WO2014102929A1 - 線量分布測定装置 - Google Patents

線量分布測定装置 Download PDF

Info

Publication number
WO2014102929A1
WO2014102929A1 PCT/JP2012/083641 JP2012083641W WO2014102929A1 WO 2014102929 A1 WO2014102929 A1 WO 2014102929A1 JP 2012083641 W JP2012083641 W JP 2012083641W WO 2014102929 A1 WO2014102929 A1 WO 2014102929A1
Authority
WO
WIPO (PCT)
Prior art keywords
dose distribution
irradiation
camera
particle beam
unit
Prior art date
Application number
PCT/JP2012/083641
Other languages
English (en)
French (fr)
Inventor
平澤 宏祐
昌広 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/439,326 priority Critical patent/US20150306427A1/en
Priority to EP12891049.4A priority patent/EP2939708A4/en
Priority to JP2014553936A priority patent/JP5918865B2/ja
Priority to CN201280078002.1A priority patent/CN104870054B/zh
Priority to PCT/JP2012/083641 priority patent/WO2014102929A1/ja
Priority to TW102123140A priority patent/TWI463163B/zh
Publication of WO2014102929A1 publication Critical patent/WO2014102929A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • G01T1/105Read-out devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/204Measuring radiation intensity with scintillation detectors the detector being a liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • A61N2005/1076Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Definitions

  • the present invention relates to a dose distribution measuring apparatus for measuring a dose distribution of a particle beam used for, for example, a particle beam therapy for cancer.
  • the radiation irradiation apparatus such as an accelerator and to confirm the beam energy distribution and shape which are different for each patient, it is necessary to measure the dose distribution on a daily basis as quality control of the radiation beam.
  • Patent Document 1 by using an aquarium that simulates a human body and an ionization chamber equipped with a drive device so that the position in water can be changed, the ionization chamber is scanned, so that the The dose distribution is measured. Therefore, a great deal of time and effort are required even for a single dose distribution measurement. In addition, since confirmation by dose distribution measurement is required every time the beam condition is changed, there is a limit in improving the number of patients that can be treated per irradiation apparatus, that is, the operating rate of the treatment apparatus.
  • a solid phantom with a high visible light transmittance contains a substance that emits fluorescence when excited by radiation, and the fluorescence intensity is measured by changing the light emitted by radiation irradiation into an electrical signal using a CCD camera or the like.
  • the technology to do is described.
  • Patent Document 3 discloses a scintillator unit composed of a liquid scintillator that emits light by irradiating a proton beam, and a particle composed of a CCD camera that is an imaging unit that images the scintillator unit from a direction perpendicular to the incident direction of the proton beam.
  • a radiation dose distribution measuring device is described. It is described that, by using this measuring apparatus, a plurality of horizontal cross sections are simultaneously measured along the incident particle beam direction, and the two-dimensional distribution is reconstructed for each cross section, whereby a three-dimensional distribution is finally obtained. Has been.
  • This scanning irradiation method is a method in which a particle beam called a thin pencil beam is moved in a two-dimensional direction perpendicular to the beam traveling direction to form a two-dimensional irradiation distribution perpendicular to the beam traveling direction. Further, since the position where the absorbed dose of the particle beam reaches a peak (referred to as a Bragg peak) is determined by the energy of the particle beam, the irradiation position in the beam traveling direction is changed by changing the energy of the particle beam. In the scanning irradiation method, as described above, a three-dimensional irradiation field is formed by moving the pencil beam and changing the energy.
  • Patent Documents 1 to 3 which are techniques for measuring the dose distribution when the irradiation position does not change with time, are used.
  • it cannot be directly applied to the dose distribution measurement of the scanning irradiation method, or there is a problem that it takes a lot of time to measure the dose distribution of the scanning irradiation method.
  • the present invention has been made to solve the above-mentioned problems, and provides a particle beam dose distribution measuring apparatus capable of measuring a particle beam dose distribution by a scanning irradiation method in a short time with a simple configuration. With the goal.
  • the particle beam is applied to the two-dimensional irradiation region at the depth position of the irradiation target corresponding to the energy.
  • a water phantom having a liquid containing a fluorescent material that emits light by irradiating and having an incident window for entering the particle beam, and the center of irradiation of the particle beam of the water phantom around the water phantom At least two cameras arranged to image light emission of a liquid containing a fluorescent material on a plane perpendicular to the axis, and a camera image for processing images of the at least two cameras
  • the camera calibration parameter storage unit that stores the camera calibration parameters of each of the at least two cameras, and the camera calibration parameters stored in the camera calibration parameter storage unit.
  • a spot position calculation unit for calculating a spot position, which is an irradiation position when the particle beam is stopped, from the camera image data processed by the camera image processing unit, and pencil beam dose distribution data for storing the PDD and OCR data of the pencil beam
  • the irradiation dose distribution at each spot position is calculated by calculating the irradiation dose distribution at the spot position calculated by the spot position calculation unit using the storage unit and the PDD and OCR data stored in the pencil beam dose distribution data storage unit.
  • a dose distribution measuring apparatus capable of measuring a dose distribution in a short time with a simple configuration.
  • FIG. 1 is a block diagram showing a schematic configuration of a particle beam irradiation apparatus including a dose distribution measuring apparatus 1 according to Embodiment 1 of the present invention.
  • the particle beam 4 is irradiated from the irradiation system 2 toward the water phantom 3 constituted by a water tank.
  • a liquid 5 (generally called a liquid scintillator) containing a fluorescent material that absorbs a particle beam and emits light is placed.
  • the wall of the water phantom 3 is made of a transparent material that transmits light, such as acrylic.
  • an incident window 6 made of a material that hardly absorbs particle beams, such as acrylic, is provided at a portion where the particle beam 4 is incident. In order to reduce the absorption of the particle beam, the incident window 6 may be thinner than other portions.
  • Two cameras, a camera 7 and a camera 8, are arranged around the water phantom 3. The two cameras are arranged on a circle C centered on the irradiation central axis CA, for example, on a plane perpendicular to the irradiation central axis CA of the particle beam 4, and an image centered on the irradiation central axis CA. Image.
  • a dose distribution calculation / evaluation apparatus 10 calculates and evaluates a dose distribution using camera images captured by the camera 7 and the camera 8.
  • the dose distribution calculation / evaluation apparatus 10 uses a camera image processing unit 11 for processing a camera image and a camera image processed by the camera image processing unit 11 using the camera calibration parameters stored in the camera calibration parameter storage unit 17.
  • a spot position calculation unit 12 that calculates a spot position
  • a dose addition unit 13 that calculates and adds a dose at each spot position using a pencil beam dose distribution stored in a pencil beam dose distribution data storage unit 16, and a dose addition unit 13, the irradiation region dose distribution data stored in the irradiation region dose distribution data storage unit 15 storing the irradiation region dose distribution data planned in the treatment planning device 20,
  • the dose distribution evaluation part 14 which compares and evaluates is provided.
  • the irradiation system 2 moves a particle beam 4 called a thin pencil beam in a two-dimensional direction perpendicular to the beam traveling direction to form a two-dimensional irradiation distribution perpendicular to the beam traveling direction.
  • the beam traveling direction is the Z direction and the two directions perpendicular to Z, that is, the direction in which the beam is moved are the X direction and the Y direction.
  • the irradiation system 2 is provided with an X direction deflection electromagnet and a Y direction deflection electromagnet.
  • the particle beam 4 is irradiated by the irradiation system 2 while moving and stopping repeatedly.
  • the particle beam 4 stops at a certain irradiation position (hereinafter referred to as a spot position) and the irradiation dose at the spot position becomes the planned irradiation dose, the particle beam 4 is moved to the next spot position, and the next Irradiate until the planned irradiation dose at the spot position is reached.
  • a particle beam 4 of a certain energy and a planned irradiation dose distribution, that is, a two-dimensional dose distribution is formed in the irradiation region at the Bragg peak position corresponding to the energy, that is, the depth position in the beam traveling direction.
  • the two-dimensional irradiation dose distribution planned in the irradiation region at a different depth position is formed by changing the particle beam energy.
  • a planned irradiation dose distribution is finally formed in the three-dimensional irradiation region.
  • Such an irradiation method will be referred to herein as a spot scanning irradiation method.
  • the control data of the accelerator system controller 22 for controlling the accelerator not to be transmitted is obtained and transmitted to the irradiation system controller 21 and the accelerator system controller 22.
  • the particle beam 4 is moved and stopped repeatedly according to the control data of the irradiation system controller 21 and the control data of the accelerator system to irradiate the affected area of the patient.
  • the dose distribution in the affected area of the patient is directly measured during the treatment. Can not do it.
  • the dose distribution measuring apparatus 1 is used in order to confirm whether or not the planned dose distribution is formed when irradiation is performed with these control data, prior to treatment.
  • a dose distribution measuring method by the dose distribution measuring apparatus 1 according to the first embodiment of the present invention will be described with reference to FIGS.
  • the dose distribution characteristic of the pencil beam is measured.
  • a PDD Percent Depth Dose, percentage in depth
  • OCR Off Center Axis Ratio
  • OCR can be measured by a conventionally known finger-type dosimeter or the like
  • PDD can be measured by Advanced Markus or the like. Or it can also measure by the method by Embodiment 5 mentioned later.
  • An example of the PDD is shown in FIG. 2A, and an example of the OCR is shown in FIG.
  • the particle beam 4 is irradiated to the water phantom 3 by the spot scanning irradiation method with the structure of FIG. That is, the accelerator and irradiation system 2 are controlled by the control data of the accelerator system controller 22 and the control data of the irradiation system controller 21 at each spot position, and the particle beam 4 is irradiated at each spot position.
  • the particle beam 4 is repeatedly moved and stopped in the two-dimensional direction perpendicular to the traveling direction in the two-dimensional irradiation region at the depth position of the water phantom corresponding to the energy.
  • the particle beam 4 is irradiated onto the three-dimensional irradiation region.
  • the camera 7 and the camera 8 image the light emission of the liquid 5 containing the fluorescent material.
  • the point with the highest luminance in the captured image is extracted.
  • the PDD and OCR data stored in the pencil beam dose distribution data storage unit 16 is used to calculate a three-dimensional dose distribution obtained by irradiation at the spot position.
  • camera external parameters attachment position and orientation
  • camera internal parameters image center, distortion, etc.
  • camera external parameters attachment position and orientation
  • camera internal parameters image center, distortion, etc.
  • a calibration point with a known three-dimensional coordinate position is embedded in the water phantom, and the calibration point can be set in a treatment room coordinate system centered on the isocenter with a laser pointer or the like in the treatment room.
  • the external parameters and internal parameters of each camera are calculated.
  • the calculated external parameters and internal parameters which are calibration parameters for each camera, are stored in the camera calibration parameter storage unit 17.
  • n is the number of spot positions to be irradiated.
  • the spot position calculation unit 12 calculates a three-dimensional position using the position with the highest luminance as the spot position, and calculates the peak dose from the luminance (ST4).
  • the camera calibration parameters stored in the camera calibration parameter storage unit 17 are used. Further, when the luminance and absorbed dose are in a non-linear relationship, if the non-linear relationship between the luminance and the absorbed dose is tabulated as a correspondence table, the luminance can be easily converted into the absorbed dose.
  • the spot position calculation unit 12 calculates a three-dimensional position using the position with the highest luminance as the spot position, and calculates the peak dose from the luminance (ST4).
  • the irradiation dose distribution obtained by the addition becomes a measured value of the irradiation dose distribution.
  • An example of the obtained data is shown in FIG. FIG.
  • FIG. 5 is a diagram showing a two-dimensional distribution in the Z direction and the X direction at a Y position near a certain center, that is, a 2.5-dimensional distribution diagram.
  • a three-dimensional irradiation dose distribution having a value for each point of an X, Y, Z three-dimensional volume is obtained.
  • the dose distribution evaluation unit 14 compares and evaluates the measurement value of the three-dimensional irradiation dose distribution obtained in this way and the three-dimensional irradiation dose distribution set in the treatment plan (ST8).
  • the dose distribution set in the treatment plan is stored in advance in the irradiation area dose distribution data storage unit 15 of the dose distribution calculation / evaluation apparatus 10 from the treatment plan apparatus.
  • the degree to which the irradiation dose distribution as the measurement value matches the irradiation dose distribution set by the treatment plan can be evaluated using an index such as a known gamma index.
  • the two cameras 7 and 8 arranged on the circle C centering on the irradiation central axis CA are used for each spot position.
  • the dose distribution by spot scanning irradiation can be easily measured by calculating the spot position from the image obtained by imaging the light emission of the water phantom 3 by irradiation and using the PDD and OCR data of the pencil beam measured in advance. Can do. It is desirable to arrange the two cameras at positions where the imaging directions are orthogonal to each other. However, if the camera calibration parameters corresponding to the arrangement of the cameras are obtained, the spot position can be calculated from the camera image. Therefore, the two cameras do not necessarily have to be arranged at orthogonal positions. Further, at least two cameras may be arranged, and three or more cameras may be arranged. If the number of cameras is large, the spot position can be calculated with higher accuracy.
  • FIG. FIG. 6 is a block diagram showing a schematic configuration of a particle beam irradiation apparatus including a dose distribution measuring apparatus 100 according to Embodiment 2 of the present invention. 6, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • an OCR measurement camera 9 is added to the configuration of the dose distribution measurement apparatus 1 according to the first embodiment.
  • the OCR measurement camera 9 is installed outside the water phantom 3 on the side opposite to the side where the entrance window 6 of the water phantom 3 is located.
  • the OCR measurement camera 9 acquires an image in the direction of the water phantom 3. An image is acquired every time each spot position is irradiated.
  • the OCR distribution calculation unit 18 in the dose distribution calculation / evaluation apparatus 110 calculates OCR data for each irradiation at each spot position.
  • the OCR data can be calculated by calculating the beam diameter from the camera image and assuming the distribution as, for example, a Gaussian distribution and using the OCR data.
  • the dose addition unit 13 calculates and adds a dose distribution having the i-th spot position calculated by the spot position calculation unit 12 as a peak.
  • the second embodiment it is not necessary to measure and store the OCR of the pencil beam in advance, and the OCR when actually irradiated is measured and used for dose distribution calculation. High dose distribution can be measured.
  • FIG. 7 is a block diagram showing a schematic configuration of a particle beam irradiation apparatus including a dose distribution measuring apparatus 200 according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • one camera 70 is disposed outside the water phantom 3.
  • the camera 70 is arranged on a circle C centered on the irradiation center axis CA in a plane perpendicular to the irradiation center axis CA of the particle beam 4 and captures an image centered on the irradiation stop axis CA. .
  • FIG. 8 shows an operation flow of the dose distribution measuring apparatus 200 according to the third embodiment.
  • the entire surface is exposed during the irradiation with the camera 70 (ST12).
  • the light emitted to the camera image processing unit 211 in the dose distribution calculation evaluation apparatus 210 is recorded as an integrated value.
  • the image to be recorded may be an image in which the light intensity is represented by color shading, or may be an image represented by an equal light intensity curve connecting the same points of light intensity.
  • the recorded image is an integrated value of the space and time in the optical axis direction of the camera, not the dose distribution itself.
  • the image prediction unit 30 uses the irradiation region dose distribution data set in the treatment planning device 20 stored in the irradiation region dose distribution data storage unit 15 to calculate the light emission amount of the water phantom 3 based on this dose distribution. Simulation is performed to predict an image as an integrated value of space and time that will be captured at the position of the camera 70 based on the simulated light emission amount, and the predicted image is stored. Since the light emission of the liquid 5 containing a fluorescent substance is often non-linear with respect to the irradiation dose, it is preferable to perform simulation in consideration of this non-linearity.
  • the dose distribution evaluation unit 214 compares and evaluates the predicted image stored in the image prediction unit 30 and the captured image recorded in the camera image processing unit 211, so that the dose distribution set in the treatment planning device 20 is actually Can be compared and evaluated (ST13).
  • the dose distribution itself cannot be directly measured, but with a simple configuration of one camera, the dose distribution set in the treatment planning apparatus, Indirect comparison and evaluation of dose distribution when actually irradiated.
  • FIG. 9 is a block diagram showing a schematic configuration of a particle beam irradiation apparatus including a dose distribution measuring apparatus 300 according to Embodiment 4 of the present invention.
  • FIG. 10 is a flowchart showing the operation of the dose distribution measuring apparatus according to the fourth embodiment. 9, the same reference numerals as those in FIG. 7 denote the same or corresponding parts.
  • one camera 70 is arranged outside the water phantom 3.
  • the camera 70 is arranged on a circle C centered on the irradiation center axis CA in a plane perpendicular to the irradiation center axis CA of the particle beam 4 and captures an image centered on the irradiation stop axis CA. .
  • the light emission of the liquid 5 containing the fluorescent material when the particle beam 4 is irradiated to the water phantom 3 by the spot scanning irradiation method (ST11) is being irradiated by the camera 70.
  • the light emitted to the camera image processing unit 311 of the dose distribution calculation evaluation apparatus 310 is recorded as an integrated value.
  • the recorded image is an integrated value of the space and time in the optical axis direction of the camera, not the dose distribution itself.
  • the image is recorded as data as shown in FIG. 11, for example, represented by an isolight intensity curve.
  • a one-dimensional section A in a direction parallel to the central axis CA of irradiation and a cross-section B in a direction perpendicular to the central axis CA of irradiation As a one-dimensional light intensity distribution (ST14). Examples of the extracted light intensity distribution are shown in FIGS.
  • FIG. 12 is an example of a one-dimensional section A in a direction parallel to the central axis of irradiation, that is, an example of a light intensity distribution in the Z direction.
  • FIG. 12 is an example of a one-dimensional section A in a direction parallel to the central axis of irradiation, that is, an example of a light intensity distribution in the Z direction.
  • the image prediction unit 315 simulates the light emission amount of the water phantom by this dose distribution using the irradiation region dose distribution data set in the treatment planning device 20 stored in the irradiation region dose distribution data storage unit 15. Then, an image as an integrated value of space and time that will be imaged at the position of the camera 70 by the simulated light emission amount is predicted, and the cross section A in a direction parallel to the central axis CA of the irradiation is predicted from the predicted image.
  • the dose distribution evaluation unit 314 compares the one-dimensional light intensity distribution extracted from the captured image by the one-dimensional light intensity distribution calculation unit 319 with the one-dimensional light intensity distribution extracted from the predicted image by the image prediction unit 315. Thus, the irradiation dose distribution can be evaluated (ST15).
  • FIG. FIG. 14 is an operation flowchart of the dose distribution measuring apparatus according to the fifth embodiment of the present invention. Similar to the fourth embodiment, the dose distribution measuring apparatus according to the fifth embodiment has the configuration of the dose distribution measuring apparatus 300 shown in FIG. 9, and the water phantom 3 is moved to the water phantom 3 for a short time without moving the particle beam 4 which is a pencil beam. Irradiation (ST21), and light emission by the pencil beam is imaged by the camera 70 (ST22), whereby the source data of the particle beam 4 which is a pencil beam is obtained. For example, if the camera 70 is arranged as shown in FIG.
  • the one-dimensional light intensity distribution calculated in the one-dimensional light intensity distribution calculation unit 319 (ST23) is a distribution corresponding to the PDD of the radiation source.
  • the one-dimensional light intensity distribution in the X direction is a distribution corresponding to the OCR in the X direction of the radiation source. Therefore, the dose distribution evaluation unit 314 can extract the PDD and OCR data of the radiation source from the one-dimensional intensity distribution calculated by the one-dimensional light intensity distribution calculation unit 319 (ST24). If another camera is installed in the direction orthogonal to the camera 70, that is, the position of the camera 8 in FIG. 1, a distribution corresponding to the OCR in the Y direction of the radiation source is obtained.
  • the light intensity distribution can be easily converted to the absorbed dose distribution.
  • the source data corresponding to the PDD or OCR of the pencil beam can be easily obtained.
  • the first scene is a measurement for registering source data in a treatment plan.
  • a finger-type dosimeter or the like is used as the OCR measurement.
  • a Bragg Peak chamber or the like is used as the PDD measurement.
  • Another application (scene) is the distribution measurement for verifying in advance whether the dose administration to the patient is as simulated in the treatment plan.
  • OCR is often measured with a finger-type dosimeter or the like
  • PDD is often measured with Advanced Markus or the like.
  • Dose distribution measuring device 1, 100, 200, 300: Dose distribution measuring device, 2: Irradiation system, 3: Water phantom, 4: Particle beam, 5: Liquid containing fluorescent substance, 6: Entrance window, 7, 8, 70: Camera, 9 : OCR measurement camera 10, 110, 210, 310: Dose distribution calculation evaluation device, 11, 211, 311: Camera image processing unit, 12: Spot position calculation unit, 13: Dose addition unit, 14, 214, 314: Dose distribution evaluation unit, 15: Irradiation area dose distribution data storage unit, 16: Pencil beam dose distribution data storage unit, 17: Camera calibration parameter storage unit, 18: OCR distribution calculation unit, 20: Treatment planning device, 21: Irradiation System controller, 22: accelerator system controller, 30, 315: image prediction unit, 319: one-dimensional light intensity distribution calculation unit,

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Radiation-Therapy Devices (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 水ファントム(3)の粒子線(4)の照射の中心軸(CA)に垂直な面上に、水ファントム中の蛍光物資を含む液体(5)の発光を撮像するように配置された少なくとも2台のカメラ(7、8)と、カメラで撮像したカメラ画像データから粒子線の停留時の照射位置であるスポット位置を算定するスポット位置算定部(12)と、ペンシルビーム線量分布データ記憶部(16)に保存されているPDDおよびOCRのデータを用いてスポット位置算定部(12)で算定されたスポット位置における照射線量分布を算定して、スポット位置毎の照射線量分布を加算する線量加算部(13)と、を備えた線量分布算出評価装置(10)と、を備えるようにした。

Description

線量分布測定装置
本発明は、例えば、がんの粒子線治療などに利用される粒子線の線量分布を測定する線量分布測定装置に関する。
がんの放射線治療では、治療に用いるX線、電子線、粒子線などの放射線ビームのエネルギーや形状を確認するため、患者にビームを照射する前に、人体を模擬した水ファントム中における線量分布を測定する必要がある。加速器などの放射線照射装置の調整、および、患者ごとに異なるビームエネルギー分布および形状の確認のため、放射線ビームの品質管理として日常的に線量分布測定が必要となる。
例えば特許文献1では、人体を模擬した水槽と、水中での位置を変更できるように駆動装置が備えられた1つの電離箱を用いて、電離箱を走査することによって、放射線の照射による水中の線量分布を測定している。そのため、1回の線量分布測定だけでも多大な時間と手間が必要になる。また、ビーム条件を変更する度に、線量分布測定による確認が必要であるため、照射装置1台当りの治療可能な患者数、すなわち治療装置の稼働率の向上には限界がある。
このような課題を解決するため、短時間に線量分布を測定できる装置として様々な形態の放射線検出器や線量分布測定装置が提案されている。例えば、特許文献2では、可視光線の透過率が高い固体ファントム中に放射線により励起されて蛍光発光する物質を含有させ、放射線の照射による発光をCCDカメラなどで電気信号に変えて蛍光強度を測定する技術が記載されている。
また、特許文献3には、陽子線を照射することで発光する液体シンチレータからなるシンチレータ部、シンチレータ部を陽子線の入射方向に対して垂直な方向から撮像する撮像部であるCCDカメラからなる粒子線線量分布測定装置が記載されている。この測定装置を用いて、入射粒子線方向に沿って複数の水平断面を同時に測定し、それぞれの断面について2次元分布を再構成することによって、最終的には3次元分布が得られることが記載されている。
特開2003-4766号公報 特開2011-133598号公報 特開2003-79755号公報
放射線の中でも陽子線や炭素線といったいわゆる粒子線を用いた粒子線治療装置における粒子線の照射方法として、スキャニング照射法がある。このスキャニング照射法は、細いペンシルビームと呼ばれる粒子線をビーム進行方向に垂直な2次元方向に移動させて、ビーム進行方向に垂直な2次元の照射分布を形成する方法である。また、粒子線のエネルギーにより、粒子線の吸収線量がピーク(ブラッグピークと呼ぶ)となる位置が決まるため、粒子線のエネルギーを変えることにより、ビーム進行方向の照射位置を変化させる。スキャニング照射法では、以上のように、ペンシルビームの移動と、エネルギーの変化により3次元の照射野を形成する。
 このようにスキャニング照射法では、ビーム照射位置が時間的に変化するため、時間的に照射位置が変化しないときの線量分布を測定するための技術である特許文献1~3に記載された技術を、スキャニング照射法の線量分布測定に直接適用することはできず、あるいはスキャニング照射法の線量分布を測定しようとすると多大な時間を必要とするという問題があった。
本発明は、以上のような問題点を解決するためになされたもので、スキャニング照射法による粒子線線量分布を、単純な構成で短時間に測定できる粒子線の線量分布測定装置を提供することを目的とする。
この発明は、粒子線をペンシルビームとして照射対象に照射するための照射系が、粒子線のエネルギーを変更する毎に、当該エネルギーに対応した照射対象の深さ位置の2次元照射領域に粒子線を進行方向に垂直な2次元方向に移動と停留を繰り返して走査することにより3次元の照射領域に粒子線を照射するときの照射線量分布を測定するための照射線量分布測定装置において、粒子線を照射することにより発光する蛍光物質を含む液体を有し、粒子線を入射させるための入射窓を備えた水ファントムと、この水ファントムの周囲であって、水ファントムの粒子線の照射の中心軸に垂直な面上に、蛍光物資を含む液体の発光を撮像するように配置された少なくとも2台のカメラと、この少なくとも2台のカメラの画像を処理するカメラ画像処理部と、少なくとも2台のカメラのそれぞれのカメラのカメラ校正用パラメータを保存するカメラ校正用パラメータ記憶部と、カメラ校正用パラメータ記憶部に保存されているそれぞれのカメラのカメラ校正用パラメータを用いてカメラ画像処理部で処理されたカメラ画像データから粒子線の停留時の照射位置であるスポット位置を算定するスポット位置算定部と、ペンシルビームのPDDおよびOCRのデータを保存するペンシルビーム線量分布データ記憶部と、ペンシルビーム線量分布データ記憶部に保存されているPDDおよびOCRのデータを用いてスポット位置算定部で算定されたスポット位置における照射線量分布を算定して、スポット位置毎の照射線量分布を加算する線量加算部と、を備えた線量分布算出評価装置と、を備えたものである。
本発明によれば、単純な構成で短時間に線量分布測定ができる線量分布測定装置を得ることができる。
本発明の実施の形態1による線量分布測定装置を含む粒子線照射装置の概略構成を示すブロック図である。 ペンシルビームのPDDおよびOCRの一例を示す線図である。 本発明の実施の形態1による線量分布測定装置のカメラ画像から得られるスポット位置を説明する図である。 本発明の実施の形態1による線量分布測定装置の動作を示すフロー図である。 本発明の実施の形態1による線量分布測定装置により得られる2.5次元線量分布の一例を示す線図である。 本発明の実施の形態2による線量分布測定装置を含む粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態3による線量分布測定装置を含む粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態3による線量分布測定装置の動作を示すフロー図である。 本発明の実施の形態4による線量分布測定装置を含む粒子線照射装置の概略構成を示すブロック図である。 本発明の実施の形態4による線量分布測定装置の動作を示すフロー図である。 本発明の実施の形態4による線量分布測定装置のカメラ画像の一例を示す図である。 本発明の実施の形態4による線量分布測定装置のカメラ画像から一次元光強度分布を抽出した一例を示す図である。 本発明の実施の形態4による線量分布測定装置のカメラ画像から他の一次元光強度分布を抽出した一例を示す図である。 本発明の実施の形態5による線量分布測定装置の動作を示すフロー図である。 本発明の効果を説明する表を示す図である。
実施の形態1.
 図1は、本発明の実施の形態1による線量分布測定装置1を含む粒子線照射装置の概略構成を示すブロック図である。照射系2から水槽で構成される水ファントム3に向けて粒子線4が照射される。水ファントム3中には、粒子線を吸収して発光する蛍光物質を含む液体5(一般に液体シンチレータと呼ばれている)が入れられている。水ファントム3の壁は、アクリルなど光を透過する透明な材料で構成されている。また、粒子線4が入射する部分には、同じくアクリルなど粒子線の吸収が少ない材料の入射窓6が設けられている。粒子線の吸収が少ないようにするため、入射窓6は他の部分よりも薄くすることがある。水ファントム3の周囲には、カメラ7およびカメラ8の2台のカメラが配置されている。2台のカメラは、例えば粒子線4の照射の中心軸CAに対して垂直な面における、照射の中心軸CAを中心とする円C上に配置され、照射の中心軸CAを中心とする画像を撮像する。
カメラ7およびカメラ8で撮像したカメラ画像を用いて線量分布算出評価装置10において線量分布を算出・評価する。線量分布算出評価装置10は、カメラ画像を処理するカメラ画像処理部11、カメラ校正用パラメータ記憶部17に保存されているカメラ校正用パラメータを用いてカメラ画像処理部11において処理されたカメラ画像からスポット位置を算定するスポット位置算定部12、ペンシルビーム線量分布データ記憶部16に保存されているペンシルビーム線量分布を用いて各スポット位置における線量を算出して加算する線量加算部13、線量加算部13で加算された結果である線量分布の測定値と、治療計画装置20において計画された照射領域線量分布データを保存する照射領域線量分布データ記憶部15に保存された照射領域線量分布データと、を比較して評価する線量分布評価部14を備えている。
照射系2により、細いペンシルビームと呼ばれる粒子線4をビーム進行方向に垂直な2次元方向に移動させて、ビーム進行方向に垂直な2次元の照射分布を形成する。ここでは、ビーム進行方向をZ方向、Zに垂直な、すなわちビームを移動させる2方向をX方向およびY方向とする。粒子線4をX方向およびY方向に移動させるため、照射系2にはX方向偏向電磁石およびY方向偏向電磁石が備えられている。粒子線4は、照射系2により、移動と停留を繰り返しながら照射される。すなわち、粒子線4がある照射位置(以降スポット位置と呼ぶ)に停留してそのスポット位置での照射線量が計画した照射線量になったら、粒子線4を次のスポット位置に移動させて、次のスポット位置での計画照射線量になるまで照射する。あるエネルギーの粒子線4でこれを繰り返し、当該エネルギーに対応したブラッグピークの位置、すなわちビーム進行方向の位置である深さ位置の照射領域に計画の照射線量分布、すなわち2次元の線量分布を形成する。粒子線のエネルギーを変えることにより、照射される深さが変わるため、粒子線のエネルギーを変えて別の深さ位置の照射領域に計画した2次元の照射線量分布を形成する。このようにして、異なるエネルギー毎に粒子線4の移動と停留を繰り返して2次元の照射線量分布を形成することにより、最終的に3次元の照射領域に計画した照射線量分布を形成する。このような照射方法をここでは、スポットスキャニング照射法と呼ぶことにする。
以上のスポットスキャニング照射法により、患者の患部を照射領域として必要な照射線量分布を与えるために、治療計画装置20において、照射系2を制御するための照射系制御器21の制御データ、および図示しない加速器を制御するための加速器系制御器22の制御データなどを求めて、照射系制御器21および加速器系制御器22に送信する。治療時には、これら照射系制御器21の制御データおよび加速器系の制御データに従って粒子線4を移動と停留を繰り返して患者の患部に照射するが、治療中に患者の患部内の線量分布を直接測定することができない。このため、これらの制御データによって照射した場合に、計画した線量分布が形成されるかどうかを治療に先立って確認するために、線量分布測定装置1が用いられる。
本発明の実施の形態1による線量分布測定装置1による線量分布測定方法を図1~図5に基づいて説明する。まず、線量分布測定装置1によって3次元の照射線量分布を測定する前に、ペンシルビームの線量分布特性を測定する。ペンシルビームの線量分布として、Z方向の分布であるPDD(Percent Depth Dose、深部百分率)と、X-Y面の分布であるOCR(Off Center Axis Ratio)とを測定しておく。OCRは従来知られている指頭型線量計などにより、PDDはAdvanced Markusなどにより測定することができる。あるいは、後述の実施の形態5による方法で測定することもできる。PDDの一例を図2(A)に、OCRの一例を図2(B)に示す。これらのPDDおよびOCRを粒子線のエネルギー毎に測定し、線量分布算出評価装置10のペンシルビーム線量分布データ記憶部16に保存する。
次に、図1の構成で、水ファントム3にスポットスキャニング照射法により粒子線4を照射する。すなわち、各スポット位置における加速器系制御器22の制御データおよび照射系制御器21の制御データにより加速器および照射系2を制御して、各スポット位置において粒子線4を照射する。粒子線4のエネルギーを変更する毎に、当該エネルギーに対応した水ファントムの深さ位置の2次元照射領域に、粒子線4を進行方向に垂直な2次元方向に移動と停留を繰り返して走査することにより、3次元の照射領域に粒子線4を照射する。このとき、各スポット位置における照射毎に、カメラ7およびカメラ8で蛍光物質を含む液体5の発光を撮像する。スポット位置毎に、撮像した画像における最も輝度の高い点を抽出する。例えばカメラ7で撮像したそれぞれのスポット位置での画像の最も輝度の高い点を抽出して、全てのスポット位置における最も輝度の高い点を並べると、図3のようなデータが得られる。スポット位置毎に、ペンシルビーム線量分布データ記憶部16に保存されている、PDDおよびOCRのデータを用いて、当該スポット位置における照射によって得られる3次元線量分布を算出する。全てのスポット位置における3次元線量分布を積算することにより全てのスポット位置の照射による積算された3次元照射分布を得ることができる。
2方向以上のカメラから三次元位置を三次元計測するためには、あらかじめカメラのキャリブレーション(校正)を実施しておく必要がある。具体的には、カメラの校正用のパラメータであるカメラの外部パラメータ(取り付け位置と姿勢)、およびカメラの内部パラメータ(画像中心、歪など)を既知の方法で求めることができる。ここでは、水ファントム内に、三次元座標位置が既知の校正点を埋め込んでおき、校正点を治療室内のレーザポインタ等でアイソセンタを中心とする治療室座標系に設置できるものとする。各カメラ画像上の校正点を使って、各カメラの外部パラメータ、内部パラメータを算出する。算出した各カメラの校正用パラメータである外部パラメータ、内部パラメータはカメラ校正用パラメータ記憶部17に保存する。
以上を、図4のフロー図を用いて説明する。前述のように、予め、ペンシルビームのPDDおよびOCRを粒子線のエネルギー毎に測定し、線量分布算出評価装置10のペンシルビーム線量分布データ記憶部16に保存しておく(ST1)。ここで、照射すべきスポット位置の数をnとする。まず1番目のスポット位置の照射線量分布測定データを得るためにi=1とセットする(ST2)。1番目のスポット位置を照射するように照射系制御器21および加速器系制御器22のパラメータがセットされ、i=1番目のスポットを照射して、そのときの水ファントム3の発光をカメラ7およびカメラ8で撮影する(ST3)。これらカメラ7およびカメラ8で撮像したカメラ画像から、スポット位置算定部12において、最も輝度が高い位置をスポット位置として、3次元位置を算定し、また輝度からピーク線量を算定する(ST4)。3次元位置を算定する際、カメラ校正用パラメータ記憶部17に保存されたそれぞれのカメラのカメラ校正用パラメータを用いる。また、輝度と吸収線量が非線形な関係になっている場合、輝度と吸収線量の非線形な関係を対応テーブルとしてテーブル化しておけば、輝度から吸収線量に簡単に変換できる。線量加算部13において、ペンシルビーム線量分布記憶部に保存されているPDDおよびOCRのデータを用いて、算定したi=1番目のスポット位置をピークとする照射線量分布を算出して、3次元の照射線量分布を得る(ST5)。
次にi=i+1(ST7)、すなわちi=2として、2番目のスポット位置を照射するように照射系制御器21および加速器系制御器22のパラメータがセットされ、i=2番目のスポットを照射して、そのときの水ファントム3の発光をカメラ7およびカメラ8で撮影する(ST3)。これらカメラ7およびカメラ8で撮像したカメラ画像から、スポット位置算定部12において、最も輝度が高い位置をスポット位置として、3次元位置を算定し、輝度からピーク線量を算定する(ST4)。ペンシルビーム線量分布記憶部に保存されているPDDおよびOCRのデータを用いて、算定したi=2番目のスポット位置をピークとする照射線量分布を算出して、3次元の照射線量分布を得て、1番目の3次元照射線量分布に加算する(ST5)。このようにして、i=nとなるまで(ST6 NO)、得られた3次元照射線量分布を加算する。i=n、すなわち全スポット位置での照射が終了した時点(ST6 YES)で、加算により得られた照射線量分布が、照射線量分布の測定値となる。得られるデータの一例を図5に示す。図5は、ある中心付近のY位置におけるZ方向とX方向の2次元の分布を示す図、すなわち2.5次元の分布図である。実際には、X,Y、Z三次元のボリュームの1点1点に対して値を持つような3次元照射線量分布が得られることになる。線量分布評価部14において、このようにして得られた3次元の照射線量分布の測定値と、治療計画で設定した3次元の照射線量分布とを比較、評価する(ST8)。治療計画で設定した線量分布は、予め治療計画装置から線量分布算出評価装置10の照射領域線量分布データ記憶部15に保存しておく。測定値としての照射線量分布が、治療計画により設定した照射線量分布とどの程度合致しているかの評価は、既知のガンマインデックスなどの指標を用いて行うことができる。
以上のように、本発明の実施の形態1による線量分布測定装置によれば、照射の中心軸CAを中心とする円C上に配置された2台のカメラ7およびカメラ8により、スポット位置毎の照射による水ファントム3の発光を撮像して得られる画像からスポット位置を算定し、予め測定したペンシルビームのPDDおよびOCRのデータを用いることにより、スポットスキャニング照射による線量分布を簡便に測定することができる。2台のカメラはその撮像の方向が互いに直交する位置に配置することが望ましい。ただし、カメラの配置に対応したカメラ校正用パラメータを求めておけば、カメラ画像からスポット位置を算出できるため、2台のカメラを必ずしも直交する位置に配置しなくても良い。また、カメラは、少なくとも2台配置すればよく、3台以上配置しても良い。カメラの台数が多いと、より精度良くスポット位置を算定できる。
実施の形態2.
 図6は、本発明の実施の形態2による線量分布測定装置100を含む粒子線照射装置の概略構成を示すブロック図である。図6において、図1と同一符号は同一または相当する部分を示す。本実施の形態2による線量分布測定装置100では、実施の形態1による線量分布測定装置1の構成に、OCR測定用カメラ9を追加したものである。OCR測定用カメラ9は、水ファントム3の入射窓6のある側と反対側の、水ファントム3の外部に設置されている。OCR測定用カメラ9は、水ファントム3の方向に向けて画像を取得する。画像は、各スポット位置を照射する毎に取得する。このように取得することで、各スポット位置での照射毎のOCRに相当する画像が得られる。これらの画像から、線量分布算出評価装置110におけるOCR分布算定部18において、各スポット位置の照射毎にOCRデータを算定する。OCRデータの算定は、カメラ画像からビーム径を算出し、分布として例えばガウス分布を仮定してOCRデータとすれば良い。
本実施の形態2では、実施の形態1で説明したステップST5において、OCR分布算定部18において算定したOCRデータと、ペンシルビーム線量分布データ記憶部16に記憶されているPDDのデータを用いて、線量加算部13が、スポット位置算定部12において算定したi番目のスポット位置をピークとする線量分布を算出して加算する。
 このように、本実施の形態2によれば、予めペンシルビームのOCRを測定して保存しておく必要がなく、実際に照射したときのOCRを測定して線量分布算定に用いるため、より精度が高い線量分布測定が行える。
実施の形態3.
 図7は、本発明の実施の形態3による線量分布測定装置200を含む粒子線照射装置の概略構成を示すブロック図である。図7において、図1と同一符号は同一または相当する部分を示す。本実施の形態3では、1台のカメラ70が水ファントム3の外部に配置されている。カメラ70は、例えば粒子線4の照射の中心軸CAに対して垂直な面における照射の中心軸CAを中心とする円C上に配置され、照射の中止軸CAを中心とする画像を撮像する。
本実施の形態3による線量分布測定装置200の動作フローを図8に示す。粒子線4をスポットスキャニング照射法により水ファントム3に照射(ST11)したときの蛍光物質を含む液体5の発光を、カメラ70で照射中の全時間露光した画像を撮像する(ST12)ことで、線量分布算出評価装置210におけるカメラ画像処理部211に発光した光を積算値として記録する。記録する画像は、光強度を色の濃淡で表わした画像でも良く、あるいは光強度が同じ点を結んだ等光強度曲線で表わした画像でも良い。記録された画像はカメラの光軸方向の空間および時間の積算値であり、線量分布そのものではない。そこで、画像予測部30において、照射領域線量分布データ記憶部15に保存されている、治療計画装置20において設定した照射領域線量分布のデータを用いて、この線量分布による水ファントム3の発光量をシミュレーションし、シミュレーションした発光量によりカメラ70の位置で撮像されるであろう、空間および時間の積算値としての画像を予測して、予測した予測画像を保存する。蛍光物質を含む液体5の発光は、照射線量に対して非線形のものが多いため、この非線形性を考慮してシミュレーションするのが好ましい。線量分布評価部214において、画像予測部30に保存された予測画像とカメラ画像処理部211に記録された撮像画像とを比較・評価することにより、治療計画装置20において設定した線量分布と、実際に照射したときの線量分布を比較・評価する(ST13)ことができる。
以上のように、本実施の形態3による線量分布測定装置によれば、直接線量分布そのものを測定することはできないが、カメラ1台の簡単な構成により、治療計画装置において設定した線量分布と、実際に照射したときの線量分布を間接的に比較・評価できる。
実施の形態4.
 図9は、本発明の実施の形態4による線量分布測定装置300を含む粒子線照射装置の概略構成を示すブロック図である。また図10は、本実施の形態4による線量分布測定装置の動作を示すフロー図である。図9において、図7と同一符号は同一または相当する部分を示す。本実施の形態4では、実施の形態3と同様、1台のカメラ70が水ファントム3の外部に配置されている。カメラ70は、例えば粒子線4の照射の中心軸CAに対して垂直な面における照射の中心軸CAを中心とする円C上に配置され、照射の中止軸CAを中心とする画像を撮像する。
本実施の形態4では、実施の形態3と同様、粒子線4をスポットスキャニング照射法により水ファントム3に照射(ST11)したときの蛍光物質を含む液体5の発光を、カメラ70で照射中の全時間露光した画像を撮像(ST12)することで、線量分布算出評価装置310のカメラ画像処理部311に発光した光を積算値として記録する。記録された画像はカメラの光軸方向の空間および時間の積算値であり、線量分布そのものではない。
画像は、例えば、等光強度曲線で表わした、図11のようなデータとして記録する。線量分布算出評価装置310の一次元光強度分布算出部319において、この画像から、照射の中心軸CAに平行な方向の断面Aの一次元、および照射の中心軸CAに垂直な方向の断面Bの一次元の光強度分布として抽出する(ST14)。抽出した光強度分布の例を図12および図13に示す。図12は照射の中心軸に平行な方向の断面Aの一次元、すなわちZ方向の光強度分布の例であり、図13は、照射の中心軸CAに垂直な方向の断面Bの一次元、すなわちX方向の光強度分布の例である。一方、画像予測部315において、照射領域線量分布データ記憶部15に保存されている、治療計画装置20において設定した照射領域線量分布のデータを用いて、この線量分布による水ファントムの発光量をシミュレーションし、シミュレーションした発光量によりカメラ70の位置で撮像されるであろう、空間および時間の積算値としての画像を予測して、この予測画像から、照射の中心軸CAに平行な方向の断面Aの一次元、および照射の中心軸CAに垂直な方向の断面Bの一次元の光強度分布として抽出する。線量分布評価部314において、撮像した画像から一次元光強度分布算出部319において抽出した一次元の光強度分布と、画像予測部315において予測画像から抽出した一次元の光強度分布とを比較することにより、照射線量分布を評価する(ST15)ことができる。
実施の形態5.
 図14は、本発明の実施の形態5による線量分布測定装置の動作フロー図である。本実施の形態5による線量分布測定装置は、実施の形態4と同様、図9に示す線量分布測定装置300の構成で、ペンシルビームである粒子線4を移動させずに水ファントム3に短時間照射して(ST21)、ペンシルビームによる発光を、カメラ70により撮像する(ST22)ことで、ペンシルビームである粒子線4の線源データが得られる。例えば、カメラ70の配置が図9に示すような配置であると、一次元光強度分布算出部319において算出(ST23)するZ方向の一次元光強度分布は、線源のPDDに相当する分布となり、X方向の一次元光強度分布は、線源のX方向のOCRに相当する分布となる。よって、線量分布評価部314において、一次元光強度分布算出部319において算出した一次元強度分布から、線源のPDDおよびOCRのデータを抽出する(ST24)ことができる。さらにもう一台のカメラをカメラ70と直交する方向、すなわち図1のカメラ8の位置に設置すると、線源のY方向のOCRに相当する分布が得られる。このとき、輝度と吸収線量が非線形な関係になっている場合、輝度と吸収線量の非線形な関係を対応テーブルとしてテーブル化しておけば、光強度分布から吸収線量分布に簡単に変換できる。
このように、ペンシルビームによる短時間照射の、蛍光物質を含む液体の発光をカメラにより撮像することにより、ペンシルビームのPDDやOCRに相当する線源データを簡便に得ることができる。
粒子線治療の線量分布測定の目的としては、図15に示すように2つの場面と、2つの測定の計4ケースが想定される。1つ目の場面は、治療計画へ線源データを登録するための測定である。当該測定では、OCR測定として指頭型線量計等が用いられる。同じく当該測定では、PDD測定としてBragg Peakチェンバー等が用いられる。もう1つの用途(場面)としては、患者への線量投与が治療計画でシミュレーションしたとおりになるかを事前検証するための分布測定がある。分布測定では、OCRを指頭型線量計等で測り、PDDをAdvanced Markus等で計測することが多い。本発明による各手法を用いることで、4つの全領域をカバーできるようになり、2次元、2.5次元もしくは3次元の分布測定を実施できるという特徴がある。
なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
1、100、200、300:線量分布測定装置、2:照射系、3:水ファントム、4:粒子線、5:蛍光物質を含む液体、6:入射窓、7、8、70:カメラ、9:OCR測定用カメラ、10、110、210、310:線量分布算出評価装置、11、211、311:カメラ画像処理部、12:スポット位置算定部、13:線量加算部、14、214、314:線量分布評価部、15:照射領域線量分布データ記憶部、16:ペンシルビーム線量分布データ記憶部、17:カメラ校正用パラメータ記憶部、18:OCR分布算定部、20:治療計画装置、21:照射系制御器、22:加速器系制御器、30、315:画像予測部、319:一次元光強度分布算出部

Claims (6)

  1. 粒子線をペンシルビームとして照射対象に照射するための照射系が、前記粒子線のエネルギーを変更する毎に、当該エネルギーに対応した前記照射対象の深さ位置の2次元照射領域に前記粒子線を進行方向に垂直な2次元方向に移動と停留を繰り返して走査することにより3次元の照射領域に前記粒子線を照射するときの照射線量分布を測定するための照射線量分布測定装置において、
    前記粒子線を照射することにより発光する蛍光物質を含む液体を有し、前記粒子線を入射させるための入射窓を備えた水ファントム、
    この水ファントムの外部であって、前記水ファントムの前記粒子線の照射の中心軸に垂直な面上に、前記蛍光物質を含む液体の発光を撮像するように配置された少なくとも2台のカメラ、
    この少なくとも2台のカメラの画像を処理するカメラ画像処理部と、前記少なくとも2台のカメラのそれぞれのカメラのカメラ校正用パラメータを保存するカメラ校正用パラメータ記憶部と、前記カメラ校正用パラメータ記憶部に保存されている前記それぞれのカメラのカメラ校正用パラメータを用いて前記カメラ画像処理部で処理されたカメラ画像データから前記粒子線の停留時の照射位置であるスポット位置を算定するスポット位置算定部と、前記ペンシルビームのPDDおよびOCRのデータを保存するペンシルビーム線量分布データ記憶部と、前記ペンシルビーム線量分布データ記憶部に保存されているPDDおよびOCRのデータを用いて前記スポット位置算定部で算定されたスポット位置における照射線量分布を算定して、スポット位置毎の照射線量分布を加算する線量加算部と、を備えた線量分布算出評価装置、
    を備えたことを特徴とする線量分布測定装置。
  2.  前記水ファントムの粒子線の入射側とは反対側であって、前記水ファントムの外部に配置されたOCR測定用カメラを備え、前記線量分布算出評価装置が、前記OCR測定用カメラの撮像画像から前記スポット位置毎のOCRを算定するOCR分布算定部を備え、前記線量加算部は、前記ペンシルビーム線量分布データ記憶部に保存されているOCRのデータに替えて前記OCR分布算定部において算定されたOCRを用いて前記スポット位置算定部で算定されたスポット位置における照射線量分布を算定することを特徴とする請求項1に記載の線量分布測定装置。
  3.  前記線量分布算出評価装置は、治療計画装置において設定された照射領域の線量分布データを記憶する照射領域線量分布データ記憶部を備え、前記線量加算部によって算定されたスポット位置毎の照射線量分布を全て加算して得られた測定照射線量分布と、前記照射領域線量分布データ記憶部に保存されている線量分布データとを比較して、前記測定照射線量分布を評価することを特徴とする請求項1または請求項2に記載の線量分布測定装置。
  4.  粒子線をペンシルビームとして照射対象に照射するための照射系が、前記粒子線のエネルギーを変更する毎に、当該エネルギーに対応した前記照射対象の深さ位置の2次元照射領域に前記粒子線を進行方向に垂直な2次元方向に移動と停留を繰り返して走査することにより3次元の照射領域に前記粒子線を照射するときの照射線量分布を測定するための照射線量分布測定装置において、
    前記粒子線を照射することにより発光する蛍光物質を含む液体を有し、前記粒子線を入射させるための入射窓を備えた水ファントムと、
    この水ファントムの外部であって、前記水ファントムの前記粒子線の照射の中心軸に垂直な面上に、前記蛍光物質を含む液体の発光を撮像するように配置された1台のカメラと、
    この1台のカメラの画像を処理するカメラ画像処理部と、治療計画装置において設定された照射領域の線量分布データを保存する照射領域線量分布データ記憶部と、この照射領域線量分布データ記憶部に保存された照射領域の線量分布データから、前記1台のカメラの位置におけるカメラ撮像画像を予測して予測画像を保存する画像予測部と、前記カメラ画像処理部で処理した前記1台のカメラ画像と、前記画像予測部に保存された予測画像とを比較して評価する線量分布評価部とを備えた線量分布算出評価装置と、
    を備えたことを特徴とする線量分布測定装置。
  5. 前記カメラ画像処理部で処理されたカメラ画像から一次元の光強度分布を抽出する一次元光強度分布算出部を備え、前記線量分布評価部は、前記画像予測部に保存されている予測画像から一次元光強度分布を抽出して、前記一次元光強度分布算出部で算出した一次元光強度分布と前記予測画像から抽出した一次元強度分布とを比較して評価することを特徴とする請求項4に記載の線量分布測定装置。
  6. ペンシルビームである粒子線の線源データを測定する線量分布測定装置において、
    前記粒子線を照射することにより発光する蛍光物質を含む液体を有し、前記粒子線を入射させるための入射窓を備えた水ファントムと、
    この水ファントムの周囲であって、前記水ファントムの前記粒子線の照射の中心軸に垂直な面上に、前記蛍光物質を含む液体の発光を撮像するように配置された1台のカメラと、
    この1台のカメラの画像を処理するカメラ画像処理部と、静止した前記ペンシルビームである粒子線による照射での前記蛍光物質を含む液体の発光を前記1台のカメラにより撮像したカメラ画像を前記カメラ画像処理部で処理した画像から一次元の光強度分布を抽出する一次元光強度分布算出部と、この一次元光強度分布算出部で抽出した一次元光強度分布から前記ペンシルビームである粒子線のPDDおよびOCRのデータを得る線量分布評価部とを備えた線量分布算出評価装置と、
    を備えたことを特徴とする線量分布測定装置。
PCT/JP2012/083641 2012-12-26 2012-12-26 線量分布測定装置 WO2014102929A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/439,326 US20150306427A1 (en) 2012-12-26 2012-12-26 Dose distribution measurement device
EP12891049.4A EP2939708A4 (en) 2012-12-26 2012-12-26 DEVICE FOR MEASURING DOSING DISTRIBUTION
JP2014553936A JP5918865B2 (ja) 2012-12-26 2012-12-26 線量分布測定装置
CN201280078002.1A CN104870054B (zh) 2012-12-26 2012-12-26 剂量分布测定装置
PCT/JP2012/083641 WO2014102929A1 (ja) 2012-12-26 2012-12-26 線量分布測定装置
TW102123140A TWI463163B (zh) 2012-12-26 2013-06-28 線量分布測定裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083641 WO2014102929A1 (ja) 2012-12-26 2012-12-26 線量分布測定装置

Publications (1)

Publication Number Publication Date
WO2014102929A1 true WO2014102929A1 (ja) 2014-07-03

Family

ID=51020088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083641 WO2014102929A1 (ja) 2012-12-26 2012-12-26 線量分布測定装置

Country Status (6)

Country Link
US (1) US20150306427A1 (ja)
EP (1) EP2939708A4 (ja)
JP (1) JP5918865B2 (ja)
CN (1) CN104870054B (ja)
TW (1) TWI463163B (ja)
WO (1) WO2014102929A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051153A3 (en) * 2014-10-02 2016-05-26 Vision Rt Limited Method of calibrating a patient monitoring system for use with a radiotherapy treatment apparatus
WO2016099264A1 (en) 2014-12-18 2016-06-23 Rijksuniversiteit Groningen Imaging method and system for verification of a treatment plan in hadron therapy
JP2016198236A (ja) * 2015-04-09 2016-12-01 公益財団法人若狭湾エネルギー研究センター 放射線モニタリングシステム
JP2020044286A (ja) * 2018-09-21 2020-03-26 国立研究開発法人量子科学技術研究開発機構 データ分析装置、比較表示装置、治療計画データ編集装置、線量分布測定方法、プログラムおよび線量分布測定装置
CN112083467A (zh) * 2020-09-28 2020-12-15 中国科学院近代物理研究所 一种粒子治疗装置的三维剂量测量探测系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9937361B2 (en) * 2014-01-10 2018-04-10 Mitsubishi Electric Corporation Particle beam irradiation apparatus
WO2017002231A1 (ja) * 2015-07-01 2017-01-05 三菱電機株式会社 線量分布演算装置、粒子線治療装置、及び線量分布演算方法
EP3394639B1 (en) * 2015-12-23 2022-10-19 Agfa Nv Radiation dosimeter
EP3576627B1 (en) * 2017-02-03 2021-08-11 The University Of Liverpool Phantom
US10569105B2 (en) 2017-05-26 2020-02-25 Accuray Incorporated Radiation based treatment beam position calibration and verification
GB2565119A (en) 2017-08-02 2019-02-06 Vision Rt Ltd Method of calibrating a patient monitoring system for use with a radiotherapy treatment apparatus
CN107875524B (zh) * 2017-11-10 2020-06-12 上海联影医疗科技有限公司 放射治疗系统、模体以及等中心校准方法
GB2571122B (en) * 2018-02-19 2020-04-22 Elekta ltd Water tank apparatus
CN110354402B (zh) * 2018-04-28 2021-05-11 北京铭杰医疗科技有限公司 电子束剂量测量系统及检测方法
EP3827287B1 (en) 2018-07-23 2023-03-22 Ion Beam Applications S.A. Scintillating detectors for quality assurance of a therapy photon beam
CN109394215B (zh) * 2018-11-16 2022-04-29 上海京悦机械有限公司 一种医疗器械模体及夹具及加工工艺
DE102020200400B4 (de) 2019-02-14 2021-10-28 Siemens Healthcare Gmbh Kontrolliertes Bestrahlen eines Objekts
KR102232327B1 (ko) * 2019-03-14 2021-03-29 충남대학교산학협력단 근접방사선원의 방사선량분포 측정장치 및 그 측정 방법
CN111973892B (zh) * 2019-05-23 2022-07-08 千才生医股份有限公司 用于放射治疗的笔尖式质子束扫描系统剂量分布重建方法
CN110652661B (zh) * 2019-09-30 2021-03-26 中北大学 一种卷积叠加剂量计算系统
IT202000007780A1 (it) * 2020-04-14 2021-10-14 Istituto Naz Di Fisica Nucleare I N F N Rivelatore per dosimetria in carburo di silicio
CN113406686A (zh) * 2021-06-16 2021-09-17 中国科学院近代物理研究所 一种离子束三维剂量分布探测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346894A (ja) * 2000-06-08 2001-12-18 Mitsubishi Electric Corp 線量分布測定装置
JP2002360715A (ja) * 2001-06-08 2002-12-17 Mitsubishi Electric Corp 線量分布測定装置および線量分布測定システム
JP2003047666A (ja) 2001-08-07 2003-02-18 Mitsubishi Electric Corp 水ファントム型線量分布測定装置
JP2003079755A (ja) 2001-09-12 2003-03-18 Wakasawan Energ Kenkyu Center 光ctによる粒子線線量分布測定装置および方法
JP2010032419A (ja) * 2008-07-30 2010-02-12 Natl Inst Of Radiological Sciences 照射線量確認システム及び照射線量確認方法
JP2011050585A (ja) * 2009-09-02 2011-03-17 Toshiba Corp 粒子線ビーム照射装置および粒子線ビーム照射方法
JP2011133598A (ja) 2009-12-24 2011-07-07 Iej:Kk 固体ファントム

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596653A (en) * 1991-04-09 1997-01-21 Mitsubishi Denki Kabushiki Kaisha Radiation therapy treatment planning system
JP3841898B2 (ja) * 1996-11-21 2006-11-08 三菱電機株式会社 深部線量測定装置
JP3784419B2 (ja) * 1996-11-26 2006-06-14 三菱電機株式会社 エネルギー分布を形成する方法
US6025717A (en) * 1997-06-23 2000-02-15 Fonar Corporation Diagnostic simulator for MRI
DE19907774A1 (de) * 1999-02-19 2000-08-31 Schwerionenforsch Gmbh Verfahren zum Verifizieren der berechneten Bestrahlungsdosis eines Ionenstrahl-Therapiesystems
AU2001294604A1 (en) * 2000-09-22 2002-04-02 Numerix Llc Improved radiation therapy treatment method
US20020122117A1 (en) * 2000-12-26 2002-09-05 Masamichi Nakagawa Camera device, camera system and image processing method
US20020190991A1 (en) * 2001-05-16 2002-12-19 Daniel Efran 3-D instant replay system and method
JP4146648B2 (ja) * 2002-02-14 2008-09-10 三菱電機株式会社 吸収線量分布測定装置
JP4147059B2 (ja) * 2002-07-03 2008-09-10 株式会社トプコン キャリブレーション用データ測定装置、測定方法及び測定プログラム、並びにコンピュータ読取可能な記録媒体、画像データ処理装置
US7307654B2 (en) * 2002-10-31 2007-12-11 Hewlett-Packard Development Company, L.P. Image capture and viewing system and method for generating a synthesized image
JP2004321408A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 放射線照射装置および放射線照射方法
WO2006007716A2 (en) * 2004-07-20 2006-01-26 Resonant Medical Inc. Calibrating imaging devices
US7208748B2 (en) * 2004-07-21 2007-04-24 Still River Systems, Inc. Programmable particle scatterer for radiation therapy beam formation
JP4585815B2 (ja) * 2004-09-03 2010-11-24 キヤノン株式会社 情報処理装置、撮影システム、吸収係数補正方法、及びコンピュータプログラム
JP4679567B2 (ja) * 2005-02-04 2011-04-27 三菱電機株式会社 粒子線照射装置
JP4435829B2 (ja) * 2005-02-04 2010-03-24 三菱電機株式会社 粒子線照射装置
US20070249925A1 (en) * 2005-08-29 2007-10-25 Martin Hoheisel X-Ray Diagnostic Device for Mammography
US7450687B2 (en) * 2005-09-29 2008-11-11 University Of Medicine And Dentistry Of New Jersey Method for verification of intensity modulated radiation therapy
US7852217B2 (en) * 2005-12-28 2010-12-14 Panasonic Corporation Object detecting device, object detecting method and object detecting computer program
CN2932411Y (zh) * 2006-01-25 2007-08-08 南方医科大学 一种立体定向放射治疗系统剂量测量水箱
US8406562B2 (en) * 2006-08-11 2013-03-26 Geo Semiconductor Inc. System and method for automated calibration and correction of display geometry and color
CA2662893A1 (en) * 2006-09-06 2008-03-13 University Health Network Fluorescence quantification and image acquisition in highly turbid media
CN100432699C (zh) * 2006-12-29 2008-11-12 成都川大奇林科技有限责任公司 一种测量医用加速器光子束能谱的方法
EP2116277A1 (en) * 2008-05-06 2009-11-11 Ion Beam Applications S.A. Device and method for particle therapy monitoring and verification
DK2291640T3 (en) * 2008-05-20 2019-03-11 Univ Health Network Device and method for fluorescence-based imaging and monitoring
CN101290354A (zh) * 2008-06-12 2008-10-22 中国测试技术研究院电离辐射研究所 用于放射治疗设备临床剂量分布的交换探测器测量方法
EP2140913A1 (en) * 2008-07-03 2010-01-06 Ion Beam Applications S.A. Device and method for particle therapy verification
US8294762B2 (en) * 2008-10-10 2012-10-23 Fujifilm Corporation Three-dimensional shape measurement photographing apparatus, method, and program
WO2010141101A1 (en) * 2009-06-05 2010-12-09 Sentinel Scanning Corporation Transportation container inspection system and method
WO2010143266A1 (ja) * 2009-06-09 2010-12-16 三菱電機株式会社 粒子線照射装置
WO2011005862A2 (en) * 2009-07-07 2011-01-13 The Board Of Regents Of The University Of Texas System Liquid scintillator for 3d dosimetry for radiotherapy modalities
US8835877B2 (en) * 2009-09-30 2014-09-16 Stc.Unm System and methods of photon-based radiotherapy and radiosurgery delivery
US8466428B2 (en) * 2009-11-03 2013-06-18 Mitsubishi Electric Corporation Particle beam irradiation apparatus and particle beam therapy system
WO2011148486A1 (ja) * 2010-05-27 2011-12-01 三菱電機株式会社 粒子線照射システムおよび粒子線照射システムの制御方法
EP3031495A3 (en) * 2010-08-17 2016-08-24 Mitsubishi Electric Corporation Multi-leaf collimator, particle beam therapy system, and treatment planning apparatus
US8263954B2 (en) * 2010-11-16 2012-09-11 Mitsubishi Electric Corporation Bolus, bolus manufacturing method, particle beam therapy system, and treatment planning apparatus
CN103402581B (zh) * 2011-03-02 2016-02-24 三菱电机株式会社 粒子射线照射系统
CN103338819B (zh) * 2011-03-08 2015-12-02 三菱电机株式会社 粒子射线治疗装置及粒子射线治疗装置的照射剂量设定方法
WO2012120678A1 (ja) * 2011-03-10 2012-09-13 三菱電機株式会社 粒子線治療装置
WO2012159043A2 (en) * 2011-05-19 2012-11-22 The Trustees Of Dartmouth College Method and system for using cherenkov radiation to monitor beam profiles and radiation therapy
CN104010694B (zh) * 2012-03-27 2016-07-06 三菱电机株式会社 粒子射线治疗装置及粒子射线治疗装置的运转方法
US9694207B2 (en) * 2012-08-21 2017-07-04 Mitsubishi Electric Corporation Control device for scanning electromagnet and particle beam therapy apapratus
US10674135B2 (en) * 2012-10-17 2020-06-02 DotProduct LLC Handheld portable optical scanner and method of using

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346894A (ja) * 2000-06-08 2001-12-18 Mitsubishi Electric Corp 線量分布測定装置
JP2002360715A (ja) * 2001-06-08 2002-12-17 Mitsubishi Electric Corp 線量分布測定装置および線量分布測定システム
JP2003047666A (ja) 2001-08-07 2003-02-18 Mitsubishi Electric Corp 水ファントム型線量分布測定装置
JP2003079755A (ja) 2001-09-12 2003-03-18 Wakasawan Energ Kenkyu Center 光ctによる粒子線線量分布測定装置および方法
JP2010032419A (ja) * 2008-07-30 2010-02-12 Natl Inst Of Radiological Sciences 照射線量確認システム及び照射線量確認方法
JP2011050585A (ja) * 2009-09-02 2011-03-17 Toshiba Corp 粒子線ビーム照射装置および粒子線ビーム照射方法
JP2011133598A (ja) 2009-12-24 2011-07-07 Iej:Kk 固体ファントム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2939708A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051153A3 (en) * 2014-10-02 2016-05-26 Vision Rt Limited Method of calibrating a patient monitoring system for use with a radiotherapy treatment apparatus
JP2017529959A (ja) * 2014-10-02 2017-10-12 ビジョン アールティ リミテッド 放射線治療装置と共に使用するための患者モニタリングシステムの較正方法
US10861193B2 (en) 2014-10-02 2020-12-08 Vision Rt Ltd. Method of calibrating a patient monitoring system for use with a radiotherapy treatment apparatus
WO2016099264A1 (en) 2014-12-18 2016-06-23 Rijksuniversiteit Groningen Imaging method and system for verification of a treatment plan in hadron therapy
NL2014012B1 (en) * 2014-12-18 2016-10-12 Univ Groningen Imaging method and system for verification of a treatment plan in hadron therapy.
JP2016198236A (ja) * 2015-04-09 2016-12-01 公益財団法人若狭湾エネルギー研究センター 放射線モニタリングシステム
JP2020044286A (ja) * 2018-09-21 2020-03-26 国立研究開発法人量子科学技術研究開発機構 データ分析装置、比較表示装置、治療計画データ編集装置、線量分布測定方法、プログラムおよび線量分布測定装置
WO2020059364A1 (ja) * 2018-09-21 2020-03-26 国立研究開発法人量子科学技術研究開発機構 データ分析装置、比較表示装置、治療計画データ編集装置、線量分布測定方法、プログラムおよび線量分布測定装置
JP7125109B2 (ja) 2018-09-21 2022-08-24 国立研究開発法人量子科学技術研究開発機構 データ分析装置、比較表示装置、治療計画データ編集装置、線量分布測定方法、プログラムおよび線量分布測定装置
CN112083467A (zh) * 2020-09-28 2020-12-15 中国科学院近代物理研究所 一种粒子治疗装置的三维剂量测量探测系统
CN112083467B (zh) * 2020-09-28 2022-05-31 中国科学院近代物理研究所 一种粒子治疗装置的三维剂量测量探测系统

Also Published As

Publication number Publication date
TWI463163B (zh) 2014-12-01
TW201425979A (zh) 2014-07-01
CN104870054A (zh) 2015-08-26
EP2939708A4 (en) 2016-08-10
EP2939708A1 (en) 2015-11-04
CN104870054B (zh) 2017-06-23
JPWO2014102929A1 (ja) 2017-01-12
JP5918865B2 (ja) 2016-05-18
US20150306427A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
JP5918865B2 (ja) 線量分布測定装置
JP2016176948A (ja) 線量分布測定装置
US20220143427A1 (en) Advanced cherenkov-based imaging systems, tools, and methods of feedback control, temporal control sequence image capture, and quantification in high resolution dose images
US8232536B2 (en) Particle beam irradiation system and method for controlling the particle beam irradiation system
CN102202733B (zh) 在考虑要保护的体积的情况下对目标体积的照射
CN110075428B (zh) 一种射束检验、测量方法及装置
US20170252579A1 (en) Linear accelerator with cerenkov emission detector
JP6565080B2 (ja) 放射線治療装置、その作動方法及びプログラム
JP5329256B2 (ja) ベッド位置決めシステム、放射線治療システム及びベッド位置決め方法
JP2021094418A (ja) 画素単位減衰因子を導き出すために色空間情報を用いる周囲光抑制
KR101948800B1 (ko) 3차원 산란 방사선 영상장치와 이를 갖는 방사선 의료장비 및 3차원 산란 방사선 영상장치의 배치 방법
JP2016144573A (ja) 画像処理装置および粒子線治療装置
WO2017187877A1 (ja) 動体追跡装置および放射線照射システム
JP2009148495A (ja) 放射線治療情報提供システム及び放射線治療情報提供プログラム
CN117015417A (zh) 具有优化检测器的放射治疗设备
CN108815720A (zh) 基于质子成像精准定位技术的肿瘤放射治疗系统
US11975219B2 (en) Systems and methods for particle portal imaging
US11402523B2 (en) Scintillating detectors for quality assurance of a therapy photon beam
KR101749324B1 (ko) 3차원 산란 방사선 영상장치 및 이를 갖는 방사선 의료장비
WO2017188079A1 (ja) 追跡対象認識シミュレータ、若しくはマーカ認識シミュレータおよび動体追跡装置ならびに放射線照射システム
KR20220087795A (ko) 방사선 감응 패치를 이용한 방사선 조사 모니터링 시스템
WO2019012686A1 (ja) 粒子線治療装置およびdrr画像作成方法
RU2786345C1 (ru) Способ контроля параметров пучка в процессе протонной терапии и устройство для его осуществления
Cantù A system for verifying the repeatability of dose delivery based on simultaneous acceleration of Helium and Carbon ions
JP2023023437A (ja) 粒子線治療システム、および治療計画装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553936

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14439326

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012891049

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE