WO2014114859A1 - Appareil d'assistance respiratoire avec turbine insonorisée - Google Patents

Appareil d'assistance respiratoire avec turbine insonorisée Download PDF

Info

Publication number
WO2014114859A1
WO2014114859A1 PCT/FR2014/050041 FR2014050041W WO2014114859A1 WO 2014114859 A1 WO2014114859 A1 WO 2014114859A1 FR 2014050041 W FR2014050041 W FR 2014050041W WO 2014114859 A1 WO2014114859 A1 WO 2014114859A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
engine
turbine
central element
central
Prior art date
Application number
PCT/FR2014/050041
Other languages
English (en)
Inventor
Pierre-Emmanuel DUBOIS
Original Assignee
Air Liquide Medical Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Medical Systems filed Critical Air Liquide Medical Systems
Publication of WO2014114859A1 publication Critical patent/WO2014114859A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/664Sound attenuation by means of sound absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3606General characteristics of the apparatus related to heating or cooling cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/362General characteristics of the apparatus related to heating or cooling by gas flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/42Reducing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/68Assembly methods using auxiliary equipment for lifting or holding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • F05D2300/437Silicon polymers

Definitions

  • the invention relates to a breathing apparatus equipped with a micro-blower or motorized turbine for generating a flow of gas under pressure, in particular an air flow. More particularly, the invention relates to the soundproofing of the turbine within the breathing apparatus to reduce noise pollution, the cooling of the engine by forced convection and the holding in place of said turbine during operation. by adding a three-dimensional structure of particular shape.
  • Some respiratory assistance devices use micro-blowers or turbines for generating a pressurized gas, usually air or oxygen-enriched air, which is then sent to a user's airway. .
  • a turbine of this type is described in particular by the document EP-A-2102504 which teaches a respiratory assistance apparatus allowing regulated delivery of a gas, in particular air, by means of a turbine comprising a housing, a duct an air inlet defined by the housing, a volute whose inlet opening is in communication with the air supply duct, a finned wheel located immediately downstream of the inlet opening of the volute, comprising an inlet opening connected to this inlet opening of the volute and outlet openings opening into the volute, and a motor 1 for driving the wheel in rotation so as to generate an air flow centrifugal in the volute.
  • micro-blowers or turbines One of the problems that arises with micro-blowers or turbines is that of noise emissions, that is to say the noise they generate.
  • respiratory assistance devices equipped with these micro-blowers or turbines are intended to be used in hospital or at home, so the noise emitted during the operation of the motor 1 and the rotation of the impeller must be as low as possible.
  • any soundproofing system of the turbine must not oppose or interfere with maintaining the correct position of the turbine and if possible be able to provide a shock stop function.
  • the turbines are generally held in place by dampers arranged at the bottom of the turbine and at its volute and its outlet pipe of the gas under pressure, as shown in Figure 1.
  • the soundproofing system and the damping devices must not oppose, or as little as possible, the cooling of the turbine, in particular of its engine.
  • DE-A-10202814 proposes a three-dimensional structure for attenuating the noise of an electric motor and acting as a damper.
  • This structure is positioned around the electric motor so as to form an insulating sleeve around it.
  • Such a structure which is intended for electric motor vehicles does not solve the problem of engine cooling. Indeed, it comes to marry the shape of the engine by coming to bear on its entire outer surface, which does not ensure effective cooling of the engine.
  • the problem is to allow both to limit or reduce the noise emitted by the turbine of a respirator without causing significant overheating of the engine, while ensuring a stop function of shock or damper but without impeding the maintenance in the correct position of the turbine or complicate the assembly and architecture of the equipment and equipped.
  • the solution is a respiratory assistance device comprising a turbine comprising a motor cooperating with a finned wheel to generate a flow of gas, in particular an air flow, and soundproofing means arranged around at least a part of the turbine, characterized in that the soundproofing means comprise a three-dimensional structure arranged around at least a portion of the engine, comprising:
  • At least one central element defining a central housing forming a sleeve around at least a portion of the motor while being spaced from said motor, that is to say around around at least a part of the height of said motor, the space formed between the wall of the motor and the wall delimiting the central housing of the central element creating a forced convection corridor around the engine to cool it by a flow of air circulating within said space, a plurality of spacer elements each comprising at least one wall projecting radially outwards, said spacer elements being arranged at the periphery of the tubular element, and
  • At least one holding element coming to bear on the motor so as to maintain the three-dimensional structure in position around said motor.
  • the invention may include one or more of the following technical characteristics:
  • the spacing between the outer wall of the motor and the inner wall of the central element is between 1 and 10 mm, when the motor is positioned in the inner housing of the central element.
  • the central element defines a central housing forming sleeve around the entire height of the motor being spaced from said motor.
  • the spacer elements each comprise at least one wall projecting radially outwardly away from the engine and the central housing.
  • the spacer elements are all of the same shape or structure or, alternatively, all or part of the spacer elements have different shapes or structures.
  • the spacer elements have a "U”, "V”, “W”, “X”, “I”, “M”, “O”, “S”, “Z” section ",” H ",” J "or others.
  • the height of the spacer elements is less than or equal to the height of the central element.
  • the central element is tubular, preferably cylindrical or conical, more preferably cylindrical.
  • the central housing of the central element forming a sleeve around at least a portion of the motor being spaced from said motor has an internal profile matching the outer profile (i.e. the periphery) of the motor.
  • the three-dimensional structure comprises at least one first and at least one second holding element, the central element being arranged between said first and second holding elements.
  • the first holding element is fixed to the central element by means of one or more connecting elements.
  • the second holding element is fixed to the spacer elements by means of wall expansions.
  • the holding elements are of annular shape.
  • the holding elements are selected from the necklaces and retaining rings.
  • the three-dimensional structure comprises a crown-shaped base carrying the spacer elements and / or the central element.
  • the ring-shaped holding elements have an internal diameter d which is smaller than the internal diameter D of the central housing of the central element, i.e. d ⁇ D.
  • the three-dimensional structure comprising the central element, the holding elements, the spacer elements, the wall expansions and the joining elements is formed in one piece.
  • At least one air supply duct shaped to introduce, guiding, a flow of air in the spacing between the central element and the motor body so that, when passing through said spacing , said airflow operates a sweeping of the engine surface and a cooling of said engine, that is to say an evacuation of at least a portion of the calories (heat) emitted by the engine by heat exchange with the flow of air sweeping its outer surface.
  • the supply duct has a general shape of nozzle or funnel surrounding the engine and more specifically the base or lower part of the engine.
  • the supply duct is shaped to have a shape of a nozzle or funnel for collecting and guiding the air so that it passes in the space and can sweep the motor.
  • the supply duct is arranged at the bottom of the engine, that is to say at the base or part of the engine located at its lower end located on the side opposite the propeller. Conversely, the upper part of the engine is the one located on the side of the propeller.
  • the spacing between the central element and the motor body is shaped to guide or convey the flow of air in the direction from the lower part of the engine to its upper part.
  • the air supply duct is integral with the three-dimensional structure, that is to say formed integrally therewith or fixed thereto.
  • At least one air inlet is provided and arranged to feed the air supply duct and then the spacing between the central element and the motor body with a flow of air coming from the ambient atmosphere. .
  • the circulation of the air flow is obtained by suction of the air by rotating the propeller driven by the engine.
  • said at least one air inlet is in fluid communication
  • the spacing between the central element and the motor body is shaped to guide or convey the air flow in the direction from the upper part of the engine to its lower part.
  • an independent fan is used to introduce air into said spacing, with cooling air inlet on the side of the upper part of the engine and air outlet in the lower part of the engine.
  • the three-dimensional structure is formed of a soundproofing material adapted to absorb at least a portion of the sound emissions emitted by the engine, preferably the soundproofing material is elastomer, in particular silicone or TPE.
  • volute comprising an internal compartment including the impeller, and at least a portion of an exhaust duct for conveying gas discharged by said impeller, and
  • an inlet pavilion comprising an inlet opening through which gas is drawn off when the vaned wheel is rotated by the electric motor, the vaned wheel being located immediately downstream of the inlet opening of the entrance pavilion, said entrance pavilion surmounting the volute.
  • FIG. 1 represents a micro-blower or turbine arranged in a breathing apparatus according to the prior art
  • FIGS. 2 and 3 show schematically an embodiment of a three-dimensional structure equipping the micro-blower or turbine of a respiratory assistance apparatus according to the present invention, in plan view and in sectional view, respectively, and
  • Figure 4 shows the three-dimensional structure of Figures 2 and 3 extracted from the turbine.
  • Figure 1 shows a motorized micro-blower or turbine arranged in a breathing apparatus according to the prior art.
  • the turbine 30 comprises an electric motor 1 which makes it possible, via a rotary axis, to drive a fin wheel 25 (see FIG 3) for generating a flow of gas, typically a flow of air.
  • the paddle wheel 25 is in a volute 7 which overcomes the motorized turbine 30 and forms a cowling comprising a lower part of volute 7b, commonly called lower volute, and an upper part of volute 7a, called upper volute, coming to connect to each other, generally by bonding to one another, and define between them an internal space or internal compartment including the impeller, that is to say that the finned wheel is taken "Sandwich" in the internal compartment arranged in the lower parts 7b and 7a upper volute.
  • the supply air is sucked by the finned wheel through an inlet flag 8 comprising a central passage, that is to say an opening through which the air sucked by the impeller 25 passes through. which is located immediately downstream of the inlet opening 8 of the volute.
  • the air is then sent to the user by the impeller 25, via a gas discharge duct 9, in the form of a centrifugal air flow generated by the rotation of the impeller 25 when is driven by the motor 1.
  • damping holding devices 3, 4 and 5 located in particular at the base (in 5) turbine 1 of the turbine 30, and on both sides (3 and 4) of the volute 7, in particular at the exhaust duct 9 gas.
  • the turbine assembly 1, 7, 8 is incorporated in a soundproofing box 10 arranged around the turbine assembly 30 and comprises a peripheral soundproofing mass typically formed of synthetic foam.
  • the present invention proposes, in particular in order to attenuate the noise generated by the turbine 30, during its operation, as used in conventional fans, by a compact three-dimensional structure having a particular architecture forming a sleeve around a portion of the turbine 30, that is to say around the outer wall of the engine 1, also called engine cowling 1.
  • the three-dimensional structure 20 thanks to its particular shape or architecture, also makes it possible to ensure not only a correct cooling of the motor 1 by forced convection via a flow of sweeping air, as explained hereinafter, but also a good maintenance in place of the turbine 30 during its operation.
  • the three-dimensional structure 20 thus schematically replaces the space 2 and the dampers 3, 4, 5 shown in Figure 1 and used in conventional turbines, but while promoting the cooling of the engine 1 by a cooling air flow.
  • FIGS. 2 and 3 there is shown a turbine 30 provided with a three-dimensional structure 20 according to the present invention, namely a turbine 30 comprising an electric motor 1 which makes it possible to drive, via its rotary axis, a finned wheel 25 for generating the flow of air.
  • the vane wheel 25 is in a volute 7 which overcomes the turbine 30 with an internal space or compartment including the vane wheel 25.
  • the air is sucked by the impeller 25 through an inlet flag 8 with a central passage, and then sent to the user via the evacuation duct 9.
  • the apparatus at its base, for example, via one or more air inlets, before being directed and guided by a duct 20d in the form of a nozzle, arranged around the lower part of the turbine 1, so as to go up along the outer wall of the engine 1 by operating a gaseous sweep thereof, thus an evacuation of the calories emitted by said electric motor 1 which results in efficient cooling of the engine 1, as explained below.
  • the noise emissions are also attenuated by means of soundproofing means comprising the three-dimensional structure forming a sleeve around at least a part of the engine 1, that is to say around its cowling or its peripheral wall enclosing the engine components, in particular the rotor, the stator, etc.
  • the motor 1 makes it possible to drive the impeller 25 at a speed of between 0 and 100,000 rpm, typically between 10,000 and 70,000. rev / min.
  • the three-dimensional structure 20 comprises, in the embodiment detailed in FIG. 4, a central element 20a defining a central housing 20g forming a sleeve around at least a portion of the motor 1 while being spaced from said motor 1.
  • the central housing 20g has a generally tubular shape, for example cylindrical.
  • the space formed between the wall of the engine 1 and the wall delimiting the central housing 20g of the central element 20a then creates a forced convection corridor around the engine 1 to cool it by airflow.
  • the distance between the wall of the motor 1 and the wall defining the central housing 20g is preferably between 1 and 10 mm, typically of the order of about 3 mm.
  • the central element 20a carries several spacer elements 20b, preferably from 2 to 30 spacer elements, typically from 4 to 20 spacer elements, each comprising at least one wall projecting radially outwards, that is to say in away from the engine 1 located in the central housing 20g.
  • the spacer elements 20b are arranged at the periphery of the tabular element 20a by being angularly distributed around said periphery.
  • the spacer elements 20b are thus directed radially outwards and come to bear on the inner surface of the housing 23 enclosing the turbine assembly.
  • the spacers 20b may have, in plan view, a "U” or “V” shape as illustrated in FIG. 2 or take other shapes, for example “W”, “X”, “I”, in “M”, “O”, “S”, “Z”, "H”, “J” or others.
  • spacers 20b can extend over all or part of the height of the motor 1. These spacer elements 20b are used to maintain the position of the turbine 30 in the housing 23, vibration damping and act as a stop in case of shock.
  • one or more holding elements 20c are provided that bear on the periphery of the motor 1.
  • the holding elements 20c are two clamps or retaining rings 20c encircling the motor 1 of the turbine 30 so as to maintain the motor 1 in a fixed position in the three-dimensional structure 20.
  • the holding elements 20c are integral with the tubular element 20a. More specifically, here, a first annular retaining element 20c is fixed directly to the central element 20a via a plurality of junction elements 20f, while a second retaining element 20c, also of annular shape. is directly attached to the spacer members 20b through wall expansions 20e, which spacer members 20b are themselves carried by the central member 20a.
  • the ring-shaped holding elements 20c such as rings or collars, have an internal diameter d which is smaller than the internal diameter D of the central housing 20g of the element central 20a, which is cylindrical internal shape, ie d ⁇ D.
  • the inner diameter of the holding elements 20c is chosen so as to fit the outer diameter of the motor 1 of the turbine 30 so as to ensure effective maintenance of said motor 1 and thus to reduce the vibrations generated by the operation of the motor 1 of the turbine.
  • junction elements 20f and the wall expansions 20e make it possible to create the spacing, typically between 1 and 10 mm, between the outer wall of the motor 1 and the inner wall of the central element 20a when the engine 1 is positioned in the inner housing 20g of the central element 20a, this spacing allowing gas circulation and cooling of the engine 1.
  • the three-dimensional structure 20 comprises a crown-shaped base 20h carrying the spacer elements 20b and the central element 20a.
  • This base 20h serves as a base for the entire three-dimensional structure 20 when it is positioned in the cowling 23.
  • the supply duct 20d is intended to guide the flow of gas towards the walls of the engine and to position the turbine assembly axially inside the casing.
  • the supply duct 20d is a kind of funnel or nozzle which makes it possible to concentrate the ambient air towards the entry of the air column made between the central element 20a and the body of the engine 1, smoothly and gradually so as not to create turbulence, as shown in Figure 4.
  • the air flow therefore operates a gaseous sweep of the engine surface and a cooling of said engine, that is to say an evacuation by thermal exchange of at least a portion of the calories (heat) emitted by the engine by heat exchange with the air flow sweeping its outer surface.
  • the supply duct 20d has the general shape of a nozzle or funnel surrounding the base or lower part of the engine 1, as can be seen in FIG. 3.
  • the supply duct 20d allows to collect and guide the flow of air so that it flows through the spacing, in the direction from bottom to top in Figure 3, while sweeping the engine 1.
  • the base of the engine 1 is the part of the engine located at its lower end located on the opposite side to the propeller, that is to say on the side of the cable 11 of FIG. 3.
  • the upper part of the engine motor 1 is that located on the side of the helix or impeller 25.
  • the air supply duct 20d is integral with the three-dimensional structure 20 according to the invention, that is to say formed integrally therewith or fixed thereto.
  • One (or more) air inlet is provided in the apparatus so as to supply the air supply duct 20d, and then the downstream spacing, with a flow of air from the ambient atmosphere.
  • the circulation of the air flow is obtained by suction of the air by rotating the finned wheel 25 driven by the engine 1.
  • the air inlet is in fluid communication either directly with the air supply duct 20d or indirectly with it via an internal gas circuit itself in fluid communication with said air supply duct. 20d.
  • the shape at the end of the supply duct 20d on the largest diameter has the function of producing an axial abutment stop in translation during the insertion of the turbine assembly composed of the turbine elements 30, volute 7, roof 8 and three-dimensional structure 20, inside the cylindrical cavity of the housing 23.
  • the base of the bottom is divided into two parts, namely the most central part 20h, funnel-shaped, which guides the flow to the space between the engine and the part 20a, and the larger part 20d diameter, which allows to position axially the turbine assembly inside the housing 23.
  • the three-dimensional structure 20 is preferably formed of an elastomeric material capable of absorbing at least a portion of the solid and acoustic vibrations of the turbine 30.
  • the soundproofing structure 20 may be made of rubber, silicone or TPE (thermo-plastic). Elastomer plastic).
  • the entire three-dimensional structure is formed in one piece, for example by molding or the like.
  • the motor 1 of the turbine 30 is in fact inserted into the three-dimensional structure 20 in the manner of a sleeve or a "sock", before being put into place in the cowling 23.
  • This structure 20 makes it possible to stop and / or absorb as closely as possible, all or part of the noise emissions generated by the engine 1 and the high speed rotation of the impeller 25, while ensuring good cooling of the engine 1, as well as the amortization of any shocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Thermal Sciences (AREA)
  • Emergency Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Power Engineering (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention porte sur un appareil d'assistance respiratoire comprenant une turbine (30) comprenant un moteur (1) coopérant avec une roue à ailettes (25) pour générer un flux de gaz et des moyens d'insonorisation agencés autour d'au moins une partie de la turbine (30). Les moyens d'insonorisation comprennent une structure tridimensionnelle (20) agencée autour d'au moins une partie du moteur (1), comprenant au moins un élément central (20a) définissant un logement central (20g) formant manchon autour d'au moins une partie du moteur (1) en étant espacé dudit moteur (1), plusieurs éléments espaceurs (20b) comprenant chacun au moins une paroi se projetant radialement vers l'extérieur, lesdits éléments espaceurs (20b) étant agencés à la périphérie de l'élément tubulaire (20a), et au moins un élément de maintien (20c) venant prendre appui sur le moteur (1) de manière à maintenir la structure tridimensionnelle (20) en position autour dudit moteur (1).

Description

Appareil d'assistance respiratoire avec turbine insonorisée
L'invention concerne un appareil d'assistance respiratoire équipé d'une micro- soufflante ou turbine motorisée destinée à générer un flux de gaz sous pression, en particulier un flux d'air. Plus particulièrement, l'invention porte sur l'insonorisation de la turbine au sein de l'appareil d'assistance respiratoire pour réduire les nuisances acoustiques, sur le refroidissement du moteur par convection forcée et sur le maintien en place de ladite turbine pendant son fonctionnement par ajout d'une structure tridimensionnelle de forme particulière.
Certains appareils d'assistance respiratoire mettent en œuvre des micro-soufflantes ou turbines servant à générer un gaz sous pression, en général de l'air ou de l'air enrichi en oxygène, qui est ensuite envoyé vers les voies aériennes d'un utilisateur.
Une turbine de ce type est notamment décrite par le document EP-A-2102504 qui enseigne un appareil d'assistance respiratoire permettant une délivrance régulée d'un gaz, notamment d'air, au moyen d'une turbine comprenant un boîtier, un conduit d'amenée d'air délimité par le boîtier, une volute dont l'ouverture d'entrée est en communication avec le conduit d'amenée d'air, une roue à ailettes, située immédiatement en aval de l'ouverture d'entrée de la volute, comprenant une ouverture d'entrée reliée à cette ouverture d'entrée de la volute et des orifices de sortie débouchant dans la volute, et un moteur 1 d'entraînement de la roue en rotation de manière à générer un flux d'air centrifuge dans la volute.
Un des problèmes qui se pose avec les micro-soufflantes ou turbines est celui des émissions sonores, c'est-à-dire du bruit qu'elles génèrent. En effet, les appareils d'assistance respiratoire équipés de ces micro-soufflantes ou turbines sont destinés à être utilisés en milieu hospitalier ou à domicile, donc le bruit émis lors du fonctionnement du moteur 1 et de la rotation de la roue à ailettes doit être aussi faible que possible.
Des solutions ont été proposées à cette fin, notamment une solution répandue consistant à insonoriser l'extérieur de la turbine avec un boîtier d'insonorisation et/ou des mousses ou analogues disposées autour. Ceci permet effectivement d'atténuer le bruit mais en engendrant des contraintes en termes d'encombrement, notamment de volume important occupé par les mousses, comme illustré en Figure 1.
Par ailleurs, tout système d'insonorisation de la turbine ne doit pas s'opposer ou gêner le maintien en position correcte de la turbine et si possible pouvoir assurer une fonction de butée de choc. Dans les dispositifs actuels, les turbines sont généralement maintenues en place par des amortisseurs agencés en partie basse de turbine et au niveau de sa volute et de son conduit de sortie du gaz sous pression, comme illustré en Figure 1.
Or, la mise en place de ces amortisseurs est souvent fastidieuse et leur présence nécessite des aménagements particuliers des boîtiers d'insonorisation à base de mousse périphérique (cf. Fig. 1), ce qui engendre une complexifîcation de l'architecture de l'ensemble et des coûts supplémentaires notamment de montage.
Enfin, le système d'insonorisation et les dispositifs amortisseurs ne doivent pas s'opposer, ou le moins possible, au refroidissement de la turbine, en particulier de son moteur.
En effet, assurer un refroidissement efficace du moteur de la turbine est essentiel pour éviter des problèmes de surchauffe du moteur et sa détérioration prématurée.
Ainsi, le document DE-A-10202814 propose une structure tridimensionnelle permettant d'atténuer le bruit d'un moteur électrique et servant d'amortisseur. Cette structure vient se positionner autour du moteur électrique de sorte de constituer un manchon isolant autour de celui-ci. Toutefois, une telle structure qui est destinée aux véhicules à moteur électrique, ne résout pas le problème de refroidissement du moteur. En effet, elle vient épouser la forme du moteur en venant prendre appui sur toute sa surface extérieure, ce qui ne permet pas d'assurer un refroidissement efficace du moteur.
En d'autres termes, le problème qui se pose est de permettre à la fois de limiter ou de réduire le bruit émis par la turbine d'un appareil respiratoire sans engendrer de surchauffe notable du moteur, tout en garantissant une fonction de butée de choc ou d'amortisseur mais sans pour autant gêner le maintien en position correcte de la turbine ou complexifier le montage et l'architecture des appareils ainsi équipés.
La solution est un appareil d'assistance respiratoire comprenant une turbine comprenant un moteur coopérant avec une roue à ailettes pour générer un flux de gaz, en particulier un flux d'air, et des moyens d'insonorisation agencés autour d'au moins une partie de la turbine, caractérisé en ce que les moyens d'insonorisation comprennent une structure tridimensionnelle agencée autour d'au moins une partie du moteur, comprenant :
- au moins un élément central définissant un logement central formant manchon autour d'au moins une partie du moteur en étant espacé dudit moteur, c'est-à-dire autour d'autour d'au moins une partie de la hauteur dudit moteur, l'espace formé entre la paroi du moteur et la paroi délimitant le logement central de l'élément central créant un couloir de convection forcée autour du moteur pour le refroidir par un flux d'air circulant au sein dudit espace, - plusieurs éléments espaceurs comprenant chacun au moins une paroi se projetant radialement vers l'extérieur, lesdits éléments espaceurs étant agencés à la périphérie de l'élément tubulaire, et
- au moins un élément de maintien venant prendre appui sur le moteur de manière à maintenir la structure tridimensionnelle en position autour dudit moteur.
Selon le cas, l'invention peut comprendre l'une ou plusieurs des caractéristiques techniques suivantes :
- l'espacement entre la paroi externe du moteur et la paroi interne de l'élément central est compris entre 1 et 10 mm, lorsque le moteur est positionné dans le logement interne de l'élément central.
- le flux d'air circulant au sein dudit espace est aspiré par la roue à ailettes.
- l'élément central définit un logement central formant manchon autour de toute la hauteur du moteur en étant espacé dudit moteur.
- les éléments espaceurs comprennent chacun au moins une paroi se projetant radialement vers l'extérieur en éloignement par rapport au moteur et au logement central.
- les éléments espaceurs sont tous de même forme ou structure ou, de façon alternative, tout ou partie des éléments espaceurs ont des formes ou des structures différentes.
- les éléments espaceurs ont une section en « U », en « V », en « W », en « X », en « I », en « M », en « O », en « S », en « Z », en « H », en « J » ou autres.
- la hauteur des éléments espaceurs est inférieure ou égale à la hauteur de l'élément central.
- l'élément central est tubulaire, de préférence cylindrique ou conique, plus préférentiellement cylindrique.
- le logement central de l'élément central formant manchon autour d'au moins une partie du moteur en étant espacé dudit moteur a un profil interne épousant le profil externe (i.e. la périphérie) du moteur.
- la structure tridimensionnelle comprend au moins un premier et au moins un deuxième élément de maintien, l'élément central étant agencé entre lesdits premier et deuxième éléments de maintien.
- le premier élément de maintien est fixé à l'élément central par l'intermédiaire d'un ou plusieurs éléments de jonction.
- le second élément de maintien est fixé aux éléments espaceurs par l'intermédiaire d'expansions de paroi. - les éléments de maintien sont de forme annulaire.
- les éléments de maintien sont choisis parmi les colliers et les bagues de maintien.
- la structure tridimensionnelle comprend une base en forme de couronne portant les éléments espaceurs et/ou l'élément central.
- les éléments de maintien de forme annulaire ont un diamètre interne d inférieur au diamètre interne D du logement central de l'élément central, i.e. d<D.
- la structure tridimensionnelle comprenant l'élément central, les éléments de maintien, les éléments espaceurs, les expansions de paroi et les éléments de jonction est formée d'une seule pièce.
- il comprend au moins conduit d'amenée d'air conformé pour introduire, i.e. guider, un flux d'air dans l'espacement situé entre l'élément central et le corps du moteur de sorte que, lors de son passage dans ledit espacement, ledit flux d'air opère un balayage de la surface du moteur et un refroidissement dudit moteur, c'est-à-dire une évacuation d'au moins une partie des calories (chaleur) émises par le moteur par échange thermique avec le flux d'air balayant sa surface externe.
- le conduit d'amenée a une forme générale de tuyère ou d'entonnoir entourant le moteur et plus précisément la base ou partie basse du moteur. En d'autres termes, le conduit d'amenée est conformé pour présenter une forme de tuyère ou d'entonnoir servant à collecter et à guider l'air pour que celui-ci passe dans l'espacement et puisse balayer le moteur.
- le conduit d'amenée est agencé au niveau de la partie basse du moteur, c'est-à-dire à la base ou partie du moteur située à son extrémité inférieure localisée du côté opposé à l'hélice. A l'inverse, la partie haute du moteur est celle située du côté de l'hélice.
- l'espacement situé entre l'élément central et le corps du moteur est conformé pour guider ou convoyer le flux d'air dans le sens allant de la partie basse du moteur vers sa partie haute.
- le conduit d'amenée d'air est solidaire de la structure tridimensionnelle, c'est-à-dire formé d'une seule pièce avec celle-ci ou alors fixé à celle-ci.
- au moins une entrée d'air est prévue et agencée pour alimenter le conduit d'amenée d'air et ensuite l'espacement situé entre l'élément central et le corps du moteur avec un flux d'air provenant de l'atmosphère ambiante. La circulation du flux d'air est obtenue par aspiration de l'air par mise en rotation de l'hélice entraînée par le moteur.
- ladite au moins une entrée d'air est en communication fluidique
. soit directement avec le conduit d'amenée d'air, . soit avec un circuit de gaz interne lui-même en communication fiuidique avec le conduit d'amenée d'air.
- selon un autre mode de réalisation, l'espacement situé entre l'élément central et le corps du moteur est conformé pour guider ou convoyer le flux d'air dans le sens allant de la partie haute du moteur vers sa partie basse. Dans ce cas, un ventilateur indépendant est utilisé pour introduire de l'air dans ledit espacement, avec entrée de l'air de refroidissement du côté de la partie haute du moteur et sortie de l'air en partie basse du moteur.
- la structure tridimensionnelle est formée d'un matériau d'insonorisation apte à absorber au moins une partie des émissions sonores émises par le moteur, de préférence le matériau d'insonorisation est de l'élastomère, en particulier de la silicone ou du TPE.
- le moteur est surmonté :
. d'une volute comprenant un compartiment interne englobant la roue à ailettes, et au moins une partie d'un conduit d'évacuation servant à l'acheminement du gaz débité par ladite roue à ailettes, et
. d'un pavillon d'entrée comprenant une ouverture d'entrée par laquelle est aspiré du gaz lorsque la roue à ailettes est entraînée en rotation par le moteur électrique, la roue à ailettes étant située immédiatement en aval de l'ouverture d'entrée du pavillon d'entrée, ledit pavillon d'entrée surmontant la volute.
La présente invention va maintenant être décrite plus en détail en références aux Figures annexées parmi lesquelles :
- la Figure 1 représente une micro-soufflante ou turbine agencée dans un appareil d'assistance respiratoire selon l'art antérieur,
- les Figures 2 et 3 schématisent un mode de réalisation d'une structure tridimensionnelle équipant la micro-soufflante ou turbine d'un appareil d'assistance respiratoire selon la présente invention, en vue de dessus et en coupe de côté, respectivement, et
- la Figure 4 représente la structure tridimensionnelle des Figures 2 et 3 extraite de la turbine.
La Figure 1 montre une micro-soufflante ou turbine 30 motorisée agencée au sein d'un appareil d'assistance respiratoire selon l'art antérieur.
La turbine 30 comprend un moteur 1 électrique qui permet d'entraîner, via un axe rotatif, une roue à ailettes 25 (cf. Fig. 3) servant à générer un flux de gaz, typiquement un flux d'air. La roue à ailette 25 se trouve dans une volute 7 qui surmonte la turbine 30 motorisée et qui forme un capotage comprenant une partie inférieure de volute 7b, couramment appelée volute inférieure, et une partie supérieure de volute 7a, appelée volute supérieure, venant se raccorder l'une à l'autre, en général par collage l'une à l'autre, et définissent entre elles un espace interne ou compartiment interne englobant la roue à ailettes, c'est-à-dire que la roue à ailettes est prise « en sandwich » dans le compartiment interne aménagé dans les parties inférieure 7b et supérieure 7a de volute.
L'air d'alimentation est aspiré par la roue à ailettes au travers d'un pavillon d'entrée 8 comprenant un passage central, c'est-à-dire une ouverture par laquelle transite l'air aspiré par la roue à ailettes 25 qui est située immédiatement en aval de l'ouverture d'entrée 8 de la volute.
L'air est envoyé ensuite à l'utilisateur par la roue à ailettes 25, via un conduit d'évacuation 9 de gaz, sous forme d'un flux d'air centrifuge engendré par la rotation de la roue à ailettes 25 lorsqu'elle est entraînée par le moteur 1.
Dans les turbines actuelles, le maintien en position de l'ensemble de la turbine 1 , 7, 8 se fait grâce à l'adjonction de dispositifs amortisseurs de maintien 3, 4 et 5, situés notamment au niveau de la base (en 5) du moteur 1 de la turbine 30, et de part et d'autre (en 3 et 4) de la volute 7, notamment au niveau du conduit d'évacuation 9 de gaz.
Par ailleurs, afin de réduire ou atténuer les émissions sonores qui constituent une gêne pour l'utilisateur, l'ensemble turbine 1 , 7,8 est incorporé dans un caisson d'insonorisation 10 agencé autour de l'ensemble de turbine 30 et comprend une masse d'insonorisation périphérique formée typiquement de mousse 6 synthétique.
Afin d'assurer un refroidissement minimal de la turbine 30, en particulier du moteur 1 alimenté en courant électrique via un faisceau de câbles 11 , il est nécessaire d'aménager dans le caisson d'insonorisation 10, un espacement ou conduit de refroidissement 2 autour de la turbine 30 au sein duquel de l'air de refroidissement peut circuler pour évacuer la chaleur émise par la turbine 30 pendant son fonctionnement.
Ce type d'agencement d'une turbine dans un appareil d'assistance respiratoire, encore appelé « ventilateur », est classique dans l'état de la technique.
La présente invention propose, afin notamment d'atténuer le bruit généré par la turbine 30, lors de son fonctionnement, tels qu'utilisés dans les ventilateurs classiques, par une structure tridimensionnelle 20 compacte présentant une architecture particulière formant manchon autour d'une partie de la turbine 30, c'est-à-dire autour de la paroi extérieure du moteur 1 , encore appelée capotage du moteur 1. La structure tridimensionnelle 20, grâce à sa forme ou architecture particulière, permet aussi d'assurer non seulement un refroidissement correct du moteur 1 par convection forcée via un flux d'air de balayage, comme expliqué ci-après, mais aussi un bon maintien en place de la turbine 30 pendant son fonctionnement.
La structure tridimensionnelle 20 remplace donc schématiquement l'espace 2 et les amortisseurs 3, 4, 5 montrés sur la Figure 1 et utilisés dans les turbines classiques, mais tout en favorisant le refroidissement du moteur 1 par un flux d'air de refroidissement.
Plus précisément, sur les Figures 2 et 3, on a représenté une turbine 30 munie d'une structure tridimensionnelle 20 selon la présente invention, à savoir une turbine 30 comprenant un moteur 1 électrique qui permet d'entraîner, via son axe rotatif, une roue à ailettes 25 servant à générer le flux d'air.
Comme dans l'appareil de la Figure 1 , la roue à ailette 25 se trouve dans une volute 7 qui surmonte la turbine 30 avec un espace interne ou compartiment interne incluant la roue à ailettes 25.
Là encore, l'air est aspiré par la roue à ailettes 25 au travers d'un pavillon d'entrée 8 avec un passage central, puis ensuite envoyé à l'utilisateur via le conduit d'évacuation 9. En fait, de l'air ambiant pénètre dans l'appareil au niveau de sa base par exemple, via un ou des orifices d'entrée d'air, avant d'être dirigé et guidé par un conduit 20d en forme de tuyère, agencé autour de la partie basse de la turbine 1 , de sorte de remonter le long de la paroi externe du moteur 1 en opérant un balayage gazeux de celui-ci, donc une évacuation des calories émises par ledit moteur 1 électrique dont il résulte un refroidissement efficace du moteur 1 , comme expliqué ci-dessous.
Conformément à la présente invention, les émissions sonores sont aussi atténuées grâce à des moyens d'insonorisation comprenant la structure tridimensionnelle 20 formant manchon autour d'au moins une partie du moteur 1 , c'est-à-dire autour de son capotage ou de sa paroi périphérique renfermant les composants du moteur, en particulier le rotor, le stator... Typiquement, le moteur 1 permet d'entraîner la roue à ailettes 25 à une vitesse comprise entre 0 et 100.000 tr/min, typiquement entre 10.000 et 70.000 tr/min.
Plus précisément, la structure tridimensionnelle 20 comprend, dans le mode de réalisation détaillé en Figure 4, un élément central 20a définissant un logement central 20g formant manchon autour d'au moins une partie du moteur 1 en étant espacé dudit moteur 1.
Avantageusement, le logement central 20g a une forme générale tubulaire, par exemple cylindrique. L'espace formé entre la paroi du moteur 1 et la paroi délimitant le logement central 20g de l'élément central 20a crée alors un couloir de convection forcée autour du moteur 1 pour le refroidir par flux d'air.
La distance entre la paroi du moteur 1 et la paroi délimitant le logement central 20g est préférentiellement comprise entre 1 et 10 mm, typiquement de l'ordre d'environ 3 mm.
L'élément central 20a porte plusieurs éléments espaceurs 20b, de préférence de 2 à 30 éléments espaceurs, typiquement de 4 à 20 éléments espaceurs, comprenant chacun au moins une paroi se projetant radialement vers l'extérieur, c'est-à-dire en éloignement par rapport au moteur 1 situé dans le logement central 20g.
Les éléments espaceurs 20b sont agencés à la périphérie de l'élément tabulaire 20a en étant angulairement répartis autour de ladite périphérie. Les éléments espaceurs 20b sont donc dirigés radialement vers l'extérieur et viennent prendre appui sur la surface interne du boîtier 23 renfermant l'ensemble turbine.
Les espaceurs 20b peuvent avoir, en vue de dessus, une forme en « U » ou « V » comme illustré sur la Figure 2 ou revêtir d'autres formes par exemple en « W », en « X », en « I », en « M », en « O », en « S », en « Z », en « H », en « J » ou autres.
En outre, les espaceurs 20b peuvent se prolonger sur toute ou partie de la hauteur du moteur 1. Ces éléments espaceurs 20b servent à assurer le maintien en position de la turbine 30 dans le boîtier 23, l'amortissement des vibrations et font office de butée en cas de choc.
Par ailleurs, afin d'assurer un maintien correct de la structure tridimensionnelle 20 en position autour dudit moteur 1 , il est prévu un ou plusieurs éléments de maintien 20c venant prendre appui sur la périphérie du moteur 1.
Avantageusement, les éléments de maintien 20c sont deux colliers ou bagues de maintien 20c venant encercler le moteur 1 de la turbine 30 de sorte de maintenir le moteur 1 en position fixe dans la structure tridimensionnelle 20.
Les éléments de maintien 20c sont solidaires de l'élément tubulaire 20a. Plus précisément, ici, un premier élément de maintien 20c, de forme annulaire, est fixé directement à l'élément central 20a par l'intermédiaire de plusieurs éléments de jonction 20f, alors qu'un second élément de maintien 20c, également de forme annulaire, est fixé directement aux éléments espaceurs 20b par l'intermédiaire d'expansions de paroi 20e, lesquels éléments espaceurs 20b sont eux-mêmes portés par l'élément central 20a.
Les éléments de maintien 20c de forme annulaire, tels des bagues ou colliers, ont un diamètre interne d inférieur au diamètre interne D du logement central 20g de l'élément central 20a, qui est de forme interne cylindrique, i.e. d < D. Le diamètre interne des éléments de maintien 20c est choisi de manière à venir épouser le diamètre externe du moteur 1 de la turbine 30 de sorte d'assurer un maintien efficace dudit moteur 1 et donc d'atténuer les vibrations engendrées par le fonctionnement du moteur 1 de la turbine.
II s'ensuit également que les éléments de jonction 20f et les expansions de paroi 20e permettent de créer l'espacement, typiquement compris entre 1 et 10 mm, entre la paroi externe du moteur 1 et la paroi interne de l'élément central 20a lorsque le moteur 1 est positionné dans le logement interne 20g de l'élément central 20a, cet espacement permettant une circulation de gaz et un refroidissement du moteur 1.
Par ailleurs, la structure tridimensionnelle 20 comprend une base 20h en forme de couronne portant les éléments espaceurs 20b et l'élément central 20a. Cette base 20h sert de socle à l'ensemble de la structure tridimensionnelle 20 lorsqu'elle est mise en position dans le capotage 23.
Le conduit d'amenée 20d est destiné à guider le flux de gaz vers les parois du moteur et à positionner axialement l'ensemble de turbine à l'intérieur du boîtier. En d'autres termes, le conduit d'amenée 20d est une sorte d'entonnoir ou de tuyère qui permet de concentrer l'air ambiant en direction de l'entrée de la colonne d'air réalisée entre l'élément central 20a et le corps du moteur 1 , de manière douce et progressive afin de ne pas créer de turbulences, comme illustré en figure 4.
Lors de son passage dans l'espacement existant entre l'élément central 20a et le corps du moteur 1 , le flux d'air opère donc un balayage gazeux de la surface du moteur et un refroidissement dudit moteur, c'est-à-dire une évacuation par échange thermique d'au moins une partie des calories (chaleur) émises par le moteur par échange thermique avec le flux d'air balayant sa surface externe.
Comme dit, le conduit d'amenée 20d a une forme générale de tuyère ou d'entonnoir entourant la base ou partie basse du moteur 1 , comme visible sur la Figure 3. En d'autres termes, grâce à une telle forme de tuyère ou d'entonnoir, le conduit d'amenée 20d permet de collecter et de guider le flux d'air pour que celui-ci traverse dans l'espacement, dans le sens allant de bas en haut sur la Figure 3 , tout en balayant le moteur 1.
La base du moteur 1 est la partie du moteur située à son extrémité inférieure localisée du côté opposé à l'hélice, c'est-à-dire du côté du câble 11 de la Figure 3. A l'inverse, la partie haute du moteur 1 est celle située du côté de l'hélice ou roue à ailettes 25. Le conduit d'amenée d'air 20d est solidaire de la structure tridimensionnelle 20 selon l'invention, c'est-à-dire formé d'une seule pièce avec celle-ci ou alors fixé à celle-ci.
Une (ou plusieurs) entrée d'air est prévue dans l'appareil de manière à alimenter le conduit d'amenée d'air 20d, puis l'espacement situé en aval, avec un flux d'air provenant de l'atmosphère ambiante.
La circulation du flux d'air est obtenue par aspiration de l'air par mise en rotation de la roue à ailettes 25 entraînée par le moteur 1.
L'entrée d'air est en communication fluidique soit directement avec le conduit d'amenée d'air 20d, soit indirectement avec celui-ci via un circuit de gaz interne lui-même en communication fluidique avec ledit conduit d'amenée d'air 20d.
La forme à l'extrémité du conduit d'amenée 20d sur le plus grand diamètre, a pour fonction de réaliser une butée axiale d'arrêt en translation lors de l'insertion de l'ensemble turbine composé des éléments turbine 30, volute 7, pavillon 8 et structure tridimensionnelle 20, à l'intérieur de la cavité cylindrique du boîtier 23.
Dit autrement, le socle du fond se décompose en deux parties, à savoir la partie la plus centrale 20h, en forme d'entonnoir, qui guide le flux vers l'espace entre le moteur et la partie 20a, et la partie de plus grand diamètre 20d, qui permet de positionner axialement l'ensemble turbine à l'intérieur du boîtier 23.
La structure tridimensionnelle 20 est préférentiellement formée d'un matériau élastomère, apte à absorber au moins une partie des vibrations solidiennes et acoustiques de la turbine 30. Par exemple, la structure d'insonorisation 20 peut être en caoutchouc, silicone ou TPE (Thermo-Plastique Elastomère).
Avantageusement, l'ensemble de la structure 20 tridimensionnelle est formée d'une seule pièce, par exemple par moulage ou analogue.
Le moteur 1 de la turbine 30 est en fait inséré dans la structure tridimensionnelle 20 à la manière d'un manchon ou d'une « chaussette », avant sa mise en place dans le capotage 23.
Cette structure 20 permet de stopper et/ou d'absorber au plus près, toute ou partie des émissions sonores générées par le moteur 1 et la rotation à grande vitesse de la roue 25 à ailettes, tout en assurant un bon refroidissement du moteur 1 , ainsi que l'amortissement des chocs éventuels.

Claims

Revendications
1. Appareil d'assistance respiratoire comprenant :
- une turbine (30) comprenant un moteur (1) coopérant avec une roue à ailettes (25) pour générer un flux de gaz et
- des moyens d'insonorisation agencés autour d'au moins une partie de la turbine (30), caractérisé en ce que les moyens d'insonorisation comprennent une structure tridimensionnelle (20) agencée autour d'au moins une partie du moteur (1), comprenant :
- au moins un élément central (20a) définissant un logement central (20g) formant manchon autour d'au moins une partie du moteur (1) en étant espacé dudit moteur (1), l'espace formé entre la paroi du moteur (1) et la paroi délimitant le logement central (20g) de l'élément central (20a) créant un couloir de convection forcée autour du moteur (1) pour le refroidir par un flux d'air circulant au sein dudit espace,
- plusieurs éléments espaceurs (20b) comprenant chacun au moins une paroi se projetant radialement vers l'extérieur, lesdits éléments espaceurs (20b) étant agencés à la périphérie de l'élément tubulaire (20a), et
- au moins un élément de maintien (20c) venant prendre appui sur le moteur (1) de manière à maintenir la structure tridimensionnelle (20) en position autour dudit moteur (1),
2. Appareil selon la revendication précédente, caractérisé en ce que l'espacement entre la paroi externe du moteur (1) et la paroi interne de l'élément central (20a) est compris entre 1 et 10 mm, lorsque le moteur (1) est positionné dans le logement central (20g) de l'élément central (20a).
3. Appareil selon l'une des revendications précédentes, caractérisé en ce que l'élément central (20a) définit un logement central (20g) formant manchon autour de toute la hauteur du moteur (1) en étant espacé dudit moteur (1).
4. Appareil selon l'une des revendications précédentes, caractérisé en ce que la structure tridimensionnelle (20) comprend au moins un premier et au moins un deuxième élément de maintien (20c), l'élément central (20a) étant agencé entre lesdits premier et deuxième éléments de maintien (20c).
5. Appareil selon l'une des revendications précédentes, caractérisé en ce que le premier élément de maintien (20c) est fixé à l'élément central (20a) par l'intermédiaire d'un ou plusieurs éléments de jonction (20f).
6. Appareil selon l'une des revendications précédentes, caractérisé en ce que le second élément de maintien (20c) est fixé aux éléments espaceurs (20b) par l'intermédiaire d'expansions de paroi (20e).
7. Appareil selon l'une des revendications précédentes, caractérisé en ce que les éléments de maintien (20c) sont de forme annulaire, en particulier les éléments de maintien
(20c) sont choisis parmi les colliers et les bagues de maintien.
8. Appareil selon l'une des revendications précédentes, caractérisé en ce que la structure tridimensionnelle (20) comprend une base (20h) en forme de couronne portant les éléments espaceurs (20b) et/ou l'élément central (20a).
9. Appareil selon l'une des revendications précédentes, caractérisé en ce que les éléments de maintien (20c) de forme annulaire ont un diamètre interne (d) inférieur au diamètre interne (D) du logement central (20g) de l'élément central (20a), i.e. d<D.
10. Appareil selon l'une des revendications précédentes, caractérisé en ce que l'élément central (20a) est tubulaire.
11. Appareil selon l'une des revendications précédentes, caractérisé en ce que la structure tridimensionnelle (20) comprenant l'élément central (20a), les éléments de maintien
(20c), les éléments espaceurs (20b), les expansions de paroi (20e) et les éléments de jonction (20f) est formée d'une seule pièce.
12. Appareil selon l'une des revendications précédentes, caractérisé en ce que la structure tridimensionnelle (20) est formée d'un matériau d'insonorisation apte à absorber au moins une partie des émissions sonores émises par le moteur (1), de préférence le matériau d'insonorisation est de l'élastomère, en particulier de la silicone ou du TPE.
13. Appareil selon l'une des revendications précédentes, caractérisé en ce qu'il comprend au moins conduit d'amenée d'air (20d) conformé pour introduire un flux d'air dans l'espacement situé entre l'élément central (20a) et le corps du moteur (1) de sorte que, lors de son passage dans ledit espacement, ledit flux d'air opère un balayage de la surface du moteur (1) et un refroidissement dudit moteur (1).
14. Appareil selon l'une des revendications précédentes, caractérisé en ce que le conduit d'amenée (20d) a une forme générale d'entonnoir entourant le moteur (1), de préférence le conduit d'amenée (20d) est agencé au niveau de la partie basse du moteur (1).
15. Appareil selon l'une des revendications précédentes, caractérisé en ce que le moteur (1) est surmonté:
- d'une volute (7, 7a, 7b) comprenant un compartiment interne (26) englobant la roue à ailettes (25), et au moins une partie d'un conduit d'évacuation (9) servant à l'acheminement du gaz débité par ladite roue à ailettes (25), et
- d'un pavillon d'entrée (8) comprenant une ouverture d'entrée par laquelle est aspiré du gaz lorsque la roue à ailettes (25) est entraînée en rotation par le moteur (1) électrique, la roue à ailettes (25) étant située immédiatement en aval de l'ouverture d'entrée du pavillon d'entrée (8), ledit pavillon d'entrée (8) surmontant la volute (7, 7a, 7b).
PCT/FR2014/050041 2013-01-22 2014-01-10 Appareil d'assistance respiratoire avec turbine insonorisée WO2014114859A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1350555A FR3001155B1 (fr) 2013-01-22 2013-01-22 Appareil d'assistance respiratoire avec turbine insonorisee
FR1350555 2013-01-22

Publications (1)

Publication Number Publication Date
WO2014114859A1 true WO2014114859A1 (fr) 2014-07-31

Family

ID=47989278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050041 WO2014114859A1 (fr) 2013-01-22 2014-01-10 Appareil d'assistance respiratoire avec turbine insonorisée

Country Status (2)

Country Link
FR (1) FR3001155B1 (fr)
WO (1) WO2014114859A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151141A (zh) * 2018-10-26 2019-01-04 东北大学 一种口罩式隔音装置
CN114600345A (zh) * 2019-10-31 2022-06-07 艾尔芬公司 电动呼吸辅助设备以及对装备该设备的马达的双重冷却
EP3981453A4 (fr) * 2019-06-06 2023-06-28 Sysmed (China) Co., Ltd. Soufflante de ventilateur à utiliser dans un traitement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3073421B1 (fr) * 2017-11-10 2019-10-11 Air Liquide Medical Systems Appareil d’assistance respiratoire a micro-soufflante motorisee

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020009376A1 (en) * 1999-01-21 2002-01-24 Resmed Limited Mounting arrangement
EP1260243A1 (fr) * 2001-05-15 2002-11-27 Gottlieb Weinmann Geräte für Medizin und Arbeitsschutz GmbH &amp; Co.KG Système pour l'insonorisation d'un appareil d'assistance respiratoire
DE10202814A1 (de) 2002-01-25 2003-08-14 Audi Ag Aufhängung für einen Elektromotor, Elektromotor mit Aufhängung und Verfahren zur Herstellung einer Aufhängung
FR2843305A1 (fr) * 2002-08-12 2004-02-13 Airtechnologies Sa Dispositif a ventilation centrifuge pour assister un patient dans sa fonction respiratoire, comprenant un element souple d'interposition entre les organes dynamiques et fixes du dispositif
US20070007271A1 (en) * 2005-07-05 2007-01-11 Map Medizin-Technologie Gmbh Apparatus for supplying a breathing gas
WO2007024955A2 (fr) * 2005-08-24 2007-03-01 Ric Investments, Llc Ensemble de montage de ventilateur
US20070247009A1 (en) * 2006-04-20 2007-10-25 Leslie Hoffman Motor blower unit
EP2102504A1 (fr) 2006-11-13 2009-09-23 Airfan Appareil pour distribuer une alimentation régulée en gaz, en particulier appareil d'aide respiratoire
WO2010028121A1 (fr) * 2008-09-05 2010-03-11 The Penn State Research Foundation Système d'administration de gaz comprenant un générateur d'écoulement comprenant un ensemble soufflante isolé pour une réduction du bruit
US20100059056A1 (en) * 2006-10-24 2010-03-11 RedMed Motor Technologies Inc. Brushless dc motor with bearings
FR2953142A1 (fr) * 2009-12-02 2011-06-03 Airfan Appareil de delivrance regulee d'un gaz,notamment appareil d'assistance respiratoire
FR2973846A1 (fr) * 2011-04-11 2012-10-12 Airfan Appareil de delivrance regulee d'un gaz, notamment appareil d'assistance respiratoire

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020009376A1 (en) * 1999-01-21 2002-01-24 Resmed Limited Mounting arrangement
EP1260243A1 (fr) * 2001-05-15 2002-11-27 Gottlieb Weinmann Geräte für Medizin und Arbeitsschutz GmbH &amp; Co.KG Système pour l'insonorisation d'un appareil d'assistance respiratoire
DE10202814A1 (de) 2002-01-25 2003-08-14 Audi Ag Aufhängung für einen Elektromotor, Elektromotor mit Aufhängung und Verfahren zur Herstellung einer Aufhängung
FR2843305A1 (fr) * 2002-08-12 2004-02-13 Airtechnologies Sa Dispositif a ventilation centrifuge pour assister un patient dans sa fonction respiratoire, comprenant un element souple d'interposition entre les organes dynamiques et fixes du dispositif
US20070007271A1 (en) * 2005-07-05 2007-01-11 Map Medizin-Technologie Gmbh Apparatus for supplying a breathing gas
WO2007024955A2 (fr) * 2005-08-24 2007-03-01 Ric Investments, Llc Ensemble de montage de ventilateur
US20070247009A1 (en) * 2006-04-20 2007-10-25 Leslie Hoffman Motor blower unit
US20100059056A1 (en) * 2006-10-24 2010-03-11 RedMed Motor Technologies Inc. Brushless dc motor with bearings
EP2102504A1 (fr) 2006-11-13 2009-09-23 Airfan Appareil pour distribuer une alimentation régulée en gaz, en particulier appareil d'aide respiratoire
WO2010028121A1 (fr) * 2008-09-05 2010-03-11 The Penn State Research Foundation Système d'administration de gaz comprenant un générateur d'écoulement comprenant un ensemble soufflante isolé pour une réduction du bruit
FR2953142A1 (fr) * 2009-12-02 2011-06-03 Airfan Appareil de delivrance regulee d'un gaz,notamment appareil d'assistance respiratoire
FR2973846A1 (fr) * 2011-04-11 2012-10-12 Airfan Appareil de delivrance regulee d'un gaz, notamment appareil d'assistance respiratoire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151141A (zh) * 2018-10-26 2019-01-04 东北大学 一种口罩式隔音装置
EP3981453A4 (fr) * 2019-06-06 2023-06-28 Sysmed (China) Co., Ltd. Soufflante de ventilateur à utiliser dans un traitement
CN114600345A (zh) * 2019-10-31 2022-06-07 艾尔芬公司 电动呼吸辅助设备以及对装备该设备的马达的双重冷却

Also Published As

Publication number Publication date
FR3001155A1 (fr) 2014-07-25
FR3001155B1 (fr) 2015-12-25

Similar Documents

Publication Publication Date Title
EP2506907B1 (fr) Appareil de délivrance régulée d&#39;un gaz, notamment appareil d&#39;assistance respiratoire
WO2000073662A1 (fr) Ventilateur equipe d&#39;une manche a air
CA2594259C (fr) Systeme de refroidissement du rouet d&#39;un compresseur centrifuge
FR2926704A1 (fr) Silencieux pour appareil de sechage et seche-cheveux silencieux
WO2014114859A1 (fr) Appareil d&#39;assistance respiratoire avec turbine insonorisée
EP1881179A2 (fr) Système de ventilation de paroi de chambre de combustion dans une turbomachine
EP1138954A1 (fr) Ventilateur centrifuge
FR2973846A1 (fr) Appareil de delivrance regulee d&#39;un gaz, notamment appareil d&#39;assistance respiratoire
FR2766882A1 (fr) Ventilateur centrifuge a conduit perfectionne de refroidissement du moteur, notamment pour vehicule automobile
EP2656488B1 (fr) Support moteur a decouplage ameliore pour systeme de ventilation
EP2497385B1 (fr) Sèche-cheveux équipé d&#39;un silencieux amovible
EP2884116B1 (fr) Appareil d&#39;assistance respiratoire à turbine motorisée et butées
EP1308631B1 (fr) Groupe moto-ventilateur
EP2986856B1 (fr) Turbine pour appareil d&#39;assistance respiratoire à émissions sonores réduites
FR2771772A1 (fr) Instrument de travail a moteur thermique tenu et guide manuellement
EP1905334B1 (fr) Aspirateur muni d&#39;un dispositif d&#39;atténuation du bruit
FR2624923A1 (fr) Ventilateur axial ou centrifuge-axial pour la circulation d&#39;un gaz
FR3074637A1 (fr) Module de ventilation d&#39;un volume de stockage de produits agricoles en grains et installation equipee d&#39;un tel module de ventilation
EP3528874B1 (fr) Appareil d&#39;assistance respiratoire a système de refroidissement intégré
EP1433948A2 (fr) Dispositif d&#39;atténuation des bruits sur un circuit d&#39;admission d&#39;air
FR2780348A1 (fr) Conduite d&#39;air dans une installation de ventilation chauffage et/ou climatisation, notamment de vehicule automobile
FR3093759A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
BE1029481B1 (fr) Dispositif d’épuration d’air
WO2000021404A1 (fr) Appareil seche-cheveux
FR3110678A1 (fr) Dispositif de refroidissement et d’assemblage d’un module de ventilation destiné à un dispositif d’assistance à la respiration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14703129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14703129

Country of ref document: EP

Kind code of ref document: A1