided at the component supply position of the component supply unit 13 by the suction nozzle 20 of the corresponding nozzle unit 17. In the mounting operation, the sucked electronic component C is transported above the printed circuit board W fixed at the mounting position, and the suction nozzle 20 is lowered to mount the electronic component C at a predetermined position on the printed circuit board W. It is. The separation operation is preferably an operation in which the supply of pressurized air is stopped, and then the suction nozzle 20 is lifted and separated from the mounted electronic component C. The carry-out operation is an operation in which the printed circuit board W on which the electronic component is mounted is transported to the exit area, and then is carried out to the downstream side of another mounting machine, an inspection device, a reflow furnace or the like that is externally or continuously provided. is there.
 次に、図2~図4を参照して、吸着ノズル20は、ノズル本体21を備えている。 Next, referring to FIGS. 2 to 4, the suction nozzle 20 includes a nozzle body 21.
 ノズル本体21は、係合凸部22と、スリーブ部23と、膨出部24と、吸着部25とを一体に有する金属部材である。また、詳しくは後述するように、ノズル本体21には、これら係合凸部22、スリーブ部23、膨出部24、並びに吸着部25を連通する空気通路30がノズル本体21の軸芯に沿って形成されている。 The nozzle body 21 is a metal member that integrally includes an engaging convex portion 22, a sleeve portion 23, a bulging portion 24, and a suction portion 25. In addition, as will be described in detail later, the nozzle body 21 has an air passage 30 that communicates with the engaging convex portion 22, the sleeve portion 23, the bulging portion 24, and the suction portion 25 along the axis of the nozzle body 21. Is formed.
 係合凸部22は、ノズル本体21の一端側に設けられた取付用部位である。図示の例において、係合凸部22は、互いに平行な長辺22aを有している。組付時において、ノズル本体21は、係合凸部22がノズルユニット17に保持される。この組付時において、ノズル本体21は、この係合凸部22から順に、スリーブ部23、膨出部24、吸着部25へと垂下する。以下の説明では、ノズル本体21が鉛直方向に沿ってノズルユニット17に装着されるときの姿勢を基準にして、ノズル本体21の上下を説明する。また、上記長辺22aと平行な方向を仮に前後方向とする。 The engaging convex portion 22 is a mounting portion provided on one end side of the nozzle body 21. In the example shown in the drawing, the engaging convex portion 22 has long sides 22a parallel to each other. At the time of assembly, the nozzle main body 21 has the engaging projection 22 held by the nozzle unit 17. At the time of this assembly, the nozzle body 21 hangs down from the engagement convex portion 22 to the sleeve portion 23, the bulging portion 24, and the suction portion 25. In the following description, the top and bottom of the nozzle body 21 will be described with reference to the posture when the nozzle body 21 is mounted on the nozzle unit 17 along the vertical direction. The direction parallel to the long side 22a is assumed to be the front-rear direction.
 スリーブ部23は、係合凸部22の下面中央部分から下方に延びる円柱体である。 The sleeve portion 23 is a cylindrical body that extends downward from the central portion of the lower surface of the engaging convex portion 22.
 膨出部24は、スリーブ部23の下部に設けられ、スリーブ部23よりも径方向外方に膨出する筒状部材である。膨出部24は、概ね円形に形成されている。図示の例において、膨出部24の周方向適所(図示の例では2箇所)には、位置決めと回り止めを兼ねる溝24aが形成されている。溝24aには、ノズルユニット17の位置決め部材が係合する。 The bulging portion 24 is a cylindrical member that is provided below the sleeve portion 23 and bulges radially outward from the sleeve portion 23. The bulging part 24 is formed in a substantially circular shape. In the illustrated example, grooves 24a that serve as both positioning and rotation prevention are formed at appropriate positions in the circumferential direction of the bulging portion 24 (two locations in the illustrated example). The positioning member of the nozzle unit 17 is engaged with the groove 24a.
 吸着部25は、膨出部24の中央から垂下する直方体の外観を呈している。 The adsorbing part 25 has a rectangular parallelepiped appearance that hangs down from the center of the bulging part 24.
 図2(C)を参照して、吸着部25の底部25aには、前後三列、左右三列の溝25bが形成されている。溝25bは、底部25aに長方形の枠状部25cを外縁に形成している。また、溝25bは、枠状部25cの内側の四隅に点在する突起部25dを形成している。枠状部25cと突起部25dの底面は、電子部品と当接する部品吸着面を構成している。 Referring to FIG. 2C, the bottom portion 25a of the suction portion 25 has three rows of grooves 25b in the front and rear and three rows on the left and right. The groove 25b has a rectangular frame-like portion 25c formed at the outer edge at the bottom portion 25a. Moreover, the groove | channel 25b forms the projection part 25d scattered at four corners inside the frame-shaped part 25c. The bottom surfaces of the frame-like portion 25c and the protruding portion 25d constitute a component suction surface that comes into contact with the electronic component.
 吸着部25の中央には、空気出入口26が開口している。 In the center of the adsorbing portion 25, an air inlet / outlet 26 is opened.
 一方、図4に示すように、ノズル本体21の内部には、係合凸部22、スリーブ部23、並びに膨出部24の中心を貫いて空気出入口26と連通する空気通路30が形成されている。すなわち、空気通路30は、空気出入口26を介して、部品吸着面に開口している。空気通路30は、下部に段部30aを備えている。段部30aは、上端側と同心であって、上端側よりも小径に形成されている環状部位である。上記空気出入口26は、段部30aの底部中央に開口している。 On the other hand, as shown in FIG. 4, an air passage 30 communicating with the air inlet / outlet 26 is formed in the nozzle body 21 through the center of the engaging convex portion 22, the sleeve portion 23, and the bulging portion 24. Yes. That is, the air passage 30 is open to the component adsorption surface via the air inlet / outlet 26. The air passage 30 includes a step portion 30a at the lower portion. The step portion 30a is an annular portion that is concentric with the upper end side and is formed with a smaller diameter than the upper end side. The air inlet / outlet 26 is open at the center of the bottom of the stepped portion 30a.
 図5に示すように、この空気通路30内には、シリンダ40が摺動自在に設けられている。シリンダ40は、空気通路30の上流側の第1チェンバ31と下流側の第2チェンバとに区画している。上流側の第1チェンバ31は、上述した図略の空気圧調整機に接続されている。よって、上記空気圧調整機により、第1チェンバ31は、内部が負圧になったり、あるいは、加圧空気が供給されたりする。また、第2チェンバ32は、下端側の段部30aを含む部位である。上述したように、第2チェンバの一部である段部30aは、空気出入口26と連通している。よって、第2チェンバ32が負圧の場合、電子部品Cを吸引することができるので、この吸引力により、電子部品Cは、部品吸着面を構成する枠状部25cと突起部25dの底面と密着し、保持される。一方、第2チェンバ32に加圧空気が供給された場合、部品吸着面を構成する枠状部25cと突起部25dの底面に保持されている電子部品Cは、枠状部25c及び突起部25dと反対側に押圧される。 As shown in FIG. 5, a cylinder 40 is slidably provided in the air passage 30. The cylinder 40 is divided into a first chamber 31 on the upstream side of the air passage 30 and a second chamber on the downstream side. The first chamber 31 on the upstream side is connected to the above-described unillustrated air pressure adjuster. Therefore, the inside of the first chamber 31 becomes negative pressure or pressurized air is supplied by the air pressure adjuster. The second chamber 32 is a part including a step 30a on the lower end side. As described above, the step portion 30 a that is a part of the second chamber communicates with the air inlet / outlet port 26. Therefore, when the second chamber 32 is under a negative pressure, the electronic component C can be sucked. With this suction force, the electronic component C is separated from the frame-like portion 25c constituting the component suction surface and the bottom surface of the protruding portion 25d. Adhere and hold. On the other hand, when pressurized air is supplied to the second chamber 32, the electronic component C held on the bottom surface of the frame-shaped portion 25c and the protruding portion 25d constituting the component suction surface is the frame-shaped portion 25c and the protruding portion 25d. And pressed to the opposite side.
 シリンダ40は、図4に示すように、大径部40aと、小径部40bと、ロッド50とを、上からこの順で備えている。大径部40aは、空気通路30に摺接する部位である。小径部40bは、大径部40aの下部に一体且つ同心に形成されている円形断面の部位である。また、小径部40bは、空気通路30の段部30aよりもいくぶん小径に設定されている一方、空気出入口26よりも大径に設定されている。 As shown in FIG. 4, the cylinder 40 includes a large-diameter portion 40a, a small-diameter portion 40b, and a rod 50 in this order from the top. The large diameter portion 40 a is a portion that is in sliding contact with the air passage 30. The small diameter part 40b is a part of a circular cross section that is formed integrally and concentrically with the lower part of the large diameter part 40a. Further, the small diameter portion 40 b is set to be slightly smaller in diameter than the step portion 30 a of the air passage 30, while being set to be larger in diameter than the air inlet / outlet 26.
 ロッド50は、所定の長さを有する軸部材であり、小径部40bと同心に形成されている。 The rod 50 is a shaft member having a predetermined length, and is formed concentrically with the small diameter portion 40b.
 シリンダ40は、後述するように予め設定されたストロークST(図7~図9参照)内で、上下に摺動する。上記ストロークSTの上死点において、シリンダ40は、ロッド50も含め、空気出入口26の上方に浮揚し、空気出入口26を第2チェンバ32と連通する(図7参照)。 The cylinder 40 slides up and down within a stroke ST (see FIGS. 7 to 9) set in advance as will be described later. At the top dead center of the stroke ST, the cylinder 40, including the rod 50, floats above the air inlet / outlet 26, and the air inlet / outlet 26 communicates with the second chamber 32 (see FIG. 7).
 一方、上記ストロークSTの下死点において、シリンダ40の小径部40bは、空気通路30の段部30a上に着座する(図9参照)。この下死点において、空気通路30の段部30aと大径部40aの下面との間に僅かな隙間が形成されるように各部の諸元が設定されている。よって、シリンダ40が下死点に移動した場合であっても、第2チェンバ32は、僅かな体積を維持していることになる。また、上記下死点において、ロッド50は、空気出入口26を貫通し、下面に突出するようになっている(図9参照)。従って、ロッド50は、空気通路30が負圧にされているときには、ノズル本体21内に退避する一方、切り離し動作の際に、部品吸着面から突出する押圧子として機能する。このように、ロッド50は、本発明の押圧子の一例である。 On the other hand, at the bottom dead center of the stroke ST, the small diameter portion 40b of the cylinder 40 is seated on the step portion 30a of the air passage 30 (see FIG. 9). At this bottom dead center, the specifications of each part are set so that a slight gap is formed between the step part 30a of the air passage 30 and the lower surface of the large diameter part 40a. Therefore, even if the cylinder 40 moves to the bottom dead center, the second chamber 32 maintains a slight volume. Further, at the bottom dead center, the rod 50 penetrates the air inlet / outlet 26 and protrudes to the lower surface (see FIG. 9). Therefore, the rod 50 retreats into the nozzle body 21 when the air passage 30 is at a negative pressure, and functions as a pressing member that protrudes from the component suction surface during the separation operation. Thus, the rod 50 is an example of the presser of the present invention.
 第1チェンバ31と第2チェンバ32とを連通するため、シリンダ40には、連通路41が形成されている。連通路41は、絞り42、バイパス43、並びに縦路44を備えている。絞り42は、第1チェンバ31に臨んで開口し、バイパス43と第1チェンバ31とを連通している。後述する吸引動作や実装動作において、第1チェンバ31と第2チェンバ32の差圧を充分に確保するため、絞り42は、空気出入口26に対して充分小さく、且つ吸着動作において、空気出入口26が閉じたときに、第2チェンバ32を負圧にするために充分大きく設定されている。 A communication path 41 is formed in the cylinder 40 to communicate the first chamber 31 and the second chamber 32. The communication path 41 includes a throttle 42, a bypass 43, and a vertical path 44. The aperture 42 opens toward the first chamber 31 and communicates the bypass 43 and the first chamber 31. In order to secure a sufficient differential pressure between the first chamber 31 and the second chamber 32 in a suction operation and a mounting operation, which will be described later, the throttle 42 is sufficiently small with respect to the air inlet / outlet 26. When closed, the second chamber 32 is set to be sufficiently large so as to have a negative pressure.
 バイパス43は、組付時において、シリンダ40の左右に沿う直径方向に沿って貫通する孔である。バイパス43は、加圧空気を空気通路30に供給する際に、連通路41と大気とを連通するためのものである。かかる連通を可能にするため、ノズル本体21の膨出部24には、図4に示すように、一対の通路27が形成されている。各通路27は、膨出部24の左右に沿う直径上で、互いに対向し、膨出部24のスリーブ部23よりも外側で上下に延びて、上端が大気に連通している。また、各通路27と空気通路30とは、横路28によって、連通している。横路28は、シリンダ40が下死点に移動しているときに、バイパス43と左右に連通する位置に形成されている。また、シリンダ40が上死点にあるときには、横路28とバイパス43とが連通することがないように、各部の諸元が設定されている。 The bypass 43 is a hole penetrating along the diameter direction along the left and right of the cylinder 40 at the time of assembly. The bypass 43 is for connecting the communication passage 41 and the atmosphere when supplying pressurized air to the air passage 30. In order to enable such communication, a pair of passages 27 are formed in the bulging portion 24 of the nozzle body 21 as shown in FIG. The passages 27 face each other on the diameter along the left and right sides of the bulging portion 24, extend vertically outside the sleeve portion 23 of the bulging portion 24, and communicate with the atmosphere at the upper end. Further, each passage 27 and the air passage 30 communicate with each other through a lateral passage 28. The lateral path 28 is formed at a position where the bypass 40 communicates with the left and right when the cylinder 40 moves to the bottom dead center. In addition, when the cylinder 40 is at the top dead center, the specifications of each part are set so that the lateral path 28 and the bypass 43 do not communicate with each other.
 縦路44は、シリンダ40の中心軸と平行に延びて、バイパス43と第2チェンバ32とを連通する。図示の例では、縦路44は、2本形成されている。各縦路44は、互いにバイパス43の一直径方向に沿って対向している。 The longitudinal path 44 extends in parallel with the central axis of the cylinder 40 and communicates the bypass 43 and the second chamber 32. In the illustrated example, two longitudinal paths 44 are formed. Each longitudinal path 44 is opposed to each other along the diameter direction of the bypass 43.
 次に、図5を参照して、本実施形態においては、サイド連通路60が膨出部24に形成されている。サイド連通路60は、膨出部24の径方向において、吸着部25よりも前方で空気通路30と平行に延びている。サイド連通路60の上端側は、第1チェンバ31と連通している。また、サイド連通路60の下端側は、吸着部25の前方で大気と連通している。 Next, referring to FIG. 5, in the present embodiment, a side communication path 60 is formed in the bulging portion 24. The side communication passage 60 extends in front of the adsorption portion 25 in parallel with the air passage 30 in the radial direction of the bulging portion 24. The upper end side of the side communication path 60 communicates with the first chamber 31. Further, the lower end side of the side communication passage 60 communicates with the atmosphere in front of the adsorption portion 25.
 サイド連通路60には、サイドシリンダ70が設けられている。サイドシリンダ70は、サイド連通路60を第1チェンバ31側と大気側とに区画している。サイドシリンダ70には、当該サイドシリンダ70の直径方向に貫通する貫通孔71が形成されている。貫通孔71は、連結ピン72を貫通させるためのものである。 A side cylinder 70 is provided in the side communication path 60. The side cylinder 70 partitions the side communication path 60 into the first chamber 31 side and the atmosphere side. The side cylinder 70 is formed with a through hole 71 that penetrates in the diameter direction of the side cylinder 70. The through hole 71 is for allowing the connecting pin 72 to pass therethrough.
 連結ピン72は、膨出部24の前面に形成されたスリット73を介してサイドシリンダ70の貫通孔71を貫通している。一方、シリンダ40の前部には、有底の穴45が形成されている。連結ピン72の後端部は、穴45内に嵌入し、シリンダ40に止定される。また、連結ピン72により、シリンダ40とサイドシリンダ70とは一体的に連結される。 The connecting pin 72 passes through the through hole 71 of the side cylinder 70 through a slit 73 formed in the front surface of the bulging portion 24. On the other hand, a bottomed hole 45 is formed in the front portion of the cylinder 40. The rear end portion of the connecting pin 72 is fitted into the hole 45 and is fixed to the cylinder 40. Further, the cylinder 40 and the side cylinder 70 are integrally connected by the connecting pin 72.
 スリット73は、上下に延びる長孔である。スリット73の上下端部は、それぞれ、シリンダ40の上死点と下死点とを規定している。また、スリット73の幅寸法は、連結ピン72の側部が摺接するのに好適な長さに設定されている。図示の例において、スリット73は、連結ピン72のストロークSTを規定する凹部の一例である。なお、ノズル本体21に通路27、横路28を形成する等、加工時に生じた加工孔は、栓29によって適宜塞がれている。 The slit 73 is a long hole extending vertically. The upper and lower ends of the slit 73 define the top dead center and the bottom dead center of the cylinder 40, respectively. The width dimension of the slit 73 is set to a length suitable for the side portion of the connecting pin 72 to be in sliding contact. In the illustrated example, the slit 73 is an example of a recess that defines the stroke ST of the connecting pin 72. In addition, the processing hole generated at the time of processing, such as forming the passage 27 and the lateral path 28 in the nozzle main body 21, is appropriately closed by a plug 29.
 次に、第1実施形態の動作について説明する。 Next, the operation of the first embodiment will be described.
 まず、図1を参照して、実装対象となるプリント基板Wが外部から入口エリアを経て基板搬送装置2のコンベアによって搬送されてくると、プリント基板Wは、図略の基板固定機構により、実装エリア内の実装位置に固定される(固定動作)。次いで、ヘッドユニット15は、実装対象となる電子部品Cを供給している部品供給部13に向かって移動し、当該部品供給部13の部品供給位置に供されている電子部品を対応するノズルユニット17の吸着ノズル20によって吸着する(吸着動作)。次いで、吸着した電子部品Cを実装位置に固定されているプリント基板Wの上方に搬送し、さらに、吸着ノズル20を降下させて電子部品Cを当該プリント基板Wの所定位置に実装する(実装動作)。本実施形態の実装動作において、空気圧調整機は、電子部品Cのマウント後に加圧空気の供給を停止する。吸着ノズル20は、その後浮揚され、電子部品Cを供給したノズルユニット17の切り離し動作が実行される。 First, referring to FIG. 1, when the printed circuit board W to be mounted is conveyed from the outside by the conveyor of the circuit board conveying device 2 through the entrance area, the printed circuit board W is mounted by a substrate fixing mechanism (not shown). Fixed to the mounting position in the area (fixing operation). Next, the head unit 15 moves toward the component supply unit 13 that supplies the electronic component C to be mounted, and the nozzle unit corresponding to the electronic component provided at the component supply position of the component supply unit 13. Adsorption is performed by the 17 adsorption nozzles 20 (adsorption operation). Next, the sucked electronic component C is transported above the printed circuit board W fixed at the mounting position, and the suction nozzle 20 is lowered to mount the electronic component C at a predetermined position on the printed circuit board W (mounting operation). ). In the mounting operation of this embodiment, the air pressure adjuster stops the supply of pressurized air after the electronic component C is mounted. The suction nozzle 20 is then levitated and the operation of separating the nozzle unit 17 that has supplied the electronic component C is performed.
 次に、図6並びに図7を参照して、上述した吸着動作のうち、本実施形態の骨子となるタイミングにおける吸着ノズル20の動作について説明する。 Next, with reference to FIG. 6 and FIG. 7, the operation of the suction nozzle 20 at the timing which becomes the gist of the present embodiment among the above-described suction operations will be described.
 まず、部品吸着動作のために、負圧の生成が開始されると(図6のタイミングt1参照)、第1チェンバ31では空気が吸引され、内圧P1は、大気圧よりも低くなる。一方、第2チェンバ32は、連通路41を介して第1チェンバ31と連通しているものの、連通路41の絞り42によって、空気の吸引が抑制されるので、内圧P2は、比較的大気圧に近い状態に維持されている。そのため、第1チェンバ31の内圧P1が第2チェンバ32の内圧P2よりも低くなり、シリンダ40並びにサイドシリンダ70は、差圧によって上方に浮揚される。この結果、シリンダ40とサイドシリンダ70とは、ともに、上死点に維持されるので、ロッド50は、空気出入口26から上方に退避し、空気出入口26を開放する。よって、第2チェンバ32は、空気出入口26に連通して大気に近い状態に維持されるので、上記差圧についても、内圧P1<内圧P2の状態が維持される。また、シリンダ40のバイパス43とノズル本体21の横路28とは、遮断している。 First, when the generation of negative pressure is started for the component adsorption operation (see timing t1 in FIG. 6), air is sucked in the first chamber 31, and the internal pressure P1 becomes lower than the atmospheric pressure. On the other hand, although the second chamber 32 communicates with the first chamber 31 via the communication path 41, the suction of air is suppressed by the throttle 42 of the communication path 41, so that the internal pressure P2 is relatively atmospheric pressure. It is maintained in a state close to. Therefore, the internal pressure P1 of the first chamber 31 becomes lower than the internal pressure P2 of the second chamber 32, and the cylinder 40 and the side cylinder 70 are levitated upward by the differential pressure. As a result, both the cylinder 40 and the side cylinder 70 are maintained at the top dead center, so that the rod 50 retracts upward from the air inlet / outlet 26 and opens the air inlet / outlet 26. Therefore, since the second chamber 32 communicates with the air inlet / outlet 26 and is maintained in a state close to the atmosphere, the state of the internal pressure P1 <the internal pressure P2 is also maintained for the differential pressure. Further, the bypass 43 of the cylinder 40 and the lateral path 28 of the nozzle body 21 are blocked.
 次に、吸着ノズル20の部品吸着面(枠状部25cと突起部25dの底面)が電子部品Cに接触すると(図6のタイミングt2参照)、空気出入口26が閉じるので、第2チェンバ32は、次第に内圧P2が低下し、遂には、第1チェンバ31の内圧P1と平衡する。これにより、空気出入口26を介して電子部品Cに吸引力が作用し、電子部品Cは、吸着部25に吸着される(図6のタイミングt3参照)。これにより、吸着動作が完了する。 Next, when the component suction surface (the bottom surface of the frame-like portion 25c and the projection 25d) of the suction nozzle 20 comes into contact with the electronic component C (see timing t2 in FIG. 6), the air inlet / outlet port 26 is closed. The internal pressure P2 gradually decreases and finally balances with the internal pressure P1 of the first chamber 31. Thereby, a suction force acts on the electronic component C through the air inlet / outlet 26, and the electronic component C is adsorbed by the adsorbing portion 25 (see timing t3 in FIG. 6). Thereby, the adsorption operation is completed.
 次に、図6並びに図8を参照して、加圧空気の供給が開始された場合(図6のタイミングt4参照)、第1チェンバ31では、内圧P1が上昇する。この圧力は、シリンダ40の上面並びにサイドシリンダ70の上面に作用し、これらシリンダ40、60を下方に押し下げようとする。一方、第2チェンバ32は、連通路41を介して第1チェンバ31と連通しているものの、連通路41の絞り42によって、加圧空気の流入が抑制されるので、内圧P2は、比較的低い状態に維持されている。そのため、第1チェンバ31の内圧P1が第2チェンバ32の内圧P2よりも高くなり、シリンダ40並びにサイドシリンダ70は、差圧によって下方に押し下げられる。この結果、シリンダ40、60は、次第に降下し、遂には、ロッド50が空気出入口26内に入って、電子部品Cの上面に当接する(図6のタイミングt5参照)。このタイミング、すなわち、図6のt5で示すタイミングでは、連通路41のバイパス43とノズル本体21の横路28とが概ね連通する(図8参照)。そのため、シリンダ40の降下に伴って、第2チェンバ32も圧縮されるが、バイパス43と横路28とが概ね連通しているので、第2チェンバ32の内圧は、大気圧に維持される。よって、シリンダ40の降下が、第2チェンバ32の内圧P2によって阻害されるのを抑制することが可能となっている。 Next, referring to FIG. 6 and FIG. 8, when the supply of pressurized air is started (see timing t <b> 4 in FIG. 6), the internal pressure P <b> 1 increases in the first chamber 31. This pressure acts on the upper surface of the cylinder 40 and the upper surface of the side cylinder 70 and tries to push down the cylinders 40 and 60 downward. On the other hand, although the second chamber 32 communicates with the first chamber 31 via the communication passage 41, the inflow of pressurized air is suppressed by the throttle 42 of the communication passage 41, so the internal pressure P2 is relatively low. Maintained low. Therefore, the internal pressure P1 of the first chamber 31 becomes higher than the internal pressure P2 of the second chamber 32, and the cylinder 40 and the side cylinder 70 are pushed down by the differential pressure. As a result, the cylinders 40 and 60 are gradually lowered, and finally the rod 50 enters the air inlet / outlet 26 and comes into contact with the upper surface of the electronic component C (see timing t5 in FIG. 6). At this timing, that is, the timing indicated by t5 in FIG. 6, the bypass 43 of the communication passage 41 and the lateral path 28 of the nozzle body 21 are generally communicated (see FIG. 8). Therefore, the second chamber 32 is also compressed as the cylinder 40 is lowered, but the internal pressure of the second chamber 32 is maintained at atmospheric pressure because the bypass 43 and the lateral path 28 are in general communication. Therefore, it is possible to suppress the lowering of the cylinder 40 from being inhibited by the internal pressure P2 of the second chamber 32.
 次いで、切り離し動作のために、加圧空気の供給が停止されると、第1チェンバ31の内圧P1は、漸次、低下するが、絞り42が設けられていることにより、第1チェンバ31の内圧P1は、大気圧よりも高くなっている。そのため、上記差圧についても、内圧P1>内圧P2の状態が維持される。よって、吸着ノズル20が上方に浮揚されると(図6のタイミングt6参照)、シリンダ40、60に作用する押下力が維持されるので、ノズル本体21の上昇に伴って、ロッド50が相対的に電子部品Cと接触したまま相対的な変位が生じることになる。この結果、電子部品Cと、吸着部25とが確実に分離し(図6のタイミングt7参照)、所期の切り離し動作を実現することが可能となる。 Next, when the supply of pressurized air is stopped for the separation operation, the internal pressure P1 of the first chamber 31 gradually decreases. However, since the throttle 42 is provided, the internal pressure of the first chamber 31 is reduced. P1 is higher than atmospheric pressure. Therefore, the state of the internal pressure P1> the internal pressure P2 is also maintained for the differential pressure. Therefore, when the suction nozzle 20 is lifted upward (see timing t6 in FIG. 6), the pressing force acting on the cylinders 40 and 60 is maintained, so that the rod 50 is relatively moved as the nozzle body 21 is raised. Thus, a relative displacement occurs while being in contact with the electronic component C. As a result, the electronic component C and the suction portion 25 are reliably separated (see timing t7 in FIG. 6), and an intended separation operation can be realized.
(第2実施形態)
 次に、第2実施形態について説明する。
(Second Embodiment)
Next, a second embodiment will be described.
 図10~図12を参照して、第2実施形態においては、サイド連通路60、サイドシリンダ70が省略されている点が第1実施形態と相違している。さらに、第2実施形態において形成されている横路28は、常時、第2チェンバ32と連通する構成になっている点も第1実施形態と相違している。第2実施形態における横路28は、吸引動作時における負圧の上昇(吸引力の低下)を抑制可能な程度に開口幅が小さく設定されている。 10 to 12, the second embodiment is different from the first embodiment in that the side communication path 60 and the side cylinder 70 are omitted. Further, the lateral path 28 formed in the second embodiment is different from the first embodiment in that it is configured to always communicate with the second chamber 32. The lateral path 28 in the second embodiment has an opening width that is small enough to suppress an increase in negative pressure (a decrease in suction force) during the suction operation.
 次に、第2実施形態の動作について説明する。 Next, the operation of the second embodiment will be described.
 図10(A)(B)を参照して、第2実施形態において部品吸着動作のために、負圧の生成が開始されると(図6のタイミングt1参照)、第1チェンバ31では空気が吸引され、内圧P1は、大気圧よりも低くなる。一方、第2チェンバ32は、連通路41を介して第1チェンバ31と連通しているものの、連通路41の絞り42によって、空気の吸引が抑制されるので、横路28並びに通路27を経由して第2チェンバ32が大気に開放されていることと相俟って、内圧P2は、比較的大気圧に近い状態に維持されている。そのため、第1チェンバ31の内圧P1が第2チェンバ32の内圧P2よりも低くなり、シリンダ40は、差圧によって上方に浮揚される。この結果、シリンダ40は、上死点に維持されるので、ロッド50は、空気出入口26から上方に退避し、空気出入口26を開放する。よって、第2チェンバ32は、空気出入口26に連通して大気に近い状態に維持されるので、上記差圧についても、内圧P1<内圧P2の状態が維持される。 Referring to FIGS. 10A and 10B, when the generation of negative pressure is started for the component suction operation in the second embodiment (see timing t1 in FIG. 6), the first chamber 31 has air. Suction is performed, and the internal pressure P1 becomes lower than the atmospheric pressure. On the other hand, although the second chamber 32 communicates with the first chamber 31 via the communication passage 41, air suction is suppressed by the throttle 42 of the communication passage 41, so that the second chamber 32 passes through the lateral passage 28 and the passage 27. In combination with the opening of the second chamber 32 to the atmosphere, the internal pressure P2 is maintained relatively close to the atmospheric pressure. Therefore, the internal pressure P1 of the first chamber 31 becomes lower than the internal pressure P2 of the second chamber 32, and the cylinder 40 is lifted upward by the differential pressure. As a result, the cylinder 40 is maintained at the top dead center, so that the rod 50 retreats upward from the air inlet / outlet 26 and opens the air inlet / outlet 26. Therefore, since the second chamber 32 communicates with the air inlet / outlet 26 and is maintained in a state close to the atmosphere, the state of the internal pressure P1 <the internal pressure P2 is also maintained for the differential pressure.
 次に、吸着ノズル20の部品吸着面が電子部品Cに接触すると(図6のタイミングt2参照)、空気出入口26が閉じるので、第2実施形態における横路28の開口幅が小さく設定されていることと相俟って、第2チェンバ32は、次第に内圧P2が低下する。これにより、空気出入口26を介して電子部品Cに吸引力が作用し、電子部品Cは、吸着部25に吸着される(図6のタイミングt3参照)。これにより、吸着動作が完了する。 Next, when the component suction surface of the suction nozzle 20 comes into contact with the electronic component C (see timing t2 in FIG. 6), the air inlet / outlet 26 is closed, so that the opening width of the lateral path 28 in the second embodiment is set to be small. In combination, the internal pressure P2 of the second chamber 32 gradually decreases. Thereby, a suction force acts on the electronic component C through the air inlet / outlet 26, and the electronic component C is adsorbed by the adsorbing portion 25 (see timing t3 in FIG. 6). Thereby, the adsorption operation is completed.
 次に、図11(A)(B)を参照して、加圧空気の供給が開始された場合(図6のタイミングt4参照)、第1チェンバ31では、内圧P1が上昇する。この圧力は、シリンダ40の上面に作用し、シリンダ40を下方に押し下げようとする。一方、第2チェンバ32は、連通路41を介して第1チェンバ31と連通しているものの、連通路41の絞り42によって、加圧空気の流入が抑制されるので、横路28並びに通路27を経由して第2チェンバ32が大気に開放されていることと相俟って、内圧P2は、比較的低い状態に維持されている。そのため、第1チェンバ31の内圧P1が第2チェンバ32の内圧P2よりも高くなり、シリンダ40は、差圧によって下方に押し下げられる。この結果、シリンダ40は、次第に降下し、遂には、ロッド50が空気出入口26内に入って、電子部品Cの上面に当接する(図6のタイミングt5参照)。また、第2チェンバ32は、横路28並びに通路27によって、常時、大気に開放されている。そのため、シリンダ40の降下に伴って、第2チェンバ32も圧縮されても、第2チェンバ32の内圧は、大気圧に維持される。よって、シリンダ40の降下が、第2チェンバ32の内圧P2によって阻害されるのを抑制することが可能となっている。 Next, referring to FIGS. 11A and 11B, when the supply of pressurized air is started (see timing t4 in FIG. 6), the internal pressure P1 of the first chamber 31 increases. This pressure acts on the upper surface of the cylinder 40 and tries to push the cylinder 40 downward. On the other hand, although the second chamber 32 communicates with the first chamber 31 via the communication passage 41, the inflow of pressurized air is suppressed by the throttle 42 of the communication passage 41. The internal pressure P2 is maintained at a relatively low state, coupled with the fact that the second chamber 32 is opened to the atmosphere via the via. Therefore, the internal pressure P1 of the first chamber 31 becomes higher than the internal pressure P2 of the second chamber 32, and the cylinder 40 is pushed downward by the differential pressure. As a result, the cylinder 40 gradually descends, and finally the rod 50 enters the air inlet / outlet 26 and comes into contact with the upper surface of the electronic component C (see timing t5 in FIG. 6). The second chamber 32 is always open to the atmosphere by the lateral path 28 and the passage 27. Therefore, even if the second chamber 32 is compressed as the cylinder 40 is lowered, the internal pressure of the second chamber 32 is maintained at atmospheric pressure. Therefore, it is possible to suppress the lowering of the cylinder 40 from being inhibited by the internal pressure P2 of the second chamber 32.
 次いで、切り離し動作のために、加圧空気の供給が停止されると、第1チェンバ31の内圧P1は、漸次、低下するが、絞り42が設けられていることにより、第1チェンバ31の内圧P1は、しばらくの間、大気圧よりも高くなっている。そのため、上記差圧についても、内圧P1>内圧P2の状態が維持される。そのため、シリンダ40に作用する押下力が維持されるので、図12(A)(B)に示すように、吸着ノズル20が上方に浮揚されると(図6のタイミングt6参照)、ノズル本体21の上昇に伴って、ロッド50が相対的に電子部品Cと接触したまま相対的な変位が生じることになる。この結果、電子部品Cと、吸着部25とが確実に分離し(図6のタイミングt7参照)、所期の切り離し動作を実現することが可能となる。 Next, when the supply of pressurized air is stopped for the separation operation, the internal pressure P1 of the first chamber 31 gradually decreases. However, since the throttle 42 is provided, the internal pressure of the first chamber 31 is reduced. P1 has been higher than atmospheric pressure for some time. Therefore, the state of the internal pressure P1> the internal pressure P2 is also maintained for the differential pressure. Therefore, since the pressing force acting on the cylinder 40 is maintained, as shown in FIGS. 12A and 12B, when the suction nozzle 20 is lifted upward (see timing t6 in FIG. 6), the nozzle body 21 As a result, the rod 50 is relatively displaced while being in contact with the electronic component C relatively. As a result, the electronic component C and the suction portion 25 are reliably separated (see timing t7 in FIG. 6), and an intended separation operation can be realized.
 以上説明したように、本発明の各実施形態では、吸着動作時においては、従来の吸着ノズル20と同様に、部品吸着面に電子部品Cを吸着し、ピックアップすることができるとともに、実装動作時においては、吸着した電子部品Cをプリント基板Wに実装することができる。そして、吸着ノズル20が実装動作の後、切り離し動作を行う際に、ロッド50は、ノズル本体21の部品吸着面から突出する。これにより、プリント基板Wに実装された電子部品Cは、ロッド50によって、プリント基板W側に押圧される。この押圧動作を伴って、ノズル本体21は電子部品Cから離れることができる。よって、実装された電子部品Cがノズル本体21の動作に連れ動きすることがなくなる。 As described above, in each embodiment of the present invention, during the suction operation, the electronic component C can be sucked and picked up on the component suction surface as in the case of the conventional suction nozzle 20, and at the time of the mounting operation. In, the sucked electronic component C can be mounted on the printed circuit board W. When the suction nozzle 20 performs a separation operation after the mounting operation, the rod 50 protrudes from the component suction surface of the nozzle body 21. Thereby, the electronic component C mounted on the printed circuit board W is pressed to the printed circuit board W side by the rod 50. With this pressing operation, the nozzle body 21 can be separated from the electronic component C. Therefore, the mounted electronic component C does not move with the operation of the nozzle body 21.
 また、上述した各実施形態では、空気通路30内に摺動可能に配置され、空気通路30を上流側の第1チェンバ31と下流側の第2チェンバ32とに区画するシリンダ40をさらに備え、ロッド50は、シリンダ40の端部に一体形成されており、シリンダ40には、第1チェンバ31と第2チェンバ32とを連通する連通路41が形成されており、連通路41は、空気通路30が負圧にされているときにはロッド50がノズル本体21内に退避する一方、切り離し動作の際にロッド50が部品吸着面から突出するように、第1チェンバ31と第2チェンバ32との間に差圧を生成する絞り42を有するものである。このため本実施形態では、空気通路30が負圧にされている場合、第1チェンバ31と第2チェンバ32の差圧により、シリンダ40は、ロッド50がノズル本体21内に退避する方向、すなわち上方に移動する。また、空気通路30に加圧空気を供給した場合、第1チェンバ31と第2チェンバ32の差圧により、ロッド50がノズル本体21の部品吸着面から突出する方向に加圧される。この差圧は、シリンダ40の連通路41に形成されている絞り42によって生じているので、実装動作の後、加圧空気の供給が停止されても、ロッド50を押し下げる力、すなわち、ロッド50がノズル本体21の部品吸着面から突出する方向への圧力は、しばらくの間、維持される。そのため、加圧空気の供給を停止して切り離し動作を実行しても、ロッド50はノズル本体21と相対的に突出し、実装された電子部品Cをプリント基板Wへ押圧し続ける。従って、加圧空気の悪影響を回避しつつ、確実に切り離し動作を実行することができる。 Moreover, in each embodiment mentioned above, it is arrange | positioned so that sliding in the air passage 30 is further provided with the cylinder 40 which divides the air passage 30 into the 1st chamber 31 of an upstream, and the 2nd chamber 32 of a downstream, The rod 50 is integrally formed at the end of the cylinder 40. The cylinder 40 is formed with a communication passage 41 that communicates the first chamber 31 and the second chamber 32. The communication passage 41 is an air passage. The rod 50 is retracted into the nozzle main body 21 when the pressure 30 is negative, while the rod 50 protrudes from the component suction surface during the detaching operation, between the first chamber 31 and the second chamber 32. And a throttle 42 for generating a differential pressure. For this reason, in this embodiment, when the air passage 30 is set to a negative pressure, the cylinder 40 causes the rod 50 to retract into the nozzle body 21 due to the differential pressure between the first chamber 31 and the second chamber 32, that is, Move upward. Further, when pressurized air is supplied to the air passage 30, the rod 50 is pressurized in a direction protruding from the component suction surface of the nozzle body 21 due to the differential pressure between the first chamber 31 and the second chamber 32. Since this differential pressure is generated by the throttle 42 formed in the communication passage 41 of the cylinder 40, even if the supply of pressurized air is stopped after the mounting operation, the force that pushes down the rod 50, that is, the rod 50 The pressure in the direction of protruding from the component suction surface of the nozzle body 21 is maintained for a while. Therefore, even if the supply of pressurized air is stopped and the separation operation is performed, the rod 50 projects relative to the nozzle body 21 and continues to press the mounted electronic component C against the printed circuit board W. Therefore, it is possible to reliably perform the separation operation while avoiding the adverse effect of the pressurized air.
 また、上述した各実施形態では、連通路41は、絞り42よりも第2チェンバ32側で第2チェンバ32と大気とを連通するバイパス43を形成しており、ノズル本体21は、少なくとも第1チェンバ31に加圧空気が供給されている場合に、バイパス43と連通するバイパス用通路(通路27、横路28)を有している。このため本実施形態では、大気圧を利用して第1チェンバ31と第2チェンバ32の差圧を生成することができる。そのため、差圧の制御が容易になり、吸着ノズル20の動作の信頼性が高くなる。特に、実装動作の際に加圧空気が第1チェンバ31に供給された場合、ピストンが降下しても第2チェンバ32の空気は、バイパス43からバイパス用通路(通路27、横路28)を経て大気へ放出されるので、第2チェンバ32は内圧の上昇が抑制される。そのため、第2チェンバ32の空気によるエアダンパ効果を抑制できるので、ピストンを押し下げる力が第2チェンバ32の内圧によって、阻害されるのを防止することができる。 Further, in each of the above-described embodiments, the communication path 41 forms the bypass 43 that communicates the second chamber 32 and the atmosphere on the second chamber 32 side with respect to the throttle 42, and the nozzle body 21 includes at least the first main body 21. When pressurized air is supplied to the chamber 31, a bypass passage (passage 27, lateral passage 28) communicating with the bypass 43 is provided. For this reason, in this embodiment, the differential pressure between the first chamber 31 and the second chamber 32 can be generated using atmospheric pressure. Therefore, the control of the differential pressure is facilitated and the operation reliability of the suction nozzle 20 is increased. In particular, when pressurized air is supplied to the first chamber 31 during the mounting operation, the air in the second chamber 32 passes from the bypass 43 to the bypass passage (passage 27, lateral passage 28) even if the piston descends. Since the second chamber 32 is released into the atmosphere, an increase in internal pressure is suppressed. Therefore, since the air damper effect by the air of the second chamber 32 can be suppressed, it is possible to prevent the force that pushes down the piston from being hindered by the internal pressure of the second chamber 32.
 特に、第1実施形態では、バイパス用通路は、第1チェンバが負圧にされているときは、バイパス43と遮断されている。そのため、電子部品Cの吸引時により大きな吸引力を発揮することができる。 In particular, in the first embodiment, the bypass passage is disconnected from the bypass 43 when the first chamber is at a negative pressure. Therefore, a larger suction force can be exerted when the electronic component C is sucked.
 また、第1実施形態では、シリンダ40と一体的に連結されるサイドシリンダ70をさらに備え、ノズル本体21は、第1チェンバ31と大気とを連通するサイド連通路60を形成するものであり、サイドシリンダ70は、サイド連通路60内に摺動可能に装着されて、サイド連通路60をチェンバ側と大気側とに区画するものである。このため本実施形態では、空気通路30が負圧にされている場合、第1チェンバ31と第2チェンバ32との間に差圧が生じるとともに、サイド連通路60のチェンバ側も負圧になる。よって、サイドシリンダ70に浮力が生じる。また、サイドシリンダ70は、ロッド50を一体的に有するシリンダ40と一体的に連結されている。よって、ロッド50は、より確実にノズル本体21内に退避する方向に力を受ける。一方、空気通路30に加圧空気を供給した場合、第1チェンバ31と第2チェンバ32との間に差圧が生じるとともに、サイド連通路60のチェンバ側にも加圧空気が供給される。そのため、サイドシリンダ70は、シリンダ40とともにロッド50がノズル本体21の部品吸着面から突出する方向に加圧される。よって、ロッド50は、より確実にノズル本体21から突出する方向に力を受けることができる。 Moreover, in 1st Embodiment, the side cylinder 70 further connected integrally with the cylinder 40 is further provided, and the nozzle main body 21 forms the side communication path 60 which connects the 1st chamber 31 and air | atmosphere, The side cylinder 70 is slidably mounted in the side communication path 60 and divides the side communication path 60 into a chamber side and an atmosphere side. Therefore, in the present embodiment, when the air passage 30 is set to a negative pressure, a differential pressure is generated between the first chamber 31 and the second chamber 32, and the chamber side of the side communication passage 60 is also set to a negative pressure. . Therefore, buoyancy is generated in the side cylinder 70. Further, the side cylinder 70 is integrally connected to the cylinder 40 having the rod 50 integrally. Therefore, the rod 50 receives the force in the direction of retreating into the nozzle body 21 more reliably. On the other hand, when pressurized air is supplied to the air passage 30, a differential pressure is generated between the first chamber 31 and the second chamber 32, and pressurized air is also supplied to the chamber side of the side communication passage 60. Therefore, the side cylinder 70 is pressurized in a direction in which the rod 50 together with the cylinder 40 protrudes from the component suction surface of the nozzle body 21. Therefore, the rod 50 can receive force in a direction in which the rod 50 protrudes from the nozzle body 21 more reliably.
 また、第1実施形態では、シリンダ40とサイドシリンダ70とを連結するピンをさらに備え、ノズル本体21は、ピンのストロークを規定する凹部としてのスリット73を空気通路30の外側に有するものである。このため本実施形態では、ピンによって、シリンダ40とサイドシリンダ70とを連結し、所要の動作を実現することができる。しかも、ピンのストロークSTは、空気通路30の外側でノズル本体21に形成されているので、空気通路30内に異物が混入したとしても、その異物がピンに付着するようなことがない。このため、シリンダ40ないしサイドシリンダ70の動作の安定性、信頼性を高めることができ、空気通路30を清掃する等、メンテナンス作業の頻度を低減することができる。なお、凹部は、スリット73に限らず、有底の溝であってもよい。 Moreover, in 1st Embodiment, the pin which connects the cylinder 40 and the side cylinder 70 is further provided, and the nozzle main body 21 has the slit 73 as a recessed part which prescribes | regulates the stroke of a pin in the outer side of the air passage 30. FIG. . For this reason, in this embodiment, the cylinder 40 and the side cylinder 70 can be connected by a pin to realize a required operation. Moreover, since the pin stroke ST is formed in the nozzle body 21 outside the air passage 30, even if foreign matter enters the air passage 30, the foreign matter does not adhere to the pin. For this reason, the stability and reliability of the operation of the cylinder 40 or the side cylinder 70 can be improved, and the frequency of maintenance work such as cleaning the air passage 30 can be reduced. The recess is not limited to the slit 73 and may be a bottomed groove.
 このように、本発明は、上述した実施の形態に限定されるものではない。 Thus, the present invention is not limited to the embodiment described above.
 例えば、各実施形態においては、実装動作後、切り離し動作を行う場合、加圧空気の供給を停止した後に、切り離し動作を行っている。そのため、各実施形態においては、電子部品から吸着ノズルが離れた際に、加圧空気が周囲に漏れて、加圧空気が周囲の電子部品やプリント基板の表面に悪影響を及ぼすことはない。しかし、本発明においては、加圧空気かの供給を継続したまま、切り離し動作を実行してもよい。 For example, in each embodiment, when the separation operation is performed after the mounting operation, the separation operation is performed after the supply of pressurized air is stopped. Therefore, in each embodiment, when the suction nozzle is separated from the electronic component, the pressurized air does not leak to the surroundings, and the pressurized air does not adversely affect the surrounding electronic components or the surface of the printed board. However, in the present invention, the separation operation may be executed while the supply of pressurized air is continued.
 その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることはいうまでもない。 In addition, it goes without saying that various modifications can be made without departing from the scope of the present invention.
 本発明は、電子部品をプリント基板に自動実装する設備に好適に適用することができる。とくに、フラックス塗布面など比較的低粘着の面や、全く粘着性の無い面へ電子部品を搭載する等、多様なプリント基板の製造プロセスに応用する場合に好適である。
 
The present invention can be suitably applied to equipment for automatically mounting electronic components on a printed circuit board. In particular, it is suitable for application to various printed circuit board manufacturing processes, such as mounting electronic components on a relatively low-adhesion surface such as a flux application surface, or a surface having no adhesiveness.

Claims (6)

  1.  電子部品を負圧で吸引してピックアップする吸着動作と、加圧空気を供給することによりピックアップした電子部品をプリント基板に実装する実装動作と、前記実装動作後に、前記プリント基板に装着した電子部品から離れる切り離し動作とを実行する吸着ノズルにおいて、
     電子部品を吸着する部品吸着面、及び前記部品吸着面に開口する空気通路を備えたノズル本体と、
     前記ノズル本体に設けられ、前記吸着動作の際に空気通路が負圧にされているときには前記ノズル本体内に退避する一方、前記切り離し動作の際に前記ノズル本体が実装後の電子部品から離れたときには前記部品吸着面から突出する押圧子と
     を備えていることを特徴とする吸着ノズル。
    Adsorption operation for sucking and picking up electronic components with negative pressure, mounting operation for mounting electronic components picked up by supplying pressurized air on a printed circuit board, and electronic components mounted on the printed circuit board after the mounting operation In the suction nozzle that performs the separation operation away from the
    A nozzle body provided with a component adsorption surface for adsorbing electronic components, and an air passage opening in the component adsorption surface;
    Provided in the nozzle body and retracted into the nozzle body when the air passage is under negative pressure during the suction operation, while the nozzle body is separated from the mounted electronic component during the separation operation A suction nozzle characterized by comprising: a pressing member protruding from the component suction surface.
  2.  請求項1記載の吸着ノズルにおいて、
     前記ノズル本体の前記空気通路内に摺動可能に配置され、前記空気通路を、前記加圧空気の供給方向でみて、上流側の第1チェンバと下流側の第2チェンバとに区画するシリンダをさらに備え、
     前記押圧子は、前記シリンダの端部に一体形成されており、
     前記シリンダには、前記第1チェンバと前記第2チェンバとを連通する連通路が形成されており、
     前記連通路は、前記吸着動作の際に空気通路が負圧にされているときには前記押圧子が前記ノズル本体内に退避する一方、前記切り離し動作の際に前記ノズル本体が実装後の電子部品から離れたときには前記押圧子が前記部品吸着面から突出するように、前記第1チェンバと前記第2チェンバとの間に差圧を生成する絞りを有するものである
     ことを特徴とする吸着ノズル。
    The suction nozzle according to claim 1,
    A cylinder that is slidably disposed in the air passage of the nozzle body, and that divides the air passage into a first chamber on the upstream side and a second chamber on the downstream side when viewed in the direction in which the pressurized air is supplied. In addition,
    The pressing element is integrally formed at the end of the cylinder,
    The cylinder is formed with a communication passage communicating the first chamber and the second chamber,
    The communication passage is configured such that when the air passage is set to a negative pressure during the adsorption operation, the pressing element is retracted into the nozzle body, while the nozzle body is removed from the electronic component after being mounted during the separation operation. A suction nozzle comprising a throttle that generates a differential pressure between the first chamber and the second chamber so that the pressing element protrudes from the component suction surface when separated.
  3.  請求項2記載の吸着ノズルにおいて、
     前記連通路は、前記絞りよりも前記第2チェンバ側で当該第2チェンバと大気とを連通するバイパスを形成しており、
     前記ノズル本体は、少なくとも前記第1チェンバに加圧空気が供給されている場合に、前記バイパスと連通するバイパス用通路を有している
     ことを特徴とする吸着ノズル。
    The suction nozzle according to claim 2.
    The communication path forms a bypass that communicates the second chamber and the atmosphere on the second chamber side of the throttle,
    The suction nozzle, wherein the nozzle body has a bypass passage communicating with the bypass when at least pressurized air is supplied to the first chamber.
  4.  請求項2または3に記載の吸着ノズルにおいて、
     前記シリンダと一体的に連結されるサイドシリンダをさらに備え、
     前記ノズル本体は、前記第1チェンバと大気とを連通するサイド連通路を形成するものであり、
     前記サイドシリンダは、前記サイド連通路内に摺動可能に装着されて、前記サイド連通路を前記第1チェンバ側と大気側とに区画するものである
     ことを特徴とする吸着ノズル。
    The suction nozzle according to claim 2 or 3,
    A side cylinder integrally connected to the cylinder;
    The nozzle body forms a side communication path that communicates the first chamber with the atmosphere,
    The suction nozzle, wherein the side cylinder is slidably mounted in the side communication path, and divides the side communication path into a first chamber side and an atmosphere side.
  5.  請求項4記載の吸着ノズルにおいて、
     前記シリンダと前記サイドシリンダとを連結するピンをさらに備え、
     前記ノズル本体は、前記ピンのストロークを規定する凹部を前記空気通路の外側に有するものである
     ことを特徴とする吸着ノズル。
    The suction nozzle according to claim 4,
    A pin that connects the cylinder and the side cylinder;
    The nozzle main body has a recess that defines the stroke of the pin on the outside of the air passage.
  6.  プリント基板に電子部品を実装する表面実装機において、
     請求項1から5の何れか1項に記載の吸着ノズルを備えている
     ことを特徴とする表面実装機。
     
    In surface mounters that mount electronic components on printed circuit boards,
    A surface mounting machine comprising the suction nozzle according to any one of claims 1 to 5.
PCT/JP2013/001248 2013-02-28 2013-02-28 Suction nozzle and surface mounting device WO2014132292A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015502573A JP5913731B2 (en) 2013-02-28 2013-02-28 Suction nozzle and surface mounter
PCT/JP2013/001248 WO2014132292A1 (en) 2013-02-28 2013-02-28 Suction nozzle and surface mounting device
CN201380066615.8A CN105359636B (en) 2013-02-28 2013-02-28 Suction nozzle and surface mounting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/001248 WO2014132292A1 (en) 2013-02-28 2013-02-28 Suction nozzle and surface mounting device

Publications (1)

Publication Number Publication Date
WO2014132292A1 true WO2014132292A1 (en) 2014-09-04

Family

ID=51427602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001248 WO2014132292A1 (en) 2013-02-28 2013-02-28 Suction nozzle and surface mounting device

Country Status (3)

Country Link
JP (1) JP5913731B2 (en)
CN (1) CN105359636B (en)
WO (1) WO2014132292A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106794582A (en) * 2014-10-10 2017-05-31 富士机械制造株式会社 Suction nozzle
JPWO2016132448A1 (en) * 2015-02-17 2017-11-24 富士機械製造株式会社 Suction nozzle
KR20190050140A (en) * 2017-11-02 2019-05-10 한화정밀기계 주식회사 A nozzle device for component mounter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018047413A1 (en) * 2016-09-08 2019-06-24 シャープ株式会社 Optical component mounting device and method of manufacturing sensor device
KR102208102B1 (en) * 2017-03-07 2021-01-27 야마하하쓰도키 가부시키가이샤 Component mounting device and board holding method
CN109192695A (en) * 2018-09-11 2019-01-11 浙江韩宇光电科技有限公司 The suction nozzle of LED high-speed paster head and the preparation method of suction nozzle
JP6949893B2 (en) * 2019-03-07 2021-10-13 Ckd株式会社 Adsorption buffer
DE102019127292B4 (en) * 2019-10-10 2023-01-19 Asm Assembly Systems Gmbh & Co. Kg Device and method for precise assembly with assembly elements
DE102019135740B4 (en) * 2019-12-23 2023-04-06 Asm Assembly Systems Gmbh & Co. Kg Holding device with elastic spring element and pneumatic channel system; Placement head and placement machine and method for placing component carriers
CN111642126B (en) * 2020-05-25 2021-04-09 深圳市琦轩实创科技有限公司 A paster equipment for production of electron class product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285387U (en) * 1985-11-18 1987-05-30
JPH07183693A (en) * 1993-12-24 1995-07-21 Toshiba Corp Non-standard shape component mounting apparatus
JPH1199495A (en) * 1997-09-30 1999-04-13 Ckd Corp Vacuum chuck and sucking method of work
JP2000133996A (en) * 1998-10-27 2000-05-12 Matsushita Electric Ind Co Ltd Electronic part mounting equipment
JP2003078294A (en) * 2001-09-03 2003-03-14 Matsushita Electric Ind Co Ltd Electronic-component mounting apparatus
JP2008168382A (en) * 2007-01-11 2008-07-24 Juki Corp Component suction nozzle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933353B2 (en) * 2007-05-31 2012-05-16 ヤマハ発動機株式会社 Suction nozzle and surface mounter
JP5096898B2 (en) * 2007-12-12 2012-12-12 ティアック株式会社 Mechanical valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285387U (en) * 1985-11-18 1987-05-30
JPH07183693A (en) * 1993-12-24 1995-07-21 Toshiba Corp Non-standard shape component mounting apparatus
JPH1199495A (en) * 1997-09-30 1999-04-13 Ckd Corp Vacuum chuck and sucking method of work
JP2000133996A (en) * 1998-10-27 2000-05-12 Matsushita Electric Ind Co Ltd Electronic part mounting equipment
JP2003078294A (en) * 2001-09-03 2003-03-14 Matsushita Electric Ind Co Ltd Electronic-component mounting apparatus
JP2008168382A (en) * 2007-01-11 2008-07-24 Juki Corp Component suction nozzle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106794582A (en) * 2014-10-10 2017-05-31 富士机械制造株式会社 Suction nozzle
CN106794582B (en) * 2014-10-10 2020-01-31 株式会社富士 Suction nozzle
JPWO2016132448A1 (en) * 2015-02-17 2017-11-24 富士機械製造株式会社 Suction nozzle
KR20190050140A (en) * 2017-11-02 2019-05-10 한화정밀기계 주식회사 A nozzle device for component mounter
KR102436661B1 (en) 2017-11-02 2022-08-26 한화정밀기계 주식회사 A nozzle device for component mounter

Also Published As

Publication number Publication date
CN105359636B (en) 2018-04-27
JP5913731B2 (en) 2016-04-27
JPWO2014132292A1 (en) 2017-02-02
CN105359636A (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5913731B2 (en) Suction nozzle and surface mounter
JP5494588B2 (en) Underpinning pin module for electronic component mounting apparatus, substrate underlay device, and substrate underlay method
JP5445534B2 (en) Electronic component mounting apparatus, electronic component mounting method, and layout changing method of receiving pin module
JP4756109B1 (en) Component mounting equipment
JPH11220294A (en) Electronic component transfer equipment, holder replacing method and device therefor
JP6027794B2 (en) Transfer jig
JP2007266331A (en) Electronic component mounter
JP2010087062A (en) Electronic component mounting head and electronic component mounting device using the same
US20180243869A1 (en) Component mounted body manufacturing system and component mounted body manufacturing method
WO2014207802A1 (en) Component mounting machine
JP4222741B2 (en) Component mounting apparatus and component mounting method
WO2014049822A1 (en) Pickup nozzle and component mounting method
WO2019116506A1 (en) Workpiece processing device
JP6063214B2 (en) Holder mounting device
JPH01317000A (en) Electronic component packaging device
JP5071601B1 (en) Positioning device, mounting device, and manufacturing method of substrate device
JP5953068B2 (en) Electronic component placement table and die bonder equipped with the same table
JP2017092188A (en) Mounting head, surface-mounted machine, and detection method for suction state of suction nozzle
JP2006147884A (en) Surface mounter
JP3128406B2 (en) Electronic component automatic mounting device
JP5895127B2 (en) Suction tool and component mounting device
KR102062278B1 (en) Chip mounter
JP5895128B2 (en) Suction tool and component mounting device
WO2019026160A1 (en) Mounting head and component mounting machine
WO2017056181A1 (en) Component chuck device and component mounting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380066615.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502573

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876289

Country of ref document: EP

Kind code of ref document: A1