WO2014131267A1 - Pet成像系统的环形拓扑结构及其实现方法 - Google Patents

Pet成像系统的环形拓扑结构及其实现方法 Download PDF

Info

Publication number
WO2014131267A1
WO2014131267A1 PCT/CN2013/081183 CN2013081183W WO2014131267A1 WO 2014131267 A1 WO2014131267 A1 WO 2014131267A1 CN 2013081183 W CN2013081183 W CN 2013081183W WO 2014131267 A1 WO2014131267 A1 WO 2014131267A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
node module
module
information
node
Prior art date
Application number
PCT/CN2013/081183
Other languages
English (en)
French (fr)
Inventor
吴和宇
张辉
王毅
居小平
Original Assignee
江苏中惠医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中惠医疗科技股份有限公司 filed Critical 江苏中惠医疗科技股份有限公司
Priority to EP13876111.9A priority Critical patent/EP2962641B1/en
Publication of WO2014131267A1 publication Critical patent/WO2014131267A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/508Clinical applications for non-human patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data

Definitions

  • the present invention relates to the basic topology of PET, PET/CT, PET/MR medical imaging systems, and the implementation of such basic structures. Background technique
  • PET is a nuclear medicine functional imaging instrument because it can quickly and accurately diagnose cancer cell populations, especially early cancer. It is a good tool for the diagnosis and treatment of cancer, cardiovascular disease and neurological diseases and is rapidly applied to the clinic.
  • the number of detector units for imaging measurement is tens of thousands and hundreds of thousands, and the number of channels designed by the detector is reduced to thousands. In order to obtain imaging results: at least 10 million coincident events are obtained within a few minutes. The ability to judge and abandon tens of millions of non-conforming single-shot events can only be done in a distributed collection mode.
  • the star structure is the acquisition mode commonly used in current PET systems. After each detector's signal is amplified, each AD is converted into digital information.
  • the multi-channel AD data is aggregated into a centralized processing unit (front-end) for processing to determine useful all-energy peak events and to resolve The ray is at the position of the smallest imaging unit; all processing unit events are aggregated into a central processing unit, that is, the processing unit is compliant, and the coincidence event set is selected and output.
  • the star topology is a natural logical result that centralizes the processing and output of distributed information.
  • this structure is often fixed at the time of design, and the imaging system is a single fixed system that is completely unchangeable in hardware.
  • the number of branches receiving information in the central processing unit, the information capacity of the branch, ie the number of detector units processed, has been fixed, on any hardware
  • a few changes will involve a completely new design of the entire PET system.
  • the central processing unit At the time of the development of high-performance PET systems at 10 o'clock, the central processing unit also faced enormous processing power challenges and data bandwidth challenges. Summary of the invention
  • the object of the present invention is to provide a three-ring, four-ring, five-ring and six-ring system which can reduce the processing workload of the module and increase the number of channels of the hardware 10, and increase or decrease the processing capacity of the system radiation detector.
  • the event matching of the PET system is determined by a distributed series of conforming modules, which are connected in series to form a ring structure, each conforming module is a node module on the link; at least one filtering node module in the ring structure , complete the coincidence of the event.
  • the specific method is: the electronic signals of the plurality of detectors are gathered into an event processing module, the signal processing is completed in the event processing module, digitization and digital analysis, and the all-energy peak event is selected; the information output of the plurality of event processing modules is aggregated to one node.
  • the module performs event matching in the node module; the complex system adopts multiple event processing modules and conforming modules to form a star branch, and then the module-level strings of each branch form a ring-shaped star-shaped structure, a simple imaging system.
  • the event processing module function and the conforming module function are combined to form a node module, and the level string forms a single ring structure.
  • the topology of the present invention includes an event processing module for receiving and processing signals from a plurality of ray detectors, an event compliant detection node module for receiving a multi-channel event processing module, and at least one event filtering node module;
  • Each node module and the filtering node module are sequentially connected by bus or point-to-point data transmission to form a closed loop structure, and data information is generated on the detector, first aggregated to the event processing module, and further aggregated to the node module. Entering the ring structure and circulating in the ring structure;
  • Each node module caches information aggregated on the node module for compliance detection, and directly sends information on the node module to the next node module, so that the information of the node flows in the ring structure;
  • Each node module judges and deletes information from the node module or outdated information from the previous node module, and prohibits the continued transmission of the deleted information, balancing and reducing the amount of data continuously entering the ring;
  • Each node module periodically time-selects event information from the previous node module and event information of the node module, and determines two events that appear in the time window simultaneously to be eligible events, and then performs event-compliant information. Mark
  • Each node module will pass the event information, or the single event information from the previous node module that has not expired, to the next node module, so that the matching event is passed to the event filtering node, so that the single event has a chance to follow.
  • the event on the multi-node is consistently judged; the filtering node detects the coincidence flag event information, and prohibits the checked-in tag event information from continuing to be transmitted to the next node module, and transmits the coincidence event information to the data collection. On the computer.
  • the working principle of the invention The signals of each ray detector are aggregated into an event processing module (front-end function module) through AD conversion, and the signal omnipotent peak is selected and the crystal position is detected after being processed by the event processing module; Processing module event information
  • the signal transmission loop is formed by a plurality of node modules connected in series, and the matching of events and events is completed on the loop; the node sends the new information to the next node module, that is, the data is in the ring. Looping until the filter node module that has detected the coincidence flag event information and transmits the detected coincidence flag event information to the connected computing center is terminated, and the filtered coincidence event information is under the control of the computing center.
  • the present invention realizes the loop structure of the central processing unit, and the centralized tasks are distributed to the respective node modules.
  • the hardware structure of each node and the software (FPGA) structure have the same functions, and the task becomes simple and effective, and each unit is The number of 10s has been reduced, and the efficiency of the data transfer link has been improved, but the overall capacity of the system has increased and the processing power has been greatly improved.
  • this ring-shaped PET system can increase the number of nodes and the amount of node processing, without changing the FPGA program in hardware electronics and hardware, that is, without changing the system design, the experimental PET system builds the building block production. , according to the needs of users to achieve high-end to withstand, clinical and research-oriented PET production.
  • the calculation amount and the 10-load of the processing unit can be greatly reduced, and the switching of the production of the simple system and the complex system can be realized, and the research and development efficiency can be greatly improved.
  • Fig. 1 is a schematic diagram showing the structure and data flow principle of a ring-shaped star-shaped topology for a large human body system.
  • Fig. 2 is a schematic diagram showing the structure and data flow of a ring topology in the small animal small system of the present invention. detailed description
  • A is a plug-in event processing module (front-end function module) for receiving and processing signals from multiple ray detectors
  • B is a node-compliant module
  • C is an event-compliant ring structure.
  • the node module is filtered out
  • D is the detection and control function module of the PET system.
  • the PC is a data acquisition computer.
  • Each of the processing units A can be, but is not limited to, plugged through the chassis.
  • Each node module B can be separately disposed on the motherboard of the chassis, and the node module B is chained in a variable number of sockets, and the module B is inserted into the chassis. The board is automatically recognizable.
  • Each node module B and the filtering node module C are sequentially connected by bus or point-to-point data transmission to form a closed loop structure, that is, each chassis level is stringed by data lines, and each node module B is cached on the node module.
  • the information is used for compliance detection, and the information on the node module is sent directly to the next node module.
  • Each node module judges and deletes information from the node module or outdated information from the previous node module, and prohibits the transmission of the deleted information.
  • Each node module pairs information from the previous node module with information about the node module The time is judged, and the coincidence event is judged within the time window, and then the information conforming to the event is marked.
  • Each node module will pass the event information, or the single event information from the previous node module that has not expired, to the next node module.
  • the filtering node module c detects the matching flag event information, and transmits the detected matching flag event information to the connected computing center PC, and prohibits the detected matching flag event information from continuing to be transmitted to the next node module.
  • the detected coincidence flag event information is transmitted to the detection and control function module D of the PET system under the control of the computing center PC.
  • the above functional modules and node modules usually refer to hardware logic gate arrays (FPGAs) to achieve high-speed and timely processing capabilities.
  • FPGAs hardware logic gate arrays
  • the ring structure shown is the same as the star-ring structure shown in Fig. 1.
  • Each node module B and the filter node module C are sequentially connected by bus or point-to-point data transmission to form a closed loop structure.
  • Each node module and the filter node module have identical events that match the selection, filtering, event information delivery, and obsolete deletion. Since the system is simple and the number of detectors is small, the signal of the detector is directly connected to the node module, and the node module performs the function of the upper-level event analysis module, which simplifies the structure of the system.

Abstract

公开了一种PET成像系统的环形拓扑结构及其实现方法。该实现方法将PET成像系统的事件符合判断由分布的一系列符合模块(B)完成,上述符合模块(B)串联成一个环形结构,每个符合模块(B)可以是环形结构上的一个节点模块;环形结构还包括至少一个滤出节点模块(C),用于完成符合事件的输出。使用该实现方法通过将集中的任务分散到各个节点模块,减少了符合处理单元的计算量,并增加了硬件I/O的通道数量,从而方便地生产三环、四环、五环或六环的PET成像系统。同时,还可以通过增减节点数目和改变探测器中晶体大小来调节分辨率,实现用于小动物的小系统和用于人体的大系统的生产切换。

Description

PET成像系统的环形拓扑结构及其实现方法 技术领域
本发明涉及 PET, PET/CT, PET/MR医学成像系统的基本拓扑结构, 以及这种基本结构的实现方法。 背景技术
PET是一种核医学功能成像的仪器, 因为可以迅速准确诊断癌症 细胞群, 特别是早期癌症。 是肿瘤、 心血管疾病和神经类疾病的诊疗 的好工具而迅速应用于临床。作为一个大型放射性测量系统, 成像的 测量的探测器单元数以万、十万计,通过探测器设计通道数降到千计, 为了获得成像效果: 数分钟内, 至少获得千万个符合事件, 判选和放 弃数千万个非符合的单举事件的能力, 只能采取分布式的采集模式。
星型结构是目前的 PET系统通常采用的采集模式。每个探测器的 信号经过放大成型后, 均有独立的 AD转化为数字信息, 多路 AD数据 汇聚到一个集中的处理单元(front-end ) , 进行处理以判断有用的全 能峰事件, 并解析射线在最小成像单元的位置; 把所有处理单元事件 汇集到一个中心处理单元, 也即符合处理单元, 对符合事件集中进行 判选和输出。
星型的拓扑结构是自然的逻辑结果,把分布式的信息集中处理和 输出。 但是这种结构往往在设计完成时, 成像系统是单一的固定的, 是在硬件上完全无法改变的体系。在中心处理单元接收信息的分支数 目, 分支的信息容量即处理的探测器单元数目已经固定, 任何硬件上 的少许改动就会涉及整个 PET系统的全新设计。 当发展高性能的 PET 系统时面临的极大硬件的 10时, 中心处理单元也面临极大的处理能 力的挑战和数据带宽的挑战。 发明内容
本发明目的是提供一种可降低符合模块的处理工作量和增加硬 件 10的通道数目, 随意增减系统射线探测器处理容量, 从而方便地 生产三环、 四环、五环和六环系统的 PET成像系统的拓扑结构的实现 方法。
PET系统的事件符合判选由分布式的一系列符合模块来完成, 这 些符合模块被串联成一个环形结构,每个符合模块就是链路上的一个 节点模块;环形结构中至少一个滤出节点模块,完成符合事件的取出。
具体方法是: 多组探测器的电子学信号汇聚到一个事件处理模 块, 在事件处理模块完成信号的成形, 数字化和数字分析, 选取全能 峰事件; 多个事件处理模块的信息输出汇聚到一个节点模块, 在节点 模块中进行事件符合判选;复杂系统采用多个事件处理模块加符合模 块形成星型分支, 再将各分支的符合模块级串形成环形加星型的结 构,一个简单的成像系统中事件处理模块功能和符合模块功能结合在 一起形成节点模块, 级串形成单一环形结构。
本发明的拓扑结构包括用于接收和处理来自多路射线探测器信 号的事件处理模块、 接收多路事件处理模块的事件符合检测节点模 块、 至少一个符合事件滤出节点模块; 所述各节点模块和滤出节点模块依次地由总线或点对点数据传 输串接起来形成一个闭合环型结构, 数据信息在探测器上产生, 先汇 聚到事件处理模块, 在进一歩汇聚到节点模块进入环形结构, 并在环 形结构中循环流动;
每个节点模块缓存汇聚到本节点模块上的信息以用于符合检测, 还将本节点模块上的信息直接发给下个节点模块,使本节点的信息在 环形结构中流动;
每个节点模块对来自本节点模块的信息或来自上个节点模块的 过时的信息进行判断和删除, 并禁止将已删除的信息继续传送, 平衡 和减少不断进入环内的数据量;
每个节点模块对来自上个节点模块的事件信息与本节点模块的 事件信息进行时间判选,并将同时出现在符合时间窗口内的两个事件 判断为符合事件, 然后将符合事件的信息进行标记;
每个节点模块将符合事件的信息,或者没有过期的来自上个节点 模块的单举事件信息传向下一个节点模块,让符合事件传向符合事件 滤出节点, 让单举事件有机会跟更多节点上的事件进行符合判选; 所述滤出节点检出符合标记事件信息,并禁止检出的符合标记事 件信息继续传输至下一个节点模块,并将该符合事件信息传递到数据 采集的计算机上。
本发明工作原理: 各射线探测器的信号经过 AD转化汇聚到事件 处理模块 (front-end 功能模块), 经事件处理模块处理后实现了信 号全能峰判选和探测晶体位置的解析;多个事件处理模块的事件信息 汇集到一个符合节点模块, 由许多节点模块串联形成的信号传输环 路, 事件与事件的符合判选在环路上完成; 节点将符合的新信息发至 下一个节点模块, 即符合数据在环内循环, 直至到达具有检出符合标 记事件信息、并将检出的符合标记事件信息传输到相连的计算中心上 的滤出节点模块而终止,被滤出的符合事件信息则在计算中心控制下 再传输至 PET系统的检测和控制功能模块;在事件处理模块筛选的事 件是单举事件, 单举事件汇入节点时会缓存一份拷贝, 保留到检出符 合或成为过时为止,另一份拷贝被注入环中循环直至检出符合或成为 过时为止。
本发明由于实现了中心处理单元的环路化结构,集中的任务被分 散到各个节点模块上, 每个节点的硬件结构, 软件(FPGA)结构功能 相同, 任务变得简单有效, 每个单元的 10的数量得到了降低, 数据 传送链路的使用效率得到了提高, 但系统总体 10容量得到增加并且 处理能力得到极大提升。更加重要的是这种环形结构的 PET系统, 通 过增减节点数目和节点处理量的方法,在不改变硬件电子学和硬件中 FPGA程序, 即不改变系统设计, 实验 PET系统搭建积木式的生产, 按用户的需求实现高档到抵挡, 临床与研究型的 PET生产。利用该结 构, 可大大减少了符合处理单元的计算量和 10负荷, 实现简单系统 和复杂系统生产的切换, 极大的提高研发效率。让 PET系统的生产成 为一种搭积木式的效果, 方便地生产三环, 四环, 五环和六环系统, 同时通过增减节点数目和改变探测器中晶体大小来实现高 /低分辨, 小动物小系统与人体大系统的生产切换。 附图说明
图 1 为本发明用于人体大系统时环形加星形的拓扑的结构及数 据流原理图。
图 2 为本发明用于小动物小系统时环形的拓扑的结构及数据流 原理图。 具体实施方式
如图 1所示, A是插拔式的用于接收和处理来自多路射线探测器 信号的事件处理模块 (front-end功能模块), B是符合节点模块, C 是环形结构中符合事件的滤出节点模块, D是 PET系统的检测和控制 功能模块。 PC为数据采集计算机。
各个处理单元 A可以 (但不限于)通过机箱插拔式, 各个节点模 块 B可分别设置于机箱的母板上,且节点模块 B以插口数目可变的方 式链入, 模块 B对机箱的插板可自动识别。
各节点模块 B和滤出节点模块 C依次地由总线或点对点数据传输 串接起来形成一个闭合环型结构,也就是用数据线将各个机箱级串起 每个节点模块 B缓存本节点模块上的信息以用于符合检测,还将 本节点模块上的信息直接发给下个节点模块。
每个节点模块对来自本节点模块的信息或来自上个节点模块的 过时的信息进行判断和删除, 并禁止将已删除的信息继续传送。
每个节点模块对来自上个节点模块的信息与本节点模块的信息 进行时间判选, 并在符合时间窗口内判断符合事件, 然后将符合事件 的信息进行标记。
每个节点模块将符合事件的信息,或者没有过期的来自上个节点 模块的单举事件信息传向下一个节点模块。
滤出节点模块 c检出符合标记事件信息,并将检出的符合标记事 件信息传输到相连的计算中心 PC上, 并禁止检出的符合标记事件信 息继续传输至下一个节点模块。
在计算中心 PC的控制下,将检出的符合标记事件信息传输到 PET 系统的检测和控制功能模块 D。
以上各功能模块、节点模块通常指硬件的逻辑门阵列 (FPGA) , 以 获得高速及时处理能力。
由图 2可见, 所示环型结构跟图 1所示星型加环型结构一样, 各 节点模块 B和滤出节点模块 C依次地由总线或点对点数据传输串接起 来形成一个闭合环型结构,各个节点模块和滤出节点模块有着完全相 同的事件符合判选, 滤出, 事件信息的传递和过时删除功能。 由于系 统简单, 探测器数目较少, 探测器的信号直接接入节点模块, 由节点 模块来完成上一级事件分析模块的功能, 这样简化了系统的结构。

Claims

权 利 要 求
1. PET成像系统的环形拓扑结构的实现方法, 其特征在于: PET系统 的事件符合判选由分布式的一系列符合模块来完成,这些符合模块被 串联成一个环形结构, 每个符合模块就是链路上的一个节点模块; 环 形结构中至少一个滤出节点模块, 完成符合事件的取出。
2. 根据权利要求 1所述方法, 其特征在于: 多组探测器的电子学信 号汇聚到一个事件处理模块, 在事件处理模块完成信号的成形, 数字 化和数字分析, 选取全能峰事件; 多个事件处理模块的信息输出汇聚 到一个节点模块, 在节点模块中进行事件符合判选; 复杂系统采用多 个事件处理模块加符合模块形成星型分支,再将各分支的符合模块级 串形成环形加星型的结构,一个简单的成像系统中事件处理模块功能 和符合模块功能结合在一起形成节点模块, 级串形成单一环形结构。
3. 一种 PET成像系统的环形拓扑结构, 其特征在于: 包括用于接收 和处理来自多路射线探测器信号的事件处理模块、接收多路事件处理 模块的事件符合检测节点模块、 至少一个符合事件滤出节点模块; 所述各节点模块和滤出节点模块依次地由总线或点对点数据传输串 接起来形成一个闭合环型结构;
每个节点模块缓存本节点模块上的信息以用于符合检测的功能 模块, 还将本节点模块上的信息直接发给下个节点模块;
每个节点模块对来自本节点模块的信息或来自上个节点模块的 过时的信息进行判断和删除, 并禁止将已删除的信息继续传送; 每个节点模块对来自上个节点模块的信息与本节点模块的信息 进行时间判选, 并在符合时间窗口内判断符合事件, 然后将符合事件 的信息进行标记;
每个节点模块将符合事件的信息,或者没有过期的来自上个节点 模块的单举事件信息传向下一个节点模块;
所述滤出节点模块检出符合标记事件信息,并禁止检出的符合标记事 件信息继续传输至下一个节点模块,将检出符合事件信息传递给数据
PCT/CN2013/081183 2013-03-01 2013-08-09 Pet成像系统的环形拓扑结构及其实现方法 WO2014131267A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13876111.9A EP2962641B1 (en) 2013-03-01 2013-08-09 Ring topological structure of pet imaging system and implementation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310064672.4 2013-03-01
CN201310064672.4A CN103099639B (zh) 2013-03-01 2013-03-01 Pet成像系统的环形拓扑结构及其实现方法

Publications (1)

Publication Number Publication Date
WO2014131267A1 true WO2014131267A1 (zh) 2014-09-04

Family

ID=48308065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081183 WO2014131267A1 (zh) 2013-03-01 2013-08-09 Pet成像系统的环形拓扑结构及其实现方法

Country Status (3)

Country Link
EP (1) EP2962641B1 (zh)
CN (1) CN103099639B (zh)
WO (1) WO2014131267A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103099639B (zh) * 2013-03-01 2014-12-24 江苏中惠医疗科技股份有限公司 Pet成像系统的环形拓扑结构及其实现方法
CN105395209B (zh) * 2015-12-01 2018-10-02 沈阳东软医疗系统有限公司 一种正电子发射断层扫描成像系统及方法
CN106023278A (zh) * 2016-05-25 2016-10-12 沈阳东软医疗系统有限公司 一种图像重建的方法和装置
CN106230816B (zh) * 2016-07-28 2019-05-21 东软医疗系统股份有限公司 一种实现pet系统中数据传输的系统及方法
CN107928692A (zh) * 2017-11-10 2018-04-20 湖北锐世数字医学影像科技有限公司 针对全数字pet的符合事件筛选的方法及装置
CN114305470A (zh) * 2017-11-10 2022-04-12 湖北锐世数字医学影像科技有限公司 针对全数字pet的符合事件筛选装置
CN115728810A (zh) * 2021-09-01 2023-03-03 深圳先进技术研究院 监控电路结构、pet探测器、pet探测器监控系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195512A1 (en) * 2000-05-16 2004-10-07 Crosetto Dario B. Method and apparatus for anatomical and functional medical imaging
WO2010048626A2 (en) * 2008-10-24 2010-04-29 University Of Washington Improved data-processing electronics for use in a positron-emission tomography system
CN101855564A (zh) * 2007-11-09 2010-10-06 皇家飞利浦电子股份有限公司 Mr-pet周期运动门控和校正
CN102302372A (zh) * 2011-05-23 2012-01-04 江苏中惠医疗科技股份有限公司 一种全数字化处理装置的全数字化电子学系统
CN102631212A (zh) * 2012-04-28 2012-08-15 中国科学院高能物理研究所 正电子发射断层扫描仪及其中的符合判选方法
CN103099639A (zh) * 2013-03-01 2013-05-15 江苏中惠医疗科技股份有限公司 Pet成像系统的环形拓扑结构及其实现方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980552A (en) * 1989-06-20 1990-12-25 The Regents Of The University Of California High resolution PET scanner using rotating ring array of enlarged detectors having successively offset collimation apertures
US5241181A (en) * 1992-07-27 1993-08-31 General Electric Company Coincidence detector for a PET scanner
EA016862B1 (ru) * 2007-11-02 2012-08-30 Юниверсити Оф Вашингтон Способ и устройство для оценки начального момента времени электронного импульса, предназначенного для использования в позитронно-эмиссионной томографии
CN102246057A (zh) * 2008-12-10 2011-11-16 皇家飞利浦电子股份有限公司 用作可缩放pet和spect系统构建块的自主探测器模块
JP5360418B2 (ja) * 2010-01-27 2013-12-04 株式会社島津製作所 放射線断層撮影装置
CN102274041B (zh) * 2011-05-23 2013-09-04 江苏中惠医疗科技股份有限公司 正电子发射断层成像电子学系统的全数字化处理装置
CN202179553U (zh) * 2011-05-23 2012-04-04 江苏中惠医疗科技股份有限公司 一种全数字化处理装置的全数字化电子学系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040195512A1 (en) * 2000-05-16 2004-10-07 Crosetto Dario B. Method and apparatus for anatomical and functional medical imaging
CN101855564A (zh) * 2007-11-09 2010-10-06 皇家飞利浦电子股份有限公司 Mr-pet周期运动门控和校正
WO2010048626A2 (en) * 2008-10-24 2010-04-29 University Of Washington Improved data-processing electronics for use in a positron-emission tomography system
CN102302372A (zh) * 2011-05-23 2012-01-04 江苏中惠医疗科技股份有限公司 一种全数字化处理装置的全数字化电子学系统
CN102631212A (zh) * 2012-04-28 2012-08-15 中国科学院高能物理研究所 正电子发射断层扫描仪及其中的符合判选方法
CN103099639A (zh) * 2013-03-01 2013-05-15 江苏中惠医疗科技股份有限公司 Pet成像系统的环形拓扑结构及其实现方法

Also Published As

Publication number Publication date
EP2962641A1 (en) 2016-01-06
EP2962641B1 (en) 2017-06-28
CN103099639A (zh) 2013-05-15
CN103099639B (zh) 2014-12-24
EP2962641A4 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2014131267A1 (zh) Pet成像系统的环形拓扑结构及其实现方法
Ieong et al. A 0.83-$\mu {\rm W} $ QRS Detection Processor Using Quadratic Spline Wavelet Transform for Wireless ECG Acquisition in 0.35-$\mu {\rm m} $ CMOS
He et al. Automated model design and benchmarking of deep learning models for covid-19 detection with chest ct scans
CN103309652A (zh) 用于在并行计算机中开始集合操作的方法和装置
CN106548038A (zh) 一种基于知识的医疗影像采集分析系统
JP7033202B2 (ja) 医用画像処理装置及び方法、機械学習システム、プログラム並びに記憶媒体
JP2021056995A (ja) 医用情報処理装置、医用情報処理システム及び医用情報処理方法
Krzemien et al. Overview of the software architecture and data flow for the J-PET tomography device
Song et al. A systematic approach to embedded biomedical decision making
CN110569372B (zh) 一种心脏病大数据知识图谱系统的构建方法
Shoaib et al. Hybrid classification structures for automatic COVID-19 detection
CN106777930A (zh) 基于心电图统一标准化的中央网络平台
CN103491198B (zh) 用于正电子发射计算机断层扫描的万兆以太网传输系统
CN110739075A (zh) 一种基于大数据的copd疾病辅助诊断监测系统
CN111816270B (zh) 大规模肝脏电子病历病变分类的属性并行约简Spark方法
Li et al. AIoT platform design based on front and rear end separation architecture for smart agricultural
Karim A MicroBlaze-based Multiprocessor System on Chip for real-time cardiac monitoring
Milano et al. Network building and analysis in connectomics studies: a review of algorithms, databases and technologies
Li et al. A multi-label classification system for anomaly classification in electrocardiogram
CN104598356B (zh) 一种事件排序方法及装置
Yao et al. A case of parallel eeg data processing upon a beowulf cluster
Ram et al. Intelligent optimization approaches for a secured dynamic partial reconfigurable architecture-based health monitoring system
CN109377477A (zh) 一种图像分类的方法、装置及计算机可读存储介质
CN104814756A (zh) 电子学系统及其信号处理方法和单光子发射断层成像设备
CN109360664A (zh) 一种基于数据挖掘算法的临床护理管理系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013876111

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013876111

Country of ref document: EP