WO2014103819A1 - イオン交換膜およびその製造方法ならびに電気透析装置 - Google Patents

イオン交換膜およびその製造方法ならびに電気透析装置 Download PDF

Info

Publication number
WO2014103819A1
WO2014103819A1 PCT/JP2013/083840 JP2013083840W WO2014103819A1 WO 2014103819 A1 WO2014103819 A1 WO 2014103819A1 JP 2013083840 W JP2013083840 W JP 2013083840W WO 2014103819 A1 WO2014103819 A1 WO 2014103819A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange membrane
ion exchange
vinyl alcohol
polymer
alcohol polymer
Prior art date
Application number
PCT/JP2013/083840
Other languages
English (en)
French (fr)
Inventor
直原敦
小林謙一
中島崇裕
比嘉充
Original Assignee
株式会社クラレ
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, 国立大学法人山口大学 filed Critical 株式会社クラレ
Priority to KR1020157018647A priority Critical patent/KR20150099549A/ko
Priority to JP2014554353A priority patent/JP6358597B2/ja
Priority to CN201380068017.4A priority patent/CN104884510B/zh
Priority to EP13869781.8A priority patent/EP2940068A4/en
Publication of WO2014103819A1 publication Critical patent/WO2014103819A1/ja
Priority to US14/747,032 priority patent/US10125036B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to an ion exchange membrane comprising an ionic vinyl alcohol polymer having a cation exchange group or an anion exchange group, and is useful as an ion exchange membrane for electrodialysis (especially for electrode conversion type electrodialysis).
  • the present invention relates to an ion exchange membrane containing a vinyl alcohol polymer.
  • Ion exchange membranes are used as membranes for electrodialysis in desalination processes such as salt production, food and underground brine.
  • ions are moved by applying DC power to an electrodialysis tank in which an anion exchange membrane and a cation exchange membrane are alternately arranged between a cathode and an anode. Therefore, a desalination chamber in which the ion concentration decreases and a concentration chamber in which the ion concentration increases are alternately installed.
  • concentration of sparingly soluble salts in the concentration chamber rises, scale is generated due to precipitation, so chemicals such as acids are added to the concentration chamber to prevent scale generation. There was a problem that the amount of chemicals increased.
  • Electro-Dialysis-Reversal has been developed that prevents the generation of scale by reversing the electrodes before the salt concentration in the concentration chamber reaches the limit level of scale generation.
  • deposits adhering to the ion exchange membrane during the normal phase operation can be removed from the ion exchange membrane using the repulsive force of the charge by performing the reverse phase operation.
  • Patent Document 1 an ion exchanger composed of a block copolymer or a graft copolymer containing a cationic polymer or an anionic polymer component and a vinyl alcohol polymer component is formed on a support layer by printing.
  • An improved ion exchange membrane is disclosed.
  • the ion exchange membrane disclosed in Patent Document 1 discloses the following features.
  • (2) Mechanical strength Mechanical strength is provided by supporting the ion exchange membrane with a support layer.
  • Electrical characteristics (resistance) It is expected that electrical characteristics can be obtained by copolymerizing a vinyl alcohol polymer with a polymer having an ionic group.
  • Patent Document 2 includes a nonwoven fabric sheet and an ion exchange resin coating layer provided on one surface of the nonwoven fabric sheet.
  • the nonwoven fabric sheet has a long fiber layer having a fiber diameter of 8 to 30 ⁇ m on both surfaces.
  • An ion exchange membrane having a fiber layer structure in which a fine fiber layer having a fiber diameter of 5 ⁇ m or less is formed by fusion of fibers as an intermediate layer between the long fiber layers is disclosed.
  • Patent Document 2 by arranging a fine fiber layer as an intermediate layer between two long fiber layers, the strength, dimensional stability and shape stability can be improved even if an inexpensive nonwoven fabric sheet is used. In addition, it is possible to effectively suppress the undulation when brought into contact with the electrolytic solution, and to obtain an ion exchange membrane having low membrane resistance.
  • An object of the present invention is to provide an ion exchange membrane in which ion concentration polarization in the membrane is unlikely to occur and a method for producing the same because there is little zeta potential difference between the front and back sides.
  • Another object of the present invention is to provide an ion exchange membrane in which blisters are hardly generated even when used for a long period of time, and a method for producing the same.
  • the inventors of the present invention have found that when a specific ionic polymer is applied to a porous support by a specific manufacturing method, the porous support is made of a specific ionic polymer. It has been found that the zeta potential of the ion exchange membrane generated in the liquid can be set to a specific value so that the difference between the front and back surfaces can be reduced.
  • the present invention is an ion exchange membrane composed of a porous support and an ionic vinyl alcohol polymer
  • the porous support comprises an impregnation layer impregnated with the ionic vinyl alcohol polymer at least partially in the thickness direction from one surface
  • the ionic vinyl alcohol polymer is at least composed of an ionic vinyl alcohol polymer having an ion exchange group selected from a cation exchange group or an anion exchange group
  • the values of the zeta potential ( ⁇ 1) on one surface of the ion exchange membrane and the zeta potential ( ⁇ 2) on the other surface are expressed by the formula (1). (
  • the porous support is preferably a nonwoven fabric (for example, a wet nonwoven fabric, preferably a wet nonwoven fabric of polyvinyl alcohol short fibers) or a synthetic resin fabric.
  • the porosity of the porous support may be 40 to 90%.
  • the ionic vinyl alcohol polymer is a copolymer of an ion exchange monomer and a polyvinyl alcohol monomer, and the ion exchange monomer of the ionic vinyl alcohol polymer.
  • the content may be 0.1 mol% or more.
  • the ionic vinyl alcohol polymer may be a block copolymer containing a polymer component obtained by polymerizing an ion exchange monomer and a polyvinyl alcohol component.
  • the ionic vinyl alcohol polymer may be a cross-linked product that is cross-linked in a state where it is applied to the porous support.
  • Such an ion exchange membrane can be used for various electrodialyzers, but can be suitably used particularly for electrode-switched electrodialyzers.
  • the present invention also includes a method for producing an ion exchange membrane, Preparing an ionic vinyl alcohol polymer solution; Applying the ionic vinyl alcohol polymer solution on the release film to form a coating layer of the ionic vinyl alcohol polymer; A step of superposing a porous support on the coating layer and impregnating at least a part of the porous support with an ionic vinyl alcohol polymer to form an impregnated body; A step of drying the impregnated body in a state where the coating layer and the porous support are superposed; and a step of peeling the release film from the dried impregnated body.
  • the ionic vinyl alcohol polymer may be subjected to a heat treatment and / or a crosslinking treatment (chemical crosslinking treatment), and further the heat treatment step to the ionic vinyl alcohol polymer. Thereafter, the ionic vinyl alcohol polymer may be subjected to a crosslinking treatment.
  • the present invention also includes an electrodialysis apparatus, and the electrodialysis apparatus includes: An anode and a cathode; A desalting chamber and a concentrating chamber formed by alternately arranging an anion exchange membrane and a cation exchange membrane between the anode and the cathode; An electrodialysis apparatus comprising at least The anion exchange membrane and the cation exchange membrane are each composed of the above-described ion exchange membrane.
  • impregnation means a state in which the ionic vinyl alcohol polymer substantially fills the voids and / or pores of the porous support.
  • the present invention by applying a specific ionic polymer to a porous support by a specific manufacturing method, it is possible to reduce the zeta potential of the ion exchange membrane generated in the liquid between the front and back sides. . As a result, the occurrence of ion concentration polarization in the ion exchange membrane during electrodialysis can be suppressed, and the current efficiency can be increased.
  • an ion exchange membrane that not only hardly generates blisters but also can be used for electrodialysis for a long time without causing external water leakage. Obtainable.
  • FIG. 1 is a top view for demonstrating the shape of anion exchange membrane AEM-9
  • (b) is the sectional drawing.
  • 6 is a graph showing cell resistance fluctuations in a polarity switching electrodialysis test performed in Example 8.
  • FIG. It is a graph which shows the relationship between the processing time in the polarity change-type electrodialysis test performed in Example 8, and integrated power consumption.
  • FIG. 1 is a schematic cross-sectional view illustrating an embodiment of the ion exchange membrane of the present invention.
  • the ion exchange membrane 1 is composed of a porous support 3 made of a single wet nonwoven fabric and the like, and an ionic vinyl alcohol polymer.
  • the porous support 3 is provided with an impregnation layer 2 impregnated with an ionic vinyl alcohol polymer in at least a part of the inside from one surface in the thickness direction. Since the impregnated layer 2 exists inside the porous support, the ion exchange membrane 1 can prevent external leakage during use.
  • the impregnated layer 2 may have a thickness of at least 50% or more with respect to the thickness of the porous support 3.
  • the thickness of the impregnated layer refers to the thickness of the portion where the voids and / or pores present inside the porous support 3 are substantially filled with the ionic vinyl alcohol polymer.
  • substantially filled with the ionic vinyl alcohol polymer means a state in which a majority of the voids and / or pores are filled with the ionic vinyl alcohol polymer.
  • the ionic vinyl alcohol polymer is composed of an ionic vinyl alcohol polymer selected from a cationic polymer or an anionic polymer.
  • the ionic vinyl alcohol polymer used in the present invention is at least composed of an ionic vinyl alcohol polymer having an ion exchange group selected from a cation exchange group or an anion exchange group.
  • the ionic vinyl alcohol polymer may be used in combination with other polymers (for example, nonionic vinyl alcohol polymer).
  • the ionic vinyl alcohol polymer is derived from the polymer component (a-1) and the ion exchange monomer (A-2) as structural units derived from the vinyl alcohol monomer (A-1).
  • the ion exchange monomer may be a monomer containing an anion exchange group or a monomer containing a cation exchange group.
  • the copolymer may be in any form of random or block, but is preferably a block copolymer.
  • the ionic vinyl alcohol polymer having the cation exchange group or the anion exchange group has a copolymer structure with a vinyl alcohol monomer.
  • the vinyl alcohol monomer includes a monomer capable of forming a vinyl alcohol structure by saponification.
  • such a monomer includes a vinyl ester monomer as described later. May be. It is preferable to take a copolymer structure with a vinyl alcohol monomer from the viewpoint of the strength, flexibility, and physical or chemical crosslinkability of the ion exchange membrane.
  • the ratio of the vinyl alcohol monomer (A-1) to the ion exchange monomer (A-2) is as follows. -1) 99 to 50 mol%, ion-exchangeable monomer (A-2) 1 to 50 mol% [total amount of monomer (A-1) and monomer (A-2) It is preferably within the range of “100 mol%”. More preferably, the vinyl alcohol monomer (A-1) is in the range of 97 to 60 mol%, and the ion exchange monomer (A-2) is in the range of 3 to 40 mol%.
  • the ratio of the ion-exchangeable monomer is too low, the effective charge density in the ion-exchange membrane may be lowered, and the counter-ion selectivity of the membrane may be lowered.
  • the ratio of the ion-exchange polymer is too high, the degree of swelling of the ion-exchange membrane increases, and the mechanical strength may decrease.
  • the ionic vinyl alcohol polymer having an anion exchange group used in the present invention (sometimes called a cationic polymer) is a copolymer containing an anion exchange group (sometimes called a cation group) in the molecule. It is.
  • the cationic group may be contained in any of the main chain, the side chain, and the terminal. Examples of the cationic group include an ammonium group, an iminium group, a sulfonium group, and a phosphonium group.
  • a polymer having a functional group that can be converted into an ammonium group or an iminium group in water, such as an amino group or an imino group is also included in the polymer having a cationic group of the present invention.
  • an ammonium group is preferable from the viewpoint of industrial availability.
  • the ammonium group any of primary ammonium group (ammonium salt), secondary ammonium group (ammonium salt), tertiary ammonium group (ammonium salt), and quaternary ammonium group (ammonium salt) can be used.
  • a secondary ammonium group (preferably a trialkylammonium group) is more preferable.
  • the cationic polymer may contain only one type of cationic group or may contain multiple types of cationic groups.
  • the counter anion of the cation group is not particularly limited, and examples thereof include halide ions, hydroxide ions, phosphate ions, and carboxylate ions. Of these, halide ions are preferred and chloride ions are more preferred from the standpoint of availability.
  • the cationic polymer may contain only one type of counter anion or may contain a plurality of types of counter anions.
  • the cationic polymer only needs to be a copolymer composed of at least a vinyl alcohol structural unit and a structural unit containing the cationic group, and the structure not containing the cationic group unless the effects of the invention are inhibited.
  • the copolymer which further contains a unit may be sufficient. Moreover, it is preferable that these polymers have a crosslinking property.
  • the cationic polymer may be composed of only one type of polymer, or may include a plurality of types of cationic polymers. Moreover, as long as the effect of invention is not inhibited, you may use combining these cationic polymers and another polymer.
  • the polymer other than the cationic polymer is preferably not an anionic polymer.
  • preferable cationic polymers include polymers having a vinyl alcohol structural unit and structural units of the following general formulas (1) to (8).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 , R 3 and R 4 each independently represent a hydrogen atom or an optionally substituted alkyl group, aryl group or aralkyl group having 1 to 18 carbon atoms.
  • R 2 , R 3 and R 4 may be connected to each other to form a saturated or unsaturated cyclic structure.
  • Z represents —O—, —NH—, or —N (CH 3 ) —, and Y represents a divalent linking group having 1 to 8 carbon atoms which may contain an oxygen, nitrogen, sulfur or phosphorus atom.
  • X ⁇ represents an anion.
  • R 2 , R 3 and R 4 are each independently a hydrogen atom, a linear or branched C 1-8 alkyl group [more preferably a linear or branched C 1-4 alkyl group (eg, methyl Group, ethyl group, isopropyl group, t-butyl group and the like)], phenyl group, naphthyl group, benzyl group, phenethyl group and the like.
  • R 2 , R 3 and R 4 may be different groups, but are preferably the same.
  • Counter anion X in the general formula (1) - include a halide ion, hydroxide ion, phosphate ion, a carboxylic acid ion are exemplified.
  • Examples of the cationic monomer that can form the structural unit represented by the general formula (1) include 3- (meth) acrylamidepropyltrimethylammonium chloride, 3- (meth) acrylamide-3,3-dimethylpropyltrimethylammonium chloride, and the like.
  • -(Meth) acrylamide-alkyltrialkylammonium salts and the like are exemplified.
  • R 5 represents a hydrogen atom or a methyl group.
  • R 2 , R 3 , R 4 , and X ⁇ are as defined in general formula (1).
  • Examples of the cationic monomer capable of forming the structural unit represented by the general formula (2) include vinylbenzyltrialkylammonium salts such as vinylbenzyltrimethylammonium chloride.
  • R 2 , R 3 , and X ⁇ are as defined in the general formula (1).
  • R 2 , R 3 , and X ⁇ are as defined in the general formula (1).
  • Examples of the cationic monomer capable of forming the structural unit represented by the general formula (3) and the general formula (4) include diallyldialkylammonium salts such as diallyldimethylammonium chloride, and these monomers undergo cyclopolymerization. Thus, the structural unit can be formed.
  • n 0 or 1; R 2 and R 3 have the same meaning as in the general formula (1).
  • allylamine is exemplified.
  • Examples of the cationic monomer capable of forming the structural unit represented by the general formula (6) include allyl ammonium salts such as allylamine hydrochloride.
  • R 5 represents a hydrogen atom or a methyl group
  • A represents —CH (OH) CH 2 —, —CH 2 CH (OH) —, —C (CH 3 ) (OH) CH 2 —, —CH 2 C (CH 3 ) (OH) —, —CH (OH) CH 2 CH 2 —, or —CH 2 CH 2 CH (OH) —
  • E is -N (R 6) 2 or -N + (R 6) 3 ⁇ X - represents, R 6 represents a hydrogen atom or a methyl group.
  • X ⁇ represents an anion.
  • N- (3-allyloxy-2-hydroxypropyl) dimethylamine or a quaternary ammonium salt thereof, N- (4-allyloxy-3- Hydroxybutyl) diethylamine or a quaternary ammonium salt thereof is exemplified.
  • R 5 represents a hydrogen atom or a methyl group
  • R 7 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an i-propyl group
  • R 8 represents a hydrogen atom, a methyl group or an ethyl group, respectively.
  • Cationic monomers capable of forming the structural unit represented by the general formula (8) include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, and N, N-dimethyl (meth) acrylamide. Etc. are exemplified.
  • the ionic vinyl alcohol polymer having a cation exchange group used in the present invention (sometimes referred to as an anionic polymer) is a copolymer containing a cation exchange group (sometimes referred to as an anion group) in the molecule. It is a coalescence.
  • the anionic group may be contained in any of the main chain, the side chain, and the terminal. Examples of the anion group include a sulfonate group, a carboxylate group, and a phosphonate group.
  • anionic polymer may contain only one type of anionic group or may contain a plurality of types of anionic groups.
  • the counter cation of an anion group is not specifically limited, A hydrogen ion, an alkali metal ion, etc. are illustrated. Of these, alkali metal ions are preferred from the viewpoint of less equipment corrosion problems.
  • the anionic polymer may contain only one type of counter cation or may contain a plurality of types of counter cation.
  • An anionic polymer should just be a copolymer comprised at least by the vinyl alcohol-type structural unit and the structural unit containing the said anionic group, and further contains the structural unit which does not contain the said anionic group as needed.
  • a copolymer may also be used. Moreover, it is preferable that these polymers have a crosslinking property.
  • An anionic polymer may consist of only one type of polymer, or may include a plurality of types of anionic polymers. Further, as long as the effects of the invention are not inhibited, these anionic polymers and other polymers may be used in combination.
  • the polymer other than the anionic polymer is preferably not a cationic polymer.
  • a preferable anionic polymer is exemplified by a polymer having a vinyl alcohol structural unit and structural units of the following general formulas (9) and (10).
  • R 5 represents a hydrogen atom or a methyl group.
  • G represents —SO 3 H, —SO 3 ⁇ M + , —PO 3 H, —PO 3 ⁇ M + , —CO 2 H or —CO 2 ⁇ M + .
  • M + represents an ammonium ion or an alkali metal ion.
  • Examples of the anionic monomer capable of forming the structural unit represented by the general formula (9) include 2-acrylamido-2-methylpropanesulfonic acid.
  • R 5 represents a hydrogen atom or a methyl group
  • T represents a phenylene group or a naphthylene group in which the hydrogen atom may be substituted with a methyl group.
  • G is synonymous with the general formula (9).
  • Examples of the anionic monomer capable of forming the structural unit represented by the general formula (10) include p-styrene sulfonates such as sodium p-styrene sulfonate.
  • anionic monomer examples include sulfonic acids such as vinyl sulfonic acid and (meth) allyl sulfonic acid or salts thereof, fumaric acid, maleic acid, itaconic acid, maleic anhydride, dicarboxylic acids such as itaconic anhydride, Derivatives or salts thereof are also exemplified.
  • G is preferably a sulfonate group, a sulfonic acid group, a phosphonate group, or a phosphonic acid group that gives a higher charge density.
  • examples of the alkali metal ion represented by M + include sodium ion, potassium ion, lithium ion and the like.
  • the saponification degree of the ionic vinyl alcohol polymer having an ion exchange group is not particularly limited as long as an ion exchange membrane can be formed, but may be, for example, 40 to 99.9 mol%. If the degree of saponification is too low, the crystallinity is lowered and the durability of the ion exchanger may be insufficient.
  • the saponification degree may be preferably 60 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and particularly preferably 95 mol% or more. Usually, the saponification degree is 99.9 mol% or less.
  • the saponification degree when the vinyl alcohol polymer is a mixture of plural kinds of vinyl alcohol polymers is a value measured according to JIS K6726.
  • the saponification degree of the vinyl alcohol polymer not containing an ionic group used in the present invention is also preferably in the above range.
  • the viscosity average degree of polymerization of the vinyl alcohol polymer containing an ionic group (hereinafter sometimes simply referred to as the degree of polymerization) is not particularly limited, but is preferably 50 to 10,000. If the degree of polymerization is less than 50, the ion exchanger may not be able to maintain sufficient durability for practical use. More preferably, the degree of polymerization is 100 or more. When the degree of polymerization exceeds 10,000, the viscosity may be too high when handled in an aqueous solution, which may be inconvenient to handle.
  • the degree of polymerization is more preferably 8000 or less.
  • the degree of polymerization when the vinyl alcohol polymer is a mixture of a plurality of types of vinyl alcohol polymers refers to the average degree of polymerization of the entire mixture.
  • the viscosity average degree of polymerization of the vinyl alcohol polymer is a value measured according to JIS K6726.
  • the degree of polymerization of the vinyl alcohol polymer containing no ionic group used in the present invention is also preferably within the above range.
  • Preferred vinyl alcohol copolymers having a cationic group include a copolymer of a methacrylamide alkyltrialkylammonium salt and a vinyl alcohol component, and a copolymer of a vinylbenzyl trialkylammonium salt and a vinyl alcohol component because they are easily available. Examples thereof include a polymer and a copolymer of a diallyldialkylammonium salt and a vinyl alcohol component.
  • a monomer in the cationic polymer is preferably 50 mol% or more, and more preferably 55 mol% or more.
  • the polymer other than the cationic polymer is not an anionic polymer.
  • a copolymer having an anionic group a copolymer of a 2-acrylamido-2-methylpropane sulfonate component and a vinyl alcohol component, a p-styrene sulfonate component, because it is easily available. And a copolymer of a vinyl alcohol component.
  • the monomer in the anionic polymer is preferably 50 mol% or more, and more preferably 55 mol% or more.
  • the polymer other than the anionic polymer is not a cationic polymer.
  • the ionic vinyl alcohol polymer is composed of a copolymer containing a monomer unit having a cationic group or an anion group and a vinyl alcohol monomer unit.
  • the ionic vinyl alcohol polymer may be a random copolymer of the vinyl alcohol monomer (A-1) and the ion exchange monomer (A-2).
  • a block copolymer containing the component (a-1) and a polymer component (a-2) obtained by polymerizing a monomer unit having a cationic group or an anionic group is preferably used.
  • the ionic vinyl alcohol polymer undergoes microphase separation, and functions to suppress the degree of swelling of the membrane and to maintain the shape, and to transmit the cation or anion.
  • the role of the polymer component obtained by polymerizing the ion exchange unit can be shared, and both the degree of swelling and the dimensional stability of the ion exchange membrane can be achieved.
  • Examples of the monomer unit having a cation group or an anion group include those represented by the general formulas (1) to (10).
  • a cationic polymer a block copolymer containing a polymer component obtained by polymerizing methacrylamide alkyltrialkylammonium salt and a vinyl alcohol polymer component, vinyl, A block copolymer containing a polymer component obtained by polymerizing a benzyltrialkylammonium salt and a vinyl alcohol polymer component, or a polymer component obtained by polymerizing a diallyldialkylammonium salt and a vinyl alcohol polymer component; A block copolymer containing is preferably used.
  • the anionic polymer may be a block copolymer containing a polymer component obtained by polymerizing p-styrene sulfonate and a vinyl alcohol polymer component, or 2-acrylamido-2-methylpropanesulfonic acid.
  • a block copolymer containing a polymer component obtained by polymerizing a salt and a vinyl alcohol polymer component is preferably used.
  • the random copolymer is cationic. It is obtained by copolymerizing a monomer or an anionic monomer and a vinyl ester monomer and saponifying it by a conventional method.
  • the vinyl ester monomer can be used as long as it can be radically polymerized. For example, vinyl formate, vinyl acetate, vinyl propionate, vinyl valenate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, and vinyl persate. Among these, vinyl acetate is preferable.
  • Examples of the method for copolymerizing a cationic monomer or an anionic monomer and a vinyl ester monomer include known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. It is done. Among these methods, a bulk polymerization method performed without a solvent or a solution polymerization performed using a solvent such as alcohol is usually employed. Examples of the alcohol used as the solvent when carrying out the copolymerization reaction using solution polymerization include C 1-4 lower alcohols such as methanol, ethanol, and propanol.
  • the initiator used for the copolymerization reaction is 2,2′-azobis (2,4-dimethyl-valeronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis.
  • Known initiators include azo initiators such as (N-butyl-2-methylpropionamide) and peroxide initiators such as benzoyl peroxide and n-propyl peroxycarbonate.
  • the polymerization temperature for carrying out the copolymerization reaction is not particularly limited, but a range of 5 to 180 ° C. is appropriate.
  • a vinyl ester polymer obtained by copolymerizing a cationic monomer or an anionic monomer and a vinyl ester monomer is then saponified in a solvent according to a known method, A vinyl alcohol polymer containing a cationic group or an anionic group can be obtained.
  • Alkaline substances are usually used as the catalyst for the saponification reaction of vinyl ester polymers.
  • Examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide. It is done.
  • the saponification catalyst may be added all at once at the initial stage of the saponification reaction, or a part thereof may be added at the initial stage of the saponification reaction and the rest may be added and added during the saponification reaction.
  • the solvent used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, dimethylformamide and the like. Of these, methanol is preferable.
  • the saponification reaction can be carried out by either a batch method or a continuous method. After completion of the saponification reaction, the remaining saponification catalyst may be neutralized as necessary, and usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate. .
  • the polymer production method used in the present invention in which a polymer component obtained by polymerizing a cation exchange monomer or an anion exchange monomer and a vinyl alcohol polymer component forms a block copolymer, is mainly used. It is roughly divided into the following two methods. (1) A method in which a desired block copolymer is produced and then a cationic group or an anionic group is bonded to a specific block, and (2) at least one cationic monomer or anionic monomer In this method, a desired block copolymer is obtained by polymerization.
  • one or more monomers are block copolymerized in the presence of a vinyl alcohol polymer having a mercapto group at the terminal, and then one or more monomers in the block copolymer are used.
  • the method of introducing a cationic group or an anionic group into a polymer component of the kind (2), at least one cationic monomer or anionic monomer in the presence of a vinyl alcohol polymer having a mercapto group at the terminal.
  • a method for producing a block copolymer by radical polymerization of a monomer is preferred from the viewpoint of industrial ease.
  • the kind and amount of each component in the block copolymer can be easily controlled, at least one kind of cationic monomer or anionic monomer in the presence of a vinyl alcohol polymer having a mercapto group at the terminal.
  • a method for producing a block copolymer by radical polymerization of a monomer is preferred.
  • a vinyl alcohol polymer having a mercapto group at the terminal used for the production of these block copolymers can be obtained, for example, by the method described in JP-A-59-187003. That is, there is a method of saponifying a vinyl ester polymer obtained by radical polymerization of a vinyl ester monomer such as vinyl acetate in the presence of thiolic acid. Further, as a method for obtaining a block copolymer using a vinyl alcohol polymer having a mercapto group at the terminal and an ion exchange monomer, for example, a method described in JP-A-59-189113 or the like is used. Can be mentioned.
  • a block copolymer can be obtained by radical polymerizing an ion-exchangeable monomer in the presence of a vinyl alcohol polymer having a mercapto group at the terminal.
  • This radical polymerization can be carried out by a known method such as bulk polymerization, solution polymerization, pearl polymerization, emulsion polymerization, etc., but a solvent capable of dissolving a vinyl alcohol polymer containing a mercapto group at the terminal, such as water or dimethyl It is preferably carried out in a medium mainly composed of sulfoxide.
  • any of a batch method, a semi-batch method, and a continuous method can be employed.
  • the ion exchange membrane of the present invention comprises a polymer component (a-1) obtained by polymerizing a vinyl alcohol monomer (A-1) and a polymer obtained by polymerizing an ion exchangeable monomer (A-2).
  • a copolymer formed from the blend component (a-2) is a main constituent, and the copolymer constituting the ionic vinyl alcohol polymer is combined with a nonionic surfactant as necessary. May be used.
  • the ion exchange membrane of the present invention is a step of preparing an ionic vinyl alcohol polymer solution; A step of coating an aqueous solution of the ionic vinyl alcohol polymer on the release film to form a coating layer of the ionic vinyl alcohol polymer; A step of superposing a porous support on the coating layer and impregnating at least a part of the porous support with an ionic vinyl alcohol polymer to form an impregnated body; A step of drying the impregnated body in a state where the coating layer and the porous support are superposed; and a step of peeling the release film from the dried impregnated body.
  • ionic vinyl alcohol polymer solution preparation process More specifically, the above ionic vinyl alcohol polymer is dissolved in a solvent such as water or DMSO to prepare an ionic vinyl alcohol polymer solution (preferably an aqueous solution).
  • the obtained ionic vinyl alcohol polymer solution may have a viscosity of, for example, 300 to 5000 mPa ⁇ s, preferably 400 from the viewpoint of satisfactorily forming an impregnated layer on the porous support. It may be ⁇ 4000 mPa ⁇ s, more preferably 500 to 3,000 mPa ⁇ s. In addition, a viscosity shows the value measured by the method described in the Example mentioned later.
  • the concentration can be appropriately set according to the kind of the ionic vinyl alcohol polymer, but may be, for example, 1 to 50% by mass, preferably 2 to 45% by mass, more preferably 3%. It may be up to 40% by weight.
  • the ionic vinyl alcohol polymer solution may appropriately contain an additive (for example, a nonionic surfactant) as necessary.
  • the obtained ionic vinyl alcohol polymer solution (preferably an aqueous solution) is coated on the release film using various coating means such as a bar coater, a gravure coater, a knife coater, a blade coater, and the coating layer. (Cast layer) is formed.
  • the coating layer forms an appropriate coating surface according to the size of the porous support to be overlaid next.
  • the release film is not particularly limited as long as it can form a uniform coating layer and can be finally peeled off.
  • a known or commonly used release film or sheet (for example, PET film, polyethylene film, silicone sheet, etc.) is used. can do.
  • the thickness of the coating layer may be, for example, about 300 ⁇ m to 2000 ⁇ m, preferably about 400 ⁇ m to 1800 ⁇ m, from the viewpoint of satisfactorily forming the impregnated layer on the porous support. Preferably, it may be about 500 ⁇ m to 1500 ⁇ m.
  • the liquid thickness may be, for example, about 3 to 25 times, preferably about 4 to 20 times, more preferably about 5 to 18 times the thickness of the porous support. . This coating layer is then used to impregnate the next porous support without drying.
  • the coating layer Prior to performing the drying step, the coating layer is overlaid with a porous support, and at least a part of the porous support is impregnated with the ionic vinyl alcohol polymer solution to form an impregnated body.
  • the impregnation step as long as the ion exchange membrane can express a predetermined zeta potential, it may be performed under pressure, but from the viewpoint of maintaining the porosity of the porous support and reducing membrane resistance, impregnation is performed under no pressure. Is preferred.
  • porous support is not particularly limited as long as an ion exchange membrane capable of forming a predetermined zeta potential on both sides can be formed, but from the viewpoint of making the structure in the impregnated layer uniform, the thickness direction A porous support having a uniform structure in the cross section is preferable.
  • the porous support is not particularly limited as long as the ionic vinyl alcohol polymer solution can be impregnated.
  • polyolefin such as polypropylene and polyethylene
  • PET polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • PBT polybutylene
  • Polyester such as terephthalate (PBT)
  • vinyl alcohol resin such as polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be used.
  • the shape of the porous support is not particularly limited as long as it has voids or pores and can form an impregnated layer.
  • a nonwoven fabric sheet or a synthetic resin fabric woven or knitted fabric, molten mesh, etc.
  • a fiber assembly such as is preferable.
  • the nonwoven fabric sheet may be a nonwoven fabric formed from continuous fibers, but a wet nonwoven fabric formed from short fibers is preferred because it easily forms an impregnation layer capable of forming a desired zeta potential on both sides.
  • Wet non-woven fabric is made by dispersing main fibers and a small amount of binder fibers that bond between the main fibers in water and making them uniform slurry under gentle agitation.
  • a sheet can be formed and manufactured using a papermaking apparatus having at least one of the wires.
  • the polymer forming the nonwoven fabric sheet is not particularly limited as long as the ionic vinyl alcohol polymer solution can be impregnated.
  • polyester PET, PTT, etc.
  • polyvinyl alcohol Etc. polyvinyl alcohol
  • a particularly preferable nonwoven fabric sheet includes a wet nonwoven fabric mainly composed of polyvinyl alcohol short fibers.
  • the structure has a mesh structure, and an intersection welded mesh is particularly preferable.
  • the intersection fusion mesh is preferably, for example, a synthetic resin mesh in which a plurality of linear members (or fibrous materials) are arranged so as to intersect at an angle of preferably 10 to 90 degrees and the intersections are melt-bonded. From the viewpoint of providing a predetermined thickness and porosity, for example, a uniform single-layer structure in the thickness direction is obtained by hot pressing a plurality of woven fabrics coarsely woven with a synthetic resin yarn or by a synthetic resin yarn. A synthetic resin fabric (especially a mesh) can be manufactured.
  • the porous support may have a basis weight of, for example, about 10 to 90 g / m 2 , preferably about 15 to 70 g / m 2 , more preferably It may be about 20 to 50 g / m 2 .
  • the thickness of the porous support may be, for example, about 50 ⁇ m to 150 ⁇ m, preferably about 60 ⁇ m to 130 ⁇ m, more preferably about 70 ⁇ m to 120 ⁇ m.
  • the porosity of the porous support is preferably 40 to 90%. When the porosity is in this range, the resulting ion exchange membrane has excellent mechanical strength and excellent durability. When the porosity of the porous support is too low, the membrane resistance of the ion exchange membrane is increased, which may make it difficult to transport ions and salts.
  • the porosity is preferably 50% or more, and more preferably 55% or more. On the other hand, when the porosity of the porous support is too high, the resulting ion exchange membrane may have poor mechanical strength, which may cause a problem in durability.
  • the porosity is preferably 80% or less, and more preferably 75% or less.
  • the drying step the impregnated body is dried in a state where the porous support is impregnated with the coating layer.
  • the drying conditions may be room temperature drying or hot air drying, but it is preferable to use a hot air dryer in order to increase the working efficiency.
  • the drying temperature may be, for example, about 50 to 110 ° C., and preferably about 60 to 90 ° C.
  • the release film is peeled from the dried impregnated body, and an ion exchange membrane in which an impregnated layer (or ion exchange layer) of an ionic vinyl alcohol polymer is formed inside the porous support can be obtained.
  • the degree of crystallinity of the vinyl alcohol polymer component (a-1) increases, so that the number of physical crosslink points increases and the mechanical strength of the resulting ion exchange membrane increases.
  • the cation group or anion group is concentrated in the amorphous part and the formation of the ion exchange path is promoted, the charge density is increased and the counter ion selectivity is improved.
  • the method of heat treatment is not particularly limited, and a hot air dryer or the like is generally used.
  • the temperature of the heat treatment is not particularly limited, but is preferably 50 to 250 ° C.
  • the temperature of the heat treatment is less than 50 ° C., the effect of increasing the mechanical strength of the resulting ion exchange membrane may not be sufficient.
  • the temperature is more preferably 80 ° C. or higher, and further preferably 100 ° C. or higher. If the temperature of the heat treatment exceeds 250 ° C., the vinyl alcohol polymer may be melted.
  • the temperature is more preferably 230 ° C. or less, and further preferably 200 ° C. or less.
  • the heat treatment time is usually about 1 minute to 10 hours.
  • the heat treatment is desirably performed in an inert gas (eg, nitrogen gas, argon gas, etc.) atmosphere.
  • the method for the crosslinking treatment is not particularly limited as long as it is a method capable of bonding the molecular chains of the polymer by chemical bonding. Usually, a method of immersing the ion exchange layer in a solution containing a crosslinking agent is used.
  • the crosslinking agent include glutaraldehyde, formaldehyde, glyoxal and the like.
  • the concentration of the crosslinking agent is usually preferably in the range of 0.001 to 10% by volume of the volume concentration of the crosslinking agent relative to the solution.
  • both heat treatment and cross-linking treatment may be performed, or only one of them may be performed.
  • the order of processing to be performed is not particularly limited. A plurality of treatments may be performed simultaneously, but it is preferable to perform a crosslinking treatment after the heat treatment. This is because a part that is difficult to be cross-linked is generated by performing heat treatment, and then a cross-linking part, in particular a chemical cross-linking part, is performed so that the cross-linked part and the non-cross-linked part coexist, thereby increasing the film strength. It is particularly preferable in the order of the heat treatment and the crosslinking treatment from the viewpoint of the mechanical strength of the resulting ion exchange membrane.
  • the ion exchange membrane 1 As shown in FIG. 1, the ion exchange membrane 1 thus obtained has an ionic vinyl alcohol on at least a part of the porous support 3 in the thickness direction from one surface of the porous support 3. An impregnation layer (or an ion exchange layer) 2 of the system polymer is formed.
  • the value of the zeta potential ( ⁇ 1) on one surface of the ion exchange membrane and the zeta potential ( ⁇ 2) on the other surface has a relationship represented by the following formula (1), the potential difference between the front and back surfaces is reduced.
  • the electrode can be changed during the electrodialysis treatment.
  • zeta potential shows the value measured by the method described in the Example mentioned later. (
  • the zeta potentials ( ⁇ 1) and ( ⁇ 2) may preferably have the relationship of the following formula (2).
  • the zeta potentials ( ⁇ 1) and ( ⁇ 2) may preferably have a relationship of the following formula (3). (
  • the zeta potential ( ⁇ ) is a value indicating the potential of the sliding surface representing the spread of the electric double layer formed on the surface of the ion exchange membrane. That is, it is a measure of the ease of movement of ions inside and outside the membrane.
  • the zeta potential ( ⁇ ) has a negative value in the case of a cation exchange membrane and a positive value in the case of an anion exchange membrane. These values increase in absolute value when the charge density of the film is high. If the ion exchange layer (or impregnated layer) formed in the ion exchange membrane does not sufficiently fill the membrane, there is an electrical discontinuity between the surface of the ion exchange layer and the surface of the ion exchange membrane. There exists a space, which becomes a cause of hindering the movement of ions between the channel and the ion exchange membrane. In particular, when the ion concentration in the flow path is low, it becomes a factor for increasing the membrane resistance.
  • the ion exchange membrane preferably has a membrane resistance of, for example, 100 ⁇ cm 2 or less, and preferably 50 ⁇ cm 2 or less, in order to develop sufficient current efficiency for use as an ion exchange membrane for electrodialysis. Is more preferable, and 30 ⁇ cm 2 or less is more preferable.
  • the membrane resistance indicates a value measured by the method described in Examples described later.
  • the ion exchange membrane preferably has a dynamic transport number of, for example, 0.90 or more in order to exhibit sufficient ion exchange properties for use as an ion exchange membrane for electrodialysis. It is more preferably 95 or more, particularly preferably 0.98 or more.
  • a dynamic transportation number shows the value measured by the method described in the Example mentioned later here.
  • the ion exchange membrane of the present invention can be used for various applications.
  • the ion exchange membrane of the present invention having an ion exchange layer made of either a cationic polymer or an anionic polymer is excellent in organic contamination resistance, has low membrane resistance, is efficiently and stably over a long period of time.
  • Electrodialysis can be performed. Therefore, such ion exchange membranes are used for desalting organic substances (food, pharmaceutical raw materials, etc.), desalting whey, concentrating salts, desalting sugar solutions, desalting seawater and brine, desalting tap water, Suitable for softening water. In general, it is particularly suitably used as an anion exchange membrane in which organic contamination is remarkable.
  • the ion exchange membrane of the present invention uses a polyvinyl alcohol polymer, it is excellent in resistance to organic contamination. Furthermore, since it has a zeta potential having a specific relationship between the front and back surfaces, it is possible to suppress the ion concentration polarization in the ion exchange membrane during electrodialysis and improve current efficiency, and various electrodialysis devices Can be used.
  • the electrodialysis apparatus of the present invention comprises an anode and a cathode, A desalting chamber and a concentrating chamber formed by alternately arranging an anion exchange membrane and a cation exchange membrane between the anode and the cathode;
  • An electrodialysis apparatus comprising at least The anion exchange membrane and the cation exchange membrane are each composed of the above-described ion exchange membrane of the present invention.
  • the ion exchange membrane of the present invention Since the ion exchange membrane of the present invention has a small zeta potential difference between the front and back surfaces of the membrane, it can be arranged on either side of the front and back surfaces toward the desalting chamber side, but the absolute value of the zeta potential is It is preferable to arrange the large surface toward the desalting chamber side.
  • the electrodialysis apparatus of the present invention can be used favorably particularly as a polarity-changing electrodialysis apparatus because the resistance difference between the front and back surfaces of the ion exchange membrane does not change much.
  • FIG. 2 the schematic of the electrodialysis apparatus which is one Embodiment of this invention is shown.
  • the electrodialysis apparatus includes electrodes 4 and 7 and anion exchange membranes 5 and cation exchange membranes 6 arranged alternately.
  • an anion exchange membrane 5 and a cation exchange membrane 6 are alternately arranged between the anode 4 and the cathode 7 between the electrodes to alternately form a desalting chamber and a concentration chamber.
  • the liquid to be processed supplied from the liquid tank 8 to be processed is supplied to the desalting chambers 11 and 11, and when a voltage is passed to the electrodes at both ends, cations and anions from the desalting chambers 11 and 11 are respectively on the cathode side and Move to the anode side.
  • the desalting solution 10 is discharged from the desalting chamber, and the concentrated solution 9 is discharged from the concentration chamber 12.
  • the electrodialysis apparatus is an electrode conversion type electrodialysis apparatus
  • the deposits adhered to the exchange membrane especially anion exchange membrane
  • the cell resistance when the surface having a high zeta potential is disposed toward the desalting chamber side.
  • the ratio (R2 / R1) of each cell resistance 10 minutes after the start of the treatment is, for example, 7 or less May be sufficient, Preferably it is 5 or less, More preferably, it may be 3 or less.
  • R1 and R2 show the value measured by the method described in the Example mentioned later.
  • a dispersion liquid dispersed in a (NaCl) solution was injected.
  • the monitor particles were electrophoresed at each level in the cell depth direction, and the zeta potential was measured. Electrophoresis was performed under the condition of an applied voltage of 60V.
  • the dynamic transport number of the ion exchange membrane is determined by sandwiching the ion exchange membrane in a two-chamber cell having a platinum black electrode plate shown in FIG.
  • the effective membrane area was 8.0 cm 2 (2 cm ⁇ 4 cm). Thereafter, the measurement solution was taken out, and the solution was diluted in a 300 ml volumetric flask.
  • the membrane resistance was measured by sandwiching an ion exchange membrane in a two-chamber cell having a platinum black electrode plate shown in FIG. 4 and filling a 0.5 mol / L-NaCl solution on both sides of the membrane.
  • the resistance between the electrodes at 25 ° C. was measured at a frequency of 1000 cycles / second), and was determined from the difference between the resistance between the electrodes and the resistance between the electrodes when no anion exchange membrane was installed.
  • the membrane used for the above measurement was previously equilibrated in a 0.5 mol / L-NaCl solution.
  • Viscosity measurement method The viscosity (mPa ⁇ s) of the aqueous polymer solution was determined by measuring at a temperature of 20 degrees and a rotor rotational speed of 60 rpm with a B-type viscometer manufactured by Tokyo Keiki Co., Ltd.
  • the content of the cationic monomer unit in the cationic polymer that is, the content of the cationic polymer in the cationic polymer was measured.
  • the ratio of the number of methacrylamidopropyltrimethylammonium chloride monomer units to the total number of monomer units was 2 mol%.
  • the degree of polymerization was 1700, and the degree of saponification was 98.5 mol%.
  • aqueous solution of a cationic polymer P-3 which is a block copolymer of polyvinyl alcohol-polyvinylbenzyltrimethylammonium chloride having a solid content concentration of 18%. It was.
  • Table 2 shows the polymerization conditions such as the type and amount of polyvinyl alcohol having a mercapto group at the end, the type and amount of cationic monomer, the amount of water, the amount of polymerization initiator (potassium persulfate), etc. Except for the change, cationic polymers P-4 and P-5, which are block copolymers, were synthesized in the same manner as the cationic polymer P-3. Table 2 shows the physical properties of the cationic polymers P-4 and P-5.
  • 172 g of sodium p-styrenesulfonate was dissolved in 300 g of water, and this was added to the previously prepared aqueous solution of pH 3.0 with stirring, and then heated to 70 ° C. while bubbling nitrogen into the aqueous solution, Further, nitrogen bubbling was performed by continuing bubbling of nitrogen at 70 ° C. for 30 minutes. After nitrogen substitution, 121 mL of a 2.5% aqueous solution of potassium persulfate (KPS) was sequentially added to the above aqueous solution over 1.5 hours to start and proceed with block copolymerization.
  • KPS potassium persulfate
  • Anionic polymer P-6 which is a block copolymer of polyvinyl alcohol-poly (sodium styrenesulfonate) having a solid content of 18%, is maintained at 1 ° C. for 1 hour to allow further polymerization, and then cooled. An aqueous solution of was obtained. A portion of the obtained aqueous solution was dried, dissolved in heavy water, and subjected to 1 H-NMR measurement at 400 MHz. As a result, the content of anionic monomer units in the block copolymer, that is, the The ratio of the number of p-sodium styrenesulfonate monomer units to the total number of monomer units in the polymer was 10 mol%. Table 3 shows the physical properties of the anionic polymer P-6.
  • Table 1 shows the polymerization conditions such as the type and amount of polyvinyl alcohol having a mercapto group at the end, the type and amount of anionic monomer, the amount of water, the amount of polymerization initiator (potassium persulfate), etc. Except for the changes, anionic polymers P-7 and P-8, which are block copolymers, were synthesized in the same manner as in the anionic polymer P-6. Table 3 shows the physical properties of the anionic polymers P-7 and P-8.
  • a P-1 aqueous solution having a concentration of 12 wt% was prepared using deionized water. This polymer aqueous solution was applied to a PET film to a thickness of 800 ⁇ m using a bar coater to form a coating layer (cast layer). Next, vinylon paper (basis weight: 36 g / m 2 , thickness: 90 ⁇ m, porosity: 67%) is superimposed on the cast layer surface of the PET film on which this cast layer is formed, and impregnated with vinylon paper with P-1 aqueous solution. I let you. Then, after drying for 30 minutes at a temperature of 80 ° C.
  • the PET film was peeled off to prepare an impregnated coating film.
  • the film thus obtained was heat treated at 160 ° C. for 30 minutes to cause physical crosslinking.
  • the film was immersed in an aqueous electrolyte solution of 2 mol / L sodium sulfate for 24 hours.
  • Concentrated sulfuric acid was added to the aqueous solution so as to have a pH of 1, and then the film was immersed in a 0.05% by volume glutaraldehyde aqueous solution, followed by stirring with a stirrer at 25 ° C. for 24 hours for crosslinking.
  • glutaraldehyde aqueous solution a product obtained by diluting “glutaraldehyde” (25% by volume) manufactured by Ishizu Pharmaceutical Co., Ltd. with water was used. After the cross-linking treatment, the film was immersed in deionized water, and while deionized water was exchanged several times in the middle, the film was immersed until the film reached a swelling equilibrium to obtain an anion exchange membrane.
  • a P-3 aqueous solution having a concentration of 12 wt% was prepared using deionized water. This polymer aqueous solution was directly applied to vinylon paper (basis weight: 36 g / m 2 , thickness: 90 ⁇ m, porosity: 67%) using a bar coater. Then, after drying for 30 minutes at temperature 80 degreeC with hot air dryer DKM400 (made by YAMATO), the coating film was produced. The coating amount of the dry resin was 15 g / m 2 . The film thus obtained was heat treated at 160 ° C. for 30 minutes to cause physical crosslinking.
  • the film was immersed in an aqueous electrolyte solution of 2 mol / L sodium sulfate for 24 hours.
  • Concentrated sulfuric acid was added to the aqueous solution so as to have a pH of 1, and then the film was immersed in a 0.05% by volume glutaraldehyde aqueous solution, followed by stirring with a stirrer at 25 ° C. for 24 hours for crosslinking.
  • glutaraldehyde aqueous solution a product obtained by diluting “glutaraldehyde” (25% by volume) manufactured by Ishizu Pharmaceutical Co., Ltd. with water was used.
  • the film was immersed in deionized water, and while deionized water was exchanged several times in the middle, the film was immersed until the film reached a swelling equilibrium to obtain an anion exchange membrane.
  • FIGS. 5A and 5B The anion exchange membrane 21 shown in FIGS. 5A and 5B was produced as follows.
  • Fig.5 (a) is a top view of the anion exchange membrane 21,
  • (b) has shown sectional drawing of the broken-line location of said (a).
  • a P-3 aqueous solution having a concentration of 12 wt% was prepared using deionized water. This polymer aqueous solution was directly applied to vinylon paper (basis weight: 36 g / m 2 , thickness: 90 ⁇ m, porosity: 67%) using a bar coater. Then, it dried at 80 degreeC temperature for 30 minutes with hot air dryer DKM400 (made by YAMATO), and produced the sheet
  • the coating amount of the dry resin was 15 g / m 2 .
  • a sheet having this coating layer was cut into a 197 mm ⁇ 78 mm rectangle as a sheet 23.
  • a polyethylene terephthalate / ethylene-vinyl acetate copolymer (EVA) heat-fusible film (CP roll, EVA part thickness 35 ⁇ m: manufactured by Fuji Plastics Co., Ltd.) is used as shown in FIG.
  • the sheet was cut out as a 197 mm ⁇ 78 mm rectangular sheet 22 having a cutout portion of 115 mm ⁇ 48 mm.
  • thermocompression bonding an EVA filling portion 24 made of molten EVA was formed on the contact surface between the sheet 22 and the sheet 23.
  • six through-holes with a diameter of 9 mm were formed as shown in FIG. 5A, and the film thus obtained was heat-treated at 160 ° C. for 30 minutes to cause physical crosslinking.
  • the membrane was immersed in an aqueous electrolyte solution of 2 mol / L sodium sulfate for 24 hours.
  • Concentrated sulfuric acid was added to the aqueous solution so that the pH was 1, and then the membrane was immersed in a 0.05% by volume glutaraldehyde aqueous solution and stirred with a stirrer at 25 ° C. for 24 hours for crosslinking treatment.
  • glutaraldehyde aqueous solution a product obtained by diluting “glutaraldehyde” (25% by volume) manufactured by Ishizu Pharmaceutical Co., Ltd. with water was used.
  • the membrane was immersed in deionized water, and the membrane was immersed until the membrane reached a swelling equilibrium while exchanging the deionized water several times in the middle, whereby an anion exchange membrane 21 was obtained.
  • Example 1> (Measurement of cell resistance) A desalting test was carried out using a small electrodialysis apparatus microacylator S3 (manufactured by Astom Co., Ltd.). At that time, using AEM-1 as the anion exchange membrane and CEM-1 as the cation exchange membrane, the surface having the high zeta potential of both membranes is directed to the desalting chamber side, and between the cathode and anode electrodes. They were alternately arranged and tightened. At this time, a 3000 ppm sodium chloride aqueous solution was circulated and supplied to the desalting chamber and the concentration chamber (capacity 500 mL), and electrodialysis was performed at 25 ° C.
  • Table 6 shows the results of measuring the cell resistance (R1) 10 minutes after the start of the treatment.
  • the anion exchange membrane was replaced with AEM-1 and the cation exchange membrane with the high zeta potential of CEM-1 facing the concentration chamber side, and was alternately arranged and clamped between the cathode and anode electrodes.
  • Table 6 shows the results obtained by performing electrodialysis in the same manner as described above and measuring the cell resistance (R2) 10 minutes after the start of the treatment.
  • Evaluation criteria for blister test 1 Blister is not generated on the entire surface of the film 2: Blister is generated on a part of the film, but the amount is so small that there is no practical problem. 3: Blister uniformly on the entire surface of the film Has occurred
  • Examples 2 to 7 An electrodialysis test was performed in the same manner as in Example 1 except that the anion exchange membrane and the cation exchange membrane were changed to those shown in Table 6. The obtained measurement results are shown in Table 6.
  • Example 8> (Polarity-changing electrodialysis test) By connecting a four-way switch to the electrode of the small electrodialyzer Micro Acylizer S3 (manufactured by Astom Co., Ltd.), the electrode can be manually switched, and a polarity switching type electrodialysis test was performed. At that time, AEM-2 is used for the anion exchange membrane and CEM-2 is used for the cation exchange membrane, with the high zeta potential of both membranes facing the desalting chamber, and between the cathode and anode electrodes. They were alternately arranged and tightened.
  • a saline solution having a concentration of 3000 ppm was circulated and supplied to the desalting chamber and the concentration chamber (capacity 500 mL), AEM-2 was connected to the anode and CEM-2 was connected to the cathode, and a current density of 10 mA / cm 2 at 25 ° C. Electrodialysis was performed for a minute. The electrode was then converted (Conversion 1) and electrodialyzed for 10 minutes. Then, electrode conversion was changed (conversion 2) and electrodialysis was performed for 10 minutes. Furthermore, electrode conversion was changed (conversion 3) and electrodialysis was performed for 10 minutes. The cell resistance at this time was 26 ( ⁇ ). The cell resistance variation during this period is shown in FIG. Further, the accumulated power consumption during this period was 7.5 (WH). The relationship between the processing time and the integrated power consumption during this period is shown in FIG.
  • Examples 9 to 10> A polarity switching electrodialysis test was performed in the same manner as in Example 8 except that the anion exchange membrane and the cation exchange membrane were changed to the contents shown in Table 7. The obtained measurement results are shown in Table 7.
  • the ion exchange membrane of the present invention uses a specific ionic polymer, it has excellent fouling resistance and can be usefully used as a membrane for electrodialysis.
  • the ion exchange membrane of the present invention since the ion exchange membrane of the present invention has a small potential difference between the front and back surfaces, it can suppress the occurrence of ion concentration polarization in the membrane, and can not only reduce the value of cell resistance, but also for electrodialysis (especially electrode switching type). It can be suitably used as an ion exchange membrane for electrodialysis).

Abstract

 カチオン交換基またはアニオン交換基を有するイオン性ビニルアルコール系重合体を含むイオン交換膜を提供する。前記イオン交換膜1は、多孔性支持体3とイオン性ビニルアルコール系重合体とで構成されたイオン交換膜である。前記多孔性支持体は、一方の面から厚み方向に向かって、少なくとも一部に前記イオン性ビニルアルコール系重合体が含浸した含浸層2を備えている。前記イオン性ビニルアルコール系重合体は、カチオン交換基またはアニオン交換基から選択されるイオン交換基を有するイオン性ビニルアルコール系重合体である。イオン交換膜の一方の面のゼータ電位(ζ1)と他方の面のゼータ電位(ζ2)の値が式(1)で表される。 (|ζ1|-|ζ2|)/|ζ1|<0.5 (|ζ1|≧|ζ2|) (1)

Description

イオン交換膜およびその製造方法ならびに電気透析装置 関連出願
 本願は、日本国で2012年12月25日に出願した特願2012-281807の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、カチオン交換基またはアニオン交換基を有するイオン性ビニルアルコール系重合体を含むイオン交換膜に関し、電気透析用(特に、電極転換式電気透析用)のイオン交換膜として有用な、イオン性ビニルアルコール系重合体を含むイオン交換膜に関する。
 イオン交換膜は製塩や食品および地下かん水等の脱塩工程で電気透析法用の膜として利用される。電気透析法は、陰極と陽極の両電極間に陰イオン交換膜と陽イオン交換膜を交互に配列して締め付けた電気透析槽に直流電力を与えることでイオンを移動させる。その為、イオン濃度が減少する脱塩室とイオン濃度が増加する濃縮室が交互に設置される。通常、電気透析が進み濃縮室内の難溶性塩の濃度が上がってくると析出によるスケールが発生するため、濃縮室に酸等の薬品を添加してスケール発生を防止しているが、この場合、薬品量が多くなるという問題があった。
 そこで、濃縮室内の塩濃度がスケール発生の限界濃度に達する前に電極を反転させてスケール発生を防止する電極転換式電気透析(Electro Dialysis Reversal:EDR)が開発された。この方法では、正相運転中にイオン交換膜に付着した付着物を、逆相運転を行うことによって、電荷の反発力を利用してイオン交換膜から取り除くことができる。
 特許文献1には、カチオン性重合体またはアニオン性重合体成分とビニルアルコール系重合体成分とを含有するブロック共重合体またはグラフト共重合体からなるイオン交換体が、印刷によって支持層上に形成されたイオン交換膜が開示されている。
 特許文献1に開示されているイオン交換膜については、下述の特徴が開示されている。
 (1)耐ファウリング性:親水性高分子のビニルアルコール系重合体を構成要素に含むことによって、耐有機汚染性(耐ファウアリング)の問題の解決が期待できる。
 (2)機械的強度:イオン交換膜を支持体層で支持することにより、機械的強度が与えられる。
 (3)電気特性(抵抗):ビニルアルコール系重合体に、イオン性基を有する重合体を共重合することにより、電気特性を得ることが期待できる。
 また、特許文献2には、不織布シートと、該不織布シートの一方の表面に設けられたイオン交換樹脂コーティング層とからなり、該不織布シートは、繊維径が8~30μmの長繊維層を両面に有し且つ該長繊維層の間の中間層として繊維径が5μm以下の微細繊維層が繊維同士の融着により形成されている繊維層構造を有するイオン交換膜が開示されている。
 特許文献2では、2層の長繊維層の間に微細繊維層を中間層として配設することにより、安価な不織布シートを用いても、強度、寸法安定性や形状安定性を改善することができ、電解液と接触させたときの波打ちも有効に抑制され、膜抵抗が低いイオン交換膜を得ることができる。
国際公開第2010/119858号パンフレット 特開2012-40508号公報
 しかしながら、特許文献1および2のイオン交換膜では、膜の電気的な表裏差が大きく、膜中でのイオンの移動度に差が生じ膜内イオン濃度分極が発生するため、セル抵抗を低減できず、特に極性転換式電気透析に使用することができないという問題があった。さらに、特許文献2のイオン交換膜は、電気透析に使用した場合、基材シートとイオン交換樹脂との接着性が十分でなく、電気透析の長期運転中に樹脂が基材から剥離し、ブリスター(水疱)が発生する問題点があった。
 本発明の目的は、表裏間のゼータ電位差が少ない為、膜内のイオン濃度分極が発生しにくいイオン交換膜、およびその製造方法を提供することにある。
 本発明の別の目的は、長期間にわたり使用しても、ブリスターが発生しにくいイオン交換膜、およびその製造方法を提供することにある。
 本発明者らは、前記課題について種々検討した結果、特定のイオン性重合体を、特定の製造方法で多孔性支持体に適用すると、多孔性支持体に特定のイオン性重合体からなる含浸層を形成することができるだけでなく、液中で生じるイオン交換膜のゼータ電位を表裏間での差が小さくなるような特定の値にすることができることを見出した。さらに、このようなイオン交換膜は、膜内にイオン濃度分極が発生するのを抑制できるため、セルの電流効率を高くできること、及び含浸層が多孔性支持体内部で形成されるため、イオン性重合体が支持体から剥離することに由来するブリスターが発生しにくいことを見出し、本発明に到達した。
 本発明は、多孔性支持体とイオン性ビニルアルコール系重合体とで構成されたイオン交換膜であって、
 前記多孔性支持体は、一方の面から厚み方向に向かって、少なくとも一部に前記イオン性ビニルアルコール系重合体が含浸した含浸層を備えており、
 前記イオン性ビニルアルコール系重合体は、カチオン交換基またはアニオン交換基から選択されるイオン交換基を有するイオン性ビニルアルコール系重合体で少なくとも構成され、
 イオン交換膜の一方の面のゼータ電位(ζ1)と他方の面のゼータ電位(ζ2)の値が式(1)で表されるイオン交換膜である。
 (|ζ1|-|ζ2|)/|ζ1|<0.5   (|ζ1|≧|ζ2|)     (1)
 前記イオン交換膜において、多孔性支持体は、不織布(たとえば、湿式不織布、好ましくはポリビニルアルコール短繊維の湿式不織布)または、合成樹脂性ファブリックであるのが好ましい。また、多孔性支持体の空隙率が40~90%であってもよい。
 前記イオン交換膜において、イオン性ビニルアルコール系重合体は、イオン交換性単量体とポリビニルアルコール系単量体との共重合体であり、イオン性ビニルアルコール系重合体のイオン交換性単量体含有量が0.1モル%以上であってもよい。また、イオン性ビニルアルコール系重合体は、イオン交換性単量体を重合してなる重合体成分とポリビニルアルコール成分とを含有する、ブロック共重合体であってもよい。
 また、前記イオン交換膜において、イオン性ビニルアルコール系重合体が、多孔性支持体に適用された状態で架橋処理された架橋体であってもよい。
 このようなイオン交換膜は、各種電気透析装置に用いることができるが、特に電極転換式電気透析装置に好適に用いることが可能である。
 また、本発明は、イオン交換膜の製造方法についても包含しており、前記製造方法は、
 イオン性ビニルアルコール系重合体溶液を準備する工程;
 剥離フィルムの上に、前記イオン性ビニルアルコール系重合体溶液を塗布して、イオン性ビニルアルコール系重合体の塗布層を形成する工程;
 前記塗布層に多孔性支持体を重ね合わせ、この多孔性支持体の少なくとも一部にイオン性ビニルアルコール系重合体を含浸させ、含浸体を形成する工程;
 前記塗布層と多孔性支持体とを重ねあわせた状態で、この含浸体を乾燥させる工程;および
 前記剥離フィルムを、乾燥した含浸体から剥離する工程;を含んでいる。
 前記製造方法において、剥離工程の後、イオン性ビニルアルコール系重合体に熱処理および/または架橋処理(化学的架橋処理)を施してもよく、さらに、イオン性ビニルアルコール系重合体への熱処理工程の後、イオン性ビニルアルコール系重合体に架橋処理を施してもよい。
 本発明は、電気透析装置についても包含し、前記電気透析装置は、
 陽極および陰極と、
 前記陽極および陰極の間に陰イオン交換膜と陽イオン交換膜とを交互に配列することにより形成した脱塩室および濃縮室と、
を少なくとも備えている電気透析装置であって、
 前記陰イオン交換膜および陽イオン交換膜は、それぞれ上述のイオン交換膜で構成されている。
 なお、本発明において、含浸とは、イオン性ビニルアルコール系重合体が多孔性支持体の空隙および/または細孔をほぼ埋めている状態を意味している。
 本発明によれば、特定のイオン性重合体を、特定の製造方法で多孔性支持体に適用することによって、液中で生じるイオン交換膜のゼータ電位を表裏間で少なくすることが可能である。このことにより、電気透析時のイオン交換膜内でのイオン濃度分極の発生を抑制することができ、電流効率を高めることができる。
 また、多孔性支持体内に特定のイオン性重合体が含浸されているので、ブリスターを発生しにくいだけでなく、外部漏水を起こさずに、長期間にわたり電気透析に用いることができるイオン交換膜を得ることができる。
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解される。しかしながら、図面は必ずしも一定の縮尺で示されておらず、本発明の原理を示す上で誇張したものになっている。実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付のクレームによって定まる。
本発明の一実施形態であるイオン交換膜を説明するための概略断面図である。 本発明の一実施形態であるイオン交換膜を用いる電気透析装置を説明するための概略図である。 イオン交換膜の動的輸率試験装置の概略図である。 イオン交換膜の膜抵抗試験装置の概略図である。 (a)は陰イオン交換膜AEM-9の形状を説明するための平面図であり、(b)は、その断面図である。 実施例8で行われた極性転換式電気透析試験におけるセル抵抗の変動を示すグラフである。 実施例8で行われた極性転換式電気透析試験における処理時間と積算消費電力との関係を示すグラフである。
 図1は、本発明のイオン交換膜の一実施形態を説明する概略断面図である。図1では、イオン交換膜1は、一枚の湿式不織布などで形成された多孔性支持体3と、イオン性ビニルアルコール系重合体とで構成されている。
 多孔性支持体3は、一方の面から厚み方向に向かって、その内部の少なくとも一部にイオン性ビニルアルコール系重合体が含浸した含浸層2を備えている。含浸層2が多孔性支持体内部に存在しているため、イオン交換膜1は、使用時の外部漏水を防止することが可能である。
 図1に示すように、多孔性支持体3の厚みに対して、含浸層2は少なくとも50%以上の厚みを示していてもよい。この場合、含浸層の厚みは、多孔性支持体3の内部に存在する空隙および/または細孔がイオン性ビニルアルコール系重合体により実質的に充填されている部分についての厚みを指すものとする。また、イオン性ビニルアルコール系重合体により実質的に充填されているとは、空隙および/または細孔の過半量がイオン性ビニルアルコール系重合体により充填している状態を指すものとする。
 イオン性ビニルアルコール系重合体は、カチオン性重合体又はアニオン性重合体から選択されるイオン性ビニルアルコール系重合体で構成されている。
 (イオン性ビニルアルコール系重合体)
 本発明で用いられるイオン性ビニルアルコール系重合体は、カチオン交換基またはアニオン交換基から選択されるイオン交換基を有するイオン性ビニルアルコール系重合体で少なくとも構成される。なお、発明の効果を阻害しない限り、イオン性ビニルアルコール系重合体は、他の重合体(例えば、非イオン性ビニルアルコール系重合体など)と組み合わせて用いてもよい。
 イオン性ビニルアルコール系重合体は、ビニルアルコール系単量体(A-1)に由来する構造単位とする重合体成分(a-1)及びイオン交換性単量体(A-2)に由来する構造単位とする重合体成分(a-2)で少なくとも構成された共重合体である。
 イオン交換性単量体は、アニオン交換基を含む単量体であってもよく、カチオン交換基を含む単量体であってもよい。共重合体は、ランダム、ブロックの任意の形態であればよいが、ブロック共重合体であるのが好ましい。
 (ビニルアルコール系単量体との共重合体)
 本発明においては、上記のカチオン交換基またはアニオン交換基を有するイオン性ビニルアルコール系重合体は、ビニルアルコール系単量体との共重合体構造を有する。なお、ビニルアルコール系単量体は、けん化によりビニルアルコール構造を形成可能な単量体も含まれ、例えば、そのような単量体としては、後述するようなビニルエステル系単量体が含まれてもよい。ビニルアルコール系単量体との共重合構造を取ることが、イオン交換膜の強度、柔軟性、および、物理的または化学的架橋性の点から好ましい。
 (ビニルアルコール系単量体とイオン交換性単量体との比率)
 本発明で用いられるイオン性ビニルアルコール系重合体において、ビニルアルコール系単量体(A-1)とイオン交換性単量体(A-2)との比率は、ビニルアルコール系単量体(A-1)が99~50モル%,イオン交換性単量体(A-2)が1~50モル%[単量体(A-1)と単量体(A-2)との合計量を100モル%とする]の範囲内にあることが好ましい。より好ましくは、ビニルアルコール系単量体(A-1)が97~60モル%、イオン交換性単量体(A-2)が3~40モル%の範囲内にあることが好ましい。
 イオン交換性単量体の比率が低すぎると、イオン交換膜中の有効荷電密度が低下し、膜の対イオン選択性が低下するおそれがある。また、イオン交換性重合体の比率が高すぎると、イオン交換膜の膨潤度が高くなり、機械的強度が低下するおそれがある。
 (アニオン交換基を有するイオン性ビニルアルコール系重合体)
 本発明で用いるアニオン交換基を有するイオン性ビニルアルコール系重合体(カチオン性重合体と称することがある)は、分子中にアニオン交換基(カチオン基と称することがある)を含有する共重合体である。当該カチオン基は、主鎖、側鎖、末端のいずれに含有されていても構わない。カチオン基としては、アンモニウム基、イミニウム基、スルホニウム基、ホスホニウム基などが例示される。また、アミノ基やイミノ基のように、水中においてその一部が、アンモニウム基やイミニウム基に変換し得る官能基を含有する重合体も、本発明のカチオン基を持つ重合体に含まれる。この中で工業的に入手しやすい観点から、アンモニウム基が好ましい。アンモニウム基としては、1級アンモニウム基(アンモニウム塩)、2級アンモニウム基(アンモニウム塩)、3級アンモニウム基(アンモニウム塩)、4級アンモニウム基(アンモニウム塩)のいずれを用いることができるが、4級アンモニウム基(好ましくはトリアルキルアンモニウム基)がより好ましい。カチオン性重合体は、1種類のみのカチオン基を含有してもよいし、複数種のカチオン基を含有してもよい。また、カチオン基の対アニオンは特に限定されず、ハロゲン化物イオン、水酸化物イオン、リン酸イオン、カルボン酸イオンなどが例示される。この中で、入手の容易性の点から、ハロゲン化物イオンが好ましく、塩化物イオンがより好ましい。カチオン性重合体は、1種類のみの対アニオンを含有してもよいし、複数種の対アニオンを含有してもよい。
 カチオン性重合体は、ビニルアルコール系構造単位と、上記カチオン基を含有する構造単位とで少なくとも構成される共重合体であればよく、発明の効果を阻害しない限り、上記カチオン基を含有しない構造単位をさらに含む共重合体であってもよい。また、これらの重合体は架橋性を有するものであることが好ましい。カチオン性重合体は、1種類のみの重合体からなるものであってもよいし、複数種のカチオン性重合体を含むものであってもよい。
 また、発明の効果を阻害しない限り、これらカチオン性重合体と、別の重合体とを組み合わせて用いてもよい。ここでカチオン性重合体以外の重合体はアニオン性重合体でないことが望ましい。
 例えば、好ましいカチオン性重合体としては、ビニルアルコール系構造単位と、以下の一般式(1)~(8)の構造単位とを有する重合体が例示される。
Figure JPOXMLDOC01-appb-C000001
[式中、Rは水素原子または炭素数1~4のアルキル基を表す。R、R、Rはそれぞれ独立に、水素原子、または、置換基を有していてもよい炭素数1~18のアルキル基、アリール基若しくはアラルキル基を表わす。R、R、Rは、相互に連結して飽和若しくは不飽和環状構造を形成していてもよい。Zは-O-、-NH-、または-N(CH)-を表し、Yは酸素、窒素、硫黄またはリン原子を含んでもよい総炭素数1~8の二価の連結基を表す。Xはアニオンを表す。]
 好ましくは、R、R、Rは、それぞれ独立に、水素原子、直鎖または分岐鎖C1-8アルキル基[より好ましくは直鎖または分岐鎖C1-4アルキル基(例えば、メチル基、エチル基、イソプロピル基、t-ブチル基など)]、フェニル基、ナフチル基、ベンジル基、フェネチル基などであってもよい。R、R、Rは、それぞれ異なっている基であってもよいが、同一であるのが好ましい。
 一般式(1)中の対アニオンXとしては、ハロゲン化物イオン、水酸化物イオン、リン酸イオン、カルボン酸イオンなどが例示される。一般式(1)で表わされる構造単位を形成できるカチオン性単量体としては、3-(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド、3-(メタ)アクリルアミド-3,3-ジメチルプロピルトリメチルアンモニウムクロライドなど3-(メタ)アクリルアミド-アルキルトリアルキルアンモニウム塩などが例示される。
Figure JPOXMLDOC01-appb-C000002
[式中、Rは水素原子またはメチル基を表わす。R、R、R、およびXは一般式(1)と同義である。]
 一般式(2)で表わされる構造単位を形成できるカチオン性単量体としては、ビニルベンジルトリメチルアンモニウムクロライドなどビニルベンジルトリアルキルアンモニウム塩などが例示される。
Figure JPOXMLDOC01-appb-C000003
[式中、R、R、およびXは一般式(1)と同義である。]
Figure JPOXMLDOC01-appb-C000004
[式中、R、R、およびXは一般式(1)と同義である。]
 一般式(3)および一般式(4)で表わされる構造単位を形成できるカチオン性単量体としては、ジアリルジメチルアンモニウムクロライドなどジアリルジアルキルアンモニウム塩が例示でき、これらの単量体が環化重合することにより、上記構造単位を形成することができる。
Figure JPOXMLDOC01-appb-C000005
[式中、nは0または1を表わす。RおよびRは一般式(1)と同義である。]
 一般式(5)で表わされる構造単位を形成できるカチオン性単量体としては、アリルアミンが例示される。
Figure JPOXMLDOC01-appb-C000006
[式中、nは0または1を表わす。R、R、R、およびXは一般式(1)と同義である。]
 一般式(6)で表わされる構造単位を形成できるカチオン性単量体としては、アリルアミン塩酸塩などアリルアンモニウム塩が例示される。
Figure JPOXMLDOC01-appb-C000007
[式中、Rは水素原子またはメチル基を表し、Aは-CH(OH)CH-、-CHCH(OH)-、-C(CH)(OH)CH-、-CHC(CH)(OH)-、-CH(OH)CHCH-、または-CHCHCH(OH)-を表す。Eは-N(Rまたは-N(R・Xを表し、Rは水素原子またはメチル基を表す。Xはアニオンを表す。]
 一般式(7)で表わされる構造単位を形成できるカチオン性単量体として、N-(3-アリルオキシ-2-ヒドロキシプロピル)ジメチルアミンまたはその4級アンモニウム塩、N-(4-アリルオキシ-3-ヒドロキシブチル)ジエチルアミンまたはその4級アンモニウム塩が例示される。
Figure JPOXMLDOC01-appb-C000008
[式中、Rは水素原子またはメチル基、Rは水素原子、メチル基、エチル基、n-プロピル基またはi-プロピル基、Rは水素原子、メチル基、およびエチル基をそれぞれ表わす。]
 一般式(8)で表わされる構造単位を形成できるカチオン性単量体として、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等が例示される。
 (カチオン交換基を有するイオン性ビニルアルコール系重合体)
 本発明で用いられるカチオン交換基を有するイオン性ビニルアルコール系重合体(アニオン性重合体と称することがある)は、分子中にカチオン交換基(アニオン基と称することがある)を含有する共重合体である。当該アニオン基は、主鎖、側鎖、末端のいずれに含有されていても構わない。アニオン基としては、スルホネート基、カルボキシレート基、ホスホネート基などが例示される。また、スルホン酸基、カルボキシル基、ホスホン酸基のように、水中において少なくともその一部が、スルホネート基、カルボキシレート基、ホスホネート基に変換し得る官能基も、アニオン基に含まれる。この中で、イオン解離定数が大きい点から、スルホネート基が好ましい。アニオン性重合体は、1種類のみのアニオン基を含有していてもよいし、複数種のアニオン基を含有していてもよい。また、アニオン基の対カチオンは特に限定されず、水素イオン、アルカリ金属イオンなどが例示される。この中で、設備の腐蝕問題が少ない点から、アルカリ金属イオンが好ましい。アニオン性重合体は、1種類のみの対カチオンを含有していてもよいし、複数種の対カチオンを含有していてもよい。
 アニオン性重合体は、ビニルアルコール系構造単位と、上記アニオン基を含有する構造単位とで少なくとも構成される共重合体であればよく、必要に応じて上記アニオン基を含有しない構造単位をさらに含む共重合体であってもよい。また、これらの重合体は架橋性を有するものであることが好ましい。アニオン性重合体は、1種類のみの重合体からなるものであってもよいし、複数種のアニオン性重合体を含むものであってもよい。
 また、発明の効果を阻害しない限り、これらアニオン性重合体と、別の重合体とを組み合わせて用いてもよい。ここでアニオン性重合体以外の重合体はカチオン性重合体でないことが望ましい。
 例えば、好ましいアニオン性重合体としては、ビニルアルコール系構造単位と、以下の一般式(9)および(10)の構造単位とを有する重合体が例示される。
Figure JPOXMLDOC01-appb-C000009
[式中、Rは水素原子またはメチル基を表す。Gは-SOH、-SO 、-POH、-PO 、-COHまたは-CO を表す。Mはアンモニウムイオンまたはアルカリ金属イオンを表す。]
 一般式(9)で表わされる構造単位を形成できるアニオン性単量体としては、2-アクリルアミド-2-メチルプロパンスルホン酸などが例示される。
Figure JPOXMLDOC01-appb-C000010
[式中、Rは水素原子またはメチル基を表わし、Tは水素原子がメチル基で置換されていてもよいフェニレン基またはナフチレン基を表わす。Gは一般式(9)と同義である。]
 一般式(10)で表わされる構造単位を形成できるアニオン性単量体としては、p-スチレンスルホン酸ナトリウムなどp-スチレンスルホン酸塩などが例示される。
 また、アニオン性単量体としては、ビニルスルホン酸、(メタ)アリルスルホン酸などのスルホン酸またはその塩、フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のジカルボン酸、その誘導体またはその塩なども例示される。
 一般式(9)または(10)において、Gは、より高い荷電密度を与えるスルホネート基、スルホン酸基、ホスホネート基、またはホスホン酸基であることが好ましい。また一般式(9)および一般式(10)中、Mで表わされるアルカリ金属イオンとしてはナトリウムイオン、カリウムイオン、リチウムイオン等が挙げられる。
 イオン交換基を有するイオン性ビニルアルコール系重合体のけん化度は、イオン交換膜を形成することが出来る限り特に限定されないが、例えば、40~99.9モル%であってもよい。けん化度が低すぎると、結晶性が低下し、イオン交換体の耐久性が不足するおそれがある。けん化度は、好ましくは60モル%以上であってもよく、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは95モル%以上であってもよい。通常、けん化度は99.9モル%以下である。このとき、前記ビニルアルコール系重合体が複数種のビニルアルコール系重合体の混合物である場合のけん化度は、JIS K6726に準じて測定した値である。本発明で用いるイオン基を含有しないビニルアルコール系重合体のけん化度も、上記範囲であることが好ましい。
 イオン基を含有するビニルアルコール系重合体の粘度平均重合度(以下単に重合度と言うことがある)は特に限定されないが、50~10000であることが好ましい。重合度が50未満では、実用上でイオン交換体が充分な耐久性を保持できないおそれがある。重合度が100以上であることがより好ましい。重合度が10000を超えると、水溶液にした際に粘度が高すぎて取り扱いが不便であるおそれがある。重合度が8000以下であることがより好ましい。このとき、前記ビニルアルコール系重合体が複数種のビニルアルコール系重合体の混合物である場合の重合度は、混合物全体としての平均の重合度をいう。なお、前記ビニルアルコール系重合体の粘度平均重合度は、JIS K6726に準じて測定した値である。本発明で用いられるイオン基を含有しないビニルアルコール系重合体の重合度も、上記範囲であることが好ましい。
 (カチオン基を有する単量体とビニルアルコール系単量体との共重合体)
 好ましいカチオン基を有するビニルアルコール系共重合体としては、入手容易である点からメタクリルアミドアルキルトリアルキルアンモニウム塩とビニルアルコール成分との共重合体、ビニルベンジルトリアルキルアンモニウム塩とビニルアルコール成分との共重合体、ジアリルジアルキルアンモニウム塩とビニルアルコール成分との共重合体などが挙げられる。
 なお、カチオン基を含有するビニルアルコール系重合体、またはカチオン基を含有するビニルアルコール系重合体とカチオン基を含有しないビニルアルコール系重合体との混合物においては、カチオン性重合体中の単量体単位の総数に対するビニルアルコール単位の数の割合が、50モル%以上であることが好ましく、55モル%以上であることがより好ましい。ここでカチオン性重合体以外の重合体(カチオン基を含有しないビニルアルコール系重合体)はアニオン性重合体でないことが望ましい。
 (アニオン基を有する単量体とビニルアルコール系単量体との共重合体)
 好ましいアニオン基を有するビニルアルコール系共重合体としては、入手容易である点から、2-アクリルアミド-2-メチルプロパンスルホン酸塩成分とビニルアルコール成分との共重合体、p-スチレンスルホン酸塩成分とビニルアルコール成分との共重合体などが挙げられる。
 なお、アニオン基を含有するビニルアルコール系重合体、またはアニオン基を含有するビニルアルコール系重合体とアニオン基を含有しないビニルアルコール系重合体との混合物においては、アニオン性重合体中の単量体単位の総数に対するビニルアルコール単位の数の割合が、50モル%以上であることが好ましく、55モル%以上であることがより好ましい。ここでアニオン性重合体以外の重合体(アニオン基を含有しないビニルアルコール系重合体)はカチオン性重合体でないことが望ましい。
(ブロック共重合体)
 本発明において、イオン性ビニルアルコール系重合体は、カチオン基またはアニオン基を有する単量体単位とビニルアルコール系単量体単位とを含む共重合体から構成されている。イオン性ビニルアルコール系重合体は、ビニルアルコール系単量体(A-1)とイオン交換性単量体(A-2)とのランダム共重合体であってもよいが、ビニルアルコール系重合体成分(a―1)と、カチオン基またはアニオン基を有する単量体単位を重合してなる重合体成分(a-2)とを含有するブロック共重合体が好適に用いられる。こうすることにより、イオン性ビニルアルコール系重合体がミクロ相分離して、膜の膨潤度の抑制、および形状保持についての機能を担うビニルアルコール重合体成分と、カチオンまたはアニオンを透過させる機能を担うイオン交換ユニットを重合してなる重合体成分とが役割分担でき、イオン交換膜の膨潤度と寸法安定性とを両立させることができる。カチオン基またはアニオン基を有する単量体単位としては、前記一般式(1)~(10)で表わされるものなどが例示される。この中で、入手容易である点から、カチオン性重合体としては、メタクリルアミドアルキルトリアルキルアンモニウム塩を重合してなる重合体成分とビニルアルコール系重合体成分とを含有するブロック共重合体、ビニルベンジルトリアルキルアンモニウム塩を重合してなる重合体成分とビニルアルコール系重合体成分とを含有するブロック共重合体、またはジアリルジアルキルアンモニウム塩を重合してなる重合体成分とビニルアルコール系重合体成分とを含有するブロック共重合体が好ましく用いられる。また、アニオン性重合体としては、p-スチレンスルホン酸塩を重合してなる重合体成分とビニルアルコール系重合体成分とを含有するブロック共重合体、または2-アクリルアミド-2-メチルプロパンスルホン酸塩を重合してなる重合体成分とビニルアルコール系重合体成分とを含有するブロック共重合体が好ましく用いられる。
 (ランダム共重合体の製造)
 本発明のイオン交換膜に用いられる、カチオン交換基またはアニオン交換基から選択されるイオン交換基を有するイオン性ビニルアルコール系重合体がランダム共重合体である場合、ランダム共重合体は、カチオン性単量体またはアニオン性単量体とビニルエステル系単量体を共重合し、これを常法によりけん化して得られる。ビニルエステル系単量体は、ラジカル重合可能なものであれば使用できる。例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびパーサティック酸ビニル等があげられる。この中でも酢酸ビニルが好ましい。
 カチオン性単量体またはアニオン性単量体とビニルエステル系単量体とを共重合させる方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法があげられる。それらの方法の中でも、無溶媒で行う塊状重合法、またはアルコールなどの溶媒を用いて行う溶液重合が通常採用される。溶液重合を採用して共重合反応を行う際に、溶媒として使用されるアルコールには、メタノール、エタノール、プロパノールなどのC1-4低級アルコールがあげられる。共重合反応に使用される開始剤としては、2,2’―アゾビス(2、4-ジメチル-バレロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2、2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)などのアゾ系開始剤、過酸化ベンゾイル、n-プロピルパーオキシカーボネートなどの過酸化物系開始剤などの公知の開始剤があげられる。共重合反応を行う際の重合温度については、特に制限はないが、5~180℃の範囲が適当である。
 カチオン性単量体またはアニオン性単量体とビニルエステル系単量体とを共重合させることによって得られたビニルエステル系重合体は、次いで、公知の方法にしたがって溶媒中でけん化することで、カチオン基またはアニオン基を含有するビニルアルコール系重合体を得ることができる。
 ビニルエステル系重合体のけん化反応の触媒としては通常アルカリ性物質が用いられ、その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、およびナトリウムメトキシドなどのアルカリ金属アルコキシドがあげられる。けん化触媒は、けん化反応の初期に一括して添加してもよいし、あるいはけん化反応の初期に一部を添加し、残りをけん化反応の途中で追加して添加してもよい。けん化反応に用いられる溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジメチルホルムアミドなどがあげられる。この中でもメタノールが好ましい。けん化反応は、バッチ法および連続法のいずれの方式でも実施可能である。けん化反応の終了後に、必要に応じて、残存するけん化触媒を中和しても良く、使用可能な中和剤として、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などがあげられる。
 (ブロック共重合体の製造)
 本発明で用いられる、カチオン交換性単量体、またはアニオン交換性単量体を重合してなる重合体成分とビニルアルコール系重合体成分がブロック共重合を形成する重合体の製造方法は主に次の2つの方法に大別される。すなわち、(1)所望のブロック共重合体を製造した後、特定のブロックにカチオン基またはアニオン基を結合させる方法、および(2)少なくとも1種類のカチオン性単量体またはアニオン性単量体を重合させて所望のブロック共重合体を得る方法である。このうち、(1)については、末端にメルカプト基を有するビニルアルコール系重合体の存在下、1種類または複数種の単量体をブロック共重合させ、次いでブロック共重合体中の1種類または複数種の重合体成分にカチオン基またはアニオン基を導入する方法、(2)については、末端にメルカプト基を有するビニルアルコール系重合体の存在下、少なくとも1種類のカチオン性単量体またはアニオン性単量体をラジカル重合させることによりブロック共重合体を製造する方法が工業的な容易さから好ましい。特に、ブロック共重合体中の各成分の種類や量を容易に制御できることから、末端にメルカプト基を有するビニルアルコール系重合体の存在下、少なくとも1種類以上のカチオン性単量体またはアニオン性単量体をラジカル重合させてブロック共重合体を製造する方法が好ましい。
 これらのブロック共重合体の製造に用いられる、末端にメルカプト基を有するビニルアルコール系重合体は、例えば、特開昭59-187003号などに記載されている方法により得ることができる。すなわち、チオール酸の存在下にビニルエステル系単量体、例えば酢酸ビニルをラジカル重合して得られるビニルエステル系重合体をけん化する方法があげられる。また、末端にメルカプト基を有するビニルアルコール系重合体とイオン交換性単量体とを用いてブロック共重合体を得る方法としては、例えば、特開昭59-189113号などに記載された方法が挙げられる。すなわち、末端にメルカプト基を有するビニルアルコール系重合体の存在下にイオン交換性単量体をラジカル重合させることによりブロック共重合体を得ることができる。このラジカル重合は公知の方法、例えば塊状重合、溶液重合、パール重合、乳化重合などによって行うことができるが、末端にメルカプト基を含有するビニルアルコール系重合体を溶解し得る溶剤、例えば水やジメチルスルホキシドを主体とする媒体中で行うのが好ましい。また、重合プロセスとしては、回分法、半回分法、連続法のいずれをも採用することができる。
 本発明のイオン交換膜は、ビニルアルコール系単量体(A-1)を重合してなる重合体成分(a-1)及びイオン交換性単量体(A-2)を重合してなる重合体成分(a-2)から形成される共重合体を主要な構成要素としており、必要に応じて、このイオン性ビニルアルコール系重合体を構成する共重合体は、ノニオン系界面活性剤と組み合わせて使用してもよい。
(イオン交換膜の製造)
 本発明のイオン交換膜は、イオン性ビニルアルコール系重合体溶液を準備する工程;
 剥離フィルムの上に、前記イオン性ビニルアルコール系重合体の水溶液を塗布して、イオン性ビニルアルコール系重合体の塗布層を形成する工程;
 前記塗布層に多孔性支持体を重ね合わせ、この多孔性支持体の少なくとも一部にイオン性ビニルアルコール系重合体を含浸させ、含浸体を形成する工程;
 前記塗布層と多孔性支持体とを重ねあわせた状態で、この含浸体を乾燥させる工程;および
 前記剥離フィルムを、乾燥した含浸体から剥離する工程;を含んでいる。
(イオン性ビニルアルコール系重合体溶液準備工程)
 より詳細には、上記のイオン性ビニルアルコール系重合体を、水、DMSOなどの溶媒に溶解し、イオン性ビニルアルコール系重合体溶液(好ましくは水溶液)を調製する。
 得られたイオン性ビニルアルコール系重合体溶液は、多孔性支持体に対して、含浸層を良好に形成する観点から、例えば粘度が、300~5000mPa・sであってもよく、好ましくは、400~4000mPa・s、より好ましくは500~3000mPa・sであってもよい。なお、粘度は、後述する実施例に記載された方法により測定された値を示す。
 また、濃度は、イオン性ビニルアルコール系重合体の種類に応じて適宜設定することができるが、例えば、1~50質量%であってもよく、好ましくは2~45質量%、より好ましくは3~40質量%であってもよい。
 イオン性ビニルアルコール系重合体溶液は、必要に応じて、適宜添加剤(例えば、ノニオン系界面活性剤)を含んでいてもよい。
(塗布層形成工程)
 そして、得られたイオン性ビニルアルコール系重合体溶液(好ましくは水溶液)を、剥離フィルム上に、バーコーター、グラビアコーター、ナイフコーター、ブレードコーターなどの各種塗布手段を利用して塗布し、塗布層(キャスト層)を形成する。塗布層は、次に重ねあわされる多孔性支持体の大きさに応じて、適当な塗布面を形成する。
 剥離フィルムは、均一な塗布層を形成できるとともに、最終的に剥離させることができれば特に限定されず、公知又は慣用の剥離性フィルムまたはシート(例えば、PETフィルム、ポリエチレンフィルム、シリコーンシートなど)を利用することができる。
 塗布層の厚み、すなわち液厚は、多孔性支持体に対して良好に含浸層を形成することができる観点から、例えば、300μm~2000μm程度であってもよく、好ましくは400μm~1800μm程度、より好ましくは500μm~1500μm程度であってもよい。
 また、この液厚は、多孔性支持体の厚みに対して、例えば3~25倍程度であってもよく、好ましくは4~20倍程度、より好ましくは5~18倍程度であってもよい。
 この塗布層は、乾燥処理を行うことなく、引き続き、次の多孔性支持体を含浸するために供される。
(多孔性支持体含浸工程)
 この塗布層は、乾燥工程を行う前に、多孔性支持体が重ね合わされ、多孔性支持体の少なくとも一部にイオン性ビニルアルコール系重合体溶液が含浸され、含浸体が形成される。
 含浸工程では、イオン交換膜が所定のゼータ電位を発現できる限り、加圧下で行ってもよいが、多孔性支持体の空隙率を保持でき膜抵抗を低減する観点から、無加圧下で含浸させるのが好ましい。
(多孔性支持体)
 多孔性支持体としては、所定のゼータ電位を両面に形成できるイオン交換膜を形成することができる限り、特に限定するものではないが、含浸層中の構造を均一にする観点から、厚さ方向の断面において均一な構造を有する多孔性支持体が好ましい。
 多孔性支持体は、イオン性ビニルアルコール系重合体溶液が含浸可能である限り特に限定されないが、例えば、ポリプロピレン、ポリエチレンなどのポリオレフィン;ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)などのポリエステル;ポリビニルアルコール、エチレン-ビニルアルコール共重合体などのビニルアルコール系樹脂等を用いて形成することができる。
 多孔性支持体の形状としては、空隙または細孔を有しており、含浸層を形成することが出来る限り特に限定されないが、例えば、不織布シートや合成樹脂製ファブリック(織編物、溶融メッシュなど)などの繊維集合体が好ましい。
 不織布シートは、連続繊維から形成される不織布であってもよいが、所望のゼータ電位を両面に形成できる含浸層を形成しやすいため、短繊維から形成される湿式不織布が好ましい。湿式不織布は、主体繊維と、主体繊維間を結合する少量のバインダー繊維とを、水中に分散させ、緩やかな撹拌下で、均一なスラリーとし、このスラリーを丸網、長網、傾斜式などのワイヤーのうち少なくとも1つを有する抄紙用の装置を用いてシートを形成して製造することができる。
 例えば、不織布シートを形成するポリマー(または主体繊維の構成ポリマー)としては、イオン性ビニルアルコール系重合体溶液が含浸可能である限り特に限定されないが、例えば、ポリエステル(PET、PTTなど)、ポリビニルアルコールなどが例示でき、特にポリビニルアルコールが好ましい。
 特に好ましい不織布シートとしては、ポリビニルアルコール短繊維を主体繊維とする湿式不織布が挙げられる。
 一方、合成樹脂製ファブリックは、イオン性ビニルアルコール系重合体溶液が含浸可能である限り、各種織編物を利用することが可能であるが、これらのうち、含浸性を高める観点から所定の空隙率を有するメッシュ構造であるのが好ましく、特に交点溶着メッシュが特に好ましい。
 交点融着メッシュは、例えば、複数の線形部材(または繊維状物)を好ましくは10~90度の角度にて交差して配置し交差点を溶融結合してなる合成樹脂製のメッシュが好ましい。
 所定の厚みおよび空隙率を与える観点から、例えば、溶融押し出し法により、または合成樹脂製の糸で粗く織った複数枚の織布を熱プレスすることにより、厚み方向において均一な単層構造を有する合成樹脂製ファブリック(特にメッシュ)を製造することができる。
 多孔性支持体は、含浸層を形成する観点から、例えば坪量が、10~90g/m程度であってもよく、好ましくは15~70g/m程度であってもよく、より好ましくは20~50g/m程度であってもよい。
 また、多孔性支持体の厚みは、例えば、50μm~150μm程度であってもよく、好ましくは60μm~130μm程度、より好ましくは70μm~120μm程度であってもよい。
 多孔性支持体の空隙率は、40~90%であることが好ましい。空隙率がこの範囲にあることで、得られるイオン交換膜の機械強度が優れ、かつ耐久性にも優れる。多孔性支持体の空隙率が低すぎる場合、イオン交換膜の膜抵抗が上昇し、イオンや塩の輸送が困難になるおそれがある。該空隙率は50%以上であることが好ましく、55%以上であることがさらに好ましい。一方、多孔性支持体の空隙率が高すぎる場合、得られるイオン交換膜の機械強度が劣るおそれがあり、耐久性に問題が発生するおそれがある。該空隙率は80%以下であることが好ましく、75%以下であることが更に好ましい。
(乾燥工程)
 乾燥工程では、多孔性支持体に対して、塗布層を含浸させた状態で、この含浸体を乾燥させる。乾燥条件は、室温乾燥であっても、熱風乾燥であってもよいが、作業効率を高めるため、熱風乾燥機を用いるのが好ましい。熱風乾燥機を用いる場合、乾燥温度としては、例えば50~110℃程度であってもよく、好ましくは60~90℃程度であってもよい。
(剥離工程)
 剥離工程では、乾燥した含浸体から剥離フィルムを剥離し、多孔性支持体の内部にイオン性ビニルアルコール系重合体の含浸層(またはイオン交換層)が形成されたイオン交換膜を得ることができる。
(イオン交換膜形成後の後処理)
 本発明において、イオン交換層を形成した後に、熱処理を施すことが好ましい。熱処理を施すことによって、ビニルアルコール系重合体成分(a-1)の結晶化度が高くなるので、物理的な架橋点が増加し、得られるイオン交換膜の機械的強度が増大する。また、非晶部にカチオン基またはアニオン基が濃縮され、イオン交換パスの形成が促進されるため、荷電密度が増加し、対イオン選択性が向上する。
 熱処理の方法は特に限定されず、熱風乾燥機などが一般に用いられる。熱処理の温度は、特に限定されないが、50~250℃であることが好ましい。熱処理の温度が50℃未満であると、得られるイオン交換膜の機械的強度の増大効果が充分でないおそれがある。該温度が80℃以上であることがより好ましく、100℃以上であることがさらに好ましい。熱処理の温度が250℃を超えると、ビニルアルコール系重合体が融解するおそれがある。該温度が230℃以下であることがより好ましく、200℃以下であることがさらに好ましい。熱処理の時間は、通常、1分~10時間程度である。熱処理は不活性ガス(例えば窒素ガス、アルゴンガスなど)雰囲気下で行うことが望ましい。
 イオン交換層を形成した後に、架橋処理(化学的架橋処理)を施すことが好ましい。架橋処理を施すことによって、得られるイオン交換層の機械的強度が増大する。また、荷電密度が増加するため、対イオン選択性が向上する。架橋処理の方法は、重合体の分子鎖同士を化学結合によって結合できる方法であればよく、特に限定されない。通常、イオン交換層を、架橋処理剤を含む溶液に浸漬する方法などが用いられる。該架橋処理剤としては、グルタルアルデヒド、ホルムアルデヒド、グリオキザールなどが例示される。該架橋処理剤の濃度は、通常、溶液に対する架橋処理剤の体積濃度が0.001~10体積%の範囲であることが好ましい。
 前記の後処理において、熱処理と架橋処理の双方を行ってもよいし、そのいずれかのみを行ってもよい。行う処理の順番は特に限定されない。複数の処理を同時に行ってもよいが、熱処理を施した後に、架橋処理を施すことが好ましい。熱処理を施すことにより架橋されにくい部位が生じ、その後、架橋処理、特に化学架橋処理を行うことで、架橋された部位と架橋されない部位が混在することによって、膜強度が高くなるからである。熱処理、架橋処理の順番で行うことが、得られるイオン交換膜の機械的強度の面から特に好ましい。
 (イオン交換膜)
 このようにして得られたイオン交換膜1は、図1に示すように、多孔性支持体3の一方の表面から厚み方向に向かって、多孔性支持体3の少なくとも一部にイオン性ビニルアルコール系重合体の含浸層(またはイオン交換層)2が形成されている。
 イオン交換膜の一方の面のゼータ電位(ζ1)と他方の面のゼータ電位(ζ2)の値は、下記式(1)で表される関係を有しているため、表裏間の電位差が軽減し、そのままイオン交換膜を使用した状態で、電気透析処理中に電極を転換することができる。なお、ゼータ電位は、後述する実施例に記載された方法により測定された値を示す。
 (|ζ1|-|ζ2|)/|ζ1|<0.5   (|ζ1|≧|ζ2|)     (1)
 ゼータ電位(ζ1)および(ζ2)は、好ましくは下記式(2)の関係を有していてもよい。
 (|ζ1|-|ζ2|)/|ζ1|<0.4   (|ζ1|≧|ζ2|)     (2)
 ゼータ電位(ζ1)および(ζ2)は、好ましくは下記式(3)の関係を有していてもよい。
 (|ζ1|-|ζ2|)/|ζ1|<0.3   (|ζ1|≧|ζ2|)     (3)
 ゼータ電位(ζ)は、イオン交換膜の表面に形成する電気二重層の広がりを表す、滑り面の電位を示す値である。即ち、膜内部と膜外部でのイオンの移動のし易さの尺度となる。ゼータ電位(ζ)は、カチオン交換膜の場合はマイナスの値となり、アニオン交換膜の場合はプラスの値となる。これらの値は、膜の荷電密度が高いと絶対値が大きくなる。イオン交換膜内に形成されるイオン交換層(または含浸層)が膜内を充分に充填できていない場合は、イオン交換層の表面とイオン交換膜の表面との間に電気的に不連続な空間が存在し、流路とイオン交換膜間のイオンの移動を阻害する原因となる。特に、流路内のイオン濃度が低い場合は、膜抵抗を高める要因となる。
 また、イオン交換膜は、電気透析用のイオン交換膜として使用するのに十分な電流効率を発現するためには膜抵抗として、例えば、100Ωcm以下であることが好ましく、50Ωcm以下であることがより好ましく、30Ωcm以下であることがより好ましくい。なお、ここで膜抵抗は、後述する実施例に記載された方法により測定された値を示す。
 また、イオン交換膜は、電気透析用のイオン交換膜として使用するのに十分なイオン交換性を発現するためには動的輸率として、例えば、0.90以上であることが好ましく、0.95以上であることがより好ましく、0.98以上が特に好ましい。
 なお、ここで動的輸率は、後述する実施例に記載された方法により測定された値を示す。
(イオン交換膜の用途)
 本発明のイオン交換膜は、種々の用途に用いることができる。例えば、カチオン性重合体またはアニオン性重合体のいずれかからなるイオン交換層を有する本発明のイオン交換膜は、耐有機汚染性に優れ、かつ膜抵抗が小さく、長期間にわたって効率よく、安定に電気透析を行うことができる。従って、このようなイオン交換膜は、有機物(食品、医薬原材料など)の脱塩、ホエーの脱塩、塩の濃縮、糖液の脱塩、海水やかん水の脱塩、水道水の脱塩、軟水化などに適している。一般に、有機汚染が顕著である陰イオン交換膜として特に好適に用いられる。
 特に、本発明のイオン交換膜は、ポリビニルアルコール系重合体を用いているため、耐有機汚染性に優れる。さらに表裏面間で特定の関係を有するゼータ電位を有しているため、電気透析時のイオン交換膜内でのイオン濃度分極を抑制して、電流効率を向上することができ、各種電気透析装置に用いることが可能である。
(電気透析装置)
 本発明の電気透析装置は、陽極および陰極と、
 前記陽極および陰極の間に陰イオン交換膜と陽イオン交換膜とを交互に配列することにより形成した脱塩室および濃縮室と、
を少なくとも備えている電気透析装置であって、
 前記陰イオン交換膜および陽イオン交換膜は、それぞれ上述した本願発明のイオン交換膜で構成されている。
 本発明のイオン交換膜は、膜の表裏面でのゼータ電位差が小さいため、表裏面のどちらの面でも脱塩室側に向けて配設することが可能であるが、ゼータ電位の絶対値の大きい面を脱塩室側に向けて配設するのが好ましい。
 本発明の電気透析装置は、イオン交換膜の表裏での抵抗差があまり変わらないため、特に極性転換式電気透析装置として、良好に利用することができる。
 図2に、本発明の一実施形態である電気透析装置の概略図を示す。電気透析装置は、電極4,7と、その間に交互に配列された陰イオン交換膜5と陽イオン交換膜6を備えている。正相運転中は、陽極4と、陰極7の間に、陰イオン交換膜5と陽イオン交換膜6を電極間に交互に配列して交互に脱塩室と濃縮室を形成している。被処理液タンク8から供給される被処理液は、脱塩室11,11に供給され、両端の電極に電圧が通じると、脱塩室11,11から陽イオンおよび陰イオンがそれぞれ陰極側および陽極側へと移動する。そして、脱塩室からは脱塩液10が、濃縮室12からは濃縮液9が排出される。
 また、電気透析装置が、電極転換式電気透析装置である場合、逆相運転中は、陽極と陰極を逆転して運転することによって、交換膜(特に陰イオン交換膜)に付着した付着物を自己洗浄することができる。
 例えば、電気透析装置において、本発明のイオン交換膜を、アニオン交換膜および/またはカチオン交換膜として用いたセルでは、ゼータ電位の高い面を脱塩室側に向けて配設した場合のセル抵抗R1と、ゼータ電位の高い面を濃縮室側に向けて配設した場合のセル抵抗R2とした場合、処理開始10分後のそれぞれのセル抵抗の比(R2/R1)が、例えば、7以下であってもよく、好ましくは5以下、より好ましくは3以下であってもよい。なお、R1およびR2は、後述する実施例に記載された方法により測定された値を示す。
 以下、実施例を用いて本発明を詳細に説明する。尚、以下の実施例および比較例中、特に断りのない限り「%」および「部」は質量基準である。実施例および比較例における分析および評価は下記の方法に従って行った。
(1)ゼータ電位の測定
 イオン交換膜のゼータ電位は、ゼータ電位・粒径測定システムELS-Z2(大塚電子(株)製)にてpH=7、温度25℃で平板用セルを用いて測定した。得られたイオン交換膜の切片(16mm×37mm)を平板用セルに密着させ、セル内にモニタ用粒子(ヒドロキシプロピルセルロースでコーティングしたポリスチレン粒子(大塚電子(株)製))を10mMの塩化ナトリウム(NaCl)溶液中に分散させた分散液を注入した。セル深さ方向の各レベルについてモニタ粒子の電気泳動を行い、ゼータ電位を測定した。電気泳動は印加電圧60Vの条件で行った。
(2)動的輸率測定
 イオン交換膜の動的輸率は、図3に示される白金黒電極板を有する2室セル中にイオン交換膜を挟み、イオン交換膜の両側に0.5mol/L-NaCl溶液を満たし、所定時間(t)、所定電流密度(J=10mAcm-2)で電気透析を行った。有効膜面積は8.0cm(2cm×4cm)であった。その後、測定溶液を取り出し、その溶液を300mlメスフラスコにて希釈した。希釈溶液の伝導度を伝導度計にて測定し、得られた伝導度と予め求めた検量線から移動当量を求め下式に代入することで動的輸率td±を算出した。
 td±=Δm/E
 td±:動的輸率
 E:理論当量=I・t/F
 Δm:移動当量
 F:Faraday定数
(3)膜抵抗測定
 膜抵抗は、図4に示される白金黒電極板を有する2室セル中にイオン交換膜を挟み、膜の両側に0.5mol/L-NaCl溶液を満たし、交流ブリッジ(周波数1000サイクル/秒)により25℃における電極間の抵抗を測定し、該電極間抵抗と陰イオン交換膜を設置しない場合の電極間抵抗との差により求めた。上記測定に使用する膜は、あらかじめ0.5mol/L-NaCl溶液中で平衡にしたものを用いた。
(4)多孔性支持体の空隙率測定
 多孔性支持体の坪量および厚みを測定し下記計算式により空隙率を求めた。空隙率(%)={1-[坪量(g/m2)/厚み(μm)]/樹脂密度(g/cm3)}×100
 今回用いた多孔性支持体の樹脂密度は1.3(g/cm)として計算した。
(5)粘度の測定方法
 ポリマー水溶液の粘度(mPa・s)は、東京計器株式会社製のB型粘度計にて、温度20度、ローター回転数60rpmで測定して求めた。
 (カチオン性重合体P-1の合成)
 攪拌機、温度センサー、滴下漏斗および還流冷却管を備え付けた6Lのセパラブルフラスコに、酢酸ビニル2450g、メタノール1030g、およびメタクリルアミドプロピルトリメチルアンモニウムクロライドを20質量%含有するメタノール溶液69gを仕込み、攪拌下に系内を窒素置換した後、内温を60℃まで上げた。かかる混合液中に2,2’-アゾビスイソブチロニトリル(AIBN)を0.8g含有するメタノール20gを添加し、重合反応を開始した。重合開始時点よりメタクリルアミドプロピルトリメチルアンモニウムクロライドを20質量%含有するメタノール溶液183gを反応液に添加しながら、4時間重合反応を行った後、重合反応を停止した。重合反応を停止した時点における系内の固形分濃度、すなわち、反応液全体に対する不揮発分の含有率は17.8質量%であった。ついで、系内にメタノール蒸気を導入することにより、未反応の酢酸ビニル単量体を追い出し、ビニルエステル共重合体を55質量%含有するメタノール溶液を得た。
 このビニルエステル共重合体を55質量%含有するメタノール溶液に、該ビニルエステル共重合体中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が0.02、ビニルエステル共重合体の固形分濃度が30質量%となるように、メタノールおよび水酸化ナトリウムを10質量%含有するメタノール溶液をこの順序で撹拌下に加え、40℃でけん化反応を開始した。
 けん化反応の進行に伴ってゲル化物が生成した直後に、これを反応系から取り出して粉砕し、ついで、ゲル化物が生成してから1時間が経過した時点で、この粉砕物に酢酸メチルを添加することにより中和を行い、膨潤状態の固形分を得た。この膨潤したカチオン性重合体に対して質量基準で6倍量(浴比6倍)のメタノールを加え、還流下に1時間洗浄したのち、濾過によって回収した固形分を65℃で16時間乾燥し、ビニルアルコールとメタクリルアミドプロピルトリメチルアンモニウムクロライドのランダム共重合体であるカチオン性重合体を得た。該カチオン性重合体を重水に溶解し、400MHzでのH-NMR測定を行ったところ、該カチオン性重合体中のカチオン性単量体単位の含有量、すなわち、該カチオン性重合体中の単量体単位の総数に対するメタクリルアミドプロピルトリメチルアンモニウムクロライド単量体単位の数の割合は2モル%であった。また、重合度は1700、けん化度は98.5モル%であった。
(アニオン性重合体P-2の合成)
 酢酸ビニルの初期仕込み量、メタノール(MeOH)の初期仕込み量、イオン交換性単量体の種類と初期仕込み量、重合開始剤(AIBN)の使用量、イオン交換性単量体の逐次添加量などの重合条件、けん化反応条件を表1に示すように変化させた以外はカチオン性重合体P-1と同様の方法により、アニオン性重合体P-2を得た。該アニオン性重合体P-2の物性を表1に示す。
(末端にメルカプト基を有するポリビニルアルコール(PVA-1)の合成)
 特開昭59-187003号公報に記載された方法によって、末端にメルカプト基を有するポリビニルアルコール(PVA-1)を合成した。得られたポリビニルアルコールの重合度は1550、けん化度は98.5%であった。
Figure JPOXMLDOC01-appb-T000011
(カチオン性重合体P-3の合成)
 還流冷却管、攪拌翼を備え付けた5Lの四つ口セパラブルフラスコに、水1900g、末端にメルカプト基を有するポリビニルアルコールとしてPVA-1を344g仕込み、攪拌下95℃まで加熱して該ポリビニルアルコールを溶解した後、室温まで冷却した。該水溶液に0.5規定の硫酸を添加してpHを3.0に調整した。別に、ビニルベンジルトリメチルアンモニウムクロライド179gを水300gに溶解し、これを先に調製したpH3.0の水溶液に攪拌下で添加した後、該水溶液中に窒素をバブリングしつつ70℃まで加温し、さらに70℃で30分間窒素のバブリングを続けることで、窒素置換した。窒素置換後、上記水溶液に過硫酸カリウム(KPS)の2.5%水溶液121mLを1.5時間かけて逐次的に添加してブロック共重合を開始させ、進行させた後、系内温度を75℃に1時間維持して重合をさらに進行させ、ついで冷却して、固形分濃度18%のポリビニルアルコール-ポリビニルベンジルトリメチルアンモニウムクロライドのブロック共重合体であるカチオン性重合体P-3の水溶液を得た。得られた水溶液の一部を乾燥した後、重水に溶解し、400MHzでのH-NMR測定を行ったところ、該ブロック共重合体中のカチオン性単量体単位の含有量、すなわち、該重合体中の単量体単位の総数に対するビニルベンジルトリメチルアンモニウムクロライド単量体単位の数の割合は10モル%であった。該カチオン性重合体P-3の物性を表2に示す。
(カチオン性重合体P-4、P-5の合成)
 末端にメルカプト基を有するポリビニルアルコールの種類と仕込み量、カチオン性単量体の種類と仕込み量、水の量、重合開始剤(過硫酸カリウム)の量などの重合条件を表2に示すように変えた以外は、カチオン性重合体P-3と同様の方法によってブロック共重合体であるカチオン性重合体P-4、P-5を合成した。該カチオン性重合体P-4、P-5の物性を表2に示す。
Figure JPOXMLDOC01-appb-T000012
(アニオン性重合体P-6の合成)
 還流冷却管、攪拌翼を備え付けた5Lの四つ口セパラブルフラスコに、水1900g、末端にメルカプト基を有するポリビニルアルコールとしてPVA-1を344g仕込み、攪拌下95℃まで加熱して該ポリビニルアルコールを溶解した後、室温まで冷却した。該水溶液に0.5規定の硫酸を添加してpHを3.0に調整した。別に、p-スチレンスルホン酸ナトリウム172gを水300gに溶解し、これを先に調製したpH3.0の水溶液に攪拌下添加した後、該水溶液中に窒素をバブリングしつつ70℃まで加温し、さらに70℃で30分間窒素のバブリングを続けることで、窒素置換した。窒素置換後、上記水溶液に過硫酸カリウム(KPS)の2.5%水溶液121mLを1.5時間かけて逐次的に添加してブロック共重合を開始させ、進行させた後、系内温度を75℃に1時間維持して重合をさらに進行させ、ついで冷却して、固形分濃度18%のポリビニルアルコール-ポリ(p-スチレンスルホン酸ナトリウム)のブロック共重合体であるアニオン性重合体P-6の水溶液を得た。得られた水溶液の一部を乾燥した後、重水に溶解し、400MHzでのH-NMR測定を行ったところ、該ブロック共重合体中のアニオン性単量体単位の含有量、すなわち、該重合体中の単量体単位の総数に対するp-スチレンスルホン酸ナトリウム単量体単位の数の割合は10モル%であった。該アニオン性重合体P-6の物性を表3に示す。
(アニオン性重合体P-7、P-8の合成)
 末端にメルカプト基を有するポリビニルアルコールの種類と仕込み量、アニオン性単量体の種類と仕込み量、水の量、重合開始剤(過硫酸カリウム)の量などの重合条件を表1に示すように変えた以外は、アニオン性重合体P-6と同様の方法によってブロック共重合体であるアニオン性重合体P-7、P-8を合成した。該アニオン性重合体P-7、P-8の物性を表3に示す。
Figure JPOXMLDOC01-appb-T000013
(陰イオン交換膜AEM-1の作製)
 脱イオン水を用いて濃度12wt%のP-1水溶液を調整した。このポリマー水溶液を、バーコーターを用いてPETフィルムに800μm液厚になるように塗布して塗布層(キャスト層)を形成した。次いで、このキャスト層を形成したPETフィルムのキャスト層面に、ビニロン紙(坪量:36g/m、厚み:90μm、空隙率:67%)を重ね合わせてP-1水溶液をビニロン紙中に含浸させた。その後、熱風乾燥機DKM400(YAMATO製)にて温度80℃、30分間乾燥した後、PETフィルムを剥離して含浸塗布皮膜を作製した。こうして得られた皮膜を、160℃で30分間熱処理し、物理的な架橋を生じさせた。ついで、皮膜を2mol/Lの硫酸ナトリウムの電解質水溶液に24時間浸漬させた。該水溶液にpHが1になるように濃硫酸を加えた後、0.05体積%グルタルアルデヒド水溶液に皮膜を浸漬し、25℃で24時間スターラーを用いて撹拌し、架橋処理を行った。ここで、グルタルアルデヒド水溶液としては、石津製薬株式会社製「グルタルアルデヒド」(25体積%)を水で希釈したものを用いた。架橋処理の後、皮膜を脱イオン水に浸漬し、途中数回脱イオン水を交換しながら、皮膜が膨潤平衡に達するまで浸漬させ、陰イオン交換膜を得た。
(イオン交換膜の評価)
 このようにして作製した陰イオン交換膜を、所望の大きさに裁断し、測定試料を作製した。得られた測定試料を用い、上記方法にしたがって、ゼータ電位、膜抵抗の測定、動的輸率の測定を行なった。得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000014
(陰イオン交換膜AEM-2~4、6の作製)
 カチオン性重合体を表4に示した内容に変更した以外はAEM-1と同様にして陰イオン交換膜の膜特性を測定した。得られた測定結果を表4に示す。
(陰イオン交換膜AEM-5の作製)
 カチオン性重合体を表4に示した内容に変更し、かつ基材をビニロン紙からポリエチレンテレフタレートで形成されたポリエステルメッシュ(坪量:15g/m、厚み:80μm、空隙率:85%)に変更した以外はAEM-1と同様にして陰イオン交換膜の膜特性を測定した。得られた測定結果を表4に示す。
(陰イオン交換膜AEM-7の作製)
 カチオン性重合体を表4に示した内容に変更し、かつ基材をビニロン紙にからポリエステル紙(坪量:50g/m、厚み:100μm、空隙率:60%)に変更した以外はAEM-1と同様にして陰イオン交換膜の膜特性を測定した。得られた測定結果を表4に示す。
(陰イオン交換膜AEM-8の作製)
 脱イオン水を用いて濃度12wt%のP-3水溶液を調整した。このポリマー水溶液を、バーコーターを用いてビニロン紙(坪量:36g/m、厚み:90μm、空隙率:67%)に直接塗布した。その後、熱風乾燥機DKM400(YAMATO製)にて温度80℃、30分間乾燥した後、塗布皮膜を作製した。乾燥樹脂の塗布量は15g/mであった。こうして得られた皮膜を、160℃で30分間熱処理し、物理的な架橋を生じさせた。ついで、皮膜を2mol/Lの硫酸ナトリウムの電解質水溶液に24時間浸漬させた。該水溶液にpHが1になるように濃硫酸を加えた後、0.05体積%グルタルアルデヒド水溶液に皮膜を浸漬し、25℃で24時間スターラーを用いて撹拌し、架橋処理を行った。ここで、グルタルアルデヒド水溶液としては、石津製薬株式会社製「グルタルアルデヒド」(25体積%)を水で希釈したものを用いた。架橋処理の後、皮膜を脱イオン水に浸漬し、途中数回脱イオン水を交換しながら、皮膜が膨潤平衡に達するまで浸漬させ、陰イオン交換膜を得た。
(イオン交換膜の評価)
 このようにして作製した陰イオン交換膜を、所望の大きさに裁断し、測定試料を作製した。得られた測定試料を用い、上記方法にしたがって、ゼータ電位、膜抵抗の測定、動的輸率の測定を行なった。得られた結果を表4に示す。
(陰イオン交換膜AEM-9の作製)
 図5(a)および(b)に示す陰イオン交換膜21を以下のようにして作製した。図5(a)は陰イオン交換膜21の平面図であり、(b)は上記(a)の破線箇所の断面図を示している。
 脱イオン水を用いて濃度12wt%のP-3水溶液を調整した。このポリマー水溶液を、バーコーターを用いてビニロン紙(坪量:36g/m、厚み:90μm、空隙率:67%)に直接塗布した。その後、熱風乾燥機DKM400(YAMATO製)にて温度80℃、30分間乾燥し、塗布層を有するシートを作製した。乾燥樹脂の塗布量は15g/mであった。この塗布層を有するシートをシート23として197mm×78mmの長方形に切り出した。次いで、ポリエチレンテレフタレート/エチレン・酢酸ビニル共重合体(EVA)の熱融着性フィルム(CPロール、EVA部分の厚み35μm:フジプラ株式会社製)を、図5(a)に示すように、内部に115mm×48mmの切り抜き部を有する、197mm×78mmの長方形状のシート22として、切り出した。シート22のEVA面と前記塗布膜の塗布面に対向する裏面とを重ね合わせ、熱プレス機にて120度、50kgf/cm、120秒間熱圧着させた。この熱圧着により、シート22とシート23の接触面には、溶融したEVAによるEVA充填部24が形成された。熱圧着後、直径9mmの貫通孔を図5(a)に示すように6個形成し、こうして得られた膜を、160℃で30分間熱処理し、物理的な架橋を生じさせた。ついで、該膜を2mol/Lの硫酸ナトリウムの電解質水溶液に24時間浸漬させた。該水溶液にそのpHが1になるように濃硫酸を加えた後、0.05体積%グルタルアルデヒド水溶液に該膜を浸漬し、25℃で24時間スターラーを用いて撹拌し、架橋処理を行った。ここで、グルタルアルデヒド水溶液としては、石津製薬株式会社製「グルタルアルデヒド」(25体積%)を水で希釈したものを用いた。架橋処理の後、該膜を脱イオン水に浸漬し、途中数回脱イオン水を交換しながら、該膜が膨潤平衡に達するまで浸漬させ、陰イオン交換膜21を得た。
(イオン交換膜の評価)
 このようにして作製した陰イオン交換膜の流路部分を所望の大きさに裁断し、測定試料を作製した。得られた測定試料を用い、上記方法にしたがって、ゼータ電位、膜抵抗の測定、動的輸率の測定を行なった。得られた結果を表4に示す。
(陽イオン交換膜CEM-1~4、6の作製)
 カチオン性重合体に替えてアニオン性重合体を表5に示した内容に変更した以外はAEM-1と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000015
(陽イオン交換膜CEM-5の作製)
 カチオン性重合体に替えてアニオン性重合体を表5に示した内容に変更した以外はAEM-5と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
(陽イオン交換膜CEM-7の作製)
 カチオン性重合体に替えてアニオン性重合体を表5に示した内容に変更した以外はAEM-7と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
(陽イオン交換膜CEM-8の作製)
 カチオン性重合体に替えてアニオン性重合体を表5に示した内容に変更した以外はAEM-8と同様にして陽イオン交換膜の膜特性を測定した。得られた測定結果を表5に示す。
(陽イオン交換膜CEM-9の作製)
 カチオン性重合体に替えてアニオン性重合体を表5に示した内容に変更した以外はAEM-9と同様にして陽イオン交換膜を作成し、膜特性を測定した。得られた測定結果を表5に示す。
<実施例1>
(セル抵抗の測定)
 小型電気透析装置マイクロアシライザーS3((株)アストム製)を用いて脱塩試験を実施した。その際、陰イオン交換膜にAEM-1、陽イオン交換膜にCEM-1を用いて、両方の膜のゼータ電位が高い面を脱塩室側に向けて、陰極と陽極の両電極間に交互に配列して締め付けた。このとき濃度3000ppmの食塩水溶液を脱塩室および濃縮室に循環供給(容量500mL)し、25℃で電流密度10mA/cmにて30分間電気透析をした。処理開始10分後のセル抵抗(R1)を測定した結果を表6に示す。次いで、陰イオン交換膜にAEM-1、陽イオン交換膜にCEM-1のゼータ電位が高い面を濃縮室側に向けて組み替えて、陰極と陽極の両電極間に交互に配列して締め付けた。上記と同様に電気透析行い、処理開始10分後のセル抵抗(R2)を測定した結果を表6に示す。
(長時間運転によるブリスター試験)
 小型電気透析装置マイクロアシライザーS3((株)アストム製)を用いて長時間の脱塩試験を実施した。その際、陰イオン交換膜にAEM-1、陽イオン交換膜にCEM-1を用いて、両方の膜のゼータ電位が高い面を脱塩室側に向けて、陰極と陽極の両電極間に交互に配列して締め付けた。このとき濃度3000ppmの食塩水溶液を脱塩室および濃縮室に連続供給し、25℃で電流密度10mA/cmにて48時間電気透析をした。その後、膜を取り出し各膜のブリスター(水疱)発生状況を目視観察した。
ブリスター試験の評価基準
1:膜全面にブリスターが発生していない
2:膜の一部にブリスターが発生しているが、実用上問題ない程度にわずかな量である
3:膜全面一様にブリスターが発生している
<実施例2~7>
 陰イオン交換膜および陽イオン交換膜を表6に示した内容に変更した以外は実施例1と同様にして電気透析試験を実施した。得られた測定結果を表6に示す。
<比較例1>
 陰イオン交換膜および陽イオン交換膜を表6に示した内容に変更した以外は実施例1と同様にして電気透析試験を実施したが、セルの外部漏れが激しく試験できなかった。
<比較例2>
 陰イオン交換膜および陽イオン交換膜を表6に示した内容に変更した以外は実施例1と同様にして電気透析試験を実施した。裏面を熱融着性フィルムで補強した膜はセルの外部漏水はなかった。得られた測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000016
 表6に示すように、比較例1では、含浸層が存在していないため、セルの外部漏水が激しく、電気透析試験を行うことができなかった。一方、実施例1から7では、良好に電気透析を行うことが可能であるとともに、長時間使用してもブリスターをほとんど発生することはなく、特に実施例1~4および6では、ブリスターが全く発生しなかった。また、特に実施例1から7(特に実施例1、2および5~7)では、膜の電気的な表裏差が小さいため、電気透析装置(特に極性転換式電気透析装置)に対しても、良好に利用可能であると推測される。
<実施例8>
(極性転換式電気透析試験)
 小型電気透析装置マイクロアシライザーS3((株)アストム製)の電極に4路スイッチを接続することで手動による電極切り替えを可能とし、極性転換式電気透析試験を実施した。その際、陰イオン交換膜にAEM-2、陽イオン交換膜にCEM-2を用いて、両方の膜のゼータ電位が高い面を脱塩室側に向けて、陰極と陽極の両電極間に交互に配列して締め付けた。このとき濃度3000ppmの食塩水溶液を脱塩室および濃縮室に循環供給(容量500mL)し、AEM-2を陽極にCEM-2を陰極に繋いで、25℃で電流密度10mA/cmにて5分間電気透析をした。次いで電極を転換(転換1)し10分間電気透析をした。その後、電極転換を転換(転換2)し10分間電気透析をした。さらに、電極転換を転換し(転換3)10分間電気透析をした。この時のセル抵抗は26(Ω)であった。この間のセル抵抗の変動を図6に示す。さらに、この間の積算消費電力は7.5(WH)であった。この間の処理時間と積算消費電力の関係を図7に示す。
 図6に示すように、比較例3では、転換1および転換3により逆相運転を行う場合、そのセル抵抗が大きく3倍以上も上昇しているが、実施例8では、逆相運転をしている間であっても、そのセル抵抗はほとんど上昇していない。
 また、図7に示すように、比較例3では、逆相運転中、正相運転時と比べてその消費電力の上昇率が急激に増加しているが、実施例8では、正相運転および逆相運転の双方において安定した消費電力の上昇率を示している。
<実施例9~10>
 陰イオン交換膜および陽イオン交換膜を表7に示した内容に変更した以外は実施例8と同様にして極性転換式電気透析試験を実施した。得られた測定結果を表7に示す。
<比較例3>
 陰イオン交換膜および陽イオン交換膜を表7に示した内容に変更した以外は実施例8と同様にして極性転換式電気透析試験を実施した。得られた測定結果を表7に示す。
Figure JPOXMLDOC01-appb-T000017
 表7に示すように、R2/R1の値が10である比較例3では、転換3により逆相運転を行う場合、転換3から10分後のセル抵抗が100Ω以上となっている。その一方で、R2/R1の値が3以下である実施例8~10では、比較例3のほぼ半分以下のセル抵抗で運転することが可能である。特に、イオン交換膜におけるゼータ電位の表裏差が小さく、膜内のイオン濃度分極が発生しにくい実施例8では、セル抵抗の値を、比較例3のほぼ1/4以下にすることが可能である。
 また、全消費電力についても、比較例3と比べ、実施例8~10では、ほぼ半分程度の全消費電力で運転することが可能である。
 本発明のイオン交換膜は、特定のイオン性重合体を用いているため、耐ファウリング性に優れ、電気透析法用の膜として、有用に用いることができる。特に、本発明のイオン交換膜は、表裏面での電位差が小さいため、膜内にイオン濃度分極が生じるのを抑制でき、セル抵抗の値を低減できるだけでなく、電気透析用(特に電極転換式電気透析用)のイオン交換膜として、好適に用いることができる。
 以上のとおり、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。
A:電源
B:アンペアメーター
C:クーロンメータ-
D:ボルトメーター
E: モーター
F:スターラー
G:カソード電極
H:アノード電極
I: 0.5M NaCl水溶液
J:イオン交換膜(有効膜面積 8.0 cm2
K:イオン交換膜(有効面積1.0 cm2
L:白金電極
M:NaCl水溶液
N:水浴
O:LCR メーター
21:イオン交換膜
22:ポリエチレンテレフタレート/エチレン・酢酸ビニル共重合体(EVA)の熱融着性フィルム
23:イオン交換性樹脂の塗布層を有するシート
24:EVA充填部

Claims (13)

  1.  多孔性支持体とイオン性ビニルアルコール系重合体とで構成されたイオン交換膜であって、
     前記多孔性支持体は、一方の面から厚み方向に向かって、少なくとも一部に前記イオン性ビニルアルコール系重合体が含浸した含浸層を備えており、
     前記イオン性ビニルアルコール系重合体は、カチオン交換基またはアニオン交換基から選択されるイオン交換基を有するイオン性ビニルアルコール系重合体で少なくとも構成され、
     イオン交換膜の一方の面のゼータ電位(ζ1)と他方の面のゼータ電位(ζ2)の値が式(1)で表されるイオン交換膜。
     (|ζ1|-|ζ2|)/|ζ1|<0.5   (|ζ1|≧|ζ2|)     (1)
  2.  請求項1のイオン交換膜において、多孔性支持体が、不織布または合成樹脂ファブリックである、イオン交換膜。
  3.  請求項2のイオン交換膜において、不織布が、湿式不織布である、イオン交換膜。
  4.  請求項1~3のいずれか一項に記載のイオン交換膜において、多孔性支持体の空隙率が、40~90%である、イオン交換膜。
  5.  請求項1~4のいずれか一項に記載のイオン交換膜において、イオン性ビニルアルコール系重合体が、イオン交換性単量体とポリビニルアルコール系単量体との共重合体であり、イオン交換性単量体含有量が0.1モル%以上である、イオン交換膜。
  6.  請求項1~5のいずれか一項に記載のイオン交換膜において、イオン性ビニルアルコール系重合体が、イオン交換性単量体を重合してなる重合体成分とポリビニルアルコール成分とを含有する、ブロック共重合体である、イオン交換膜。
  7.  請求項1~6のいずれか一項に記載のイオン交換膜において、イオン性ビニルアルコール系重合体が、多孔性支持体に適用された状態で架橋処理された架橋体である、イオン交換膜。
  8.  請求項1~7のいずれか一項に記載のイオン交換膜において、多孔性支持体がポリビニルアルコール短繊維の湿式不織布からなる、イオン交換膜。
  9.  請求項1~8のいずれか一項に記載のイオン交換膜において、電気透析装置に用いられる、イオン交換膜。
  10.  イオン性ビニルアルコール系重合体溶液を準備する工程;
     剥離フィルムの上に、前記イオン性ビニルアルコール系重合体溶液を塗布して、イオン性ビニルアルコール系重合体の塗布層を形成する工程;
     前記塗布層に多孔性支持体を重ね合わせ、この多孔性支持体の少なくとも一部にイオン性ビニルアルコール系重合体を含浸させ、含浸体を形成する工程;
     前記塗布層と多孔性支持体とを重ねあわせた状態で、この含浸体を乾燥させる工程;および
     前記剥離フィルムを、乾燥した含浸体から剥離する工程;を含むイオン交換膜の製造方法。
  11.  請求項10の製造方法において、剥離工程の後、イオン性ビニルアルコール系重合体に熱処理および/または架橋処理を施す、イオン交換膜の製造方法。
  12.  請求項11の製造方法において、熱処理工程の後、イオン性ビニルアルコール系重合体に架橋処理を施す、イオン交換膜の製造方法。
  13.  陽極および陰極と、
     前記陽極および陰極の間に陰イオン交換膜と陽イオン交換膜とを交互に配列することにより形成した脱塩室および濃縮室と、
    を少なくとも備えている電気透析装置であって、
     前記陰イオン交換膜および陽イオン交換膜は、それぞれ請求項1~9のいずれか一項に記載されたイオン交換膜で構成されている、電気透析装置。
PCT/JP2013/083840 2012-12-25 2013-12-18 イオン交換膜およびその製造方法ならびに電気透析装置 WO2014103819A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157018647A KR20150099549A (ko) 2012-12-25 2013-12-18 이온 교환막 및 그 제조 방법 그리고 전기 투석 장치
JP2014554353A JP6358597B2 (ja) 2012-12-25 2013-12-18 イオン交換膜およびその製造方法ならびに電気透析装置
CN201380068017.4A CN104884510B (zh) 2012-12-25 2013-12-18 离子交换膜及其制造方法、以及电渗析装置
EP13869781.8A EP2940068A4 (en) 2012-12-25 2013-12-18 ION EXCHANGE MEMBRANE, METHOD FOR THE MANUFACTURE THEREOF AND ELECTRODIALYZER
US14/747,032 US10125036B2 (en) 2012-12-25 2015-06-23 Ion exchange membrane, method for producing same, and electrodialyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-281807 2012-12-25
JP2012281807 2012-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/747,032 Continuation US10125036B2 (en) 2012-12-25 2015-06-23 Ion exchange membrane, method for producing same, and electrodialyzer

Publications (1)

Publication Number Publication Date
WO2014103819A1 true WO2014103819A1 (ja) 2014-07-03

Family

ID=51020906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083840 WO2014103819A1 (ja) 2012-12-25 2013-12-18 イオン交換膜およびその製造方法ならびに電気透析装置

Country Status (7)

Country Link
US (1) US10125036B2 (ja)
EP (1) EP2940068A4 (ja)
JP (1) JP6358597B2 (ja)
KR (1) KR20150099549A (ja)
CN (1) CN104884510B (ja)
TW (1) TWI616481B (ja)
WO (1) WO2014103819A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174916A (ja) * 2014-03-14 2015-10-05 株式会社クラレ イオン交換膜およびその製造方法
JP2016144774A (ja) * 2015-02-06 2016-08-12 株式会社クラレ 逆イオン浸透性の低いイオン交換膜及びその製造方法
JP2016155107A (ja) * 2015-02-25 2016-09-01 株式会社クラレ 有機性廃水の処理方法
JP2016155108A (ja) * 2015-02-25 2016-09-01 株式会社クラレ 埋立地浸出液の処理方法
JP2016155723A (ja) * 2015-02-25 2016-09-01 株式会社クラレ 塩の製造方法
WO2016141550A1 (en) * 2015-03-10 2016-09-15 General Electric Company Ion-exchange membrane with multi-layered support substrate
WO2018164143A1 (ja) * 2017-03-10 2018-09-13 株式会社アストム 電気透析装置および逆電気透析装置
US11135551B2 (en) 2017-03-20 2021-10-05 Bl Technologies, Inc. Ion-exchange membrane having an imprinted non-woven substrate

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150054970A (ko) * 2012-09-13 2015-05-20 가부시키가이샤 구라레 전극 및 이의 제조 방법, 및 이를 갖는 통액형 콘덴서
EP3365653A4 (en) * 2015-10-23 2019-06-26 Hewlett-Packard Development Company, L.P. analyte extraction
KR101691612B1 (ko) * 2016-07-25 2017-01-02 (주) 시온텍 고농도 알칼리성 수소수 생성장치
CN107064236A (zh) * 2016-12-19 2017-08-18 中国科学院过程工程研究所 一种在线检测电渗析装置中离子交换膜污染的装置及方法
CN106693710A (zh) * 2017-01-19 2017-05-24 浙江大维高新技术股份有限公司 一种电渗析器及其溶液处理方法
WO2019135227A1 (en) * 2018-01-02 2019-07-11 Technion Research & Development Foundation Limited Control of the concentration-polarization layer length in a microchannel-membrane system
KR101967331B1 (ko) * 2018-05-30 2019-08-13 회명솔레니스(주) 선택적 이온이동 제어방법 및 그를 위한 제어장치
GB201815407D0 (en) * 2018-09-21 2018-11-07 Fujifilm Mfg Europe Bv Membranes suitable for detecting, filtering and/or purifying biomolecules and metal-ions
CN110813386B (zh) * 2019-09-11 2022-04-19 浙江工业大学 一种改性阳离子交换膜的制备方法
US20220135445A1 (en) * 2020-11-03 2022-05-05 Randall P. Moore Apparatus and method for mediation of pfas contamination in an environment
US20220223885A1 (en) * 2021-01-14 2022-07-14 Palo Alto Research Center Incorporated Electrochemical device with efficient ion exchange membranes
KR102507911B1 (ko) * 2021-03-31 2023-03-07 도레이첨단소재 주식회사 양이온 교환막 및 이의 제조방법
US11944934B2 (en) 2021-12-22 2024-04-02 Mojave Energy Systems, Inc. Electrochemically regenerated liquid desiccant dehumidification system using a secondary heat pump
KR20230151778A (ko) * 2022-04-26 2023-11-02 도레이첨단소재 주식회사 음이온 교환막
CN116835790B (zh) * 2023-06-15 2024-03-08 艾培克环保科技(上海)有限公司 一种丙烯酸丁酯废水的处理工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187003A (ja) 1983-04-07 1984-10-24 Kuraray Co Ltd 末端にメルカプト基を有するポリビニルアルコ−ル系重合体およびその製法
JPS59189113A (ja) 1983-04-08 1984-10-26 Kuraray Co Ltd ポリビニルアルコ−ル系重合体を一成分とするブロツク共重合体の製法
JP2005342718A (ja) * 1995-03-15 2005-12-15 W L Gore & Assoc Inc 部分要素からなる複合膜
JP2007280946A (ja) * 2006-03-16 2007-10-25 Fujifilm Corp 膜/電極接合体および燃料電池
JP2009096923A (ja) * 2007-10-18 2009-05-07 Solt Industry Center Of Japan 陽イオン交換膜およびその製造方法
WO2010110333A1 (ja) * 2009-03-25 2010-09-30 株式会社クラレ 陰イオン交換膜及びその製造方法
WO2010119858A1 (ja) 2009-04-13 2010-10-21 国立大学法人山口大学 イオン交換膜およびその製造方法
WO2011081145A1 (ja) * 2009-12-28 2011-07-07 株式会社クラレ モザイク荷電複層膜およびその製造方法
JP2012001621A (ja) * 2010-06-16 2012-01-05 Agc Engineering Co Ltd 陽イオン交換膜の製造方法
JP2012040508A (ja) 2010-08-19 2012-03-01 Astom:Kk イオン交換膜及びその製造方法
WO2012133538A1 (ja) * 2011-03-29 2012-10-04 株式会社アストム イオン交換膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565854A (en) 1983-04-07 1986-01-21 Kuraray Co., Ltd. Polymer having thiol end group
USRE37307E1 (en) 1994-11-14 2001-08-07 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
USRE37701E1 (en) 1994-11-14 2002-05-14 W. L. Gore & Associates, Inc. Integral composite membrane
US6254978B1 (en) 1994-11-14 2001-07-03 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US20070264551A1 (en) * 2006-03-16 2007-11-15 Atsushi Matsunaga Membrane/Electrode Assembly and Fuel Cell
KR20150054970A (ko) 2012-09-13 2015-05-20 가부시키가이샤 구라레 전극 및 이의 제조 방법, 및 이를 갖는 통액형 콘덴서
EP2907839A4 (en) 2012-10-10 2016-06-08 Kuraray Co CATION EXCHANGE MEMBRANE AND PROCESS FOR PRODUCTION THEREOF

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187003A (ja) 1983-04-07 1984-10-24 Kuraray Co Ltd 末端にメルカプト基を有するポリビニルアルコ−ル系重合体およびその製法
JPS59189113A (ja) 1983-04-08 1984-10-26 Kuraray Co Ltd ポリビニルアルコ−ル系重合体を一成分とするブロツク共重合体の製法
JP2005342718A (ja) * 1995-03-15 2005-12-15 W L Gore & Assoc Inc 部分要素からなる複合膜
JP2007280946A (ja) * 2006-03-16 2007-10-25 Fujifilm Corp 膜/電極接合体および燃料電池
JP2009096923A (ja) * 2007-10-18 2009-05-07 Solt Industry Center Of Japan 陽イオン交換膜およびその製造方法
WO2010110333A1 (ja) * 2009-03-25 2010-09-30 株式会社クラレ 陰イオン交換膜及びその製造方法
WO2010119858A1 (ja) 2009-04-13 2010-10-21 国立大学法人山口大学 イオン交換膜およびその製造方法
WO2011081145A1 (ja) * 2009-12-28 2011-07-07 株式会社クラレ モザイク荷電複層膜およびその製造方法
JP2012001621A (ja) * 2010-06-16 2012-01-05 Agc Engineering Co Ltd 陽イオン交換膜の製造方法
JP2012040508A (ja) 2010-08-19 2012-03-01 Astom:Kk イオン交換膜及びその製造方法
WO2012133538A1 (ja) * 2011-03-29 2012-10-04 株式会社アストム イオン交換膜

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174916A (ja) * 2014-03-14 2015-10-05 株式会社クラレ イオン交換膜およびその製造方法
JP2016144774A (ja) * 2015-02-06 2016-08-12 株式会社クラレ 逆イオン浸透性の低いイオン交換膜及びその製造方法
JP2016155107A (ja) * 2015-02-25 2016-09-01 株式会社クラレ 有機性廃水の処理方法
JP2016155108A (ja) * 2015-02-25 2016-09-01 株式会社クラレ 埋立地浸出液の処理方法
JP2016155723A (ja) * 2015-02-25 2016-09-01 株式会社クラレ 塩の製造方法
WO2016141550A1 (en) * 2015-03-10 2016-09-15 General Electric Company Ion-exchange membrane with multi-layered support substrate
CN107406994A (zh) * 2015-03-10 2017-11-28 通用电气公司 具有多层支撑基材的离子交换膜
JP2018511463A (ja) * 2015-03-10 2018-04-26 ゼネラル・エレクトリック・カンパニイ 多層支持基材を有するイオン交換膜
US10486151B2 (en) 2015-03-10 2019-11-26 Bl Technologies, Inc. Ion-exchange membrane with multi-layered support substrate
WO2018164143A1 (ja) * 2017-03-10 2018-09-13 株式会社アストム 電気透析装置および逆電気透析装置
US11135551B2 (en) 2017-03-20 2021-10-05 Bl Technologies, Inc. Ion-exchange membrane having an imprinted non-woven substrate
US11766638B2 (en) 2017-03-20 2023-09-26 Bl Technologies, Inc. Ion-exchange membrane having an imprinted non-woven substrate

Also Published As

Publication number Publication date
US20150291452A1 (en) 2015-10-15
JP6358597B2 (ja) 2018-07-18
CN104884510B (zh) 2017-10-20
CN104884510A (zh) 2015-09-02
JPWO2014103819A1 (ja) 2017-01-12
KR20150099549A (ko) 2015-08-31
EP2940068A4 (en) 2016-08-24
TW201434935A (zh) 2014-09-16
EP2940068A1 (en) 2015-11-04
US10125036B2 (en) 2018-11-13
TWI616481B (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6358597B2 (ja) イオン交換膜およびその製造方法ならびに電気透析装置
JP5531267B2 (ja) イオン交換膜およびその製造方法
JP5669047B2 (ja) モザイク荷電複層膜およびその製造方法
JP5713348B2 (ja) 逆電気透析発電用のイオン交換複層膜
CN109071852B (zh) 双极性膜
TWI491438B (zh) 陰離子交換膜及其製造方法
US9833742B2 (en) Cation exchange membrane and method for producing same
WO2015005250A1 (ja) 電極及びその製造方法並びにそれを用いる通液型コンデンサ
JP5965307B2 (ja) イオン交換膜、その製造方法および電気透析装置
JP5413683B2 (ja) モザイク荷電膜の製造方法
WO2015098957A1 (ja) 電極及びその製造方法並びにそれを有する通液型コンデンサ
JP5965308B2 (ja) イオン交換膜、その製造方法および逆電気透析発電装置
JP2014124562A (ja) イオン交換膜、その製造方法および逆電気透析発電装置
JP2015123405A (ja) 電極及びその製造方法並びにそれを有する通液型コンデンサ
JP6053514B2 (ja) 有機物の脱塩方法
JP2018070796A (ja) アニオン交換膜、その製造方法及びその用途
JP2018070797A (ja) アニオン交換膜、その製造方法及びその用途
JP2015020093A (ja) 一体型セル対、その製造方法および電気透析スタック
JP5633847B2 (ja) モザイク荷電膜およびその製造方法
JP2015067770A (ja) 陰イオン交換膜
JP2017141390A (ja) 陰イオン交換膜、その製造方法およびその用途
JP2014070094A (ja) 複合イオン交換膜及びその製造方法
JP2017140596A (ja) 陰イオン交換膜、その製造方法およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013869781

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157018647

Country of ref document: KR

Kind code of ref document: A