WO2014112243A1 - Module with built-in antenna coil, antenna apparatus, and communication apparatus - Google Patents

Module with built-in antenna coil, antenna apparatus, and communication apparatus Download PDF

Info

Publication number
WO2014112243A1
WO2014112243A1 PCT/JP2013/083019 JP2013083019W WO2014112243A1 WO 2014112243 A1 WO2014112243 A1 WO 2014112243A1 JP 2013083019 W JP2013083019 W JP 2013083019W WO 2014112243 A1 WO2014112243 A1 WO 2014112243A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna coil
antenna
built
wiring
module
Prior art date
Application number
PCT/JP2013/083019
Other languages
French (fr)
Japanese (ja)
Inventor
郷地直樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201390000528.8U priority Critical patent/CN204497378U/en
Priority to JP2014531441A priority patent/JP5633662B1/en
Publication of WO2014112243A1 publication Critical patent/WO2014112243A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10237Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the reader and the record carrier being capable of selectively switching between reader and record carrier appearance, e.g. in near field communication [NFC] devices where the NFC device may function as an RFID reader or as an RFID tag
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • G06K7/10336Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers the antenna being of the near field type, inductive coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/04Details of telephonic subscriber devices including near field communication means, e.g. RFID

Definitions

  • the present invention relates to a module with a built-in antenna coil used for, for example, an RFID (Radio Frequency Identification) system, a near field communication (NFC) system, an antenna device and a communication device including the module.
  • RFID Radio Frequency Identification
  • NFC near field communication
  • wireless communication devices such as mobile phone terminals have been equipped with various communication functions such as GPS, wireless LAN, RFID, and short-range wireless communication as well as a call function.
  • wireless communication devices are not only improved in function but also reduced in size at the same time, and it has become difficult to secure a sufficient space for mounting the communication circuit.
  • Patent Document 1 As one means for solving this problem, for example, as disclosed in Patent Document 1, it is effective to reduce the size by incorporating an antenna coil in a laminated substrate.
  • an object of the present invention is to provide an antenna coil built-in module, an antenna device including the same, and a communication device in which a deterioration in antenna characteristics is reduced while maintaining a reduction in size in a module incorporating an antenna coil.
  • the antenna coil built-in module of the present invention is configured as follows.
  • a laminated base including a plurality of base material layers on which conductor patterns are formed is laminated, an antenna coil is constituted by the conductor pattern, and a plurality of terminal electrodes are formed on the bottom surface of the laminated base,
  • the winding axis of the antenna coil is the surface direction of the base material layer,
  • the terminal electrode is disposed near the opening of the antenna coil,
  • the conductor pattern includes a plurality of first wirings connected to the terminal electrode, a plurality of second wirings connected to a chip component mounting terminal electrode on which the chip component is mounted, and the first wiring and the second wiring.
  • an interlayer connection conductor that conducts at At least one of the first wirings includes a first portion from an intermediate point (for example, an arbitrary point such as the center) to a point connected to the terminal electrode, and a point from the intermediate point to the second wiring.
  • the first part satisfies the wiring pattern shape condition that there are more components in the winding axis direction than the second part. To do.
  • the magnetic field generated in the antenna coil is high in the center of the antenna coil, but the magnetic field generated outside the antenna coil is high near the opening of the antenna coil.
  • the first wiring satisfying the shape of the wiring pattern is a pattern in which the path is directed toward the winding axis as it is closer to the opening of the antenna coil. Therefore, unnecessary coupling between the first wiring and the antenna coil is suppressed. The deterioration of antenna characteristics is suppressed.
  • the region where the second wiring is formed is a pincushion type that does not overlap with the opening of the antenna coil in a plan view or has few overlapping regions.
  • a mounting electrode is formed in a region of the bottom surface of the multilayer substrate that does not overlap with the opening of the antenna coil in plan view.
  • the layer in which the said antenna coil is formed among the said base material layers is a magnetic body.
  • a cavity is formed in a part of the base material layer in which the antenna coil is formed, and a (sintered) magnetic body is inserted into the cavity.
  • an RF communication circuit is constituted by the chip component, the first wiring, and the second wiring, a module including an RF communication circuit and an antenna coil is obtained.
  • the RF communication circuit is a circuit that operates as an RFID tag.
  • the RF communication circuit is a circuit that operates as an RF reader / writer.
  • An antenna device of the present invention includes any one of the above-described antenna built-in modules and a booster antenna that magnetically couples to an antenna coil included in the antenna built-in module. With this configuration, the communicable distance can be extended.
  • a communication device of the present invention includes a wireless communication circuit together with any one of the above-described antenna coil built-in modules or the antenna device.
  • FIG. 1 is a plan view of each layer before lamination of the antenna coil built-in module according to the first embodiment.
  • FIG. 2 is a plan view of the base material layers 12e and 12f, showing the relationship between the opening of the antenna coil and the pattern of the first wiring.
  • FIG. 3 is a diagram (sectional view) showing the antenna coil and the magnetic field strength in the vicinity thereof.
  • FIG. 4 is a plan view of the base material layers 12b, 12c, and 12g, showing the relationship between the opening of the antenna coil and the pattern of the second wiring, and the relationship between the opening of the antenna coil and the mounting electrode. is there.
  • FIG. 5 is a circuit diagram of the antenna coil built-in module.
  • FIG. 5 is a circuit diagram of the antenna coil built-in module.
  • FIG. 6 is a plan view of each layer before lamination of the antenna coil built-in module according to the second embodiment.
  • FIG. 7 is a plan view of the base material layer 12f of the antenna coil built-in module according to the third embodiment, showing the relationship between the opening of the antenna coil and the pattern of the first wiring.
  • FIG. 8 is a plan view of the base material layer 12f of another antenna coil built-in module according to the third embodiment, and is a diagram showing the relationship between the opening of the antenna coil and the pattern of the first wiring.
  • FIG. 9 is an exploded perspective view of a booster coil 301 acting as a booster antenna.
  • FIG. 10 is an equivalent circuit diagram of an antenna apparatus including the antenna coil built-in module 201 and the booster coil 301 shown in FIG.
  • FIG. 11 is a diagram illustrating a structure inside the housing of the communication device 401 according to the fifth embodiment, and is a plan view in a state where the lower housing 91 and the upper housing 92 are separated and the inside is exposed. is there.
  • FIG. 1 is a plan view of each layer before lamination of the antenna coil built-in module according to the first embodiment.
  • the antenna coil built-in module includes a multilayer base (multilayer substrate) configured by stacking a plurality of base material layers on which a conductor pattern is formed, and the antenna coil is configured by the conductor pattern.
  • a plurality of terminal electrodes are formed on the bottom surface of the substrate, and chip components are mounted on the laminated substrate.
  • (a) is a plan view of the first layer (uppermost layer) of the laminated substrate
  • (g) is a plan view of the tenth layer (lowermost layer)
  • (b) to (f) are planes of respective layers therebetween.
  • FIG. In addition, (d) is a figure represented about the 4th layer from the 7th layer.
  • the fourth to seventh layers are the same as shown in plan view.
  • the plurality of base material layers constituting the laminated base are insulating layers.
  • Each of these base material layers 12a to 12g is a dielectric (non-magnetic) layer.
  • An opening is formed in the base material layer 12d, and a cavity is formed by stacking the fourth to seventh base material layers 12d.
  • a magnetic material 31 is contained in the cavity.
  • the magnetic material 31 is, for example, a sintered magnetic ferrite plate.
  • the base material layers 12a to 12g are, for example, layers of low temperature co-fired ceramics (LTCC).
  • terminal electrodes P1 to P6 and mounting electrodes 16 are formed on the base material layer 12g.
  • a plurality of electrodes for mounting chip components and a plurality of wiring patterns are formed on the base material layer 12a.
  • FIG. 1A shows only the mounted chip components. Specifically, RFIC, secure element SE, crystal oscillator X1, chip inductors L1, L2, chip capacitors C4, C9, C14, C15, C17, C18, C19, C20, C23, C24, and chip resistor R1 are mounted. Has been.
  • the linear conductor 21 is formed on the base material layer 12c, and the linear conductor 22 is formed on the base material layer 12e.
  • two rows of antenna coil interlayer connection conductors (via conductors) 23 for connecting the linear conductors 21-22 are formed.
  • the linear conductors 21 and 22 and the antenna coil interlayer connection conductor 23 constitute an antenna coil wound in a helical shape so that the winding axis faces the surface direction of the base material layer.
  • the terminal electrodes P1 to P6 are arranged near the opening of the antenna coil.
  • the linear conductors 21 and 22 extend in the x-axis direction, and the winding axis of the antenna coil faces the y-axis direction.
  • First wirings 14a to 14f are formed on the base material layer 12f.
  • a second wiring is formed on the base material layer 12b.
  • the formation area 17 of the second wiring is comprehensively shown.
  • the base material layers 12b to 12f include interlayer connection conductors (via conductors) 13a to 13a for connecting the second wirings formed on the base material layer 12b and the first wirings 14a to 14f formed on the base material layer 12f. 13f is formed. Interlayer connection conductors for connecting the wiring pattern formed on the base material layer 12a and the second wiring formed on the base material layer 12b are formed on the base material layer 12a.
  • the base layer 12g has an interlayer connection conductor (via conductor) that connects the first wirings 14a to 14f formed on the base layer 12f and the terminal electrodes P1 to P6 formed on the base layer 12g. 15a to 15f are formed.
  • the first wirings 14a to 14f connect the interlayer connection conductors 13a to 13f and the interlayer connection conductors 15a to 15f. Accordingly, the terminal electrodes P1 to P6 are electrically connected to the second wiring via the first wirings 14a to 14f and the interlayer connection conductors 15a to 15f and 13a to 13f.
  • FIG. 2 is a plan view of the base material layers 12e and 12f, showing the relationship between the opening of the antenna coil and the pattern of the first wiring.
  • the alternate long and short dash line indicates the winding axis.
  • the first wirings 14a to 14f include a first portion Z1 from an intermediate point (break point in this example) to a point (interlayer connection conductors 15a to 15f) connected to the terminal electrode, and a point connected to the second wiring from the intermediate point ( And a second portion Z2 up to the interlayer connection conductors 13a to 13f).
  • the first portion Z1 has more components in the winding axis direction of the antenna coil than the second portion Z2.
  • the first portion Z1 faces the y-axis direction
  • the second portion Z2 faces the x-axis direction.
  • the first wires 14a to 14f extend in the direction of the winding axis of the antenna coil in the vicinity of the opening of the antenna coil, and extend in a direction perpendicular to the winding axis at a position deeper than the opening of the antenna coil.
  • FIG. 3 is a diagram (sectional view) showing the antenna coil and the magnetic field strength in the vicinity thereof.
  • the linear conductors 21 and 22 are part of the antenna coil, and the broken lines are magnetic lines generated by the antenna coil, and the magnetic field strength distribution is represented by the density of the magnetic lines.
  • the magnetic field generated in the antenna coil is high at the center of the antenna coil, but the magnetic field generated outside the antenna coil is high near the opening of the antenna coil. Therefore, if there is a conductor pattern extending in a direction orthogonal to the winding axis in the vicinity of the opening of the antenna coil, the antenna coil is strongly magnetically coupled to the conductor pattern. In FIG. 3, some of the first wirings 14e and 14b are located near the coil opening, but the first wirings 14e and 14b extend in the winding axis direction near the coil opening. Therefore, the coupling between the antenna coil and the first wiring is weak.
  • FIG. 4 is a plan view of the base material layers 12b, 12c, and 12g, and shows the relationship between the opening of the antenna coil and the pattern of the second wiring, and the relationship between the opening of the antenna coil and the mounting electrode. It is. The positions of the antenna coil opening CA shown in the base material layer 12c in plan view are also shown in the base material layers 12b and 12g.
  • the formation region 17 of the second wiring is a pincushion type that does not overlap with the opening portion CA of the antenna coil in a plan view or has a small overlapping region.
  • An offset OF is offset from the coil opening so that the area overlapping the opening CA of the antenna coil is reduced.
  • the dimension of the base material layer is 6 mm ⁇ 5 mm, and the offset OF is about 0.6 mm from the coil opening position.
  • This offset amount is preferably about 1/10 (range from 1/5 to 1/20) of the axial length of the winding axis of the antenna coil (the length in the y-axis direction in FIG. 4).
  • the magnetic field intensity outside the antenna coil is high in the vicinity of the coil opening, but the second wiring is formed in the above region, so that the magnetic field radiated from the antenna coil is mounted on the module. It is difficult to couple with a conductor pattern in a component or a module, and as a result, deterioration of antenna characteristics is further suppressed.
  • the mounting electrode 16 is formed in a region that does not overlap the opening CA of the antenna coil in plan view.
  • the clearance CL is about 0.7 mm from the coil opening position.
  • This clearance is preferably about 1/10 (range from 1/5 to 1/20) of the axial length of the winding axis of the antenna coil (the length in the y-axis direction in FIG. 4).
  • FIG. 5 is a circuit diagram of the antenna coil built-in module.
  • the antenna coil ANT is an antenna coil constituted by the linear conductors 21 and 22 and the antenna coil interlayer connection conductor 23.
  • the antenna coil ANT and the capacitor C20 constitute an LC parallel resonance circuit, and the resonance frequency is adjusted to the carrier frequency band of the communication signal (for example, the HF band such as 13.56 MHz band).
  • the capacitor C19 is a capacitor for fine adjustment of the resonance frequency.
  • the inductors L1 and L2 and the capacitors C14, C15, C17, and C18 constitute an impedance matching circuit.
  • the crystal oscillator X1, capacitors C23 and C24, and resistor R1 constitute a crystal oscillation circuit.
  • Capacitors C4 and C9 are bypass capacitors.
  • terminal electrodes P1 to P6 are power supply terminals, and the terminal electrode P4 is a ground terminal.
  • the RFIC is an RF communication circuit.
  • this RFIC is set to the tag mode, the electromagnetic field received by the antenna coil is converted into electric power, the command from the communication partner side is demodulated, and predetermined information is transmitted (response) by load modulation. .
  • this antenna coil built-in module acts as an RFID tag.
  • the RFIC when the RFIC is set to the reader / writer mode, it converts the near electromagnetic field received by the antenna coil into electric power, receives a transmission signal from the communication partner, and transmits predetermined information by load modulation. To do.
  • the antenna coil built-in module functions as an RF reader / writer.
  • FIG. 6 is a plan view of each layer before lamination of the antenna coil built-in module according to the second embodiment.
  • the module with a built-in antenna coil according to the second embodiment includes a laminated substrate formed by laminating a plurality of base material layers on which conductor patterns are formed, similar to that shown in the first embodiment.
  • An antenna coil is configured by the pattern, a plurality of terminal electrodes are formed on the bottom surface of the multilayer substrate, and a chip component is mounted on the multilayer substrate.
  • the base material layers 12a to 12g are all insulating layers, but the base material layers 12c, 12d, and 12e are magnetic layers, and the other base material layers are dielectric layers.
  • the substrate layers 12c, 12d, and 12e are different from the first embodiment in that they are magnetic layers. Further, the base material layer 12d has no opening, and therefore no cavity is formed, and the magnetic material 31 shown in FIG. 1 does not exist.
  • the dielectric layer is, for example, a low-temperature co-fired ceramic (LTCC) dielectric ceramic layer
  • the magnetic layer is, for example, a low-temperature co-fired ceramic (LTCC) ferrite layer.
  • LTCC low-temperature co-fired ceramic
  • the size of the antenna coil for obtaining a predetermined inductance is somewhat larger, but all of the base material layers 12a to 12g shown in FIG. 6 may be used as dielectric layers.
  • FIG. 7 is a plan view of the base material layer 12f of the antenna coil built-in module according to the third embodiment, showing the relationship between the opening of the antenna coil and the pattern of the first wiring.
  • FIG. 8 is a plan view of the base material layer 12f of another antenna coil built-in module according to the third embodiment, and is a diagram showing the relationship between the opening of the antenna coil and the pattern of the first wiring. 7 and 8, the configuration other than the base material layer 12f is the same as that shown in FIGS. 1 and 2 in the first embodiment.
  • the first wirings 14a to 14f have a substantially L-shaped pattern.
  • the first wiring may not be composed of only a straight line, as shown in FIG.
  • a part or all of the pattern of the first wiring may be a curve.
  • a part of the pattern of the first wiring may be oblique.
  • a portion Z2 When the direction component along the path is compared between the first portion Z1 and the second portion Z2, the shape condition that the first portion Z1 has more components in the winding axis direction of the antenna coil than the second portion Z2. Meet.
  • the intermediate point does not mean the central point of the first wirings 14a to 14f, but is between the point connected to the terminal electrode (interlayer connection conductors 15a to 15f) and the point connected to the second wiring (interlayer connection conductors 13a to 13f). Is an arbitrary point.
  • Satisfying the above-mentioned wiring pattern shape condition means that the wiring pattern has a shape along the coil winding axis direction near the opening of the antenna coil, and is orthogonal to the coil winding axis direction at a position deeper than the opening of the antenna coil. It becomes a shape along the direction. Therefore, since the first wiring has a pattern that faces the winding axis in the vicinity of the opening of the antenna coil, unnecessary coupling between the first wiring and the antenna coil is suppressed, and deterioration of antenna characteristics is suppressed.
  • the path length of the wiring pattern is shorter than that of the L-shaped pattern as shown in FIG. Can be reduced and the loss can be reduced.
  • FIG. 9 is an exploded perspective view of the booster coil 301 acting as a booster antenna.
  • the booster coil 301 includes an insulator base 3, a first coil 1 formed on the first surface, a second coil 2 formed on the second surface, and a magnetic sheet 4.
  • the first coil 1 and the second coil 2 are conductors patterned in a rectangular spiral shape, and are patterned so as to be capacitively coupled in a state where current flows in the same direction in plan view.
  • the two coil conductors are patterned so that when a clockwise current flows through one coil conductor in a plan view from the same direction, a current flows clockwise through the other coil conductor.
  • FIG. 10 is an equivalent circuit diagram of an antenna device including the antenna coil built-in module 201 and the booster coil 301 shown in FIG.
  • the configuration of the antenna coil built-in module 201 is as described in some embodiments above. In detail, a circuit as shown in FIG. 5 is configured, but is simplified here.
  • the antenna coil built-in module 201 includes an antenna coil inductance component L1, a capacitor C1, an RFIC, and the like.
  • the capacitor C1 is a capacitor (C19, C20 in FIG. 5) for adjusting the resonance frequency of the antenna coil.
  • the booster coil 301 includes inductance components L2 and L3 of the first coil 1 and the second coil 2, capacitance components C2 and C3 generated between the first coil 1 and the second coil 2, and the like.
  • the maximum communicable distance can be extended by using the booster coil 301 separate from the antenna coil built-in module as the booster antenna.
  • FIG. 11 is a diagram illustrating a structure inside the housing of the communication device 401 according to the fifth embodiment, and is a plan view in a state where the lower housing 91 and the upper housing 92 are separated and the inside is exposed. is there.
  • the communication device 401 includes a booster coil that uses the antenna coil of the antenna coil built-in module described above as a power feeding coil and is coupled to the power feeding coil.
  • printed wiring boards 71 and 81 Inside the lower housing 91, printed wiring boards 71 and 81, a battery pack 83 and the like are housed.
  • An antenna coil built-in module 201 is mounted on the printed wiring board 71.
  • the printed wiring board 71 is also equipped with a UHF band antenna 72, a camera module 76, and the like.
  • the printed wiring board 81 is equipped with a UHF band antenna 82 and the like.
  • the printed wiring board 71 and the printed wiring board 81 are connected via a coaxial cable 84.
  • a booster coil 301 is formed on the inner surface of the upper casing 92.
  • the booster coil 301 is magnetically coupled to the antenna coil (feeding coil) of the antenna coil built-in module 201.
  • a dielectric (nonmagnetic) resin sheet may be used as a base layer, and the laminated substrate may be configured by stacking resin sheets.
  • a thermoplastic resin sheet such as a liquid crystal polymer or polyimide can be used.
  • a resin sheet in which a dielectric filler is dispersed can be used as the dielectric layer.
  • a resin sheet in which a magnetic filler is dispersed or a dielectric filler is dispersed together with the magnetic filler can be used as the magnetic layer.
  • the RFID for the HF band such as the 13.56 MHz band is shown.
  • the present invention applies not only to the HF band but also to a UHF band system used in a wireless LAN or the like. it can.
  • ANT ... antenna coil CA antenna coil openings P1 to P6 ... terminal electrode SE ... secure element X1 ... crystal oscillator Z1 ... first part Z2 ... second part 1 ... first coil 2 ... second coil 3 ... insulator Base material 4 ... Magnetic sheets 12a to 12g ... Base material layer 13a ... Interlayer connection conductors 14a to 14f ... First wiring 15a to 15f ... Interlayer connection conductor 16 ... Mounting electrode 17 ... Second wiring formation regions 21, 22 ... Linear conductor 23 ... Interlayer connection conductor 31 for antenna coil ... Magnetic material 71, 81 ... Printed wiring board 72, 82 ... UHF band antenna 76 ... Camera module 83 ... Battery pack 84 ... Coaxial cable 91 ... Lower casing 92 ... Upper part Housing 201 ... Antenna coil built-in module 301 ... Booster coil 401 ... Communication equipment

Abstract

In base material layers (12b-12f), interlayer connecting conductive bodies (13a-13f) are formed, said interlayer connecting conductive bodies connecting to each other a second wiring line formed on the base material layer (12b) and first wiring lines (14a-14f) formed on the base material layer (12f). In the base material layer (12g), interlayer connecting conductive bodies (15a-15f) are formed, said interlayer connecting conductive bodies (15a-15f) connecting to each other the first wiring lines (14a-14f) and terminal electrodes (P1-P6) formed on the base material layer (12g). With respect to a first portion of each of the first wiring lines (14a-14f), said first portion being from an intermediate point to a point connected to each of the terminal electrodes (P1-P6), and with respect to a second portion of each of the first wiring lines, said second portion being from the intermediate point to a point connected to the second wiring line, the first portion has more components in the winding axis direction than the second portion when the directional components along the paths of the first portion and the second portion are compared with each other.

Description

アンテナコイル内蔵モジュール、アンテナ装置および通信機器Antenna coil built-in module, antenna device, and communication device
 本発明は例えばRFID(Radio Frequency Identification)システムや近距離無線通信(NFC:Near Field Communication)システム等に用いられるアンテナコイル内蔵モジュール、それを備えたアンテナ装置および通信機器に関するものである。 The present invention relates to a module with a built-in antenna coil used for, for example, an RFID (Radio Frequency Identification) system, a near field communication (NFC) system, an antenna device and a communication device including the module.
 最近の携帯電話端末をはじめとする無線通信機器には、通話機能だけでなくGPSや無線LAN、RFID、近距離無線通信等の様々な通信機能が搭載されるようになってきている。一方、無線通信機器は高機能化だけでなく小型化も同時に進められており、上記通信回路を実装するための十分なスペースを確保することが困難になってきている。 Recently, wireless communication devices such as mobile phone terminals have been equipped with various communication functions such as GPS, wireless LAN, RFID, and short-range wireless communication as well as a call function. On the other hand, wireless communication devices are not only improved in function but also reduced in size at the same time, and it has become difficult to secure a sufficient space for mounting the communication circuit.
 この問題を解決する一つの手段として、例えば特許文献1に示されているように、アンテナコイルを積層基体に内蔵させることによって小型化することは有効である。 As one means for solving this problem, for example, as disclosed in Patent Document 1, it is effective to reduce the size by incorporating an antenna coil in a laminated substrate.
特開2003-218626号公報JP 2003-218626 A
 しかし、アンテナコイルと他の回路とを含んだモジュールを構成すると、アンテナコイルとその周囲の電極とが近接して不要結合するため、その不要結合によりアンテナ特性が劣化する、という新たな問題が生じる。 However, when a module including an antenna coil and other circuits is configured, the antenna coil and the surrounding electrodes are unnecessarily coupled in close proximity, resulting in a new problem that the antenna characteristics deteriorate due to the unneeded coupling. .
 そこで本発明は、アンテナコイルを内蔵するモジュールにおいて、小型化を維持しつつアンテナ特性の劣化を軽減させた、アンテナコイル内蔵モジュール、それを備えたアンテナ装置および通信機器を提供することを目的としている。 Accordingly, an object of the present invention is to provide an antenna coil built-in module, an antenna device including the same, and a communication device in which a deterioration in antenna characteristics is reduced while maintaining a reduction in size in a module incorporating an antenna coil. .
 本発明のアンテナコイル内蔵モジュールは次のように構成される。 The antenna coil built-in module of the present invention is configured as follows.
(1)導体パターンが形成された複数の基材層が積層されて構成される積層基体を備え、前記導体パターンによってアンテナコイルが構成され、前記積層基体の底面に複数の端子電極が形成され、前記積層基体にチップ部品が実装されたアンテナコイル内蔵モジュールにおいて、
 前記アンテナコイルの巻回軸は前記基材層の面方向であり、
 前記端子電極は、前記アンテナコイルの開口部付近に配置されていて、
 前記導体パターンは、前記端子電極に繋がる複数の第1配線と、前記チップ部品が実装されるチップ部品実装端子電極に繋がる複数の第2配線と、前記第1配線と前記第2配線とを層間で導通させる層間接続導体とを備え、
 前記第1配線のうち少なくとも1つは、中間点(例えば中央などの任意の1点)から前記端子電極に繋がる点までの第1部分と、前記中間点から前記第2配線に繋がる点までの第2部分とについて、それらの経路に沿った方向成分を比較すると、第1部分は第2部分に比べて前記巻回軸方向の成分が多い、という配線パターンの形状条件を満たすことを特徴とする。
(1) A laminated base including a plurality of base material layers on which conductor patterns are formed is laminated, an antenna coil is constituted by the conductor pattern, and a plurality of terminal electrodes are formed on the bottom surface of the laminated base, In the antenna coil built-in module in which the chip component is mounted on the laminated substrate,
The winding axis of the antenna coil is the surface direction of the base material layer,
The terminal electrode is disposed near the opening of the antenna coil,
The conductor pattern includes a plurality of first wirings connected to the terminal electrode, a plurality of second wirings connected to a chip component mounting terminal electrode on which the chip component is mounted, and the first wiring and the second wiring. With an interlayer connection conductor that conducts at
At least one of the first wirings includes a first portion from an intermediate point (for example, an arbitrary point such as the center) to a point connected to the terminal electrode, and a point from the intermediate point to the second wiring. When the direction component along the path is compared with the second part, the first part satisfies the wiring pattern shape condition that there are more components in the winding axis direction than the second part. To do.
 アンテナコイル内に生じる磁界はアンテナコイルの中央が高いが、アンテナコイル外に生じる磁界はアンテナコイルの開口部近傍で高い。そのため、上記配線パターンの形状条件を満たす第1配線は、アンテナコイルの開口部に近いほど、経路が巻回軸方向を向くパターンであるので、第1配線とアンテナコイルとの不要結合が抑制され、アンテナ特性の劣化が抑制される。 The magnetic field generated in the antenna coil is high in the center of the antenna coil, but the magnetic field generated outside the antenna coil is high near the opening of the antenna coil. For this reason, the first wiring satisfying the shape of the wiring pattern is a pattern in which the path is directed toward the winding axis as it is closer to the opening of the antenna coil. Therefore, unnecessary coupling between the first wiring and the antenna coil is suppressed. The deterioration of antenna characteristics is suppressed.
(2)前記第1配線のうち複数の配線が前記形状条件を満足することが好ましい。 (2) It is preferable that a plurality of wires among the first wires satisfy the shape condition.
(3)前記第1配線のうち全ての配線が前記形状条件を満足することがさらに好ましい。 (3) More preferably, all of the first wirings satisfy the shape condition.
(4)前記第2配線が形成される領域は、平面視で前記アンテナコイルの開口部と重ならない、または重なる領域が少ない、糸巻き型であることが好ましい。この構成により、アンテナコイルから放射される磁界が、モジュールに搭載するチップ部品やモジュール内の導体パターンなどと結合し難く、その結果、アンテナ特性の劣化がさらに抑制される。 (4) It is preferable that the region where the second wiring is formed is a pincushion type that does not overlap with the opening of the antenna coil in a plan view or has few overlapping regions. With this configuration, it is difficult for the magnetic field radiated from the antenna coil to be coupled to a chip component mounted on the module, a conductor pattern in the module, and the like, and as a result, deterioration of the antenna characteristics is further suppressed.
(5)前記積層基体の底面のうち、平面視で前記アンテナコイルの開口部と重ならない領域に実装用電極が形成されていることが好ましい。この構成により、アンテナコイルから放射される磁界が、積層基体底面の実装用電極と結合し難く、その結果、アンテナ特性の劣化がさらに抑制される。 (5) It is preferable that a mounting electrode is formed in a region of the bottom surface of the multilayer substrate that does not overlap with the opening of the antenna coil in plan view. With this configuration, it is difficult for the magnetic field radiated from the antenna coil to be coupled to the mounting electrode on the bottom surface of the laminated substrate, and as a result, deterioration of the antenna characteristics is further suppressed.
(6)前記基材層のうち、前記アンテナコイルが形成されている層は磁性体であることが好ましい。この構成により、小型のアンテナコイルで所定のインダクタンスを得ることができる。 (6) It is preferable that the layer in which the said antenna coil is formed among the said base material layers is a magnetic body. With this configuration, a predetermined inductance can be obtained with a small antenna coil.
(7)前記基材層のうち、前記アンテナコイルが形成されている層のうち一部にキャビティが形成されていて、このキャビティ内に(焼結)磁性体が挿入されていることが好ましい。この構成により、小型のアンテナコイルで所定のインダクタンスを得ることができ、且つ磁性体による磁気シールドが無く、磁界放射効率を高めることができる。 (7) It is preferable that a cavity is formed in a part of the base material layer in which the antenna coil is formed, and a (sintered) magnetic body is inserted into the cavity. With this configuration, a predetermined inductance can be obtained with a small antenna coil, and there is no magnetic shield by a magnetic material, so that magnetic field radiation efficiency can be increased.
(8)前記チップ部品、前記第1配線および前記第2配線でRF通信回路を構成すれば、RF通信回路およびアンテナコイルを備えたモジュールとなる。 (8) If an RF communication circuit is constituted by the chip component, the first wiring, and the second wiring, a module including an RF communication circuit and an antenna coil is obtained.
(9)例えば前記RF通信回路はRFIDタグとして動作する回路である。 (9) For example, the RF communication circuit is a circuit that operates as an RFID tag.
(10)例えば、前記RF通信回路はRFリーダ/ライタとして動作する回路である。 (10) For example, the RF communication circuit is a circuit that operates as an RF reader / writer.
(11)本発明のアンテナ装置は、上記いずれかのアンテナ内蔵モジュールと、そのアンテナ内蔵モジュールが有するアンテナコイルに対して磁界結合するブースターアンテナとを備える。この構成により、通信可能距離を拡張できる。 (11) An antenna device of the present invention includes any one of the above-described antenna built-in modules and a booster antenna that magnetically couples to an antenna coil included in the antenna built-in module. With this configuration, the communicable distance can be extended.
(12)本発明の通信機器は、上記いずれかのアンテナコイル内蔵モジュールまたは上記アンテナ装置とともに無線通信回路を備える。 (12) A communication device of the present invention includes a wireless communication circuit together with any one of the above-described antenna coil built-in modules or the antenna device.
 本発明によれば、第1配線とアンテナコイルとの不要結合が抑制され、アンテナ特性の劣化が抑制される。 According to the present invention, unnecessary coupling between the first wiring and the antenna coil is suppressed, and deterioration of the antenna characteristics is suppressed.
図1は第1の実施形態に係るアンテナコイル内蔵モジュールの積層前の各層の平面図である。FIG. 1 is a plan view of each layer before lamination of the antenna coil built-in module according to the first embodiment. 図2は、基材層12e,12fの平面図であり、アンテナコイルの開口部と第1配線のパターンとの関係を示す図である。FIG. 2 is a plan view of the base material layers 12e and 12f, showing the relationship between the opening of the antenna coil and the pattern of the first wiring. 図3はアンテナコイルと、その近傍の磁界強度について示す図(断面図)である。FIG. 3 is a diagram (sectional view) showing the antenna coil and the magnetic field strength in the vicinity thereof. 図4は、基材層12b,12c,12gの平面図であり、アンテナコイルの開口部と第2配線のパターンとの関係、およびアンテナコイルの開口部と実装用電極との関係を示す図である。FIG. 4 is a plan view of the base material layers 12b, 12c, and 12g, showing the relationship between the opening of the antenna coil and the pattern of the second wiring, and the relationship between the opening of the antenna coil and the mounting electrode. is there. 図5はアンテナコイル内蔵モジュールの回路図である。FIG. 5 is a circuit diagram of the antenna coil built-in module. 図6は第2の実施形態に係るアンテナコイル内蔵モジュールの積層前の各層の平面図である。FIG. 6 is a plan view of each layer before lamination of the antenna coil built-in module according to the second embodiment. 図7は第3の実施形態に係るアンテナコイル内蔵モジュールの基材層12fの平面図であり、アンテナコイルの開口部と第1配線のパターンとの関係を示す図である。FIG. 7 is a plan view of the base material layer 12f of the antenna coil built-in module according to the third embodiment, showing the relationship between the opening of the antenna coil and the pattern of the first wiring. 図8は第3の実施形態に係る別のアンテナコイル内蔵モジュールの基材層12fの平面図であり、アンテナコイルの開口部と第1配線のパターンとの関係を示す図である。FIG. 8 is a plan view of the base material layer 12f of another antenna coil built-in module according to the third embodiment, and is a diagram showing the relationship between the opening of the antenna coil and the pattern of the first wiring. 図9は、ブースターアンテナとして作用するブースターコイル301の分解斜視図である。FIG. 9 is an exploded perspective view of a booster coil 301 acting as a booster antenna. 図10はアンテナコイル内蔵モジュール201と図9に示したブースターコイル301とで構成されるアンテナ装置の等価回路図である。FIG. 10 is an equivalent circuit diagram of an antenna apparatus including the antenna coil built-in module 201 and the booster coil 301 shown in FIG. 図11は第5の実施形態に係る通信機器401の筐体内部の構造を示す図であり、下部筐体91と上部筐体92とを分離して内部を露出させた状態での平面図である。FIG. 11 is a diagram illustrating a structure inside the housing of the communication device 401 according to the fifth embodiment, and is a plan view in a state where the lower housing 91 and the upper housing 92 are separated and the inside is exposed. is there.
《第1の実施形態》
 図1は第1の実施形態に係るアンテナコイル内蔵モジュールの積層前の各層の平面図である。
<< First Embodiment >>
FIG. 1 is a plan view of each layer before lamination of the antenna coil built-in module according to the first embodiment.
 第1の実施形態に係るアンテナコイル内蔵モジュールは、導体パターンが形成された複数の基材層が積層されて構成される積層基体(多層基板)を備え、導体パターンによってアンテナコイルが構成され、積層基体の底面に複数の端子電極が形成され、積層基体にチップ部品が実装されている。 The antenna coil built-in module according to the first embodiment includes a multilayer base (multilayer substrate) configured by stacking a plurality of base material layers on which a conductor pattern is formed, and the antenna coil is configured by the conductor pattern. A plurality of terminal electrodes are formed on the bottom surface of the substrate, and chip components are mounted on the laminated substrate.
 図1において、(a)は積層基体の1層目(最上層)の平面図、(g)は10層目(最下層)の平面図、(b)~(f)はその間の各層の平面図である。なお、(d)は4層目から7層目について表す図である。4層目から7層目は平面図で表すと同じである。 1, (a) is a plan view of the first layer (uppermost layer) of the laminated substrate, (g) is a plan view of the tenth layer (lowermost layer), and (b) to (f) are planes of respective layers therebetween. FIG. In addition, (d) is a figure represented about the 4th layer from the 7th layer. The fourth to seventh layers are the same as shown in plan view.
 積層基体を構成する複数の基材層は絶縁層である。これらの基材層12a~12gはそれぞれ誘電体(非磁性体)層である。基材層12dには開口が形成されていて、4層目から7層目の基材層12dの積層によってキャビティが構成されている。このキャビティ内に磁性体材31が収められている。磁性体材31は例えば焼結磁性体フェライト板である。基材層12a~12gは例えば低温同時焼成セラミックス(LTCC)の層である。 The plurality of base material layers constituting the laminated base are insulating layers. Each of these base material layers 12a to 12g is a dielectric (non-magnetic) layer. An opening is formed in the base material layer 12d, and a cavity is formed by stacking the fourth to seventh base material layers 12d. A magnetic material 31 is contained in the cavity. The magnetic material 31 is, for example, a sintered magnetic ferrite plate. The base material layers 12a to 12g are, for example, layers of low temperature co-fired ceramics (LTCC).
 図1に示すように、基材層12gには端子電極P1~P6および実装用電極16が形成されている。基材層12aにはチップ部品搭載用の複数の電極および複数の配線パターンが形成されている。但し、この図1の(a)では搭載されたチップ部品のみを表している。具体的には、RFIC、セキュアエレメントSE、水晶発振子X1、チップインダクタL1,L2、チップキャパシタC4,C9,C14,C15,C17,C18,C19,C20,C23,C24、およびチップ抵抗R1が搭載されている。 As shown in FIG. 1, terminal electrodes P1 to P6 and mounting electrodes 16 are formed on the base material layer 12g. A plurality of electrodes for mounting chip components and a plurality of wiring patterns are formed on the base material layer 12a. However, FIG. 1A shows only the mounted chip components. Specifically, RFIC, secure element SE, crystal oscillator X1, chip inductors L1, L2, chip capacitors C4, C9, C14, C15, C17, C18, C19, C20, C23, C24, and chip resistor R1 are mounted. Has been.
 基材層12cには線状導体21が形成されていて、基材層12eには線状導体22が形成されていている。基材層12c,12dには、線状導体21-22間を接続する2列のアンテナコイル用層間接続導体(ビア導体)23が形成されている。これらの線状導体21,22およびアンテナコイル用層間接続導体23によって、基材層の面方向に巻回軸が向くようにヘリカル状に巻回されたアンテナコイルが構成されている。前記端子電極P1~P6はアンテナコイルの開口部付近に配列されている。この例では、線状導体21,22はx軸方向に延び、アンテナコイルの巻回軸はy軸方向を向く。 The linear conductor 21 is formed on the base material layer 12c, and the linear conductor 22 is formed on the base material layer 12e. In the base material layers 12c and 12d, two rows of antenna coil interlayer connection conductors (via conductors) 23 for connecting the linear conductors 21-22 are formed. The linear conductors 21 and 22 and the antenna coil interlayer connection conductor 23 constitute an antenna coil wound in a helical shape so that the winding axis faces the surface direction of the base material layer. The terminal electrodes P1 to P6 are arranged near the opening of the antenna coil. In this example, the linear conductors 21 and 22 extend in the x-axis direction, and the winding axis of the antenna coil faces the y-axis direction.
 基材層12fには第1配線14a~14fが形成されている。基材層12bには第2配線が形成されている。但し、図1においては、第2配線の形成領域17を包括的に示している。 First wirings 14a to 14f are formed on the base material layer 12f. A second wiring is formed on the base material layer 12b. However, in FIG. 1, the formation area 17 of the second wiring is comprehensively shown.
 基材層12b~12fには、基材層12bに形成されている第2配線と基材層12fに形成されている第1配線14a~14fとを接続する層間接続導体(ビア導体)13a~13fが形成されている。基材層12aには、基材層12aに形成されている配線パターンと基材層12bに形成されている第2配線とを接続する層間接続導体が形成されている。 The base material layers 12b to 12f include interlayer connection conductors (via conductors) 13a to 13a for connecting the second wirings formed on the base material layer 12b and the first wirings 14a to 14f formed on the base material layer 12f. 13f is formed. Interlayer connection conductors for connecting the wiring pattern formed on the base material layer 12a and the second wiring formed on the base material layer 12b are formed on the base material layer 12a.
 基材層12gには、基材層12fに形成されている第1配線14a~14fと、基材層12gに形成されている端子電極P1~P6と、を接続する層間接続導体(ビア導体)15a~15fが形成されている。 The base layer 12g has an interlayer connection conductor (via conductor) that connects the first wirings 14a to 14f formed on the base layer 12f and the terminal electrodes P1 to P6 formed on the base layer 12g. 15a to 15f are formed.
 第1配線14a~14fは層間接続導体13a~13fと層間接続導体15a~15fとを接続する。したがって、端子電極P1~P6は第1配線14a~14f、層間接続導体15a~15f,13a~13fを介して、第2配線に導通する。 The first wirings 14a to 14f connect the interlayer connection conductors 13a to 13f and the interlayer connection conductors 15a to 15f. Accordingly, the terminal electrodes P1 to P6 are electrically connected to the second wiring via the first wirings 14a to 14f and the interlayer connection conductors 15a to 15f and 13a to 13f.
 図2は、前記基材層12e,12fの平面図であり、アンテナコイルの開口部と第1配線のパターンとの関係を示す図である。一点鎖線は巻回軸を示している。 FIG. 2 is a plan view of the base material layers 12e and 12f, showing the relationship between the opening of the antenna coil and the pattern of the first wiring. The alternate long and short dash line indicates the winding axis.
 第1配線14a~14fは、中間点(この例では折れ点)から端子電極に繋がる点(層間接続導体15a~15f)までの第1部分Z1と、前記中間点から第2配線に繋がる点(層間接続導体13a~13f)までの第2部分Z2とを備えている。この第1部分Z1と第2部分Z2とで、経路に沿った方向成分を比較すると、第1部分Z1は第2部分Z2に比べてアンテナコイルの巻回軸方向の成分が多い。この例では、第1配線14a~14fのそれぞれは、第1部分Z1がy軸方向を向いていて、第2部分Z2がx軸方向を向いている。言い換えると、第1配線14a~14fは、アンテナコイルの開口部付近においてはアンテナコイルの巻回軸方向に延び、アンテナコイルの開口部より奥まった位置では巻回軸に直交する方向に延びている。 The first wirings 14a to 14f include a first portion Z1 from an intermediate point (break point in this example) to a point (interlayer connection conductors 15a to 15f) connected to the terminal electrode, and a point connected to the second wiring from the intermediate point ( And a second portion Z2 up to the interlayer connection conductors 13a to 13f). When the direction component along the path is compared between the first portion Z1 and the second portion Z2, the first portion Z1 has more components in the winding axis direction of the antenna coil than the second portion Z2. In this example, in each of the first wirings 14a to 14f, the first portion Z1 faces the y-axis direction, and the second portion Z2 faces the x-axis direction. In other words, the first wires 14a to 14f extend in the direction of the winding axis of the antenna coil in the vicinity of the opening of the antenna coil, and extend in a direction perpendicular to the winding axis at a position deeper than the opening of the antenna coil. .
 図3はアンテナコイルと、その近傍の磁界強度について示す図(断面図)である。線状導体21,22はアンテナコイルの一部であり、破線はアンテナコイルにより生じる磁力線であり、磁界の強度分布をこの磁力線の粗密で表している。 FIG. 3 is a diagram (sectional view) showing the antenna coil and the magnetic field strength in the vicinity thereof. The linear conductors 21 and 22 are part of the antenna coil, and the broken lines are magnetic lines generated by the antenna coil, and the magnetic field strength distribution is represented by the density of the magnetic lines.
 アンテナコイル内に生じる磁界はアンテナコイルの中央で高いが、アンテナコイル外に生じる磁界はアンテナコイルの開口部近傍で高い。そのため、アンテナコイルの開口部の近傍に巻回軸に対して直交方向に延びる導体パターンがあれば、アンテナコイルはその導体パターンと強く磁界結合してしまう。図3において、第1配線14e,14bの一部はコイル開口部の近傍に位置するが、第1配線14e,14bはコイル開口部の近傍では巻回軸方向に延びている。そのため、アンテナコイルと第1配線との結合は弱い。 The magnetic field generated in the antenna coil is high at the center of the antenna coil, but the magnetic field generated outside the antenna coil is high near the opening of the antenna coil. Therefore, if there is a conductor pattern extending in a direction orthogonal to the winding axis in the vicinity of the opening of the antenna coil, the antenna coil is strongly magnetically coupled to the conductor pattern. In FIG. 3, some of the first wirings 14e and 14b are located near the coil opening, but the first wirings 14e and 14b extend in the winding axis direction near the coil opening. Therefore, the coupling between the antenna coil and the first wiring is weak.
 図4は、前記基材層12b,12c,12gの平面図であり、アンテナコイルの開口部と第2配線のパターンとの関係、およびアンテナコイルの開口部と実装用電極との関係を示す図である。基材層12cに示すアンテナコイルの開口部CAの平面視での位置を基材層12b,12gにおいても示している。 FIG. 4 is a plan view of the base material layers 12b, 12c, and 12g, and shows the relationship between the opening of the antenna coil and the pattern of the second wiring, and the relationship between the opening of the antenna coil and the mounting electrode. It is. The positions of the antenna coil opening CA shown in the base material layer 12c in plan view are also shown in the base material layers 12b and 12g.
 基材層12bに示すように、第2配線の形成領域17は、平面視でアンテナコイルの開口部CAと重ならない、または重なる領域が少ない、糸巻き型である。アンテナコイルの開口部CAと重なる領域が少なくなるように、コイル開口からオフセットOFだけオフセットさせている。例えば、基材層の寸法は6mm×5mmであり、オフセットOFはコイル開口位置から約0.6mmとしている。このオフセット量は、アンテナコイルの巻回軸の軸長(図4におけるy軸方向の長さ)の1/10程度(1/5から1/20の範囲)であることが好ましい。 As shown in the base material layer 12b, the formation region 17 of the second wiring is a pincushion type that does not overlap with the opening portion CA of the antenna coil in a plan view or has a small overlapping region. An offset OF is offset from the coil opening so that the area overlapping the opening CA of the antenna coil is reduced. For example, the dimension of the base material layer is 6 mm × 5 mm, and the offset OF is about 0.6 mm from the coil opening position. This offset amount is preferably about 1/10 (range from 1/5 to 1/20) of the axial length of the winding axis of the antenna coil (the length in the y-axis direction in FIG. 4).
 図3に示したように、アンテナコイル外の磁界強度はコイル開口部の近傍で高いが、第2配線を上記領域に形成したことにより、アンテナコイルから放射される磁界が、モジュールに搭載するチップ部品やモジュール内の導体パターンなどと結合し難く、その結果、アンテナ特性の劣化がさらに抑制される。 As shown in FIG. 3, the magnetic field intensity outside the antenna coil is high in the vicinity of the coil opening, but the second wiring is formed in the above region, so that the magnetic field radiated from the antenna coil is mounted on the module. It is difficult to couple with a conductor pattern in a component or a module, and as a result, deterioration of antenna characteristics is further suppressed.
 また、基材層12gに示すように、平面視でアンテナコイルの開口部CAと重ならない領域に実装用電極16が形成されている。例えば、クリアランスCLをコイル開口位置から約0.7mmとしている。このクリアランスは、アンテナコイルの巻回軸の軸長(図4におけるy軸方向の長さ)の1/10程度(1/5から1/20の範囲)であることが好ましい。この構成により、アンテナコイルから放射される磁界が、実装用電極16と結合し難く、その結果、アンテナ特性の劣化がさらに抑制される。 Further, as shown in the base material layer 12g, the mounting electrode 16 is formed in a region that does not overlap the opening CA of the antenna coil in plan view. For example, the clearance CL is about 0.7 mm from the coil opening position. This clearance is preferably about 1/10 (range from 1/5 to 1/20) of the axial length of the winding axis of the antenna coil (the length in the y-axis direction in FIG. 4). With this configuration, the magnetic field radiated from the antenna coil is difficult to be coupled to the mounting electrode 16, and as a result, deterioration of the antenna characteristics is further suppressed.
 図5は前記アンテナコイル内蔵モジュールの回路図である。ここで、アンテナコイルANTは前記線状導体21,22およびアンテナコイル用層間接続導体23によって構成されたアンテナコイルである。このアンテナコイルANTとキャパシタC20とでLC並列共振回路が構成されていて、その共振周波数が通信信号のキャリア周波数帯(例えば13.56MHz帯等のHF帯)に調整されている。キャパシタC19は共振周波数微調整用のキャパシタである。インダクタL1,L2、キャパシタC14,C15,C17,C18はインピーダンス整合回路を構成している。水晶発振子X1、キャパシタC23,C24および抵抗R1は水晶発振回路を構成している。キャパシタC4,C9はバイパスコンデンサである。 FIG. 5 is a circuit diagram of the antenna coil built-in module. Here, the antenna coil ANT is an antenna coil constituted by the linear conductors 21 and 22 and the antenna coil interlayer connection conductor 23. The antenna coil ANT and the capacitor C20 constitute an LC parallel resonance circuit, and the resonance frequency is adjusted to the carrier frequency band of the communication signal (for example, the HF band such as 13.56 MHz band). The capacitor C19 is a capacitor for fine adjustment of the resonance frequency. The inductors L1 and L2 and the capacitors C14, C15, C17, and C18 constitute an impedance matching circuit. The crystal oscillator X1, capacitors C23 and C24, and resistor R1 constitute a crystal oscillation circuit. Capacitors C4 and C9 are bypass capacitors.
 端子電極P1~P6のうちP1,P6は電源端子、端子電極P4はグランド端子である。 Among the terminal electrodes P1 to P6, P1 and P6 are power supply terminals, and the terminal electrode P4 is a ground terminal.
 前記RFICはRF通信回路である。このRFICがタグモードに設定されている場合は、アンテナコイルで受けた近接電磁界を電力に変換するとともに、通信相手側からのコマンドを復調し、負荷変調により所定の情報を送信(応答)する。これにより、このアンテナコイル内蔵モジュールはRFIDタグとして作用する。 The RFIC is an RF communication circuit. When this RFIC is set to the tag mode, the electromagnetic field received by the antenna coil is converted into electric power, the command from the communication partner side is demodulated, and predetermined information is transmitted (response) by load modulation. . Thereby, this antenna coil built-in module acts as an RFID tag.
 また、RFICがリーダ/ライタモードに設定されている場合は、アンテナコイルで受けた近接電磁界を電力に変換するとともに、通信相手側からの送信信号を受信し、負荷変調により所定の情報を送信する。これによりこのアンテナコイル内蔵モジュールはRFリーダ/ライタとして作用する。 In addition, when the RFIC is set to the reader / writer mode, it converts the near electromagnetic field received by the antenna coil into electric power, receives a transmission signal from the communication partner, and transmits predetermined information by load modulation. To do. As a result, the antenna coil built-in module functions as an RF reader / writer.
《第2の実施形態》
 図6は第2の実施形態に係るアンテナコイル内蔵モジュールの積層前の各層の平面図である。
<< Second Embodiment >>
FIG. 6 is a plan view of each layer before lamination of the antenna coil built-in module according to the second embodiment.
 第2の実施形態に係るアンテナコイル内蔵モジュールは、第1の実施形態で示したものと同様に、導体パターンが形成された複数の基材層が積層されて構成される積層基体を備え、導体パターンによってアンテナコイルが構成され、積層基体の底面に複数の端子電極が形成され、積層基体にチップ部品が実装されている。 The module with a built-in antenna coil according to the second embodiment includes a laminated substrate formed by laminating a plurality of base material layers on which conductor patterns are formed, similar to that shown in the first embodiment. An antenna coil is configured by the pattern, a plurality of terminal electrodes are formed on the bottom surface of the multilayer substrate, and a chip component is mounted on the multilayer substrate.
 図6において、基材層12a~12gはいずれも絶縁層であるが、基材層12c,12d,12eは磁性体層であり、その他の基材層は誘電体層である。基材層12c,12d,12eは磁性体層である点が第1の実施形態と異なる。また、基材層12dには開口がなく、従ってキャビティは構成されておらず、図1に示した磁性体材31は存在しない。 In FIG. 6, the base material layers 12a to 12g are all insulating layers, but the base material layers 12c, 12d, and 12e are magnetic layers, and the other base material layers are dielectric layers. The substrate layers 12c, 12d, and 12e are different from the first embodiment in that they are magnetic layers. Further, the base material layer 12d has no opening, and therefore no cavity is formed, and the magnetic material 31 shown in FIG. 1 does not exist.
 上記誘電体層は例えば低温同時焼成セラミックス(LTCC)の誘電体セラミック層、上記磁性体層は例えば低温同時焼成セラミックス(LTCC)のフェライト層である。 The dielectric layer is, for example, a low-temperature co-fired ceramic (LTCC) dielectric ceramic layer, and the magnetic layer is, for example, a low-temperature co-fired ceramic (LTCC) ferrite layer.
 このように、アンテナコイルの線状導体21,22で挟まれる基材層を磁性体層とすることにより、焼結磁性体フェライト板を埋設することなく、小型のアンテナコイルで所定のインダクタンスを得ることができる。 Thus, by using the base material layer sandwiched between the linear conductors 21 and 22 of the antenna coil as a magnetic layer, a predetermined inductance is obtained with a small antenna coil without embedding a sintered magnetic ferrite plate. be able to.
 なお、所定のインダクタンスを得るためのアンテナコイルのサイズは多少大きくなるが、図6に示した基材層12a~12gのすべてを誘電体層としてもよい。 Note that the size of the antenna coil for obtaining a predetermined inductance is somewhat larger, but all of the base material layers 12a to 12g shown in FIG. 6 may be used as dielectric layers.
《第3の実施形態》
 図7は第3の実施形態に係るアンテナコイル内蔵モジュールの基材層12fの平面図であり、アンテナコイルの開口部と第1配線のパターンとの関係を示す図である。また、図8は第3の実施形態に係る別のアンテナコイル内蔵モジュールの基材層12fの平面図であり、アンテナコイルの開口部と第1配線のパターンとの関係を示す図である。図7、図8において、基材層12f以外の構成は第1の実施形態で図1、図2に示したものと同じである。
<< Third Embodiment >>
FIG. 7 is a plan view of the base material layer 12f of the antenna coil built-in module according to the third embodiment, showing the relationship between the opening of the antenna coil and the pattern of the first wiring. FIG. 8 is a plan view of the base material layer 12f of another antenna coil built-in module according to the third embodiment, and is a diagram showing the relationship between the opening of the antenna coil and the pattern of the first wiring. 7 and 8, the configuration other than the base material layer 12f is the same as that shown in FIGS. 1 and 2 in the first embodiment.
 図1、図2に示した例では、第1配線14a~14fはほぼL字状のパターンであったが、第1配線は直線のみで構成されていなくてもよく、図7に示すように、第1配線のパターンの一部または全部が曲線であってもよい。また、図8に示すように、第1配線のパターンの一部が斜めであってもよい。いずれの場合でも、中間点から端子電極に繋がる点(層間接続導体15a~15f)までの第1部分Z1と、中間点から第2配線に繋がる点(層間接続導体13a~13f)までの第2部分Z2とを備えている。この第1部分Z1と第2部分Z2とで、経路に沿った方向成分を比較すると、第1部分Z1は第2部分Z2に比べてアンテナコイルの巻回軸方向の成分が多い、という形状条件を満たす。 In the example shown in FIGS. 1 and 2, the first wirings 14a to 14f have a substantially L-shaped pattern. However, the first wiring may not be composed of only a straight line, as shown in FIG. A part or all of the pattern of the first wiring may be a curve. Further, as shown in FIG. 8, a part of the pattern of the first wiring may be oblique. In any case, the first portion Z1 from the intermediate point to the point connected to the terminal electrode (interlayer connection conductors 15a to 15f) and the second portion from the intermediate point to the point connected to the second wiring (interlayer connection conductors 13a to 13f). And a portion Z2. When the direction component along the path is compared between the first portion Z1 and the second portion Z2, the shape condition that the first portion Z1 has more components in the winding axis direction of the antenna coil than the second portion Z2. Meet.
 前記中間点は、第1配線14a~14fの中央点の意味ではなく、端子電極に繋がる点(層間接続導体15a~15f)と第2配線に繋がる点(層間接続導体13a~13f)との間の任意の点である。 The intermediate point does not mean the central point of the first wirings 14a to 14f, but is between the point connected to the terminal electrode (interlayer connection conductors 15a to 15f) and the point connected to the second wiring (interlayer connection conductors 13a to 13f). Is an arbitrary point.
 上記配線パターンの形状条件を満たすことは、配線パターンがアンテナコイルの開口部付近でコイル巻回軸方向に沿った形状となり、アンテナコイルの開口部より奥まった位置でコイル巻回軸方向に直交する方向に沿った形状となる。そのため、第1配線はアンテナコイルの開口部付近では巻回軸方向を向くパターンであるので、第1配線とアンテナコイルとの不要な結合が抑制され、アンテナ特性の劣化が抑制される。 Satisfying the above-mentioned wiring pattern shape condition means that the wiring pattern has a shape along the coil winding axis direction near the opening of the antenna coil, and is orthogonal to the coil winding axis direction at a position deeper than the opening of the antenna coil. It becomes a shape along the direction. Therefore, since the first wiring has a pattern that faces the winding axis in the vicinity of the opening of the antenna coil, unnecessary coupling between the first wiring and the antenna coil is suppressed, and deterioration of antenna characteristics is suppressed.
 なお、図7、図8に示した第1配線のパターンであれば、図2に示したようなL字状のパターンである場合に比べて、配線パターンの経路長が短くなるので、配線抵抗が小さくなって低損失化が図れる。 7 and 8, the path length of the wiring pattern is shorter than that of the L-shaped pattern as shown in FIG. Can be reduced and the loss can be reduced.
《第4の実施形態》
 第4の実施形態では、以上に示したアンテナコイル内蔵モジュールのアンテナコイルを給電用コイルとして用い、この給電用コイルと結合するブースターアンテナを備えたアンテナ装置について示す。
<< Fourth Embodiment >>
In the fourth embodiment, an antenna device including a booster antenna that uses the antenna coil of the antenna coil built-in module described above as a feeding coil and is coupled to the feeding coil will be described.
 図9は、ブースターアンテナとして作用するブースターコイル301の分解斜視図である。ブースターコイル301は、絶縁体基材3、その第1面に形成された第1コイル1、第2面に形成された第2コイル2、および磁性体シート4を備えている。第1コイル1と第2コイル2はそれぞれ矩形渦巻状にパターン化された導体であり、平面視で同方向に電流が流れる状態で容量結合するようにパターン化されている。同一方向からの平面視で、一方のコイル導体に時計回りの電流が流れるとき、他方のコイル導体にも時計回りに電流が流れるように、二つのコイル導体はパターン化されている。 FIG. 9 is an exploded perspective view of the booster coil 301 acting as a booster antenna. The booster coil 301 includes an insulator base 3, a first coil 1 formed on the first surface, a second coil 2 formed on the second surface, and a magnetic sheet 4. The first coil 1 and the second coil 2 are conductors patterned in a rectangular spiral shape, and are patterned so as to be capacitively coupled in a state where current flows in the same direction in plan view. The two coil conductors are patterned so that when a clockwise current flows through one coil conductor in a plan view from the same direction, a current flows clockwise through the other coil conductor.
 図10はアンテナコイル内蔵モジュール201と図9に示したブースターコイル301とで構成されるアンテナ装置の等価回路図である。アンテナコイル内蔵モジュール201の構成は、先に幾つかの実施形態で示したとおりである。詳細には図5に示されるような回路を構成するが、ここでは簡略化して表している。アンテナコイル内蔵モジュール201はアンテナコイルのインダクタンス成分L1、キャパシタC1およびRFIC等で構成される。キャパシタC1はアンテナコイルの共振周波数を調整するための容量(図5におけるC19,C20)である。ブースターコイル301は、第1コイル1および第2コイル2のインダクタンス成分L2,L3、第1コイル1と第2コイル2との間に生じるキャパシタンス成分C2,C3等で構成される。 FIG. 10 is an equivalent circuit diagram of an antenna device including the antenna coil built-in module 201 and the booster coil 301 shown in FIG. The configuration of the antenna coil built-in module 201 is as described in some embodiments above. In detail, a circuit as shown in FIG. 5 is configured, but is simplified here. The antenna coil built-in module 201 includes an antenna coil inductance component L1, a capacitor C1, an RFIC, and the like. The capacitor C1 is a capacitor (C19, C20 in FIG. 5) for adjusting the resonance frequency of the antenna coil. The booster coil 301 includes inductance components L2 and L3 of the first coil 1 and the second coil 2, capacitance components C2 and C3 generated between the first coil 1 and the second coil 2, and the like.
 このようにして、アンテナコイル内蔵モジュールとは別体のブースターコイル301をブースターアンテナとして用いることによって、通信可能最長距離を拡張できる。 In this way, the maximum communicable distance can be extended by using the booster coil 301 separate from the antenna coil built-in module as the booster antenna.
《第5の実施形態》
 図11は第5の実施形態に係る通信機器401の筐体内部の構造を示す図であり、下部筐体91と上部筐体92とを分離して内部を露出させた状態での平面図である。この通信機器401は、以上に示したアンテナコイル内蔵モジュールのアンテナコイルを給電用コイルとして用い、この給電用コイルと結合するブースターコイルを備えたものである。
<< Fifth Embodiment >>
FIG. 11 is a diagram illustrating a structure inside the housing of the communication device 401 according to the fifth embodiment, and is a plan view in a state where the lower housing 91 and the upper housing 92 are separated and the inside is exposed. is there. The communication device 401 includes a booster coil that uses the antenna coil of the antenna coil built-in module described above as a power feeding coil and is coupled to the power feeding coil.
 下部筐体91の内部にはプリント配線板71,81、バッテリーパック83等が収められている。プリント配線板71にはアンテナコイル内蔵モジュール201が実装されている。このプリント配線板71にはUHF帯アンテナ72、カメラモジュール76等も搭載されている。また、プリント配線板81にはUHF帯アンテナ82等が搭載されている。プリント配線板71とプリント配線板81とは同軸ケーブル84を介して接続されている。 Inside the lower housing 91, printed wiring boards 71 and 81, a battery pack 83 and the like are housed. An antenna coil built-in module 201 is mounted on the printed wiring board 71. The printed wiring board 71 is also equipped with a UHF band antenna 72, a camera module 76, and the like. The printed wiring board 81 is equipped with a UHF band antenna 82 and the like. The printed wiring board 71 and the printed wiring board 81 are connected via a coaxial cable 84.
 上部筐体92の内面にはブースターコイル301が形成されている。このブースターコイル301はアンテナコイル内蔵モジュール201のアンテナコイル(給電コイル)と磁界結合する。 A booster coil 301 is formed on the inner surface of the upper casing 92. The booster coil 301 is magnetically coupled to the antenna coil (feeding coil) of the antenna coil built-in module 201.
 なお、以上の各実施形態においてはセラミックの積層基体を備えた例を示したが、誘電体(非磁性体)の樹脂シートを基材層とし、樹脂シートの積層によって積層基体を構成してもよい。例えば液晶ポリマー、ポリイミド等の熱可塑性樹脂シートを用いることができる。また、誘電体フィラーを分散させた樹脂シートを誘電体層として用いることができる。さらに、磁性体フィラーを分散させた、またはそれとともに誘電体フィラーを分散させた樹脂シートを磁性体層として用いることができる。 In each of the above-described embodiments, an example in which a ceramic laminated substrate is provided has been described. However, a dielectric (nonmagnetic) resin sheet may be used as a base layer, and the laminated substrate may be configured by stacking resin sheets. Good. For example, a thermoplastic resin sheet such as a liquid crystal polymer or polyimide can be used. Further, a resin sheet in which a dielectric filler is dispersed can be used as the dielectric layer. Further, a resin sheet in which a magnetic filler is dispersed or a dielectric filler is dispersed together with the magnetic filler can be used as the magnetic layer.
 以上に示した各実施形態では、第1配線のすべてが、前述の配線パターンの形状条件を満たす例を示したが、複数の第1配線のうち、少なくとも1つでも配線パターンの形状条件を満足すれば、アンテナ特性の劣化は抑制できる。 In each of the embodiments described above, the example in which all of the first wirings satisfy the above-described wiring pattern shape conditions is shown. However, at least one of the plurality of first wirings satisfies the wiring pattern shape conditions. If so, the deterioration of the antenna characteristics can be suppressed.
 また、以上に示した例では、13.56MHz帯等のHF帯のRFIDについて示したが、本発明はHF帯だけではなく、無線LAN等で利用されるUHF帯のシステムなどについても同様に適用できる。 In the example described above, the RFID for the HF band such as the 13.56 MHz band is shown. However, the present invention applies not only to the HF band but also to a UHF band system used in a wireless LAN or the like. it can.
ANT…アンテナコイル
CA…アンテナコイルの開口部
P1~P6…端子電極
SE…セキュアエレメント
X1…水晶発振子
Z1…第1部分
Z2…第2部分
1…第1コイル
2…第2コイル
3…絶縁体基材
4…磁性体シート
12a~12g…基材層
13a…層間接続導体
14a~14f…第1配線
15a~15f…層間接続導体
16…実装用電極
17…第2配線の形成領域
21,22…線状導体
23…アンテナコイル用層間接続導体
31…磁性体材
71,81…プリント配線板
72,82…UHF帯アンテナ
76…カメラモジュール
83…バッテリーパック
84…同軸ケーブル
91…下部筐体
92…上部筐体
201…アンテナコイル内蔵モジュール
301…ブースターコイル
401…通信機器
ANT ... antenna coil CA ... antenna coil openings P1 to P6 ... terminal electrode SE ... secure element X1 ... crystal oscillator Z1 ... first part Z2 ... second part 1 ... first coil 2 ... second coil 3 ... insulator Base material 4 ... Magnetic sheets 12a to 12g ... Base material layer 13a ... Interlayer connection conductors 14a to 14f ... First wiring 15a to 15f ... Interlayer connection conductor 16 ... Mounting electrode 17 ... Second wiring formation regions 21, 22 ... Linear conductor 23 ... Interlayer connection conductor 31 for antenna coil ... Magnetic material 71, 81 ... Printed wiring board 72, 82 ... UHF band antenna 76 ... Camera module 83 ... Battery pack 84 ... Coaxial cable 91 ... Lower casing 92 ... Upper part Housing 201 ... Antenna coil built-in module 301 ... Booster coil 401 ... Communication equipment

Claims (12)

  1.  導体パターンが形成された複数の基材層が積層されて構成される積層基体を備え、前記導体パターンによってアンテナコイルが構成され、前記積層基体の底面に複数の端子電極が形成され、前記積層基体にチップ部品が実装されたアンテナコイル内蔵モジュールにおいて、
     前記アンテナコイルの巻回軸は前記基材層の面方向であり、
     前記端子電極は、前記アンテナコイルの開口部付近に配置されていて、
     前記導体パターンは、前記端子電極に繋がる複数の第1配線と、前記チップ部品が実装されるチップ部品実装端子電極に繋がる複数の第2配線と、前記第1配線と前記第2配線とを層間で導通させる層間接続導体とを備え、
     前記第1配線のうち少なくとも1つは、中間点から前記端子電極に繋がる点までの第1部分と、前記中間点から前記第2配線に繋がる点までの第2部分とについて、それらの経路に沿った方向成分を比較すると、第1部分は第2部分に比べて前記巻回軸方向の成分が多い、という配線パターンの形状条件を満たすことを特徴とする、アンテナコイル内蔵モジュール。
    A laminated base comprising a plurality of base material layers each having a conductor pattern formed thereon, an antenna coil is constituted by the conductor pattern, and a plurality of terminal electrodes are formed on a bottom surface of the laminated base; In the antenna coil built-in module with chip components mounted on
    The winding axis of the antenna coil is the surface direction of the base material layer,
    The terminal electrode is disposed near the opening of the antenna coil,
    The conductor pattern includes a plurality of first wirings connected to the terminal electrode, a plurality of second wirings connected to a chip component mounting terminal electrode on which the chip component is mounted, and the first wiring and the second wiring. With an interlayer connection conductor that conducts at
    At least one of the first wires has a first portion from an intermediate point to a point connected to the terminal electrode and a second portion from the intermediate point to a point connected to the second wire. The antenna coil built-in module satisfying the wiring pattern shape condition that the first portion has more components in the winding axis direction than the second portion when comparing the direction components along the direction.
  2.  前記第1配線のうち複数の配線が前記形状条件を満足する、請求項1に記載のアンテナコイル内蔵モジュール。 The antenna coil built-in module according to claim 1, wherein a plurality of wires among the first wires satisfy the shape condition.
  3.  前記第1配線の全ての配線が前記形状条件を満足する、請求項1に記載のアンテナコイル内蔵モジュール。 The antenna coil built-in module according to claim 1, wherein all the wirings of the first wiring satisfy the shape condition.
  4.  前記第2配線が形成される領域は、平面視で前記アンテナコイルの開口部と重ならない、または重なる領域が少ない、糸巻き型である、請求項1~3のいずれかに記載のアンテナコイル内蔵モジュール。 The antenna coil built-in module according to any one of claims 1 to 3, wherein the region where the second wiring is formed is a pincushion type that does not overlap with the opening of the antenna coil in a plan view, or has a small overlapping region. .
  5.  前記積層基体の底面のうち、平面視で前記アンテナコイルの開口部と重ならない領域に実装用電極が形成されている、請求項1~4のいずれかに記載のアンテナコイル内蔵モジュール。 The antenna coil built-in module according to any one of claims 1 to 4, wherein a mounting electrode is formed in a region of the bottom surface of the multilayer substrate that does not overlap the opening of the antenna coil in plan view.
  6.  前記基材層のうち、前記アンテナコイルが形成されている層は磁性体である、請求項1~5のいずれかに記載のアンテナコイル内蔵モジュール。 The antenna coil built-in module according to any one of claims 1 to 5, wherein a layer of the base material layer on which the antenna coil is formed is a magnetic material.
  7.  前記基材層のうち、前記アンテナコイルが形成されている層のうち一部にキャビティが形成されていて、このキャビティ内に磁性体が挿入されている、請求項1~5のいずれかに記載のアンテナコイル内蔵モジュール。 A cavity is formed in a part of the base material layer in which the antenna coil is formed, and a magnetic material is inserted into the cavity. Module with built-in antenna coil.
  8.  前記チップ部品、前記第1配線および前記第2配線でRF通信回路が構成された、請求項1~7のいずれかに記載のアンテナコイル内蔵モジュール。 The antenna coil built-in module according to any one of claims 1 to 7, wherein an RF communication circuit is configured by the chip component, the first wiring, and the second wiring.
  9.  前記RF通信回路はRFIDタグとして動作する回路である、請求項8に記載のアンテナコイル内蔵モジュール。 The antenna coil built-in module according to claim 8, wherein the RF communication circuit is a circuit that operates as an RFID tag.
  10.  前記RF通信回路はRFリーダ/ライタとして動作する回路である、請求項8に記載のアンテナコイル内蔵モジュール。 The antenna coil built-in module according to claim 8, wherein the RF communication circuit is a circuit that operates as an RF reader / writer.
  11.  請求項1~10のいずれかに記載のアンテナ内蔵モジュールと、そのアンテナ内蔵モジュールが有する前記アンテナコイルに対して磁界結合するブースターアンテナとを備えたアンテナ装置。 11. An antenna device comprising: the antenna built-in module according to claim 1; and a booster antenna magnetically coupled to the antenna coil of the antenna built-in module.
  12.  請求項1~10のいずれかに記載のアンテナコイル内蔵モジュールまたは請求項11に記載のアンテナ装置とともに無線通信回路を備えた通信機器。 A communication device including a module with a built-in antenna coil according to any one of claims 1 to 10 or a wireless communication circuit together with the antenna device according to claim 11.
PCT/JP2013/083019 2013-01-15 2013-12-10 Module with built-in antenna coil, antenna apparatus, and communication apparatus WO2014112243A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201390000528.8U CN204497378U (en) 2013-01-15 2013-12-10 Aerial coil built-in module, antenna assembly and communication equipment
JP2014531441A JP5633662B1 (en) 2013-01-15 2013-12-10 Antenna coil built-in module, antenna device, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013004386 2013-01-15
JP2013-004386 2013-01-15

Publications (1)

Publication Number Publication Date
WO2014112243A1 true WO2014112243A1 (en) 2014-07-24

Family

ID=51209353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083019 WO2014112243A1 (en) 2013-01-15 2013-12-10 Module with built-in antenna coil, antenna apparatus, and communication apparatus

Country Status (3)

Country Link
JP (1) JP5633662B1 (en)
CN (1) CN204497378U (en)
WO (1) WO2014112243A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180166767A1 (en) * 2016-12-09 2018-06-14 Taiyo Yuden Co., Ltd. Wireless module and method for manufacturing the same
CN111068179A (en) * 2020-01-06 2020-04-28 浙江大学 Flexible passive wireless electric stimulation patch and method
US10714822B2 (en) 2016-12-01 2020-07-14 Taiyo Yuden Co., Ltd. Wireless module and method for manufacturing wireless module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10698455B2 (en) * 2018-03-23 2020-06-30 Wits Co., Ltd. Antenna module and electronic device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090745A1 (en) * 2007-01-25 2008-07-31 Nidec Sankyo Corporation Loop antenna
WO2008133018A1 (en) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. Magnetic field coupling type antenna, magnetic field coupling type antenna module, magnetic field coupling type antenna device, and their manufacturing methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090745A1 (en) * 2007-01-25 2008-07-31 Nidec Sankyo Corporation Loop antenna
WO2008133018A1 (en) * 2007-04-13 2008-11-06 Murata Manufacturing Co., Ltd. Magnetic field coupling type antenna, magnetic field coupling type antenna module, magnetic field coupling type antenna device, and their manufacturing methods

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714822B2 (en) 2016-12-01 2020-07-14 Taiyo Yuden Co., Ltd. Wireless module and method for manufacturing wireless module
US20180166767A1 (en) * 2016-12-09 2018-06-14 Taiyo Yuden Co., Ltd. Wireless module and method for manufacturing the same
JP2018098551A (en) * 2016-12-09 2018-06-21 太陽誘電株式会社 Wireless module and manufacturing method of wireless module
US10601106B2 (en) 2016-12-09 2020-03-24 Taiyo Yuden Co., Ltd. Wireless module and method for manufacturing the same
CN111068179A (en) * 2020-01-06 2020-04-28 浙江大学 Flexible passive wireless electric stimulation patch and method

Also Published As

Publication number Publication date
JP5633662B1 (en) 2014-12-03
CN204497378U (en) 2015-07-22
JPWO2014112243A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US9865924B2 (en) Antenna device and communication terminal apparatus
US9705192B2 (en) Antenna device and communication terminal apparatus
JP6260729B2 (en) Feeding element
TWI545841B (en) Antenna devices and wireless communication devices
US9705193B2 (en) Antenna device and wireless communication apparatus
JP5131413B2 (en) Antenna device and communication terminal device
US20180107913A1 (en) Antenna device and electronic device
US10181637B2 (en) Antenna device and communication apparatus
JP6311833B2 (en) Antenna device
JP5633662B1 (en) Antenna coil built-in module, antenna device, and communication device
JP2014107573A (en) Antenna module, rf module and communication device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000528.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014531441

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871385

Country of ref document: EP

Kind code of ref document: A1