WO2014131282A1 - 一种移动式风电机组电网适应性测试系统 - Google Patents

一种移动式风电机组电网适应性测试系统 Download PDF

Info

Publication number
WO2014131282A1
WO2014131282A1 PCT/CN2013/084672 CN2013084672W WO2014131282A1 WO 2014131282 A1 WO2014131282 A1 WO 2014131282A1 CN 2013084672 W CN2013084672 W CN 2013084672W WO 2014131282 A1 WO2014131282 A1 WO 2014131282A1
Authority
WO
WIPO (PCT)
Prior art keywords
generating device
wind turbine
grid
disturbance generating
power grid
Prior art date
Application number
PCT/CN2013/084672
Other languages
English (en)
French (fr)
Inventor
王瑞明
秦世耀
李少林
李庆
王伟
孙勇
陈晨
Original Assignee
国家电网公司
中国电力科学研究院
中电普瑞张北风电研究检测有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院, 中电普瑞张北风电研究检测有限公司 filed Critical 国家电网公司
Priority to EP13876267.9A priority Critical patent/EP2963431B1/en
Priority to ES13876267T priority patent/ES2782555T3/es
Publication of WO2014131282A1 publication Critical patent/WO2014131282A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the invention relates to the field of new energy access and control, and particularly relates to a grid adaptability test system for a mobile wind turbine. Background technique
  • Wind turbines are a multidisciplinary, technology-intensive product, and the weak grid adaptability of power electronics makes them highly sensitive to grid disturbances. Most of China's wind power is built in areas with weak power grids, and the quality of power grid operation is poor. Wind turbines that have not been tested by grid-connected operation cannot be safely connected to the grid. The natural properties such as the volatility and intermittent nature of wind energy resources and the system complexity of the wind turbine and the high sensitivity of the grid determine that the wind turbine test for grid connection must be based on actual operation. Laboratory simulation or factory test cannot be accurately and comprehensively reflected. The true grid-connected operating characteristics of wind turbines. At present, the major grid-connected guidelines in the world have made different requirements for the adaptability of wind turbines. The adaptability of wind turbines to grids has become an inevitable requirement for wind power grid connection. There is no test device based on actual operation that can be used for wind farm adaptability field test at home and abroad. Summary of the invention
  • the present invention provides a mobile wind turbine grid adaptability test system, which can generate grid voltage deviation, frequency variation, three-phase voltage imbalance, voltage on the high-voltage side of the wind turbine group step-up transformer.
  • Common grid disturbances such as flicker and harmonics, collect and analyze the actual operating data of wind turbines, and test and evaluate the adaptability of wind turbines.
  • the mobile structure can be conveniently transported and installed between different wind farms, solving the problem of field test and detection of wind farm adaptability in complex terrain and traffic conditions.
  • a mobile wind turbine grid adaptability test system is improved in that the system comprises a grid disturbance generating device and an integrated measuring and controlling device connected by an optical fiber, and the grid disturbance generating device is connected to the medium voltage grid and the wind turbine
  • the high-voltage side of the step-up transformer; the grid disturbance generating device and the integrated measuring and controlling device are integrated and installed in the container; the container includes a heat dissipation system, The heat dissipation system includes a water cooling device and an air cooling device.
  • the grid disturbance generating device is used for grid disturbance generated on the high-voltage side of the wind turbine step-up transformer; the integrated measuring and controlling device is used for collecting the electric quantity and state quantity information of the wind turbine, and analyzing the grid of the wind turbine in real time.
  • Adaptive performance indicators, control and operation monitoring of the test system integration of the grid disturbance generating device and the integrated measurement and control device, and integrated installation in the container to realize a mobile grid adaptability test system;
  • the grid disturbance generating device A disturbance generating device for the medium voltage grid.
  • the grid disturbance generating device adopts a modular design (which can realize independent and combined operation of high and low frequency disturbance generating devices); includes a low frequency disturbance generating device connected to the medium voltage grid and is connected with the high voltage side of the wind turbine step-up transformer.
  • the high frequency disturbance generating device; the low frequency disturbance generating device and the high frequency disturbance generating device are sequentially connected; and the low frequency disturbance generating device and the high frequency disturbance generating device are connected in parallel with the circuit breaker.
  • the low frequency disturbance generating device comprises a step-down transformer, a converter link and a step-up transformer connected in sequence; the output end of the step-up transformer is connected to a high-frequency disturbance generating device or a medium-voltage network;
  • the flow link adopts N single-phase or three-phase AC-DC-AC converter parallel mode; the N is between 1-4.
  • the high frequency disturbance generating device superimposes the harmonic voltage signal directly on the medium voltage network based on the series principle of the voltage source; comprises a high frequency power grid disturbance generating module, a high frequency energy receiving power source connected thereto, and an LC filter circuit
  • the LC filter circuit includes a capacitor C and an inductor L; the capacitor C is connected to an output end of the medium-voltage grid or the low-frequency disturbance generating device, and the capacitor C is connected to the high-frequency disturbance generating module through the inductor L;
  • the high frequency disturbance generating module adopts a single-phase H-bridge AC-DC-AC converter cascade mode.
  • the integrated monitoring and control device comprises:
  • Central processor It is responsible for collecting the three-phase voltage, three-phase current and real-time wind speed information analog signals of the grid-connected point of the tested wind turbine.
  • the grid-connected operation characteristic parameters of the wind turbine are obtained through analysis and calculation, and uploaded to the communication management machine through the communication management machine.
  • the remote background monitoring computer the remote background monitoring computer reflects the real-time running status of the wind turbine;
  • DSP controller collecting the electric quantity and state quantity of the wind turbine to be tested, accepting the command signal of the communication management machine, generating the PWM trigger signal required for outputting the disturbance state; the DSP controller communicates with the background monitoring computer through the communication management machine; The background monitoring computer: sends a command to the DSP controller through the communication management machine and reflects the real-time running status of the wind turbine.
  • the DSP controller comprises a DSP controller of a low frequency disturbance generating device and a DSP controller of a high frequency disturbance generating device;
  • the low frequency disturbance generating device DSP controller and the high frequency disturbance generating device DSP controller are connected to the opening and closing component through the optical fiber; the low frequency disturbance generating device DSP controller and the high frequency disturbance generating device DSP controller are both in communication with each other; a management machine connection; the opening and closing component and the communication management machine are respectively connected to the central processor through an optical fiber;
  • the low frequency disturbance generating device DSP controller and the high frequency disturbance generating device DSP controller communicate with the background monitoring computer through the communication management machine;
  • the background monitoring computer is connected to the communication management machine via an RS485 bus.
  • the integrated measurement and control device includes an A/D converter and an electrical signal input/output board; the A/D converter is respectively connected to the central processor through a chip select address signal line and a data line; The signal opening and exiting board is connected to the central processing unit through the optical fiber; three conditioning boards are respectively connected with the A/D converter; one of the conditioning boards inputs the current collecting quantity, and the other one of the conditioning boards inputs the wind power collecting side of the wind turbine side, The third conditioning board inputs an analog acquisition amount other than current and voltage;
  • the electric signal input to the opening and exiting board includes a fan contactor feedback signal, a travel switch feedback signal and an emergency stop input signal; and the opened electrical signal includes a fan contactor control signal and a fault output signal.
  • the mobile grid adaptability test system has a high degree of integration. Integrated design of grid disturbance generating device, data acquisition system, monitoring system, etc., all integrated in a standard shipping container, solving the problem of grid adaptability field test and detection of wind turbines under complex terrain and traffic conditions, can be realized Mobile testing has greatly improved the efficiency of test equipment.
  • the mobile grid adaptability test system has high output accuracy. According to the required grid disturbance characteristics, the grid disturbance generating device is divided into a low frequency disturbance generating module and a high frequency disturbance generating module, and the low frequency disturbance generating module simulates the low frequency grid disturbance amount, and the high frequency disturbance generating module simulates the high frequency grid disturbance.
  • the quantity greatly improves the output precision of the power grid disturbance generating device, especially the harmonic voltage output precision, and improves the stability of the system.
  • the mobile grid adaptability test system has strong harmonic output capability and high precision. Based on the series principle of voltage source, the harmonic voltage signal is directly superimposed on the medium-voltage network, and the harmonic interference of the medium-voltage network is simulated. The influence of the current collecting parameters of the test device on the harmonic output intensity and accuracy is solved.
  • the mobile grid adaptability test system is highly automated, and all test operations can be performed by a remote background monitoring computer.
  • FIG. 1 is a schematic structural view of a power grid disturbance generating device provided by the present invention.
  • FIG. 2 is a schematic structural view of a low frequency disturbance generating device provided by the present invention.
  • FIG. 3 is a schematic diagram of the principle of the high frequency disturbance generating device provided by the present invention.
  • FIG. 4 is a schematic diagram of an integrated measurement and control device of a power grid adaptability test system provided by the present invention
  • FIG. 5 is a flow chart of automatic control logic for starting a low frequency disturbance device provided by the present invention
  • FIG. 6 is a flow chart of automatic control logic for starting a high frequency disturbance device provided by the present invention.
  • FIG. 8 is a schematic diagram of a mobile design of a grid adaptability test system provided by the present invention.
  • FIG. 9 is a schematic diagram of field testing of a grid adaptability test device provided by the present invention. detailed description
  • the mobile wind turbine grid adaptability test device is mainly composed of two parts: the power grid disturbance generating device and the integrated measurement and control system.
  • the grid disturbance generating device generates common grid disturbances on the high-voltage side of the wind turbine step-up transformer.
  • the integrated measurement and control system collects the electric quantity and state quantity information of the wind turbine, analyzes the grid adaptability performance index of the wind turbine in real time, and simultaneously tests the whole.
  • the device performs control and operation monitoring.
  • the above two parts are integrated and integrated into a standard shipping container to realize a mobile grid adaptability test system.
  • the grid disturbance generating device is the core of the grid adaptability test system, which can simulate various common grid disturbances and is suitable for wind turbine grid adaptability testing.
  • the grid disturbance generating device is based on the principle of voltage source serial connection, adopts modular design, realizes independent and joint operation of high and low frequency disturbance generating devices, and its structural block diagram is shown in Fig. 1.
  • the power grid disturbance generating device comprises a low frequency disturbance generating device connected to the medium voltage grid and a high frequency disturbance generating device connected to the high voltage side of the wind turbine stepping transformer; the low frequency disturbance generating device and the high frequency disturbance generating device are sequentially connected; the low frequency disturbance generating device Circuit breaker CB1 is connected in parallel, and circuit breaker CB2 is connected in parallel with the high frequency disturbance generating device.
  • the grid disturbance generating device When the circuit breakers CB1 and CB2 are both closed, the grid disturbance generating device operates in the bypass state; when the circuit breaker CB1 is disconnected and the CB2 is closed, the low frequency grid disturbance generating device is put into operation alone, and the high frequency disturbance generating device is bypassed; When the circuit breaker CB1 is closed and the CB2 is disconnected, the high frequency disturbance generating device is put into operation alone, and the low frequency disturbance generating device is bypassed. When the circuit breakers CB1 and CB2 are both disconnected, the high frequency and low frequency power grid disturbance generating devices operate in conjunction.
  • This modular design increases the operational control flexibility of the device and increases the output accuracy of the high frequency grid disturbance generator.
  • the low frequency disturbance generation module is based on AC-DC-AC converter technology, and adopts the design method of AC-DC-AC converter and transformer combination. It is generated by the combination of AC-DC-AC converter and step-up transformer.
  • the low frequency disturbance of the medium voltage grid is shown in Figure 2.
  • the low frequency disturbance generating device comprises a step-down transformer, a converter link and a step-up transformer connected in sequence; the output end of the step-up transformer is connected to the high-frequency disturbance generating device or the medium-voltage network;
  • the specific working principle is as follows:
  • the medium-voltage network is stepped down to U1 by the step-down transformer T1, and then the voltage U2 required for the inverter output is inverted by the converter, and finally boosted to the medium voltage by the step-up transformer T2.
  • the converter link adopts N single-phase or three-phase AC-DC-AC converter parallel mode; N is between 1-4.
  • the voltage operation level of the low frequency disturbance generating device mainly depends on the ratio of the transformers of the step-up and step-down transformers.
  • the operating capacity of the equipment depends on the capacity and quantity of the parallel converters.
  • the low frequency grid disturbance generating device can simulate voltage deviation, frequency fluctuation, and three Low-frequency grid disturbances such as phase voltage imbalance, voltage fluctuations and flicker.
  • the high-frequency disturbance generating module is superimposed on the output end of the access grid or the low-frequency disturbance generating module, and the medium-voltage piezoelectric The network generates harmonic voltage.
  • the high frequency disturbance generating device is based on the voltage source series principle, including a high frequency power grid disturbance generating module, a high frequency power receiving power source and an LC filter circuit connected thereto; and the LC filter circuit includes a capacitor C.
  • the inductor C is connected to the output end of the medium voltage grid or the low frequency disturbance generating device, and the capacitor C is connected to the high frequency disturbance generating module through the inductor L;
  • the high frequency disturbance generating module can adopt the single phase H bridge AC -DC-AC converter cascade mode, which can also output higher harmonic voltage, ie grid voltage harmonics and distortion, by controlling the inverter side of the H-bridge of the converter.
  • the block diagram of the remote measurement and control system of the grid adaptability test device is shown in Figure 4.
  • the grid adaptive measurement and control system integrates the wind turbine adaptability control, state monitoring, data acquisition and analysis.
  • the integrated monitoring and control device includes a central processing unit, a DSP controller, and a background monitoring computer.
  • the central processor is the core processor of the grid adaptive measurement and control system, which is responsible for the collection, calculation and analysis of related electrical quantities and state quantities, and obtains remote background computer control commands through the communication management machine to adapt to the grid.
  • the monitoring and control device performs condition monitoring and control.
  • the central processing unit is responsible for collecting analog signals such as three-phase voltage, three-phase current and real-time wind speed information of the connected wind turbines, and analyzing and calculating the grid-connected operating characteristic parameters of the wind turbine, such as active and reactive power.
  • the three-phase voltage, current unbalance, voltage flicker coefficient, total harmonic distortion rate, etc. are uploaded to the remote background monitoring computer through the communication management machine, and the remote background monitoring computer can reflect the real-time running state of the wind turbine.
  • the DSP controller is the core control processor of the grid disturbance generating device.
  • the DSP controller uses TI's 32-bit fixed-point DSP TMS320F2812 to collect the relevant electrical quantity and state quantity, and accept the command signal of the communication management machine to generate the desired output disturbance state. PWM trigger signal.
  • the communication between the DSP controller and the background computer is realized by the communication management machine, and the background computer sends the instruction to the converter DSP controller through the communication management machine, and the connection between the converter DSP controller and the communication management machine is Fiber optic connection, completely isolated.
  • the DSP controller comprises a low frequency disturbance generating device DSP controller and a high frequency disturbance generating device DSP controller;
  • the DSP controller of the low frequency disturbance generating device and the DSP controller of the high frequency disturbance generating device are connected to the opening and closing component through the optical fiber;
  • the DSP controller of the low frequency disturbance generating device and the DSP controller of the high frequency disturbance generating device are both connected to the communication management machine.
  • Connecting; the opening and closing component and the communication management machine are respectively connected to the central processor through the optical fiber;
  • the DSP controller of the low frequency disturbance generating device and the DSP controller of the high frequency disturbance generating device communicate with the background monitoring computer through the communication management machine;
  • the monitoring computer is connected to the communication manager via the RS485 bus.
  • the central processor is responsible for the status monitoring and control of the entire test run, solidifying several important automatic control logics, and clicking on the corresponding control icons in the background computer will perform different automatic logic control. If the low-frequency disturbance device starts as shown in Figure 5-7, only the low-frequency disturbance device start button is clicked on the background computer, and the corresponding stroke is automatically executed. If no fault occurs, the device starts itself without human intervention, which avoids the whole device operation process. People in the wrong operation.
  • the integrated measurement and control device further includes an A/D converter and an electrical signal input and output board; the A/D converter is respectively connected to the central processor through the chip select address signal line and the data line; the electrical signal is opened and the board is opened.
  • the optical fiber is connected to the central processing unit; three conditioning boards are respectively connected with the A/D converter; one of the conditioning boards inputs the current collecting quantity, and the other one of the conditioning boards inputs the wind side fan side voltage collecting quantity, and the third one of the conditioning board inputs Analog acquisitions other than current and voltage;
  • the electrical signals that the electrical signal is driven into the opening and exiting board include the fan contactor feedback signal, the travel switch feedback signal, and the emergency stop input signal; the outgoing electrical signal includes the fan contactor control signal and the fault output signal.
  • the medium-voltage network adaptability test system is integrated and integrated into a standard shipping container.
  • the structure of the internal installation of the container is shown in Figure 8.
  • the container includes a heat sink, and the heat sink includes a water cooling device and air cooling.
  • Device The insulation of medium voltage equipment (implemented by insulating material, insulating tape or insulating baffle), special design with withstand voltage, complete integrated installation of limited space; special design for heat dissipation during operation of grid disturbance generating device, complete water cooling Air-cooled coordinated intelligent control;
  • the protection level of the device is specially designed to meet the special operating environment requirements of the system.
  • the on-site test schematic diagram of the mobile grid adaptability test device is shown in Figure 9.
  • the wind turbine is turned off.
  • the high voltage side of the device is connected to the medium voltage grid, and the medium voltage grid is connected to the input side of the low frequency disturbance generating module, and the high voltage side of the wind turbine transformer is connected to the output side of the high frequency disturbance generating module, that is, the grid adaptability testing device is connected in series.
  • the high voltage side of the wind turbine transformer is connected to the medium voltage to the grid.
  • the integrated measurement and control system controls the start and stop of the grid disturbance generating device and the data acquisition system, and the output of the grid disturbance generating device is controlled by the integrated measurement and control system, thereby generating voltage fluctuations and frequency fluctuations such as grid voltage on the high voltage side of the wind turbine transformer.
  • voltage fluctuations and frequency fluctuations such as grid voltage on the high voltage side of the wind turbine transformer.
  • Common three-phase voltage imbalance, voltage flicker and harmonics, etc. so that voltage adaptability, frequency adaptability, three-phase voltage unbalance adaptability, voltage flicker adaptability and harmonic adaptability of wind turbines test.
  • the relevant test data collected by the data acquisition system (3 pieces of control board) is used to analyze and evaluate the grid adaptability of the wind turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及新能源接入与控制领域,具体涉及一种移动式风电机组电网适应性测试系统,包括通过光纤连接的电网扰动发生装置和集成测控装置,电网扰动发生装置连接在中压电网和风电机组升压变压器高压侧之间;电网扰动发生装置和集成测控装置进行一体化设计后集成安装于集装箱内;集装箱内包括散热系统,散热系统包括水冷装置和风冷装置。本发明在风电机组升压变压器高压侧在线真实模拟产生常见的电网扰动,采集和分析风电机组的实际运行数据,对风电机组的电网适应性进行试验与评价。移动式的结构方便的在不同风电场间运输与安装,解决了复杂地形和交通条件下风电机组的电网适应性现场试验与检测难题。

Description

一种移动式风电机组电网适应性测试系统 技术领域
本发明涉及新能源接入与控制领域,具体涉及一种移动式风电机组电网适应 性测试系统。 背景技术
风电机组是一个多学科交叉的技术密集型产品,电力电子器件的弱电网适应 性使得其对电网扰动高度敏感。而我国的风电大多建设在电网薄弱地区, 电网运 行质量较差, 未经并网运行试验检测的风电机组无法正常安全并网运行。风能资 源的波动性、间歇性等自然属性与风电机组的系统复杂性及电网高度敏感性, 决 定了风电机组并网试验检测必须基于实际运行开展,实验室模拟或工厂试验无法 准确、全面地反映风电机组的真实并网运行特性。 目前世界各主要并网导则均对 风电机组电网适应性作出了不同程度的要求,风电机组具备电网适应性成为了风 电并网的必然要求。国内外尚无基于实际运行的能够用于风电机组电网适应性现 场测试的测试装置。 发明内容
针对现有技术的不足, 本发明提供一种移动式风电机组电网适应性测试系 统,其可以在风电机组升压变压器高压侧在线真实模拟产生电网电压偏差、频率 变化、三相电压不平衡、 电压闪变与谐波等常见的电网扰动, 采集和分析风电机 组的实际运行数据,对风电机组的电网适应性进行试验与评价。移动式的结构可 以方便的在不同风电场间运输与安装,解决了复杂地形和交通条件下风电机组的 电网适应性现场试验与检测难题。
本发明的目的是采用下述技术方案实现的:
一种移动式风电机组电网适应性测试系统,其改进之处在于, 所述系统包括 通过光纤连接的电网扰动发生装置和集成测控装置,所述电网扰动发生装置连接 在中压电网和风电机组升压变压器高压侧之间;所述电网扰动发生装置和集成测 控装置进行一体化设计后集成安装于集装箱内; 所述集装箱内包括散热系统, 所 述散热系统包括水冷装置和风冷装置。
优选的,所述电网扰动发生装置用于在风电机组升压变压器高压侧在线模拟 产生的电网扰动; 所述集成测控装置用于采集风电机组的电气量与状态量信息, 实时分析风电机组的电网适应性性能指标, 同时对测试系统进行控制与运行监 测;将电网扰动发生装置和集成测控装置进行一体化设计后集成安装在集装箱内 实现移动式的电网适应性测试系统;所述电网扰动发生装置为中压电网扰动发生 装置。
优选的, 所述电网扰动发生装置采用模块化设计(可实现高、低频扰动发生 装置独立、 联合运行); 包括与中压电网连接的低频扰动发生装置和与风电机组 升压变压器高压侧连接的高频扰动发生装置;所述低频扰动发生装置和高频扰动 发生装置依次连接; 所述低频扰动发生装置和高频扰动发生装置均并联断路器。
较优选的,所述低频扰动发生装置包括依次连接的降压变压器、变流环节和 升压变压器; 所述升压变压器的输出端与高频扰动发生装置或中压电网连接; 所述变流环节采用 N个单相或三相的 AC-DC-AC变流器并联模式; 所述 N 在 1-4之间。
较优选的,所述高频扰动发生装置基于电压源串联原理, 将谐波电压信号直 接叠加到中压电网; 包括高频电网扰动发生模块、 与其连接的高频取能电源和 LC滤波电路; 所述 LC滤波电路包括电容 C和电感 L; 所述电容 C连接在中压 电网或低频扰动发生装置的输出端, 所述电容 C通过电感 L与高频扰动发生模 块连接;
所述高频扰动发生模块采用单相 H桥 AC-DC- AC变流器级联模式。
优选的, 所述集成测控装置包括:
中央处理器: 负责采集被测风电机组的并网点的三相电压、三相电流及实时 风速信息模拟量信号,通过分析计算得出风电机组的并网运行特性参数, 并通过 通信管理机上传至远程后台监控计算机,远程后台监控计算机反映风电机组的实 时运行状态;
DSP控制器: 采集被测风电机组的电气量、状态量, 接受通信管理机的指令 信号, 生成输出扰动状态所需的 PWM触发信号; DSP控制器通过通信管理机与 后台监控计算机的通信; 后台监控计算机: 通过通信管理机下发指令至 DSP控制器并反映风电机组 的实时运行状态。
较优选的, 所述 DSP控制器包括低频扰动发生装置 DSP控制器、 高频扰动 发生装置 DSP控制器;
所述低频扰动发生装置 DSP控制器和高频扰动发生装置 DSP控制器通过光 纤均与开入开出组件连接; 所述低频扰动发生装置 DSP控制器和高频扰动发生 装置 DSP控制器均与通信管理机连接; 所述开入开出组件和通信管理机通过光 纤分别与中央处理器连接;
所述低频扰动发生装置 DSP控制器和高频扰动发生装置 DSP控制器通过通 信管理机与后台监控计算机进行通信;
所述后台监控计算机通过 RS485总线与通信管理机连接。
较优选的, 所述集成测控装置包括 A/D转换器和电信号开入开出板; 所述 A/D转换器分别通过片选地址信号线和数据线与中央处理器连接;所述电信号开 入开出板通过光纤与中央处理器连接; 设置 3块调理板分别与 A/D转换器连接; 其中一块调理板输入电流采集量, 另一块调理板输入风电机组风机侧电压采集 量, 第三块调理板输入除电流和电压以外的模拟采集量;
所述电信号开入开出板开入的电信号包括风机接触器反馈信号、行程开关反 馈信号和急停开入信号; 开出的电信号包括风机接触器控制信号和故障输出信 号。
与现有技术比, 本发明达到的有益效果是:
( 1 ) 移动式电网适应性测试系统集成度高。 将电网扰动发生装置、 数据采 集系统、监控系统等进行一体化设计, 全部集成于一个标准海运集装箱内, 解决 了复杂地形和交通条件下的风电机组的电网适应性现场试验与检测难题,可实现 移动化测试, 极大地提高了测试装置的效率。
(2) 移动式电网适应性测试系统输出精度高。 根据所需发生的电网扰动特 性,将电网扰动发生装置分为低频扰动发生模块与高频扰动发生模块, 由低频扰 动发生模块模拟产生低频电网扰动量,高频扰动发生模块模拟产生高频电网扰动 量,极大地提高了电网扰动发生装置的输出精度,特别是谐波电压的输出精度高, 并且提高了系统的稳定性。 (3 ) 移动式电网适应性测试系统谐波输出能力强、 精度高。 基于电压源串 联原理,将谐波电压信号直接叠加到中压电网,模拟产生了中压电网的谐波扰动, 解决了测试装置自身集电参数对谐波输出强度与精度的影响。
(4) 移动式电网适应性测试系统自动化程度高, 所有测试操作均可以通过 远程后台监控计算机实现。
(5)基于 AC-DC-AC变流技术与升、 降压变压器相结合的低频扰动发生模 块的设计方案。 通过升、 降压变压器与 AC-DC-AC 变流器的组合, 实现了 AC-DC-AC变流器所产生扰动高电压运行,使其能够适用于中压电网的风电机组 电网适应性测试; 同时变流技术的采用, 使得测试装置与电网接入点完全隔离, 避免了测试装置对接入电网的影响; 另外, 变流器的并联运行技术, 使得测试装 置的容量设计及扩容相对灵活。 附图说明
图 1是本发明提供的电网扰动发生装置结构示意图;
图 2是本发明提供的低频扰动发生装置结构示意图;
图 3是本发明提供的高频扰动发生装置原理示意图;
图 4是本发明提供的电网适应性测试系统的集成测控装置示意图; 图 5是本发明提供的低频扰动装置启动的自动控制逻辑流程图;
图 6是本发明提供的高频扰动装置启动的自动控制逻辑流程图;
图 7是本发明提供的电网扰动装置停止的自动控制逻辑流程图;
图 8是本发明提供的电网适应性测试系统移动式设计示意图;
图 9是本发明提供的电网适应性测试装置现场测试示意图。 具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
移动式风电机组电网适应性测试装置主要由电网扰动发生装置、集成测控系 统两部分组成。电网扰动发生装置在风电机组升压变压器高压侧在线真实模拟产 生常见的电网扰动; 集成测控系统采集风电机组的电气量与状态量信息, 实时分 析风电机组的电网适应性性能指标, 同时对整个测试装置进行控制与运行监测。 将上述两部分进行一体化设计,集成安装于一个标准的海运集装箱内, 实现了可 移动式的电网适应性测试系统。
一、 电网扰动发生装置设计:
电网扰动发生装置是电网适应性测试系统的核心,其可以模拟产生常见的各 种电网扰动,适用于风电机组电网适应性测试。 电网扰动发生装置基于电压源串 联原理, 采用模块化设计, 实现了高、 低频扰动发生装置独立、 联合运行, 其结 构框图如图 1所示。电网扰动发生装置包括与中压电网连接的低频扰动发生装置 和与风电机组升压变压器高压侧连接的高频扰动发生装置;低频扰动发生装置和 高频扰动发生装置依次连接;低频扰动发生装置并联有断路器 CB1 ,高频扰动发 生装置并联有断路器 CB2。 当断路器 CB1与 CB2均闭合时, 电网扰动发生装置 运行在旁路状态; 当断路器 CB1断开, CB2闭合时, 低频电网扰动发生装置单 独投入运行, 高频扰动发生装置旁路运行; 当断路器 CB1闭合, CB2断开时, 高频扰动发生装置单独投入运行, 低频扰动发生装置旁路运行; 当断路器 CB1 与 CB2均断开时, 高频与低频电网扰动发生装置联合运行。 此种模块化设计, 增加了装置的运行控制灵活性, 同时提升了高频电网扰动发生装置的输出精度。
1.1低频扰动发生装置设计
低频扰动发生模块基于 AC-DC-AC变流技术, 采用 AC-DC-AC变流与变压 器相结合的设计方法, 通过 AC-DC-AC变流器与升、 降压变压器的组合模拟产 生了中压电网的低频扰动, 如图 2所示。低频扰动发生装置包括依次连接的降压 变压器、变流环节和升压变压器; 升压变压器的输出端与高频扰动发生装置或中 压电网连接;
具体工作原理为: 中压电网经降压变压器 T1降压至 Ul,再经变流环节逆变 输出所需要的电压 U2, 最后由升压变压器 T2升压至中压。 变流环节采用 N个 单相或三相的 AC-DC-AC变流器并联模式; N在 1-4之间。 通过此种结构设计, 仅需修改 AC-DC-AC变流器逆变侧的调制波指令, 就可以在中压电网得到电网 适应性测试所需的各种低频电网扰动波形; 同时装置通过 AC-DC-AC变流技术 与电网接入点完全隔离,避免了装置对接入电网的影响。低频扰动发生装置的电 压运行水平主要取决于升、降压变压器的变比, 设备的运行容量取决于并联变流 器的容量和数量。低频电网扰动发生装置可以模拟产生电压偏差、频率波动、三 相电压不平衡、 电压波动与闪变等低频电网扰动量。
1.2、 高频扰动发生装置设计:
为提高谐波电压输出的精度, 简化低频扰动发生模块的滤波器设计, 基于电 压源串联原理, 在接入电网或低频扰动发生模块的输出端叠加高频扰动发生模 块, 即可在中压电网产生谐波电压, 如图 3所示, 高频扰动发生装置基于电压源 串联原理, 包括高频电网扰动发生模块、 与其连接的高频取能电源和 LC滤波电 路; LC滤波电路包括电容 C和电感 L; 所述电容 C连接在中压电网或低频扰动 发生装置的输出端, 所述电容 C通过电感 L与高频扰动发生模块连接; 高频扰 动发生模块可采用单相 H桥 AC-DC-AC变流器级联模式, 其同样可以通过控制 变流环节 H桥的逆变侧输出高次谐波电压, 即电网电压谐波与畸变。
二、 集成测控系统:
电网适应性测试装置远程测控系统结构框图如图 4所示,电网适应性测控系 统集风电机组电网适应性控制、状态监控、数据采集与分析于一体。集成测控装 置包括中央处理器、 DSP控制器和后台监控计算机。
如图 4所示, 中央处理器是电网适应性测控系统的核心处理器, 其负责相关 电气量、状态量的采集、计算与分析, 通过通信管理机获取远程后台计算机控制 指令, 对电网适应性测控装置进行状态监测与控制。
中央处理器负责采集被测风电机组的并网点的三相电压、三相电流及实时风 速信息等模拟量信号,通过分析计算得出风电机组的并网运行特性参数,如有功、 无功功率, 三相电压、 电流不平衡度, 电压闪变系数, 总谐波畸变率等, 并通过 通信管理机上传至远程后台监控计算机,远程后台监控计算机就可以反映风电机 组的实时运行状态。
DSP控制器是电网扰动发生装置的核心控制处理器, DSP控制器采用 TI公 司的 32位定点 DSP TMS320F2812, 采集相关电气量、 状态量, 接受通信管理机 的指令信号, 生成期望输出扰动状态所需的 PWM触发信号。 DSP控制器与后台 计算机的通信, 是通过通信管理机来实现的, 后台计算机通过通信管理机下发指 令至变流器 DSP控制器, 变流器 DSP控制器和通信管理机之间的连接为光纤连 接, 完全隔离。 DSP控制器包括低频扰动发生装置 DSP控制器、 高频扰动发生 装置 DSP控制器; 低频扰动发生装置 DSP控制器和高频扰动发生装置 DSP控制器通过光纤均 与开入开出组件连接; 所述低频扰动发生装置 DSP控制器和高频扰动发生装置 DSP控制器均与通信管理机连接;所述开入开出组件和通信管理机通过光纤分别 与中央处理器连接; 低频扰动发生装置 DSP控制器和高频扰动发生装置 DSP控 制器通过通信管理机与后台监控计算机进行通信; 后台监控计算机通过 RS485 总线与通信管理机连接。
中央处理器负责整个试验行程的状态监测与控制,固化了数个重要的自动控 制逻辑, 在后台计算机点击相应的控制图标, 则会执行不同的自动逻辑控制。 如 低频扰动装置启动如图 5-图 7所示,只需在后台计算机点击低频扰动装置启动按 钮, 对应行程自动执行, 若无故障出现, 设备自行启动, 无需人为干预, 避免了 整个装置运行过程中的人为误操作。
集成测控装置还包括 A/D转换器和电信号开入开出板; 所述 A/D转换器分 别通过片选地址信号线和数据线与中央处理器连接;电信号开入开出板通过光纤 与中央处理器连接; 设置 3块调理板分别与 A/D转换器连接; 其中一块调理板 输入电流采集量, 另一块调理板输入风电机组风机侧电压采集量, 第三块调理板 输入除电流和电压以外的模拟采集量;
电信号开入开出板开入的电信号包括风机接触器反馈信号、行程开关反馈信 号和急停开入信号; 开出的电信号包括风机接触器控制信号和故障输出信号。
三、 移动式设计:
为方便复杂地形和交通条件下的风电机组的电网适应性现场试验与检测,提 高电网适应性测试装置测试效率。将中压电网适应性测试系统进行一体化设计后 集成于一个标准海运集装箱内,集装箱内部安装的结构布局如图 8所示, 集装箱 内包括散热装置, 所述散热装置包括水冷装置和风冷装置。 中压设备的绝缘(可 采用绝缘材料、 绝缘胶带或绝缘挡板实现)、 耐压进行特殊设计, 完成了有限空 间的集成安装;对电网扰动发生装置运行期间的散热进行特殊设计,完成了水冷、 风冷协调智能控制; 对装置的防护等级进行特殊设计, 以满足系统特殊的运行环 境要求。
实施例
移动式电网适应性测试装置现场测试示意图如图 9所示,断开风电机组变压 器高压侧与中压电网的接线,将中压电网接入低频扰动发生模块输入侧, 另将风 电机组变压器高压侧接入高频扰动发生模块输出侧,即将电网适应性测试装置串 联于风电机组变压器高压侧与中压接入电网之间。
进行测试时,通过集成测控系统控制电网扰动发生装置及数据采集系统的启 停,通过集成测控系统控制电网扰动发生装置的输出内容, 从而在风电机组变压 器高压侧模拟产生如电网电压偏差、频率波动、三相电压不平衡、 电压闪变与谐 波等常见的电网扰动, 从而对风电机组进行电压适应性、频率适应性、三相电压 不平衡适应性、 电压闪变适应性及谐波适应性测试。 通过数据采集系统(3块调 理板实现)所采集的相关测试数据,通过数据分析、评价风电机组的电网适应性。 最后应当说明的是: 以上实施例仅用以说明本发明的技术方案而非对其限制, 尽 管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理 解: 依然可以对本发明的具体实施方式进行修改或者等同替换, 而未脱离本发明 精神和范围的任何修改或者等同替换, 其均应涵盖在本发明的权利要求范围当 中。

Claims

权 利 要 求
1、 一种移动式风电机组电网适应性测试系统, 其特征在于, 所述系统包括 通过光纤连接的电网扰动发生装置和集成测控装置,所述电网扰动发生装置连接 在中压电网和风电机组升压变压器高压侧之间;所述电网扰动发生装置和集成测 控装置进行一体化设计后集成安装于集装箱内; 所述集装箱内包括散热系统, 所 述散热系统包括水冷装置和风冷装置。
2、如权利要求 1所述的移动式风电机组电网适应性测试系统, 其特征在于, 所述电网扰动发生装置用于在风电机组升压变压器高压侧在线模拟产生的电网 扰动; 所述集成测控装置用于采集风电机组的电气量与状态量信息, 实时分析风 电机组的电网适应性性能指标, 同时对测试系统进行控制与运行监测; 将电网扰 动发生装置和集成测控装置进行一体化设计后集成安装在集装箱内实现移动式 的电网适应性测试系统; 所述电网扰动发生装置为中压电网扰动发生装置。
3、如权利要求 1所述的移动式风电机组电网适应性测试系统, 其特征在于, 所述电网扰动发生装置采用模块化设计;包括与中压电网连接的低频扰动发生装 置和与风电机组升压变压器高压侧连接的高频扰动发生装置;所述低频扰动发生 装置和高频扰动发生装置依次连接;所述低频扰动发生装置和高频扰动发生装置 均并联断路器。
4、如权利要求 3所述的移动式风电机组电网适应性测试系统, 其特征在于, 所述低频扰动发生装置包括依次连接的降压变压器、变流环节和升压变压器; 所 述升压变压器的输出端与高频扰动发生装置或中压电网连接;
所述变流环节采用 N个单相或三相的 AC-DC-AC变流器并联模式; 所述 N 在 1-4之间。
5、如权利要求 3所述的移动式风电机组电网适应性测试系统, 其特征在于, 所述高频扰动发生装置基于电压源串联原理,将谐波电压信号直接叠加到中压电 网; 包括高频电网扰动发生模块、 与其连接的高频取能电源和 LC滤波电路; 所 述 LC滤波电路包括电容 C和电感 L;所述电容 C连接在中压电网或低频扰动发 生装置的输出端, 所述电容 C通过电感 L与高频扰动发生模块连接;
所述高频扰动发生模块采用单相 H桥 AC-DC- AC变流器级联模式。
6、如权利要求 1所述的移动式风电机组电网适应性测试系统, 其特征在于, 所述集成测控装置包括:
中央处理器: 负责采集被测风电机组的并网点的三相电压、三相电流及实时 风速信息模拟量信号,通过分析计算得出风电机组的并网运行特性参数, 并通过 通信管理机上传至远程后台监控计算机,远程后台监控计算机反映风电机组的实 时运行状态;
DSP控制器: 采集被测风电机组的电气量、状态量, 接受通信管理机的指令 信号, 生成输出扰动状态所需的 PWM触发信号; DSP控制器通过通信管理机与 后台监控计算机的通信;
后台监控计算机: 通过通信管理机下发指令至 DSP控制器并反映风电机组 的实时运行状态。
7、如权利要求 6所述的移动式风电机组电网适应性测试系统, 其特征在于, 所述 DSP控制器包括低频扰动发生装置 DSP控制器、高频扰动发生装置 DSP控 制器;
所述低频扰动发生装置 DSP控制器和高频扰动发生装置 DSP控制器通过光 纤均与开入开出组件连接; 所述低频扰动发生装置 DSP控制器和高频扰动发生 装置 DSP控制器均与通信管理机连接; 所述开入开出组件和通信管理机通过光 纤分别与中央处理器连接;
所述低频扰动发生装置 DSP控制器和高频扰动发生装置 DSP控制器通过通 信管理机与后台监控计算机进行通信;
所述后台监控计算机通过 RS485总线与通信管理机连接。
8、如权利要求 6所述的移动式风电机组电网适应性测试系统, 其特征在于, 所述集成测控装置包括 A/D转换器和电信号开入开出板; 所述 A/D转换器分别 通过片选地址信号线和数据线与中央处理器连接;所述电信号开入开出板通过光 纤与中央处理器连接; 设置 3块调理板分别与 A/D转换器连接; 其中一块调理 板输入电流采集量, 另一块调理板输入风电机组风机侧电压采集量, 第三块调理 板输入除电流和电压以外的模拟采集量;
所述电信号开入开出板开入的电信号包括风机接触器反馈信号、行程开关反 馈信号和急停开入信号; 开出的电信号包括风机接触器控制信号和故障输出信 号。
PCT/CN2013/084672 2013-02-27 2013-09-30 一种移动式风电机组电网适应性测试系统 WO2014131282A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13876267.9A EP2963431B1 (en) 2013-02-27 2013-09-30 Test system for power grid adaptability of mobile wind turbine generator system
ES13876267T ES2782555T3 (es) 2013-02-27 2013-09-30 Sistema de prueba para adaptabilidad a la red eléctrica de un sistema generador de turbinas eólicas móvil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310060904.9 2013-02-27
CN201310060904.9A CN103257314B (zh) 2013-02-27 2013-02-27 一种移动式风电机组电网适应性测试系统

Publications (1)

Publication Number Publication Date
WO2014131282A1 true WO2014131282A1 (zh) 2014-09-04

Family

ID=48961342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084672 WO2014131282A1 (zh) 2013-02-27 2013-09-30 一种移动式风电机组电网适应性测试系统

Country Status (4)

Country Link
EP (1) EP2963431B1 (zh)
CN (1) CN103257314B (zh)
ES (1) ES2782555T3 (zh)
WO (1) WO2014131282A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199428A (zh) * 2016-07-08 2016-12-07 兰州电机股份有限公司 高压大功率双馈型风力发电机试验系统及其测控系统
CN106569065A (zh) * 2016-11-03 2017-04-19 国网浙江省电力公司舟山供电公司 一种直流电缆热循环电压试验装置
CN108760996A (zh) * 2018-08-10 2018-11-06 贵州电网有限责任公司 一种压缩空气储能调差系数静态测试系统及其测试方法
CN110816886A (zh) * 2019-11-12 2020-02-21 西安子国微科技有限公司 一种基于LabVIEW的机轮冷却装置测试系统及其测试方法
CN114062777A (zh) * 2021-11-17 2022-02-18 山东日照发电有限公司 一种同期装置的频差校验方法
CN114295914A (zh) * 2021-12-30 2022-04-08 深圳市首航新能源股份有限公司 一种并网电子设备的测试验证方法及测试验证平台
CN116738677A (zh) * 2023-05-11 2023-09-12 南方电网电力科技股份有限公司 一种风电场场站运行的适应性能力评价方法及装置
CN116880241A (zh) * 2023-08-04 2023-10-13 山东大学 海上风电机组地面试验平台的多层级控制集成系统及方法
CN116738677B (zh) * 2023-05-11 2024-06-04 南方电网电力科技股份有限公司 一种风电场场站运行的适应性能力评价方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257314B (zh) * 2013-02-27 2015-08-05 中国电力科学研究院 一种移动式风电机组电网适应性测试系统
CN104764958A (zh) * 2015-04-14 2015-07-08 国家电网公司 一种电能质量治理设备试验系统
CN105929278B (zh) * 2016-05-11 2019-02-19 株洲中车时代电气股份有限公司 一种变流模块高压测试系统及方法
CN106707166B (zh) * 2017-01-05 2019-08-06 云南电网有限责任公司电力科学研究院 一种风电场出力特性评估方法
CN107153152A (zh) * 2017-07-19 2017-09-12 云南电网有限责任公司电力科学研究院 一种电网适应性测试装置
CN111239534A (zh) * 2020-03-19 2020-06-05 广东电网有限责任公司电力科学研究院 一种基于mmc的大容量风电机组电网适应性一体化试验系统
CN112881822B (zh) * 2021-01-07 2023-06-02 国网河北省电力有限公司电力科学研究院 一种风电场电压控制功能的检测方法及设备
CN113364041B (zh) * 2021-08-09 2022-04-08 四川大学 电力扰动模拟分析与控制系统
CN114113870B (zh) * 2022-01-28 2022-04-26 西安德纳检验检测有限公司 一种新能源场站电网适应性检测方法、装置和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129036A (zh) * 2011-01-07 2011-07-20 中电普瑞科技有限公司 风力发电机组用移动式低电压穿越测试装置
CN102148501A (zh) * 2010-07-23 2011-08-10 中国电力科学研究院 一种风电场扰动发生装置
WO2011160564A1 (zh) * 2010-06-25 2011-12-29 西安久和能源科技有限公司 一种新型的兆瓦级风力发电机组试验系统及其试验方法
US20120139576A1 (en) * 2010-12-03 2012-06-07 Thomas Dreyer Arrangement and method for testing an electric power generation system
CN103257314A (zh) * 2013-02-27 2013-08-21 中国电力科学研究院 一种移动式风电机组电网适应性测试系统
CN203164379U (zh) * 2013-02-27 2013-08-28 中国电力科学研究院 一种移动式风电机组电网适应性测试系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2379708T5 (es) * 2006-07-03 2017-09-20 Vestas Wind Systems A/S Sistema de pruebas de turbina eólica
DE102008049629A1 (de) * 2008-09-30 2010-04-08 Repower Systems Ag Windenergieanlagenprüfeinrichtung
CN201732150U (zh) * 2010-06-18 2011-02-02 深圳市禾望电气有限公司 一种风力发电机组电网适应性测试装置
DE102010060333B4 (de) * 2010-11-03 2013-05-29 Forschungsgemeinschaft für Elektrische Anlagen und Stromwirtschaft e.V. Dezentrale Erzeugungsanlage, insbesondere Windenergieanlage, Prüfschaltung sowie Prüfverfahren
DK2461027T3 (da) * 2010-12-03 2013-09-30 Siemens Ag Anordning og fremgangsmåde til test af et system, der genererer elektrisk effekt
CN102593865B (zh) * 2012-02-23 2014-02-12 中国电力科学研究院 一种风电接入电网的动态模拟系统和模拟方法
CN202583367U (zh) * 2012-05-28 2012-12-05 河南电力试验研究院 一种电能质量综合测试平台
CN102680895B (zh) * 2012-05-30 2015-02-18 合肥工业大学 一种风力发电模拟平台的模拟方法
CN202649427U (zh) * 2012-05-31 2013-01-02 华北电力科学研究院有限责任公司 移动式风电机组高低电压穿越测试装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011160564A1 (zh) * 2010-06-25 2011-12-29 西安久和能源科技有限公司 一种新型的兆瓦级风力发电机组试验系统及其试验方法
CN102148501A (zh) * 2010-07-23 2011-08-10 中国电力科学研究院 一种风电场扰动发生装置
US20120139576A1 (en) * 2010-12-03 2012-06-07 Thomas Dreyer Arrangement and method for testing an electric power generation system
CN102129036A (zh) * 2011-01-07 2011-07-20 中电普瑞科技有限公司 风力发电机组用移动式低电压穿越测试装置
CN103257314A (zh) * 2013-02-27 2013-08-21 中国电力科学研究院 一种移动式风电机组电网适应性测试系统
CN203164379U (zh) * 2013-02-27 2013-08-28 中国电力科学研究院 一种移动式风电机组电网适应性测试系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199428A (zh) * 2016-07-08 2016-12-07 兰州电机股份有限公司 高压大功率双馈型风力发电机试验系统及其测控系统
CN106569065A (zh) * 2016-11-03 2017-04-19 国网浙江省电力公司舟山供电公司 一种直流电缆热循环电压试验装置
CN106569065B (zh) * 2016-11-03 2023-09-05 国网浙江省电力公司舟山供电公司 一种直流电缆热循环电压试验装置
CN108760996A (zh) * 2018-08-10 2018-11-06 贵州电网有限责任公司 一种压缩空气储能调差系数静态测试系统及其测试方法
CN108760996B (zh) * 2018-08-10 2024-04-26 贵州电网有限责任公司 一种压缩空气储能调差系数静态测试系统及其测试方法
CN110816886B (zh) * 2019-11-12 2023-05-30 西安子国微科技有限公司 一种基于LabVIEW的机轮冷却装置测试系统及其测试方法
CN110816886A (zh) * 2019-11-12 2020-02-21 西安子国微科技有限公司 一种基于LabVIEW的机轮冷却装置测试系统及其测试方法
CN114062777A (zh) * 2021-11-17 2022-02-18 山东日照发电有限公司 一种同期装置的频差校验方法
CN114062777B (zh) * 2021-11-17 2023-11-14 山东日照发电有限公司 一种同期装置的频差校验方法
CN114295914A (zh) * 2021-12-30 2022-04-08 深圳市首航新能源股份有限公司 一种并网电子设备的测试验证方法及测试验证平台
CN116738677A (zh) * 2023-05-11 2023-09-12 南方电网电力科技股份有限公司 一种风电场场站运行的适应性能力评价方法及装置
CN116738677B (zh) * 2023-05-11 2024-06-04 南方电网电力科技股份有限公司 一种风电场场站运行的适应性能力评价方法及装置
CN116880241A (zh) * 2023-08-04 2023-10-13 山东大学 海上风电机组地面试验平台的多层级控制集成系统及方法

Also Published As

Publication number Publication date
EP2963431A4 (en) 2016-11-30
EP2963431A1 (en) 2016-01-06
ES2782555T3 (es) 2020-09-15
CN103257314B (zh) 2015-08-05
EP2963431B1 (en) 2020-01-08
CN103257314A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2014131282A1 (zh) 一种移动式风电机组电网适应性测试系统
CN103078316B (zh) 一种电网电压扰动发生装置及其控制方法
CN202093155U (zh) 大容量多适应性并网光伏逆变器检测平台
CN103472331B (zh) 一种基于光伏物理模型的光伏发电故障诊断系统
CN202177672U (zh) 一种高压10kV电能质量综合测试平台
CN103852663A (zh) 一种能量回馈型分布式光伏电源逆变器综合测试系统
CN104198853B (zh) 一种风电并网测试装置及测试方法
EP2607912B1 (en) Low-voltage testing device for high-voltage frequency converter of serial superposition voltage type
CN102916640B (zh) 一种内燃机车相控励磁控制装置及其方法
CN106814263A (zh) 一种半实物仿真并网检测系统及方法
CN103886791A (zh) 基于双馈发电机的动模双向风电能量转换实验台及实验方法
CN106487240A (zh) 一种具有精确谐波电压和虚拟阻抗控制的电网模拟器
CN102624027A (zh) 一种多进程的孤岛效应检测装置及方法
CN100429858C (zh) 远程油机、电网监控装置及其谐波分析监控方法
CN104764952B (zh) 一种10kV电压等级的STATCOM检测平台及检测方法
CN203204895U (zh) 基于双馈发电机的动模双向风电能量转换实验台
CN203164379U (zh) 一种移动式风电机组电网适应性测试系统
CN203054099U (zh) 一种改进的光伏并网逆变器满负载考核测试系统
CN206945842U (zh) 一种配网无功补偿装置模拟试验平台
CN208722050U (zh) 一种用于peu测试系统的新型模拟电机负载
CN104316762A (zh) 一种配电变压器动态负载谐波监测方法及装置
CN203479929U (zh) 一种风电场电网运行模拟装置
CN205178893U (zh) 一种用于检测换流变压器谐波损耗的电源装置
CN103995201B (zh) 一种风电机组孤岛测试装置
CN203911496U (zh) 一种全能量回馈型电网模拟器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013876267

Country of ref document: EP