WO2014110372A1 - Triazine based radiopharmaceuticals and radioimaging agents - Google Patents

Triazine based radiopharmaceuticals and radioimaging agents Download PDF

Info

Publication number
WO2014110372A1
WO2014110372A1 PCT/US2014/011047 US2014011047W WO2014110372A1 WO 2014110372 A1 WO2014110372 A1 WO 2014110372A1 US 2014011047 W US2014011047 W US 2014011047W WO 2014110372 A1 WO2014110372 A1 WO 2014110372A1
Authority
WO
WIPO (PCT)
Prior art keywords
cio
alkyl
alkylene
cancer
compound
Prior art date
Application number
PCT/US2014/011047
Other languages
French (fr)
Inventor
John W BABICH
Craig Zimmerman
John Joyal
Genliang Lu
Original Assignee
Molecular Insight Pharmaceuticals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP14738117.2A priority Critical patent/EP2943227B8/en
Priority to KR1020157021666A priority patent/KR102187940B1/en
Priority to EP21190931.2A priority patent/EP3939972A1/en
Priority to AU2014205304A priority patent/AU2014205304B2/en
Priority to JP2015552805A priority patent/JP6468602B2/en
Priority to CN201480011222.1A priority patent/CN105025933B/en
Priority to EP19174044.8A priority patent/EP3545978B1/en
Priority to PL17187271T priority patent/PL3300746T3/en
Application filed by Molecular Insight Pharmaceuticals filed Critical Molecular Insight Pharmaceuticals
Priority to ES14738117.2T priority patent/ES2648096T3/en
Priority to EP17187271.6A priority patent/EP3300746B1/en
Priority to MX2015008993A priority patent/MX2015008993A/en
Priority to SG11201505477TA priority patent/SG11201505477TA/en
Priority to BR112015016585-0A priority patent/BR112015016585B1/en
Priority to CA2897437A priority patent/CA2897437C/en
Priority to PL14738117T priority patent/PL2943227T3/en
Publication of WO2014110372A1 publication Critical patent/WO2014110372A1/en
Priority to HK16100926.1A priority patent/HK1212908A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0497Organic compounds conjugates with a carrier being an organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic System without C-Metal linkages

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurology (AREA)
  • Reproductive Health (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Endocrinology (AREA)
  • Pulmonology (AREA)
  • Neurosurgery (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Compounds according to Formula (I) and Formula (II) are potent inhibitors of PSMA. (I) or (II) Pharmaceutical compositions may include a complex of a radionuclide and a Formula (I) compound or a Formula (II) compound. Methods include using the radionuclide complex of a Formula (I) compound or a Formula (II) compound for treating or diagnosis of a disease or a condition associated with PSMA activity.

Description

TRIAZINE BASED RADIOPHARMACEUTICALS AND
RADIOIMAGING AGENTS
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001 ] The present application claims the benefit of U.S. Provisional Patent
Application Nos. 61/752,350, filed on January 14, 2013, and 61/785,788, filed on March 14, 2013, both of which are incorporated herein by reference in their entirety.
FIELD
[0002] The present technology relates generally to the field of radiopharmaceuticals and their use in nuclear medicine as tracers, imaging agents and for the treatment of various disease states.
BACKGROUND
[0003] Many tumors express unique proteins that are predictors of malignancy and a poor prognosis. The expression of such proteins on the surface of tumor cells offers a unique opportunity to use such proteins as markers for the diagnoses of a cancer condition, to evaluate the progression of a cancer condition and to use such proteins as targets for the delivery of a radiotherapeutic agent. Radioactive molecules that selectively bind to specific tumor cell surface proteins provide an attractive route for imaging and treating tumors under non-invasive conditions. In particular, the present invention provides radiolabeled ligands that specifically bind the prostate-specific membrane antigen (PSMA) protein, over expressed on many cancer ceils, as agents for imaging or radiation based therapy of PS A-expressing cancer ceils.
[ 0004] With over a million men suffering from prostate cancer, it is estimated that the disease will strike one in six U.S. men between the ages of 60 and 80. There are more than 300,000 new cases of prostate cancer diagnosed each year and the mortality from the disease is second only to lung cancer. An estimated $2 billion is currently spent worldwide on surgical, radiation and drugs as treatments for prostate cancer. There is presently no effective
„j .. therapy for relapsing, metastatic, androgen-independent prostate cancer. New agents that enable rapid visualization of prostate cancer and specific targeting of this cancer tissue for therapeutic purposes are presently needed.
[ 0005] Human prostate-specific membrane antigen (PSMA), also known as folate hydrolase 1 (FOLH 1), is a trans-membrane, 750 amino acid type II glycoprotein which is primarily expressed in the epithelium of norma! human prostate tissue, but is upregulated in prostate cancer, including metastatic disease, PSMA is a unique exopeptidase with reactivity toward po!y-gamma-glutamated folates, capable of sequentially removing the poty-gamma- glutamyl termini. Since PSMA. is expressed by virtually all prostate cancers and its expression is further increased in poorly differentiated, metastatic and hormone-refractory carcinomas, it is a very attractive target for prostate imaging and therapy. Developing jjgands that interact with PSMA and carry appropriate radionuclides, therefore, may provide a promising and novel approach for the detection, treatment and management of prostate cancer.
10006] The radio-immunoconjugate form of the anti-PSMA monoclonal antibody
(mAb) 7E1 1 , known as the PROSTASCINT scan, is currently being used to diagnose prostate cancer metastasis and recurrence. More recently, monoclonal antibodies that bind to the extracellular domain of PSMA and have a radionuclide were shown to accumulate in PSMA-positive prostate tumor models in animals. However, diagnosis and tumor detection using monoclonal antibodies has been limited by the low permeability of the monoclonal antibody in solid tumor. Tumor detection using low molecular weight radiopharmaceutical compounds, therefore, hold promise and are being explored as potential diagnostic and radiotherapeutic alternatives to radioconjugates of monoclonal antibodies.
[0007] The selective targeting of cancer cells with radiopharmaceuticals, either for imaging or therapeutic purposes is challenging. A variety of radionuclides are known to be useful for radio-imaging or cancer radiotherapy, including u ' hn. 90Y( 68 Ga„ ! ? ?tu, 9 mTc, , Jf and ] J il. Recently it has been shown that some compounds containing a glutamate-urea- glutamate (GUG) or a g!utamate-urea-lysine (GUL) recognition element linked to a radionuc!ide-complex exhibit high affinity for PSMA. Importantly, the present inventors found that the avidity of the GUL-radionuclide conjugate and GUG-radionuclide conjugate depends at least in part on the chemical nature and size of the linker or spacer joining the GUL or GUG group to the radionuclide complex.
[0008] The present invention focuses on GUL-radiocomplexes or GUG- radiocomplexes that have a one or more optionally substituted triazene groups as part of a linker conjugating the GUL or GUG groups to the radiocornplex. More specifically, the present invention explores the structure-function activity of such triazine-based linkers, for instance by exploring the relationship between binding affinity and linker length as well as the relationship between binding affinity and the position of the optionally substituted triazine moiety such as a piperazinyl~triazine- ?-aminobenzyl group within the linker. Also described are methods for synthesizing the triazine based radiopharmaceuticals, as well as methods for characterization and for using the inventive GUL-radionueiide and GUG-radionuciide conjugates for the diagnosis and treatment of cancer.
SUMMARY
[00091 The present invention relates to compounds having a PSMA targeting moiety linked to a radionuclide chelating group as well as radionuclide complexes of the inventive compounds. More specifically, the present technology is focued on the synthesis and use of compounds that conform to the general structure [PSMA recognition motif]-iinker- [radionucltde chelating group] and radionuclide complexes of the inventive compounds. As further described below, the inventive compounds and their radionuclide complexes comprise a 1 .3,5-triazine moiety within the linker. The incorporation of the 1 ,3,5-triazine group has advantages since it provides three sites of attachments for the PSMA recognition motif and radionuclide chelating group and also improves the pharmacokinetic properties of the inventive compounds and their radionuclide complexes.
[001 0] The invention also provides pharmaceutically acceptable formulations of the inventive compounds and their radionuclide complexes. Such formulations are suitable for treating a variety of disease conditions including without limitation prostate cancer, breast cancer, colorectal cancer, brain cancer, lung cancer, liver cancer, endometrial cancer, bone cancer, ovarian cancer, testicular cancer, skin cancer, pancreatic cancer, uterine cancer, cervical cancer, bladder cancer, esophageal cancer, gastric cancer, head and neck cancers, or kidney cancer,
1001 1 ] In one embodiment therefore, are. provided compounds that conform to
Formula I and to stereoisomers, tautomers, prodrugs, and pharmaceutically acceptable salts or esters thereof.
Figure imgf000006_0001
[0012] In Formula 1, A is (CHR or C(O) and W is selected from the group consisting of -C(OHCHz)p"; -C(0)[-CH2-CH2-0]n-, -[CH2-CH2-0]n-(CH2)2-, ~C(0)- [CH(R )t]q-, -(CH2)m-0-(CH3)n-, -(CH2),„-S-(CH2)n-, -(CH2)m-S(0)-(CH2)R-, -(CH2)m-S(C))2- -,and -(CH2)„,-NRa-(CH2)n-. Substituent Y is selected from -Ni l-, ~NR2-, or
Figure imgf000006_0002
while X in Formula I is selected from ~(C i -C i o)alky lene-(C3-C j o)ary lene, -(C3-
Cio)arylene, -(C3-C j o)aryiene-(Ci ~C so)aikylene-, phenylene, ~ C 1 -C 1 o)a iky lene-(C3- C i o)cycloalkyiene, -(Cj-C 1 )cycloalkylene, or -(C3-C t o)c c!oalkylene---(C i -C 1 )alkylene-.
[00 S 3] Rs and R2 in Formula 1 can each independently selected from H, -(C i -
Cio)a!kyl, -C(0)-(C j -C 5 o)alkyl, benzyl, -(C3-C|o)cycioalkyl, or -(C3-C ic aryl. For Formula I compounds, R" and R° are each independently selected from the group consisting of 11, -OH, -(C i -C io)alkyl, -[CH2-CH2-0]n-(CH2)2-T, -C(0)-(C ( -C!0)alkyl, ~(C , -C f o)alky!ene-C(O)-, - (C j -C i o)alkyiene-C(0)-Z, benzyl, -(C3-C! o)cycloalkyl, -(C3-C1o)aryl-(C1-Cio)alkylene, ~(CV Ci0)aryl. halo~(C CK»)a!kyL hydroxy-(C3-C,0)a!kyl, -NB^(C Ci 0)a!kyL and C
Cio)alkylene-NRdRc-, or Ra and Rb together with the nitrogen to which they are bonded form a (CYQj-heteroaryl or (C rCeVheterocycloalkyi that can further comprise one or more heteroatoms selected from N, S, or O, [0014] in Formula ! is selected from -OH, -0(Ci-C|o)alkyl,
Figure imgf000007_0001
and substituent RL can be selected from -OH, -O(Ci-C10)a!ky!, -Obenzyl, -O(C3-C!0)cycloalkyl, -0(C3-Cio)aryl, -O- Cio)alky{ene-(C3-Cio)aryi, or -0-(Ci ~C o)alkylene--(C3-C! o)cycloalkyl.
[001 5] For Formuia i compounds, RJ is selected from H, halogen, -OH, -N ! 1.·. -
(CH2)p-COOH, or --(CH2)P- NH2, substituent T is selected from -H, -OH, -COOH, or - NR/i '" and Rd and Re are each independently selected from H, bond, -OH, -(CrCto)alky!, or - (C3-C io)heteroary l-(C 1 -C 1 o)alkylene. Subscripts m, n, p, q, t and r in Formula I are each i
Figure imgf000007_0002
or
Figure imgf000008_0001
o n er
[0016] Any alkyl, alkylene, aryl, arylene, heteroaryl, heteroarylene, cycloaikyl, cycloalkylene, heterocycioalkyl, or heterocycloaikylene in Formula I is optionally substituted with 1 , 2, or 3 subslituent groups selected from the group consisting of -(Ci-Cio)alkyl, -(Cj- Cio)haloalkyl, -(C| -C¾o) aminoalkyl, -(Ci -C t o)alky lene-COOH, -(C i -C \ o)hydroxyalky !, -OH, halogen, -NH2, -COOH, -C(O)-(Ci-Cl0)alkyl, -(CrCi0)aikylene-C(O)-, -(Cj-Coja!kylene- C(0)-X, -NH-(Ci -C10)atkyl, and -(Ci-Cio)alkylene-NRdRe-, and ~NRdR8. Pusrsuant to these definitions, for certain Formula I compounds, X is phenylene, r is 1 and D is
Figure imgf000008_0002
[0017] The present invention also provides compounds that conform to Formula SI, to stereoisomers, tautomers, prodrugs, and pharmaceutically acceptable salts or esters thereof, and to their pharmaceutically acceptable formulations as therapeutics for treating various disesase states associated uncontrolled proliferation of cells.
Figure imgf000009_0001
j 0018] In Formula if, A is (CHR')m or C(O) and substituent W is selected from the group consisting of ^C(OHCH2)P-; ..Ci()j|..Cii .-CH:-(}|,-. ί:·Π ί:·ϋ;,ΓίΠ -C(O)- [CH(R3)t]q-, -(CH2)m-0-(CH2)n-, -(CH2)m-S-(CH2),r, -(CH2)m-S(0)-(CH2)n-, -(CH2)m-S{0)2- {CH2)n~,and -(CH2)!11-NRa-{CH2)„-.
Group Y in Formula Π is selected from -NH-, ~NR*~,
Figure imgf000009_0002
or
Figure imgf000009_0003
while variables R' and R are each independently selected from H, ~(C;~Cio)alkyl, -C(0)-(C l -C i o)aikyl, benzyl, -(C3-C s o)cycloalky!, or -(C3-Cio)aryl.
[0020] in Formula l!, Ra and Rb are each independently selected from the group consisting of H, -OH, -(C,-C|0)alkyl, -[CH2-CH2-0]n-(CH2)2-T, -C(O)-(C Cl0)alkyl, - C Cio)alky!ene-C(O)-, -(Cj-Cjo)alkylene-C(0)-Z, benzyl, -(C3-Cio)cycloalkyl, -(C3-C!0)aryl- (Ci-Cio)alkylene, -(C3-Cjo)aryJ, halo-(C ; -Q o)alkyl, hydroxy-(C 1 -C i o)alky 1, -NH— (Cj- Cio)alkyl, and -(Ci-Cio)aikylene~NRdRe-. Alternatively, Ra and Rb together with the nitrogen to which they are bonded form a (C3-C6)-heteroaryl or (Cs-CeVheterocycloalkyl that can further comprise one or more heteroatoms selected from N, S, or O, -OH, -O(Cr-C,0)aikyL
Figure imgf000010_0001
and substituent RL is selected from -
OH, -O(CrC! 0)alkyls -Obenzyl, -O(C3-C10)cycloalkyl, -O(C3-Ci0)aryl. -O-(Ci-Ci0)alkylene- (C3-C I o)aryl, or -0-(C 1 -C \ o)alkylene— (C3-C 1 o)cyc loalky!.
[0022] For Formula If compounds R" is selected from H, halogen, -OH, ~NH2, -
(CH2)p-COOH, or -(CH2)P- NH2, T is selected from -H, -OH, -COOH, or -NRdRe and each of Rd and Re are independently selected from H, bond, -OH, -(CrCio)alkyl, or -(C3- Cio)heteroaryl-(C]-Cio)alkylene.
[0023] Any alkyl, alkylene, aryl, arylene, heteroaryl, heteroarylene, cycloalkyl, cycloalkylene, heterocycloalkyl, or heterocycloalkylene in Formula 11 can be optionally substituted with 1 , 2, or 3 substituent groups selected from the group consisting of-(C|- Cio)alkyl, -(C i-Cjo)haloalkyl, -(C-1-C10) aminoalkyl, -(C 1 -C 1 o)alky lene-COOH, -(C¾- C,o)hydroxyaikyl, -NH2> -COOH, -C(O)-(C|-C10)aIkyi, -(C x -C , 0)alkylene-C(O)-, -(C,- C,0)alkylene-C(O)-X, -NH--(Ci -Cio)alkyL and -(CrC,0)alkylene-NRdRe-, and ~ RdRe and subscripts m, n, p, q, t and x are each independently 0, 1 , 2, 3, 4, 5, 6, 7, 8 9, or 10;
[0024] For certain Formula II compounds A is (CH2)m, W is -C(0)~{CH2)p- and Y is
¾— M N-¾
-NH- or ? ~/ ί . in one embodiment, A is (CH2)2, W is -CfO)-(CH2)7- or -C(O)-
(CH2)io- and Y is ' ' ' ? with Ra and Rb each independently being hydrogen or methyl and substituent Rc is -OH.
[0025] In one embodiment, Ra and Rb together with the nitrogen to which they are bonded form a (Cj-CeJ-heterocycloalkyl, for example, a group selected from piperidine, piperazine, morpholine, thiomorpholine, isothiazoiidine, isoxazolidine, pyrrolidine, immidazolidine, ihiazofidine, oxazolidine, or 4-(piperidin-4-yi)butanoic acid. [0026] For certain other Formula 11 compounds. Ra is ~H and RJ is
HOO C' " " R¾>- with groups R° and Re each independently being a -(C3-Cjo)heleroaryl- (CrCio)a!kyicne, such as
Figure imgf000011_0001
[0027] Also encompassed by the present technology are metal complexes comprising a radionuclide and a compound according to Formula I or Formula II. The radionuclide used is selected from the group consisting of 1 1 1 In, ^V,** Ga, 64Cu l 5jGd. l Gd, l j'Gd, 5 Fe, "5Ac, 2 i2BL 2i3Bi, 5 Co, 67Cu, S 5Dy, Ho, mlr, ;2?Ra, i S6Re, l g8Re, i 05Rh, 2l 2Pb, 2l 3Pb, i 49Tb, 227Th, i 53Sm, 89Sr, i , 7mSn, Yb, 9°Y, 86Y, 89Zr and mLu.
[0028] The present invention also provides a pharmaceutically acceptable salt, stereoisomer, tautomer, or prodrug of a Formula ί or a Formula 11 compound as well as the radionuclide complexes of Formula 1 or Formula 1.1 compounds.
Radionuclide complexes of Formula 1 or II compounds and their pharmaceutical formulations are useful for obtaining radiographic images or for treating a number of diseases and conditions, including but not limited to prostate cancer, breast cancer, colon cancer, brain cancer, lung cancer, liver cancer, endometrial cancer, bone cancer, ovarian cancer, or kidney cancer.
[0030] In one embodiment, the invention provides a method of obtaining a radiographic image of one or more tissues that express prostate-specific membrane antigen (PSMA) by (a) contacting one or more tissues that express PSMA with a metal complex comprising a radionuclide and a compound according to Formula HI
Figure imgf000012_0001
or a pharmaceutically acceptable salt or solvate thereof; and (b) recording a radiographic image of the one or more tissues.
[003 i ] Pursuant to this methodology, variable G in Formula HI is
Figure imgf000012_0002
L is selected from -~NH~(C, -
C io)alkylene-, ~NH-(CrC!0)alkylene-C(O)-, ~C(0)-(C,-C!o)alkylene-) -C(0)-(C
-C{O)-(C C 10)alkylene— \ N~- , Cio)alkylene-C(O)- or \— / and Ra and R are each
independently selected from the group consisting of H, -OH, -(Ci-Cio)alkyl, -[CHrCH2-0]n-
(C.H2)2-T, --C(0)HC C,o)alkyl, -{d-C^Jalkylene-CCO)-, ~(C , -C, 0)alkylene-C(O)-Z, benzyl,
-(C3-C j o)cycloalkyl, -(C 3-C 10)ary 1-(C 1 -C 10)alky lene, -(C.3-Cio)aryl, halo~(Ci-Cjo)aikyl, h droxy~(C , -C , 0)alky 1, -NH ~(C 1 -C 10)alkyJ, and -(C . -C , 0)alkyiene-NRdRe-.
[0032] For certain Formula 111 compounds R" and Rb together with the nitrogen to which they are bonded form a (C3-C6)-heteroaryl or (C3-C6)-heterocycioalkyl that can further comprise one or more heteroaloms selected from , 8, or O. -OH, -0(Ci -C |o)alkyl,
Figure imgf000012_0003
independently selected from H, bond, -OH, -(Ci-C|0)alkyl, or -(C3-C j 0)heteroaryl-(C 1 - C)o)alkyiene and subscript n is an integer selected from 0, 1 , 2, 3, 4, 5, 6, 7, 8 9, or 10. [0034] Pursuant to one embodiment, as noted above, the invention provides a radionuclide complex of Formula I or Formula II compounds as therapeutics for treating a subject diagnosed with cancer for instance prostate cancer. Treatment according to the inventive methodology is effected by administering to a subject a therapeutically effective amount of a prostate-specific membrane antigen (PS A) binding complex comprising a trsazinylene linker and capable of being retained in a PS MA --expressing tumor tissue for a longer interval of time than non-PSMA expressing tissue.
BRIEF DESCRIPTION OF THE DRAWINGS
[0035] Figure 1 illustrates tissue biodistribution of the ! 77Lu-complex of (2S)-2-(3-( l - carboxy-5-( 1 1 -(4-(4-((2-(2-(2-carboxyethoxy)ethoxy)ethyl)arnino)-6-((4-(( 1 ,4,7, 10- tetrakis(carboxymethyl)-t , ,7,1.0 etraazacyclododecan-2-yl)methyl)phenyl)amino)-l , 3,5- triazin~2~yi)piperazin- i -y!)undecanamido)pentyl)ureido)pentanedioic acid according to the present invention in LNCap Xenograft mice.
[0036] Figure 2 illustrates tissue biodistribution of the ' "Lu-comp!ex of (28)~2-(3-
(( I 8)- 1 -carboxy-5--( 1 1 -(4-(4-(piperidin- ; -yl)-6-((4-(( 1 ,4,7,
Figure imgf000013_0001
1 ,4,7, l 0-tetraazacyclododecan-2-yl)rnethyl)phenyl)amirio)-l ,3,5-triazin-2-yl)piperazin- 1 - yl)undecanamido)pentyl)ureido)pentanedioic acid according to the present invention in LNCap Xenograft mice,
10037] Figure 3 illustrates tissue biodistribution of the 1 "Lu-complex of (2 I S, 25S)-
8, 15,23-trioxo- 1 -(4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)- 1 ,4,7, 10-tetraazacyclododecan-2- y!)methyl)phenylamino)- i thioxo-2,7, 16,22,24-pentaazaheptaeosane-21 ,25,27-iriearbox lic acid used as a control in LNCap Xenograft mice.
[0038] Figure 4 illustrates tissue biodistribution of the ' "'''Lu-complex of (28)~2-(3~
(( l S)-l -carboxy-5-( l l-(4-(4-(dimethy]amino)-6-((4-((l ,4,7, 1 0-tetrakis(carboxymethyl)- l ,4,7, 10-tetraazacyclododecan-2-y l)methyI)phenyl)amino)- 1 ,3,5-triazm-2-yi)piperazin- 1 - yl)undecanamido)pentyl)ureido)pentanedioic acid according to the present invention in LNCap Xenograft mice. [0039] Figure 5 illustrates in vivo inhibition of LNCaP tumor growth by l 77Lu- complex of (2S)-2-(3-(( 1 S)- f -carboxy-5-(l I -(4-(4-(dimethylamino)-6-((4-(( 1 ,4,7, 10- telrakis(carboxymethyl)-l ,4,7,10 etraazacyclododecan-2-yi)methyl)phenyl)arntno)-l ,3,5- triazin-2-yl)piperazin- l -yl)undecanamido)peniyl)ureido)pentanedioic acid,
[0040] Figure 6 illustrates a radiographic image obtained by administering to a subject having prostate cancer a 68Ga complex of (2S)-2-(3-((l S)-l-carboxy-5-(l l -(4-(4- (dimethy!amino)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)- 1 ,4,7, 10-tetraazacyclododecan-2- yl)metbyi)pheny])amino)- l ,3,5-triazin-2-yl)piperazin-l -yl)undecanamido)peniyl)iireido) pentanedioic acid.
DETAILED DESCRIPTION
[004 S j There are two categories of radiopharmaceuticals: (i) those with biological distribution determ ined strictly by blood flow, or perfusion, and targeting high capacity systems such as glomerular filtration, phagocytosis, hepatocyte clearance and bone absorption and (ii) those with distribution determined by specific enzymatic or receptor binding interactions, which are low-capacity sites. The radiopharmaceuticals according to Formula I or Formula II belong to the second category and are synthesized by conjugating the radionuclide coordination complex to a biologically active molecule selective for PS A protein using a linker that has a traizine moiety.
[0042] The terms "linker," "'spacer,*' ''linker group'" or "spacer group" are used interchangeably in this document and refer to a group that spans the distance between two other identified groups, or which "spaces" them apart. The linker or spacer may be a bond, an organic group, or an inorganic group or atom.
[0043] In some embodiments, the linker or spacer is an optionally substituted (€.■■■
Ctsja!kyiene, a (Cj-Cisjaikenylene, a (C2-C i5)alkynylene group, a -C(0)-(C i -C 15)ajkylene-, a -C{0)-{C3-C i s)ar>'Sene-(C i -C s 5)a!kyiene-, -W-YTC3~C; ;.}heiero r lenc-NH-X-(CH2)r! or a - C(0)-(C i -C15)alkylene-Y-(C3-C! 5)heteroaryiene-NH-X-, where the variables "W", "X" and "Y" are further described below. Illustrative substituent groups include without limitation car boxy i groups, carboxylate, hydroxy! groups, and amino ( R:!R1') groups. For certain embodiments, the (C) -Ci 5)alkylene group in the linker described above can be replaced by a (C] -Ci5)polyol, for example, a polyethylene glycol (PEG) moiety. Exemplary linker or spacer groups are illustrated without limitation throughout the specification and working examples.
[0044] For convenience, certain terms employed herein and within the appended claims are defined here.
[0045] As used herein, "'about" will be understood by persons of ordinary skill in the art and will vary to some extent depending upon the context in which it is used. If there are uses of the term which are not clear to persons of ordinary skill in the art, given the context in which it is used, "'about" will mean up to plus or minus 10% of the particular term,
[0046] The embodiments, illustratively described herein may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms "comprising," "including," '"containing," etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the claimed technology, Additionally, the phrase "consisting essentially of will be understood to include those elements specifically recited and those additional elements that do not materially affect the basic and novel characteristics of the claimed technology. The phrase "consisting of* excludes any element not specified.
[0047] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the elements (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless other ise indicated herein or clearly contradicted by context.
[0048] The terms ''lipophilic group" and "lipophilic moiety" as used herein refer to a group, moiety or substituent that has a greater affinity for non-polar or non-aqueous environments versus polar or aqueous environments. For example, Merriam Webster's online dictionary defines "lipophilic" as "having an affinity for lipids (as fats)." Illustrative lipophilic moieties include aliphatic hydrocarbon radicals, e.g. , alky] radicals, aromatic hydrocarbon radicals, and long-chain acyl radicals: all of them have increasing !ipophilicity as the number of constituent carbons increases. In general, addition of a lipoph ilic moiety to a particular compound will increase the compound's affinity for octanol in the standard octanol/water partition-coefficient-determinatjon protocol ; th is protocol may be used to gauge a compound's relative hydrophobicity (lipophi iicity) and hydrophilicity.
[0049] The term "ligand" refers to a species that interacts in some fashion with another species. In one example, a ligand may be a Lewis base that is capable of forming a coordinate bond with a Lewis Acid , In other examples, a ligand is a species, often organic, that forms a coordination complex with a metal ion. In biochemistry and pharmacology, a ligand is a substance (usually a small molecule), that forms a complex with a biomoiecu!e to serve a biological purpose, !n a narrower sense, a ligand is a signal triggering molecu le, binding to a site on a target protein. The binding occurs by interraoiecular forces, such as ionic bonds, hydrogen bonds and van der Waals forces.
[0050] The term '"chelating agent" refers to a molecule, often an organic one. and often a Lewis base, having two or more unshared electron pairs available for donation to a metal ion. The metal ion is usually coord inated by two or more electron pairs to the chelating agent. The terms, "bidentate chelating agent", "tridentate chelating agent", and "tetradentate chelating agent" are art-recognized and refer to chelating agents having, respectively, two, three, and four electron pairs readily available for simultaneous donation to a metal ion coordinated by the chelating agent. Usua lly, the electron pairs of a chelating agent forms coord inate bonds with a single metal ion: however, in certain examples, a chelating agent may form coordinate bonds with more than one metal ion, with a variety of binding modes being possible.
[005 1 1 The term "coordination" refers to an interaction in which one multi-electron pair donor eoordinatively bonds (is '"coordinated") to one metal ion.
[0052] The term radionuclide refers to an atom with an unstable nucleus, which is a nucleus characterized by excess energy available to be imparted either to a newly created radiation particle within the nucleus or to an atomic electron. The radionuclide can undergo radioactive decay and in the process emit subatomic ionizing particles. Illustrative of subatomic ionizing particles without limitation are alpha (a.) particles, beta (β) particle and gamma (y) rays. Exemplary radionuclides include w ithout limitation elements belonging to the lanthanide series, actinide series as well as radioisotpes of transition metals. Illustrative radionuclides may include, but are not limited to" ' In, l''Y,68Ga, o4Cu l 53Gd, l 5sGd, 1 >7Gd, 59Fe, 225Ac, 2!2Bi, 21 Bi, 5SCo, 67Cu, 165Dy, i 66Ho, i 92lr, 23Ra, , 86Re, , S8Re, ,05Rh, 2!2Pb, 2, 3Pb, H9Tb, 27Th, , 53Sm, 89Sr, 1 ! 7mSn, ,6 Yb, 90Y, 86Y, 89Zr and ] 77Lu. However, the term is not limited to these four radionuc!ides,
10053] Fmoc is an abbreviation for the chemical group; fluorenylrnethyloxycarbonyl.
[0054] The phrases "effective amount" or "therapeuttcally-e f fective amount" as used herein means that amount of a compound, material, or composition comprising a compound of the invention, or other active ingredient which is effective for producing some desired therapeutic effect in at leas a sub-population of cells in an animal at a reasonable benefit/risk ratio applicable to any medical treatment. A therapeutically effective amount with respect to a compound of the invention means that amount of therapeutic agent alone, or in combination with other therapies, that provides a therapeutic benefit in the treatment or prevention of a disease. Used in connection with a compound of the invention, the term can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of disease, or enhances the therapeutic efficacy of or synergies with another therapeutic agent.
10055] As used herein, the terms "treating" or "treatment" is intended to encompass also diagnosis, prophylaxis, therapy and cure. The patient receiving this treatment is any animal in need, including primates, in particular humans, and other mammals such as equines, cattle, swine and sheep; and poultry and pets in general.
[0056] The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
[0057] The phrase "pharmaceuticaUy-acceptable carrier" as used herein means a pharmaceutical ly-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not in jurious to the patient. Some examples of materials which can serve as pharmaceuttcally-acceptable carriers include: ( 1 ) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethy! cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth: (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oi ls, such as peanut oil, cottonseed oil, saffiower oil, sesame oil, olive oil, corn oil and soybean oil; (10} glycols, such as propylene glycol; (i 1 ) polyols, such as glycerin, sorbitol, mannitoi and polyethylene glycol; ( 12) esters, such as ethyl oleate and ethyl laurate; (13) agar; ( 14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; ( 1 5) alginic acid; ( 16) pyrogen-free water; ( 1 7) isotonic saline; (18) Ringer's solution; ( 19) ethyl alcohol; (20) pH buffered solutions; (21 ) polyesters, polycarbonates and/or polyanhydrides; and (22) other non-toxic compatible substances employed in pharmaceutical formulations.
[ 0058] A ''pharmaceutically acceptable salt" is a pharmaceutically acceptable, organic or inorganic acid or base salt of a compound of the invention. Representative
pharmaceutically acceptable salts include, e.g., alkali metal salts, alkali earth salts, ammonium salts, water-soluble and water-insoluble salts, such as the acetate, amsonate (4,4- diaminostiibene-2, 2 -disulfonate), benzenesulfonate, benzonate, bicarbonate, bisulfate, bitartrate, borate, bromide, butyrate, calcium, calcium edetate, camsyiate, carbonate, chloride, citrate, clavulariate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycoUy larsani late, hexafluorophosphate, hexyiresorcinate, hvdrabamine, hydrobromide, hydrochloride, hydroxynapbthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, tnaleate, mandelate, mesylate, methylbromide, methyl nitrate, methylsulfate, mucate, napsylate, nitrate, N-methyiglucamine ammonium salt,
3-hydroxy-2-naphthoate, oleate, oxalate, palmitate, pamoate (l, l -methene-bis-2-hydroxy-3- naphthoate. einbonate), pantothenate, phosphate/diphosphate, picrate, poiygalacturonate, propionate, p-toiuenesulfonate, salicylate, stearate, subacetatc, succinate, sulfate,
subsalicylate, suramate, tannate, tartrate, teoclate, tosy!ate, triethiodide, and valerate salts. A pharmaceutically acceptable salt, can have more than one charged atom in its structure. In this instance the pharmaceutically acceptable salt can have multiple counterions. Thus, a pharmaceutically acceptable salt can have one or more charged atoms and/or one or more counterions.
[0059] The phrases "'parenteral administration" and "administered parenterally" as used herein me s modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal transtracheal, subcutaneous, subcuticular, intraarticuiare, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
[0060] The phrases ''systemic administration," "administered system ically,"
"peripheral administration'* and "administered peripherally" as used herein mean the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism an: other like processes, for example, subcutaneous administration.
[0061 ] A "patient" includes an animal, such as a human, cow, horse, sheep, lamb, p t chicken, turkey, quail, cat, dog, mouse, rat, rabbit or guinea pig. The animal can be a mammal such as a non-primate and a primate (e.g. , monkey and human). In one
embodiment, a patient is a human, such as a human infant, child, adolescent or adult.
[0062] The term "prodrug" refers to a precursor of a drug that is a compound which upon administration to a patient, must undergo chemical conversion by metabolic processes before becoming an active pharmacological agent, illustrative prodrugs of compounds in accordance with Formula I are esters, preferably alkyl esters or fatty acid esters.
[0063] The term "heteroatom" refers to an atom of any element other than carbon or hydrogen. Illustrative heteroatoms include boron, nitrogen, oxygen, phosphorus, sulfur and selenium.
[0064] in general, "substituted" refers to an alkyl, alkylene, alkenyl, alkenylene, alkyne. a!kyny!ene, aryl, arylene, cycloalkyf, or cycloaJkylene group, as defined below in which one or more bonds to a hydrogen atom contained therein are replaced by a bond to non-hydrogen or non-carbon atoms. Substituted groups also include groups in which one or more bonds to a carbon(s) or hydrogen(s) atom are replaced by one or more bonds, including double or triple bonds, to a heteroatom. Thus, a substituted group will be substituted with one or more substituents, unless otherwise specified. In some embodiments, a substituted group is substituted with {, 2, 3, 4, 5, or 6 substituents. Examples of substitucnt groups include: halogens (i.e., F, CI, Br, and I); hydroxy!s; aikoxy, alkenoxy, alkynoxy, aryloxy, aralkyfoxy, heterocyclyioxy, and heterocycfylafkoxy groups: carbonyls (oxo); carbox ls; esters; urethanes; o iraes; hydroxylarnines; alkoxyamines; aralkoxyarnines; thiols; sulfides; sulfoxides; sulfones: suifonyis; sulfonamides; amines: -oxides; hydrazines; hydrazides; hydrazones; azides; amides; ureas; amidines; guanidines; enamines; imides; isocyanates; isothiocyanates; cyanates; thiocyanates; imines; nitro groups; nitriles (i.e., CN), ha!oalkyl, aminoalky], hydroxyalkyl, cycioalkyl and the like.
[0065] A lky! groups include straight chain and branched chain alkyl groups having from I to 12 carbon atoms, and typically from 1 to 10 carbons or, in some embodiments, from ! to 8, 1 to 6, or 1 to 4 carbon atoms. Examples of straight chain alkyl groups include groups such as methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl groups. Examples of branched alkyl groups include, but are not limited to, isopropyl, iso- butyl, sec-butyl, tert-butyl, neopentyl, isopentyl. and 2,2-dimethylpropyl groups. Alkyl groups may be substituted or unsubstituted. Unless the number of carbons is otherwise specified, "lower alkyl*' refers to an alkyl group, as defined above, but having from one to about ten carbons, alternatively from one to about six carbon atoms in its backbone structure. Likewise, "lower alkenyl" and "lower alkyn J" have similar chain lengths.
[0066] The terms "alkylene" and "substituted alkylene" refer to divalent alkyl and divalent substituted alkyl, respectively. Examples of alkylene include without limitation, ethylene (-CH2-CH2-). "Optionally substituted alkylene" refers to alkylene or substituted alkylene.
[0067] The term "alkylcarbonyl" or "aik lenecarbonyl" denote a -(C. -Cg)alkyl-C(O)- or -C(0)-(Ci~Cg)alkyI- groups in which at least one of the methylenes in the CVC* alkyl group is replaced with a C(O) group. Representative examples include, but are not limited to, acetyl, propionyl, and CHbiCHihQ )- group, or -- H2(CH?j2€(0)-.
[0068] The terms "cyclic alkyl" or "cycioalkyl" refers to a saturated or partially saturated non-aromatic cyclic alkyl groups of from 3 to 14 carbon atoms and no ring heteroaloms and having a single ring or multiple rings including fused and bridged ring systems. Cycioalkyl groups may be substituted or unsubstituted. Cycloa!kyl or cyclic a!kyl groups include mono-, bi- or tricyclic alky 1 groups having from 3 to 14 carbon atoms in the ring(s), or, in some embodiments, 3 to 12, 3 to 10, 3 to 8, or 3 to 4, 5, 6 or 7 carbon atoms. Illustrative monocyclic cycioalkyl groups include, but not limited to, cyclopropyl, cyclobutyl, cyc!opentyl, cyclohexyl, cyclobeptyl, and cyclooctyl groups. Bi- and tricyclic ring systems include both bridged cycioalkyl groups and fused rings, such as, but not limited to, bicycio[2. 1 .1 ]hexane. adamantyl, decalinyL and the like.
[0069] A "eycloalkyiene" is a divalent saturated or partially saturated non-aromatic cyclo alkyl groups having 3 to 14 carbon atoms and no ring heteroatoms.
[0070] Aikenyl groups include straight and branched chain and cycioalkyl groups as defined above, except that at least one double bond exists between two carbon atoms. Thus, aikenyl groups have from 2 to about 12 carbon atoms in some embodiments, from 2 to 10 carbon atoms in other embodiments, and from 2 to 8 carbon atoms in other embodiments. Examples include, but are not limited to vinyl, ailyl, -Ci 1 ( 1 i;O h ;. -CI I ·Ο Ο Ι ;
-C(CH3)=CH2, -( ; ( ! ! , ) Π !(( Ί 1 : ί. -ί ί ί 1 i. C ! I : ; Π k cyclohexenyl, cyclopenteny!, cyclohexadienyl, butadienyl, pentadienyl, and hexadienyl, among others. Aikenyl groups may be substituted or unsubstituted. Representative substituted aikenyl groups may be mono-substituted or substituted more than once, such as, but not limited to, mono-, di- or tri- substituted with substituents such as those listed above.
10071 ] The term "alkenylene" refers to divalent alkene. Examples of alkenylene include without limitation, ethenylene (-CH= H-) and all stereoisomeric and conformational isomeric forms thereof. "Substituted alkenylene" refers to divalent substituted alkene.
"Optionally substituted alkenylene" refers to alkenylene or substituted alkenylene.
[0072] "Alkyoe" or "alkynyl" refers to straight and branched chain unsaturated hydrocarbon having the indicated number of carbon atoms and at least one triple bond.
Examples of a (C2-C8)alkynyl group include, but are not limited to, acetylene, propyne, 1 - butyne, 2-butyne, 1 -pentyne, 2-pentyne, ί -hexyne, 2-hexyne, 3-hexyne, 1 -heptyne, 2- heptyne, 3-heptyne, 1 -octyne, 2-octyne, 3-octyne and 4-octyne. An alkynyl group can be unsubstituted or optionally substituted with one or more substituents as described herein below. [0073] The term "alkynylene" refers to divalent alkyne. Examples of alkynylene include without limitation, eihynylene, propynylene. "Substituted alkynylene" refers to divalent substituted a!kyne.
[0074] Aryl groups are cyclic aromatic hydrocarbons that do not contain heteroatoms.
Aryl groups include monocyclic, bicyclic and polycyclic ring systems. Thus, aryl groups include, but are not. limited to, phenyl, azulenyl, heptalenyl, biphenyienyf, indacenyl, fluorenyl, phenanthrenyl, triphenyteny!, pyrenyl, naphthacenyl, chrysenyl, biphenyl, anthracenyl, indenyl, indanyl, pentalenyl, and naphthyl groups, in some embodiments, aryl groups contain 6- 14 carbons, and in others from 3 to 12 or even 3-10 carbon atoms in the ring portions of the groups. Aryl group includes both substituted and unsubstituted aryl groups. Substituted aryl groups may be mono-substituted or substituted more than once. For example, monosubstituted aryl groups include, but are not limited to, 2-, 3-, 4-, 5-, or 6- substituted phenyl or naphthyl groups, which may be substituted with substituent groups such as those listed above.
[0075] '"Arylene" denotes divalent aryl, and "substituted arylene" refers to divalent substituted aryl. "Optionally substituted arylene" refers to arylene or substituted arylene. Illustrative of the arylene group is phenylene.
[0076] "Heterocycloalkyl" means a saturated or unsaturated non-aromatic monocyclic, bicyclic, tricyclic or polycyclic ring system that has from 5 to 14 atoms in which from 1 to 3 carbon atoms in the ring are replaced by heteroatoms of O, S or N. A
heterocycloalkyl is optionally fused with benzo or heteroaryi of 5-6 ring members, and includes oxidized S or N, such as sulfinyl, sulfonyl and N-oxide of a tertiary ring nitrogen. The point of attachment of the heterocycloalkyl ring is at a carbon or heteroatom such that a stable ring is retained. Examples of heterocycloalkyl groups include without limitation morpholmo, tetrahydrofuranyk dihydropyridinyl, piperidinyl, pyrrolidinyl, piperazinyl, dihydrobenzol ryl, and dihydroindolyl.
[0077] "Optionally substituted heterocycloalkyl'* denotes heterocycloalkyl that is substituted with 3 to 3 substituents, e.g., 1 , 2 or 3 substiiuents, attached at any available atom to produce a stable compound, wherein the substituents are as described herein. [0078] The term "cyeloalkyl" refer to monocyclic, bicyeiie, tricyclic, or polycyclic, 3- to 14-memhered ring systems, which are either saturated, unsaturated or aromatic. The cyeloalkyl group may be attached via any atom . Cye loalkyl a lso contemplates fused rings wherein the cyeloalkyl is fused to an aryl or hetroaryi ring as defined above. Representative examples of cyeloalkyl include, but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. A cye loalkyl group can be unsubstituted or optionally substituted with one or more subst ituents as described herein below.
10079] The term, "cycloalkylene" refers to divalent cyeloalkyl. The term "Optionally substituted cycloalkylene" refers to cycloalkylene that is substituted with 1 to 3 substituents, e.g. , 1 , 2 or 3 substituents, attached at any available atom to produce a stable compound, wherein the substituents are as descri bed herein.
[0080] The term "'(C.r-C i 4)aj-yl-(Ci -C6)alkylene" refers to a divalent alkylene wherein one or more hydrogen atoms in the C j -C0 alkylene group is replaced by a (C3~Ci 4)aryl group. Examples of (C3-Ci4)aryl-(Ci -C,i)alkylene groups include without limitation 1 - pheny Ibutylene, phenyl-2-buty !ene, 1 -phenyl-2-methylpropylene, phen Imethylene, phenyipropyiene, and naphthylethylene.
[008 3 ] The term "(C | -C |o)alkylene-(C3-Ci4)arylene" refers to a divalent arylene in which one or more hydrogen atoms in the C ^ arylene is replaced by a (Ci-Cso)alkyl group and wherein one of the hydrogens of the a iky I group is replaced by another group. Examples of "(C j -C I o)al kylene-(C3-C 14)ary lene groups include without limitation butylene-4- phenyiene, propylene-2-phen lene, and l -[2-methyipropylene] phenylene.
[0082] The term "(C3-C!4)ary lene-(C i -C j o)alky lene" refers to a divalent alkylene in which one or more hydrogen atoms in the Ci -Cjo alkylene is replaced by a divalent (CV Ci4)arylene group. Exemplary of "(C3-C 14)ary lene-(C i -C 1 o)alky lene group include without limitation pheny lene-4-butyIene, phenylene-2-butylene, and phenylene- 1 -j 2- methyipropylene].
[0083 ] Aralkyl groups are afkyl groups as defined above in w hich a hydrogen or carbon bond of an aSkyl group is replaced with a bond to an aryl group as defined above, in some embodiments, aralkyl groups contain 7 to 20 carbon atoms, 7 to 14 carbon atoms or 7 to 10 carbon atoms. [ 0084] "Heterocyclyl" or heterocycloalkyl refers to non-aromatic ring compounds containing 3 or more ring members, of which one or more ring carbon atoms are replaced with a heteroatom such as, but not limited to, N, ( ). arsd S. In some embodiments, heterocyclyl groups include 3 to 20 ring members, whereas other such groups have 3 to 6, 3 to 10, 3 to 12, or 3 to 1 5 ring members. Heterocyclyl groups encompass unsaturated, partially saturated and saturated ring systems, such as, for example, imidazolyi, imidazolinyl and imidazolidiny! groups. Heterocyclyl groups may be substituted or un substituted.
Heterocyclyl groups include, but are not limited to, aziridinyl, azetidinyl, pyrrolidinyl, imidazolidiny!, pyrazolidinyl, thiazolidinyl, tetrahydrothiophenyl, tetrahydrofuranyl, dioxolyi, furanyl, thiophenyl, pyrrolyl, pyrrolinyl, imidazolyi, imidazolinyl, pyrazolyl, pyrazoisnyl, triazolyl, tetrazo!yl, oxazolyl, isoxazolyl, thiazolyl, thiazolinyl, isothiazoiyl, thiadiazoiyl, oxadiazolyl, piperidyl, piperazinyl, morpholinvL thiomorpholinyl,
tetrahydropyranyl, tetrahydrothiopyranyl, oxathiane, dioxy!, dithianyl, pyranyl, pyridyl, pyrimidinyl, pyridazinyl, pyraziny!, triazinyl, dihydropyridyl, dihydrodithiinyl,
dihydrodithionyl, homopiperazinyl, quinuclidyl, indolyl, indoiinyl, isoindolyS.azaindolyl (pyrrolopyridyl), indazolyl, indolizinyl, benzotriazolyl, benzimidazolyl, benzofuranyl, benzothiophenyl, benzthiazolyl, berrzoxadiazolyl, benzoxazinyl, benzodithiinyl,
benzoxathiinyl, benzothiazinyl, benzoxazolyl, benzothiazolyl, benzothiadiazo!yl, benzo[ 1 ,3]dioxolyl, pyrazolopyridyl, imidazopyridyl (azabenzimidazolyl), triazolopyridy!, isoxazolopyridyi, purinyl, xanthinyl, adeninyi, guaninyl, quinolinyl, isoquinolinyl, quinoHziny!, quinoxalinyl, quinazoHnyl, emnoiinyl, phthalazinyl, naphthyridinyl, pteridinyl, thianaphthalenyl, dihydrobenzothiazinyl, dihydrobenzofuranyl, dihydroindoiy!,
dihydrobenzodioxinvl, tetrahydroindoiy!, tetrahydroindazolyl, tetrahydrobenzirn idazoiy 1, tetrahydrobenzotriazolyl, tetrahydropyrrolopyridyl, tetrahydropyrazolopyridyl,
tetrahydroimidazopyridyl, tetrahydrotriazolopyridyl, and tetrahydroquinolinyl groups.
Heterocyclyl groups may be substituted or unsubstituted. Representative substituted heterocyclyl groups may be mono-substituted or substituted more than once, such as, but not limited to, pyridyl or morphoHnyl groups, which are 2-, 3-, 4-, 5-, or 6-substituted, or disubstituted with various substituents such as those listed above,
[0085] Heteroaryi groups are aromatic ring compounds containing 5 or more ring members, of which, one or more ring carbon atoms are replaced with heteroatom such as, but not limited to. N, O, and S. Heteroaryl groups may be substituted or unsubstituted,
Heteroaryl groups include, but are not limited to, groups such as pyrrolyl, pyrazolyl, triazolyi, tetrazo!yl. oxazolyi, isoxazolyl, thiazolyl, pyridyi, pyridaziny!, pyrimidinyl, pyrazinyl, thiopheny!, benzothiophenyl, furanyl, benzofuranyl, tndo!y!, azaindolyl (pyrrolopyridyl), indazolyl, benzimidazoly!, imidazopyridyl (azabenzimidazolyl), pyrazolopyridyi, triazolopyridyl benzotriazoly!, benzoxazolyi. benzoihiazolyl, benzothiadiazolyl,
imidazopyridyl, isoxazolopyridyi, thianaphthalenyi, purinyi, xanthinyl, adeninyl, guaninyl, quinolinyl, isoquinolinyi, tetrahydroquinolinyl, quinoxalinyl, and quinazolinyl groups.
[0086] The term "alkoxy" refers to an -O-alkyl group having the indicated number of carbon atoms. For example, a (C! -Cio)alkoxy group includes -O-methyl (methoxy), -O-ethyl (ethoxy), -O-propyl (propoxy), -O-isopropyl (isopropoxy), -O-butyl (butoxy), -O-.v^obuty! (sec-butoxy), -O-terr-butyl (/<?r/-butoxy), -O-pentyi (pentoxy), -O-isopentyi (isopentoxy), -O- neopentyl (neopentoxy), -O-hexyl (hexyloxy), -O-isohexyl (isohexyloxy), and -O-neohexyl (neohexyloxy). Examples o cycioalkoxy groups include but are not limited to
cyclopropyloxy, cyclobuty!oxy, cyclopentyloxy, cyclohexyloxy, and the like. Alkoxy groups may be substituted or unsubstituted.
[0087] The term "'carbocycle" refers to an aromatic or non-aromatic ring in which each atom of the ring is carbon.
[0088] The term "nitro"" refers to -NO .
[0089] The term "halogen" is art-recognized and refers to -F, -CI, -Br or -1; the term
"su!fhydryr is art-recognized and refers to -SB; the term "hydroxyl" means -OH; and the term "sulfonyl" is art-recognized and refers to -SO2 ". "Haiide" designates the corresponding anion of the halogens, and "pseudoha!ide" has the definition set forth on 560 of "'Advanced Inorganic Chemistry" by Cotton and Wilkinson.
[0090] The term "amine or amino" refers to an -N dRe group wherein Rd and R each independently refer to a hydrogen, (C|-C8)alk l, aryi, heteroaryl, and heterocycloa!kyl group. When Rd and R are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 5-, 6-, or 7-raembered ring. For example, -NRdRB is meant to include i -pyrroiidinyL pyridinyl or a 4-morphoIinyl ring. [009 ! ] The term "amido" is art recognized as an amino-substituted earborsyi and includes a moiety that may be represented by the genera! formula, -C(0)T\RdRc group wherein Rd and Re are as defined above,
[0092] The term 'nitriSe or cyano" can be used interchangeably and refer to a -CN group which is bound to a carbon atom of a heteroaryl ring, aryi ring and a heterocycloalkyl ring,
[0093] The term "aminoaikyi," refers to an (Cj-Cio)alkyl group wherein one or more hydrogen atoms in the (Ci-Cio)alkyl group is replaced with a ~NRdRc group, where Rd and Rc can be the same or different, for example, Rd and Re each independently refer to a hydrogen, (Ci-Cg)alkyl, aryi, heteroaryl, heterocycloalkyl, (Ci-Cg)haloalkyl, and (Cj -Cso)hydroxya3kyl group. Examples of aminoalkyl groups include, but are not limited to, aminomethyl, aminoethyl, 4-aminobutyl and 3-aminobutylyl.
[0094] The term "haloaikoxy," refers to an -0-(Cj-Cs)alkyl group wherein one or more hydrogen atoms in the Cj-Cg alky] group is replaced with a halogen atom, which can be the same or different. Examples of haloalkyl groups include, but are not limited to, difiuoromethocy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 4-chlorobutoxy, 3- bromopropyioxy. pentachioroethoxy, and 1 , 1 , 1 rifluoro-2-bromo-2-chloroethoxy.
[0095] The term "hydroxyalkyl," refers to an alkyl group having the indicated number of carbon atoms wherein one or more of the alkyl group's hydrogen atoms is replaced with an -OH group. Examples of hydroxyalkyl groups include, but are not limited to, -CH2OH, - CH2CH2OH, -CH2CH2CH2OH, -CH2CH2CH2CH2OH, -CH2CH2CH2CH2CH2OH, - ί i 1;:<Ί Ί ! C'i l EC ! H >H. and branched versions thereof.
[0096] A "hydroxyS" or "hydroxy" refers to an -OH group.
[0097] The terms "carboxyl" and "carboxylate" include such moieties as may be represented by the general formulas:
o o
' " E E R*
wherein E is a bond or represents O or S, and R* and Rf individually is H, alkyl, alkenyl, aryi, or a pharmaceutically acceptable salt. Where E is O, and R is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when R1 is a hydrogen, the formula represents a "carboxylic acid". In general, where the expressly shown oxygen is replaced by sulfur, the formula represents a "thiocarbonyi" group.
[0098 ] The substiiuerst -CC½H, may be repiaced with bioisosteric replacements such as:
Figure imgf000027_0001
-OH
OH
and the like, wherein R has the same definition as R' and R" as defined herein. See, e.g., THE PRACTICE OF MEDICINAL CHEMISTRY (Academic Press: New York, 1 996), at page 203.
[0099] The terms "a!koxyl" or "alkoxy" refer to an alky! group, as defined above, having an oxygen radical attached thereto. Representative alkoxyl groups include methoxy, ethoxy, propoxy, butyoxy, feri-butoxy and the like. An "ether" is two hydrocarbons covaientiy linked by an oxygen. "Ether" also encompasses polyethers where more than one ether group, or linkage, may be present in a given group. "Ether" also encompasses cyclic ethers, and crown ethers, where the ether linkage is within a cyclic group.
[01 00] The term "(C5-C 1 )aryl-(C i -Cj o)alky lene" refers to a divalent alkytene wherein one or more hydrogen atoms in the Ci-Cfo alkylene group is replaced by a (C3-Cj4)aryl group. Examples of (C3-Ci 4)aryl-(Cj -C]o)alkylene groups include without limitation 1 - phenylhuty!ene, phenyl-2-butyiene, 1 -phenyl-2-methyipropylene, phenylmethyiene, phenylpropyiene, and naphthyiethylene.
[01 0 1 ] The term "(Cs-C j 4)heteroary 1-(C j -C ¾ o)alky 1 ene" refers to a divalent alkylene wherein one or more hydrogen atoms in the Ci-Cio alkylene group is replaced a (C3- Cj4)heteroaryl group. Examples of (C3-C 14)heteroary!-(C 1 -C 1 o)alky lene groups include without limitation 1 -pyridylbuty!ene, quinoiinyl-2-butylene and 1 -pyridyl-2- methyipropyiene.
[0 ! 02] The term "-(C5-C 14)heteroary lene-(C 1 -C 10)alkylene-" refers to a divalent alkylene wherein one or more hydrogen atoms in the Cj-Cio alkylene group is replaced a (C3- C| 4)heteroaryl group and wherein one of the hydrogens or one of the heteroatoms of the (C3- C i 4)heteroaryi group is bonded to another group, for example , a (Ci-Cio)alkyl group.
[0103] A "benzyl" is w T , while the term "benzylene" denotes a divalent i I1 J
benzyl moiety that is represented by the following structure
[0104] A halogen refers to chlorine, bromine, fluorine, or iodine.
[O S 05] The definition of each expression, e.g. alkyl, m, n, and the like, when it occurs more than once in any structure, is intended to be independent of its definition elsewhere in the same siructure.
[0106] The terms triflyl, tosyl, mesyl, and nonaflyl refer to trifiuoromethanesuifonyl,
/,'-toluenesulfonyf, methanesulfonyi, and nonafluorohutanesulfonyi groups, respectively. The terms trif!ate, tosylate, mesylate, and nonaflate are art-recognized and refer to
trifluoromethanesulfonate ester, oluenesulfonate ester, methanesulfonate ester, and nonafluorobutanesulfonate ester functional groups and molecules that contain the groups, respectively. The abbreviations Me, Et, Ph, Tf, f, Ts, and Ms represent methyl, ethyl, phenyl, trifiuoromethanesuifonyl, nonafluorohutanesulfonyi, / oiuenesulfonyi and methanesulfonyi, respectively. A more comprehensive list of the abbreviations utilized by- organic chemists of ordinary skill in the art appears in the first issue of each volume of the Journal of Organic Chemistry; this list is typically presented in a table entitled Standard List of Abbreviations.
[0 1 07] Certain compounds contained in the compositions may exist in particular geometric or stereoisomeric forms, in addition, compounds may also be optically active. The compounds may also include cis- and trans-isomers, R- and S'-enantiomers,
diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof. Additional asymmetric carbon atoms may be present in a substituent such as an alky! group, if, for instance, a particular enantiomer of compound is desired, it may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting
diastereorneric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers. Alternatively, where the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereorneric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic means well known in the art, and subsequent recovery of the pure enantiomers.
[01 08] The phrase "protecting group" as used herein means temporary substituents which protect a potentially reactive functional group from undesired chemical
transformations. Examples of such protecting groups include esters of carboxylic acids, sslyl ethers of alcohols, and acetals and ketals of aldehydes and ketones, respectively. The field of protecting group chemistry has been reviewed (Greene, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 3rd ed.; Wiley: New York, 1999).
[01 09] Unless otherwise indicated, "stereoisomer" means one stereoisomer of a compound that is substantially free of other stereoisomers of that compound, Thus, a stereornericaily pure compound having one chiral center will be substantially free of the opposite enantiomer of the compound. A stereornericaily pure compound having two chiral centers will be substantially free of other diastereomers of the compound. A typical stereornericaily pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, for example greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, or greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, or greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound. [03 1 0] If there is a discrepancy between a depicted structure and a name given that structure, then the depicted structure controls. Additionally, if the stereochemistry of a structure or a portion o f a structure is not indicated with, for example, bold or dashed lines, the structure or portion of the structure is to be interpreted as encompassing all stereoisomers of it,
[03 ! 1 1 As described above, the present invention relates to compounds according to
Formula 1.
Figure imgf000030_0001
[01 12] For Formula I compounds variable A is (CFIR )m or C(O) and W is selected from the group consisting of ~C(0)~(CH2)p-; -C(0)[-CH2-CH2-0]„-, -[CH2-CH2-0]n-(CH2)2-, -C(0)-[CH(R3)t]q-, -(CH2)m-0-(CH2)n-, -(CH2)m-S-(CH2)n-, -(CH2)m-S(0)-(CH2)n-, -(CH2)ra- S(0)2-(CH2)n-,and -(CH2)m-NRa-(CH2)n-. i-N N -5
[01 13 ] Variable Y in Formula ί is selected from -NH-, -NR% or ' " 5 and X is group selected from -(C i -C| o)alkylene-(C3-C j o)ary lene, -(C3-Cio)arylene, -(C3- Cio)arylene~(Ci-Cio)alkylene— , phenylene, ~-(C1-C!o)alkylene-(C3-C1o)cycloalkylene, -(C3- C io)cycloalkylene, or -(C3-Cjo)cycloalkylene--(Ci-C!o)alkylene-. For certain Formula 3 compounds X is a -(C3-Cio)arylene, such as a phenylene group.
[01 14] Substituent groups R1 and R2 in Formula Ϊ are each independently selected from Ft, ~(C| -Ci o)alkyl, -C(0)-(Ci-Cio)alkyl, benzyl, -(C3-C i o)cycloalkyl, or -(C3-C j o)aryl, while groups Ra and R° are each independently selected from the group consisting of H, -OH, -(Ci-Cio)alkyl, -[CH2-CH2-0]!i-(CH2)2-T> -C(O)-(C Ci0)alkyl, -(Ci-Cio)alky!ene-C(O)-, - (C 1 -C so)alkylene-C(0)-Z, benzyl, -(C3-C \ o)cycloalkyl, -(C3-C ;o)aryl-(C 1 -Cio)alkylene, -(C3- CuOaryl, haSo-(C C;0)aikyl, hydroxy-(C i -C i o)alky I, - H-- (C|~C;o)alkyl, and -(Ci- Cio)alkylerie-NR'JR'~~, For certain Formula 1 compounds Ra and R" together with the nitrogen to which they are bonded form a (C3-C6)-heteroary 1 or (C3-C6)-heterocycIoalkyi that can further comprise one or more heteroatoms selected from , S, or O.
[0 , -0(C)-Cio)alkyL
Figure imgf000031_0001
substituent R' is selected from -OH, -
0(C|-Cio)a!kyL -Obenzyl, -O(C3-C|0)cycloalkyl, -OiC3-C|0)aryl, -0-(C C s 0)alkyiene-(C3- Cjo)aryl, or -0-(C j -C so)alkylene--(C3-C1o)cycloalkyi and RJ is selected from H, halogen, - OH, -NH2, -(CH2)p-COOH, or-(CH2)p- NH2.
[0116] !n Formula ! T is selected from -H, -OH, -COOH, or -NRdRe and when T is - RdRe, substituent groups Rd a.nd Re are each independently selected from H, bond, -OH, - (C i -C 10)alkyl, or -(C3-C ·, o)heteroaryl-(C \ -C | ojalk ylene;
[0 I 17] Subscripts m, n, p, q, t and r are each independently 0, I, 2, 3, 4, 5, 6, 7, 89, or
Figure imgf000031_0002
i 0; and the chelator group D is
Figure imgf000031_0003
Figure imgf000032_0001
H3 [5- eOsal)3 TAM E]
Figure imgf000032_0002
o io linker
[01 18] For Formula I compounds any alkyi, alkylene, aryl, arylene, heteroaryi, hcteroarylene, cycloalkyl, cycloalkylene, heterocyeioalkyl, or heterocycloaikylene is optionally substituted with 1, 2, or 3 substituent groups selected from the group consisting -(C ,-C,fi)aikyl, -(C, -Cio)ha]oalkyl, -(C C,0) aminoalkyi, -(C, -C,0)alkylene-COOH, -(C Ci 0)hydroxyalkyl, -OH, halogen, -NH:, -COOH, -C(O)-(CrCi 0)a]kyL -(C! -C iG)a!kylene- C(O)-, ~(C Cio)alkyiene-C(0)-X, -NH-(Ci-C10)alkyi, and -(C, -C!0)alkylene-NRdRe-, and NRdR .
[01 1 ] In one aspect for an inventive Formula J compound X is phenylene, subscript
"r" is 1 and D is
Figure imgf000032_0003
the metal chelator DOTA. Pursuant to these qualifications is a Formula 11 compound as illustrated be!ovv. For certain Formula II compounds A is (CHR , W is a C(0)-(CH2)7- or -C(O)-(CH2)i0- group and Y is
§ \ /
Figure imgf000033_0001
[0120] In one embodiment, A is (CHR')m with R1 being a hydrogen and m is 2. For certain Formula IS compounds Ra and Rb together with the nitrogen to which they are bonded form a (C5-C6)-heterocycioa!ky! selected from piperidine, pipcrazine, morphoiine, thiomorpholine, isothiazolidine, isoxazolidine, pyrrolidine, immidazolidine, thtazoiidine or oxazolidine. For some FOrmula 11 compounds R" is ~H and R'J is HOOC" ~"NRDRE with Ru and Re each independently i o)heteroary i-(C ! -C i o)ai ky lene. for example, R' and
RE are each independently
Figure imgf000033_0002
10121 ] An illustrative Formula II compound that comports with the above definition is illustrated below:
Figure imgf000033_0003
[0122] Other exemplary Formula I or Formula II compounds include without limitation compounds mentioned in Ί able 1 below. While some exemplary compounds are depicted with stereochemistry, it should be understood that the invention includes all possible stereoisomers, such as diastereomers, of the compounds.
Table 3
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
[01 23] Pharmaceutically acceptable salts and/or solvates of the inventive Formula 1 and Formula I I compounds illustrated above are also within the scope of the present invention. In some embodiments, the chelator group, for example, the DOT A group is not complexed with a radionuclide. When DOTA is uncomplexed the carboxylic acid groups of the DOTA group can be in the form of a free acid, or in the form of a salt. The free carboxylic acid groups can also be esters fied to obtain the prodrug form of Formula 1 or Formula 11 compounds. Suitable ester prodrugs include various alky! esters, including saturated and unsaturated Cg to C\z fatty acids. [O S 24] The inventive compounds are giutamate-urea-lysine (GUL-) or glutamate- urea-glutamate (GUG) analogs in which a chelator group is conjugated to the GIJL- or GUG- moiety via a linker,
Figure imgf000038_0001
[0125] As further discussed below, the length and chemical nature of the linker group is believed to influence the binding avidity of the inventive compounds to the target tissue. Thus, radionuclide complexes of Formula 1 or Formula II compounds having a pjperaztne- triazinyl-7-aminobenzyl-DOTA moiety within the linker were observed to concentrate to a greater extent in tumor tissue than non-tumor tissue, such as blood, heart, lungs, liver, spleen, stomach, large and small intestines, testes, skeletal muscle, bone, brain, and adipose tissue.
Figure imgf000038_0002
[0126] These compounds, moreover, were rapidly cleared by the kidneys. It was observed that over a period of 96 hours, the piperazine-triazinyl- ?-aminobenzyI-DOTA containing compounds initially concentrated in the kidneys but at longer intervals of time were rapidly cleared by the kidneys. For example, Formula I or Formula Π compounds concentrate to a greater extent in the kidneys than tumor at 4 hours post adm inistration.
However, the concentration of the inventive compounds in tumor did not change as a function of time. Thus, the tumor concentration of Formula 1 or Formula 11 compounds at 4 hours post administration is similar to their tumor concentration at 24 hours and 96 hours post administration. [0127 j Depending ors whether the Formula I or Formula Π compounds are to be used as radioimaging agents or radio pharmaceuticals, different radionuclides are coniplexed to the compounds. Illustrative of suitable radionuclides are those selected from the actinide series, lanthanide series and radionuclides of transition metals, for example, "Ίη, ^Ύ,*8 Ga, cCu i53Gd, 555Gd, i57Gd, 5 Fe, 225Ac, i3BL 2,3Bi, 55Co, 67Cu, i65Dy, !66Ho, 192lr, 223Ra, ,86Re, ,88Re, !05Rh, 2!2Pb, 2,3Pb, i49Tb, 227Th, i53Sm, 9Sr, <,7">Sn, mYb, 90Y, S6Y, S9Zr and ,77Lu.
[0128] Illustrative of Formula I or Formula Π compounds comp!exed to an exemplary radionuclide 1 "Lu are those illustrated be!ow in Table 2.
Table 2
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
or a pharmaceutically acceptable salt or solvate thereof,
[01 29] Figure i and Figure 2 illustrate results of a bio-distribution study of a GUL-
[piperazine-triazinyl- -aminobenzyl]-DOTA-' "Lu complexes according to Formula 1 or Formula 1 ! in LNCap xenograft mice, while Figure 3 illustrates results of a bio-distribution study of a GUL- [alkylene thioureaj-DOTA-1 "!^ complex in LNCap xenograft mice.
Figure imgf000043_0002
(A)
Figure imgf000043_0003
(B)
Figure imgf000044_0001
[0330] As illustrated by the bar graphs in these figures, complexes (A), (B) and (C) concentrate in kidneys and tumor to a greater extent than other tissues. In fact, at 4 hours post administration, the observed concentration for each complex (A), (B) and (C) was greater in kidneys than in tumor. As illustrated by Figures 1-3, however, at 24 hours and 96 hours post adniinistraiion the concentration of the inventive GUL- [piperazine-triazinyl~p- aminobenzy!j-DOTA-1 '' Lu complexes (A) and (B) in LNCap tumor cells remained unchanged while the concentration of complex (C) used as a control decreases in LNCAP tumor cells at these longer intervals of time.
[013 1 ] T hese results were unexpected and suggest a greater ability for radionuclide complexes of Formula I or Formula 31 compounds to concentrate in tumor cells. Moreover, as illustrated in Figures 1 and 2, inventive complexes (A) and (B) are rapidly cleared from the kidneys. Because radionuclide complexes of Formula I or Formula H compounds concentrate in tumor and are rapidly cleared by the kidneys, radionuclide complexes of Formula 1 or Formula 31 compounds are candidate therapeutics for treating cancer, for example, prostate cancer,
[0132] Further confirmation that the inventive complexes concentrate in LNCaP tumors but are more rapidly cleared from other tissues including kidneys post administration to LNCaP tumor bearing mice was obtained in a separate extended biodistribution study using the GL'L- [piperuzine-triazin> i-^-aminobcnzyi}-DOTA- 1 "Lu complex (D), illustrated below.
Figure imgf000045_0001
i D)
[ 01 33] As illustrated by the bar graph in Figure 4, the inventive complex concentrates to a greater extent in kidneys and tumor than other tissues at shorter time intervals post administration. For instance, there is a gradual increase in the concentration of complex (D) in kidneys and tumor as a function of time over the first eight hours post administration. At longer time intervals, for example between 24 hours to 96 hours however, the concentration of complex (D) in kidney decreases while there is no observable change in the concentration of complex (D) in tumor,
[ 01 34] To further investigate the pharmacokinetics of tumor retention and renal clearance, the biodistribution study was extended to 3 weeks. Tissue analysis at 1 week post administration of complex (D) indicated no appreciable change in the intracellular concentration of this complex in LNCaP tumor cells. The intrarenal concentration at 1 week post administration of complex (D) is significantly lower than the intrarenal concentration of comple (D) at earlier time intervals, for example, within eight hours post administration.
[01 35] At 3 weeks post administration, tissue analysis indicates a decrease in the intratumora! concentration of complex (D), However, the decrease in the concentration of the inventive complex in tumor is less compared to the decrease in the intrarenal
concentration of complex (D). As mentioned above, the extended biodistribution study confirmed initial observations that within the same period of time there is a more rapid decrease in the concentration of complex (D) from the kidneys than tumor. Taken together, these results illustrate a greater affinity for the inventive radionuclide complexes that comport with Formula I or Formula II for tumor cells than non-tumor tissue, such as blood, heart, lungs, liver, spleen, stomach, large and small intestines, testes, skeletal muscle, bone, brain, and adipose tissue. Accordingly, Formula I and Formula SI compounds are candidate therapeutic or imaging agents for selectively imaging L Cap tumor cells.
[0 ί 36] The compounds of Formula I or Formula 11 were screened in a human prostate cancer cell competitive binding assay using PSMA positive (+), LnCap cells against the known inhibitor of PSMA, (7S, 34 S, 18S)-7-araino- 1 -( 1 -(carboxymethyl)-l H-imidazoi-2-yi)- 2-(( 1 -(earboxymelhyl)- 1 11-imidazol-2-yI)methyl)-8, ! 6-dioxo-2,9, 15, 1 7-tetraazaicosane- 14, 18,20-tricarboxyIic acid (99mTc-MIP- 1405), and IC50 values were calculated.
[0137] Briefly, L CaP human prostate cancer cells were obtained from American
Type Culture Collection, Rockville, D. LNCaP cells were maintained in RPMI- 1640 medium supplemented with 10% fetal bovine serum (FBS). Binding of the radiolabeled compound and competition with cold derivatives to LNCaP cells was performed according to published methods. Cells were plated in ! 2~weli plates at approximately 4 x 103 cells/well and incubated for 48 hours in a humidified incubator at 37 °C/5% carbon dioxide prior to addition of compound. Solutions of the Formula 1 or Formula II compounds were prepared and diluted in serum-free ceil culture medium containing 0.5% bovine serum album in (BSA) in combination with 3nM 'AniTc-MIP-] 405 (known inhibitor). Total binding was determined by incubating ""'Tc-M IP- 1405 ithout test compound. Plates were incubated at room temperature for I hour. Cells were removed from the plates and transferred to eppendorff tubes. Samples were microcentrifuged for 15 seconds at 10 x g. The medium was aspirated and the pellet was washed twice by dispersal in fresh assay medium followed by
m icrocentr tfugation . Cell binding of ^""Tc- lP- 1405 was determined by counting the cell pellet in an automated gamma counter. Table 3 illustrates the IC50 values of representative Formula II non-radioactive l ?5Lu complexes.
Table 3
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
[01 38] As illustrated above, Formula 1 and Formula II compounds of the invention bind to PSMA expressed on the surface of prostate cancer cells with IC50 values in the nanomolar range. The inventive compounds, therefore, are candidate radiotherapeutic agents for inhibiting the growth of prostate cancer tumor. Please note that in some structures depicted above and elsewhere in this disclosure there may or may not be dashed or solid lines showing putative interactions between certain functional groups and a metal radionuclide. These depictions are merely illustrative of possible bonding interactions, but by no means should they be interpreted as the only possible or actual meta!-ligand interaction(s) present for the particular metal complex depicted. For example, it is possible, perhaps even probably, that one or more of the macrocytic aza groups are contributing to the overall bonding interactions between the metal ion and the chelating ligand.
[0 1 39] Figure 5 illustrates the in vivo efficacy of an exemplary iutetium complex of the invention to inhibit the growth of LNCaP tumors in mice, Arrest of tumor growth was determined by administering 450 μ€1 of the Iutetium complex of (2S)-2-(3-((l S)-l -carboxy- 5-( 1 1 -(4-(4-(dsmethylamino)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxymeihyi)-lA7,10- tetraazacyc4ododecan-2-yI)methyl)phenyi)amino)-l ,3,5-triazin-2-yl)pjperazin-l - y!)undecanamido)penty!)ureido)pentanedioic acid to each mouse in the study group. Mice in the contro group were administered saline. Tumor volumes in the test and control group of mice were measured twice weekly . Tumor volumes of mice receiving the Iutetium complex according to the invention, were significantly lower than the tumor volumes of mice in the control group. [0140] In fact, as illustrated in Figure 5, LNCaP tumor volumes of mice in the test group were observed to decrease to values lower than the tumor volume at the start of the study upon administration of the inventive complex. In contrast, there was an increase in the volume of LNCaP tumors in mice receiving saline. These observations indicate that radionuclide complexes of the inventive Formula 1 and Formula 11 compounds are effective at arresting the growth of prostate cancer in vivo.
[0141 ] According to another embodiment of the invention, radionietal complexes of
Formula 1 and Formula li compounds were used for imaging prostate cancer and
accompanying metastasis in a subject. Briefly, bSGa was complexed to (2S)-2-(3-((l S)-l - carbox -5-( 1 1 -(4-(4-(dimethy lamino)-6-((4-(( 3 ,4,7, 1 Q-tetrakis(carboxymethyi)- 1 ,4,7, 10- tetraazacyclododecan-2-yi)methyl)phenyl)amino)-l ,3,5-triazin-2-yl)piperaz;tn-l - y j)undecanam ido)pentyl)ureido) pentanedioic acid and the resultant complex was administered to a subject having prostate cancer. The subject was then imaged at 1 hour and 3 hours post administration of the inventive oaGa complex using, for example, a o8Ga-PSMA PET/CT scanner. As illustrated in Figure 6, PSMA specific lesions were detected in the lymph nodes and bone, in addition to the prostate tissue itself. Some imaging agent was also visible in the subject's bladder at hour 1 , which was cleared by the 3-hour scan. The radiographic image in Figure 6 further indicates that the inventive complex accumulates in the lacrimal and salivary glands, kidney, liver, and urinary bladder. Overall, this imaging study supports the use of radiometal complexes of the inventive compounds as suitable agents for radioimaging of cancers, such as prostate cancer.
[0142J Because Formula I and Formula 11 compounds and their radionuclide complexes can have one or more chiral centers, the present invention encompasses both enantiomers, as well as all of the diasteroisomers. Moreover, both L and D-forms of the natural amino acids can be used for synthesizing the Formula 1 and Formula ΪΪ compounds, That is, the present invention encompasses stereoisomers, tautomers, and prodrugs of Formula I and Formula Π compounds and their radionuclide complexes,
[0143] As noted above, radinuciide complexes of Formula 1 or Formula II compounds may contain one or more radionuclides which are suitable for use as radio-imaging agents or as radio-therapeutics for the treatment of diseases associated with the uncontrolled and rapid proliferation of cells, for example, PSMA expressing prostate cancer cells. Accordingly, in one embodiment, a pharmaceutical composition is provided including a complex that includes a metal and a compound of Formula ί or Formula 11, a salt, solvate, stereoisomer, or tautomer thereof, and a pharmaceutically acceptable carrier.
[0144] In general, metal complexes of a Formula 1 or a Formula II compound or pharmaceutical compositions thereof, may be administered orally, or via a parenteral route, usually by Injection. Parenteral routes include, but are not limited to, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticulare, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion, in some embodiments, the compound, or pharmaceutical composition thereof, is administered orally. Such
compositions may take the form of tablets, pills, capsules, semisolids, powders, solutions, suspensions, elixirs, aerosols, or any other appropriate compositions.
[0145] According to another aspect, a pharmaceutical composition is provided, which is suitable for in vivo imaging and radiotherapy. Suitable pharmaceutical compositions may contain a radio imaging agent, or a radiotherapcutic agent that has a radionuclide either as an element, i.e. radioactive iodine, or a radioactive metal chelate complex of the compound of Formula I or Formula ΙΪ in an amount sufficient for imaging, together with a
pharmaceutical ly acceptable radiological vehicle. The radiological vehicle should be suitable for injection or aspiration, such as human serum albumin; aqueous buffer solutions, e.g. , tris(bydromethyl) aminomethane (and its salts), phosphate, citrate, bicarbonate, etc; sterile water; physiological saline; and balanced ionic solutions containing chloride and or dicarbonate salts or normal blood plasma cations such as calcium, potassium, sodium, and magnesium,
[0146] The concentration of the imaging agent or the therapeutic agent in the radiological vehicle should be sufficient to provide satisfactory imaging. For example, when using an aqueous solution, the dosage is about 1.0 to 50 millicuries. The actual dose administered to a patient for imaging or therapeutic purposes, however, is determined by the physician administering treatment. The imaging agent or therapeutic agent should be administered so as to remain in the patient for about I to 24 hours, although both longer and shorter time periods are acceptable. Therefore, convenient ampoules containing i to 1 0 ml. of aqueous solution may be prepared.
[0147 Imaging may be carried out in the normal manner, for example by injecting a sufficient amount of the imaging composition to provide adequate imaging and then scanning with a suitable machine, such as a gamma camera, in certain embodiments, a method of imaging a region in a patient, for example, imaging one or more tissues that express prostate- specifsc membrane antigen (PSMA) includes the steps of: (i) administering to a patient a diagnosticaily effective amount of a Formula i, Formula Π or Formula M l compound cornplexed with a radionuclide so as to contact the one or more tissues expressing PSMA with a radionuclide complex of a Formula I, Formula 11 or Formula 111 compound; and (ii) recording a radiographicimage of the one or more tissues. In one embodiment the tissue imaged is a prostate tissue or a prostate cancer tissue. According to the inventive methodology, imaging can be carried out by administering to a patient a diagnosticaily effective amount of a Formula 1 compound cornplexed to a radionuclide, a Formula 11 compound cornplexed to a radionuclide or a Formula ill eompoundeomplexed to a radionuclide, or a pharmaceutically acceptable salt or solvate of the inventive complexes.
[0148] In one embodiment, therefore, imaging is carried out using a radionuclide complex of a Formula il l compound.
[0149] In For
Figure imgf000052_0001
mula III, G is
is selected from ~NH-(C C! 0)alkylene-, -NH-(C , -Cio)a!kylene-C(O)-,
-C(0)-(C , -C , o)alk Iene-, ~C(0)-(C , -C , o)aikylene-C(O)- or
Figure imgf000053_0001
and variables Ra and R" are each independently selected from the group consisting of H. -OH, -(CrCi0)alkyl, -[CH2-CH2-0]n-(CH2)2-T, ~C(0)<Cr C!0)alkyl, -(Ci-Cio)alkylene-C(O)-, -<C i -C j0)alkyIene-C(O)-Z, benzyl, -(C3-C|0)cycloaikyl, - (C3-C ) o)aryl-(C > -C |0)a(kylene, -(C3-C 10)aryl, halo-(C , -C 10)alkyl, hydroxy-(C 1 -C! 0)alkyl, - NH-(Cr-Cio)aikyf, and -(C 1 -C s o)aikylene-NRdR or Ra and RB together with the nitrogen to which they are bonded form a (C3-C6)-heteroaryl or (C3-C6)-heterocycloalk ! that can further comprise one or more heteroatoms selected from N, S, or O.
[01 50] Z in Formula IS! is selected from -OH, -0(CrC! U)alkyl.
Figure imgf000053_0002
independently selected from H, bond, -OH, -(Ci-Cio)alkyl, or -(C C;o)heteroaryl-(Ci- Cio)alkylene. Subscript "n" is an integer selected from 0, 1 , 2, 3, 4, 5, 6, 7, 8 9, or 10. For Formula II S compounds, any alkyl, alkyiene, aryl, arylene, heteroaryl, heteroarylene, cycioalkyi. cycioalkylene, heteroeycloalkyl or hetcrocycloalkylenc is optionally substituted with 1 , 2, or 3 substiiuent groups selected from the group consisting of -(C i-C;o)alkyl, ~(Cr- Cio)haloalkyl, -(C(-Cio) aminoalkyl, -(CrCio)alkylene-COOH, - (C f -C 10)hydrox alky 1, -NFF, -COOH. -C(0)-(Ci-Cio)alkyl, -(C C, )alkylene-C(O)-, -(C C! 0)aikylene-C(O)-X. - H-- (Ci -Cio)alkyl, and -(CrCi0)alkylene-NRdRc-, and -NRdRs.
[015 1 ] The metal used to form the complex is a radionuclide selected from ! i lIn,
90Y,6S Ga, 64Cu !53Gd, , 55Gd, , 5?Gd, 59Fe, 225 Ac, 2UB 25 3Bi, 55Co, 67 Cxi, ! 65Dy, l 66Ho, i92lr, 223Ra, I S6Re, , MRe, ! 05 h, 2!2Pb, 2 l 3Pb, i 49Tb, 227Th, , 53Sm, 9Sr, , , 7mSn, 169Yb, 90Y, 86Y. S9Zr and 1 " Lu.
[0152] The amount of a Formula Ϊ, Formula 11 or Formula ill compound, or a formulation comprising a complex of a radiometal and a compound according to Formula I or Formula II, or its salt, solvate, stereoisomer, or tautomer that is administered to a patient depends on several physiological factors that are routinely used by the physician, including the nature of imaging to be carried out, tissue to be targeted for imaging and the body weight and medical history of the patient to be imaged.
[0 i 53 ] Also described is a method for treating a patient diagnosed with cancer by administering to such a patient a therapeutically effective amount of a prostate-specific membrane antigen (PSFvfA) binding complex comprising a triazinylene linker. In one embodiment of this methodology, the prostate-specific membrane antigen (PSMA) binding complex comprising a triazinylene linker is a Formula I, Formula 11 or Formula IIS compound compiexed to a radionuclide, or a pharmaceutically acceptable salt or solvate of the complex. Radionuclide complexes of Formula 1, Formula 11 and Formula H I compounds, as described above, are preferentially retained in PS A-expressing tumor tissue than non-PSMA expressing tissues such as kidney, liver, spleen, heart, blood, lungs, muscle, bone, large intestine, small intestine, brain , or fat. In addition to prostate cancer, radionuclide complexes of Formula I or Formula Π compounds are also candidate therapeutics for treating breast cancer, colon cancer, brain cancer, Sung cancer, liver cancer or kidney cancer.
[01 54 The present invention, thus generally described, will be understood more readily by reference to the following examples, which are provided by way of illustration and are not intended to be limiting of the present invention.
EXAMPLES
General Protocol for Cell Culture
[01 55] Human prostate cancer LNCaP cells were obtained from the American Type
Culture Collection. Cell culture supplies were from Invitrogen unless otherwise noted.
LNCaP cells were maintained in RPMi- 1640 medium supplemented with 10% fetal bovine serum (Hyclone). 4 mM L-giutamine, 1 rnM sodium pyruvate, 1 0 mM hepes, 2.5 mg mL D-glucose, and 50 .g/mL gentamicin in a humidified incubator at 37 °C/5% C02. Cells were removed from flasks lor passage, inoculation of mice or for transfer to 12-we!l assay plates by incubating them with 0.25% trypsin/F.DTA.
General Protocol for Competitive Binding [ 01 56] The ability of non-radioactive lutetium containing PSMA inhibitors to compete with 99mTc- (i 7S, 14S, 18S)-7-amino- 1 -(l -(carboxymethyl)- 1 H-imidazol-2-yl)-2-(( 1 - (carboxymethyl)- 1 H-imidazol-2-yl)ineihyl)-8, 16--dioxo-2,9, 1 5, 1 7-tetraazaicosane- 14, 1 8,20- tricarboxylic acid) for binding to PSMA in LNCaP cells was examined. LNCaP cells (4 x 10s cells/well in 12-well plates in triplicate) were incubated for 1 hour with 3nM of the 99mTc- compiex in RPM1 medium containing 0.5% BSA in the presence of 1 - 1 0,000 nM test compounds. Cells were removed to Eppendorf tubes by gently pipetting, washed twice with RPMl + 0.5% B SA and counted.
Mous Studies
[ 0157] Alt animal studies were approved by the Institute for Animal Care and Use
Committee in accordance with the guidelines set forth by the U .S. Public Health Service Policy on Humane. Care and Use of Laboratory Animals. Mice were housed under standard conditions in approved facilities with 1 2 hour !ight/dark cycles and given food and water ad libitum, Male athyrnic NCr-nu/nu mice were purchased from Taconic. For inoculation in mice, LNCaP cells were resuspended at 10' cells/ml in a 1 : 1 mixture of cell culture medium :Matrigel (BD Biosciences). Each mouse was injected in the right flank with 0.25 ml of the cel l suspension. Mice were used for tissue distribution studies when the tumors reached approximately 100-400 mm3.
Tissue Distribution
[01 8 ] A quantitative analysis of the tissue distribution of 1 /7Lu-labeled compounds was performed in separate groups of male NCr-nu/nu mice bearing LNCaP cell xenografts. The compounds were administered via the tail vein as a bolus injection (approximately 10 θϊ/ηιουεε) in a constant volume of 0.05 niL, The animals (n=5/time point) were euthanized by asphyxiation with carbon dioxide at the indicated time points after injection. Tissues , for example, blood, heart, lungs, liver, spleen, kidneys, stomach, large and small intestines (with contents), testes, skeletal muscle, bone, brain, adipose, and tumor were dissected, excised, weighed wet, and counted in an automated γ-counter. Tissue time-radioactivity levels were expressed as percent injected dose per gram of tissue (%lD/g). In Vivo Efficacy
[0159] Mice bearing LNCaP xenografts having an average volume of -100-500 nun', were randomly assigned to a control group or a treatment group (n = 10 mice per group). Mice in the control group were admi istered saline while mice in the test group received 450 μ€ί η οί«6 of ! "Lu-complex of the inventive Formula 1 or Formula 11 compound. Each animal was administered the test article intravenously in a volume of 0.05 niL. Tumor dimensions were measured twice weekly with digital calipers and tumor volumes were calculated using the formuia (4/3 x. Π x width x iength)/6. Measurements were made until tumor volumes in the vehicle group reached the maximum allowed by iACUC
guidelines (1,500 mm').
General Synthetic Methods.
[0160] General procedure for the synthesis of Formula S compounds and for compfexatton of a Formuia 1 compound with a radionuclide are described. While a protocol for complexing lutetium to a Formula I compound is exemplified below, it is to be understood that a similar synthetic procedure can be followed for complexing other radionuclides. Therefore, while lutetium may specifically be shown in various examples described below, complexes with other radionuclides such as In, Y, Zr, Ga, Lu, Cu, Gd, Ac Fe, Bi Co, Dy Ho, Ir, Ra, Re, Rh, Sr or Sm are within the scope of the present invention. Additionally, it is to be understood that various isotopes of these elements may be complexed, for example, !"In, ^Y,6* Ga, 6''Cu '""Gd, ,5SGd, '""Gd, j Fe, "'Ac, "l2Bi, ,JBi, ssCo, 67Cu, i65Dy, i66Ho, mlrt 223Ra, l86Re, !88Re, 105Rh, 2,2Pb, 2i3Pb, i49Tb, 227Th. i53Sm, 89Sr, li7mSn, !69Yb, 90Y,86Y, 9Zr and !77L.u.
General Experimental Conditions for the Formation of the lutetium Complexes
[0161] The lutetium complexes of Formula 1 compounds were conveniently isolated from the reaction* that involve contacting commercially available LuClj with a compound according to Formula 1. Briefly, a 10"bM -10"4M solution of the desired Formula 1 or Formuia 11 compound in an equal volume mixture of 1:1 acetonitriie and phosphate buffer was contacted with LuCFj in a sealed via!. The reaction mixture was heated at 100 °C for 30 to 45 minutes. Upon coo!ing, the reaction was analyzed for completion and purity by reverse-phase high pressure liquid chromatography (RP-HPLC) and if required was purified using RP-HPLC or a C I 8 Sep Pak column. The overall average yield of the lutetium cornplexed product following purification was in the range from about 20% to about 99%. The radiochemical purity (RCP), after HPLC purification, however, was consistently > 95%.
[01 62] Initial results demonstrated radio!abciing of a Formula 1 or a Formula 11 compound at concentrations as low as 10"° M, the radiochemical yield (RCY) at this concentration of reagents was approximately < 80%. To achieve a higher RCY, greater than 95%, the reaction temperature and concentration of reagents in the reaction mixture were increased to 10"4 M.
[0163] A similar synthetic strategy was used to incorporate other radionuclides.
Moreover, the introduction of a radionuclide can be made either prior to deprotection of a Formula 1 or Formula II compound, or after deprotecting a Formula 3 compound.
Synthesis of Exemplary Triazine-piperazine Based Formula I, Formula II, or Formula III
Compounds
[01 64] Schemes A, B and C illustrate general synthetic protocols for exemplary
Formula I compounds. Briefly, jo-aminobenzyl DOTA is contacted with cyanuric chloride followed by reaction of the resultant product with an amine. The product thus formed is then contacted with a GUG- or GUL-linker-piperazine moiety to obtain a Formula ί compound.
cheme A.
Figure imgf000058_0001
Scheme B
Figure imgf000059_0001
Figure imgf000059_0002
Scheme C
Figure imgf000060_0001
[0 165] Example 1 : (2S)-2-(3-((l S)-l -carboxy-5-(8-((4-(dimethyiaraino)-6-((4-
(( ! ,4,7,10-tetrakis(carboxymcthyl)-] ,4,7,10-tetraazacyc!ododecan-2- yl)methyi)phenyi)amino)- l ,3,5-triazin-2-yl)amino)octanamido)pentyl)ureido) pentanedioic acid lutetium complex.
Figure imgf000061_0001
[01 66] Step I . ( 18S,22S)-tri-ierr-butyl l -(9H-fluoren-9-yl)-3, 12s20-trioxo-
4, 13.1 ,21 -tetraazatetracosane- 1 8,22,24-tricarboxylate.
Figure imgf000061_0002
(01 67] A solution of (S)-dwerf-butyl 2-(3-((S)-6-amino-l-(tert-butoxy)- l -oxohexan-
2-yl)ureido)pentanedioate ( 1.9677 g, 4.03 mmol), 8-((((9H-f!uoren~9- yl)methoxy)carbonyl)amino)octanoic acid ( i .84 g. 4.84 mmol), l-ethyl-3-(3- dimethylaminopropyi)carbodiimide) (EDO: (0.770 g, 4.03 mmol), HOBt (0.544 g. 4.03 mmol) and N, -diisopropylethylamine (DIPEA: (2,0 mL)) in DCE (100 mL) was stirred at room temperature for overnight. The solvent was evaportated to give a residue, which was purified by silica gel column chromatography (Biotage) using a mixture of DCM/MeOH as the e!uent to give { 48S,22S)-tri-teri-butyl l -(9/Mluoren-9-yl)-3, 12,20-trioxo-2-oxa- 4, 13, 39,21 -tetraazatetracosane- 3 8,22,24-tricarboxylate (2.099 g, 61 %) as a white solid. MS (ESI), 851.2 (M+H)+. [0 ! 68] Step 2. (S)-di- r/-butyl 2-(3-((S)-6-(8-aminooctanamido)- ! ~(/eri-butoxy)- i - oxohexan-2-yl)ureido)pentanedioate.
Figure imgf000062_0001
[0 169] To a solution of ( 1 8S,22S)-tri-/<?r/-butyf 1 -(9H-fluoren-9-yl)-3, ! 2,20-trioxo-2- oxa-4, 13, 19,2 ! -tetraazatctracosane-18,22,24-tricarboxylate (1 ,983 rag, 2.333 mmol) in DMF (4.0 ml..) was added piperidine (4.0 mL). The mixture was stirred at room temperature for 3 hrs following which the solvent was evaporated under reduce pressure to afford a residue, which was purified by column chromatography using a Biotage SP4 column and gradient elution using 100% DCM to a 1 : 1 mixture of DCM:methanol as the eluting solvent. The product (S)~d i-zer /-butyl-2-(3-((S)-6-(8-aminooctanamido)- 1 -(tert-butoxy)- 1 -oxohexan-2- y 1 )ureido)pentaned ioate ( 1 .039 mg, 71 %), thus obtained was characterized using Ή NMR and masss spectrometry. Ή NMR (400 MHz, DMSC s) 7.71 (t, J = 5.2 Hz, 1 H), 6.29 (d, J = 8.0 Hz, 1 H), 6.25 (d, ./ 8.4 Hz, 1 H), 5.74 (brs, 2 H), 4.05-3.91 (m, 2 H), 3.01 -2.88 (m, 2 H), 2.63 (t, J = 6.8 Hz, 2 H), 2.20- 1 .22 (m, 49 H); MS (ESI), 629.3 ; M - ! S i .
[0170] Step 3. (2S)-2-(3-((l S)-l -carboxy-5-(8-(4-(dimethylamino)-6-(4-((l ,4,7, 10- tetrakis(carboxymethyl)-l ,4,7,10-teLraa?:acyclododecan-2-yl)rnethyl)phenylamino)-l ,3,5- triazin-2-ylamino)octanatnido)pentyl)ureido)pentanediotc acid.
[0171 ] To a solution of / NI -I2-Bn-DOTA-tetra(i-Bu-ester) (67.8 mg, 0.080 mmol) and cyanuric chloride (14.7 mg. 0.080 mmol) in DCM (4.0 mL) was added DIPEA (0.10 mL). This solution was stirred at room temperature for 3 hrs, following which the solvent was removed under a stream of nitrogen to give a residue. To a DMSO (4.0 mL) solution of the residue was added (S)~di-/i?r/-butyl 2~(3-((S)-6-(8-aminooctanatnido)- l -(½ri-butoxy)- I - oxohexan-2-yl)urcido)pentanedioate (50.3 mg, 0.08 mmoi) and K2C03 ( l QQmg). The suspension was stirred at room temperature for about 2 hrs and then a tetrahydrofuran solution of dimethyiamine (0.3 ml.,, 2.0 M in THF) was added to the reaction mixture. After stirring at room temperature continuously for 1 6 hrs, the reaction mixture was lyophilized to afford the crude triazine intermediate. The crude product was deprotected by the addition of TFA (4.0 mL) and DCM ( 1 .0 mL) and stirring the reaction mixture at room temperature for 4 hours. Removal of the solvent using a stream of nitrogen gas gave a residue, which was purified using Biotage SP4 via C I S cartridge to give (2S)-2-(3-(( l S)- 1 -carboxy-5-(8-(4- (dimethylamino)-6-(4-((l ,4,7, 1 0-tetrakis(carboxyrnethyl)-l ,4,7, 1 O-tetraazacyclododecan-2- yl)mt hyl)phenylamino)- l ,3,5-iriazin-2-ylamino)octanamtdo)pentyl)iireido)pentanediojc acid (67 mg) as a white solid. 'Ή NM (400 MHz, DMSO-efe) 7.83-7.60 (m, 3 H), 7.17 (d, J~ 8.0 Hz, 2 I S ) . 6.32. ( d. J = 8.0 Hz, I I I ;. 6.28 (d, J= 8.4 Hz, 1 H), 4.1 0- 1 .27 (m, 61 1 1 ): MS (ES I), 1091 .4 ( M I I ) ' .
[01721 Step 4. (2S)-2-(3-(( 1 S)- 1 -carboxy-5-(8-(4-(dimethylamino)-6-(4-(( 1 ,4,7, 10- tetrakis(carboxymethyl)- l,4,7, l O-tetraazacyciododecan-2-yl)mcthyl)phenylamino)- J ,3,5- triazin-2-yjamino)octanamido)pentyl)ureido)pentanedtoic acid iutetium complex.
[017 J To solid (2S)-2-(3-(( 1 S)- 1 -carboxy-5-(8-(4-(dimethylamino)-6-(4-(( 1 ,4,7, 1 0- tetrakis(carboxymcthyl)- l ,4,7, 10-tetraazacyclododecan-2-yl)methyl)phenylatnino)-i , 3,5- tnazin-2~ylamino)oetanam ido)pentyl)ureido)pentanedioic acid (5.7 mg, 0.00522 mmoi) was added LuCl3 (1.46 mL of a 0.00357 mmol/mL, 0.00522 mmoi) and acetonitrile (0.50 mL). The reaction mixture was heated at 95 °C for 1 hour and then lyophilized to give (2S)~2-(3~ (( 1 S)- 1 -carboxy-5-(8-(4-(dimethylamino)-6-(4-((1 ,4,7, 1 0-tetrakis(carboxymethyl)- 1.4,7, 1 0- tetraazacyclododecan-2-yl)methy!)phenylamino)- l ,3,5-triaz!n-2-ylamino)octanamido)pcntyl) ureido)pentanedioie acid Iuteti um complex (6,2 mg) as a white solid. MS (ESI), 1263.0
[0174] Example 2. (S)-2-(3-((S)- 1 -Carboxy-5-(8-((4-(piperidin-l -yl)-6-((4-((( i ,4,7, 10-tetrakis(carboxymethyi)- 1 ,4,7, 1 0-tetraazacyclododecan-2-yi)methyl)phenyl)am ino)- 1 ,3,5-iriazjn-2-yi)amino)octanamido)penty!)ureido)pentanedioic acid Iutetium complex.
Figure imgf000064_0001
[01 75] Step 1 , (2S)-2-(3-((S)-l-carboxy-5-(8-(4-(piperidin-l -yl)-6-(4-(( 1 ,4,7, ! 0- tetrakis(carboxymethyi)- 1 ,4,7. 10-tetraazacyclododecan-2-yl)methyI)phenylamino)- 1 ,3,5- triazin-2-ylamino)octanamido)pentyi)ureido)pentanedioic acid.
Figure imgf000064_0002
[01 76] To a solution of _/;-NH2-Bn-DOTA-ietra(/-Bu-ester) (Macrocyciics) (42.4 rng,
0.050 mmol) and cyanuric chloride (9.2 mg, 0.050 mmol) in DCM (2.0 mL) was added D1PEA (0.10 mL). This reaction mixture was stirred at room temperature tor 2 hours following which the solvent was removed using a stream of nitrogen to give a residue. The residue thus obtained was dissolved in DM SO (4.0 mL) and (S)-di-tert-butyl 2-(3-((S)-6-(8- aminooctanamido)- 1••( ert-butoxy)- 1 -oxohexan-2-yl)ureido)pentanedioate (31 .4 mg, 0.05 mmoi) and 2COj ( 100 mg) were added. The suspension was stirred at room temperature for 2 hrs and then piperidine (0.10 mL) was added. The reaction mixture was stirred at room temperature for an additional 14 hrs and then lyophilized to afford a triazine intermediate, which was deprotecled by the addition of TFA (2,0 mL) in DCM ( 1 .0 mL). Deprotectson was carried out by stirring the reaction mixture at room temperature for 4 hours. Following dcproteciion, the solvent was removed using a stream of nitrogen to give a residue, which was purified by Biotage SP4 using C I 8 cartridge to give pure (2S)-2-(3-((S)- 1 -carboxy-5-(8- (4-(ptperidin- 1 -yi)-6-(4-(( 1 ,4,7, 10-tetrakis(carboxyrnethyi)- 1 ,4,7, 10-tetraazacyclododecan-2- yl)methy])pheriylamino)-l ,3s5-triazin-2-ylam acid [0177] (25,8 mg) as a white solid. Ή NMR (400 MHz, DMSO-*¼) 7.75-7.60 (m, 3
H), 7.18 (d, .7 = 7.2 Hz, 2 H), 6.33 (d, J= 7.6 Hz.1 H), 6.30 (d, ,/ = 8.0 Hz, 1 H), 4.12-1.24 (m, 6511): MS (I'SI).1131.2 (ΜΊΠ\
[0178] Step 2. (2S)-2-(3-((S)- 1 -carboxy-5-(8-(4-(piperidin- ! -yl)-6-(4-(( 1 ,4,7, 10- tetrakis(carbox>'methyl)-l,4,7,10-tetraazacyclododecan-2-yl)methyl)phenylamino)-l,3,5- triazin-2-ySamino)octana3i3ido)pentyl)ureido)pentanedioic acidlutetium complex.
[0179] To solid (2S)-2-(3-((S)- 1 -carboxy-5-(8-(4-(piperidin- 1 -yl)-6-(4-(( 1 ,4,7, 10- tetrakis(carboxyraethyl)- i ,4,7, 10-tetraazacyclododecan-2-yl)methyl)phenylamino)- 1,3,5- triazin-2-ylan ino)octanamido)penlyj)ureido)pentanedioic acid (9.2 mg, 0.0081 mmol) was added LuCi3 (1.60 mL, of a 0.00513 mmol/rnL, 0.0082 mmol) and acetonitrile (0.50 mL). The reaction mixture was heated at 95 °C for I hour and then lyophilized to give (2S)-2-(3~ ((S)- 1 -carboxy-5-(8-(4-(piperidin- 1 -yl)-6-(4-(( 3 ,4,7, 10-tetrakis(carboxymethyl)- 1 ,4,7, 10- tetraazacyclododecan-2-yl)methy[)phenyiamino)-l,3,5-triazin-2-yIamino)octanamido)pentyl) ureidojpentanedioic acid !utetium complex (9.4 mg) as a white solid. MS (ESI).1 02,2 lM ·;·1)\
[0180] Example 3. (2S)-2-(3-(( 1 S)- 1 -carboxy-5-(8-(4-morpholino-6-(4-(( 3 ,4,7, 10- tetrakis(carboxymethyl)- 1 ,4,7, 10-tetraazacyclododecan-2-yl)methyi)phenylamino)- 1.3,5- triazin-2-ylamino)octanamido)pentyl)ureido)pentanedioic acid luted um complex.
[0181 j Step 1. (2S)-2~(3-(( i S)~ 1 -carboxy-5-(8-(4-morphoiino-6-(4-(( 1 ,4,7, i 0- tetrakis(carboxymethyl)-l ,4,7, ί 0-tetraazacyclododecan-2-yl)methyl)phenylamino)-l ,3,5- triazin-2-ylamino)octanamido)pentyl)ureido)pentanedioic acid.
Figure imgf000066_0001
01 82] To a solution ot -NH2-Bn-DOTA-tetra(/-Bu-ester) (Macrocyclics) (42.4 mg,
0.050 mmol) and cyanuric chloride (9.2 mg, 0.050 mmol) in DCM (2,0 mL) was added DIPEA (0.10 mL). The reaction was stirred at room temperature for 2 hours and the solvent was then removed using a stream of nitrogen to give a residue. The residue was dissolved in DMSO (4.0 mL) and (S)-di-j<?r/-butyl 2-(3-((S)-6-(8-aminooctanamido)- l -(tert-b'jtoxy)- l - oxohexan-2~yi)ureido)pentanedioate (3 1 .4 mg, 0.05 mmol) and 2COj ( 100 mg) were then added to the DMSO solution. The suspension was stirred at room temperature for 2 hours following which morpholine (0.10 mL) was added and the reaction mixture was stirred at room temperature for an additional 14 hours. The reaction mixture was lyophilized to afford a triazine intermediate to which was added TFA (2.0 mL) and DCM (1 .0 mL). This mixture was stirred at room temperature for 4 hours to effect deprotection following which the solvent was removed using a stream of nitrogen to give a residue of the crude product. Purification was effected using a Biotage SP4 and a C I 8 cartridge to give (2S)-2-(3-((l S)- l -carboxy-5-(8- (4-morpholino-6-(4-((l ,4,7, 10-tetxakis(carboxymethyl)- 1 ,4,7, 10-tetraazacyclododecan-2- yl)methyl)phenylamino)- 3 ,3,5-triazin-2-ylamino)oct namido)pentyl)ureido)pentanedioic acid (29.8 mg) as a white solid. Ή NMR (400 MHz, DMSO-t¼) 7.75-7.65 (m, 3 H), 7.14 (m, 2 H), 6.55 (m, 2 H). 6.33 (d, J = 8.0 Hz, 1 H), 6.30 (d, J= 8.4 Hz, 1 H), 4.10-1 .27 (m, 6 1 H); MS (ESI), 1 1 33.2 (M+H)+.
[0183] Step 2. (2S)-2-(3-(( i S)- l -earboxy-5-(8-(4-morpholino-6-(4»(( ] ,4,7, 10- tetrakis(carboxymethyl)-3 ,4,7,10-tetraazacyclododecan-2-yl)methyl)phenylamino)-l,3,5- triazin-2-ylamino)octanamido)penty})ureido)pentanedtoic acid lutetium complex.
[01 84] To solid (2S)-2-(3-((I S)-l-carboxy-5-(8-(4-morpholino-6-(4-((l ,4,7,10- tetrakis(carboxymethyl)- 1 ,4.7, 10-tetraazacycfododecan-2~yl)methyl)phenylam ino)- 1 ,3,5- triazin-2-ylamino)octanamido)pentyl)ureido)pentanedioic acid (10.4 mg, 0.0092 mmol) was added LuC!3 (1 .80 m i . 0.00 13 mmol/mL, 0.0092 mmol) and acetonitri!e (0.50 mL). The reaction mixture was heated at 95 °C for 1 hour and then lyophilized to to give (2S)-2-(3- (( 1 S)- 1 -carboxy-5-(8-(4-morpholino-6-(4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)-l ,4,7, 30- tetraazacyclododecan-2-yl)niethyi)phenylamino)- i ,3,5-triazin--2-- ylarnino)octanamido)pentyl)ureido)pentanedioic acid iutetium complex (9.9 mg) as a white solid. MS (ESi), 1304.9 (M+H)+.
Example 4. (2S)-2-(3-((l S)- 1 -carboxy-5-(8-(4-(4-((4-carboxy- i ,7, 10- tris(carboxymethyl)- 1 ,4,7, 10 etraazacyclododecan-2-yI)methyl)phenylamino)-6-(piperazin- l-yl)-3 ,3,5-triazm-2-yiamino)octanamido)pentyl)ureido)pentanedioic acid Iutetium complex.
Figure imgf000067_0001
[0186] Step 1. (2S)-2-(3-((l S)-l -carboxy-5-(8-(4-(4-((4-carboxy-l ,7,30- tris(carboxymethyl)- 1 ,4,7, 30-tetraazacyclododecan-2-yl)methyl)pheny!amino)-6-(piperazin- l -yl)-l ,3,5-triazin-2-ylamino)octanaraido)pentyl)ureido)pentanedioic acid.
Figure imgf000067_0002
[0187] To a solution of ?-NH2-Bn-DOTA-tetra(/-Bu-ester) (Macrocyclics) (42.4 mg,
0.050 mmol) and cyanurie chloride (9.2 mg, 0.050 mmol) in DCM (2.0 mL) was added DIPEA (0.1 0 mL). The reaction was stirred at room temperature for 2 hrs. The solvent was then removed using a stream of nitrogen to give a residue, which was dissolved in DMSO (4.0 mL) and (S)-di-tert-butyl 2-(3-((S)-6-(8-aminooctanamido)-l -(/e«-butoxy)-l-oxohexan- 2-yl)ureido)pentanedioate (31 .43 mg, 0.05 mmol) and K2CX¾ ( 100 rng) were then added to the DMSO solution. The resultant suspension was stirred at room temperature for 2 hrs following which piperazine (100 mg) was added and stirring was continued at room temperature for an additional ί 6 hrs. The crude reaction was then lyophi Sized and the triazine intermediate thus obtained was added deprotected using TFA (2.0 mL) and DCM ( i .0 mL). Deproiection was carried out by stirring the mixture at room temperature overnight, following which the solvent was removed using a stream of nitrogen to give a residue of the crude product which was purified by Biotage SP4 using a C I 8 cartridge to give (2S)-2-(3- ((l S)-l-carboxy-5-(8-(4-(4-((4-carboxy-J ,7,10-tris(carboxymethyl)- l ,4,7, 10- tetraazacyclododecan-2-yl)methyl)phenylamino)-6-(piperazin-l -y])-i ,3,5-triazin-2- yiamino)octanam!do)pentyl)ureido)pentanedioie acid ( 1 8,9 mg) as a white solid. Ή NMR
(400 MHz, DMSO-<¾ 8.85 (m, 2 H), 7.75-7.65 (m, 4 H), 7.16 (m, 2 H), 6.55 (m, 2 H), 6.32 (d. J = 8.8 Hz, ! H), 6.29 (d, J = 8.4 Hz, 1 H), 4.1 1 -1.23 (m, 61 H); MS (ESI), 3 1 32.2
01 88] Step 2. (2S)-2-(3-((l S)-l -carboxy-5-(8-(4-(4-((4-carboxy-l ,7, 10- tris(carboxymethyl)-l ,4,7J 0 etraazacyclododecan-2-yl)methyi)phenylamino)-6-(piperazin- 1 -y|)- 1 ,3,5-triazin-2-ylamino)octanamido)penty!)ureido)pentanedioic acid futetium complex.
[01 89] To soiid (2S)-2-(3-((l S)-l -carboxy-5-(8-(4-(4-((4-carboxy-l ,7, i 0- tris(carboxymethyl)-1.4,7J 0 etraazacyclododecan-2-> )methyl)phenylamino)-6-(piperazin-
1- yl)-l ,3,5-triazin-2-ylamino)octanamido)pentyl)ureido)pentanedioic acid (7.8 mg, 0,0069 rnmol) was added i at L (1.80 mL of a 0.00385 mmol/mL, 0.0069 mmol and acetonitrile (0.5 mL). The reaction mixture was heated at 95 °C for 1 hour and then lyophilized to give (2S)-
2- (3-(( 1 S)- ! -carboxy-5-(8-(4-(4-((4-carboxy- 1 ,7, i O-tns(carboxymethyl)- 1 ,4,7, 10- tetraazacyclododecan-2-yl)methyl)phenyiamino)-6-(piperazin- 1 -yl)- 1 ,3,5-triazin-2- ylamino)octanamido)pentyl)ureido)pentanedioic acid iutctiuni complex (8.3 mg) as a white solid. MS (ESI), 1303.6 (M+H)+.
[0 ! 90] Example 5. (?S)-2~(3-(( 1 S ~! -c.arboxy-5-(8-(4-(4-(3-carboxypropyI)piperidin-
I -yi)-6-(4-(( 1 ,4,7, 10-tetrakis(carboxymethy I)- 1 ,4,7, 10-tetraazacyclododecan-2- yl)methyi)pheny!amino)-l ,3,5-triazin-2-ylamino)octanamido) pent l)ureido)pentaned ioic acid lutetium complex.
Figure imgf000069_0001
[0191 ] Step 1 . (2S)-2-(3-((l S)-l-carboxy-5-(8-(4-(4-(.3-carboxypropyl)piperidin- 1■ yl)-6-(4-(( ! ,4,7, 10-tetrakis(carboxymethyl)-l ,4,7, 10-tetraazacyclododecan-2- yl)methyi)phenylamino)-l ,3,5-triazin-2-yjamino)octanamido) pentyl)ureido)penlancdioie acid.
Figure imgf000069_0002
[01 92] ΌΙΡΕΑ (0.10 mL) was added to a solution of /?-NH2-Bn~DOTA-tetra(i-Bu- ester) (Macrocyclics) (42.4 mg, 0.050 ramol) and cyanuric chloride (9,2 mg, 0.050 mmol) in DCM (2.0 mL) and mixture was stirred at room temperature for 2 hrs. The solvent was then removed using a stream of nitrogen to give a residue, which was dissolved in DMSO ( 4.0 mL). (S)-di-terr-butyj 2-(3-((S)-6-(8-aminooetanamido)-l -(½ i-butoxy)- l -oxohex.an-2- yl)ureido)pentanedioate (3 1 .43 mg, 0.05 mmol) and K2CO3 ( ' 00 mg) were added to the DMSO solution and the resultant suspension was stirred at room temperature for 2 hrs following which 4-(piperidin-4-yl)butanoic acid (30 mg) was added. After stirring at room iemperature for an additional 16 hours the reaction mixture was Iyopbilized to afford a triazine intermediate which was deprotected using TFA (2.0 mL) and DCM (1 .0 m L). After stirring at room temperature overnight the solvent was removed using a stream of nitrogen to give a residue of the titled crude. Purification was effected using Biotage SP4 and a C I 8 cartridge to obtain (2S)~2~(3~(( I S)- l -carboxy-5-(8-(4-(4-(3-carboxypropyj)piperidin- l -yl)-6- (4-(( 1 ,4,7, 10-tetrakis(carboxymethy I)- 1.4,7, 10-tetraazacyc!ododecan-2- yl)metbyl)phcnylamino)- l ,3,5-triazin-2-ylamino)octanamido) pentyl)ureido)pentanedioic acid ( ! 8,8 mg) as a white solid, MS (ESI), 608,8 ( /2+H)+.
[0193] Step 2. (2S)-2-(3-(( 1 S)-l -carboxy-5-(8-(4-(4-(3-carboxypropyl)piperidin- 1 - yl)-6-(4-((l ,4,7, i O-tetrakis(carboxymeihyl)- i ,4,7, ! 0-tetraazacyclododecan-2- yi)methyl)phenylamino)- 1 ,3,5-triazin-2-yiaraino)octanamido) pentyl)ureido)pentanedioic acid lutetium complex,
[ 0194] To solid (2S)-2-(3-((! S)-l -carboxy-5-(8-(4-(4-(3-cafboxypropyi)piperidin-i- yi)-6-(4-((l ,4,7, 1 O-tetrakis(carboxymeth l)- S ,4,7, ! 0-tetraaz.acyclododecan-2- y!)raethyl)phenylamino)-l ,3,5-triazin-2-ylamino)octanamjdo) pentyl)ureido)pentanedioic acid (7.4 mg, 0.006086 mmo!) was added Lu<¾ ( 1.58 mL of a 0.00385 mmoi/mL, 0.006086 mmol). The reaction mixture was heated at 95 °C for 1 hour and then !yophilized to give (2S)-2-(3-(( 1 S)- 1 -carboxy-5-(8-(4-(4-(3-carboxypropyl)piperidin- 1 -y!)-6-(4-(( 1 ,4,7, 10- ietrakis(carboxymethyi)-l ,4,7,10-tetraazacyclododecan-2-y!)methyI)phenyiamino)-l,3,5- triazin-2-ylamino)oeianamido) pentyl)ureido)pentanedioic acid lutetium complex (9.0 mg) as a white solid. MS (ESI), 1388.8 (M+H)\
[01 95] Example 6. ((2S,2^ -2)2^<((((1 S, 1 ,S)^(8,8,<(6 (4<(L4JJ
tetrakis(carboxymethyl)- ! ,4,7,10-tetraazacyclododecan-2-yl)methyl)phenyl)amino)-l ,3,5- triazine-2,4-diyi)bis(azanediyl))bis(octanoyl))bis(azanediyi))bis( l -carboxypentane-5, l - diyl))bis(azanediyl))bis(carbonyl))bis(azanediyl))dipentanedioic acid lutetium complex.
Figure imgf000070_0001
[0196] Step 3 . ((2S,2'S)-2,2'-((((( 1 S, 1 'S)-((8,8'-((6-(i4-(( 1 ,4,7, 10- tetrakis(carboxymethyl)- 1 ,4,7, 10-tetraazacyclododecan-2-yl)methyl)pheny l)amino)- 1 ,3.5- triaz!ne-2,4-djyi)bi.s(azanediyi))bis(ocianoyi))bis(azaned
diyi))bis(azanediy!))bis(carbonyl))bis(azanediyi))dipeiitanedioic acid.
Figure imgf000071_0001
[01 7] To a solution ot -NH2-Bn-DOTA-tetra(i-Bu-ester) (Macrocyclics) (42.4 mg.
0.050 mmol) and cyanuric chloride (9.2 mg, 0.050 mmol) in DCM (2.0 mL) was added DiPEA (0.10 mL) and the mixture stirred at room temperature for 2 hours. Following stirring, the solvent was removed using a stream of nitrogen to give a residue. This residue was dissolved in DM SO (4.0 mL) and (S)-di-teri-butyl 2-(3-((S)-6-(8-aminooctanamido)- 1 - (/<?r/-butoxy)- 1 -oxohexan-2-yl)ureido)pentanedioate (62.8 mg, 0.10 mmol) and K2CO3 (100 mg) were added to the resultant DMSO solution. The suspension thus obtained was stirred at room temperature for 72 hours and then lyophihzed to afford a triazine intermediate which was deprotected using TFA (4.0 ml.) and DCM ( 1 .0 mL). The TFA/DCM mixture was stirred at room temperature overnight following which the solvent was removed using a stream of nitrogen to afford the titled crude as a solid. The crude was purified by Biotage SP4 using C I 8 cartridge to give pure ((2S,2'S)--2,2,-(((((l S, Ϊ 'S^-CCS^'-CCe-Cr-l-CC i ,4,7, 10- tetrakis(carboxymethy!)- l,4,7, 10-tetraazacyclododecan-2-yi)methyl)phenyI)amino)-l ,3,5- triazine-2,4-diyl)bis(azanediyi))bts(octanoy!))bis(azanediyl))bis(l -carboxypentane-5, 1 - diyl))bis(azanediyl))bis(carbonyl))bis(azanediyn)dipentanedioic acid (10.0 rng) as a white solid. MS (ESI), 753.2 (M/2+H)+.
[0198] Step 2. ((2S,2'S)-2,2 ((((l SJ 'S)-((8,8H(6-((4-(a ,4s7, 10- tetrakis(carboxymethy !)~ 1 ,4,7, 10-tetraazacyclododecan-2-yl)methyl)phenyl)amino)- 1 ,3,5- triazine-2,4-dtyl)bi.siazanediyl))bis(octanoyl))bis(azanediyl))bis( 1 -carboxypentane-5, 1 - diyi))bis(azanediyl))bis(carbonyi))bis(azanediyi))dipentanedioic acid lutetium complex.
[0199] To solid (((2S52'S)-2,2'-(((((l S, rS)-((8,8'-((6-((4-(( 1 ,4,7, 1 0- tetrakis(carboxymethyl)- 1 ,4,7, i 0-tetraazacyclododecan-2-yl)methy )phenyl)amino)- i ,3,5- triazine-2,4-diyl)bis(azanediyi))bis(octanoyl))b!5(azanediy]))bis( l -carboxy
diyl))bis(azanediyj))bis(carbonyl))bis(azanedi>'l))dipentanedioic acid (8,5 mg, 0.005646 rnmoi) was added LuCj ( 1.47 ml, of a 0.00385 mmol/mL, 0.005646 mmo!). The reaction mixture was heated at 70 °C for 1 hour and then lyophilized to to give (2S,2'S)-2,2 - (((((l SJ ^)-((S,8,-((6-((4-(( I ,4,7, 10 etrakis(carboxymeihyl).] ,4,7, i 0
2-yl)methyl)phenyl)amino)-l ,3,5 riazine-2,4-diyl)bis(a7.anediyl))bts(octanoyl)) bis(azanediyl))bts( 1 -carboxypentane-5, 1 -diy l))bis(azanediyl))bis(carbonyl))bis(azanediy 1)) dipentanedioic acid lutetium complex (8.6 mg) as a white solid. MS (ESI). 1678.0 (M+HV .
[0200] Example 7. (2S)-2-(3-(( 1 S)- 1 -carboxy-5-(l l-(4-(4-(dimethylamino)-6-((4-
((1 ,4,7, 10-tetrakis(carboxymethyl)-l ,4,7, 1 0-tetraazacyclododecan-2- y])methyl)phenyl)amino)- i ,3,5 riazm-2-yl)piperazin-- l ~
yl)undecanamido)pentyl)ureido)pentanedioic acid lutetium complex.
Figure imgf000072_0001
[0201 ] Step 1. (S)-di-tert-butyl 2-(3-((S)-6-(l 1 -(4-((benzyloxy)carbonyl)piperazin- yl)undecanamido)~ l -(†ert-butoxy)-l-oxohexan-2-yl)ureido)pentanedioaie.
Figure imgf000072_0002
2014/011047
[0202] A solution of (S)-di-ieri-buty! 2-(3-((S)-6-amrao-l -(tert-butoxy)-l-oxohexan-
2-yl)ureido)pe-ntanedioate (1.023 g, 2,097 mmol), 1 l -(4~((benzyloxy)carbonyl)piperazin-l - y undecanoic acid (0.77 g, 1.9059 mmol), EDCI (0.40 g, 2.097 mmol), HOBt (0.27 g, 2.097 mmol) and DIPEA ( 1 .0 mL) in dichioroethane (DCE; 25 mL) was stirred at room
temperature overnight. The following day, the solvent was evaportated to give a residue, which was purified using Biotage column chromatography and a mixture of DCM/ eOH as the eluant to give (S)-di-tert-butyl 2-(3-((S)-6-(l I ~(4-((benzy loxy)carbony l)piperazin- 1 - yl)undecanamido)-l -(tert-butoxy)-l-oxohexan-2-yl)ureido)pentanedioate (1.52 g, 91%) as a yellowish solid. MS (ESi), 874.3 ( M · H · ' .
[0203] Step 2. (S)-di-tert-butyl 2-(3-((S)-l -(tert-butoxy)-l -oxo-6-(l l-(piperazin-l- yl.)undecanamido)hexan-2-yl)ureido)pentanedioate.
Figure imgf000073_0001
[02041 To a solution of (S)-di-tert-butyl 2-(3-((S)-6-(l 1 -(4-
((benzy loxy)carbonyl)piperazin- 1 -yl)undecanamido)- 1 -(tert-butoxy)- 1 -oxohexan-2- yl)ureido)pentanedioate ( 1.50 g, 1.72 mmol) and ammonium formate (1 .0 g) in ethanoi (60 mL) was added palladium on carbon (300 nig). The reaction mixture was stirred at room temperature for overnight and filtered through a pad of celite followed by washing of the celite pad using ethyl acetate (ElOAc). The solvent was removed under reduced pressure and the residue dissolved in dichloromethane (DCM). The DCM solution was was washed using saturated sodium bicarbonate and then partitioned to separate the organic layer from the aqueous layer. Concentration pf the organic layer under reduced pressure afforded the titled product as a yellowish solid (1.2345 g, 97 % yield). MS (ESi), 740.4 (M+H)+.
[0205] Step 3. (2S)-2-(3-(( 1 S)- 1 -carboxy-5-( 1 1 -(4-(4-(dimethylamino)-6-((4-
((1 ,4,7, 10-tetrakis(carboxymethyi)-l ,4,7, 10-tetraazacyclododecan-2- y!)methy!)phenyi)amino)- ! ,3,5-triazin-2-y3)piperazin- l -yl)undecanamido)pentyl)
ureido)pentanedioic acid.
Figure imgf000074_0001
[0206] To a solution of p-N H2-Bn-DOTA-tetra( -Bu-ester) (Macrocyclics) (42.4 mg,
0.050 !nmol) and cyanuric chloride (9.2 mg, 0,050 mmol) in DCM (2.0 mL) was added D1PEA (0.1 0 mL) and resultant mixture was stirred at room temperature for 2 hrs. Fol lowing stirring, the solvent was removed under a stream of nitrogen to give a residue, which was dissolved in DMSO ( 1 .0 mL) prior to the additon of (S)-di-tert-butyl 2-(3-((S)-l -(tert- butoxy)- 1 -oxo-6-( 1 1 -(piperazin- 1 -yi)undecanamido)hexan-2-y l)ureido)pentanedioate (34 mg, 0.05 mmol) and 2CO3 (50 mg). The resultant suspension was stirred at room temperature for 2 hrs. following which a tetrahydrofuran solution of dimethyfamine (0.2 mL. 2.0 M in THF) was added. After additional stirring of the reaction mixture at room temperature for 16 hours, the reaction was lyophi !ized to afford the crude triazine intermediate, Deprotection of the crude using TFA (2.0 mL) and DCM (1 .0 mL) was carried out at room temperature overnight. The following day. the solvent was removed under a stream of nitrogen to gi ve a residue, which was puri fied by Biotage SP4 using C 18 cartridge to give (2S)-2-(3-(( l S)- i - carboxy-5-( 1 1 -(4-(4-(d imethylamino)-6-((4-(( L4,7, 10-tetrakis(carboxymethyl)- 1 ,4,7, 10- tetraazacyclododecan-2-yl)methyl)phenyl)amino)-l ,3,5-triazin-2-yl)piperazin-l - yf)undecanamido)pentyI)ureido)pentanedioic acid (24 mg) as a white solid. MS ( ESI), 601 ,2 ( M .M l } ' .
[0207] Step 4. (2S)-2-(3-((l S)- 1 -carboxy-5-(l 1 -(4-(4-(dimethylamino)-6-((4-
(( 1 ,4,7, 1 0-tetrakis(earboxymethyl)- 1 ,4,7, 10-tetraazacyc lododecan-2- yl)metbyi)phenyl)amino)- i ,3,5~triazin-2-yl)piperazin- 1 - yl)undecanamido)pentyl)ureido)pentanedioic acid iutetium complex.
[0208] To soiid (2S)-2-(3-(( l S)- l -carboxy-5-( l l -(4-(4-(dimethylamino)-6-((4-
((1 ,4,7, 10-tetrakis(carboxymethyi)- 1 ,4,7, 10-tetraazaeyclododecan-2- yl)methy])phenyl)am ino)- l ,3,5-triazin-2-yl)piperazin-l - y])undecanamido)penty!)ureido)pentanedioic acid (9.4 mg, 0.00783 mmol) was added LuCL ( 1 .02 mL of a 0.00770 mmol/mL, 0.00783 mmol). The reaction mixture was heated at 90 °C for 1 hour and then !yophilized to to give (2S)~2~(3-(( 1 S)- 3 -carboxy-5-( l 1 -(4-(4- (dimethylamino)-6-((4-(( 1 ,4,7, 10-tetraki s(carboxymethyl)- 1 ,4.7, 10-tetraazacyclododecan-2- yi)methyi)pheriyi)am ino)- i ,3,5--triazin-2-yl)piperazin- l - yl)undeeanamido)pentyi)ureido)pentanedioic acid lutecium complex ( 1 L i mg) as a white solid. MS (ESI), 1 373.7 (M+H)'\
[0209] Example 8. (2S)-2-(3-((l S)- l -carboxy-5-( 1 1 -(4-(4-(piperidin-l -yl)-6-((4-
((1 .4,7, 10-tetrak is(carboxymethy 1)- 1 ,4,7, 10-tetraazacyciododecan-2- y])methyl)pheny!)amino)- i ,3,5~triazirs-2-yl)piperazin-] - yi)undecanamido)pentyi)ureido)pentanedioic acid lutetium complex.
Figure imgf000075_0001
[02 10] Step i . ((2S)-2-(3 -(( l S)- l -carboxy-5-( l l -(4-(4-(piperidin- l -yI)-6-((4.
(( ί ,4, 7, 10-tetrak is(carboxymethy I) - 1 ,4, 7, 10-telraazacyc Jododecan-2- yl)methyi)phenyl)amino)-l ,3,5-triazin-2-yl)piperazin- 1 - y!)undecanamido)pentyl)ureido)pentanedioic acid.
Figure imgf000075_0002
[021 1 ] To a solution of p- H2-Bn-DOTA-tetra(?-Bu-ester) (Macrocvciics) (42.4 mg,
0.050 mmol) and cyanuric chloride (9.2 mg, 0.050 mmol) in DC (2.0 tnL) wa added DiPBA (0.1 0 m L) and the solution was stirred at room temperature for 2 hrs. The solvent was then removed using a stream of nitrogen to give a residue, which was dissolved in DM SO ( 1 .0 mL) prior to the addition of piperidine (4.25 mg, 0.05 mmol). The resultant suspension was stirred at room temperature for 2 hours following which (S)-di-tert-butyl 2- (3-((S)~l-(tert-butoxy)- l -oxo~6-(l 3 -(piperazin- l -yl)undecanamido)hexan-2- yl)ureido)pcntanedioate (37 mg, 0.05 mrnoS) and 2CO3 (50 mg) were added to the DMSO solution. After additional stirring at room temperature for 16 hours and the mixture was lyophilized to afford the crude triazine intermediate, which was deprotected using TFA (2.0 mL) and DCM ( 1 .0 mL). Deprotection was carried out by stirring the crude at room temperature overnight and the following day the solvent was removed using a stream of nitrogen to give a residue which was purified by Biotage SP4 using a C I S cartridge to give ((2S)-2-(3-((l 8)- 1 -carboxy-5-( 1 i -(4-(4-(piperidin- 1 -yl)-6-((4-((l ,4,7, 10- tetrakis(carboxymethyl)- 1,4,7, 10 etraazacyclododecan^
triazin-2-yI)piperazin- l -yl)undecanamido)pentyl)ureido)pentaned acid (22 rng) as a white solid. MS (ESI), 621.2 (M/2+H)+.
[0212] Step 2. (2S)-2-(3-(( 1 S)- 1 -carboxy-5-(3 1 -(4-(4-(piperidin-l-yl)-6-((4-
(( 1 ,4,7, ] 0-tetrakis(carboxymethy 1)- 1 ,4,7, 1 0-tetraazacyclododecan-2- yl)methyl)phenyl)amino)-l ,3,5-triazin-2-yl)piperazin-l - yl)undecanamido)pentyl)ureido)pentanedioic acid lutetium complex,
[0213] To solid (2S)-2-(3-((l S)-l -carboxy-5-(l 1 -(4-(4-(piperidin- l-yl)-6-((4-
(( 1 ,4,7, 1 Q-tetrakis(carboxymethyl)- 1 ,4,7, 10-tetraazacyclododecan-2- yl)methy])phenyl)amino)-l ,3,5-triazin-2-yl)piperazin- ] - yl)undecanamido)pentyl)ureido)pentanedioic acid (12.4 mg, 0.0 ! mmol) was added LuCL (1 .30 mL of a 0,00770 mmol/mL, 0.01 mmol). The reaction mixture was heated at 90 °C for 1 hour and then lyophilized to to give (2S)-2-(3-((l S)-3 -carboxy-5-(l l-(4-(4-(piperidin-l -yl)- 6-((4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)- 3 ,4,7, 10-tetraazacyciododecan-2- yl)metbyl)phenyl)amino)- l ,3,5-triazin-2-y3)piperazin-l - y3)undecanamido)pentyl)ureido)pentanedioic acid lutetium complex ( 34.0 mg) as a white solid. MS (ESI), 141 3.7 (M+H)+.
[0214] Example 9. (2S)-2-(3-(( 1 S)- 1 -carboxy-5-( 1 1 -(4-(4-((2-(2-(2- carboxyethoxy)ethoxy)ethyl)amino)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)- 1 ,4,7, 10- tetraazacyclododecan-2-yl)methyl)phenyl)amino)-l,3,5-triazin-2-yl)piperazm-l- yl)undecanamido)pentyl)ureido)pentanedioic acid lutetium complex.
Figure imgf000077_0001
OH
[0215] Step 1 . (2S)-2-(3-(( l S)- l -carboxy-5-( H -(4-(4-((2-(2-(2- carboxyethoxy)ethoxy)ethyI)arntno)-6-((4-(( i ,4,7, 1 0-tetrakis(carboxymethyl)- 1 ,4,7, 10- tetraazacyc!ododecan-2-yi)methyl)phenyl)amino)- l
Figure imgf000077_0002
- i)undecaJl amido)pentyl)υreido)pentanedi ic acid.
Figure imgf000077_0003
[0216] To a DCM solution (2.0 mL) of/>-NH2-Bn-DOTA-tetra(i-Bu-ester)
(Macrocyclics) (42.4 mg, 0.050 mmol) and cyanuric chloride (9.2 n g, 0.050 mmol) was added D!PEA (0.1 0 mL). After stirring at room temperature for 2 hours the solvent was removed under a stream of nitrogen to give a residue, which was dissolved in DMSO ( i .O mL). Tert-butyl 3~(2-(2-aminoethoxy)ethoxy)propanoate ( 1 1 .67 mg, 0,05 mmol) and K9CO3 (50 mg) were then added to the DMSO solution and the resultant suspension was stirred at room temperature for 2 hours. (S)-dt-tert-butyl 2-(3-{{S)- 1 -(tert-butoxy)- ! -oxo-6-( 1 1 - (piperazin- 1 -yl)undecanamido)hexan-2-yl)ureido)pentanedioate (37 mg, 0.05 mmol ) was then added. After stirring tor 1 6 hours the reaction mixture was lyophilized to afford the crude triazine intermediate which was deprotected using TFA (2.0 mL) and DCM ( 1 .0 m L). Deproteetion was carried out by stirring the crude at room temperature overnight and the following day the solvent was removed using a stream of nitrogen to give a residue which was purified by Riotage SP4 using C 1 8 cartridge to give (2S)-2-(3~((l S)-l ~carboxy-5-(l l -(4- (4-((2-(2-(2-carboxyethoxy)ethoxy)ethyl)amino)-6-((4-((l ,4,7,10-tetrakis(carboxymethyl)- l ,4,7, 10-tetraazacyclododecan-2-yI)methyl)phenyI)amino)- l ,3,5-triazin-2->'l)piperazin-l - yl)undecanamido)penty])ureido)pentanedioic acid (29.4 mg) as a white solid. MS (ESI). 667.2 (M/2+H)'* .
[0217] Step 2. (2S)-2-(3-(( ! S)-l -carboxy-5-(l I -(4-(4-((2-(2-(2- carboxyethoxy)ethoxy)ethyl)amino)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)- 1 ,4,7, 10- tetraazacyclododecan-2-yl)methyl)phenyl)amino)- l ,3.5-triazin-2-yj)pipera2in-l - y!)undecanamido)pentyl)urcido)pentanedioie acid lutetiuin complex.
[021 8] To solid (2S)-2-(3-(( l S)-l -carboxy-5-( l l -(4-(4-((2-(2-(2- carboxyethoxy)ethoxy)ethyl)amino)-6-((4-(( ! ,4,7, 10-tetrakis(carboxym ethyl)- 1 ,4,7, 10- tetraazacyclododecan-2-yI)methyl)phenyl)amino)-l ,3,5-triazin-2-y!)piperazin- 1 - yl)undecanamido)pentyl)ureido)pentanedioic acid ( 1 3.1 mg, 0.0] rnmol) was added LuCl3 ( 1 .30 mL of a 0.00770 mmol/mL, 0.01 mmol). The reaction mixture was heated at 90 C'C for 1 hour and lyophi!ized to to give (2S)-2-(3-(( l S)-l -carboxy-5-(l 1 -(4-(4-((2-(2-(2- carboxyethoxy)ethoxy)ethyl)amino)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)-l ,4,7, 10- tetraazacyclododecan-2-yl)methyl)phenyl)amino)- 1 ,3,5-triazin-2-y{)piperazin- 1 - yl)undecanamido)pentyl)ureido)pentanedioic acid lutetium complex ( 14.5 mg) as a white solid. MS (ESi), 1 505.7 (M+H)+.
[0219] Example 10. (2S)-2-(3-(( 1 S)- 1 -carboxy-5-( ! 1 -(4-(4-((26-carboxy-
3,6,9, 12, 15, 1 8.21 ,24-octaoxahexacosy!)amino)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxyraethyl)- 1 ,4,7, i ()-tetraazacyciododecan-2-yl)tnethyl)phenyi)amino)- f ,3,5-triazin-2-y{)piperazin-l■■ yl)undecanamido)pentyl)ureido)penianedioic acid lutetium complex.
Figure imgf000079_0001
Step 1. (2S)-2-(3-((l S)-l -carboxy-5-(l l -(4-(4-((26-carboxy- 3,6,9, 12, i 5, 1 8,2 f ,24-octaoxahexacosyl)amino)-6-((4-(( 1 ,4.7, 10-tetrakis(carboxymethyl)- l ,4,7J 0 ,etraazacyciododecan-2-yl)raethyr}pheny!)an'sino)-] ,3,5 riazin-2-yi)piperazin~ i- yl)undecanamido)pentyi)ureido)pentanedioic acid.
Figure imgf000079_0002
[0221] To a solution ofp-NH2-Bn-DOTA-tetra(i-Bu-ester) (Macrocyclics) (42.4 nig,
0,050 mmo)) and cyanuric chloride (9.2 mg, 0,050 mmol) in DCM (2.0 mL) was added DIPEA (0.10 mL). The reaction was stirred at room temperature for 2 hrs and the solvent removed following stirring using a stream of nitrogen. The residue thus obtained was dissolved in DMSO (1.0 mL) and ! -amino-3,6,9, 12, 15, 18,21 ,24-octaoxaheptacosan-27-oic acid (22, 1 mg, 0.05 mmol) and 2C03 (50 mg) were added to the DMSO solution. The resultant suspension was stirred at room temperature for 2 hrs following which (S)-di-tert- huty! 2-(3 -((S)- 1 -(tert-butoxy)- 1 -oxo-6-( i S -(piperazin- 1 - l)undecanamido)hexan-2- yl)ureido)pentanedioate (37 mg, 0.05 mmol) was then added. After stirring for an additional 16 hours at room temperature the crude reaction was lyopbilized to afford the triazine intermediate, which was deprotected overnight at room temperature using TFA (2.0 mL) and DCM (1 .0 mL). The crude product was purified by Biotage SIM using a C I 8 cartridge to
/ / - 11047
give (2S)-2-(3~(( 1 S)- 1 -carboxy-5-( 1 1 -(4-(4-((26-carboxy-3,6,9, 12, 15, 1 8,21 ,24- octaoxahexacosyl)amino)-6-((4-((l ,4,7, 1 0 etrakis(carb xymethyl)-l ,4,7, i 0- tetraazacyclododecan-2-yl)methyl)phenyi)araino)-3 ,3,5-triazin-2-yl)piperazin- 1 - yl)undecanamido)pentyi)ureido)pentanedioic acid (3 1 .4 mg) as a white so!id. MS (ESI), 799.3 (M 2+H)+.
[0222] Step 2. (2S)-2-(3-(( l S)- l -carboxy-5-( 1 1 -(4-(4-((26-carboxy-
3,6,9, 12, 1 5, 1 8,2 \ ,24-octaoxahexacosyl)amino)-6-((4-(( ί ,4,7, 10-tetrakis(carboxymethy!)-
1 ,4,7, 104etraazacyclododecaiv2-yi)methy!)pheny!)am
yl)undecanamido)pentyi)ureido)penianedioie acid iuiettum coinplex.
[0223] LuC!., (0.69 mL of a 0.00770 mmol/mL, 0.00532 mmo!) was added to solid
(2S)-2-(3-((l S)- ! -carboxy-5-( l 1 -(4-(4-((26-carboxy-3,6,9, 12, 15, 18,21 ,24- octaoxahexacosyl)amino)-6-((4-(( 1 ,4,7, 1 0-tetrakis(carboxyrnethyl)~ 1 ,4,7, ! 0- teiraazacyciododecan-2-yl)methyl)phenyl)amino)- 1 ,3,5-triazin-2-yl)piperazin- 1 - y))undecanamido)penty!)ureido)pentanedioic acid ( 8.5 mg, 0.00532 mmol). The reaction mixture was heated at 90 °C for 1 hour and then iyophilized to to give 2S)-2-(3-(( l SV 1 - carboxy-5-(l 1 -(4 -(4~((26-carboxy-3 ,6,9.12, 15, 1 8,2 1 ,24-octaoxahexaeosy!)araino)-6-((4- (( 1 ,4,7, 104etrakis(carboxymethyl)- 1 ,4,7, 104etraazacyclododecan-2- yl)methyl)pheny])amino)- ,3554riazin-2-yl)piperazin- 1 - yi)undecanamido)pentyl)ureido)pentanedioic acid lutetium complex (8.2 mg) as a white solid. MS (ES I), 885.2 (M/2+H)+.
[0224] Example 1 1 . (2S)-2-(3-(( 1 S)-5-(l 1 -(4-(4-(((S)-5-(bis((l-(carboxymethyl)~ 1 H- imidazol~2-yi)methy])amino)- 1 -carboxypeniyl)amino)-6-((4-(( 1 ,4,7, 1 0- tetrakis(carboxymethyl)- 1 , 4,7, 104etraazacyclododecan-2-yl)methyi)phenyl)amino)- l ,3,5- triaz!n-2-yi)piperazin- l -yl)undecanarnido)-l -carboxypentyl)ureido)pentanedioic acid lutetium complex .
Figure imgf000081_0001
[0225] Step 1 . (2S)-2-(3-((l S)-5-(l ί ~(4-(4-(((S)-5-(bis(( l -(carboxymethyi)- ] H- imidazol-2-y l)methy l)amino)- 1 -carboxypentyl)arn ino)-6-((4-(( i ,4,7, i 0- tetrakis(carboxymeihyl)- 1.4,7, 10-tetraazacycIododecan-2-yl)raethyl)phenyi)amino)- 1 ,3,5- triazin-2-yl)piperazin- 1 -y!)undecanamido)- l-carboxypentyl)ureido)pentanedioic acid.
Figure imgf000081_0002
[0226] To a solution of/?-NH2-Bn-DOTA-tetra(/-B«-ester) (Macrocyclics) (42.4 mg,
0.050 mmol) and cyanuric chloride (9.2 mg, 0.050 mmol) in DCM (2.0 mL) was added DIPEA (0.10 mL). After stirring at room temperature for 2 hours the solvent was removed using a stream of nitrogen gas to give a residue. This residue was dissolved in DMSO (1.0 mL) and (S)-2-amino-6-(bis((l-(2-(tert-butoxy)-2-oxoethyl)-l H-imidazol-2- yl)rnethyl)amino)hexanoic acid (26.7 mg, 0.05 mmol) and K2CO3 (50 mg) were then added. The resuitant suspension was stirred at room temperature overnight. The following day (S)- di-tert-buty] 2-(3-((S)-1 -(tert-butoxy)-l -oxo-6~(l 1 -(piperazin- l-yi)undecanamido)hexan-2- yl)ureido)pentanedioate (37 mg, 0.05 mmol) was added andthe reaction mixture was stirred at room temperature for an additional 24 hours. Lyophilization afforded the crude triazine intermediate which was deprotected overnight at room temperature using TEA (3.0 mL) and DCM ( 1.0 mL). The deprotected crude final product was purified by Biotage SF4 using a C I S cartridge to give (2S)-2-(3-((l S)-5-( l l -(4-(4-(((S)-5-(bis(( l -(carboxymethyl)- lH- imidazol-2-yi)methyl)amino)- 1 -carboxypentyi)amino)-6-((4-(( 1 ,4,7, 10- tetrakis(carboxymethyl)- 1 ,4.7, 10-tetraazacyclododecan-2-yl)methyS)phenyl)amino)-l ,3,5- tria2in-2-yI)plperazin- l -yl)undecanamido)~l -carboxypentyl)ureido)pentanedioic acid (41 .5 mg) as a white solid. MS (ESI), 789.6 (M/2+H)+.
[0227] Step 2. (2S)-2-(3-((1 S)-5-( l l-(4-(4-(((S)-5-(bis((l -(carboxymethyi)-l H- imidazol-2-y [)methyi)amino)- l -carboxypenty])amino)-6-((4-((l , 4,7, 10- tetrakis(carboxymethyl)-l , 4,7,10-tetraaxacyclododecan-2-yl)methy!)phenyl)am ino)-i,3,5- triaxin-2-yl)piperazin-l -yl)iindecanainido)-l -carboxypentyl)ureido)pentanedioic acid lutetiurn complex.
[0228] To solid (2S)-2-(3-((l S)-5-(l l -(4-(4-(((S)-5-(bis((l -(carboxymeihyl)-lH- imidazoi-2-y{)methyi)amino)- i -carboxypentyl)amino)-6-((4-(( 3 ,4,7, 10- tetrakis(carboxymethyl)- 1 ,4,7,10-tetraazacyciododecan-2-yl)methy[)phenyI)amino)- 1 ,3,5- triazin-2-yl)piperazin- 1 -yl)undecanamido)-l -carboxypentyl)ureido)pentanedioic acid (16.3 mg, 0.01 03 mmol) was added Lu(¾ ( 1.0 mL, 0. 103 mmoi/mL, 0.01 3 mmol. The reaction mixture was heated at 90 °C for 1 hour and then lyophilized to to give (2S)-2~(3-((i S)-5-(i 1 - (4-(4-(((S)-5-(bis(( l-(carboxymethyi)-l H-imidazol~2-y])methyl)amino)- l- carboxypentyl)amino)-6-((4-(( l ,4,7.10-tetrakis(carboxymethy!)- 1 ,4,7, 10- tetraazacyclododecan-2-yl)methyl)pbeny l)amino)- 1 , ,5-triazin-2-yl)piperazin- 1 - yl)undecanam ido)- 1 -carboxypentyl)ureido)pentanedioic acid lutetiurn complex (15.7 mg) as a white solid. MS (ESI). 875.6 (M/2+H)+.
[0229] Example 12. (2S)-2-(3-(( l S)-5-(l l-(4-(4-(bis(carboxymethyl)amino)-6-((4-
(( 1 ,4,7, 10-tetraki s(carbox ymethy {')- 1 ,4,7.10-teiraazacycIododecan-2- yl)rnethyi)phenyl)amino)- i ,3,5-triazin-2-yl)piperazin-l -yl)undecanarnido)-l - carboxypentyl)ureido)pentanedioic acid lutetiurn complex.
Figure imgf000083_0001
[0230] Step 1 . (2S)-2-(3-((l S)-5-(l ! -(4-(4-(bis(carboxymethyl)amino)-6-((4-
(( 1 ,4,7,10-tetrakis(carboxymethyl)-! ,4,7,10-telraazacyclododecan-2- yl)meihyl)phenyl)amino)- l ,3,5-triazin-2-yl)piperazin- l -yi)undecanamido)-l - carboxypentyl)ureido)pentanedioic acid.
Figure imgf000083_0002
[023 i ] To a DCM (2.0 mL) solution of /»-NH2-Bn-DOTA-ietra(i-Bu-ester)
(Macrocyclics) (42,4 nig, 0.050 mmol) and cyanuric chloride (9.2 mg, 0.050 mmol) was added DiPEA (0.10 ml,) and resultant mixture was stirred at room temperature for 2 hrs. Removal of the solvent using a stream of nitrogen gave a residue which was dissolved in DMSO (1 .0 mL) prior to the addition of di-tert-buty! 2,2'-azanediyldiacetate (24.5 mg, 0.10 mmol) and SCCh (50 mg) were added. The resultant suspension was stirred at room temperature for overnight and the following day (S)-di-tert-butyl 2-(3~((S)-l -(tert-butoxy)-l - oxo-6-( l l -(piperazin-l -yf)undecanamido)bexan-2-yl)ureido)pentanedioate (37 mg, 0.05 mmol) was added and the stirring continued at room temperature for 24 hours.
Lyophilization of this suspension afforded the triazine intermediate, which was deprotected at. room temperature overnight using TFA (3.0 mL) and DCM (1.0 mL). The deprotected crude product was purified by Biotage SP4 using a C I 8 cartridge to give (2S)-2-(3-((l S)-5-(l l -(4- i4-( ts(carbox>'methyl)amino)-6-(i4-(( 1 ,4,7.10-tetrakis(carboxymethyl)-i ,4.7, 10- tetraazacyclododecan-2-yl)meth\4)pheny])amino)- l ,3,5-triazin-2-yl)piperaz.in-l - yl)undecanamido)-l-carboxypentyl)ureido)pentanedioic acid (27.0 mg) as a white solid. MS (ESI), 645.2 (M/2+H . [0232] Step 2. (2S)-2-(3-((l S)-5-( 1 1 -(4-(4-(bis(carboxymethyl)amino)-6-((4-
(( 1 ,4,7, 10-teirakis(carboxymethyl)- 1 ,4,7, ί 0-tetraazacyciododecan-2- yl)raethyl)phenyl)amino)-l,3,5-triazin-2-yl)piperazin-l -yl)undecanamido)-l- carboxypeniy!)ureido)pentanedioic acid lutetium complex.
[02.33] LuCb (0.89 mL of a 0.0103 mmol/mL, 0.00915 mmol) as added to solid reagent of (2S)~2-(3-(( I S)-5-(l 1 -(4-(4-(bis(carboxymethyl)amino)-6-((4-(( 1 ,4,7, 10- tetrakis(carboxymethyl)- 1 ,4, 7, 10-teiraazacyclododecan-2-yi)metbyI)phenyl)amino)- i ,3,5- triazin-2- i)p iperazin- 3 -yl)undecanamido)- 1 -carboxypentyi)ureido)pentanedioic acid ( 1 1.8 mg, 0.00915 mmol). The reaction mixture was heated at 90 °C for 1 hour and then iyophilized to to give (2S)-2-(3-((l S)-5-(l 1 -(4-(4-(bis(carboxyraethyl)amino)-6-((4- (( 1 ,4,7, 10-tetraki s(carboxymethyl)- 1 ,4,7, 10-tetraazacyc!ododecan-2- yl)methy!)phenyl)amino)- ! ,3,5~triazin-2-y])pjperazin- 1 -yljundecanamido)- 1 - carboxyperityl)ureido)pentanedioic acid lutetium complex ( 12.0 mg) as a white solid. MS (ESI), 731 .2 (M/2+H/\
[0234] Example 13. (2S)-2-(3-((l S)-l -carboxy-5-(l 1 -(4-(4-(methylamino)-6-((4-
((1,4,7,10 etrakis(carboxymethyi)-l ,4,7, 10-tetraazacyc lododecan-2- yl)methyl)pheny!)amino)-l ,3,5-triazin-2-yl)piperaz,in- 1 - yi)undecanamido)pentyl)ureido)pentanedioic acid lutetium complex.
Figure imgf000084_0001
[0235] Step 1 . (2S)-2-(3-(( l S)- l -carboxy-5-(l 1 -(4-(4-(methylamino)-6-((4-((l ,4,7, 10- teirakis('carboxyme(hyn-j .4.7J 0-tetraa^
triazin-2-yl)piperazin- l -yl)undecanamido)pentyl)ureido)pe!'stanedioic acid,
Figure imgf000085_0001
[0236] To a DCM (2.0 mL) solution of /?-NH2-Bn-DOTA-tetra(/-Bu~ester)
(Macrocyclics) (42.4 mg, 0.050 mmoi) and cyanuric chloride (9.2 mg, 0.050 mmol) was added DI PEA (0.1 0 mL) and the solution stirred at room temperature for 2 hours. After stirring the so!vent was removed using a stream of nitrogen gas to give a residue. This residue was dissolved in DMSO ( 1.0 mL) and the solution was contacted with methanamine (0.1 0 mL, 2.0 M in THF) and K2Ci¾ (50 mg). The resultant suspension was stirred at room temperature for 4 hours. (S)-di-tert-butyi 2-(3-((S)-l -(tert-butoxy)- l-oxo-6-(l l-(piperazin-l - yl)undecanamido)hexan-2-yl)ureido)pentanedioate (37 mg, 0.05 mmol) was added then added to the DMSO solution and the reaction mixture was stirred at room temperature for an additional 24 hrs prior to lyophilization to afford the crude triazine intermediate.
Deprotection using TFA (3.0 mL) and DCM ( 1.0 mL) at room temperature, overnight followed by removal of the solvent using a stream of nitrogen gave crude product which was purified by Biotage SP4 using a C I S cartridge to give (2S)-2-(3-((l S)-l -carboxy-5-(l l-(4-(4- (methylamino)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)- 1 ,4,7, 10-tetraazacyc3ododecan-2- yl)methy])phenyl)amino)- l ,3 ,5-triazin-2-yl)piperazin- l ~
yl)undecanamido)pentyl)ureido)pentanedioic acid ( 1 0.8 mg) as a white solid, MS (ESI), 594.2 (M/2+H)+.
[0237] Step 2. (2S)-2-(3-((l S)- 1 -carboxy-5-(l l-(4-(4-(methylamino)-6-((4-((l,4,7, 10-
Figure imgf000085_0002
triazin-2-yl)piperazin- 1 -yl)undecanamido)pentyi)ureido)pentanedioic acid iutetium complex.
[0238] To solid (2S)-2-(3-(( I S)- 1 -carboxy-5-( 1 1 -(4-(4-(metihylammo)-6~((4-
(( 1 ,4,7, 10-tetrakis(carboxymethyi)- 1 ,4,7, ί 0-tetraazacyc3ododecan-2- yl)methyl)phenyl)amino)- l ,3,5~triazin-2-yl)piperazin- l- yl)imdecanamido)pentyl)ureido)pentanedioic acid, (7.7 mg, 0.00649 mmol) was added LuCL (0.63 mL of a 0.0 S 03 mmol/mL, 0.00649 mmol). The reaction mixture was heated at 90 °C for 1 hour and then !yophi!ized to to give (2S)-2-(3-((l S)- 1 -carboxy-5-(l l -(4-(4- (methy lamino)-6-((4-(( 1 ,4,7, 1 O-tetrakis(carboxymethyl)- 1 ,4,7, 10~tetraazacyclododecan-2- yi)methyj)pheny!)amino)-1 ,3.5-triazin-2-y3)piperazin-l- yl)undecanamido)pentyl)ureido)pcntanedioic acid lutetium complex (7.9 rng) as a white solid. MS (ESI), 680.2 ( M .
[0239] Example 14. (2S)-2-(3-(( 1 S)-5-(i i.(4-(4-(4-(3-aminopropy!)piperazin-l-yl)-
6-((4-(( ] ,4,7, S O-tetrakts(carboxymethyl)- i ,4,7, ! 0-tetraazacyclododecan-2- yi)methyl)phenyl)amino)-l ,3,5-triazin-2-yi)piperazin- l-yl)undecanamido)-l- carboxypentyi)ureido)pentanedioic acid lutetium complex.
Figure imgf000086_0001
[0240] Step 1 . (2S)-2-(3-(( i S)-5-( 1 1 -(4-(4-(4-(3-aminoprop l)piperazin- 1 -yl)-6-((4-
(( 1 ,4,7, 1 O-tetrakis(carboxymethyl)- 1 ,4,7, 10-telraazacyclododecan~2- \ 1 )ni!jih>1 j iic?:) i l mino) - i ..-.. - tr ί i · · J n - 2 - \ i !pipera/in- i -v! kuuiee namkio )- ! ··
carboxypenty))ureido)pentanedioic acid.
Figure imgf000086_0002
[0241 ] To a solution ofp-NH2-Bn-DOTA-tetra(/-Bu-ester) (Macrocyciics) (42.4 mg,
0,050 mmol) and cyanuric chloride (9.2 mg, 0.050 mmol) in DCM (2.0 mL) was added DiPEA (0.10 niL) and the solution was stirred at room temperature for 2 hours. After stirring the solvent was removed under a stream of nitrogen to give a residue which was dissolved in MSO ( 1 .0 ml..) prior to the addition of (SVdi-tert-biuyl 2-(3-((S)- 1 -(iert-butoxy)- 1 -oxo-6- (! l-(piperazin- i -yl)undecanamido)hexan-2-yl)ureido)pentanedioaie (37 mg, 0.05 mmol) and K2CO3 (50 mg). The resultant suspension was stirred at room temperature for 2 hours and 3- (piperazin- J -yl)propan- 1 -amine (47 mg) was then added following which the reaction mixture was stirred dor an additional 16 hours at room temperature. Lyophilization after 16 hours afforded the crude triazine intermediate which was deprotected at room temperature, overnight using TFA (2.0 mL) and DCM ( 1 .0 raL). The deprotected product was purified by Biotage SP4 using a C I 8 cartridge to give (2S)-2-(3-((l S)-5-(l !-(4-(4-(4-(3- a inopropyi)piperazin-l -yl)-6-((4-(( j ,4,7, 1 O-tetrakis(carboxyrnethyl)- 1 ,4,7, ! 0- tetraazacyclododecan-2-yl)methyl)phenyi)amino)- 1 ,3,5-triaz!n-2-yl)piperazin- 1 - yl)undecanamido)-l ~carboxypentyl)ureido)pentanedioic acid (25 mg) as a white solid. MS (ESI), 650.3 (M/2+H)\
[0242] Step 2. (2S)-2-(3-(( I S)-5~( i 1 -(4-(4-(4-(3-aminopropyl)piperazin- i -\ !}-6·(( 4 ·
(( 1 ,4,7, 10-tetraki s(carboxym ethyl)- 1 ,4,7, 10-tetraazacyclododecan-2- y l)meihy!)pheriyi)amino)- 1 ,.3,5-triazin-2-yi)piperazin- 1 -yl)undeeanamido)- 1 - carboxypentyl)ureido)pentanedtoic acid iutetium complex.
[0243] To solid (2S)~2~(3-((1 S)-5-(l l -(4-(4-(4-(3-aminopropyl)piperazin- l -yl)-6-((4-
(( 1 ,4,7, ! O-tetrakis(carboxymethyl)- 1 ,4,7, 10-tetraazacyclododecan-2- yl)methyl)phenyl)amino)-l ,3s5-triazin-2-yi)piperazin-l -yl)undecanamido)-l - carboxypeniyl)ureido)pentanedioic acid ( 10.7 mg, 0.00824 mmol) was added LuCU (0.80 ml. of a 0.0103 mmol/mL, 0.00824 mmol). The reaction mixture was heated at 90 °C for 1 hour and then !yophilized to give (2S)-2-(3~(( l S)-5-(l l-(4-(4-(4-(3-aminopropyl)piperazin- l -y])- 6-((4-(( 1 ,4,7, { O-tetrakis(carboxymethyi)- i ,4,7, 10-tetraazacyclododecan-2- yl)methyl)phenyl)amino)- 1 ,3,5-triazin-2-yi)piperazin- i ~yl)undecanamido)- 1 - carboxypentyl)ureido)pentanedio!c acid Iutetium complex ( 10.2 mg) as a white solid. MS (ESI), 736.2 (M/2÷H)+.
[0244] Example 15. (2S)-2-(3-(( lS)-l-carboxy-5-(l. l -(4-(4-(4-
(carboxymeihyl)piperazin- 1 ~yl)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxyrnethyl)-1 ,4,7.10- tetraazacyc!ododecan-2-yl)methyl)phenyl)amino)- 1 ,3,5-triazin-2-yl)piperazin- !
yl)undecanamido)pcntyi)ureido)pentanedioic acid iuteiium complex.
Figure imgf000088_0001
[0245] Step 1. (2S)-2-(3-(( 1 S)-1 -carboxy-5-( 1 1 -(4-(4-(4-(carboxymethy l)piperazin- yl)-6-((4-((l ,4,7, ! O-tetrakis(carboxymethyi)- 1 ,4,7, 10-tetraazacyelododecan-2- yi)methy!)phenyl)amino)-l ,3,5-triazin~2~yl)piperazin-l - yi)undecanamtdo)pentyl)ureido)pentanedioic acid.
Figure imgf000088_0002
To a DCM solution (2.0 niL) of /?-NH2-Bn-DOTA-tetra(i-Bu-ester)
(Macrocyciics). (42.4 mg, 0,050 mmol) and cyanuric chloride (9.2 mg, 0.050 mmol) was added D!PEA (0. 10 mL) the resultant solution was stirred at roorn temperature for 2 hours. After stirring, the solvent was removed using a stream of nitrogen to give a residue which was dissolved in DM80 ( 1.0 mL) prior to the addition of (S)-di-tert-butyl 2-(3-((S)-l -(tert- butoxyj- 1 -oxo-6-(l I -(piperazin-1 -y!)uridecanamido)hexan-2-yl)ureido)pentanedioate (37 mg, 0.05 mmol) and K.-.( '( (50 mg). The suspension thus obtained was stirred at room temperature for 2 hrs and tert-hu\y\ 2 -(piperazin-1 -yl)acetate (50 mg) was then added to the reaction mixture and stirring was continued at room temperature for an additional 16 hours. Lyophilization of the reaction mixture at the end of 16 hours afforded a residue of the protected final product. This residue was contacted with TFA (2.0 mL) and DCM (1 .0 mL) at room temperature overnight to cause removal of protecting groups, fol lowing which the solvent was removed under a stream of nitrogen to give crude deproteeted product that was purified by Biotage S P4 using a C I 8 cartridge. The titled compound (2S)~2~(3~(( 1 S)-l - carbox>'-5-(! l -(4-(4-(4-(carboxymeihyl)piperazin-l ~yl)-6-((4-(( 1 ,4,7, 10- tetrakis(carboxyraethyi)- 1 ,4,7, 1 0-tetraazacyclododecan-2-yl)methyl)phenyl)ainino)- 1 ,3,5- triazin-2-yl)piperazin-l -yi)undecanamido)penlyi)ureido)pentanedioic acid (14 mg) as obtained as a white solid. MS ( ESi), 650.8 (M/2-M i .
[0247] Step 2, (2S)-2-(3-(( ! S)-l -earboxy-5-( 1 1 -(4-(4-(4-(carboxymethyl)piperazin- 1 - yl)-6-((4-(( 1 ,4,7, 1 -tetrakis(carboxymethyl)- 1 ,4,7. 10 etraazacyclododecan-2- yl)methyl)phenyi)an->ino)-l ,3,5-trtazin-2~yl)piperazin-l- yl)undecanamido)pcntyi)ureido)pentanedioic acid lutetium complex,
[0248] To solid (2S)-2-(3-(( I S)- i -carboxy-5-( 1 1 -(4-(4-(4-(carboxymetbyl)piperazin-
1 -yl)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)- 1 ,4,7, 3 O-tetraazacyciododecan-2- yl)methy!)phenyi)amino)- i,3,5-trtazin-2-yl)piperazin-i- yl)undecanamido)penty[)ureido)pentanedioic acid (6.0 mg, 0.00426 mmoi) was added LuCh (0.45 mL of a 0.0103 mmol/rnL, 0.00462 mmol). The reaction mixture was heated at 90 °C for I hour and lyophilized to to give (2S)-2~(3-(( 1 S)- 1 -carboxy-5-( 1 i -(4-(4-(4- (carboxymetbyl)piperazin- 1 -y l)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxymethy!)-l ,4,7, 10- tetraazacyclododecan-2-y tnethyl)phenyl)amino)-l ,3,5-triazin-2-yi)piperazin-l - yl)undecanamido)pentyi)ureido)pentanedioic acid lutetium complex (5.6 mg) as a white solid, MS (ESi), 736.8 (M/2+H)+.
[0249] Example 16. (2S)-2-(3-((l S)- l «carboxy-5-( l l -(4-(4-(4-(3- carboxypropyl)piperidin- S -yl)-6-((4-(( 1 ,4,7, i O-tetrakis(carboxymethyl)- 1 ,4,7, 10- tetraazacyciododecan-2-yl)methyl)phenyl)amino)-l ,3,5-triazin-2-yl)piperazin-l- yl)undecanamido)pentyl)ureido)pentanedioic acid lutetium complex.
Figure imgf000090_0001
[0250] Step i . (2S)-2-(3-((l S)-l -carboxy-5-(l i-('4-(4-(4-(3-carboxypropyI)piperidin- l -yl)-6-((4-(( 1 ,4,7, 10-tetrak is( carboxymethy!)-l ,4,7.10-tetraazacyclododecan-2- \-! )n;eihy! :pheii> 1 jam in i- ί , .: ria isi-- ?.-\ I ipi era/in- i - yl)undecanamido)pentyi)ureido)pcntanedioic acid.
Figure imgf000090_0002
[025 1 ] To a solution of/)-NH2-Bn-DOTA-tetra(/-Bu-ester) (Macrocycfics), (42.4 mg,
0.050 mmol) and cyanuric chloride (9.2 mg, 0.050 mmol) in DCM (2.0 mL) was added DIPEA (0, 0 mL). Foiio ing stirring at room temperature for 2 hrs, the solvent was removed using a stream of nitrogen to give a residue which was dissolved in DMSO (1 .0 mL) prior to the addition of (S)-di-tert-butyl 2-(3-((S)~l -(tert-butoxy)-l -oxo-6-(l l -(piperazin-l - y!)nndecanamido)hexan-2-yl)«reido)pentanedioate (37 mg, 0.05 mmol) and 2Ο ¼ (50 mg). The suspension formed was stirred at room temperature for 2 hrs and 4-(piperidin-4- yi)butanoic acid ( 160 mg) was then added to the suspension. After continuous stirring at room temperature for 72 hrs, the reaction was stopped by lyophilizatio to afford the protected triazine compound. Deprotection at room tem erature, overnight using TFA (4.0 mL) and DCM ( 1 .0 mL), followed by purification using Biotage SP4 and a C I S cartridge gave (2S)-2- (3-(( S 8H -carboxy-5-( 1 3 -(4~(4~(4-(3-earboxypropyi)piperidin- 1 ~y!)-6-((4~((l ,4,7, 0- tetrakis(carboxy meth l)- 1 ,4,7, 10 etraazacycfododecan-2-yI)methy()phenyl)amino)- 1 ,3,5- triazin-2-yl)pipera?Jn- l -yl)undecanamido)pentyl)ureido)pentanedioic acid ( 1 5.3 mg) as a white solid. MS (ESI), 650.8 (M/2+H)+.
[0252] Step 2. (2S)-2-(3-((l S)- i-carboxy-5-(l l -(4-(4-(4-(3-carboxypropyl)piperidin-
! -y))-6-((4-(( 1,4,7, 10-tetrakis(carboxy methyl)-! ,4,7, 10-tetraazacyclododecan-2- y l)methyl)phenyl)amino)- 1 ,3,5-triaziri-2-yl)piperazin- 1 - yl)undecanamido)pentyl)ureido)pentanedioic acid iutetium complex.
[0253] To solid (2S)-2-(3-((l S)- l .-carboxy-5-(l 1 -(4-(4-(4-(3- carboxypropyI)pipendin- 1 -yl)-6-((4-(( 1 ,4,7, 10-tetrakis(carboxymethyl)- 1 ,4,7, 10- tetraazacyclododecan-2-yl)methyl)phenyl)amino)- l ,3,5-triazin-2-yl)piperaz,in-l - yi)undecanainido)pentyl)ureido)pentanediojc acid (6.9 nig, 0.00520 mmol) was added LuCh (0.50 mL, 0.0103 mmol/mL, 0.00520 mmol), The reaction mixture was heated at 90 °C for i hour and lyophiiized to to give (2S)-2-(3-((l S)-l -carboxy-5-(l l -(4-(4-(4-(3- carboxypropy i)piperidin- 1 -y !)-6~((4-(( ! ,4,7, ! O-tetrakis(earboxymeihyl)- 1 ,4,7, 10- tetraazacyelododecan-2-yl)methyl)pheny!)amino)- 1 ,3,5-triazin-2-yi)piperazin- 1 ~ yi)undecanamido)pentyl)ureido)pentanedioic acid iutetium complex (7.9 mg) as a white solid. MS (ESI). 750.2 (M/2+H)+.
[0254] Example 17. 68Ga Labeling of (2S)-2-(3-((l S)-1 -carboxy-5-( l l -(4-(4-
(dtmcihylantirio)-6-((4-((l ,4,7, 30-ietrakis(carboxymeihyl)-l,4.7, i O-tetraazacyclododecan-2-
)d)meth)d)pheriyi)amino)-T,3,5 riazin-2-y[)piperazin- ! - yl)undecaHamido}pentyl)ureido)pentanedioic acid.
Figure imgf000091_0001
68, G·^
[025 a,, was synthesized using a gallium-68 generator (IDB Holland). A ί mL fraction of the generator eluate (eluted using 0.6 M HCS suprapure) containing the highest o8Ga activity was mixed with the reaction mixture that containing 2 ,uL of the target compound ( 10 mM solution in DMSO) and 10 μί of ascorbic acid (20% in water). The pH of the reaction mixture was adjusted to be in the pH range of 3.6 - 3.9 by the addition of approximately 290 μί, of an aqueous solution of sodium acetate (2.5 M in water).
[0256] The mixture was heated at 90 °C for 10 minutes with stirring. A test sample of the reaction mixture was analyzed by HPLC to confirm complete cornplexation. The reaction mixture was then diluted with 2 ml saHne (0.9% sodium chloride) and loaded onto a pre-conditioned Plexa Cartridge (60 rng, Varian, Bond E!ut Plexa). The cartridge was rinsed with 2 mL saline prior to ehition of the desired complex using 0.5 mL ethanoi. The eluent was passed through a sterile filter (Millipore. Millex-GV) fitted to a syringe followed by washing of the filter by passing 5 mL of saline and 200 μΐ, of phosphate buffer.
[0257] The radio-labelled compound was analyzed by HPLC on a Chromolith
Performance RP- 18e column ( 100 x 3 mm Merck GaA, Darmstadt, Germany) using a linear gradient from 0% to 100% acetomtrt!e in water (both containing 0.1 % TFA) over 5 min. UV absorbance was detected at 214 nm. Under these conditions Ga-MiP-1558 is eiuted at about 2.25 min. The radiochemical yields ranged from 77% - 97%, average RCP = 87% (data corrected for radioactive decay).
EQUIVALENTS
[0258] While certain embodiments have been illustrated and described, it should be understood that changes and modifications can be made therein in accordance with ordinary skill in the art without departing from the technology in its broader aspects as defined in the following claims.
[0259] T he present disclosure is not to be limited in terms of the particular embodiments described in this application. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and compositions within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modi ications and variations are intended to fail within the scope of the appended claims. The present disclosure is to be limited only by the terms of the 11047
appended claims, along with the full scope of equivalents to which such claims are entitled. It is to be understood that this disclosure is not limited to particular methods, reagents, compounds compositions or biological systems, which can of course vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
[0260] in addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.
[0261 ] As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and ail possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art ail language such as "up to," "at least." "greater than," "less than," and the like, include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above, finally, as will be understood by one skilled in the art, a range includes each individual member, including the first and last number listed for the range.
[0262] All publications, patent applications, issued patents, and other documents referred to in this specification are herein incorporated by reference as if each individual publication, patent application, issued patent, or other document was specifically and individually indicated to be incorporated by reference in its entirety. Definitions that are contained in text incorporated by reference are excluded to the extent that they contradict definitions in this disclosure,
[0263 ] Other embodiments are set forth in the following claims.

Claims

WHAT IS CLAIMED I S :
1 . A com
Figure imgf000094_0001
ϊ wherein:
A is (CHR')m or C(O);
W is-C(OHCH2)p-; -C(0)[-CH2-CH2-0]R-, -[CH2-CH2-0]n-(CH2)2- -C(O)-
[CH(R3)tjq-, -(CH2)m-0-(CH2)„-5 -(CH2)m-S-(CH2)„-, -(CH2)m-S(0)-(CH2)n-, - -S(0) -(CH2)n-, or -(CH2)m-NRa-(CH2)n~,
Figure imgf000094_0002
X is "(C j -C i o)a{kylene-(C¾-C) o)arylene, -(C3-Cjo)arylene, -(CYC 10)ary!ene-(C i - Cio)alkylene-, phenylene. -(C i -Q o)a!ky iene-(C3-C jo)cycloalkyiene, -(C3~ Cio)cycloalkyiene, or -(C3-Cio)cycloalkylene-(C|-Cio)aiky!ene-; R! and R" are each independently H, -(Ci-Cio)alkyl, -C(0)-(C Cio)alkyl, benzyl, -
(C3-C j o)cycioaikyl, or -(CYC < o)ary 1 ;
Ra and Rb are each independently H, -OH, -(Ci-Cio)alkyl, CH2-CH2-0]n-(CH2)2-T, - C(0)-(C 1 -C 10)alkyl, ~(C i -C , o)alkylene-C(O)-, - (C , -C , 0)alkylene-C(O)-Z, benzyl. -(C3-C 1 o)cyc.oalkyl, -(C3-C!o)aryl-(Cf -Cio)alkylene, -(C3~Cio)aryl, halo-(Ci-C] 0)aikyl, hydroxy-(C| -Ci0)alkyl, -NH-(Ci-C1 )aikyl, or -(Cr Cio)alkylene~NRuRe-, or Ra and Rb together with the nitrogen to which they are bonded form a (CYC6)-heteroaryl or Cs-CeMteterocycloaikyl that can further comprise one or more heteroatoms selected from N, S, or O: Z fs-"OH, -0{Ci-Cio)a!kyI,
Figure imgf000095_0001
R£ is -OH, -0(C Cio)alkyl, -Obenzvl, -O(C3-Ci0)cycloalkyl, -O(C3-Ci0)aryl, -0-(C,
C io)aiky lene-(Ci-C > 0)aryl, or -0-{C ( -C >o)alky iene— (C3-C1 o)cye!oa!kyi, R' is H, halogen. -OH, - H2, -(CH:)p-COOH, or -(CH2)P- NH2;
T is i!. Oil. -COOH, or NR,sk\
Rd and Rc are each independently H, bond, -OH, --(CrC|o)alkyL or -(Qr
C ί o)heteroary 1 -(C ] -C 1 o)a!ky ie ne ;
or SO; and
Figure imgf000095_0002
Figure imgf000096_0001
wherein any a!kyl, alkylene, ar l, ary!ene, heteroarvL heteroary!ene, cycloaiky cycloalkylene, heterocycloalkyl, or heierocycioaikyiene is optionally substituted with ! , 2. or 3 substiiueot groups selected from the group consisting of -(C|-Cio)alkyl, -(C 1 -C j o)haloa!k I, -(C1-C10) aminoa!ky!, -(Cr C,o)aikyiene-COOH, -(C|-C10)hydroxyalkyl, -OH, halogen, -NH2, -COOH, C(0)-(C ] -C i jalky 1, -(C ; -C 1 o)alkyiene-C(O)-, -(C , -C 10)alkylcne-C(O)-X, - NH--(C C!0)alky!, and -(Ci-C10)alkylene-N dRe-, and -N dRe.
The compound of Claim I , wherein X is phen lerse, r is 1 and D is
Figure imgf000096_0002
The compound of Claim 2, wherein the compound is a compound according to Formula I S
Figure imgf000097_0001
wherein:
A is (CHR or C(O);
W is selected from the group consisting of -C(0)~(CH2)p-; -C(0)[-CH2-CH2-Oj„-, - [CH2-CH2-0]n-(CH2)2-, -C(0)-[CH(R3)t3q-, -(CH2)m-0-(CH2)„-, -(CH2)m-S- (CH2)„-, -{CH 11-S(0)-(C]-l2)ft--, -(CH2)„,-S(0)2-(CH2)n-,and -(CH2)m-NRa-
(CH2)rr,
Y is selected from - H-, -NR"-, '
Figure imgf000097_0002
R1 and R"' are each independently selected from H, -(C;-Ci0)alkyl, -C{0)-('Cj- C|o)alkyl, benzyl, -(C3-C j o)cycloalkyl, or -(C3-Cio)aryl;
Ra and Rb are each independently selected from the group consisting of M, -OH. ~(Cr- CJ0)aikyl, -[CH2-CH O]n-(CH2)2-T, ~C(0)-(C,-C!o)alkyl, -<C|-Cio)alk tene- C(O - Ci-Ciu)alkylene-C'( )-Z, benzyl, -(C3-Ci0)cycloa!k i, -(C3-Cso)aryl- (Ci-Cio)aikyIene, -(C3-C!o)aryi> halo-(Ci-CSo)aikyl, hydroxy-(C 1 -Cio)alkyl, - NH-(C Cio)a!kyl, and -(Ci-C!0)alkylene-NRdRe-, or Ra and Rb together with the nitrogen to which they are bonded form a (CVC^-heieroaryJ or (CVCe)- heterocycioalkyl that can further comprise one or more heleroaioms selected from , S, or O: Z is sel or
Figure imgf000098_0001
Rc is selected from -OH, -0(C,-Cio)alkyI, -Obenzyl,•0(C3-C K))cyeloaSkyl, -0(C3- C ;n)aryl, -0-(C|-Cio)a!kylene--(C3-C i )aryi, or -0-(C j -C ( 0)alkylene--( C3- C i ())cycloalky),
R3 is selected from H, halogen, -OH, -KH2, -(CH2)p-COOH, or -~{CH2)p~ Ni l f :
T is selected from -H, -OH, -COOH, or -NRdRe;
Rd and Re are each iiidependentiv selected from H, bond, -OH, -(C rC! 0)alkyl, or -(C3~ C i o) heteroary i-(C| -C i o)alkylene;
m, n, p, q, t and x are each independently 0, 1 , 2, 3, 4, 5 , 6, 7, 8 9, or 1 0;
wherein any alkyl, alkylene, aryi, aryiene, heteroary!, heteroary !ene, cycloalkyl, cycloalkylene, heterocycloalky!, or heterocyc!oalkylene is optionally substituted with 1 , 2, or 3 substituent groups selected from the group consisting of -(Ci-Cso)alkyi, -(C i -C io)haloalkyi, -(Cj-Cso) aminoalkyl, -(C j- Ci0)a!kylenc-COOH, -(CVC |o)hydroxya(k.y[, -NH2, -COOH, ~C(0)-(C |- C I o)aikyi, -'{C i -C , o)alkylene-C(O)-, -(Ci -C .0)alky!ene-C(O)-X, -NH--(C , - C :o}alkyl, and -(Cl-C10)alkylene-NR(iRe-, and -NRdRe.
4. The compound of Claim 3, wherein A is (CHR!)m and W is -C(Q)-(CH2)P-.
5. The compound of Claim 4, wherein W is -C(0)-(CH2)7- or -C(0)-(CH2)io--
6. The compound of Claim 4, wherein R ' is hydrogen and m is 2.
7 The compound of Claim 3, wherein Y is N i l- or
Figure imgf000098_0002
8. The compound of Claim 7, wherem Y is
Figure imgf000099_0001
.
9. The compound of Claim 35 wherein Ra and Rh are each independently hydrogen or methyl and Rc is -OH,
10. The compound of Claim 3, wherein Ra and Rb together with the nitrogen to which they are bonded form a (CVCej-heterocyctaalkyl. i S . The compound of Claim 10, wherein the (C3-C.0)-heterocycloaiky! is selected from piperidine, piperazine, rnorphoiine, thiomorpholine, isothiazolidine, isoxazolidine, pyrrolidine, immidazolidine, thiazolidine or oxazoHdine.
12. The compound of Claim i 1, wherein the
Figure imgf000099_0002
is piperidine or 4- (piperidin-4-yl)buianoic acid.
13 , The compound of Claim 10, wherein a is -H and R is HOOC^ ^ !«<*?·.
14. The compound according to claim 10, wherein R ' and Rs are each independently -(C3- C !o)heteroaryl-(C j -C \ 0)alkyiene.
Figure imgf000099_0003
The compound of Claim 10, wherein W- and R are each independently The compound of Claim 3, which is selected from the following compound
Figure imgf000099_0004
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
or a pharmaceutcaiiy acceptable salt, solvate, or ester t ereo . metal complex comprising a radionuclide and a compound of Claim
18. The metai complex of Claim 17, wherein the compound is
Figure imgf000103_0002
wherein:
A is (ΠΜ5),, orC(O);
VV is selected from the group consisting of -C(0)-(CH2)F-; -C(0)[-CH2-CH2-0]n-, |Cil.:-CS !·:·()),··(( Η;)·-. ( ί )ί··|(Ί 1(H ), |.:·. -t( 11·}, -< Mi ! < }„-. -(CH2)m-S- (CH2)n-, -(CH2)m-S(0)-(CH2)n-, -iCH2)m-S(0)2-(CI f )ir,and -(CH:}!;;- R<- Y is selected from -N H-, -NR*-,
Figure imgf000104_0001
R1 and R2 are each independently selected from H, -(Cj-Cio)a!kyl, ~C(0)-(C| - Cioja!kyS, benzyl, -(C3-C 1 o)cycloalkyl, or -(C3-C io)aryl
Ra and Rb are each independently selected from the group consisting of H, -OH, -(d- C o)alkyl; -[CH2-C H2- jn~(CH2)- T, -C(0)-(C 1 -C j 0)alkyl, -(C 1 -C i0)alkylene- C(O)-, ~ C ! -C i o)alkylene-C(0)-Z, benzyl, -(C3-C,0)cycioa!kyl, -(C3-Ci0)aryl- (Ci -Cio)alkylene, -(C3-Cio)aryl, halo-(Cj-Cio)aiky!, hydroxy-(C 1 -Cio)alkyl, -NH-(Ci -C;Q)aikyl, and -(C Cio)alkylene- RdRe-, or Ra and Rb together with the nitrogen to which they are bonded form a (Cs-CeJ-heteroary! or (Cj-Ce)- heteroeyc!oa!kyl that can further comprise one or more heteroatoms selected from "N, S, or O;
Z is sel or
Figure imgf000104_0002
Rc is selected from -OH, -0(C rCK!)a]kyl. -Obenzyl, -0(C3-C(o)eycioalkyl, -0(C3- Cto)aryl, -0-(C i -C (0)a!ky!ene-(C3-C |0)ary], or -0-(C i -C io)a!kylene-(C3-
C i )cycloalky3,
R3 is selected from H, halogen, -OH, -NH2, ~-(CH2)P-COOH, or (C H ; ),.- NH2;
T is selected from -H. -OH, -COOH, or -NRdRa;
R° and Re are each independently selected from H, bond, -OH, -(C i -Ci o)aikyi, or -(( ,-
C o)heteroary 1 -(C >, -C j o)alkylene;
m, n, p, q, t and x are each independently 0, 1 . 2, 3, 4, 5, 6, 7, 8 9, or 10; wherein any alkyl. a!kylene, aryl, ar lene, heteroaryl, heteroarvlene, cyc!oalkyl, cycloalkylene, hcterocycloalkyl, or heterocycioaikylene is optionally substituted with 1, 2, or 3 substituent groups selected from the group consisting of -(Ci-Cjo)alkyl, -(Cj-Cio)haloalkyl, -(Ci-Cjo) aminoa!kyl, -(€ Cl0)a!kyiene-COOH, -(C C,o)hydroxyalkyl, -NH2, -COOH, ~-C(0)-(Cr C,o)alkyl, -(CrCio)alkyjene-C(O)-, -(C C!0)alkyiene-C(O)-X, -MH-(Cr
Cio)alkyl, and -(Ci-Cio)alkylene-NR°RL-, and -NR'"R ; and radionuclide is selected from the group consisting of ' In, Y, ' Ga, ° 'Cu ~°Gd, ,5SGd, ,57Gd, 59Fe, 2 5Ac, 2,2Bi, 2!3Bi, 5¾o, 6?Cu, l65Dy, 166Ho, i9"lr, 223Ra, iS6Re, iS Re, i05Rh, 212Pb, 2i Pb, !49Tb, 227Th, ,S3Sm, 'Sr.1,7mSn, mYb, 90Y, 86 Y. K9Zr and ,77Lu.
19. The metal complex of Claim 18, which is:
Figure imgf000105_0001
Figure imgf000106_0001
3.1
Figure imgf000107_0001
Figure imgf000108_0001
Figure imgf000109_0001
20, A pharmaceutical composition comprising the compound of Claim 3, or a
pharmaceutically acceptable salt, solvate, or ester thereof; and a pharmaceutically acceptable carrier.
2 ! . A pharmaceutical composition comprising the metal complex of Claim 1 8, or a
pharmaceutical ly acceptable salt, solvate, or ester thereof; and a pharmaceutically acceptable carrier.
A method of obtaining a radiographic image of one or more tissues that express prostate-specific membrane antigen (PSMA) comprising:
contacting one or more tissues that express PSMA with a metal complex comprising a radionuclide and a compound according to Formula III,
1.1
Figure imgf000110_0001
or a pharmaceutical ly acceptable salt or solvate thereof; and
recording a radiographic image of the one or more tissues;
Figure imgf000110_0002
wherein G is
L is-NH-(CrCso)alkylene-, -NH-(CrCl0)alkylene-C(O)-,
~C:(O)-(CrCi0)a]ky]ene-, -C(0)-{C rC i o)alkylene-C(0)- or
\
-C(0)-(C C 10)alky!ener— ' N
R a and Rb are each independently H, -OH, -(C rCi0)alkyi, -[CH2-CH2-0}n-(CH2)2-T, C(OHC , -C i o)alkyl, ~(C s -C , o)aikyiene-C(O)-, -(C , -C ] 0)aikylene-C(O)-Z, benzyl, -(C3-C j o)cycloalkyi, -(C3-C s o)aryl-(C ·. -C 1 o)alky lene, -(Cj-Cio)aryl, halo-(C Cio)alkyl, hydroxy-(C i -C10)alkyl, -N H~(C, -C) 0)alkyl, or -(C r
C io)alkylene-'NRaRe-, or Ra and R° together with the nitrogen to wtiich they are bonded form a (C3-C&)-heteroar 1 or (C^-Caj-heterocycloaikyl that can further comprise one or more heteroatoms selected from N. S, or O;
Figure imgf000110_0003
Rd and Re are each independently H, bond, -OH, -(C i-C io)alky!, or -(C
C|o)heteroaryl-(C| -Cio)aikylene;
n is 0, 1 , 2, 3, 4, 5, 6, 7, 8 9, or 1 0; and
wherein any aikyi, alky!ene, aryl, arylene, heteroaryl, heteroary!ene, cycloalkyl, cycloalkylene, heierocycloalkyl, or heterocycloa!kyiene is optionally substituted with 1 , 2, or 3 substttuent groups selected from ~(CrCso)alk l, - (Ci-Cjo)ha!oalkyl, -(C C|0) aminoaikyl, -(C C,0)alkyiene-COOH, -(Cr Cio)hydroxyalkyl, -NH2, -COOH, ~C(O)-(Ci-C,0)a!kyL -(C C|0)alky!ene- C(O -CC Cio)aikyiene-C(0)-X, -NH--(C Ci0)alkyi, or -(C Ci 0)alkyiene- NRdRe-, and -NRdRe.
The method of claim 22 in which the one or more tissues are selected from prostate tissue or prostate cancer tissue.
The method of claim 22, wherein the radionuclide is selected from the group consisting or 1 ' in, 90Y,68 Ga, 64Cu ! Gd, i 55Gd, i ;Gd, 59Fe, 2 5Ac, l2Bi, 2 l Bi, 55Co, *7Cu, ,65Dy, Ho, l 92ir, 223 Ra, mRc, i 88Re, mR , 2 , 2Ph, 2 I¼, wTb, 227Th, , 53Sm, *9Sr, 1 , 7'"Sn, s 9Yb, 90Y, 86Y, ¾ and !77Lu.
A method for treating a subject diagnosed with cancer, comprising administering to a subject a therapeutically effective amount of a prostate-specific membrane antigen (PSfvIA) binding complex comprising a triazinylene linker, wherein the complex is retained in a PSMA-expressing tumor tissue for a longer interval of time than non- PSMA expressing tissue.
The method of Claim 25, wherein the complex is retained in PSMA-expressing tumor tissue lor a longer interval of time than non-PSMA expressing tissue selected from kidney, liver, spleen, heart, blood, lungs, muscle, bone, large intestine, small intestine, brain , or fat.
The method of Claim 25, wherein the complex is retained in PSMA-expressing tumor tissue for a longer interval of time than kidney.
The method of Claim 25, wherein the cancer is selected from prostate cancer, breast cancer, colorectal cancer, brain cancer, lung cancer, liver cancer, endometrial cancer, bone cancer, ovarian cancer, testicular cancer, skin cancer, pancreatic cancer, uterine cancer, cervical cancer, bladder cancer, esophageal cancer, gastric cancer, head and neck cancers, or kidney cancer. method of Claim 28, wherein the cancer is prostate cancer.
PCT/US2014/011047 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents WO2014110372A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
ES14738117.2T ES2648096T3 (en) 2013-01-14 2014-01-10 Triazine-based radiopharmaceuticals and imaging radioforming agents
KR1020157021666A KR102187940B1 (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
EP17187271.6A EP3300746B1 (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
JP2015552805A JP6468602B2 (en) 2013-01-14 2014-01-10 Triazine-based radiopharmaceuticals and radiocontrast agents
CN201480011222.1A CN105025933B (en) 2013-01-14 2014-01-10 Triazine radiomimetic drug and radio-contrast agent
EP19174044.8A EP3545978B1 (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
PL17187271T PL3300746T3 (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
EP14738117.2A EP2943227B8 (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
EP21190931.2A EP3939972A1 (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
AU2014205304A AU2014205304B2 (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
MX2015008993A MX2015008993A (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents.
SG11201505477TA SG11201505477TA (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
BR112015016585-0A BR112015016585B1 (en) 2013-01-14 2014-01-10 radiopharmaceutical compounds based on triazine, metal complexes and pharmaceutical composition comprising said complexes
CA2897437A CA2897437C (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
PL14738117T PL2943227T3 (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents
HK16100926.1A HK1212908A1 (en) 2013-01-14 2016-01-28 Triazine based radiopharmaceuticals and radioimaging agents

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361752350P 2013-01-14 2013-01-14
US61/752,350 2013-01-14
US201361785788P 2013-03-14 2013-03-14
US61/785,788 2013-03-14

Publications (1)

Publication Number Publication Date
WO2014110372A1 true WO2014110372A1 (en) 2014-07-17

Family

ID=51167394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/011047 WO2014110372A1 (en) 2013-01-14 2014-01-10 Triazine based radiopharmaceuticals and radioimaging agents

Country Status (15)

Country Link
US (5) US9447121B2 (en)
EP (4) EP3545978B1 (en)
JP (2) JP6468602B2 (en)
KR (1) KR102187940B1 (en)
CN (1) CN105025933B (en)
AU (1) AU2014205304B2 (en)
BR (1) BR112015016585B1 (en)
CA (1) CA2897437C (en)
ES (2) ES2648096T3 (en)
HK (1) HK1212908A1 (en)
HU (2) HUE035739T2 (en)
MX (1) MX2015008993A (en)
PL (2) PL2943227T3 (en)
SG (1) SG11201505477TA (en)
WO (1) WO2014110372A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016040179A1 (en) 2014-09-08 2016-03-17 Molecular Insight Pharmaceuticals, Inc. Organ protection in psma-targeted radionuclide therapy of prostate cancer
JP2017518971A (en) * 2014-05-06 2017-07-13 ザ ジョンズ ホプキンズ ユニヴァーシティー Metal / radiometallic labeled PSMA inhibitors for imaging and radiotherapy targeting PSMA
US10137209B2 (en) 2015-06-04 2018-11-27 Bayer Pharma Aktiengesellschaft Gadolinium chelate compounds for use in magnetic resonance imaging
JP2019508374A (en) * 2015-12-31 2019-03-28 ファイブ イレブン ファーマ インコーポレイテッド Urea-based prostate specific membrane antigen (PSMA) inhibitors for imaging and therapy
US10870629B2 (en) 2017-06-19 2020-12-22 Futurechem Co., Ltd. 18F-labelled compound for prostate cancer diagnosis, and use thereof
WO2023092184A1 (en) * 2021-11-24 2023-06-01 Clarity Pharmaceuticals Ltd Compounds and compositions thereof for the treatment of cancer
US11814369B2 (en) 2016-11-28 2023-11-14 Bayer Pharma Aktiengesellschaft High relaxivity gadolinium chelate compounds for use in magnetic resonance imaging
US11944690B2 (en) 2018-11-23 2024-04-02 Bayer Aktiengesellschaft Formulation of contrast media and process of preparation thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468602B2 (en) * 2013-01-14 2019-02-13 モレキュラ インサイト ファーマシューティカルズ インコーポレイテッド Triazine-based radiopharmaceuticals and radiocontrast agents
MY194484A (en) 2013-10-18 2022-11-30 Deutsches Krebsforsch Labeled Inhibitors of Prostate Specific Membrane Antigen (PSMA), Their use as Imaging Agents and Pharmaceutical Agents for the Treatment of Prostate Cancer
PL3433238T3 (en) * 2016-03-22 2021-12-13 The Johns Hopkins University Prostate-specific membrane antigen targeted high-affinity agents for endoradiotherapy of prostate cancer
WO2018081354A1 (en) * 2016-10-27 2018-05-03 Progenics Pharmaceuticals, Inc. Network for medical image analysis, decision support system, and related graphical user interface (gui) applications
EP3630733A4 (en) 2017-05-30 2021-03-17 The Johns Hopkins University Prostate-specific membrane antigen targeted high-affinity agents for endoradiotherapy of prostate cancer
WO2018236115A1 (en) * 2017-06-19 2018-12-27 (주)퓨쳐켐 18f-labelled compound for prostate cancer diagnosis, and use thereof
LT3778592T (en) 2018-03-30 2023-06-26 Futurechem Co., Ltd. Psma-targeted radiopharmaceutical for diagnosing and treating prostate cancer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514505A (en) * 1995-05-15 1996-05-07 Xerox Corporation Method for obtaining improved image contrast in migration imaging members
WO2010065902A2 (en) * 2008-12-05 2010-06-10 Molecular Insight Pharmaceuticals, Inc. Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof for inhibiting psma
US20110183954A1 (en) * 2008-06-11 2011-07-28 Astrazeneca Ab Tricyclic 2,4-diamino-l,3,5-triazine derivatives useful for the treatment of cancer and myeloproliferative disorders
US20120009121A1 (en) * 2009-03-19 2012-01-12 The Johns Hopkins University Psma-targeting compounds and uses thereof
WO2012074840A2 (en) * 2010-11-22 2012-06-07 The General Hospital Corporation Compositions and methods for in vivo imaging

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2730456A (en) 1953-06-30 1956-01-10 Ncr Co Manifold record material
US2800457A (en) 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them
US2730457A (en) 1953-06-30 1956-01-10 Ncr Co Pressure responsive record materials
US3527789A (en) 1967-10-06 1970-09-08 Shell Oil Co Production of poly(lower)alkyl alkenepolycarboxylates
US3625214A (en) 1970-05-18 1971-12-07 Alza Corp Drug-delivery device
JPS5220203B2 (en) 1973-03-05 1977-06-02
US4272398A (en) 1978-08-17 1981-06-09 The United States Of America As Represented By The Secretary Of Agriculture Microencapsulation process
US4906474A (en) 1983-03-22 1990-03-06 Massachusetts Institute Of Technology Bioerodible polyanhydrides for controlled drug delivery
JPS6131056A (en) 1984-07-25 1986-02-13 K Baiorojikaru Sci Lab:Kk Preparation of processed soybean food
US4885363A (en) 1987-04-24 1989-12-05 E. R. Squibb & Sons, Inc. 1-substituted-1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecane and analogs
NL8720442A (en) 1986-08-18 1989-04-03 Clinical Technologies Ass DELIVERY SYSTEMS FOR PHARMACOLOGICAL AGENTS.
JP2608550B2 (en) 1986-10-17 1997-05-07 株式会社 片山化学工業研究所 Corrosion protection method for soft water boiler
US4888136A (en) 1988-05-02 1989-12-19 Witco Corporation New flame retardant compositions of matter and cellulosic products containing same
TW353663B (en) 1991-04-06 1999-03-01 Hoechst Ag Process for the preparation of phosphorus-containing L-amino acids, their derivatives and intermediates for this process
JP3051497B2 (en) 1991-05-17 2000-06-12 株式会社第一ラジオアイソトープ研究所 Radiodiagnostic agent using technetium complex of sulfanilamide derivative
IL103353A (en) 1991-10-29 1999-01-26 Bracco Int Bv Ligand metal complexes thereof diagnostic composition and processes for their preparation
US6359120B1 (en) 1991-10-29 2002-03-19 Bracco International B.V. Rhenium and technetium complexes containing a hypoxia-localizing moiety
IT1270260B (en) 1994-06-21 1997-04-29 Zambon Spa PHOSPHONIC ACID DERIVATIVES FOR METALLOPEPTIDASE INHIBITIVE ACTIVITIES
US6011021A (en) 1996-06-17 2000-01-04 Guilford Pharmaceuticals Inc. Methods of cancer treatment using naaladase inhibitors
JP2856098B2 (en) 1995-04-11 1999-02-10 日本製紙株式会社 Thermal recording sheet
US5795877A (en) 1996-12-31 1998-08-18 Guilford Pharmaceuticals Inc. Inhibitors of NAALADase enzyme activity
US6046180A (en) 1996-06-17 2000-04-04 Guilford Pharmaceuticals Inc. NAALADase inhibitors
US5824662A (en) 1996-09-27 1998-10-20 Guilford Pharmaceuticals Inc. Treatment of global and focal ischemia using naaladase inhibitors
US5902817A (en) 1997-04-09 1999-05-11 Guilford Pharmaceuticals Inc. Certain sulfoxide and sulfone derivatives
US5672592A (en) 1996-06-17 1997-09-30 Guilford Pharmaceuticals Inc. Certain phosphonomethyl-pentanedioic acid derivatives thereof
US6071965A (en) 1996-06-17 2000-06-06 Guilford Pharmaceuticals Inc. Phosphinic alkanoic acid derivatives
US6025344A (en) 1996-06-17 2000-02-15 Guilford Pharmaceuticals Inc. Certain dioic acid derivatives useful as NAALADase inhibitors
HUP0001062A3 (en) 1996-09-27 2001-09-28 Guilford Pharmaceuticals Inc B Pharmaceutical compositions of phosphinic acid derivatives having naaladase inhibitor acivity
US5962521A (en) 1997-04-04 1999-10-05 Guilford Pharmaceuticals Inc. Hydroxamic acid derivatives
ZA983930B (en) 1997-05-14 1999-11-08 Lilly Co Eli Excitatory amino acid receptor modulators.
DK1064273T3 (en) 1998-03-19 2003-03-31 Upjohn Co 1,3,4-Thiadiazoles useful for the treatment of CMV infections
US6528499B1 (en) 2000-04-27 2003-03-04 Georgetown University Ligands for metabotropic glutamate receptors and inhibitors of NAALADase
EP1177200B1 (en) 1999-04-28 2005-06-22 Georgetown University Ligands for metabotropic glutamate receptors
US6228888B1 (en) 1999-07-01 2001-05-08 Guilford Pharmaceuticals Inc. Methods for treating anxiety, anxiety disorders and memory impairment using naaladase inhibitors
EP1389460A1 (en) 2001-05-24 2004-02-18 Kureha Chemical Industry Co., Ltd. Cxcr4-antagonistic drugs comprising nitrogen-containing compound
DE10135355C1 (en) 2001-07-20 2003-04-17 Schering Ag Conjugates of macrocyclic metal complexes with biomolecules and their use in the preparation of NMR and radiodiagnostic agents and radiotherapy
US20030100594A1 (en) 2001-08-10 2003-05-29 Pharmacia Corporation Carbonic anhydrase inhibitor
JP4303595B2 (en) 2001-12-21 2009-07-29 透 小池 Zinc complexes capable of trapping substances with anionic substituents
WO2003060523A1 (en) 2002-01-10 2003-07-24 Johns Hopkins University Imaging agents and methods of imaging naaladase of psma
WO2003077727A2 (en) 2002-03-11 2003-09-25 Biostream, Inc. Technetium-dipyridine complexes, and methods of use thereof
KR100863667B1 (en) 2002-09-11 2008-10-15 가부시끼가이샤 구레하 Amine Compound and Use Thereof
HUE028349T2 (en) 2002-11-26 2016-12-28 Inst Virology Ca ix-specific inhibitors
US7833734B2 (en) 2002-11-26 2010-11-16 Institute Of Virology Of The Slovak Academy Of Sciences CA IX-specific inhibitors
EP1613613B1 (en) 2003-04-11 2021-06-02 Genzyme Corporation Cxcr4 chemokine receptor binding compounds
US7682601B2 (en) 2003-04-15 2010-03-23 Mallinckrodt Inc. Bifunctional tridentate pyrazolyl containing ligands for re and tc tricarbonyl complexes
CA2547863A1 (en) 2003-12-12 2005-06-23 Oy Juvantia Pharma Ltd Somatostatin receptor subtype 1 (sstr1) active compounds and their use in therapy
KR20070029148A (en) 2004-02-12 2007-03-13 몰레큘러 인사이트 파마슈티칼스, 인크. Technetium- and rhenium-bis(heteroaryl) complexes, and methods of use thereof
GB0421308D0 (en) 2004-09-24 2004-10-27 Amersham Plc Enzyme inhibitor imaging agents
WO2008059489A2 (en) 2006-11-13 2008-05-22 Spectrum Dynamics Llc Radioimaging applications of and novel formulations of teboroxime
WO2006080993A1 (en) 2004-12-08 2006-08-03 Purdue Research Foundation Novel cationic metal complex radiopharmaceuticals
US20060155021A1 (en) 2005-01-13 2006-07-13 Lenges Christian P Coating compositions containing rheology control agents
US7741510B2 (en) 2005-01-13 2010-06-22 E. I. Du Pont De Nemours And Company Rheology control agents
WO2006093991A1 (en) 2005-03-02 2006-09-08 The Cleveland Clinic Foundation Compounds which bind psma and uses thereof
ATE527542T1 (en) 2005-04-27 2011-10-15 Siemens Medical Solutions METHOD FOR MAKING IMAGING PROBE USING CLICK CHEMISTRY
WO2007008848A2 (en) 2005-07-07 2007-01-18 Seattle Genetics, Inc. Monomethylvaline compounds having phenylalanine carboxy modifications at the c-terminus
FR2890657B1 (en) 2005-09-15 2007-11-09 Commissariat Energie Atomique PROCESS FOR OBTAINING COMPLEXES OF HIGHLY LUMINESCENT LANTHANIDES
EP1940841B9 (en) 2005-10-07 2017-04-19 Guerbet Compounds comprising a biological target recognizing part, coupled to a signal part capable of complexing gallium
ES2407115T3 (en) 2005-11-18 2013-06-11 Ono Pharmaceutical Co., Ltd. Compound containing a basic group and its use
WO2007090461A1 (en) 2006-02-06 2007-08-16 Ciba Holding Inc. Use of metal complex compounds as oxidation catalysts
JP5257068B2 (en) 2006-05-16 2013-08-07 小野薬品工業株式会社 Compound containing acidic group which may be protected and use thereof
PT2030971E (en) 2006-06-20 2011-12-15 Ishihara Sangyo Kaisha Pest control agent containing novel pyridyl-methanamine derivative or salt thereof
EP2055705A4 (en) 2006-07-31 2014-08-20 Ono Pharmaceutical Co Compound having cyclic group bound thereto through spiro binding and use thereof
AU2007289168A1 (en) 2006-08-29 2008-03-06 Molecular Insight Pharmaceuticals, Inc. Radioimaging moieties coupled to peptidase-binding moieties for imaging tissues and organs that express peptidases
WO2008058192A2 (en) * 2006-11-08 2008-05-15 Molecular Insight Pharmaceuticals, Inc. Heterodimers of glutamic acid
US7829063B2 (en) 2007-04-05 2010-11-09 Siemens Medical Solutions Usa, Inc. Development of molecular imaging probes for carbonic anhydrase-IX using click chemistry
US20090180951A1 (en) 2007-12-12 2009-07-16 Molecular Insight Pharmaceuticals, Inc. Inhibitors of integrin vla-4
EP2240171B1 (en) 2008-01-09 2014-08-13 Molecular Insight Pharmaceuticals, Inc. Inhibitors of carbonic anhydrase IX
WO2010036814A1 (en) 2008-09-25 2010-04-01 Molecular Insight Pharmaceuticals, Inc. Selective seprase inhibitors
US8211402B2 (en) 2008-12-05 2012-07-03 Molecular Insight Pharmaceuticals, Inc. CA-IX specific radiopharmaceuticals for the treatment and imaging of cancer
WO2010065899A2 (en) 2008-12-05 2010-06-10 Molecular Insight Pharmaceuticals, Inc. Technetium-and rhenium-bis(heteroaryl)complexes and methods of use thereof
EP2398504B1 (en) 2009-02-17 2018-11-28 Cornell Research Foundation, Inc. Methods and kits for diagnosis of cancer and prediction of therapeutic value
GB201002508D0 (en) * 2010-02-12 2010-03-31 Algeta As Product
US9687572B2 (en) 2010-12-06 2017-06-27 Molecular Insight Pharmaceuticals, Inc. PSMA-targeted dendrimers
AU2012294639B2 (en) 2011-08-05 2017-10-26 Molecular Insight Pharmaceuticals, Inc. Radiolabeled prostate specific membrane antigen inhibitors
US9556167B2 (en) * 2012-05-02 2017-01-31 Yale University TLR-agonist-conjugated antibody recruiting molecules (TLR-ARMs)
JP6468602B2 (en) * 2013-01-14 2019-02-13 モレキュラ インサイト ファーマシューティカルズ インコーポレイテッド Triazine-based radiopharmaceuticals and radiocontrast agents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514505A (en) * 1995-05-15 1996-05-07 Xerox Corporation Method for obtaining improved image contrast in migration imaging members
US20110183954A1 (en) * 2008-06-11 2011-07-28 Astrazeneca Ab Tricyclic 2,4-diamino-l,3,5-triazine derivatives useful for the treatment of cancer and myeloproliferative disorders
WO2010065902A2 (en) * 2008-12-05 2010-06-10 Molecular Insight Pharmaceuticals, Inc. Technetium- and rhenium-bis(heteroaryl) complexes and methods of use thereof for inhibiting psma
US20120009121A1 (en) * 2009-03-19 2012-01-12 The Johns Hopkins University Psma-targeting compounds and uses thereof
WO2012074840A2 (en) * 2010-11-22 2012-06-07 The General Hospital Corporation Compositions and methods for in vivo imaging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2943227A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536345A1 (en) * 2014-05-06 2019-09-11 The Johns Hopkins University Metal/radiometal-labeled psma inhibitors for psma-targeted imaging and radiotherapy
JP2017518971A (en) * 2014-05-06 2017-07-13 ザ ジョンズ ホプキンズ ユニヴァーシティー Metal / radiometallic labeled PSMA inhibitors for imaging and radiotherapy targeting PSMA
JP7304588B2 (en) 2014-05-06 2023-07-07 ザ ジョンズ ホプキンズ ユニヴァーシティー Metal/radiometal-labeled PSMA inhibitors for PSMA-targeted imaging and radiotherapy
EP3140282A4 (en) * 2014-05-06 2018-04-11 The Johns Hopkins University Metal/radiometal-labeled psma inhibitors for psma-targeted imaging and radiotherapy
JP2022031664A (en) * 2014-05-06 2022-02-22 ザ ジョンズ ホプキンズ ユニヴァーシティー Metal/radiometal-labeled psma inhibitors for psma-targeted imaging and radiotherapy
US10683272B2 (en) 2014-05-06 2020-06-16 The Johns Hopkins University Metal/radiometal-labeled PSMA inhibitors for PSMA-targeted imaging and radiotherapy
US10668174B2 (en) 2014-09-08 2020-06-02 Molecular Insight Pharmaceuticals, Inc. Organ protection in PSMA-targeted radionuclide therapy of prostate cancer
WO2016040179A1 (en) 2014-09-08 2016-03-17 Molecular Insight Pharmaceuticals, Inc. Organ protection in psma-targeted radionuclide therapy of prostate cancer
US11167049B2 (en) 2014-09-08 2021-11-09 Molecular Insight Pharmaceuticals, Inc. Organ protection in PSMA-targeted radionuclide therapy of prostate cancer
US9956305B2 (en) 2014-09-08 2018-05-01 Molecular Insight Pharmaceuticals, Inc. Organ protection in PSMA-targeted radionuclide therapy of prostate cancer
JP2017530109A (en) * 2014-09-08 2017-10-12 モレキュラ インサイト ファーマシューティカルズ インコーポレイテッド Organ protection during radionuclide therapy targeting PSMA for prostate cancer
US10137209B2 (en) 2015-06-04 2018-11-27 Bayer Pharma Aktiengesellschaft Gadolinium chelate compounds for use in magnetic resonance imaging
US10722601B2 (en) 2015-06-04 2020-07-28 Bayer Pharma Aktiengesellschaft Gadolinium chelate compounds for use in magnetic resonance imaging
US11491245B2 (en) 2015-06-04 2022-11-08 Bayer Pharma Aktiengesellschaft Gadolinium chelate compounds for use in magnetic resonance imaging
JP2019508374A (en) * 2015-12-31 2019-03-28 ファイブ イレブン ファーマ インコーポレイテッド Urea-based prostate specific membrane antigen (PSMA) inhibitors for imaging and therapy
US11814369B2 (en) 2016-11-28 2023-11-14 Bayer Pharma Aktiengesellschaft High relaxivity gadolinium chelate compounds for use in magnetic resonance imaging
US10870629B2 (en) 2017-06-19 2020-12-22 Futurechem Co., Ltd. 18F-labelled compound for prostate cancer diagnosis, and use thereof
US11944690B2 (en) 2018-11-23 2024-04-02 Bayer Aktiengesellschaft Formulation of contrast media and process of preparation thereof
WO2023092184A1 (en) * 2021-11-24 2023-06-01 Clarity Pharmaceuticals Ltd Compounds and compositions thereof for the treatment of cancer

Also Published As

Publication number Publication date
JP2019073532A (en) 2019-05-16
ES2738474T3 (en) 2020-01-23
BR112015016585A2 (en) 2017-08-22
EP3939972A1 (en) 2022-01-19
US10201624B2 (en) 2019-02-12
KR102187940B1 (en) 2020-12-07
EP2943227B8 (en) 2017-11-22
CA2897437A1 (en) 2014-07-17
US11712485B2 (en) 2023-08-01
HUE035739T2 (en) 2018-05-28
US10086096B2 (en) 2018-10-02
EP2943227B1 (en) 2017-09-20
EP3300746B1 (en) 2019-05-15
EP3545978A1 (en) 2019-10-02
EP2943227A4 (en) 2016-05-25
US20210338850A1 (en) 2021-11-04
JP2016511231A (en) 2016-04-14
KR20150115797A (en) 2015-10-14
MX2015008993A (en) 2016-04-04
PL3300746T3 (en) 2019-11-29
AU2014205304B2 (en) 2018-03-29
US20190134237A1 (en) 2019-05-09
BR112015016585B1 (en) 2021-02-02
CN105025933B (en) 2019-03-26
HUE044552T2 (en) 2019-11-28
EP3545978B1 (en) 2021-09-08
JP6707677B2 (en) 2020-06-10
CA2897437C (en) 2021-12-14
CN105025933A (en) 2015-11-04
US20170296683A1 (en) 2017-10-19
HK1212908A1 (en) 2016-06-24
SG11201505477TA (en) 2015-08-28
US9447121B2 (en) 2016-09-20
JP6468602B2 (en) 2019-02-13
US10898598B2 (en) 2021-01-26
EP2943227A1 (en) 2015-11-18
US20140255306A1 (en) 2014-09-11
EP3300746A1 (en) 2018-04-04
US20160346410A1 (en) 2016-12-01
PL2943227T3 (en) 2018-02-28
ES2648096T3 (en) 2017-12-28
AU2014205304A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
US11712485B2 (en) Triazine based radiopharmaceuticals and radioimaging agents
CA2844151C (en) Radiolabeled prostate specific membrane antigen inhibitors
US8211402B2 (en) CA-IX specific radiopharmaceuticals for the treatment and imaging of cancer
EP2759535A1 (en) CA-IX specific radiopharmaceuticals for the treatment and imaging of cancer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011222.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2897437

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/008993

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015552805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015016585

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014738117

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014738117

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157021666

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014205304

Country of ref document: AU

Date of ref document: 20140110

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015016585

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150710