WO2014117392A1 - 固体绝缘开关设备及其气体间隙绝缘结构 - Google Patents

固体绝缘开关设备及其气体间隙绝缘结构 Download PDF

Info

Publication number
WO2014117392A1
WO2014117392A1 PCT/CN2013/071278 CN2013071278W WO2014117392A1 WO 2014117392 A1 WO2014117392 A1 WO 2014117392A1 CN 2013071278 W CN2013071278 W CN 2013071278W WO 2014117392 A1 WO2014117392 A1 WO 2014117392A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
gas
shielding ring
conductor
ring
Prior art date
Application number
PCT/CN2013/071278
Other languages
English (en)
French (fr)
Inventor
马平
游一民
王振良
Original Assignee
厦门华电开关有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门华电开关有限公司 filed Critical 厦门华电开关有限公司
Priority to PCT/CN2013/071278 priority Critical patent/WO2014117392A1/zh
Publication of WO2014117392A1 publication Critical patent/WO2014117392A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/01Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with resin casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations

Definitions

  • the present invention relates to the field of switching devices in power systems, and more particularly to a gas gap insulating structure and a solid insulated switchgear having the gas gap insulating structure.
  • the air-insulated switchgear In the medium voltage switchgear, there are mainly two kinds of switchgear used in the past.
  • One is the air-insulated switchgear.
  • the insulation distance of the air is large, so the air-insulated switchgear is also relatively large, and is subject to the surrounding environment such as air pressure. Humidity, density, dust, etc. have a great influence.
  • the other is SF6 (sulfur hexafluoride) insulated switchgear, excellent insulation of SF6 gas.
  • the performance not only can effectively reduce the size of the switchgear, the gas environment of the switchgear seals it to eliminate the influence of the external environment, especially suitable for places with harsh environmental conditions.
  • SF6 is a greenhouse gas, and applications and emissions should be minimized to protect the environment.
  • the solid insulated switchgear not only overcomes the shortcomings of air insulation and SF6 insulation, but also has a grounded metal or semiconductor coating on the outer surface, which is accessible to the human body and is not subject to electric shock. It is not affected by the external environment during operation. Due to the high dielectric constant and breakdown field strength of the solid insulating material, the structure of the solid-state switching device is more compact; in addition, the solid insulating material has a higher thermal conductivity than the gas, which makes the heat dissipation of the conductor easier, and the product technology of the switching device The parameters can be higher. Therefore, solid insulation technology is an important direction for the future development of switchgear.
  • solid insulation refers to an insulation structure in which a region of a high electric field is located inside a solid material to which the sheath is grounded.
  • solid-sealed poles in power equipment also use solid insulating materials.
  • Solid epoxy materials of solid insulating materials of conventional solid-sealed poles mainly serve as fixing and supporting.
  • the electric field strength inside the epoxy resin is very low, and the human body is running. It is not close to or touched; unlike conventional solid-sealed poles, the solid-insulation material of solid-insulated switchgear has a very high electric field strength, which gives it the advantage of high breakdown field strength.
  • the outer surface is grounded and accessible to the human body during operation. , Safe and reliable.
  • an insulating structure for a gas gap in a medium-high voltage solid insulated switchgear includes an insulating structure of a symmetrical gas gap and an insulating structure of an asymmetric gas gap.
  • the symmetrical gas gap insulation structure is used for the symmetrical gas fracture insulation of the isolating switch in the solid insulation equipment;
  • the asymmetric gas gap insulation structure is used for the circuit breaker operation end to ground insulation, the isolating switch operation end to ground insulation structure and the grounding The gas break of the switch.
  • the authorization notice number is CN202159894U (hereinafter referred to as Document 1)
  • the Chinese invention patent entitled “Indoor High Voltage Solid Insulation Disconnect Switch” discloses an indoor high-voltage solid insulation isolation switch, and the isolation switch body includes a solid-sealed base.
  • the upper and lower inlet and outlet bases embedded in the base, and the rear, middle and front conductive seats are opened and closed by a sliding fit of the conductive tube and the conductive seat.
  • the gas in the structure of the structure of Document 1 is easy to seal and has a compact structure.
  • the partial use of the shed in the insulating structure is only a simple increase of the creepage distance, and can not improve the concentration of the gas electric field in the gas chamber, especially in the solid insulated switchgear, because the outer surface of the pole is grounded, the structure of the document 1 It is difficult to solve the problem of excessive local field strength in the gas between the isolation fractures and the gas gap between the grounds in a small diameter. Therefore, there is often an accident in which the discharge is excessive and the insulation breakdown occurs.
  • the authorization publication number is CN201820692U, the Chinese invention patent entitled “Solid Insulation High Voltage Circuit Breaker Pole”, discloses a solid insulated high voltage circuit breaker pole structure, the main conductive loop is cast in epoxy resin, and the sealed connection socket is The solid insulated connection interface, the high field strength region is located inside the epoxy chamber between the arc extinguishing chamber and the connecting conductors at both ends and the grounding sheath. Since the insulating tie rod is disposed in the opening of the movable end effector, the insulation of the air gap in the opening of the movable end effector becomes a weak link of the entire structure.
  • the air in the opening of the movable end effector is separated from the external ambient air by the silicone rubber sealing sleeve, the external environment is not affected by the adverse external environment, and the ground insulation in the opening of the movable end effector is affected;
  • the pressing member is intended to improve the insulation level of the moving end, but since the outer surface of the pole is grounded differently from the conventional solid-sealed pole, the setting of the pressure-regulating member cannot effectively improve the moving-end operating member due to a significant change in the voltage boundary thereof. In the case where the electric field in the gas in the opening is concentrated, the closed gas environment is still unable to avoid the discharge in the gas.
  • the Chinese invention patent entitled "Solid Separation Switch and Solid Insulated Switchgear Using It” is disclosed in CN101090041A, which discloses a solid isolation switch, and the insulating connecting portion for the opening and closing operation is surrounded by a solid insulating material.
  • the opening and closing operations are performed by a movable contactor.
  • An insulating spacer is arranged between the chassis and the fixed contactor to ensure electrical insulation to the ground.
  • the prior art solid insulated switchgear cannot solve the problem of electric field concentration in the gas gap insulation structure. Due to the influence of the grounding of the outer surface of the solid insulated switchgear, the electric field concentration problem of such a gas gap insulating structure cannot solve the problem by increasing the gap distance of the fracture gas. Therefore, there is a need for a solid insulated switchgear to overcome the drawbacks of current solid insulated switchgear equipment that often suffer from partial discharge and insulation breakdown accidents during operation. Summary of the invention
  • an object of the present invention is to provide a gas gap insulation structure to solve In the current solid insulated switchgear, the technical problems of partial discharge and insulation breakdown accidents often occur in operation, thereby solving the problem of electric field concentration in the gas gap of the solid insulation structure.
  • Another object of the present invention is to provide a solid insulated switchgear having the gas gap insulating structure.
  • the technical solution of the present invention is as follows:
  • a gas gap insulation structure for a solid insulated switchgear comprising: a solid insulation casing having a ground layer; a gas in the solid insulation casing and a first conductor insulated by the gas and a second shielding ring; a second shielding ring disposed in the solid insulating housing itself; a third shielding ring; and a first shielding ring as a floating potential, the second shielding ring connecting the first conductor, the third a shielding ring is connected to the second conductor, the first shielding ring is disposed inside the second shielding ring and the third shielding ring; wherein, between the first shielding ring and the second shielding ring The minimum gap is the second gap, the minimum gap between the first shielding ring and the third shielding ring is a third gap, and the minimum gap between the second shielding ring and the third shielding ring is a gap; the first gap is greater than the second gap and the third gap, and a sum of the second gap and the third gap is greater
  • a gas gap insulation structure for a solid insulated switchgear comprising: a solid insulation casing having a ground layer; a gas in the solid insulation casing and a first conductor insulated by the gas and a ground potential conductor; a first shielding ring and a second shielding ring disposed in the solid insulating housing itself; the first shielding ring as a floating potential has an inclined portion and a first parallel portion, the first parallel portion and The inclined portions have an angle therebetween, the second shielding ring is connected to the first conductor, the second shielding ring has a second parallel portion, and the first parallel portion is disposed at the second parallel portion The inner side; wherein a minimum gap between the first shielding ring and the ground layer is a first gap, and a minimum gap between the first shielding ring and the second shielding ring is a second gap.
  • the solid insulated switchgear of the present invention has the gas gap insulating structure of the present invention.
  • the gas gap insulating structure of the present invention optimizes the design of the gas gap insulating structure in the solid insulating structure.
  • the shielding structure By embedding the shielding structure in the solid insulating material, the advantage of the high breakdown field strength of the solid insulating material is exerted; by providing a floating potential shielding ring acting as an intermediate shielding between the shielding ring and the gas, the solid insulating structure is The gas fracture field strength distribution is more uniform and does not exceed the gas breakdown field strength, forming an effective transition between the solid insulation small insulation gap and the gas insulation large insulation gap.
  • Reasonable design allows the overall equipment size to be reduced, the equipment to be more compact and more reliable.
  • FIG. 1A is a schematic view showing a gas gap insulation structure according to a first embodiment of the present invention.
  • Figure 1B is a detailed cross-sectional view of the shield ring of Figure 1A.
  • Figure 1C is a dimensional annotation of Figure 1A.
  • 1D is a schematic view of a shield ring and a mesh thereof in a gas gap insulation structure according to an embodiment of the present invention.
  • Fig. 1E is a 1/4 cross-sectional view showing a floating potential shield ring in a gas gap insulating structure according to a first embodiment of the present invention.
  • 2A and 2B are schematic views of a gas gap insulating structure for a three-position switch according to a first embodiment of the present invention.
  • 3 is a schematic view of a gas gap insulation structure for a circuit breaker pole according to a first embodiment of the present invention.
  • FIG. 4A is a schematic view showing a gas gap insulation structure according to a second embodiment of the present invention.
  • Figure 4B is a detailed cross-sectional view of the shield ring of Figure 4A.
  • Figure 4C is a dimensional annotation of Figure 4A.
  • Fig. 5 is a schematic view showing a gas gap insulating structure for a three-position switch according to a second embodiment of the present invention.
  • Fig. 6 is a schematic view showing a gas gap insulating structure for a pole of a circuit breaker according to a second embodiment of the present invention. detailed description
  • the solid insulated switchgear of the present invention has the gas gap insulating structure of the embodiment of the present invention.
  • the idea of the gas gap insulation structure of the first embodiment of the present invention is that in the direction of the voltage gradient of the symmetrical gas gap, the field strength of the gas near the interface between the solid and the gas can be uniformly distributed at a level not exceeding the breakdown field strength thereof, thereby Minimizing the length of the gas fracture makes the entire insulation structure more compact, taking advantage of solid insulation technology.
  • the solid insulated switchgear of the present invention is mainly a medium and high voltage solid insulated switchgear.
  • the gas gap insulating structure of the first embodiment of the present invention comprises: a solid insulating housing 1 (hereinafter referred to as housing 1), a conductor 2, a conductor 3 and a gas 4, and the conductor 2 and the conductor 3 are respectively located in the gas.
  • the casing 1 On both sides of the casing 4, the casing 1 includes a grounding layer 5 and a shielding ring 102 and a shielding ring 103 formed in the casing 1 itself, and particularly includes a shielding ring 101 formed in the casing 1 itself as a floating potential. Also referred to as a floating potential shield ring 101.
  • the floating potential shield ring 101 is inside the shield ring 102 and the shield ring 103.
  • the gas gap insulation structure of the embodiment is applicable to the isolation switch fracture in the solid insulation equipment, that is, the symmetric gas gap insulation structure; and is also applicable to the insulation of the operation end of the circuit breaker, the insulation of the operation end of the isolation switch, the ground insulation, and the grounding switch. Gas fracture, that is, asymmetric gas gap insulation structure.
  • the conductor 2 and the conductor 3 form a fixed conductive connection with the shield ring 102 and the shield ring 103, respectively.
  • Conductor 2 conductor 3 According to different operating conditions, there are two possibilities of charging and grounding. When conductor 2 and conductor 3 are both charged, their ground voltage may be different.
  • a strong electric field region is formed between the conductor 2 and the conductor 3 and the ground layer 5; a solid insulation fracture is formed between the shield ring 102 and the shield ring 103, and the high field strength is limited to the ground layer 5.
  • the area between the shield ring 102 and the shield ring 103 effectively controls the problem that the field strength near the junction A of the conductor 2, the conductor 3 and the three dielectrics of the casing 1 and the gas 4 exceeds the gas 4 tolerance level, and the joint thereof Insulation failure and partial discharge caused by casting defects in partial production.
  • the arrangement of the floating potential shielding ring 101 makes the distribution of the field strength of the gas 4 on the inner surface of the casing 1 and its two dielectric interfaces B more uniform, effectively avoiding the problem that the local field strength of the interface exceeds the tolerance level of the gas 4, thereby making the conductor
  • the gas 4 between the 2 and the conductor 3 has the smallest fracture length.
  • the casing 1 is usually cast from a solid insulating material such as epoxy resin, and the outer surface of the casing 1 is provided with a ground layer 5.
  • the housing 1 can also be made of other new insulating materials.
  • the shielding ring 101, the shielding ring 102, and the shielding ring 103 are made of a conductive material, and generally have a temperature coefficient close to that of the material of the casing 1, such as aluminum or aluminum alloy.
  • the shield ring 102 includes a bent portion 1021, a parallel portion 1022, and a connecting portion 1023.
  • the parallel portion 1022 is parallel to the axis m of the entire gas gap insulating structure, and the connecting portion 1023 is used to connect the conductor 2
  • the bent portion 1021 is disposed to prevent discharge.
  • the shield ring 103 also includes a bent portion 1031, a parallel portion 1032, and a connecting portion 1033 which are parallel to the axis m of the entire gas gap insulating structure, and the connecting portion 1033 is used to connect the conductor 3.
  • connections 1023, 1033 may be omitted, with the parallel portions 1032 directly grounded or 1023 connected to a conductor, such as the left end of the shield ring 108 of Figure 2A.
  • the shield ring 101 includes parallel portions 1011 and bent portions 1012, 1013 at both ends of the parallel portion 1011.
  • the bent portion 1012 is opposite to the bent portion 1021, and the bending direction is opposite, and the bent portion 1013 is opposed to the bent portion 1031, and the bending direction is opposite.
  • each of the bent portions has the same bent shape, and is preferably a circular arc shape and has a circular arc shape having the same radius of curvature.
  • Figure 1C is an annotated view of the key dimensions of Figure 1A.
  • the distance rl between the parallel portion 1032 of the shield ring 103 and the axis m, and the shield ring 102 The distance r2 between the parallel portion 1022 and the axis m should be greater than the distance r3 between the parallel portion 1011 of the shield ring 101 and the axis m and smaller than the distance r4 between the ground layer 5 and the axis m, that is, the shield ring 102 and the shield ring 103 should be at the floating potential.
  • the minimum length dl, d2 of the shield ring 103 and the shield ring 102 respectively formed with the floating potential shield ring 101 should be less than the length d3 of the minimum gap between the shield ring 102 and the shield ring 103, while the axial length d4 of the floating potential shield ring 101 should be greater than the length of the minimum gap between the shield ring 102 and the shield ring 103.
  • D3, and the length d1 + length d2 is greater than or equal to the length d3.
  • the axial length d4 of the shield ring 101 is about 0.3-0.4 times the length d5 of the gas 4 between the conductor 2 and the conductor 3.
  • a minimum gap between the shield ring 101 and the shield ring 102 is formed between the bent portion 1012 and the parallel portion 1022, and the shield ring 101 is
  • the minimum gap of the shielding ring 103 is formed between the bent portion 1013 and the parallel portion 1032 to reduce the radial length r5 of the casing 1 itself, and at the same time, the purpose of reducing the fracture length d5 to achieve the gas gap insulation of the present invention.
  • the floating potential shielding ring 101, the shielding ring 102, the shielding ring 103, and the shielding ring 108 can be punched with a mesh at a position where the working field strength is small.
  • the shielding ring 108 As an example, as shown in FIG. 1D, the shielding ring 108 has The parallel portion 1081 and the bent portion 1082 are punched with a mesh hole 1080 in the parallel portion 1081.
  • the epoxy resin can connect the epoxy on both sides of the mesh 1080 through the mesh 1080 to improve the shielding ring 101, 102, 103, 108 and the material of the insulating housing 1 (for example, epoxy resin). The strength of the bond.
  • the center of the floating potential shield ring 101 also has a projection 1014 as shown in Fig. 1E.
  • the floating potential shield ring 109 of the gas gap insulating structure of the second embodiment of the present invention also has the same function of the projections 1095.
  • FIG. 2A and FIG. 2B are schematic diagrams showing an embodiment of a three-position switch for a solid insulated isolation ground of a gas gap insulation structure according to a first embodiment of the present invention, the three position switch having an intermediate contact 2' and an isolation contact 3 ', the movable contact 6, the insulating operating rod 7 and the grounding contact 8, and the gas gap insulating structure of the present embodiment includes the gas between the housing 1, the movable contact 6 and the isolated contact 3' having the ground layer 5.
  • An isolation fracture is formed between the intermediate contact 2' and the isolated contact 3'.
  • the middle contact 2' and the isolated contact 3' have both charging and grounding possibilities.
  • the voltage to the ground may be different. Therefore, the type of fracture in the three-position switch of the present embodiment is a symmetric gas gap insulation structure.
  • the type of the fracture in the three-position switch of the embodiment is an asymmetric gas gap insulation structure.
  • the isolating switch in the three position switch is in the open state.
  • the shield ring 102, the shield ring 103, and the shield ring 101 of the gas gap insulating structure of the first embodiment of the present invention are disposed such that the gas field 4 in the isolation fracture region is more evenly distributed along the surface of the insulating casing inner surface.
  • the grounding switch in the three-position switch is in an open state.
  • the shielding ring 102, the shielding ring 108 and the floating potential shielding ring 109 of the gas gap insulating structure of the first embodiment of the present invention can also be arranged such that the gas 9 of the intermediate contact 2' insulating gap is grounded on the inner surface of the insulating material. The strong distribution is more uniform.
  • the insulating operating rod 7 is disposed in the grounding fracture, and since the axial direction of the insulating operating rod 7 is consistent with the direction of the voltage gradient of the gas gap to the ground, the electric field distribution of the surrounding gas is generally not adversely affected. The impact can be ignored.
  • the gas gap insulating structure of the first embodiment of the present invention comprises a housing 1 having a ground layer 5, a gas 9 and shielding rings 102, 108, 109, wherein the shielding ring 109 is a floating potential shielding ring.
  • the gas gap insulation of the present invention The structure can well solve the problem of excessive field strength of the gas near the interface B between the inner surface of the casing 1 and the gas 4 when the circuit breaker is opened and closed, without complicating the structure of the operating rod portion.
  • the gas gap insulating structure of the first embodiment described above, in the application of FIG. 2B and FIG. 3, can be more optimized and simpler in structure according to the idea of the gas gap insulating structure of the first embodiment shown in FIG.
  • the shielding structure of the asymmetric gas gap insulating structure is the gas gap insulating structure of the second embodiment of the present invention.
  • the insulating structure of the gas gap of the second embodiment of the present invention used in the solid insulated switchgear includes: a casing 1 having a ground layer, a conductor 2, a ground potential conductor 8, a gas 9, and a shield Rings 102, 109, wherein shield ring 109 is a floating potential shield ring.
  • the shield ring 102 has a connecting portion 1023, a horizontal portion 1022, and a bent portion 1021
  • the shield ring 109 has a bent portion 1093, a horizontal portion 1091, an inclined portion 1092, and a bent portion 1094, and the conductor 2 and
  • the connecting portion 1023 of the shielding ring 102 forms a fixed conductive connection
  • the shielding ring 109 is embedded in the housing 1 as a floating potential.
  • the horizontal portion 1091 of the shielding ring 109 is located inside the horizontal portion 1022 of the shielding ring 102, and the inclined portion 1092 is bent toward the vicinity.
  • the direction of the portion 1021 is inclined, and the angle between the horizontal portion 1091 and the inclined portion 1092 is, for example, 45 to 150 degrees, preferably 120 degrees.
  • Conductor 2 has two possibilities of charging and grounding according to different operating conditions. Due to the arrangement of the ground layer 5, a strong electric field region is formed between the conductor 2 and the ground layer 5; and due to the arrangement of the inner shield ring 102, an end-to-ground shield structure is formed in the casing 1, and the high field strength is limited to the ground.
  • the area between the layer 5 and the shield ring 102 effectively controls the problem that the field strength near the junction A of the conductor 2 and the casing 3 and the gas 3 exceeds the gas 4 tolerance level, and the casting of the joint surface is locally produced. Insulation faults and partial discharge problems caused by defects.
  • the arrangement of the floating potential shielding ring 109 makes the field intensity distribution of the dielectric interface B of the casing 1 and the gas 9 more uniform, effectively avoiding the problem that the local field strength of the interface exceeds the tolerance level of the gas 4, thereby making the conductor 2 and the ground
  • the gas 9 between the potential conductors 8 has the smallest fracture length.
  • the distance r2 between the parallel portion 1022 of the shield ring 102 and the axis m should be greater than the distance r3 between the parallel portion 1091 of the shield ring 109 and the axis m and smaller than the ground layer 5 and the axis m.
  • the length d2 of the gap formed by the ring 102 and the floating potential shielding ring 109 is on the side of the floating potential shielding ring 109 close to the ground potential conductor 8, the shielding ring 109 is bent toward the ground layer 5, and the length between the shielding ring 109 and the ground layer 5 is formed.
  • the minimum gap of d6 (which is also the shortest distance between shield ring 109 and ground plane 5).
  • the length d2 is equal to the length d6. Also, the length d6 is smaller than the radial distance between the parallel portion 1022 and the ground layer 5.
  • each of the bent portions has the same bent shape, and is preferably a circular arc shape and has a circular arc shape having the same radius of curvature.
  • the gas gap insulating structure of the second embodiment of the present invention can be used for a three-position switch, as shown in Fig. 5, in Fig. 5, the grounding switch of the three-position switch is in an open state.
  • the shielding ring 102 and the floating potential shielding ring 109 are also arranged such that the gas field 9 of the intermediate contact 2' to the ground insulating gap has a more uniform field strength distribution on the inner surface of the insulating material.
  • the gas gap insulation structure of the second embodiment of the present invention can also be used for a circuit breaker pole.
  • the structure of the circuit breaker itself is the same as that shown in FIG. 3.
  • the gas gap insulation structure of the second embodiment of the present invention is shown.
  • a strong electric field region is formed between the conductor of different potentials and the conductor and the ground layer 5 due to the arrangement of the ground layer 5; a solid insulation fracture is provided inside the casing 1 to set a high field strength
  • the area is limited to the area between the ground layer 5 and the high potential shielding ring, effectively controlling the high potential conductor and the casing 1 and the gas 4
  • the arrangement of the floating potential shielding rings 101, 109 makes the field strength of the gas 4 near the interface between the inner surface of the casing 1 and the gas medium more uniform, effectively avoiding the problem that the local field strength near the interface exceeds the gas tolerance level, making the difference
  • the length of the gas fracture between the conductors of the potential is the smallest.
  • the purpose of reducing the radial dimension of the casing 1 and further reducing the axial length of the gas port can be achieved by adjusting the formation position of the minimum gap, so that the structure is more compact and miniaturized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

本发明公开了一种固体绝缘开关设备及其气体间隙绝缘结构,该气体间隙绝缘结构包括:具有接地层的固体绝缘壳体;固体绝缘壳体内的气体及由气体绝缘的第一导体和第二导体;固体绝缘壳体自身内设置的第二屏蔽环、第三屏蔽环和作为悬浮电位的第一屏蔽环,第二屏蔽环连接第一导体,第三屏蔽环连接第二导体,第一屏蔽环设置于第二屏蔽环和第三屏蔽环内侧;其中,第一屏蔽环与第二屏蔽环之间的最小间隙为第二间隙,第一屏蔽环与第三屏蔽环之间的最小间隙为第三间隙,第二屏蔽环与第三屏蔽环之间的最小间隙为第一间隙;第一间隙大于第二间隙与第三间隙,第二间隙与第三间隙之和大于等于第一间隙。本发明解决了固体绝缘结构的气体间隙中电场集中问题。

Description

固体绝缘开关设备及其气体间隙绝缘结构
技术领域
本发明涉及电力系统中的开关设备技术领域,尤其涉及一种气体间隙绝缘结构及具有 该气体间隙绝缘结构的固体绝缘开关设备。 背景技术
在中压开关设备中, 以往应用的开关设备主要有两种, 一种是空气绝缘开关柜, 空气 的绝缘距离较大, 因此空气绝缘开关柜体积也比较大, 且受周围环境如空气压力、 湿度、 密度、 灰尘等影响较大, 在某些环境恶劣的地区, 是不适合使用这种开关柜的; 另外一种 是采用 SF6 (六氟化硫) 绝缘的开关柜, SF6气体优异的绝缘性能不但能有效地缩小了开 关柜的体积, 这种开关柜密封的气体环境使它排除了外界环境的影响, 特别适用于环境条 件恶劣的场所。 然而 SF6是温室气体, 应尽量减少应用和排放, 保护环境。
随着用户对电力系统环保和可靠性要求的不断提高, 出现了固体绝缘开关柜。 固体绝 缘开关柜不仅能克服空气绝缘和 SF6 绝缘的缺点, 其外表面具有接地的金属或半导体涂 层, 人体可触及且无触电危险, 运行中不受外部环境影响。 由于固体绝缘材料有高的介电 常数和击穿场强, 使得固体开关设备结构更加紧凑; 另外固体绝缘材料较气体具有更高的 导热系数, 使得导体的散热更加容易, 使得开关设备的产品技术参数可以更高。 因此固体 绝缘技术是开关设备未来发展的一个重要方向。
所谓固体绝缘, 是指高电场的区域位于外皮接地的固体材料内部的绝缘结构。 例如电 力设备中的固封极柱也用到固体绝缘材料,常规固封极柱的固体绝缘材料 固体环氧树 脂材料主要起固定和支撑作用, 环氧树脂内部的电场强度很低, 运行中人体不可靠近或触 及; 与常规固封极柱不同的是, 固体绝缘开关设备的固体绝缘材料中电场强度非常高, 发 挥了其高击穿场强的优势, 其外表面接地, 运行中人体可触及, 安全可靠。
现有技术中, 用于中高压的固体绝缘开关设备中的气体间隙的绝缘结构, 包括对称气 体间隙的绝缘结构和非对称气体间隙的绝缘结构。对称气体间隙的绝缘结构如用于固体绝 缘设备中的隔离开关的对称气体断口绝缘; 非对称气体间隙的绝缘结构如用于断路器操作 端对地绝缘、 隔离开关操作端对地绝缘结构以及接地开关的气体断口。
然而, 现有的固体绝缘开关设备, 通常具有以下的不足: 授权公告号为 CN202159894U (以下称文献 1 ) , 名称为 《户内高压固体绝缘隔离开 关》 的中国发明专利, 公开了一种户内高压固体绝缘隔离开关, 隔离开关本体包括固封式 基座、 嵌入基座的上下进出线基座、 以及后、 中、 前导电座, 通过导电管与导电座的滑动 配合实现分合闸。 文献 1的该结构内腔气体容易实现密封, 且结构较为紧凑。 然而, 通常 在绝缘结构中局部采用伞裙只是单纯的增加爬距, 并不能改善气室中气体电场集中的情 况, 尤其是在固体绝缘开关设备中, 由于极柱外表面接地, 文献 1的结构很难在小的直径 尺寸下解决隔离断口间气体及对地气体间隙内局部场强超标的问题。因而运行中容常出现 局放超标及绝缘击穿的事故。
授权公告号为 CN201820692U, 名称为《固体绝缘高压断路器极柱》的中国发明专利, 公开了一种固体绝缘高压断路器极柱结构, 其主导电回路浇铸在环氧树脂内, 密封连接插 口为固体绝缘的连接界面, 高场强的区域位于灭弧室和两端连接导体与接地外皮之间的环 氧树脂内部。 由于动端操纵件开口内设置了绝缘拉杆, 因此动端操纵件开口内的空气间隙 的对地绝缘成为整个结构的薄弱环节。虽然通过硅橡胶密封套将动端操纵件开口内的空气 与外部环境空气隔开, 以免不良外部环境对动端操纵件开口内的对地绝缘造成影响; 虽然 在环氧树脂层内设置一均压件, 希望改善动端的绝缘水平, 但是由于和常规固封极柱不同 的是其极柱外表面接地, 由于其电压边界的重大变化, 该均压件的设置并不能有效改善动 端操纵件开口内气体中的电场集中的情况,封闭稳定的气体环境依然不能避免气体中出现 放电。
公开号为 CN101090041A, 名称为 《固体隔离开关以及使用它的固体绝缘开关设备》 的中国发明专利, 公开了一种固体隔离开关, 其用于分合闸操作的绝缘连接部分由固体绝 缘材料包围, 通过可动接触器来完成分闸和合闸操作。 在底架和固定接触器之间设置绝缘 隔离片来确保对地的电绝缘, 虽避免对地气体间隙的绝缘问题,但其结构较复杂,成本高。 另外隔离断口的绝缘依然依赖于气体绝缘, 因此前述的问题依然存在。
综上, 现有技术中的固体绝缘开关设备, 不能很好的解决气体间隙绝缘结构中电场集 中的问题。 由于固体绝缘开关设备外表面接地的影响, 此类气体间隙绝缘结构的电场集中 问题,通过加大断口气体间隙距离并不能解决该问题。因此, 需要一种固体绝缘开关设备, 以克服目前的固体绝缘开关设备在运行中常会出现局放超标及绝缘击穿事故的缺陷。 发明内容
针对现有技术中存在的问题, 本发明的目的在于提供一种气体间隙绝缘结构, 以解决 目前的固体绝缘开关设备在运行中常会出现局放超标及绝缘击穿事故的技术问题,从而解 决固体绝缘结构的气体间隙中电场集中问题。
本发明的目的还在于提供一种结构紧凑且能够解决电场集中问题的气体间隙结缘结 构。
本发明的另一目的为提供一种具有所述气体间隙绝缘结构的固体绝缘开关设备。 为实现上述目的, 本发明的技术方案如下:
一种气体间隙绝缘结构, 用于固体绝缘开关设备, 所述气体间隙绝缘结构包括: 具有 接地层的固体绝缘壳体;所述固体绝缘壳体内的气体及由所述气体绝缘的第一导体和第二 导体; 所述固体绝缘壳体自身内设置的第二屏蔽环、 第三屏蔽环和作为悬浮电位的第一屏 蔽环, 所述第二屏蔽环连接所述第一导体, 所述第三屏蔽环连接所述第二导体, 所述第一 屏蔽环设置于所述第二屏蔽环和所述第三屏蔽环内侧; 其中, 所述第一屏蔽环与所述第二 屏蔽环之间的最小间隙为第二间隙,所述第一屏蔽环与所述第三屏蔽环之间的最小间隙为 第三间隙, 所述第二屏蔽环与所述第三屏蔽环之间的最小间隙为第一间隙; 所述第一间隙 大于第二间隙与第三间隙, 所述第二间隙与所述第三间隙之和大于等于所述第一间隙。
本发明的技术方案还可以为:
一种气体间隙绝缘结构, 用于固体绝缘开关设备, 所述气体间隙绝缘结构包括: 具有 接地层的固体绝缘壳体;所述固体绝缘壳体内的气体及由所述气体绝缘的第一导体和地电 位导体; 所述固体绝缘壳体自身内设置的第一屏蔽环和第二屏蔽环, 作为悬浮电位的所述 第一屏蔽环具有倾斜部与第一平行部, 所述第一平行部与所述倾斜部之间具有一夹角, 所 述第二屏蔽环连接所述第一导体, 所述第二屏蔽环具有第二平行部, 所述第一平行部设置 于所述第二平行部内侧;其中,所述第一屏蔽环与所述接地层之间的最小间隙为第一间隙, 所述第一屏蔽环与所述第二屏蔽环的最小间隙为第二间隙。
本发明的固体绝缘开关设备, 具有本发明的气体间隙绝缘结构。
本发明的有益效果在于, 本发明的气体间隙绝缘结构, 优化了固体绝缘结构中气体间 隙绝缘结构的设计。通过在固体绝缘材料中内嵌屏蔽结构, 发挥了固体绝缘材料高的击穿 场强的优势; 通过在屏蔽环与气体之间设置起到中间屏蔽作用的悬浮电位屏蔽环, 使得固 体绝缘结构中的气体断口场强分布更加均匀, 不会超过气体的击穿场强, 形成了固体绝缘 小绝缘间隙与气体绝缘大绝缘间隙的有效过渡。 合理的设计使得整个设备尺寸得以减小, 设备更为紧凑, 并且具有更高的可靠性。
气体间隙绝缘结构作为固体绝缘开关设备的重要结构技术,本发明对解决现有产品绝 缘薄弱环节方面和固体绝缘设备的小型化方面, 具有非常重要作用, 经济效益可观。 附图说明
图 1A为本发明第一实施例的气体间隙绝缘结构示意图。
图 1B为图 1A中的屏蔽环的剖面详图。
图 1C为图 1A的尺寸注释图。
图 1D为本发明实施例的气体间隙绝缘结构中的屏蔽环及其网孔示意图。
图 1E为本发明第一实施例的气体间隙绝缘结构中的悬浮电位屏蔽环的 1/4剖视图。 图 2A和图 2B为本发明第一实施例的气体间隙绝缘结构用于三位置开关的示意图。 图 3为本发明第一实施例气体间隙绝缘结构用于断路器极柱的示意图。
图 4A为本发明第二实施例的气体间隙绝缘结构示意图。
图 4B为图 4A中的屏蔽环的剖面详图。
图 4C为图 4A的尺寸注释图。
图 5为本发明第二实施例气体间隙绝缘结构用于三位置开关的示意图。
图 6为本发明第二实施例气体间隙绝缘结构用于断路器极柱的示意图。 具体实施方式
体现本发明特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本发明 能够在不同的实施例上具有各种的变化, 其皆不脱离本发明的范围, 且其中的说明及附图 在本质上是当作说明之用, 而非用以限制本发明。
本发明的固体绝缘开关设备, 具有本发明实施例的气体间隙绝缘结构。
下面具体介绍本发明各实施例的气体间隙绝缘结构。
本发明第一实施例的气体间隙绝缘结构的思路是在对称气体间隙的电压梯度方向上, 使气体在固体与气体界面附近场强能够在不超过其击穿场强的水平下均匀分布,从而使气 体断口的长度最小, 使得整个绝缘结构更加紧凑, 发挥出固体绝缘技术的优势。 本发明的 固体绝缘开关设备, 主要为中高压的固体绝缘开关设备。
如图 1A所示, 本发明第一实施例的气体间隙绝缘结构, 包括: 固体绝缘壳体 1 (以 下简称壳体 1 ) 、 导体 2、 导体 3和气体 4, 导体 2和导体 3分别位于气体 4的两侧, 壳体 1包括接地层 5及形成于壳体 1 自身内的屏蔽环 102和屏蔽环 103, 特别的还包括形成于 壳体 1 自身内的屏蔽环 101, 其作为悬浮电位, 也称悬浮电位屏蔽环 101。 如图 1A所示, 在壳体 1自身中, 悬浮电位屏蔽环 101是在屏蔽环 102与屏蔽环 103的内侧。 本实施例的气体间隙绝缘结构既适用于固体绝缘设备中的隔离开关断口, 即对称气体 间隙绝缘结构; 也适用于断路器操作端对地绝缘、 隔离开关操作端对地端绝缘以及接地开 关的气体断口, 即非对称气体间隙绝缘结构。
导体 2、 导体 3分别与屏蔽环 102、 蔽环 103形成固定导电连接。 导体 2、 导体 3按照 不同的运行工况, 均有带电和接地两种可能, 其中导体 2、 导体 3均带电时, 其对地电压 可能不同。
由于接地层 5的设置, 导体 2与导体 3间及其与接地层 5之间形成强电场区域; 屏蔽 环 102与屏蔽环 103之间形成固体绝缘断口,把高的场强限制在接地层 5与屏蔽环 102和 屏蔽环 103之间区域, 有效的控制了导体 2、 导体 3与壳体 1及气体 4的三种介质交界处 A附近场强超出气体 4耐受水平的问题, 以及其接合面局部生产中浇注缺陷所引发的绝缘 故障及局放问题。
悬浮电位屏蔽环 101的设置使得气体 4在壳体 1内表面与其两介质界面 B沿面的场强 分布更加均匀, 有效的避免了该界面局部场强超过气体 4耐受水平的问题, 从而使得导体 2与导体 3间的气体 4断口长度最小。
壳体 1通常由固体绝缘材料如环氧树脂加填料浇铸而成, 壳体 1外表面设接地层 5。 壳体 1也可以是其它新型的绝缘材料制成。
屏蔽环 101、 屏蔽环 102、 屏蔽环 103 由导电材料制成, 通常采用温度系数与壳体 1 材料温度系数接近的材料, 如铝或铝合金等。
具体的讲, 如图 1B所示, 屏蔽环 102包括弯折部 1021、平行部 1022和连接部 1023, 平行部 1022与整个气体间隙绝缘结构的轴线 m相互平行, 连接部 1023用于连接导体 2, 而弯折部 1021的设置是为防止放电。 同样, 屏蔽环 103也包括弯折部 1031、 平行部 1032 和连接部 1033, 平行部 1032与整个气体间隙绝缘结构的轴线 m相互平行, 连接部 1033 用于连接导体 3。 在部分实施例中, 连接部 1023、 1033可省略, 而由平行部 1032直接接 地或者 1023连接导体,例如图 2A中的屏蔽环 108左端。而屏蔽环 101则包括平行部 1011 及平行部 1011两端的弯折部 1012、 1013。 其中, 弯折部 1012与弯折部 1021相对, 且弯 折方向相反, 弯折部 1013则与弯折部 1031相对, 且弯折方向相反。 另外, 上述各弯折部 的弯折形状相同, 优选的是圆弧形, 且是曲率半径相同的圆弧形。
图 1C为图 1A中关键尺寸的注释图。 为了获得更为紧凑的结构, 如图 1C所示, 本实 施例的气体间隙绝缘结构中,屏蔽环 103的平行部 1032与轴线 m的间距 rl,及屏蔽环 102 的平行部 1022与轴线 m的间距 r2均应大于屏蔽环 101的平行部 1011与轴线 m的间距 r3 且小于接地层 5与轴线 m的间距 r4, 即屏蔽环 102与屏蔽环 103应位于悬浮电位屏蔽环 101与接地层 5之间, 或者说悬浮电位屏蔽环 101位于屏蔽环 102与屏蔽环 103的内侧。 屏蔽环 103和屏蔽环 102分别与悬浮电位屏蔽环 101形成的最小间隙的长度 dl, d2,也即 屏蔽环 103的平行部 1032与屏蔽环 102的平行部 1022与悬浮电位屏蔽环 101的最小距离 dl, d2, 均应小于屏蔽环 102与屏蔽环 103之间的最小间隙的长度 d3, 同时悬浮电位屏蔽 环 101的轴向长度 d4应大于屏蔽环 102与屏蔽环 103之间的最小间隙的长度 d3, 且长度 dl+长度 d2大于等于长度 d3。
另外, 优选的, 屏蔽环 101的轴向长度 d4约为导体 2与导体 3之间的气体 4断口长 度 d5的 0.3-0.4倍。
因此, 本实施例中, 通过将屏蔽环 101靠近屏蔽环 102和屏蔽环 103, 将屏蔽环 101 与屏蔽环 102的最小间隙形成在弯折部 1012与平行部 1022之间,将屏蔽环 101与屏蔽环 103的最小间隙形成在弯折部 1013与平行部 1032之间,来减少壳体 1自身的径向长度 r5, 同时还可达到减小断口长度 d5的目的, 来实现本发明气体间隙绝缘结构的小型化。
悬浮电位屏蔽环 101、屏蔽环 102、屏蔽环 103、屏蔽环 108在其工作场强值较小的位 置可冲有网孔, 以屏蔽环 108为例, 如图 1D所示, 屏蔽环 108具有平行部 1081和弯折部 1082, 在其平行部 1081冲有网孔 1080。在注塑时, 环氧树脂可以通过网孔 1080而将网孔 1080两侧的环氧树脂连接起来, 以提高屏蔽环 101、 102、 103、 108与绝缘壳体 1的材料 (例如环氧树脂) 的结合强度。 同时, 为了工艺的需要, 悬浮电位屏蔽环 101中央的位置 还具有凸起 1014, 如图 1E所示。 本发明第二实施例的气体间隙绝缘结构的悬浮电位屏蔽 环 109, 也具有同样作用的凸起 1095。
图 2A和图 2B所示为本发明第一实施例的气体间隙绝缘结构用于固体绝缘隔离接地 的三位置开关的实施例示意图,所述三位置开关具有中间触座 2'、隔离触座 3'、动触头 6、 绝缘操作杆 7和接地触座 8,而本实施例的气体间隙绝缘结构包括具有接地层 5的壳体 1、 动触头 6与隔离触座 3'之间的气体 4以及屏蔽环 101、 102、 103、 108、 109, 其中屏蔽环 101和屏蔽环 109为悬浮电位。
中间触座 2'与隔离触座 3'之间形成隔离断口。按照不同的运行工况, 中间触座 2'与隔 离触座 3'均有带电和接地两种可能, 其中中间触座 2'、 隔离触座 3'均带电时, 其对地电压 可能不同, 因而本实施例的三位置开关中的该类型断口为对称气体间隙绝缘结构。
中间触座 2'与接地触座 8间形成对地绝缘间隙。按照不同的运行工况,仅中间触座 2' 有带电和接地两种可能, 接地触座 8保持和地电位连通, 因而本实施例的三位置开关中的 该类型断口为非对称气体间隙绝缘结构。
如图 2A所示, 图 2A中, 三位置开关中的隔离开关处于分闸状态。 本发明第一实施 例的气体间隙绝缘结构的屏蔽环 102、 屏蔽环 103以及屏蔽环 101的设置可以使隔离断口 区域的气体 4在绝缘壳体内表面的沿面场强分布更加均匀。
如图 2B所示, 图 2B中, 三位置开关中的接地开关处于分闸状态。 本发明第一实施 例的气体间隙绝缘结构的屏蔽环 102、 屏蔽环 108以及悬浮电位屏蔽环 109的设置也可以 使中间触座 2'对地绝缘间隙的气体 9在绝缘材料内表面的沿面场强分布更加均匀。
另外, 本实施例中, 接地断口内设置了绝缘操作杆 7, 由于绝缘操作杆 7的轴线方向 与对地气体间隙电压梯度的方向一致, 通常不会对其周围气体的电场分布造成不良影响, 可以忽略其影响。
图 3为本发明第一实施例的气体间隙绝缘结构在固体绝缘断路器极柱中的应用,其中 断路器极柱具有导体嵌件 2"、真空灭弧室 10和绝缘操作杆 7, 真空灭弧室 10动端通过绝 缘拉杆 7进行分合闸操作。本发明第一实施例的气体间隙绝缘结构包括具有接地层 5的壳 体 1、 气体 9以及屏蔽环 102、 108、 109, 其中屏蔽环 109为悬浮电位屏蔽环。
其中屏蔽环 102的一端与屏蔽环 108—端之间具有间隙,屏蔽环 102的另一端与导体 嵌件 2"导电连接, 屏蔽环 108的另一端则与地电位连通。 本发明的气体间隙绝缘结构可 以很好的解决断路器分合闸位置时,壳体 1内表面与气体 4两介质界面 B附近气体的场强 超标问题, 而不使操作杆部分的结构复杂化。
上述的第一实施例的气体间隙绝缘结构, 在如图 2B和图 3的应用中, 根据图 1中所 示的第一实施例的气体间隙绝缘结构的思路, 可以得到更加优化、 结构更加简单的非对称 气体间隙绝缘结构的屏蔽结构方案, 即本发明第二实施例的气体间隙绝缘结构。
如图 4A所示,用于固体绝缘开关设备中的本发明第二实施例的气体间隙的绝缘结构, 包括: 具有接地层的壳体 1、 导体 2、 地电位导体 8、 气体 9、 以及屏蔽环 102、 109, 其中 屏蔽环 109为悬浮电位屏蔽环。
如图 4B所示, 屏蔽环 102具有连接部 1023、 水平部 1022和弯折部 1021, 而屏蔽环 109则具有弯折部 1093、 水平部 1091、 倾斜部 1092和弯折部 1094, 导体 2与屏蔽环 102 的连接部 1023形成固定导电连接, 屏蔽环 109嵌入壳体 1 中, 为悬浮电位, 屏蔽环 109 的水平部 1091位于屏蔽环 102的水平部 1022的内侧, 倾斜部 1092向着靠近弯折部 1021 的方向倾斜, 水平部 1091与倾斜部 1092的夹角例如为 45度到 150度, 优选的为 120度。 导体 2按照不同的运行工况, 有带电和接地两种可能。 由于接地层 5的设置, 导体 2 与接地层 5之间形成强电场区域; 又由于内部的屏蔽环 102的设置, 在壳体 1形成端部对 地屏蔽结构, 把高的场强限制在接地层 5与屏蔽环 102之间的区域, 有效的控制了导体 2 与壳体 1及气体 4的三介质交界处 A附近场强超出气体 4耐受水平的问题,以及其接合面 局部生产中浇注缺陷所引发的绝缘故障及局放问题。
悬浮电位屏蔽环 109的设置,使得壳体 1与气体 9两介质界面 B的场强分布更加均匀, 有效的避免了该界面局部场强超过气体 4耐受水平的问题,从而使得导体 2与地电位导体 8之间的气体 9断口长度最小。
参考图 4C为图 4A所示的本发明第二实施例的气体间隙绝缘结构的几个关键尺寸的 注释图。 为了获得更为紧凑的结构, 如图 4C所示, 屏蔽环 102的平行部 1022与轴线 m 的间距 r2应大于屏蔽环 109的平行部 1091与轴线 m的间距 r3且小于接地层 5与轴线 m 的间距 r4, 在悬浮电位屏蔽环 109靠近导体 2的一侧, 也即屏蔽环 109的平行部 1091的 一侧, 屏蔽环 102位于屏蔽环 109与绝缘壳体 1的接地层 5之间, 屏蔽环 102与悬浮电位 屏蔽环 109形成的间隙的长度 d2,在悬浮电位屏蔽环 109靠近地电位导体 8的一侧,屏蔽 环 109向接地层 5弯折,屏蔽环 109与接地层 5间形成长度 d6的最小间隙 (也是屏蔽环 109 与接地层 5之间的最短距离)。
调整长度 d2、 d6及 Θ角的配合, 可以获得较佳的电场分布。 其中, 优选的是长度 d2 等于长度 d6。 并且, 长度 d6小于平行部 1022与接地层 5之间的径向距离。
另外, 本实施例中, 上述各弯折部的弯折形状相同, 优选的是圆弧形, 且是曲率半径 相同的圆弧形。
本发明第二实施例的气体间隙绝缘结构, 可以用于三位置开关, 如图 5所示, 在图 5 中, 三位置开关的接地开关处于分闸状态。 屏蔽环 102、 悬浮电位屏蔽环 109的设置也可 以使中间触座 2'对地绝缘间隙的气体 9在绝缘材料内表面的沿面场强分布更加均匀。
本发明第二实施例的气体间隙绝缘结构, 也可以用于断路器极柱, 断路器自身的结构 与图 3所示相同, 如图 6所示, 本发明第二实施例的气体间隙绝缘结构, 也可以很好的解 决断路器分合闸位置时, 壳体 1内表面与气体 4两介质界面 B附近气体的场强超标问题, 使得断路器极柱的结构更加简洁。
本发明各实施例的气体间隙绝缘结构, 由于接地层 5的设置, 不同电位的导体与导体 以及接地层 5之间形成强电场区域; 在壳体 1内部设置固体绝缘断口, 把高的场强区域限 制在接地层 5与高电位屏蔽环之间区域,有效的控制了高电位导体与壳体 1及气体 4的三 介质交界处附近场强超出气体耐受水平的问题, 以及其接合面局部生产中浇注缺陷所引发 的绝缘故障及局放问题。 悬浮电位屏蔽环 101、 109的设置使得气体 4在壳体 1 内表面与 气体两介质界面附近的场强更加均匀,有效的避免了该界面附近局部场强超过气体耐受水 平的问题, 使得不同电位的导体间的气体断口长度最小。 并且, 可以通过调节最小间隙的 形成位置, 实现减小壳体 1的径向尺寸, 并可进一步减小气体端口轴向长度的目的, 使得 结构更紧凑, 达到小型化的目的。
本领域技术人员应当意识到在不脱离本发明所附的权利要求所揭示的本发明的范围 和精神的情况下所作的更动与润饰, 均属本发明的权利要求的保护范围之内。

Claims

权利要求
1.一种气体间隙绝缘结构, 用于固体绝缘开关设备, 其特征在于, 所述气体间隙 绝缘结构包括:
具有接地层的固体绝缘壳体;
所述固体绝缘壳体内的气体及由所述气体绝缘的第一导体和第二导体; 所述固体绝缘壳体自身内设置的第二屏蔽环、 第三屏蔽环和作为悬浮电位的第 一屏蔽环, 所述第二屏蔽环连接所述第一导体, 所述第三屏蔽环连接所述第二导体, 所述第一屏蔽环设置于所述第二屏蔽环和所述第三屏蔽环内侧。
2.如权利要求 1所述的气体间隙绝缘结构, 其特征在于,
所述第一屏蔽环具有第一平行部、 第一弯折部和第四弯折部;
所述第二屏蔽环具有第二平行部、 第二连接部和第二弯折部, 所述第二连接部 连接所述第一导体;
所述第三屏蔽环具有第三平行部、 第三连接部和第三弯折部, 所述第三连接部 连接所述第二导体;
所述第二弯折部与所述第三弯折部的弯折方向相反, 所述第一弯折部与所述第 二弯折部的弯折方向相反, 所述第四弯折部与所述第三弯折部的弯折方向相反, 所 述第二弯折部与所述第三弯折部之间形成所述第一间隙。
3.如权利要求 1所述的气体间隙绝缘结构, 其特征在于,
所述第二导体为地电位导体;
所述第一屏蔽环具有第一平行部、 第一弯折部和第四弯折部;
所述第二屏蔽环具有第二平行部、 第二连接部和第二弯折部, 所述第二连接部 连接所述第一导体;
所述第三屏蔽环具有第三平行部和第三弯折部, 所述第三平行部的远离所述第 三弯折部的一端连接所述地电位导体;
所述第二弯折部与所述第三弯折部的弯折方向相反, 所述第一弯折部与所述第 二弯折部的弯折方向相反, 所述第四弯折部与所述第三弯折部的弯折方向相反, 所 述第二弯折部与所述第三弯折部之间形成所述第一间隙。
4.如权利要求 2或 3所述的气体间隙绝缘结构, 其特征在于, 各所述弯折部均为 曲率半径相同的圆弧形, 所述第一屏蔽环与所述第二屏蔽环之间的最小间隙为第二 间隙, 所述第一屏蔽环与所述第三屏蔽环之间的最小间隙为第三间隙, 所述第二屏 蔽环与所述第三屏蔽环之间的最小间隙为第一间隙;
所述第一间隙的长度大于第二间隙的长度与第三间隙的长度, 所述第二间隙的 长度与所述第三间隙的长度之和大于等于所述第一间隙的长度。
5.如权利要求 4所述的气体间隙绝缘结构, 其特征在于, 所述第一弯折部与所述 第二平行部之间形成所述第二间隙, 所述第四弯折部与所述第三平行部之间形成所 述第三间隙。
6.如权利要求 4所述的气体间隙绝缘结构, 其特征在于, 所述第一屏蔽环的轴向 长度大于所述第一间隙的长度。
7.如权利要求 6所述的气体间隙绝缘结构, 其特征在于, 所述第一屏蔽环的轴向 长度为所述第一导体与第二导体之间气体断口长度的 0.3-0.4倍。
8.如权利要求 5所述的气体间隙绝缘结构, 其特征在于, 所述第一平行部、 所述 第二平行部和所述第三平行部上冲有网孔。
9. 一种气体间隙绝缘结构, 用于固体绝缘开关设备, 其特征在于, 所述气体间 隙绝缘结构包括:
具有接地层的固体绝缘壳体;
所述固体绝缘壳体内的气体及由所述气体绝缘的第一导体和地电位导体; 所述固体绝缘壳体自身内设置的第一屏蔽环和第二屏蔽环, 作为悬浮电位的所 述第一屏蔽环具有倾斜部与第一平行部, 所述第一平行部与所述倾斜部之间具有一 夹角, 所述第二屏蔽环连接所述第一导体, 所述第二屏蔽环具有第二平行部, 所述 第一平行部设置于所述第二平行部内侧;
其中, 所述第一屏蔽环与所述接地层之间的最小间隙为第四间隙, 所述第一屏 蔽环与所述第二屏蔽环的最小间隙为第五间隙。
10.如权利要求 9所述的气体间隙绝缘结构, 其特征在于, 所述夹角为 45度 -150 度。
1 1.如权利要求 10所述的气体间隙绝缘结构, 其特征在于, 所述夹角为 120度。
12.如权利要求 9所述的气体间隙绝缘结构, 其特征在于, 所述第一屏蔽环还包 括临近所述倾斜部的第一弯折部和临近所述第一平行部的第二弯折部, 所述第二弯 折部与所述第二平行部之间形成所述第五间隙, 所述第一弯折部与所述接地层之间 形成所述第四间隙, 所述第二屏蔽环还包括第三弯折部。
13.如权利要求 9所述的气体间隙绝缘结构, 其特征在于, 各所述弯折部均为曲 率半径相同的圆弧形, 所述第四间隙的长度等于所述第五间隙的长度。
14.如权利要求 13所述的气体间隙绝缘结构, 其特征在于, 所述第二平行部与所 述接地层的距离大于所述第四间隙的长度。
15.—种固体绝缘开关设备, 其特征在于, 所述固体绝缘开关设备具有权利要求 1 -14任一所述的气体间隙绝缘结构。
PCT/CN2013/071278 2013-02-01 2013-02-01 固体绝缘开关设备及其气体间隙绝缘结构 WO2014117392A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071278 WO2014117392A1 (zh) 2013-02-01 2013-02-01 固体绝缘开关设备及其气体间隙绝缘结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071278 WO2014117392A1 (zh) 2013-02-01 2013-02-01 固体绝缘开关设备及其气体间隙绝缘结构

Publications (1)

Publication Number Publication Date
WO2014117392A1 true WO2014117392A1 (zh) 2014-08-07

Family

ID=51261442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071278 WO2014117392A1 (zh) 2013-02-01 2013-02-01 固体绝缘开关设备及其气体间隙绝缘结构

Country Status (1)

Country Link
WO (1) WO2014117392A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465213A (zh) * 2014-12-03 2015-03-25 中国西电电气股份有限公司 气体绝缘开关设备及其压气式负荷开关灭弧室
CN108807068A (zh) * 2017-04-26 2018-11-13 伊顿电力设备有限公司 一种固体绝缘筒
WO2025056153A1 (de) * 2023-09-13 2025-03-20 Siemens Energy Global GmbH & Co. KG Leistungsschalter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579017A (en) * 1980-06-20 1982-01-18 Hitachi Ltd Disconnecting switch
EP2249363A1 (en) * 2009-05-07 2010-11-10 ABB Research Ltd. Arrangement, substation, operating method and use of a grounding switch for protecting an electrical circuit against short-line faults
CN201820692U (zh) * 2010-07-21 2011-05-04 广西银河迪康电气有限公司 固体绝缘高压断路器极柱
CN202159894U (zh) * 2011-07-28 2012-03-07 四川电器集团股份有限公司 户内高压固体绝缘隔离开关
CN203205758U (zh) * 2013-02-01 2013-09-18 厦门华电开关有限公司 固体绝缘开关设备及其气体间隙绝缘结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579017A (en) * 1980-06-20 1982-01-18 Hitachi Ltd Disconnecting switch
EP2249363A1 (en) * 2009-05-07 2010-11-10 ABB Research Ltd. Arrangement, substation, operating method and use of a grounding switch for protecting an electrical circuit against short-line faults
CN201820692U (zh) * 2010-07-21 2011-05-04 广西银河迪康电气有限公司 固体绝缘高压断路器极柱
CN202159894U (zh) * 2011-07-28 2012-03-07 四川电器集团股份有限公司 户内高压固体绝缘隔离开关
CN203205758U (zh) * 2013-02-01 2013-09-18 厦门华电开关有限公司 固体绝缘开关设备及其气体间隙绝缘结构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465213A (zh) * 2014-12-03 2015-03-25 中国西电电气股份有限公司 气体绝缘开关设备及其压气式负荷开关灭弧室
CN108807068A (zh) * 2017-04-26 2018-11-13 伊顿电力设备有限公司 一种固体绝缘筒
CN108807068B (zh) * 2017-04-26 2022-11-04 伊顿电力设备有限公司 一种固体绝缘筒
WO2025056153A1 (de) * 2023-09-13 2025-03-20 Siemens Energy Global GmbH & Co. KG Leistungsschalter

Similar Documents

Publication Publication Date Title
CN203205758U (zh) 固体绝缘开关设备及其气体间隙绝缘结构
CN112185752A (zh) 一种固封极柱
WO2016074524A1 (zh) 一种采用桥开关实现负载侧外接地的三工位真空开关
CN105448549A (zh) 接触组件及使用该组件的接地开关、金属封闭开关装置
WO2014117392A1 (zh) 固体绝缘开关设备及其气体间隙绝缘结构
CN206076153U (zh) 真空断路器
CN202816779U (zh) 固体绝缘极柱
CN102881508A (zh) 固体绝缘极柱
CN103594950B (zh) 固体绝缘开关的极柱动端屏蔽结构
CN102780196B (zh) 一种碟式母线套管
CN103117189B (zh) 一种固封极柱及固体绝缘环网柜
CN204332808U (zh) 中压开关柜固封极柱
CN106611937B (zh) 一种用于三工位隔离接地开关接地引出的绝缘装置
CN203895353U (zh) 一种具有插入式接地工位的三工位真空灭弧室
CN104269316B (zh) 固封极柱及使用该固封极柱的固体绝缘环网柜
CN104269768B (zh) 屏蔽罩及使用该屏蔽罩的固封极柱和固体绝缘环网柜
CN105762006B (zh) 一种充气柜用大电流固封极柱
CN211350464U (zh) 一种固封极柱和柱上开关
CN204068008U (zh) 一种屏蔽罩及使用该屏蔽罩的固封极柱和固体绝缘环网柜
JP4601203B2 (ja) スイッチギヤ
CN204230090U (zh) 主开关组件
CN209592773U (zh) 一种全屏蔽环网柜极柱
CN102832563A (zh) 一体化浇注固体绝缘接地装置
CN104319167B (zh) 环氧树脂固封双真空灭弧室
CN101479902B (zh) 具有外壳的断路器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873348

Country of ref document: EP

Kind code of ref document: A1