WO2014119860A1 - Pdcch monitoring regardless of drx configuration - Google Patents

Pdcch monitoring regardless of drx configuration Download PDF

Info

Publication number
WO2014119860A1
WO2014119860A1 PCT/KR2014/000424 KR2014000424W WO2014119860A1 WO 2014119860 A1 WO2014119860 A1 WO 2014119860A1 KR 2014000424 W KR2014000424 W KR 2014000424W WO 2014119860 A1 WO2014119860 A1 WO 2014119860A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
drx
configuration information
monitoring
network
Prior art date
Application number
PCT/KR2014/000424
Other languages
French (fr)
Inventor
Sangwon Kim
Youngdae Lee
Sunghoon Jung
Original Assignee
Lg Electronics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc. filed Critical Lg Electronics Inc.
Priority to KR1020157023741A priority Critical patent/KR20150113168A/en
Priority to CN201480005466.9A priority patent/CN104937973B/en
Priority to US14/759,103 priority patent/US9839066B2/en
Publication of WO2014119860A1 publication Critical patent/WO2014119860A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to methods for a PDCCH (Physical Downlink Control Channel) monitoring regardless of DRX (Discontinuous Reception) configuration and apparatuses therefor.
  • PDCCH Physical Downlink Control Channel
  • DRX Continuous Reception
  • 3rd generation partnership project (3GPP) long term evolution (LTE) communication system will be schematically described.
  • FIG. 1 is a schematic diagram showing a network structure of an evolved universal mobile telecommunications system (E-UMTS) as an example of a wireless communication system.
  • E-UMTS evolved universal mobile telecommunications system
  • the E-UMTS is an evolved form of the legacy UMTS and has been standardized in the 3GPP.
  • the E-UMTS is also called an LTE system.
  • LTE Long Term Evolution
  • the technical specification of the UMTS and the E-UMTS refer to Release 7 and Release 8 of "3rd Generation Partnership Project; Technical Specification Group Radio Access Network”.
  • the E-UMTS includes a user equipment (UE), an evolved node B (eNode B or eNB), and an access gateway (AG) which is located at an end of an evolved UMTS terrestrial radio access network (E-UTRAN) and connected to an external network.
  • the eNB may simultaneously transmit multiple data streams for a broadcast service, a multicast service and/or a unicast service.
  • One or more cells may exist per eNB. The cell is set to operate in one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz and provides a downlink (DL) or uplink (UL) transmission service to a plurality of UEs in the bandwidth. Different cells may be set to provide different bandwidths.
  • the eNB controls data transmission or reception to and from a plurality of UEs.
  • the eNB transmits DL scheduling information of DL data to a corresponding UE so as to inform the UE of a time/frequency domain in which the DL data is supposed to be transmitted, coding, a data size, and hybrid automatic repeat and request (HARQ)-related information.
  • the eNB transmits UL scheduling information of UL data to a corresponding UE so as to inform the UE of a time/frequency domain which may be used by the UE, coding, a data size, and HARQ-related information.
  • An interface for transmitting user traffic or control traffic may be used between eNBs.
  • a core network (CN) may include the AG and a network node or the like for user registration of UEs.
  • the AG manages the mobility of a UE on a tracking area (TA) basis.
  • One TA includes a plurality of cells.
  • the present invention is directed to methods for a PDCCH (Physical Downlink Control Channel) monitoring regardless of DRX (Discontinuous Reception) configuration apparatuses therefor that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • PDCCH Physical Downlink Control Channel
  • DRX Continuous Reception
  • a method for a user equipment (UE) to operate in a wireless communication system comprising: receiving DRX (Discontinuous Reception) configuration information from a network; and ignoring the DRX configuration information and monitoring a PDCCH (Physical Downlink Control Channel) after transmitting a specific indication, is provided.
  • DRX Discontinuous Reception
  • PDCCH Physical Downlink Control Channel
  • a user equipment comprising: a transceiver adapted to receive DRX (Discontinuous Reception) configuration information from a network over the air; and a processor connected to the transceiver and adapted to control the transceiver to ignore the DRX configuration information and monitor a PDCCH (Physical Downlink Control Channel) after transmitting a specific indication.
  • DRX Continuous Reception
  • PDCCH Physical Downlink Control Channel
  • the above explained ignoring the DRX configuration information and the monitoring the PDCCH may be performed only after transmitting a measurement report triggered by a specific type of neighbor.
  • the specific type of neighbor cell can be configured by a network through a RRC signal, and it can be a macro neighboring cell.
  • the above explained ignoring the DRX configuration information and the monitoring the PDCCH may be performed only after transmitting a measurement report triggered by a specific measurement object or objects.
  • the specific measurement object or objects can be configured by a network through a RRC signal.
  • the above explained ignoring the DRX configuration information and the monitoring the PDCCH may be performed only after transmitting a measurement report to a specific type of serving cell.
  • the specific type of serving cell can be configured by a network through a RRC signal, and it can be a non-macro serving cell.
  • the above explained ignoring the DRX configuration information and the monitoring the PDCCH may be performed only after transmitting a measurement report triggered by a specific type of neighbor cell to a specific type of serving cell. Both of these can be configured by RRC signaling and they can be a macro neighboring cell and a non- macro serving cell, respectively.
  • the above method may further comprises: receiving configuration information for the ignoring the DRX configuration information and the monitoring the PDCCH from the network, and in this case, the configuration information may comprise (i) criteria for the specific indication and (ii) time period for said ignoring the DRX configuration information and said monitoring the PDCCH.
  • the criteria may be the specific indication being a measurement report triggered by a first event where a neighboring cell becomes a predetermined offset better than a serving cell, or a second event where a neighboring cell becomes better than a predetermined threshold.
  • the DRX configuration information can be for an on-duration timer, a DRX inactivity timer, and a DRX retransmission timer.
  • the above explained ignoring the DRX configuration may comprise ignoring configuration for the on-duration timer, the DRX inactivity timer, and the DRX retransmission timer.
  • the network and the user equipment can efficiently transmit and receive signals in a wireless communication system.
  • FIG. 1 is a diagram showing a network structure of an Evolved Universal Mobile Telecommunications System (E-UMTS) as an example of a wireless communication system.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • FIG. 2 is a block diagram illustrating network structure of an evolved universal mobile telecommunication system (E-UMTS).
  • FIG. 3 is a block diagram depicting architecture of a typical E-UTRAN and a typical EPC.
  • FIG. 4 is a diagram showing a control plane and a user plane of a radio interface protocol between a UE and an E-UTRAN based on a 3 GPP radio access network standard.
  • FIG. 5 is a diagram showing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 6 is a diagram showing a concept DRX (Discontinuous Reception).
  • FIG. 7 is a diagram showing a method for a DRX operation in the LTE system.
  • Figs. 8-10 show the basic handover scenario where neither MME nor Serving Gateway changes.
  • Fig. 11 shows one example of additional PDCCH monitoring according to one embodiment of the present invention.
  • FIG. 12 is a block diagram of a communication apparatus according to an embodiment of the present invention.
  • LTE long term evolution
  • LTE-A LTE-advanced
  • the embodiments of the present invention are applicable to any other communication system corresponding to the above definition.
  • the embodiments of the present invention are described based on a frequency division duplex (FDD) scheme in the present specification, the embodiments of the present invention may be easily modified and applied to a half-duplex FDD (H-FDD) scheme or a time division duplex (TDD) scheme.
  • FDD frequency division duplex
  • H-FDD half-duplex FDD
  • TDD time division duplex
  • FIG. 2 is a block diagram illustrating network structure of an evolved universal mobile telecommunication system (E-UMTS).
  • E-UMTS evolved universal mobile telecommunication system
  • the E-UMTS may be also referred to as an LTE system.
  • the communication network is widely deployed to provide a variety of communication services such as voice (VoIP) through IMS and packet data.
  • VoIP voice
  • IMS packet data
  • the E-UMTS network includes an evolved UMTS terrestrial radio access network (E-UTRAN), an Evolved Packet Core (EPC) and one or more user equipment.
  • the E-UTRAN may include one or more evolved NodeB (eNodeB) 20, and a plurality of user equipment (UE) 10 may be located in one cell.
  • eNodeB evolved NodeB
  • UE user equipment
  • MME mobility management entity
  • downlink refers to communication from eNodeB 20 to UE 10
  • uplink refers to communication from the UE to an eNodeB.
  • UE 10 refers to communication equipment carried by a user and may be also referred to as a mobile station (MS), a user terminal (UT), a subscriber station (SS) or a wireless device.
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • An eNodeB 20 provides end points of a user plane and a control plane to the UE 10.
  • MME/SAE gateway 30 provides an end point of a session and mobility management function for UE 10.
  • the eNodeB and MME/S AE gateway may be connected via an SI interface.
  • the eNodeB 20 is generally a fixed station that communicates with a UE 10, and may also be referred to as a base station (BS) or an access point.
  • BS base station
  • One eNodeB 20 may be deployed per cell.
  • An interface for transmitting user traffic or control traffic may be used between eNodeBs 20.
  • the MME provides various functions including NAS signalling to eNodeBs 20, NAS signalling security, AS Security control, Inter CN node signalling for mobility between 3 GPP access networks, Idle mode UE Reachability (including control and execution of paging retransmission), Tracking Area list management (for UE in idle and active mode), PDN GW and Serving GW selection, MME selection for handovers with MME change, SGSN selection for handovers to 2G or 3G 3 GPP access networks, Roaming, Authentication, Bearer management functions including dedicated bearer establishment, Support for PWS (which includes ETWS and CMAS) message transmission.
  • the SAE gateway host provides assorted functions including Per-user based packet filtering (by e.g.
  • MME/S AE gateway 30 will be referred to herein simply as a "gateway,” but it is understood that this entity includes both an MME and an SAE gateway.
  • a plurality of nodes may be connected between eNodeB 20 and gateway 30 via the SI interface.
  • the eNodeBs 20 may be connected to each other via an X2 interface and neighboring eNodeBs may have a meshed network structure that has the X2 interface.
  • FIG. 3 is a block diagram depicting architecture of a typical E-UTRAN and a typical EPC.
  • eNodeB 20 may perform functions of selection for gateway 30, routing toward the gateway during a Radio Resource Control (RRC) activation, scheduling and transmitting of paging messages, scheduling and transmitting of Broadcast Channel (BCCH) information, dynamic allocation of resources to UEs 10 in both uplink and downlink, configuration and provisioning of eNodeB measurements, radio bearer control, radio admission control (RAC), and connection mobility control in LTE ACTIVE state.
  • RRC Radio Resource Control
  • BCCH Broadcast Channel
  • gateway 30 may perform functions of paging origination, LTE-IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and ciphering and integrity protection of Non- Access Stratum (NAS) signaling.
  • SAE System Architecture Evolution
  • NAS Non- Access Stratum
  • FIG. 4 is a diagram showing a control plane and a user plane of a radio interface protocol between a UE and an E-UTRAN based on a 3GPP radio access network standard.
  • the control plane refers to a path used for transmitting control messages used for managing a call between the UE and the E-UTRAN.
  • the user plane refers to a path used for transmitting data generated in an application layer, e.g., voice data or Internet packet data.
  • a physical (PHY) layer of a first layer provides an information transfer service to a higher layer using a physical channel.
  • the PHY layer is connected to a medium access control (MAC) layer located on the higher layer via a transport channel.
  • Data is transported between the MAC layer and the PHY layer via the transport channel.
  • Data is transported between a physical layer of a transmitting side and a physical layer of a receiving side via physical channels.
  • the physical channels use time and frequency as radio resources.
  • the physical channel is modulated using an orthogonal frequency division multiple access (OFDMA) scheme in downlink and is modulated using a single carrier frequency division multiple access (SC-FDMA) scheme in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the MAC layer of a second layer provides a service to a radio link control (RLC) layer of a higher layer via a logical channel.
  • the RLC layer of the second layer supports reliable data transmission.
  • a function of the RLC layer may be implemented by a functional block of the MAC layer.
  • a packet data convergence protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information for efficient transmission of an Internet protocol (IP) packet such as an IP version 4 (IPv4) packet or an IP version 6 (IPv6) packet in a radio interface having a relatively small bandwidth.
  • IP Internet protocol
  • IPv4 IP version 4
  • IPv6 IP version 6
  • a radio resource control (RRC) layer located at the bottom of a third layer is defined only in the control plane.
  • the RRC layer controls logical channels, transport channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers (RBs).
  • An RB refers to a service that the second layer provides for data transmission between the UE and the E-UTRAN.
  • the RRC layer of the UE and the RRC layer of the E-UTRAN exchange RRC messages with each other.
  • One cell of the eNB is set to operate in one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz and provides a downlink or uplink transmission service to a plurality of UEs in the bandwidth. Different cells may be set to provide different bandwidths.
  • Downlink transport channels for transmission of data from the E-UTRAN to the UE include a broadcast channel (BCH) for transmission of system information, a paging channel (PCH) for transmission of paging messages, and a downlink shared channel (SCH) for transmission of user traffic or control messages. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through the downlink SCH and may also be transmitted through a separate downlink multicast channel (MCH).
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through the downlink SCH and may also be transmitted through a separate downlink multicast channel (MCH).
  • Uplink transport channels for transmission of data from the UE to the E- UTRAN include a random access channel (RACH) for transmission of initial control messages and an uplink SCH for transmission of user traffic or control messages.
  • RACH random access channel
  • Logical channels that are defined above the transport channels and mapped to the transport channels include a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast traffic channel (MTCH).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic channel
  • FIG. 5 is a diagram showing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When a UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronization with an eNB (S401). To this end, the UE may receive a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the eNB to perform synchronization with the eNB and acquire information such as a cell ID. Then, the UE may receive a physical broadcast channel from the eNB to acquire broadcast information in the cell. During the initial cell search operation, the UE may receive a downlink reference signal (DL RS) so as to confirm a downlink channel state.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • DL RS downlink reference signal
  • the UE may receive a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) based on information included in the PDCCH to acquire more detailed system information (S402).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the UE may perform a random access procedure (RACH) with respect to the eNB (steps S403 to S406).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S403) and receive a response message to the preamble through the PDCCH and the PDSCH corresponding thereto (S404).
  • PRACH physical random access channel
  • the UE may further perform a contention resolution procedure.
  • the UE may receive PDCCH/PDSCH from the eNB (S407) and may transmit a physical uplink shared channel (PUSCH)/physical uplink control channel (PUCCH) to the eNB (S408), which is a general uplink/downlink signal transmission procedure.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the UE receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the UE.
  • Different DCI formats are defined according to different usages of DCI.
  • Control information transmitted from the UE to the eNB in uplink or transmitted from the eNB to the UE in downlink includes a downlink/uplink acknowledge/negative acknowledge (ACK/NACK) signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI), and the like.
  • ACK/NACK downlink/uplink acknowledge/negative acknowledge
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI rank indicator
  • the UE may transmit the control information such as CQI/PMI/RI through the PUSCH and/or the PUCCH.
  • FIG. 6 is a diagram showing a concept DRX (Discontinuous Reception).
  • DRX DRX is set for a UE in RRC CONNECTED state
  • the UE attempts to receive a downlink channel, PDCCH, that is, performs PDCCH monitoring only during a predetermined time period, while the UE does not perform PDCCH monitoring during the remaining time period.
  • a time period during which the UE should monitor a PDCCH is referred to as "On Duration".
  • One On Duration is defined per DRX cycle. That is, a DRX cycle is a repetition period of On Duration.
  • the UE always monitors a PDCCH during On Duration in one DRX cycle and a DRX cycle determines a period in which On Duration is set.
  • DRX cycles are classified into a long DRX cycle and a short DRX cycle according to the periods of the DRX cycles.
  • the long DRX cycle may minimize the battery consumption of a UE, whereas the short DRX cycle may minimize a data transmission delay.
  • the UE When the UE receives a PDCCH during On Duration in a DRX cycle, an additional transmission or a retransmission may take place during a time period other than the On Duration. Therefore, the UE should monitor a PDCCH during a time period other than the On Duration. That is, the UE should perform PDCCH monitoring during a time period over which an inactivity managing timer, drx-Inactivity Timer or a retransmission managing timer, drx-RetransmissionTimer as well as an On Duration managing timer, onDurationTimer is running.
  • each of the timers is defined as the number of subframes.
  • the number of subframes is counted until the value of a timer is reached. If the value of the timer is satisfied, the timer expires.
  • the current LTE standard defines drx-Inactivity Timer as a number of consecutive PDCCH-subframes after successfully decoding a PDCCH indicating an initial UL or DL user data transmission and defines drx-RetransmissionTimer as a maximum number of consecutive PDCCH-subframes for as soon as a DL retransmission is expected by the UE.
  • the UE should perform PDCCH monitoring during random access or when the UE transmits a scheduling request and attempts to receive a UL grant.
  • a time period during which a UE should perform PDCCH monitoring is referred to as an Active Time.
  • the Active Time includes On Duration during which a PDCCH is monitored periodically and a time interval during which a PDCCH is monitored upon generation of an event.
  • the Active Time includes the time while (1) onDurationTimer or drx-Inactivity Timer or drx-RetransmissionTimer or mac- ContentionResolutionTimer is running, or (2) a Scheduling Request is sent on PUCCH and is pending, or (3) an uplink grant for a pending HARQ retransmission can occur and there is data in the corresponding HARQ buffer, or (4) a PDCCH indicating a new transmission addressed to the C-RNTI of the UE has not been received after successful reception of a Random Access Response for the preamble not selected by the UE.
  • FIG. 7 is a diagram showing a method for a DRX operation in the LTE system.
  • the UE may be configured by RRC with a DRX functionality and shall perform following operations for each TTI (that is, each subframe).
  • HARQ RTT Random Trip Time
  • a DRX Command MAC control element CE
  • the UE shall stop onDurationTimer and drx-InactivityTimer.
  • the DRX Command MAC CE is a command for shifting to a DRX state, and is identified by a LCID (Logical Channel ID) field of a MAC PDU (Protocol Data Unit) subheader.
  • drx-InactivityTimer expires or a DRX Command MAC CE is received in this subframe
  • the UE shall start or restart drxShortCycleTimer, and use the Short DRX Cycle.
  • the Short DRX cycle is not configured, the Long DRX cycle is used.
  • the Long DRX Cycle is also used.
  • the UE shall start onDurationTimer. [0071 ] The UE shall monitor the PDCCH for a PDCCH-subframe during the Active Time.
  • the UE shall start the HARQ RTT Timer for the corresponding HARQ process and stop the drx-RetransmissionTimer for the corresponding HARQ process. If the PDCCH indicates a (DL or UL) new transmission, the UE shall start or restart drx- Inactivity Timer.
  • the PDCCH-subframe is defined as a subframe with PDCCH. That is, the PDCCH-subframe is a subframe on which the PDCCH can be transmitted. More specifically, in a FDD (frequency division duplex) system, the PDCCH-subframe represents any subframe. For full-duplex TDD (time division duplex) system, the PDCCH-subframe represents the union of downlink subframes and subframes including DwPTS of all serving cells, except serving cells that are configured with schedulingCellld (that is, the Scheduled cell). Here, the schedulingCellld indicates an identity of the scheduling cell. Further, for half-duplex TDD system, the PDCCH-subframe represents the subframes where the PCell (primary cell) is configured as a downlink subframe or a subframe including DwPTS.
  • the PCell primary cell
  • the UE when not in Active Time, the UE does not perform a SRS (Sounding Reference Signal) transmission and a CSI reporting, which are triggered by the eNB.
  • SRS Sounding Reference Signal
  • the present invention is directed to a PDCCH monitoring regardless of DRX configuration. More specifically, the above explained DRX configuration shall be ignored when specific conditions are met. One exemplary condition for ignoring DRX configuration is explained in view of handover (HO) operation.
  • the intra E-UTRAN HO of a UE in RRC CONNECTED state is a UE- assisted network-controlled HO, with HO preparation signalling in E-UTRAN.
  • Part of the HO command may come from the target eNB and may be transparently forwarded to the UE by the source eNB.
  • the source eNB passes all necessary information to the target eNB (e.g. E-RAB attributes and RRC context).
  • CA Carrier Aggregation
  • SCell selection in the target eNB the source eNB can provide in decreasing order of radio quality a list of the best cells and optionally measurement result of the cells.
  • Both the source eNB and UE may keep some context (e.g. C-RNTI) to enable the return of the UE in case of HO failure.
  • UE may access the target cell via RACH following a contention-free procedure using a dedicated RACH preamble or following a contention-based procedure if dedicated RACH preambles are not available. The UE may use the dedicated preamble until the handover procedure is finished (successfully or unsuccessfully).
  • the UE initiates radio link failure recovery using a suitable cell. In this case, no ROHC context is transferred at handover, and ROHC context can be kept at handover within the same eNB.
  • Control Plain handling of HO is explained.
  • the preparation and execution phase of the HO procedure may be performed without EPC involvement, i.e. preparation messages are directly exchanged between the eNBs.
  • the release of the resources at the source side during the HO completion phase may be triggered by the eNB.
  • an RN Relay Node
  • its DeNB Donor eNB
  • Figs. 8-10 show the basic handover scenario where neither MME nor Serving Gateway changes.
  • Fig. 8 shows the basic handover scenario until handover preparation is finished.
  • Step 0 The UE context within the source eNB contains information regarding roaming restrictions which were provided either at connection establishment or at the last TA update.
  • Step 1 The source eNB configures the UE measurement procedures according to the area restriction information. Measurements provided by the source eNB may assist the function controlling the UE's connection mobility.
  • Step 2 The UE may be triggered to send a measurement report by the rules set by i.e. system information, specification etc.
  • Step 3 The source eNB can make decision based on the measurement report and RRM information to hand off the UE.
  • Step 4 The source eNB can issue a HANDOVER REQUEST message to the target eNB passing necessary information to prepare the HO at the target side (UE X2 signalling context reference at source eNB, UE S 1 EPC signalling context reference, target cell ID, Ke B*, RRC context including the C-RNTI of the UE in the source eNB, AS- configuration, E-RAB context and physical layer ID of the source cell + short MAC-I for possible RLF recovery).
  • UE X2 / UE SI signalling references enable the target eNB to address the source eNB and the EPC.
  • the E-RAB context may include necessary RNL and TNL addressing information, and QoS profiles of the E-RABs.
  • Step 5 Admission Control may be performed by the target eNB dependent on the received E-RAB QoS information to increase the likelihood of a successful HO, if the resources can be granted by target eNB.
  • the target eNB may configure the required resources according to the received E-RAB QoS information and reserves a C-RNTI and optionally a RACH preamble.
  • the AS-configuration to be used in the target cell can either be specified independently (i.e. an "establishment") or as a delta compared to the AS- configuration used in the source cell (i.e. a "reconfiguration").
  • the target eNB may prepare HO with L1/L2 and sends the HANDOVER REQUEST ACKNOWLEDGE to the source eNB.
  • the HANDOVER REQUEST ACKNOWLEDGE message may include a transparent container to be sent to the UE as an RRC message to perform the handover.
  • the container may include a new C- RNTI, target eNB security algorithm identifiers for the selected security algorithms, may include a dedicated RACH preamble, and possibly some other parameters i.e. access parameters, SIBs, etc.
  • the HANDOVER REQUEST ACKNOWLEDGE message may also include RNL/TNL information for the forwarding tunnels, if necessary.
  • Steps 7 to 16 provide means to avoid data loss during HO.
  • the target eNB may generate the RRC message to perform the handover, i.e RRCConnectionReconfiguration message including the mobilityControllnformation, to be sent by the source eNB towards the UE.
  • the source eNB may perform the necessary integrity protection and ciphering of the message.
  • the UE may receive the RRCConnectionReconfiguration message with parameters (i.e. new C-RNT1, target eNB security algorithm identifiers, and optionally dedicated RACH preamble, target eNB SIBs, etc.) and is commanded by the source eNB to perform the HO.
  • the UE does not need to delay the handover execution for delivering the HARQ/ARQ responses to source eNB.
  • Fig. 9 is for handover execution part of the handover procedure.
  • Step 8 The source eNB may send the SN STATUS TRANSFER message to the target eNB to convey the uplink PDCP SN receiver status and the downlink PDCP SN transmitter status of E-RABs for which PDCP status preservation applies (i.e. for RLC AM).
  • the uplink PDCP SN receiver status may include at least the PDCP SN of the first missing UL SDU and may include a bit map of the receive status of the out of sequence UL SDUs that the UE needs to retransmit in the target cell, if there are any such SDUs.
  • the downlink PDCP SN transmitter status may indicate the next PDCP SN that the target eNB shall assign to new SDUs, not having a PDCP SN yet.
  • the source eNB may omit sending this message if none of the E-RABs of the UE shall be treated with PDCP status preservation.
  • Step 9 After receiving the RRCConnectionReconfiguration message including the mobilityControllnformation , UE may perform synchronisation to target eNB and accesses the target cell via RACH, following a contention-free procedure if a dedicated RACH preamble was indicated in the mobilityControllnformation, or following a contention-based procedure if no dedicated preamble was indicated. UE may derive target eNB specific keys and may configure the selected security algorithms to be used in the target cell.
  • Step 10 The target eNB may respond with UL allocation and timing advance.
  • Step 1 1 When the UE has successfully accessed the target cell, the UE may send the RRCConnectionReconfigurationComplete message (C-RNTI) to confirm the handover, along with an uplink Buffer Status Report, whenever possible, to the target eNB to indicate that the handover procedure is completed for the UE.
  • the target eNB may verify the C-RNTI sent in the RRCConnectionReconfigurationComplete message. The target eNB can now begin sending data to the UE.
  • Fig. 10 is for explaining handover completion of the whole handover procedure.
  • Step 12 The target eNB may send a PATH SWITCH REQUEST message to MME to inform that the UE has changed cell.
  • Step 13 The MME may send a MODIFY BEARER REQUEST message to the Serving Gateway.
  • Step 14 The Serving Gateway may switch the downlink data path to the target side.
  • the Serving gateway may send one or more "end marker" packets on the old path to the source eNB and then can release any U-plane/TNL resources towards the source eNB.
  • Step 15 The Serving Gateway may send a MODIFY BEARER RESPONSE message to MME.
  • Step 16 The MME may confirm the PATH SWITCH REQUEST message with the PATH SWITCH REQUEST ACKNOWLEDGE message.
  • Step 17 By sending the UE CONTEXT RELEASE message, the target eNB informs success of HO to source eNB and triggers the release of resources by the source eNB.
  • the target eNB may send this message after the PATH SWITCH REQUEST ACKNOWLEDGE message is received from the MME.
  • Step 18 Upon reception of the UE CONTEXT RELEASE message, the source eNB can release radio and C-plane related resources associated to the UE context. Any ongoing data forwarding may continue.
  • a UE CONTEXT RELEASE REQUEST message including an explicit GW Context Release Indication may be sent by the source HeNB, in order to indicate that the HeNB GW may release of all the resources related to the UE context.
  • reception of handover command can be delayed when the UE may go to sleep due to DRX.
  • DRX reception of handover command due to DRX may increase handover failure rate in small cell deployments.
  • one embodiment of the present invention proposes ignoring the DRX configuration even though the UE has received a DRX configuration information from the network, when a specific indication, such as the measurement results, is transmitted.
  • the specific indication need not to be restricted to the measurement results, but can comprise any indication making immediate PDCCH monitoring be preferably.
  • the UE may keep monitoring PDCCH for a certain period or until it receives handover command from serving cell. To keep PDCCH monitoring after measurement reporting, UE can ignore DRX configuration or apply another DRX configuration which includes very long on-duration period.
  • the application of the above explained additional PDCCH monitoring operation can be limited to the case that the serving cell is certain type, e.g., pico cell, small cell or non-macro cell.
  • the serving cell is certain type, e.g., pico cell, small cell or non-macro cell.
  • UE may keep monitoring the PDCCH after transmitting the measurement reporting only when the serving cell is small cell.
  • the application of the above explained additional PDCCH monitoring operation can be limited to the case that the target cell of measurement reporting is certain type.
  • UE may keep monitoring the PDCCH after transmitting the measurement reporting only when the target cell of the measurement reporting is macro cell.
  • the list of target cells which lead to keeping PDCCH monitoring can be signaled by serving cell. Then, UE may keep monitoring the PDCCH after transmitting the measurement reporting only when the measurement report is for the listed cells.
  • Measurement report triggering events includes:
  • Event A 1 Serving becomes better than threshold
  • Event A2 Serving becomes worse than threshold
  • Event A4 Neighbour becomes better than threshold
  • Event A5 PCell becomes worse than thresholdl and neighbour becomes better than threshold2
  • Event A6 Neighbour becomes offset better than SCell
  • Event B 1 Inter RAT neighbour becomes better than threshold
  • Event B2 PCell becomes worse than thresholdl and inter RAT neighbour becomes better than threshold2
  • the UE may keeps monitoring the PDCCH after transmitting the measurement reporting only when the measurement report triggering event is A3 or A4.
  • the measurement report triggering events which lead to keeping PDCCH monitoring can be signalled by serving cell.
  • the period of time UE keeps monitoring PDCCH after measurement reporting can be configured by serving cell.
  • Fig. 11 shows one example of additional PDCCH monitoring according to one embodiment of the present invention.
  • Fig. 11 is based on an exemplary situation where a serving cell is a small cell, such as a pico cell, and a target cell is a macro cell.
  • the small serving cell may configure target cells list.
  • the small serving cell may additionally configure a measurement report triggering events (e.g. event A3 and A4) for the above explained keeping PDCCH monitoring regardless of the DRX configuration at the UE and a period (e.g. l sec) for keeping PDCCH monitoring for UE (SI 110).
  • a measurement report triggering events e.g. event A3 and A4
  • a period e.g. l sec
  • the UE may perform measurement on the target cells in the list.
  • the measurement reporting for macro cell A is triggered by the specified event A4 (SI 120).
  • the UE may transmit the measurement report to the serving cell.
  • the UE since the triggering event was the specified/predetermined one (event A4), the UE may keep monitoring the PDCCH and ignores the DRX configuration for specified period (e.g. one second) (SI 130).
  • the UE may apply the DRX configuration (S I 140).
  • the UE may transmit the measurement report to the serving cell and keeps monitoring the PDCCH and ignores the DRX configuration during the specified period of time (SI 160).
  • the serving small cell may transmit the handover command to UE without waiting due to DRX (SI 170). By this operation, the handover execution will not be delayed due to the DRX configuration.
  • the UE may perform additional monitoring of scheduling (e.g. PDCCH).
  • additional monitoring of scheduling e.g. PDCCH
  • UE can ignore DRX configuration (i.e. disable DRX) or apply another DRX configuration that can be applied temporarily, if available.
  • UE may stop the above explained additional monitoring of scheduling. Upon stopping the additional monitoring, the UE may fallback to its original DRX that was previously configured and applied before applying the additional monitoring of scheduling.
  • the configuration can be per UE, and in this case the configuration can be provided in radio resource configuration; or (ii) the configuration can be per measurement object, and in this case the configuration is provided within the concerned measurement object; or (iii) the configuration can be per measurement report configuration.
  • the configuration can be towards a specific event used for triggering measurement report. In this case the configuration is provided within the concerned measurement report configuration.
  • a specific event used for triggering of measurement report is defined as a trigger of additional monitoring of scheduling.
  • UE may perform additional monitoring of scheduling after measurement reporting only when the measurement report triggering event is A3 or A4.
  • network may provide the configuration parameters regarding the additional monitoring of DL scheduling.
  • the parameters can include time duration for which the UE needs to keep additional monitoring of DL scheduling.
  • the parameters can include temporal DRX parameters (including the normal DRX parameters and DRX off command).
  • the UE Upon meeting the condition that triggers the additional monitoring of DL scheduling , the UE applies temporal DRX parameters for pre-defined time (e.g. during the time duration for additional monitoring of DL scheduling)
  • network can configure a list of cells related to additional monitoring of scheduling.
  • UE may perform additional monitoring of scheduling only after sending measurement report that is triggered by one or more cells included in the list.
  • this embodiment can be limited to the case that the neighbour cell that triggers the measurement reporting is certain type.
  • UE performs additional monitoring of scheduling (e.g. PDCCH) only after sending measurement report that is triggered by the 'macro' neighbor cell. This is beneficial to reduce X(any cell; don't care) to macro cell handover failure.
  • the present embodiment can be limited to the case that the serving cell is certain type, e.g., pico cell, small cell or non-macro cell.
  • the serving cell is certain type, e.g., pico cell, small cell or non-macro cell.
  • UE performs additional monitoring of scheduling (e.g. PDCCH) only after sending measurement report to non-macro (e.g. pico cell) serving cell.
  • the present embodiment can be limited to the case that the serving cell and neighbour cell that jointly triggers the measurement reporting are certain type respectively.
  • UE performs additional monitoring of scheduling (e.g. PDCCH for DL scheduling) only after sending measurement report that is triggered by the 'macro' neighbor cell and 'pico' serving cell. This is beneficial to reduce pico to macro cell handover failure.
  • FIG. 12 is a block diagram of a communication apparatus according to an embodiment of the present invention.
  • the apparatus shown in Fig. 12 can be a user equipment (UE) adapted to perform the above explaine PDCCH monitoring, but it can be any apparatus for performing the same operation.
  • UE user equipment
  • the apparatus may comprises a DSP/microprocessor (1 10) and RF module (transmiceiver; 135).
  • the DSP/microprocessor (110) is electrically connected with the transciver (135) and controls it.
  • the apparatus may further include power management module (105), battery (155), display (1 15), keypad (120), SIM card (125), memory device (130), speaker (145) and input device (150), based on its implementation and designer's choice.
  • the transceiver (135) of this embodiment is adapted to receive DRX (Discontinuous Reception) configuration information from a network over the air. And, the processor (1 10) is adapted to control the transceiver (135) to ignore the DRX configuration information and monitor a PDCCH after transmitting a specific indication, is provided.
  • DRX Continuous Reception

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PDCCH (Physical Downlink Control Channel) monitoring operation regardless of the DRX configuration is disclosed. The UE operating in a wireless communication system receives DRX (Discontinuous Reception) configuration information from a network. When the UE transmits a specific indication, the UE ignores the DRX configuration information and monitor a PDCCH after transmitting the specific indication.

Description

[DESCRIPTION]
[Invention Title]
PDCCH MONITORING REGARDLESS OF DRX CONFIGURATION [Technical Field]
[0001] The present invention relates to a wireless communication system, and more particularly, to methods for a PDCCH (Physical Downlink Control Channel) monitoring regardless of DRX (Discontinuous Reception) configuration and apparatuses therefor.
[Background Art]
[0002] As an example of a wireless communication system to which the present invention is applicable, a 3rd generation partnership project (3GPP) long term evolution (LTE) communication system will be schematically described.
[0003] FIG. 1 is a schematic diagram showing a network structure of an evolved universal mobile telecommunications system (E-UMTS) as an example of a wireless communication system. The E-UMTS is an evolved form of the legacy UMTS and has been standardized in the 3GPP. In general, the E-UMTS is also called an LTE system. For details of the technical specification of the UMTS and the E-UMTS, refer to Release 7 and Release 8 of "3rd Generation Partnership Project; Technical Specification Group Radio Access Network".
[0004] Referring to FIG. 1, the E-UMTS includes a user equipment (UE), an evolved node B (eNode B or eNB), and an access gateway (AG) which is located at an end of an evolved UMTS terrestrial radio access network (E-UTRAN) and connected to an external network. The eNB may simultaneously transmit multiple data streams for a broadcast service, a multicast service and/or a unicast service. [0005] One or more cells may exist per eNB. The cell is set to operate in one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz and provides a downlink (DL) or uplink (UL) transmission service to a plurality of UEs in the bandwidth. Different cells may be set to provide different bandwidths. The eNB controls data transmission or reception to and from a plurality of UEs. The eNB transmits DL scheduling information of DL data to a corresponding UE so as to inform the UE of a time/frequency domain in which the DL data is supposed to be transmitted, coding, a data size, and hybrid automatic repeat and request (HARQ)-related information. In addition, the eNB transmits UL scheduling information of UL data to a corresponding UE so as to inform the UE of a time/frequency domain which may be used by the UE, coding, a data size, and HARQ-related information. An interface for transmitting user traffic or control traffic may be used between eNBs. A core network (CN) may include the AG and a network node or the like for user registration of UEs. The AG manages the mobility of a UE on a tracking area (TA) basis. One TA includes a plurality of cells.
[0006] Although wireless communication technology has been developed to LTE based on wideband code division multiple access (WCDMA), the demands and expectations of users and service providers are on the rise. In addition, considering other radio access technologies under development, new technological evolution is required to secure high competitiveness in the future. Decrease in cost per bit, increase in service availability, flexible use of frequency bands, a simplified structure, an open interface, appropriate power consumption of UEs, and the like are required.
[Disclosure]
[Technical Problem] [0007] Accordingly, the present invention is directed to methods for a PDCCH (Physical Downlink Control Channel) monitoring regardless of DRX (Discontinuous Reception) configuration apparatuses therefor that substantially obviates one or more problems due to limitations and disadvantages of the related art.
[0008] Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
[Technical Solution]
[0009] To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method for a user equipment (UE) to operate in a wireless communication system, the method comprising: receiving DRX (Discontinuous Reception) configuration information from a network; and ignoring the DRX configuration information and monitoring a PDCCH (Physical Downlink Control Channel) after transmitting a specific indication, is provided.
[0010] In another aspect of the present invention, a user equipment (UE) comprising: a transceiver adapted to receive DRX (Discontinuous Reception) configuration information from a network over the air; and a processor connected to the transceiver and adapted to control the transceiver to ignore the DRX configuration information and monitor a PDCCH (Physical Downlink Control Channel) after transmitting a specific indication, is provided. [0011] The above monitoring the PDCCH can be performed during a specified period of time in addition to an active time according to the DRX configuration information. And, the specific indication can be a measurement report.
[0012] The above explained ignoring the DRX configuration information and the monitoring the PDCCH may be performed only after transmitting a measurement report triggered by a specific type of neighbor. The specific type of neighbor cell can be configured by a network through a RRC signal, and it can be a macro neighboring cell.
[0013] The above explained ignoring the DRX configuration information and the monitoring the PDCCH may be performed only after transmitting a measurement report triggered by a specific measurement object or objects. The specific measurement object or objects can be configured by a network through a RRC signal.
[0014] The above explained ignoring the DRX configuration information and the monitoring the PDCCH may be performed only after transmitting a measurement report to a specific type of serving cell. The specific type of serving cell can be configured by a network through a RRC signal, and it can be a non-macro serving cell.
[0015] Also, the above explained ignoring the DRX configuration information and the monitoring the PDCCH may be performed only after transmitting a measurement report triggered by a specific type of neighbor cell to a specific type of serving cell. Both of these can be configured by RRC signaling and they can be a macro neighboring cell and a non- macro serving cell, respectively.
[0016] The above method may further comprises: receiving configuration information for the ignoring the DRX configuration information and the monitoring the PDCCH from the network, and in this case, the configuration information may comprise (i) criteria for the specific indication and (ii) time period for said ignoring the DRX configuration information and said monitoring the PDCCH. Here, the criteria may be the specific indication being a measurement report triggered by a first event where a neighboring cell becomes a predetermined offset better than a serving cell, or a second event where a neighboring cell becomes better than a predetermined threshold.
[0017] Also, the DRX configuration information can be for an on-duration timer, a DRX inactivity timer, and a DRX retransmission timer. Preferably, the above explained ignoring the DRX configuration may comprise ignoring configuration for the on-duration timer, the DRX inactivity timer, and the DRX retransmission timer.
[Advantageous Effects ]
[0018] According to embodiments of the present invention, the network and the user equipment can efficiently transmit and receive signals in a wireless communication system.
[0019] It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
[Description of Drawings]
[0020] The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention.
[0021] FIG. 1 is a diagram showing a network structure of an Evolved Universal Mobile Telecommunications System (E-UMTS) as an example of a wireless communication system.
[0022] FIG. 2 is a block diagram illustrating network structure of an evolved universal mobile telecommunication system (E-UMTS). [0023] FIG. 3 is a block diagram depicting architecture of a typical E-UTRAN and a typical EPC.
[0024] FIG. 4 is a diagram showing a control plane and a user plane of a radio interface protocol between a UE and an E-UTRAN based on a 3 GPP radio access network standard.
[0025] FIG. 5 is a diagram showing physical channels used in a 3GPP system and a general signal transmission method using the same.
[0026] FIG. 6 is a diagram showing a concept DRX (Discontinuous Reception).
[0027] FIG. 7 is a diagram showing a method for a DRX operation in the LTE system.
[0028] Figs. 8-10 show the basic handover scenario where neither MME nor Serving Gateway changes.
[0029] Fig. 11 shows one example of additional PDCCH monitoring according to one embodiment of the present invention.
[0030] FIG. 12 is a block diagram of a communication apparatus according to an embodiment of the present invention.
[Best Mode]
[0031] The configuration, operation and other features of the present invention will be understood by the embodiments of the present invention described with reference to the accompanying drawings. The following embodiments are examples of applying the technical features of the present invention to a 3rd generation partnership project (3GPP) system.
[0032] Although the embodiments of the present invention are described using a long term evolution (LTE) system and a LTE-advanced (LTE-A) system in the present specification, they are purely exemplary. Therefore, the embodiments of the present invention are applicable to any other communication system corresponding to the above definition. In addition, although the embodiments of the present invention are described based on a frequency division duplex (FDD) scheme in the present specification, the embodiments of the present invention may be easily modified and applied to a half-duplex FDD (H-FDD) scheme or a time division duplex (TDD) scheme.
[0033] FIG. 2 is a block diagram illustrating network structure of an evolved universal mobile telecommunication system (E-UMTS).
[0034] The E-UMTS may be also referred to as an LTE system. The communication network is widely deployed to provide a variety of communication services such as voice (VoIP) through IMS and packet data.
[0035] As illustrated in FIG. 2, the E-UMTS network includes an evolved UMTS terrestrial radio access network (E-UTRAN), an Evolved Packet Core (EPC) and one or more user equipment. The E-UTRAN may include one or more evolved NodeB (eNodeB) 20, and a plurality of user equipment (UE) 10 may be located in one cell. One or more E- UTRAN mobility management entity (MME)/system architecture evolution (SAE) gateways 30 may be positioned at the end of the network and connected to an external network.
[0036] As used herein, "downlink" refers to communication from eNodeB 20 to UE 10, and "uplink" refers to communication from the UE to an eNodeB. UE 10 refers to communication equipment carried by a user and may be also referred to as a mobile station (MS), a user terminal (UT), a subscriber station (SS) or a wireless device.
[0037] An eNodeB 20 provides end points of a user plane and a control plane to the UE 10. MME/SAE gateway 30 provides an end point of a session and mobility management function for UE 10. The eNodeB and MME/S AE gateway may be connected via an SI interface.
[0038] The eNodeB 20 is generally a fixed station that communicates with a UE 10, and may also be referred to as a base station (BS) or an access point. One eNodeB 20 may be deployed per cell. An interface for transmitting user traffic or control traffic may be used between eNodeBs 20.
[0039] The MME provides various functions including NAS signalling to eNodeBs 20, NAS signalling security, AS Security control, Inter CN node signalling for mobility between 3 GPP access networks, Idle mode UE Reachability (including control and execution of paging retransmission), Tracking Area list management (for UE in idle and active mode), PDN GW and Serving GW selection, MME selection for handovers with MME change, SGSN selection for handovers to 2G or 3G 3 GPP access networks, Roaming, Authentication, Bearer management functions including dedicated bearer establishment, Support for PWS (which includes ETWS and CMAS) message transmission. The SAE gateway host provides assorted functions including Per-user based packet filtering (by e.g. deep packet inspection), Lawful Interception, UE IP address allocation, Transport level packet marking in the downlink, UL and DL service level charging, gating and rate enforcement, DL rate enforcement based on APN-AMBRFor clarity MME/S AE gateway 30 will be referred to herein simply as a "gateway," but it is understood that this entity includes both an MME and an SAE gateway.
[0040] A plurality of nodes may be connected between eNodeB 20 and gateway 30 via the SI interface. The eNodeBs 20 may be connected to each other via an X2 interface and neighboring eNodeBs may have a meshed network structure that has the X2 interface.
[0041] FIG. 3 is a block diagram depicting architecture of a typical E-UTRAN and a typical EPC. [0042] As illustrated, eNodeB 20 may perform functions of selection for gateway 30, routing toward the gateway during a Radio Resource Control (RRC) activation, scheduling and transmitting of paging messages, scheduling and transmitting of Broadcast Channel (BCCH) information, dynamic allocation of resources to UEs 10 in both uplink and downlink, configuration and provisioning of eNodeB measurements, radio bearer control, radio admission control (RAC), and connection mobility control in LTE ACTIVE state. In the EPC, and as noted above, gateway 30 may perform functions of paging origination, LTE-IDLE state management, ciphering of the user plane, System Architecture Evolution (SAE) bearer control, and ciphering and integrity protection of Non- Access Stratum (NAS) signaling.
[0043] FIG. 4 is a diagram showing a control plane and a user plane of a radio interface protocol between a UE and an E-UTRAN based on a 3GPP radio access network standard.
[0044] The control plane refers to a path used for transmitting control messages used for managing a call between the UE and the E-UTRAN. The user plane refers to a path used for transmitting data generated in an application layer, e.g., voice data or Internet packet data.
[0045] A physical (PHY) layer of a first layer provides an information transfer service to a higher layer using a physical channel. The PHY layer is connected to a medium access control (MAC) layer located on the higher layer via a transport channel. Data is transported between the MAC layer and the PHY layer via the transport channel. Data is transported between a physical layer of a transmitting side and a physical layer of a receiving side via physical channels. The physical channels use time and frequency as radio resources. In detail, the physical channel is modulated using an orthogonal frequency division multiple access (OFDMA) scheme in downlink and is modulated using a single carrier frequency division multiple access (SC-FDMA) scheme in uplink.
[0046] The MAC layer of a second layer provides a service to a radio link control (RLC) layer of a higher layer via a logical channel. The RLC layer of the second layer supports reliable data transmission. A function of the RLC layer may be implemented by a functional block of the MAC layer. A packet data convergence protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information for efficient transmission of an Internet protocol (IP) packet such as an IP version 4 (IPv4) packet or an IP version 6 (IPv6) packet in a radio interface having a relatively small bandwidth.
[0047] A radio resource control (RRC) layer located at the bottom of a third layer is defined only in the control plane. The RRC layer controls logical channels, transport channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers (RBs). An RB refers to a service that the second layer provides for data transmission between the UE and the E-UTRAN. To this end, the RRC layer of the UE and the RRC layer of the E-UTRAN exchange RRC messages with each other.
[0048] One cell of the eNB is set to operate in one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz and provides a downlink or uplink transmission service to a plurality of UEs in the bandwidth. Different cells may be set to provide different bandwidths.
[0049] Downlink transport channels for transmission of data from the E-UTRAN to the UE include a broadcast channel (BCH) for transmission of system information, a paging channel (PCH) for transmission of paging messages, and a downlink shared channel (SCH) for transmission of user traffic or control messages. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through the downlink SCH and may also be transmitted through a separate downlink multicast channel (MCH). [0050] Uplink transport channels for transmission of data from the UE to the E- UTRAN include a random access channel (RACH) for transmission of initial control messages and an uplink SCH for transmission of user traffic or control messages. Logical channels that are defined above the transport channels and mapped to the transport channels include a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and a multicast traffic channel (MTCH).
[0051] FIG. 5 is a diagram showing physical channels used in a 3GPP system and a general signal transmission method using the same.
[0052] When a UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronization with an eNB (S401). To this end, the UE may receive a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the eNB to perform synchronization with the eNB and acquire information such as a cell ID. Then, the UE may receive a physical broadcast channel from the eNB to acquire broadcast information in the cell. During the initial cell search operation, the UE may receive a downlink reference signal (DL RS) so as to confirm a downlink channel state.
[0053] After the initial cell search operation, the UE may receive a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) based on information included in the PDCCH to acquire more detailed system information (S402).
[0054] When the UE initially accesses the eNB or has no radio resources for signal transmission, the UE may perform a random access procedure (RACH) with respect to the eNB (steps S403 to S406). To this end, the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S403) and receive a response message to the preamble through the PDCCH and the PDSCH corresponding thereto (S404). In the case of contention-based RACH, the UE may further perform a contention resolution procedure.
[0055] After the above procedure, the UE may receive PDCCH/PDSCH from the eNB (S407) and may transmit a physical uplink shared channel (PUSCH)/physical uplink control channel (PUCCH) to the eNB (S408), which is a general uplink/downlink signal transmission procedure. Particularly, the UE receives downlink control information (DCI) through the PDCCH. Here, the DCI includes control information such as resource allocation information for the UE. Different DCI formats are defined according to different usages of DCI.
[0056] Control information transmitted from the UE to the eNB in uplink or transmitted from the eNB to the UE in downlink includes a downlink/uplink acknowledge/negative acknowledge (ACK/NACK) signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI), and the like. In the case of the 3 GPP LTE system, the UE may transmit the control information such as CQI/PMI/RI through the PUSCH and/or the PUCCH.
[0057] FIG. 6 is a diagram showing a concept DRX (Discontinuous Reception).
[0058] Referring to FIG. 6, if DRX is set for a UE in RRC CONNECTED state, the UE attempts to receive a downlink channel, PDCCH, that is, performs PDCCH monitoring only during a predetermined time period, while the UE does not perform PDCCH monitoring during the remaining time period. A time period during which the UE should monitor a PDCCH is referred to as "On Duration". One On Duration is defined per DRX cycle. That is, a DRX cycle is a repetition period of On Duration.
[0059] The UE always monitors a PDCCH during On Duration in one DRX cycle and a DRX cycle determines a period in which On Duration is set. DRX cycles are classified into a long DRX cycle and a short DRX cycle according to the periods of the DRX cycles. The long DRX cycle may minimize the battery consumption of a UE, whereas the short DRX cycle may minimize a data transmission delay.
[0060] When the UE receives a PDCCH during On Duration in a DRX cycle, an additional transmission or a retransmission may take place during a time period other than the On Duration. Therefore, the UE should monitor a PDCCH during a time period other than the On Duration. That is, the UE should perform PDCCH monitoring during a time period over which an inactivity managing timer, drx-Inactivity Timer or a retransmission managing timer, drx-RetransmissionTimer as well as an On Duration managing timer, onDurationTimer is running.
[0061] The value of each of the timers is defined as the number of subframes. The number of subframes is counted until the value of a timer is reached. If the value of the timer is satisfied, the timer expires. The current LTE standard defines drx-Inactivity Timer as a number of consecutive PDCCH-subframes after successfully decoding a PDCCH indicating an initial UL or DL user data transmission and defines drx-RetransmissionTimer as a maximum number of consecutive PDCCH-subframes for as soon as a DL retransmission is expected by the UE.
[0062] Additionally, the UE should perform PDCCH monitoring during random access or when the UE transmits a scheduling request and attempts to receive a UL grant.
[0063] A time period during which a UE should perform PDCCH monitoring is referred to as an Active Time. The Active Time includes On Duration during which a PDCCH is monitored periodically and a time interval during which a PDCCH is monitored upon generation of an event.
[0064] More specifically, the Active Time includes the time while (1) onDurationTimer or drx-Inactivity Timer or drx-RetransmissionTimer or mac- ContentionResolutionTimer is running, or (2) a Scheduling Request is sent on PUCCH and is pending, or (3) an uplink grant for a pending HARQ retransmission can occur and there is data in the corresponding HARQ buffer, or (4) a PDCCH indicating a new transmission addressed to the C-RNTI of the UE has not been received after successful reception of a Random Access Response for the preamble not selected by the UE.
[0065] FIG. 7 is a diagram showing a method for a DRX operation in the LTE system.
[0066] Referring to FIG. 7, the UE may be configured by RRC with a DRX functionality and shall perform following operations for each TTI (that is, each subframe).
[0067] If a HARQ RTT (Round Trip Time) Timer expires in this subframe and the data of the corresponding HARQ process was not successfully decoded, the UE shall start the drx-RetransmissionTimer for the corresponding HARQ process.
[0068] Further, if a DRX Command MAC control element (CE) is received, the UE shall stop onDurationTimer and drx-InactivityTimer. The DRX Command MAC CE is a command for shifting to a DRX state, and is identified by a LCID (Logical Channel ID) field of a MAC PDU (Protocol Data Unit) subheader.
[0069] Further, in case that drx-InactivityTimer expires or a DRX Command MAC CE is received in this subframe, if the Short DRX cycle is configured, the UE shall start or restart drxShortCycleTimer, and use the Short DRX Cycle. However, if the Short DRX cycle is not configured, the Long DRX cycle is used. Additionally, if drxShortCycleTimer expires in this subframe, the Long DRX Cycle is also used.
[0070] Furthermore, if the Short DRX Cycle is used and [(SFN * 10) + subframe number] modulo (shortDRX-Cycle) is (drxStartOffset) modulo (shortDRX-Cycle), or if the Long DRX Cycle is used and [(SFN * 10) + subframe number] modulo (longDRX-Cycle) is drxStartOffset, the UE shall start onDurationTimer. [0071 ] The UE shall monitor the PDCCH for a PDCCH-subframe during the Active Time. If the PDCCH indicates a DL transmission or if a DL assignment has been configured for this subframe, the UE shall start the HARQ RTT Timer for the corresponding HARQ process and stop the drx-RetransmissionTimer for the corresponding HARQ process. If the PDCCH indicates a (DL or UL) new transmission, the UE shall start or restart drx- Inactivity Timer.
[0072] Here, the PDCCH-subframe is defined as a subframe with PDCCH. That is, the PDCCH-subframe is a subframe on which the PDCCH can be transmitted. More specifically, in a FDD (frequency division duplex) system, the PDCCH-subframe represents any subframe. For full-duplex TDD (time division duplex) system, the PDCCH-subframe represents the union of downlink subframes and subframes including DwPTS of all serving cells, except serving cells that are configured with schedulingCellld (that is, the Scheduled cell). Here, the schedulingCellld indicates an identity of the scheduling cell. Further, for half-duplex TDD system, the PDCCH-subframe represents the subframes where the PCell (primary cell) is configured as a downlink subframe or a subframe including DwPTS.
[0073] Meanwhile, when not in Active Time, the UE does not perform a SRS (Sounding Reference Signal) transmission and a CSI reporting, which are triggered by the eNB.
[0074] During the above DRX operation, only the HARQ RTT Timer is fixed to 8ms, whereas the eNB indicates the other timer values, onDurationTimer, drx- InactivityTimer, drx-RetransmissionTimer, and mac-ContentionResolutionTimer to the UE by an RRC signal. The eNB also indicates a long DRX cycle and a short DRX cycle, which represent the period of a DRX cycle, to the UE by an RRC signal. [0075] As stated above, the present invention is directed to a PDCCH monitoring regardless of DRX configuration. More specifically, the above explained DRX configuration shall be ignored when specific conditions are met. One exemplary condition for ignoring DRX configuration is explained in view of handover (HO) operation.
[0076] The intra E-UTRAN HO of a UE in RRC CONNECTED state is a UE- assisted network-controlled HO, with HO preparation signalling in E-UTRAN. Part of the HO command may come from the target eNB and may be transparently forwarded to the UE by the source eNB. To prepare the HO, the source eNB passes all necessary information to the target eNB (e.g. E-RAB attributes and RRC context). When CA (Carrier Aggregation) is configured and to enable SCell selection in the target eNB, the source eNB can provide in decreasing order of radio quality a list of the best cells and optionally measurement result of the cells.
[0077] Both the source eNB and UE may keep some context (e.g. C-RNTI) to enable the return of the UE in case of HO failure. UE may access the target cell via RACH following a contention-free procedure using a dedicated RACH preamble or following a contention-based procedure if dedicated RACH preambles are not available. The UE may use the dedicated preamble until the handover procedure is finished (successfully or unsuccessfully).
[0078] If the RACH procedure towards the target cell is not successful within a certain time, the UE initiates radio link failure recovery using a suitable cell. In this case, no ROHC context is transferred at handover, and ROHC context can be kept at handover within the same eNB.
[0079] Control Plain handling of HO is explained. The preparation and execution phase of the HO procedure may be performed without EPC involvement, i.e. preparation messages are directly exchanged between the eNBs. The release of the resources at the source side during the HO completion phase may be triggered by the eNB. In case an RN (Relay Node) is involved, its DeNB (Donor eNB) may relay the appropriate SI messages between the RN and the MME (SI -based handover) and X2 messages between the RN and target eNB (X2-based handover); the DeNB may be explicitly aware of a UE attached to the RN due to the SI proxy and X2 proxy functionality.
[0080] Figs. 8-10 show the basic handover scenario where neither MME nor Serving Gateway changes.
[0081] Specifically, Fig. 8 shows the basic handover scenario until handover preparation is finished.
[0082] Step 0: The UE context within the source eNB contains information regarding roaming restrictions which were provided either at connection establishment or at the last TA update.
[0083] Step 1 : The source eNB configures the UE measurement procedures according to the area restriction information. Measurements provided by the source eNB may assist the function controlling the UE's connection mobility.
[0084] Step 2: The UE may be triggered to send a measurement report by the rules set by i.e. system information, specification etc.
[0085] Step 3 : The source eNB can make decision based on the measurement report and RRM information to hand off the UE.
[0086] Step 4: The source eNB can issue a HANDOVER REQUEST message to the target eNB passing necessary information to prepare the HO at the target side (UE X2 signalling context reference at source eNB, UE S 1 EPC signalling context reference, target cell ID, Ke B*, RRC context including the C-RNTI of the UE in the source eNB, AS- configuration, E-RAB context and physical layer ID of the source cell + short MAC-I for possible RLF recovery). UE X2 / UE SI signalling references enable the target eNB to address the source eNB and the EPC. The E-RAB context may include necessary RNL and TNL addressing information, and QoS profiles of the E-RABs.
[0087] Step 5: Admission Control may be performed by the target eNB dependent on the received E-RAB QoS information to increase the likelihood of a successful HO, if the resources can be granted by target eNB. The target eNB may configure the required resources according to the received E-RAB QoS information and reserves a C-RNTI and optionally a RACH preamble. The AS-configuration to be used in the target cell can either be specified independently (i.e. an "establishment") or as a delta compared to the AS- configuration used in the source cell (i.e. a "reconfiguration").
[0088] Step 6: The target eNB may prepare HO with L1/L2 and sends the HANDOVER REQUEST ACKNOWLEDGE to the source eNB. The HANDOVER REQUEST ACKNOWLEDGE message may include a transparent container to be sent to the UE as an RRC message to perform the handover. The container may include a new C- RNTI, target eNB security algorithm identifiers for the selected security algorithms, may include a dedicated RACH preamble, and possibly some other parameters i.e. access parameters, SIBs, etc. The HANDOVER REQUEST ACKNOWLEDGE message may also include RNL/TNL information for the forwarding tunnels, if necessary.
[0089] As soon as the source eNB receives the "HANDOVER REQUEST ACKNOWLEDGE, or as soon as the transmission of the handover command is initiated in the downlink, data forwarding may be initiated.
[0090] Steps 7 to 16 provide means to avoid data loss during HO. [0091] Step 7: The target eNB may generate the RRC message to perform the handover, i.e RRCConnectionReconfiguration message including the mobilityControllnformation, to be sent by the source eNB towards the UE. The source eNB may perform the necessary integrity protection and ciphering of the message. The UE may receive the RRCConnectionReconfiguration message with parameters (i.e. new C-RNT1, target eNB security algorithm identifiers, and optionally dedicated RACH preamble, target eNB SIBs, etc.) and is commanded by the source eNB to perform the HO. The UE does not need to delay the handover execution for delivering the HARQ/ARQ responses to source eNB.
[0092] Fig. 9 is for handover execution part of the handover procedure.
[0093] Step 8: The source eNB may send the SN STATUS TRANSFER message to the target eNB to convey the uplink PDCP SN receiver status and the downlink PDCP SN transmitter status of E-RABs for which PDCP status preservation applies (i.e. for RLC AM). The uplink PDCP SN receiver status may include at least the PDCP SN of the first missing UL SDU and may include a bit map of the receive status of the out of sequence UL SDUs that the UE needs to retransmit in the target cell, if there are any such SDUs. The downlink PDCP SN transmitter status may indicate the next PDCP SN that the target eNB shall assign to new SDUs, not having a PDCP SN yet. The source eNB may omit sending this message if none of the E-RABs of the UE shall be treated with PDCP status preservation.
[0094] Step 9: After receiving the RRCConnectionReconfiguration message including the mobilityControllnformation , UE may perform synchronisation to target eNB and accesses the target cell via RACH, following a contention-free procedure if a dedicated RACH preamble was indicated in the mobilityControllnformation, or following a contention-based procedure if no dedicated preamble was indicated. UE may derive target eNB specific keys and may configure the selected security algorithms to be used in the target cell.
[0095] Step 10: The target eNB may respond with UL allocation and timing advance.
[0096] Step 1 1 : When the UE has successfully accessed the target cell, the UE may send the RRCConnectionReconfigurationComplete message (C-RNTI) to confirm the handover, along with an uplink Buffer Status Report, whenever possible, to the target eNB to indicate that the handover procedure is completed for the UE. The target eNB may verify the C-RNTI sent in the RRCConnectionReconfigurationComplete message. The target eNB can now begin sending data to the UE.
J0097] Fig. 10 is for explaining handover completion of the whole handover procedure.
[0098] Step 12: The target eNB may send a PATH SWITCH REQUEST message to MME to inform that the UE has changed cell.
[0099] Step 13 : The MME may send a MODIFY BEARER REQUEST message to the Serving Gateway.
[00100] Step 14: The Serving Gateway may switch the downlink data path to the target side. The Serving gateway may send one or more "end marker" packets on the old path to the source eNB and then can release any U-plane/TNL resources towards the source eNB.
[00101] Step 15: The Serving Gateway may send a MODIFY BEARER RESPONSE message to MME. [00102] Step 16: The MME may confirm the PATH SWITCH REQUEST message with the PATH SWITCH REQUEST ACKNOWLEDGE message.
[00103] Step 17: By sending the UE CONTEXT RELEASE message, the target eNB informs success of HO to source eNB and triggers the release of resources by the source eNB. The target eNB may send this message after the PATH SWITCH REQUEST ACKNOWLEDGE message is received from the MME.
[00104] Step 18 : Upon reception of the UE CONTEXT RELEASE message, the source eNB can release radio and C-plane related resources associated to the UE context. Any ongoing data forwarding may continue.
[00105] When an X2 handover is used involving HeNBs and when the source HeNB is connected to a HeNB GW, a UE CONTEXT RELEASE REQUEST message including an explicit GW Context Release Indication may be sent by the source HeNB, in order to indicate that the HeNB GW may release of all the resources related to the UE context.
[00106] After UE reports measurement results to serving cell, reception of handover command can be delayed when the UE may go to sleep due to DRX. Considering that handover region of pico-to-macro handover is shorter than that of macro-to-macro handover, delayed reception of handover command due to DRX may increase handover failure rate in small cell deployments.
[00107] Therefore, one embodiment of the present invention proposes ignoring the DRX configuration even though the UE has received a DRX configuration information from the network, when a specific indication, such as the measurement results, is transmitted. The specific indication need not to be restricted to the measurement results, but can comprise any indication making immediate PDCCH monitoring be preferably. [00108] In the exemplary embodiment regarding measurement report, after UE transmits measurement report to serving cell, the UE may keep monitoring PDCCH for a certain period or until it receives handover command from serving cell. To keep PDCCH monitoring after measurement reporting, UE can ignore DRX configuration or apply another DRX configuration which includes very long on-duration period.
[00109] In one example, the application of the above explained additional PDCCH monitoring operation can be limited to the case that the serving cell is certain type, e.g., pico cell, small cell or non-macro cell. For example, UE may keep monitoring the PDCCH after transmitting the measurement reporting only when the serving cell is small cell.
[00110] The application of the above explained additional PDCCH monitoring operation can be limited to the case that the target cell of measurement reporting is certain type. For example, UE may keep monitoring the PDCCH after transmitting the measurement reporting only when the target cell of the measurement reporting is macro cell.
[00111] The list of target cells which lead to keeping PDCCH monitoring can be signaled by serving cell. Then, UE may keep monitoring the PDCCH after transmitting the measurement reporting only when the measurement report is for the listed cells.
[00112] The above operation can be limited to the case that the measurement reporting is triggered by certain event. Measurement report triggering events includes:
[00113] Event A 1 : Serving becomes better than threshold
[00114] Event A2: Serving becomes worse than threshold
[00115] Event A3: Neighbour becomes offset better than PCell
[00116] Event A4: Neighbour becomes better than threshold
[00117] Event A5: PCell becomes worse than thresholdl and neighbour becomes better than threshold2
[00118] Event A6: Neighbour becomes offset better than SCell [00119] Event B 1 : Inter RAT neighbour becomes better than threshold
[00120] Event B2: PCell becomes worse than thresholdl and inter RAT neighbour becomes better than threshold2
[00121] In one example, the UE may keeps monitoring the PDCCH after transmitting the measurement reporting only when the measurement report triggering event is A3 or A4. In another example, the measurement report triggering events which lead to keeping PDCCH monitoring can be signalled by serving cell.
[00122] Preferably, the period of time UE keeps monitoring PDCCH after measurement reporting can be configured by serving cell.
[00123] Fig. 11 shows one example of additional PDCCH monitoring according to one embodiment of the present invention.
[00124] Fig. 11 is based on an exemplary situation where a serving cell is a small cell, such as a pico cell, and a target cell is a macro cell. The small serving cell may configure target cells list. In addition, according to the present embodiment, the small serving cell may additionally configure a measurement report triggering events (e.g. event A3 and A4) for the above explained keeping PDCCH monitoring regardless of the DRX configuration at the UE and a period (e.g. l sec) for keeping PDCCH monitoring for UE (SI 110).
[00125] Based on this configuration, the UE may perform measurement on the target cells in the list. In this example, suppose that the measurement reporting for macro cell A is triggered by the specified event A4 (SI 120).
[00126] In this case, the UE may transmit the measurement report to the serving cell. In addition, since the triggering event was the specified/predetermined one (event A4), the UE may keep monitoring the PDCCH and ignores the DRX configuration for specified period (e.g. one second) (SI 130).
[00127] After the specified period of time (e.g. one second), if the UE did not receive the handover command, the UE may apply the DRX configuration (S I 140).
[00128] In another instance, suppose that the measurement reporting for macro cell A is triggered by event A3 (SI 140). In this case, the UE may transmit the measurement report to the serving cell and keeps monitoring the PDCCH and ignores the DRX configuration during the specified period of time (SI 160). Upon finishing handover preparation, the serving small cell may transmit the handover command to UE without waiting due to DRX (SI 170). By this operation, the handover execution will not be delayed due to the DRX configuration.
[00129] In another embodiment of the present invention, after the UE transmits measurement report to serving cell, the UE may perform additional monitoring of scheduling (e.g. PDCCH). To perform the additional monitoring after sending measurement reporting, UE can ignore DRX configuration (i.e. disable DRX) or apply another DRX configuration that can be applied temporarily, if available.
[00130] If UE did not receive any DL scheduling during the additional monitoring of scheduling, UE may stop the above explained additional monitoring of scheduling. Upon stopping the additional monitoring, the UE may fallback to its original DRX that was previously configured and applied before applying the additional monitoring of scheduling.
[00131] It is possible that network can configure whether UE should perform additional monitoring of DL scheduling (PDCCH monitoring). [00132] (i) The configuration can be per UE, and in this case the configuration can be provided in radio resource configuration; or (ii) the configuration can be per measurement object, and in this case the configuration is provided within the concerned measurement object; or (iii) the configuration can be per measurement report configuration. For example the configuration can be towards a specific event used for triggering measurement report. In this case the configuration is provided within the concerned measurement report configuration.
[00133] It is also possible that a specific event used for triggering of measurement report is defined as a trigger of additional monitoring of scheduling. For example, UE may perform additional monitoring of scheduling after measurement reporting only when the measurement report triggering event is A3 or A4.
[00134] To control the additional monitoring of DL scheduling, network may provide the configuration parameters regarding the additional monitoring of DL scheduling. The parameters can include time duration for which the UE needs to keep additional monitoring of DL scheduling. The parameters can include temporal DRX parameters (including the normal DRX parameters and DRX off command). Upon meeting the condition that triggers the additional monitoring of DL scheduling , the UE applies temporal DRX parameters for pre-defined time (e.g. during the time duration for additional monitoring of DL scheduling)
[00135] It is also possible that network can configure a list of cells related to additional monitoring of scheduling. Upon receiving the list, UE may perform additional monitoring of scheduling only after sending measurement report that is triggered by one or more cells included in the list. [00136] As stated above, this embodiment can be limited to the case that the neighbour cell that triggers the measurement reporting is certain type. For example, UE performs additional monitoring of scheduling (e.g. PDCCH) only after sending measurement report that is triggered by the 'macro' neighbor cell. This is beneficial to reduce X(any cell; don't care) to macro cell handover failure.
[00137] Also, the present embodiment can be limited to the case that the serving cell is certain type, e.g., pico cell, small cell or non-macro cell. For example, UE performs additional monitoring of scheduling (e.g. PDCCH) only after sending measurement report to non-macro (e.g. pico cell) serving cell.
[00138] Also, the present embodiment can be limited to the case that the serving cell and neighbour cell that jointly triggers the measurement reporting are certain type respectively. For example, UE performs additional monitoring of scheduling (e.g. PDCCH for DL scheduling) only after sending measurement report that is triggered by the 'macro' neighbor cell and 'pico' serving cell. This is beneficial to reduce pico to macro cell handover failure.
[00139] FIG. 12 is a block diagram of a communication apparatus according to an embodiment of the present invention.
]00140] The apparatus shown in Fig. 12 can be a user equipment (UE) adapted to perform the above explaine PDCCH monitoring, but it can be any apparatus for performing the same operation.
[00141] As shown in Fig. 12, the apparatus may comprises a DSP/microprocessor (1 10) and RF module (transmiceiver; 135). The DSP/microprocessor (110) is electrically connected with the transciver (135) and controls it. The apparatus may further include power management module (105), battery (155), display (1 15), keypad (120), SIM card (125), memory device (130), speaker (145) and input device (150), based on its implementation and designer's choice.
[00142] Specifically, the transceiver (135) of this embodiment is adapted to receive DRX (Discontinuous Reception) configuration information from a network over the air. And, the processor (1 10) is adapted to control the transceiver (135) to ignore the DRX configuration information and monitor a PDCCH after transmitting a specific indication, is provided.
[00143] It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
[Industrial Applicability]
[00144] While the above-described method has been described centering on an example applied to the 3 GPP LTE system, the present invention is applicable to a variety of wireless communication systems in addition to the 3 GPP LTE system.

Claims

[CLAIMS]
[Claim 1 ]
A method for a user equipment (UE) to operate in a wireless communication system, the method comprising: receiving DRX (Discontinuous Reception) configuration information from a network; and ignoring the DRX configuration information and monitoring a PDCCH (Physical
Downlink Control Channel) after transmitting a specific indication.
[Claim 2]
The method of claim 1 , wherein monitoring the PDCCH is performed during a specified period of time in addition to an active time according to the DRX configuration information.
[Claim 3 ]
The method of claim 1, wherein the specific indication comprises a measurement report.
[Claim 4]
The method of claim 1 , wherein said ignoring the DRX configuration information and said monitoring the PDCCH are performed only after transmitting a measurement report triggered by a specific type of neighbor cell.
[Claim 5 ]
The method of claim 4, wherein the specific type of neighbor cell is configured by a network through a RRC signal.
[Claim 6]
The method of claim 1, wherein said ignoring the DRX configuration information and said monitoring the PDCCH are performed only after transmitting a measurement report triggered by a specific measurement object or objects.
[Claim 7]
The method of claim 6, wherein the specific measurement object or objects are configured by a network through a RRC signal.
[Claim 8]
The method of claim 1, wherein said ignoring the DRX configuration information and said monitoring the PDCCH are performed only after transmitting a measurement report to a specific type of serving cell.
[Claim 9]
The method of claim 8, wherein the specific type of serving cell is configured by a network through a RRC signal.
[Claim 10]
The method of claim 1, wherein said ignoring the DRX configuration information and said monitoring the PDCCH are performed only after transmitting a measurement report triggered by a specific type of neighbor cell to a specific type of serving cell.
[Claim 11 ]
The method of Claim 10, wherein the specific type of neighbor cell and the specific type of serving cell are configured by a network through a RRC signal.
[Claim 12]
The method of claim 1, wherein said ignoring the DRX configuration information and said monitoring the PDCCH are performed only after transmitting a measurement report triggered by a specific measurement report triggering event.
[Claim 13]
The method of claim 1, further comprising: receiving configuration information for said ignoring the DRX configuration information and said monitoring the PDCCH from the network, wherein the configuration information comprises (i) criteria for the specific indication and (ii) time period for said ignoring the DRX configuration information and said monitoring the PDCCH.
[Claim 14]
The method of claim 1, wherein the DRX configuration information is for an on- duration timer, a DRX inactivity timer, and a DRX retransmission timer.
[Claim 15]
A user equipment (UE) for operating in a wireless communication system, the UE comprising: a transceiver adapted to receive DRX (Discontinuous Reception) configuration information from a network over the air; and a processor connected to the transceiver and adapted to control the transceiver to ignore the DRX configuration information and monitor a PDCCH (Physical Downlink Control Channel) after transmitting a specific indication
PCT/KR2014/000424 2013-01-30 2014-01-15 Pdcch monitoring regardless of drx configuration WO2014119860A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157023741A KR20150113168A (en) 2013-01-30 2014-01-15 Pdcch monitoring regardless of drx configuration
CN201480005466.9A CN104937973B (en) 2013-01-30 2014-01-15 Unrelated PDCCH is configured with DRX to monitor
US14/759,103 US9839066B2 (en) 2013-01-30 2014-01-15 PDCCH monitoring regardless of DRX configuration

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361758764P 2013-01-30 2013-01-30
US201361758713P 2013-01-30 2013-01-30
US61/758,764 2013-01-30
US61/758,713 2013-01-30

Publications (1)

Publication Number Publication Date
WO2014119860A1 true WO2014119860A1 (en) 2014-08-07

Family

ID=51262539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000424 WO2014119860A1 (en) 2013-01-30 2014-01-15 Pdcch monitoring regardless of drx configuration

Country Status (4)

Country Link
US (1) US9839066B2 (en)
KR (1) KR20150113168A (en)
CN (1) CN104937973B (en)
WO (1) WO2014119860A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016180463A1 (en) * 2015-05-11 2016-11-17 Nokia Solutions And Networks Oy Methods and apparatusses for enabling/disabling a drx mode
EP3624481A4 (en) * 2017-11-17 2020-04-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for listening to pdcch, and terminal device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014163082A1 (en) * 2013-04-02 2014-10-09 シャープ株式会社 Radio communication system, base station device, terminal device, radio communication method, and integrated circuit
KR20160004061A (en) * 2014-07-02 2016-01-12 한국전자통신연구원 Method and apparatus of mobility management in small cell environment
KR102206817B1 (en) * 2014-07-23 2021-01-25 삼성전자주식회사 An electronic device and a method for managing a base station list thereof
US10057851B2 (en) * 2015-01-06 2018-08-21 Mediatek Inc. Wireless communication method and device
CN108293230B (en) * 2015-11-13 2021-06-29 株式会社Ntt都科摩 Wireless communication device
AU2017206661B2 (en) 2016-01-11 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Method for controlling connected mode DRX operations
US10237863B2 (en) * 2016-03-04 2019-03-19 Htc Corporation Device and method of handling a hybrid automatic repeat request process in a licensed assisted access secondary cell
WO2017188794A1 (en) * 2016-04-28 2017-11-02 Samsung Electronics Co., Ltd. Methods and systems for configuring timers in lte networks
US10511941B2 (en) 2016-08-11 2019-12-17 Kt Corporation Method for receiving multicast data and apparatus thereof
KR101971780B1 (en) * 2016-08-11 2019-04-26 주식회사 케이티 Methods for receiving multicast data and Apparatuses thereof
US10568161B2 (en) * 2016-09-29 2020-02-18 Qualcomm Incorporated Uplink (UL)-based mobility via immediate and delayed keep alive (KA) signals
KR20190089937A (en) * 2016-12-01 2019-07-31 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Discontinuous reception method and apparatus
CN110603861B (en) * 2017-05-04 2023-04-21 Oppo广东移动通信有限公司 Wireless communication method and device
EP3609245A4 (en) * 2017-05-04 2020-04-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for discontinuous reception
JP7191094B2 (en) * 2017-09-27 2022-12-16 富士通株式会社 Information transmission method and device, random access method and device, and communication system
AU2019321640B2 (en) 2018-08-17 2022-10-20 Interdigital Patent Holdings, Inc. Power saving signals in wireless communication
CN115174021A (en) * 2018-09-19 2022-10-11 华为技术有限公司 Wireless communication method and device
CN110958622B (en) * 2018-09-27 2022-04-01 大唐移动通信设备有限公司 Information sending and receiving method and device, terminal and base station
CN110971474A (en) * 2018-09-28 2020-04-07 华为技术有限公司 Method and apparatus for signal processing
US11463952B2 (en) * 2018-12-21 2022-10-04 Qualcomm Incorporated Indication signal repetition for discontinuous reception operation
US11647460B2 (en) * 2018-12-26 2023-05-09 Mediatek Singapore Pte. Ltd. Method and apparatus for indicating power saving information in mobile communications
US11388621B2 (en) * 2019-11-12 2022-07-12 Samsung Electronics Co., Ltd. Flexible high capacity-radio network temporary identifier
WO2024092630A1 (en) * 2022-11-03 2024-05-10 Nokia Shanghai Bell Co., Ltd. Methods and devices for discontinuous transmission or discontinuous reception

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070291729A1 (en) * 2006-06-20 2007-12-20 Lars Dalsgaard Method and System for Providing Reply-Controlled Discontinuous Reception
US20100135159A1 (en) * 2007-03-16 2010-06-03 Sung Duck Chun Method of monitoring control channel in wireless communication system
US20100317345A1 (en) * 2007-02-05 2010-12-16 Hisashi Futaki Inter base station handover method, radio communication system, drx control method, base station, and communication terminal
US20120155309A1 (en) * 2010-12-21 2012-06-21 Samsung Electronics Co., Ltd. System and method for handover in wireless communication system
US20120300651A1 (en) * 2006-12-20 2012-11-29 Telefonaktiebolaget L M Ericsson (Publ) Method and Arrangements for an Event Triggered DRX Cycle Adjustment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7636331B2 (en) * 2004-04-19 2009-12-22 Lg Electronic Inc. Transmission of control information in wireless communication system
US20090176502A1 (en) * 2008-01-08 2009-07-09 Richard Lee-Chee Kuo Method of Receiving Signaling and Related Communication Device
CN101651530A (en) * 2008-08-11 2010-02-17 中兴通讯股份有限公司 Method for processing conflict between discontinuous receiving and measurement clearance
KR20140014544A (en) * 2012-07-24 2014-02-06 주식회사 팬택 Apparatus and method for discontinuous reception in multiple component carrier system
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
US9814025B2 (en) * 2012-11-29 2017-11-07 Lg Electronics Inc. Method of reporting information on UE state performed by UE in wireless communication system and device for supporting said method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070291729A1 (en) * 2006-06-20 2007-12-20 Lars Dalsgaard Method and System for Providing Reply-Controlled Discontinuous Reception
US20120300651A1 (en) * 2006-12-20 2012-11-29 Telefonaktiebolaget L M Ericsson (Publ) Method and Arrangements for an Event Triggered DRX Cycle Adjustment
US20100317345A1 (en) * 2007-02-05 2010-12-16 Hisashi Futaki Inter base station handover method, radio communication system, drx control method, base station, and communication terminal
US20100135159A1 (en) * 2007-03-16 2010-06-03 Sung Duck Chun Method of monitoring control channel in wireless communication system
US20120155309A1 (en) * 2010-12-21 2012-06-21 Samsung Electronics Co., Ltd. System and method for handover in wireless communication system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016180463A1 (en) * 2015-05-11 2016-11-17 Nokia Solutions And Networks Oy Methods and apparatusses for enabling/disabling a drx mode
EP3624481A4 (en) * 2017-11-17 2020-04-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for listening to pdcch, and terminal device
JP2021510014A (en) * 2017-11-17 2021-04-08 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and terminal equipment for monitoring PDCCH
RU2747208C1 (en) * 2017-11-17 2021-04-29 Гуандун Оппо Мобайл Телекоммьюникейшнс Корп., Лтд. Pdcch interception method and terminal device
EP3908046A1 (en) * 2017-11-17 2021-11-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for intercepting pdcch and terminal device
US11206709B2 (en) 2017-11-17 2021-12-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for intercepting PDCCH and terminal device

Also Published As

Publication number Publication date
US9839066B2 (en) 2017-12-05
CN104937973B (en) 2019-05-10
CN104937973A (en) 2015-09-23
US20150359034A1 (en) 2015-12-10
KR20150113168A (en) 2015-10-07

Similar Documents

Publication Publication Date Title
US9839066B2 (en) PDCCH monitoring regardless of DRX configuration
US20220330103A1 (en) Method for performing a cell change procedure in a wireless communication system and a device therefor
JP6463440B2 (en) Method and apparatus for counting DRX (discontinuous reception) timer in carrier aggregation system
US20180035485A1 (en) Method for deactivating scells during scg change procedure and a device therefor
CN110113772B (en) User equipment supporting dual connectivity in wireless communication system and method thereof
JP5876585B2 (en) Various timer operations in wireless communication systems
US10039055B2 (en) Method for monitoring a physical downlink control channel during DRX operation in a wireless communication system and a device therefor
US20170134124A1 (en) Method for handling of drx timers for multiple repetition transmission in wireless communication system and a device therefor
EP3245757B1 (en) Method and apparatus for de-configuring a cell from pucch resource in a carrier aggregation system and a device therefor
KR20170123236A (en) Method and user equipment for transmitting data volume information
US20180014332A1 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
US10306438B2 (en) Operating method of M2M terminal in wireless communication system
US20180020444A1 (en) Method for applying a new pucch configuration in a carrier aggregation system and a device therefor
KR20190027337A (en) Resource management in a wireless communication system
JP2017522747A (en) Method and apparatus for setting HARQ RRT timer in carrier aggregation system
US10034312B2 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
US20200170045A1 (en) Method for performing a random access procedure in wireless communication system and a device therefor
US10687369B2 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
US10869357B2 (en) Method for configuring discontinuous reception in a communication system and device therefor
WO2014109565A1 (en) Radio link failure reporting in a system using multiple cells
US20170374688A1 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
US10271356B2 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
US10491363B2 (en) Method for transmitting a data in a communication system and device therefor
US20160105927A1 (en) Method for performing a drx operation in a wireless communication system and a device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14759103

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157023741

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14745894

Country of ref document: EP

Kind code of ref document: A1