WO2014099788A1 - C5-spiro iminothiadiazine dioxides as bace inhibitors - Google Patents
C5-spiro iminothiadiazine dioxides as bace inhibitors Download PDFInfo
- Publication number
- WO2014099788A1 WO2014099788A1 PCT/US2013/075400 US2013075400W WO2014099788A1 WO 2014099788 A1 WO2014099788 A1 WO 2014099788A1 US 2013075400 W US2013075400 W US 2013075400W WO 2014099788 A1 WO2014099788 A1 WO 2014099788A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- cycloalkyl
- heteroalkyl
- group
- compound
- Prior art date
Links
- 239000003112 inhibitor Substances 0.000 title abstract description 27
- IBIDQDPPONSSPQ-UHFFFAOYSA-N 1-imino-2H-thiadiazine Chemical compound N=S1NN=CC=C1 IBIDQDPPONSSPQ-UHFFFAOYSA-N 0.000 title abstract description 5
- 101150058765 BACE1 gene Proteins 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 191
- 238000000034 method Methods 0.000 claims abstract description 63
- 150000003839 salts Chemical class 0.000 claims abstract description 62
- 208000024827 Alzheimer disease Diseases 0.000 claims abstract description 54
- 230000007170 pathology Effects 0.000 claims abstract description 33
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 9
- -1 -alkyl-cycloalkyl Chemical group 0.000 claims description 189
- 125000000217 alkyl group Chemical group 0.000 claims description 129
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 85
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 66
- 229910052736 halogen Inorganic materials 0.000 claims description 64
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 57
- 229910052739 hydrogen Inorganic materials 0.000 claims description 41
- 125000005843 halogen group Chemical group 0.000 claims description 35
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 33
- 150000002367 halogens Chemical class 0.000 claims description 32
- 125000001072 heteroaryl group Chemical group 0.000 claims description 30
- 239000003814 drug Substances 0.000 claims description 27
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 26
- 125000003118 aryl group Chemical group 0.000 claims description 25
- 125000004076 pyridyl group Chemical group 0.000 claims description 25
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 24
- 201000010374 Down Syndrome Diseases 0.000 claims description 23
- 208000018737 Parkinson disease Diseases 0.000 claims description 23
- 206010044688 Trisomy 21 Diseases 0.000 claims description 23
- 125000000304 alkynyl group Chemical group 0.000 claims description 23
- 125000003342 alkenyl group Chemical group 0.000 claims description 22
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 22
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 claims description 20
- 125000006519 CCH3 Chemical group 0.000 claims description 19
- 208000012898 Olfaction disease Diseases 0.000 claims description 19
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 19
- 201000010099 disease Diseases 0.000 claims description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 19
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 18
- 125000003545 alkoxy group Chemical group 0.000 claims description 16
- 125000000842 isoxazolyl group Chemical group 0.000 claims description 16
- 125000002971 oxazolyl group Chemical group 0.000 claims description 16
- 125000001544 thienyl group Chemical group 0.000 claims description 16
- 125000001153 fluoro group Chemical group F* 0.000 claims description 15
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 15
- 125000003226 pyrazolyl group Chemical group 0.000 claims description 12
- 102000013455 Amyloid beta-Peptides Human genes 0.000 claims description 11
- 108010090849 Amyloid beta-Peptides Proteins 0.000 claims description 11
- 208000010412 Glaucoma Diseases 0.000 claims description 11
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 11
- 208000010877 cognitive disease Diseases 0.000 claims description 11
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims description 11
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 10
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 10
- 206010002022 amyloidosis Diseases 0.000 claims description 9
- 125000001246 bromo group Chemical group Br* 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 9
- 208000027061 mild cognitive impairment Diseases 0.000 claims description 9
- 206010059245 Angiopathy Diseases 0.000 claims description 8
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 claims description 8
- 208000030886 Traumatic Brain injury Diseases 0.000 claims description 8
- 230000007850 degeneration Effects 0.000 claims description 8
- 206010014599 encephalitis Diseases 0.000 claims description 8
- 208000008864 scrapie Diseases 0.000 claims description 8
- 230000009529 traumatic brain injury Effects 0.000 claims description 8
- 208000005145 Cerebral amyloid angiopathy Diseases 0.000 claims description 7
- 206010036631 Presenile dementia Diseases 0.000 claims description 7
- 206010039966 Senile dementia Diseases 0.000 claims description 7
- 230000003941 amyloidogenesis Effects 0.000 claims description 7
- 230000001054 cortical effect Effects 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 206010008111 Cerebral haemorrhage Diseases 0.000 claims description 6
- 208000005881 bovine spongiform encephalopathy Diseases 0.000 claims description 6
- 208000025698 brain inflammatory disease Diseases 0.000 claims description 6
- 206010012601 diabetes mellitus Diseases 0.000 claims description 6
- 239000003085 diluting agent Substances 0.000 claims description 6
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 6
- 125000001188 haloalkyl group Chemical group 0.000 claims description 6
- 125000004366 heterocycloalkenyl group Chemical group 0.000 claims description 6
- 230000007388 microgliosis Effects 0.000 claims description 6
- 201000002212 progressive supranuclear palsy Diseases 0.000 claims description 6
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 4
- 125000004405 heteroalkoxy group Chemical group 0.000 claims description 4
- 101000894895 Homo sapiens Beta-secretase 1 Proteins 0.000 abstract description 12
- 238000002360 preparation method Methods 0.000 abstract description 11
- 102100021257 Beta-secretase 1 Human genes 0.000 abstract description 10
- 239000013543 active substance Substances 0.000 abstract description 6
- 230000002265 prevention Effects 0.000 abstract description 2
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 75
- 239000000203 mixture Substances 0.000 description 68
- 239000000243 solution Substances 0.000 description 50
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 46
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 44
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- 235000019439 ethyl acetate Nutrition 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 22
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 20
- 239000012453 solvate Substances 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 19
- 208000024891 symptom Diseases 0.000 description 19
- 229910052760 oxygen Inorganic materials 0.000 description 18
- 239000003208 petroleum Substances 0.000 description 18
- 239000011734 sodium Substances 0.000 description 18
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 17
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 239000000741 silica gel Substances 0.000 description 17
- 229910002027 silica gel Inorganic materials 0.000 description 17
- 102000002659 Amyloid Precursor Protein Secretases Human genes 0.000 description 16
- 108010043324 Amyloid Precursor Protein Secretases Proteins 0.000 description 16
- 239000012044 organic layer Substances 0.000 description 16
- 239000011541 reaction mixture Substances 0.000 description 16
- 239000012267 brine Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000003818 flash chromatography Methods 0.000 description 15
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 15
- 229910052717 sulfur Inorganic materials 0.000 description 15
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 125000004122 cyclic group Chemical group 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 108090000765 processed proteins & peptides Proteins 0.000 description 14
- 239000000651 prodrug Substances 0.000 description 14
- 229940002612 prodrug Drugs 0.000 description 14
- 125000006413 ring segment Chemical group 0.000 description 14
- 230000000670 limiting effect Effects 0.000 description 13
- 125000000168 pyrrolyl group Chemical group 0.000 description 13
- 238000005160 1H NMR spectroscopy Methods 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 238000005755 formation reaction Methods 0.000 description 11
- 125000005842 heteroatom Chemical group 0.000 description 11
- 125000000623 heterocyclic group Chemical group 0.000 description 11
- 230000005764 inhibitory process Effects 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- 229940124597 therapeutic agent Drugs 0.000 description 11
- 125000000335 thiazolyl group Chemical group 0.000 description 11
- 125000003710 aryl alkyl group Chemical group 0.000 description 10
- 238000003556 assay Methods 0.000 description 10
- 125000004429 atom Chemical group 0.000 description 10
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 10
- 125000004434 sulfur atom Chemical group 0.000 description 10
- 125000001113 thiadiazolyl group Chemical group 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 208000026139 Memory disease Diseases 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 125000002950 monocyclic group Chemical group 0.000 description 9
- 125000002098 pyridazinyl group Chemical group 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 208000000044 Amnesia Diseases 0.000 description 8
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 8
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 8
- 210000004556 brain Anatomy 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical compound O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 238000010828 elution Methods 0.000 description 8
- 125000002541 furyl group Chemical group 0.000 description 8
- 125000004857 imidazopyridinyl group Chemical group N1C(=NC2=C1C=CC=N2)* 0.000 description 8
- 230000002401 inhibitory effect Effects 0.000 description 8
- 125000001786 isothiazolyl group Chemical group 0.000 description 8
- 230000006984 memory degeneration Effects 0.000 description 8
- 208000023060 memory loss Diseases 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 230000004770 neurodegeneration Effects 0.000 description 8
- 125000001715 oxadiazolyl group Chemical group 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 206010012289 Dementia Diseases 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 7
- 238000000668 atmospheric pressure chemical ionisation mass spectrometry Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 125000001041 indolyl group Chemical group 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 229940044551 receptor antagonist Drugs 0.000 description 7
- 239000002464 receptor antagonist Substances 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- 150000001204 N-oxides Chemical class 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 230000006735 deficit Effects 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 125000003566 oxetanyl group Chemical group 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 102000001049 Amyloid Human genes 0.000 description 5
- 108010094108 Amyloid Proteins 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 125000002877 alkyl aryl group Chemical group 0.000 description 5
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- ASUTZQLVASHGKV-JDFRZJQESA-N galanthamine Chemical compound O1C(=C23)C(OC)=CC=C2CN(C)CC[C@]23[C@@H]1C[C@@H](O)C=C2 ASUTZQLVASHGKV-JDFRZJQESA-N 0.000 description 5
- 238000002868 homogeneous time resolved fluorescence Methods 0.000 description 5
- RCCPEORTSYDPMB-UHFFFAOYSA-N hydroxy benzenecarboximidothioate Chemical compound OSC(=N)C1=CC=CC=C1 RCCPEORTSYDPMB-UHFFFAOYSA-N 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 5
- 239000011369 resultant mixture Substances 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 5
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 208000037259 Amyloid Plaque Diseases 0.000 description 4
- 102000009091 Amyloidogenic Proteins Human genes 0.000 description 4
- 108010048112 Amyloidogenic Proteins Proteins 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000000556 agonist Substances 0.000 description 4
- 125000005038 alkynylalkyl group Chemical group 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 230000001906 cholesterol absorption Effects 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 4
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 4
- 125000005050 dihydrooxazolyl group Chemical group O1C(NC=C1)* 0.000 description 4
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 4
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 4
- 125000002883 imidazolyl group Chemical group 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- BUGYDGFZZOZRHP-UHFFFAOYSA-N memantine Chemical compound C1C(C2)CC3(C)CC1(C)CC2(N)C3 BUGYDGFZZOZRHP-UHFFFAOYSA-N 0.000 description 4
- 208000015122 neurodegenerative disease Diseases 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 4
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 4
- 125000001425 triazolyl group Chemical group 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- 238000011818 5xFAD mouse Methods 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 3
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 3
- XSVMFMHYUFZWBK-NSHDSACASA-N Rivastigmine Chemical compound CCN(C)C(=O)OC1=CC=CC([C@H](C)N(C)C)=C1 XSVMFMHYUFZWBK-NSHDSACASA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 241000534944 Thia Species 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 239000003529 anticholesteremic agent Substances 0.000 description 3
- 229940127226 anticholesterol agent Drugs 0.000 description 3
- 101150031224 app gene Proteins 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000012131 assay buffer Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 3
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000544 cholinesterase inhibitor Substances 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 238000001631 haemodialysis Methods 0.000 description 3
- 230000000322 hemodialysis Effects 0.000 description 3
- 125000005885 heterocycloalkylalkyl group Chemical group 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 230000000155 isotopic effect Effects 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 3
- 125000006578 monocyclic heterocycloalkyl group Chemical group 0.000 description 3
- 125000002757 morpholinyl group Chemical group 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 3
- 230000016273 neuron death Effects 0.000 description 3
- 230000007310 pathophysiology Effects 0.000 description 3
- 125000004193 piperazinyl group Chemical group 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical group O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 102000013498 tau Proteins Human genes 0.000 description 3
- 108010026424 tau Proteins Proteins 0.000 description 3
- 125000004306 triazinyl group Chemical group 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 125000004514 1,2,4-thiadiazolyl group Chemical group 0.000 description 2
- 125000004530 1,2,4-triazinyl group Chemical group N1=NC(=NC=C1)* 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- 125000004793 2,2,2-trifluoroethoxy group Chemical group FC(CO*)(F)F 0.000 description 2
- HBEDSQVIWPRPAY-UHFFFAOYSA-N 2,3-dihydrobenzofuran Chemical compound C1=CC=C2OCCC2=C1 HBEDSQVIWPRPAY-UHFFFAOYSA-N 0.000 description 2
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 2
- CESUXLKAADQNTB-SSDOTTSWSA-N 2-methylpropane-2-sulfinamide Chemical compound CC(C)(C)[S@](N)=O CESUXLKAADQNTB-SSDOTTSWSA-N 0.000 description 2
- QLPKTAFPRRIFQX-UHFFFAOYSA-N 2-thiophen-2-ylpyridine Chemical compound C1=CSC(C=2N=CC=CC=2)=C1 QLPKTAFPRRIFQX-UHFFFAOYSA-N 0.000 description 2
- 125000004364 3-pyrrolinyl group Chemical group [H]C1=C([H])C([H])([H])N(*)C1([H])[H] 0.000 description 2
- SFHYNDMGZXWXBU-LIMNOBDPSA-N 6-amino-2-[[(e)-(3-formylphenyl)methylideneamino]carbamoylamino]-1,3-dioxobenzo[de]isoquinoline-5,8-disulfonic acid Chemical compound O=C1C(C2=3)=CC(S(O)(=O)=O)=CC=3C(N)=C(S(O)(=O)=O)C=C2C(=O)N1NC(=O)N\N=C\C1=CC=CC(C=O)=C1 SFHYNDMGZXWXBU-LIMNOBDPSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 108010017640 Aspartic Acid Proteases Proteins 0.000 description 2
- 102000004580 Aspartic Acid Proteases Human genes 0.000 description 2
- 229910015845 BBr3 Inorganic materials 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 102000009132 CB1 Cannabinoid Receptor Human genes 0.000 description 2
- 108010073366 CB1 Cannabinoid Receptor Proteins 0.000 description 2
- 0 CC(*1)(C2)C1(*)CC(**IC*C(*1*)=N)C2C(*)(*)S1(=O)=O Chemical compound CC(*1)(C2)C1(*)CC(**IC*C(*1*)=N)C2C(*)(*)S1(=O)=O 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 2
- 206010070476 Haemodialysis complication Diseases 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 102000019315 Nicotinic acetylcholine receptors Human genes 0.000 description 2
- 108050006807 Nicotinic acetylcholine receptors Proteins 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 2
- 241000720974 Protium Species 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 150000001447 alkali salts Chemical class 0.000 description 2
- 125000004450 alkenylene group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 230000003942 amyloidogenic effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940039856 aricept Drugs 0.000 description 2
- 125000002393 azetidinyl group Chemical group 0.000 description 2
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 2
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 125000004852 dihydrofuranyl group Chemical group O1C(CC=C1)* 0.000 description 2
- 125000005047 dihydroimidazolyl group Chemical group N1(CNC=C1)* 0.000 description 2
- 125000004639 dihydroindenyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 2
- 125000005049 dihydrooxadiazolyl group Chemical group O1N(NC=C1)* 0.000 description 2
- 125000005056 dihydrothiazolyl group Chemical group S1C(NC=C1)* 0.000 description 2
- 125000005057 dihydrothienyl group Chemical group S1C(CC=C1)* 0.000 description 2
- 125000005072 dihydrothiopyranyl group Chemical group S1C(CCC=C1)* 0.000 description 2
- 229960003530 donepezil Drugs 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229940108366 exelon Drugs 0.000 description 2
- 229940125753 fibrate Drugs 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000003838 furazanyl group Chemical group 0.000 description 2
- 229960003980 galantamine Drugs 0.000 description 2
- ASUTZQLVASHGKV-UHFFFAOYSA-N galanthamine hydrochloride Natural products O1C(=C23)C(OC)=CC=C2CN(C)CCC23C1CC(O)C=C2 ASUTZQLVASHGKV-UHFFFAOYSA-N 0.000 description 2
- 125000004475 heteroaralkyl group Chemical group 0.000 description 2
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical group 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 2
- AQBLLJNPHDIAPN-LNTINUHCSA-K iron(3+);(z)-4-oxopent-2-en-2-olate Chemical compound [Fe+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O AQBLLJNPHDIAPN-LNTINUHCSA-K 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- JNODQFNWMXFMEV-UHFFFAOYSA-N latrepirdine Chemical compound C1N(C)CCC2=C1C1=CC(C)=CC=C1N2CCC1=CC=C(C)N=C1 JNODQFNWMXFMEV-UHFFFAOYSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229960004640 memantine Drugs 0.000 description 2
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229940033872 namenda Drugs 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 229960003512 nicotinic acid Drugs 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 239000011664 nicotinic acid Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 125000003386 piperidinyl group Chemical group 0.000 description 2
- 229940096701 plain lipid modifying drug hmg coa reductase inhibitors Drugs 0.000 description 2
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 2
- 229940051845 razadyne Drugs 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 210000003994 retinal ganglion cell Anatomy 0.000 description 2
- 102220009395 rs63750847 Human genes 0.000 description 2
- 210000004739 secretory vesicle Anatomy 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229960001685 tacrine Drugs 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical class CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- WZCXOBMFBKSSFA-UHFFFAOYSA-N (2-iodophenyl)methanol Chemical compound OCC1=CC=CC=C1I WZCXOBMFBKSSFA-UHFFFAOYSA-N 0.000 description 1
- PAORVUMOXXAMPL-SECBINFHSA-N (2s)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl chloride Chemical compound CO[C@](C(Cl)=O)(C(F)(F)F)C1=CC=CC=C1 PAORVUMOXXAMPL-SECBINFHSA-N 0.000 description 1
- ZGGHKIMDNBDHJB-NRFPMOEYSA-M (3R,5S)-fluvastatin sodium Chemical compound [Na+].C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 ZGGHKIMDNBDHJB-NRFPMOEYSA-M 0.000 description 1
- VHNYOQKVZQVBLC-RTCGXNAVSA-N (4r,7e,9as)-7-[[3-methoxy-4-(4-methylimidazol-1-yl)phenyl]methylidene]-4-(3,4,5-trifluorophenyl)-1,3,4,8,9,9a-hexahydropyrido[2,1-c][1,4]oxazin-6-one Chemical compound C1([C@@H]2COC[C@@H]3CC\C(C(N32)=O)=C/C=2C=C(C(=CC=2)N2C=C(C)N=C2)OC)=CC(F)=C(F)C(F)=C1 VHNYOQKVZQVBLC-RTCGXNAVSA-N 0.000 description 1
- MGRVRXRGTBOSHW-UHFFFAOYSA-N (aminomethyl)phosphonic acid Chemical compound NCP(O)(O)=O MGRVRXRGTBOSHW-UHFFFAOYSA-N 0.000 description 1
- GRZHHTYDZVRPIC-UHFFFAOYSA-N (benzyloxy)acetic acid Chemical compound OC(=O)COCC1=CC=CC=C1 GRZHHTYDZVRPIC-UHFFFAOYSA-N 0.000 description 1
- RNHDAKUGFHSZEV-UHFFFAOYSA-N 1,4-dioxane;hydrate Chemical compound O.C1COCCO1 RNHDAKUGFHSZEV-UHFFFAOYSA-N 0.000 description 1
- 125000005940 1,4-dioxanyl group Chemical group 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical class CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- VUQPJRPDRDVQMN-UHFFFAOYSA-N 1-chlorooctadecane Chemical class CCCCCCCCCCCCCCCCCCCl VUQPJRPDRDVQMN-UHFFFAOYSA-N 0.000 description 1
- HTFNVAVTYILUCF-UHFFFAOYSA-N 2-[2-ethoxy-4-[4-(4-methylpiperazin-1-yl)piperidine-1-carbonyl]anilino]-5-methyl-11-methylsulfonylpyrimido[4,5-b][1,4]benzodiazepin-6-one Chemical compound CCOc1cc(ccc1Nc1ncc2N(C)C(=O)c3ccccc3N(c2n1)S(C)(=O)=O)C(=O)N1CCC(CC1)N1CCN(C)CC1 HTFNVAVTYILUCF-UHFFFAOYSA-N 0.000 description 1
- UOXJNGFFPMOZDM-UHFFFAOYSA-N 2-[di(propan-2-yl)amino]ethylsulfanyl-methylphosphinic acid Chemical compound CC(C)N(C(C)C)CCSP(C)(O)=O UOXJNGFFPMOZDM-UHFFFAOYSA-N 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- WMPPDTMATNBGJN-UHFFFAOYSA-N 2-phenylethylbromide Chemical class BrCCC1=CC=CC=C1 WMPPDTMATNBGJN-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- CQAGJWKITXAOAM-UHFFFAOYSA-N 3-[4-[2-butyl-1-[4-(4-chlorophenoxy)phenyl]imidazol-4-yl]phenoxy]-n,n-diethylpropan-1-amine;dihydrochloride Chemical compound Cl.Cl.CCCCC1=NC(C=2C=CC(OCCCN(CC)CC)=CC=2)=CN1C(C=C1)=CC=C1OC1=CC=C(Cl)C=C1 CQAGJWKITXAOAM-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 108091005435 5-HT6 receptors Proteins 0.000 description 1
- GJLOKYIYZIOIPN-UHFFFAOYSA-N 5-chloropyridine-2-carboxylic acid Chemical compound OC(=O)C1=CC=C(Cl)C=N1 GJLOKYIYZIOIPN-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- USWVMPGQVYZHCA-UHFFFAOYSA-K Aluminum clofibrate Chemical compound C=1C=C(Cl)C=CC=1OC(C)(C)C(=O)O[Al](O)OC(=O)C(C)(C)OC1=CC=C(Cl)C=C1 USWVMPGQVYZHCA-UHFFFAOYSA-K 0.000 description 1
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 description 1
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 description 1
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 1
- 229930003347 Atropine Natural products 0.000 description 1
- 102100021277 Beta-secretase 2 Human genes 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 101150053721 Cdk5 gene Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 208000028698 Cognitive impairment Diseases 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical class C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- XIQVNETUBQGFHX-UHFFFAOYSA-N Ditropan Chemical compound C=1C=CC=CC=1C(O)(C(=O)OCC#CCN(CC)CC)C1CCCCC1 XIQVNETUBQGFHX-UHFFFAOYSA-N 0.000 description 1
- 239000012824 ERK inhibitor Substances 0.000 description 1
- 239000004129 EU approved improving agent Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100033047 G-protein coupled receptor 3 Human genes 0.000 description 1
- 108091007911 GSKs Proteins 0.000 description 1
- 102000004878 Gelsolin Human genes 0.000 description 1
- 108090001064 Gelsolin Proteins 0.000 description 1
- 102000019058 Glycogen Synthase Kinase 3 beta Human genes 0.000 description 1
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 1
- 102000004103 Glycogen Synthase Kinases Human genes 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 102000004384 Histamine H3 receptors Human genes 0.000 description 1
- 108090000981 Histamine H3 receptors Proteins 0.000 description 1
- 241000282418 Hominidae Species 0.000 description 1
- 101000894883 Homo sapiens Beta-secretase 2 Proteins 0.000 description 1
- 101000871088 Homo sapiens G-protein coupled receptor 3 Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000036770 Islet Amyloid Polypeptide Human genes 0.000 description 1
- 108010041872 Islet Amyloid Polypeptide Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 125000002061 L-isoleucyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](C([H])([H])[H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000003580 L-valyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(C([H])([H])[H])(C([H])([H])[H])[H] 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108010065028 Metabotropic Glutamate 5 Receptor Proteins 0.000 description 1
- 102100038357 Metabotropic glutamate receptor 5 Human genes 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 1
- 229940121948 Muscarinic receptor antagonist Drugs 0.000 description 1
- 208000036110 Neuroinflammatory disease Diseases 0.000 description 1
- RSDOPYMFZBJHRL-UHFFFAOYSA-N Oxotremorine Chemical compound O=C1CCCN1CC#CCN1CCCC1 RSDOPYMFZBJHRL-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229940123932 Phosphodiesterase 4 inhibitor Drugs 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 108010022233 Plasminogen Activator Inhibitor 1 Proteins 0.000 description 1
- 102100039418 Plasminogen activator inhibitor 1 Human genes 0.000 description 1
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 1
- 102000015499 Presenilins Human genes 0.000 description 1
- 108010050254 Presenilins Proteins 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 102100024448 Prostaglandin E2 receptor EP2 subtype Human genes 0.000 description 1
- VRDIULHPQTYCLN-UHFFFAOYSA-N Prothionamide Chemical compound CCCC1=CC(C(N)=S)=CC=N1 VRDIULHPQTYCLN-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 1
- AJLFOPYRIVGYMJ-UHFFFAOYSA-N SJ000287055 Natural products C12C(OC(=O)C(C)CC)CCC=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 AJLFOPYRIVGYMJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 206010048327 Supranuclear palsy Diseases 0.000 description 1
- 229940122777 Tau aggregation inhibitor Drugs 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WNWXXAPGHTVCDL-OKDJMAGBSA-N [(1s,3r,7s,8s,8ar)-8-[2-[(2r,4r)-4-hydroxy-6-oxooxan-2-yl]ethyl]-3,7-dimethyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl] 2,2-dimethylbutanoate;pyridine-3-carboxylic acid Chemical compound OC(=O)C1=CC=CN=C1.C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 WNWXXAPGHTVCDL-OKDJMAGBSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 1
- 229960004373 acetylcholine Drugs 0.000 description 1
- 150000008043 acidic salts Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229960002996 aluminium clofibrate Drugs 0.000 description 1
- 230000007791 alzheimer disease like pathology Effects 0.000 description 1
- 230000007792 alzheimer disease pathology Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- PLOPBXQQPZYQFA-AXPWDRQUSA-N amlintide Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H]1NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CCCCN)CSSC1)[C@@H](C)O)C(C)C)C1=CC=CC=C1 PLOPBXQQPZYQFA-AXPWDRQUSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000006933 amyloid-beta aggregation Effects 0.000 description 1
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000005140 aralkylsulfonyl group Chemical group 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 125000003289 ascorbyl group Chemical class [H]O[C@@]([H])(C([H])([H])O*)[C@@]1([H])OC(=O)C(O*)=C1O* 0.000 description 1
- 229960005370 atorvastatin Drugs 0.000 description 1
- RKUNBYITZUJHSG-SPUOUPEWSA-N atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 1
- 229960000396 atropine Drugs 0.000 description 1
- 125000005334 azaindolyl group Chemical group N1N=C(C2=CC=CC=C12)* 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 125000005513 benzoazaindolyl group Chemical group 0.000 description 1
- 125000004601 benzofurazanyl group Chemical group N1=C2C(=NO1)C(=CC=C2)* 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003180 beta-lactone group Chemical group 0.000 description 1
- 150000005347 biaryls Chemical class 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical class C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- AIXAANGOTKPUOY-UHFFFAOYSA-N carbachol Chemical compound [Cl-].C[N+](C)(C)CCOC(N)=O AIXAANGOTKPUOY-UHFFFAOYSA-N 0.000 description 1
- 229960004484 carbachol Drugs 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 210000003710 cerebral cortex Anatomy 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004296 chiral HPLC Methods 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- KNHUKKLJHYUCFP-UHFFFAOYSA-N clofibrate Chemical compound CCOC(=O)C(C)(C)OC1=CC=C(Cl)C=C1 KNHUKKLJHYUCFP-UHFFFAOYSA-N 0.000 description 1
- 229960001214 clofibrate Drugs 0.000 description 1
- CXQGFLBVUNUQIA-UHFFFAOYSA-N clofibride Chemical compound CN(C)C(=O)CCCOC(=O)C(C)(C)OC1=CC=C(Cl)C=C1 CXQGFLBVUNUQIA-UHFFFAOYSA-N 0.000 description 1
- 229960005049 clofibride Drugs 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000006999 cognitive decline Effects 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000009850 completed effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000001047 cyclobutenyl group Chemical group C1(=CCC1)* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000000298 cyclopropenyl group Chemical group [H]C1=C([H])C1([H])* 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 125000000422 delta-lactone group Chemical group 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N delta-valerolactam Natural products O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 150000008050 dialkyl sulfates Chemical class 0.000 description 1
- LMEDOLJKVASKTP-UHFFFAOYSA-N dibutyl sulfate Chemical class CCCCOS(=O)(=O)OCCCC LMEDOLJKVASKTP-UHFFFAOYSA-N 0.000 description 1
- CURUTKGFNZGFSE-UHFFFAOYSA-N dicyclomine Chemical compound C1CCCCC1C1(C(=O)OCCN(CC)CC)CCCCC1 CURUTKGFNZGFSE-UHFFFAOYSA-N 0.000 description 1
- 229960002777 dicycloverine Drugs 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000003890 endocrine cell Anatomy 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- XXRVYAFBUDSLJX-UHFFFAOYSA-N etofibrate Chemical compound C=1C=CN=CC=1C(=O)OCCOC(=O)C(C)(C)OC1=CC=C(Cl)C=C1 XXRVYAFBUDSLJX-UHFFFAOYSA-N 0.000 description 1
- 229960003501 etofibrate Drugs 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical group [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 210000002907 exocrine cell Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- OLNTVTPDXPETLC-XPWALMASSA-N ezetimibe Chemical compound N1([C@@H]([C@H](C1=O)CC[C@H](O)C=1C=CC(F)=CC=1)C=1C=CC(O)=CC=1)C1=CC=C(F)C=C1 OLNTVTPDXPETLC-XPWALMASSA-N 0.000 description 1
- 229960003765 fluvastatin Drugs 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- ICLWTJIMXVISSR-UHFFFAOYSA-N gallamine Chemical compound CCN(CC)CCOC1=CC=CC(OCCN(CC)CC)=C1OCCN(CC)CC ICLWTJIMXVISSR-UHFFFAOYSA-N 0.000 description 1
- 229960003054 gallamine Drugs 0.000 description 1
- 239000003540 gamma secretase inhibitor Substances 0.000 description 1
- 125000000457 gamma-lactone group Chemical group 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000003481 heat shock protein 90 inhibitor Substances 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 239000003395 histamine H3 receptor antagonist Substances 0.000 description 1
- 229940121372 histone deacetylase inhibitor Drugs 0.000 description 1
- 239000003276 histone deacetylase inhibitor Substances 0.000 description 1
- 102000044297 human BACE1 Human genes 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- ZUFVXZVXEJHHBN-UHFFFAOYSA-N hydron;1,2,3,4-tetrahydroacridin-9-amine;chloride Chemical compound [Cl-].C1=CC=C2C([NH3+])=C(CCCC3)C3=NC2=C1 ZUFVXZVXEJHHBN-UHFFFAOYSA-N 0.000 description 1
- USZLCYNVCCDPLQ-UHFFFAOYSA-N hydron;n-methoxymethanamine;chloride Chemical compound Cl.CNOC USZLCYNVCCDPLQ-UHFFFAOYSA-N 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- UVNXNSUKKOLFBM-UHFFFAOYSA-N imidazo[2,1-b][1,3,4]thiadiazole Chemical compound N1=CSC2=NC=CN21 UVNXNSUKKOLFBM-UHFFFAOYSA-N 0.000 description 1
- 125000005945 imidazopyridyl group Chemical group 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- OEXHQOGQTVQTAT-JRNQLAHRSA-N ipratropium Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 OEXHQOGQTVQTAT-JRNQLAHRSA-N 0.000 description 1
- 229960001888 ipratropium Drugs 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 150000004658 ketimines Chemical class 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- IXHBTMCLRNMKHZ-LBPRGKRZSA-N levobunolol Chemical compound O=C1CCCC2=C1C=CC=C2OC[C@@H](O)CNC(C)(C)C IXHBTMCLRNMKHZ-LBPRGKRZSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 229960004844 lovastatin Drugs 0.000 description 1
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 1
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 1
- 229940127592 mGluR2/3 antagonist Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- LVWZTYCIRDMTEY-UHFFFAOYSA-N metamizole Chemical compound O=C1C(N(CS(O)(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 LVWZTYCIRDMTEY-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M methanesulfonate group Chemical class CS(=O)(=O)[O-] AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- RPMBYDYUVKEZJA-UHFFFAOYSA-N methoctramine Chemical compound COC1=CC=CC=C1CNCCCCCCNCCCCCCCCNCCCCCCNCC1=CC=CC=C1OC RPMBYDYUVKEZJA-UHFFFAOYSA-N 0.000 description 1
- HRDXJKGNWSUIBT-UHFFFAOYSA-N methoxybenzene Chemical group [CH2]OC1=CC=CC=C1 HRDXJKGNWSUIBT-UHFFFAOYSA-N 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 229950009116 mevastatin Drugs 0.000 description 1
- AJLFOPYRIVGYMJ-INTXDZFKSA-N mevastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=CCC[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 AJLFOPYRIVGYMJ-INTXDZFKSA-N 0.000 description 1
- BOZILQFLQYBIIY-UHFFFAOYSA-N mevastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CCC=C21 BOZILQFLQYBIIY-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000003149 muscarinic antagonist Substances 0.000 description 1
- 125000004370 n-butenyl group Chemical group [H]\C([H])=C(/[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 210000002241 neurite Anatomy 0.000 description 1
- 230000003959 neuroinflammation Effects 0.000 description 1
- 231100000189 neurotoxic Toxicity 0.000 description 1
- 230000002887 neurotoxic effect Effects 0.000 description 1
- 229940110831 niacin / simvastatin Drugs 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000006574 non-aromatic ring group Chemical group 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 210000001706 olfactory mucosa Anatomy 0.000 description 1
- 239000003605 opacifier Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 125000004095 oxindolyl group Chemical group N1(C(CC2=CC=CC=C12)=O)* 0.000 description 1
- 229960005434 oxybutynin Drugs 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- YZPOQCQXOSEMAZ-UHFFFAOYSA-N pbt2 Chemical compound ClC1=CC(Cl)=C(O)C2=NC(CN(C)C)=CC=C21 YZPOQCQXOSEMAZ-UHFFFAOYSA-N 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000002587 phosphodiesterase IV inhibitor Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Chemical group 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 229960002797 pitavastatin Drugs 0.000 description 1
- VGYFMXBACGZSIL-MCBHFWOFSA-N pitavastatin Chemical compound OC(=O)C[C@H](O)C[C@H](O)\C=C\C1=C(C2CC2)N=C2C=CC=CC2=C1C1=CC=C(F)C=C1 VGYFMXBACGZSIL-MCBHFWOFSA-N 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 229960002965 pravastatin Drugs 0.000 description 1
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- ALDITMKAAPLVJK-UHFFFAOYSA-N prop-1-ene;hydrate Chemical group O.CC=C ALDITMKAAPLVJK-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Substances CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- SCHKZZSVELPJKU-UHFFFAOYSA-N prx-03140 Chemical compound O=C1N(C(C)C)C=2SC=CC=2C(O)=C1C(=O)NCCCN1CCCCC1 SCHKZZSVELPJKU-UHFFFAOYSA-N 0.000 description 1
- 125000005344 pyridylmethyl group Chemical group [H]C1=C([H])C([H])=C([H])C(=N1)C([H])([H])* 0.000 description 1
- VIXWGKYSYIBATJ-UHFFFAOYSA-N pyrrol-2-one Chemical compound O=C1C=CC=N1 VIXWGKYSYIBATJ-UHFFFAOYSA-N 0.000 description 1
- 125000006085 pyrrolopyridyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 239000002469 receptor inverse agonist Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229960004136 rivastigmine Drugs 0.000 description 1
- BPRHUIZQVSMCRT-VEUZHWNKSA-N rosuvastatin Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC(O)=O BPRHUIZQVSMCRT-VEUZHWNKSA-N 0.000 description 1
- 229960000672 rosuvastatin Drugs 0.000 description 1
- 150000003902 salicylic acid esters Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000000580 secretagogue effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000387 serotonin 5-HT4 receptor agonist Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 229940103449 simcor Drugs 0.000 description 1
- 229960002855 simvastatin Drugs 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000003507 tetrahydrothiofenyl group Chemical group 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- 125000004588 thienopyridyl group Chemical group S1C(=CC2=C1C=CC=N2)* 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- OOGJQPCLVADCPB-HXUWFJFHSA-N tolterodine Chemical compound C1([C@@H](CCN(C(C)C)C(C)C)C=2C(=CC=C(C)C=2)O)=CC=CC=C1 OOGJQPCLVADCPB-HXUWFJFHSA-N 0.000 description 1
- 229960004045 tolterodine Drugs 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M toluenesulfonate group Chemical group C=1(C(=CC=CC1)S(=O)(=O)[O-])C LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- QQJLHRRUATVHED-UHFFFAOYSA-N tramazoline Chemical compound N1CCN=C1NC1=CC=CC2=C1CCCC2 QQJLHRRUATVHED-UHFFFAOYSA-N 0.000 description 1
- 229960001262 tramazoline Drugs 0.000 description 1
- 230000037317 transdermal delivery Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical class OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 1
- 238000001946 ultra-performance liquid chromatography-mass spectrometry Methods 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- BDIAUFOIMFAIPU-UHFFFAOYSA-N valepotriate Natural products CC(C)CC(=O)OC1C=C(C(=COC2OC(=O)CC(C)C)COC(C)=O)C2C11CO1 BDIAUFOIMFAIPU-UHFFFAOYSA-N 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- PNAMDJVUJCJOIX-XVZWKFLSSA-N vytorin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1.N1([C@@H]([C@H](C1=O)CC[C@@H](O)C=1C=CC(F)=CC=1)C=1C=CC(O)=CC=1)C1=CC=C(F)C=C1 PNAMDJVUJCJOIX-XVZWKFLSSA-N 0.000 description 1
- 229940009349 vytorin Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
- 229940124648 γ-Secretase Modulator Drugs 0.000 description 1
- 150000003953 γ-lactams Chemical class 0.000 description 1
- 150000003954 δ-lactams Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/15—Six-membered rings
- C07D285/16—Thiadiazines; Hydrogenated thiadiazines
- C07D285/18—1,2,4-Thiadiazines; Hydrogenated 1,2,4-thiadiazines
- C07D285/20—1,2,4-Thiadiazines; Hydrogenated 1,2,4-thiadiazines condensed with carbocyclic rings or ring systems
- C07D285/22—1,2,4-Thiadiazines; Hydrogenated 1,2,4-thiadiazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D285/24—1,2,4-Thiadiazines; Hydrogenated 1,2,4-thiadiazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with oxygen atoms directly attached to the ring sulfur atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/15—Six-membered rings
- C07D285/16—Thiadiazines; Hydrogenated thiadiazines
- C07D285/18—1,2,4-Thiadiazines; Hydrogenated 1,2,4-thiadiazines
- C07D285/20—1,2,4-Thiadiazines; Hydrogenated 1,2,4-thiadiazines condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D513/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
- C07D513/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
- C07D513/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
Definitions
- ⁇ peptides formed through ⁇ -secretase and gamma-secretase activity, can form tertiary structures that aggregate to form amyloid fibrils.
- ⁇ peptides have also been shown to form ⁇ oligomers (sometimes referred to as " ⁇ aggregates" or "Abeta
- A673T a coding mutation in the APP gene protects against Alzheimer's disease and cognitive decline in the elderly without Alzheimer's disease. More specifically, the A allele of rs63750847, a single nucleotide polymorphism (SNP), results in an alanine to threonine substitution at position 673 in APP (A673T). This SNP was found to be
- the A673T substitution is adjacent to the aspartyl protease beta-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in a heterologous cell expression system in vitro.
- Jonsson, et al. report that an APP-derived peptide substrate containing the A673T mutation is processed 50%> less efficiently by purified human BACE1 enzyme when compared to a wild-type peptide.
- Jonsson et al. indicate that the strong protective effect of the APP-A673T substitution against Alzheimer's disease provides proof of principle for the hypothesis that reducing the ⁇ eto-cleavage of APP may protect against the disease.
- BACE-1 has also been identified or implicated as a therapeutic target for a number of other diverse pathologies in which ⁇ or ⁇ fragments have been identified to play a causative role.
- One such example is in the treatment of AD-type symptoms of patients with Down's syndrome.
- the gene encoding APP is found on chromosome 21, which is also the
- chromosome found as an extra copy in Down's syndrome Down's syndrome patients tend to acquire AD at an early age, with almost all those over 40 years of age showing Alzheimer's- type pathology. This is thought to be due to the extra copy of the APP gene found in these patients, which leads to overexpression of APP and therefore to increased levels of ⁇ causing the prevalence of AD seen in this population. Furthermore, Down's patients who have a duplication of a small region of chromosome 21 that does not include the APP gene do not develop AD pathology. Thus, it is thought that inhibitors of BACE-1 could be useful in reducing Alzheimer's type pathology in Down's syndrome patients.
- the present invention provides certain C5-spiro iminothiadiazine dioxide compounds, which are collectively or individually referred to herein as "compound(s) of the invention,” as described herein.
- the compounds of the invention are useful as inhibitors of BACE-1 and/or BACE-2.
- R 1 is selected from the group consisting of H, alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, wherein each said alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, is optionally substituted with one or more halogen;
- Y is absent and X is selected from the group consisting of -C(R ) 2 -, -0-, -S-, -S(O)-, and -S(0) 2 -, and
- each R 1Y (when present) is independently selected from the group consisting of: H, halogen, alkyl, heteroalkyl, and cycloalkyl,
- -Li- represents a bond or a divalent moiety selected from the group consisting of
- -L B - (when present) is a divalent moiety selected from the group consisting of lower alkyl and lower heteroalkyl, wherein each said lower alkyl and lower heteroalkyl is optionally substituted with one or more halogen;
- ring B is selected from the group consisting of aryl, heteroaryl, cycloalkyl,
- each R 6X , R ⁇ , R 6A and R 6C (when present) is independently selected from the group consisting of H, alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl,
- each R 6B (when present) is independently selected from the group consisting of H, alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-aryl, heteroaryl, and -alkyl-heteroaryl, wherein each said alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl- aryl, heteroaryl, and -alkyl -heteroaryl of R is unsubstituted or
- each said alkyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl of R 7X , R 7Y , R 7A , R 7B , and R 7C is unsubstituted or substituted with one or more halogen;
- each R is independently selected from the group consisting of halogen, lower alkyl, lower heteroalkyl, lower alkoxy, lower cycloalkyl, and lower heterocycloalkyl, wherein each said lower alkyl, lower heteroalkyl, lower alkoxy, lower cycloalkyl, and lower
- each R 9 (when present) is independently selected from the group consisting of halogen, -OH, -CN, -SF 5 , -OSF 5 , alkyl, -alkyl-OH, heteroalkyl, -heteroalkyl-OH, alkoxy,
- R 1 is selected from the group consisting of H, methyl, ethyl, cyclopropyl,
- R 1 is methyl
- R is selected from the group consisting of H, fluoro, methyl, ethyl, propyl, butyl, cyclopropyl, -CH 2 -cyclopropyl, and -CH 2 OCH 3 .
- R is selected from the group consisting of H, fluoro, methyl, ethyl, propyl, butyl, cyclopropyl, -CH 2 -cyclopropyl, and -CH 2 OCH 3 .
- R is selected from the group consisting of of H, fluoro, methyl, ethyl, propyl, butyl, cyclopropyl, -CH 2 -cyclopropyl, and -CH 2 OCH 3 ; and R is H.
- R 1 is methyl; R 2 is H; and R 3 is H.
- s is 0 and Y is absent.
- s 0;
- each R IX (when present) is independently selected from the group consisting of H, halogen, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen.
- each R IX (when present) is independently selected from the group consisting of H, fluoro, methyl, ethyl, -CF 3 , -CHF 2 , and -CH 2 F.
- each R (when present) is H.
- X is selected from the group consisting of -C(R ) 2 -, and -O-
- R is independently selected from the group consisting of H, halogen, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen; and
- each R (when present) is selected from the group consisting of H, methyl, ethyl, -CF 3 , -CHF 2 , and -CH 2 F.
- each R IX (when present) is H.
- s 1;
- X is -C(R 1X ) 2 -;
- Y is selected from the group consisting of -C(R 1Y ) 2 - and -0-;
- each R IX is independently selected from the group consisting of H, halogen, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen; and
- each R 1Y (when present) is H.
- each R IX (when present) is selected from the group consisting of H, methyl, ethyl, -CF 3 , -CHF 2 , and -CH 2 F.
- each R IX is H.
- X is -0-
- each R 1Y is independently selected from the group consisting of H, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen.
- each R 1Y is selected from the group consisting of H, methyl, ethyl, -CF 3 , -CHF 2 , and -CH 2 F.
- X is - C(R 1X ) 2 -;
- Y is -0-
- ring A is selected from the group consisting of phenyl, pyridyl, pyridazinyl,
- each R A (when present) is independently selected from the group consisting of fluoro, chloro, -CN, -OCH 3 , -CH 2 OCH 3 , methyl, cyclopropyl, -CF 3 , -CHF 2 , and -CH 2 F.
- each R A (when present) is independently selected from the group consisting of halogen, -CN, -SF 5 , -NHCH3, -N(CH 3 ) 2 , -OCH 3 , -OCH 2 CH 3 , -O-cyclopropyl, -0-CH 2 -cyclopropyl, -CH 2 OCH 3 , -S(CH 3 ), methyl, ethyl, cyclopropyl, -CH 2 -cyclopropyl, -CF 3 , -CHF 2 , -CH 2 F, -OCF 3 , and -OCHF 2 .
- n 0 or 1 ;
- each R A (when present) is independently selected from the group consisting of fluoro, chloro, -CN, -OCH 3 , -CH 2 OCH 3 , methyl, cyclopropyl, -CF 3 , -CHF 2 , and -CH 2 F.
- m is 0 or more means m is an integer from 0 up to the number that corresponds to the maximum number of substitutable hydrogen atoms of the ring to which R A is shown attached.
- ring A is a moiety having 4 substitutable hydrogen atoms
- m is 0, 1, or 2.
- ring A is a moiety having 3 substitutable hydrogen atoms
- m is 0 or 1.
- ring A is a moiety having 3 substitutable hydrogen atoms
- m is 0.
- R L is selected from the group consisting of methyl, ethyl, -CF 3 , -CHF 2 , -CH 2 F, -CH 2 CF 3 , -CF 2 CH 3 , -CH 2 OCH 3 , -CH 2 OCH 2 CH 3 , -CH 2 SCH 3 , -CH 2 N(CH 3 ) 2 , -CH 2 OCF 3 , and -CH 2 OCHF 2 .
- R L is selected from the group consisting of methyl, ethyl, -CF 3 , -CHF 2 , -CH 2 F, -CH 2 CF 3 , -CF 2 CH 3 , -CH 2 OCH 3 , CH 2 OCF 3 , and -CH 2 OCHF 2 .
- -L B - is a divalent moiety selected from the group consisting of -CH 2
- -L B - is a divalent moiety selected from the group consisting of -CH 2 -, -CF 2 -, and -CH 2 CH 2 -.
- R is a moiety having the formula , wherein:
- ring B is selected from the group consisting of azetidinyl, benzimidazolyl, benzoisothiazolyl, benzoisoxazolyl, benzothiazolyl, benzoxazolyl, cyclobutyl, cyclohexyl, cyclopentyl, cyclopropyl, dihydroindenyl, dihydrooxazolyl, furanyl, imidazolyl, imidazopyridinyl, imidazopyrimidinyl, indenyl, indolyl, isothiazolyl, isoxazolyl, morpholinyl, oxadiazolyl, oxazolyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazinyl, pyrazolyl, pyrazolopyridinyl, pyrazolopyrimidinyl, pyridazinyl, pyridyl
- R L is a moiety having the formula , wherein:
- ring B is selected from the group consisting of cyclobutyl, cyclopropyl, furanyl, imidazopyridinyl, indolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, oxetanyl, phenyl, pyrazinyl, pyrazolyl, pyrazolopyridinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, and thienyl.
- ring B is selected from the group consisting of furanyl, imidazopyridinyl, indolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, phenyl, pyrazinyl, pyrazolopyridinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, thiadiazolyl, thiazolyl, and thienyl.
- ring B is selected from the group consisting of imidazopyridinyl, isoxazolyl, oxadiazoyl, oxazolyl, phenyl, pyrazolopyridinyl, pyridinyl, pyrazinyl, pyrimidinyl,pyrazolyl, thiadiazolyl and thiazolyl.
- R L is a moiety having the formula , wherein:
- each R B group (when present) is independently selected from the group consisting of halogen, oxo, -OH, -CN, -SF 5 , -NH 2 , -NH(CH 3 ), -N(CH 3 ) 2 , -NHC(0)CH 3 , -N(CH 3 )C(0)CH 3 -NHS(0) 2 CH 3 , -N(CH 3 )S(0) 2 CH 3 , -C(0)OCH 3 , -C(0)OCH 2 CH 3 , -C(0)N(CH 3 ) 2 ,
- each said phenyl, pyridyl, oxadiazoyl, isoxazolyl, oxazolyl, and pyrrolyl is optionally substituted with from 1 to 3 substituents independently selected from the group consisting of F, CI, -CN, -CH 3 , -OCH 3 , and -CF 3 .
- R L is a moiety having the formula , wherein:
- R L is a moiety having the formula , wherein:
- q is 0 or 1 ;
- -L B - (when present) is a divalent moiety selected from the group consisting of -CH 2 -, -CF 2 -, -CH 2 CH 2 -, -CH 2 0-, and -CF 2 0-;
- ring B is selected from the group consisting of azetidinyl, benzimidazolyl,
- benzoisothiazolyl benzoisoxazolyl, benzothiazolyl, benzoxazolyl, cyclobutyl, cyclohexyl, cyclopentyl, cyclopropyl, dihydroindenyl, dihydrooxazolyl, furanyl, imidazolyl,
- p is 0 or more
- each R B group (when present) is independently selected from the group consisting of halogen, oxo, -OH, -CN, -SF 5 , -NH 2 , -NH(CH 3 ), -N(CH 3 ) 2 , -NHC(0)CH 3 , -N(CH 3 )C(0)CH 3 , -NHS(0) 2 CH 3 , -N(CH 3 )S(0) 2 CH 3 , -C(0)OCH 3 , -C(0)OCH 2 CH 3 , -C(0)N(CH 3 ) 2 ,
- each said phenyl, pyridyl, oxadiazoyl, isoxazolyl, oxazolyl, and pyrrolyl is optionally substituted with from 1 to 3 substituents independently selected from the group consisting of F, CI, CN, -CH 3 , -OCH 3 , and -CF 3 .
- q is 1 ;
- -L B - is a divalent moiety selected from the group consisting of -CH 2 -, -CF 2 -, and -CH 2 CH 2 -.
- q is 1 ; and -L B - is -CH 2 " ⁇
- q is 0 or 1 ;
- -L B - (when present) is a divalent moiety selected from the group consisting of -CH 2 -, -CF 2 -, -CH 2 CH 2 -, -CH 2 0-, and -CF 2 0-;
- ring B is selected from the group consisting of cyclobutyl, cyclopropyl, furanyl, imidazopyridinyl, indolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, oxetanyl, phenyl, pyrazinyl, pyrazolyl, pyrazolopyridinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, and thienyl;
- p is 0 or more
- each R B group (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -OH, -CN, -SF 5 , -NH 2 , -NH(CH 3 ), -N(CH 3 ) 2 , -NHC(0)CH 3 ,
- q is 1 ;
- -L B - is a divalent moiety selected from the group consisting of -CH 2 -, -CF 2 -, and -CH 2 CH 2 -.
- q is 1 ;
- p is 0 or more
- -L B - is -CH 2 -.
- R L is a moiety having the formula , wherein:
- ring B is selected from the group consisting of imidazopyridinyl, isoxazolyl, oxadiazoyl, oxazolyl, phenyl, pyrazolopyridinyl, pyridinyl, pyrazinyl, pyrimidinyl,pyrazolyl, thiadiazolyl and thiazolyl;
- p is 0 or more
- p is 0, 1 , 2, 3, or 4.
- p is 0, 1 , 2, or 3.
- p is 0, 1 , 2, or 3.
- ring B is a moiety having 3 substitutable hydrogen atoms
- p is 0, 1, 2, or 3.
- p is 0, 1, or 2.
- p is 0 or 1.
- p is 0.
- p is 0 or 1. In an alternative of such embodiments wherein ring B is a moiety having 1
- -Li- is selected from the group consisting of -C(0)NH-, -NHC(O)-, -C(S)NH-, -NHC(S)-, -NH-, -0-CH 2 -, and -CH 2 -0-.
- -Li- is selected from the group consisting of -C(0)NH-, and -NHC(O)-.
- -Li- is -C(0)NH-.
- composition comprising a compound of the invention and a pharmaceutically acceptable carrier or diluent.
- compositions comprising a compound of the invention, either as the sole active agent, or optionally in combination with one or more additional therapeutic agents, and a pharmaceutically acceptable carrier or diluent.
- additional therapeutic agents which may be useful in combination with the compounds of the invention include those selected from the group consisting of: (a) drugs that may be useful for the treatment of Alzheimer's disease and/or drugs that may be useful for treating one or more symptoms of Alzheimer's disease, (b) drugs that may be useful for inhibiting the synthesis ⁇ , (c) drugs that may be useful for treating neurodegenerative diseases, and (d) drugs that may be useful for the treatment of type II diabetes and/or one or more symptoms or associated pathologies thereof.
- Non-limiting examples of additional therapeutic agents which may be useful in combination with the compounds of the invention include drugs that may be useful for the treatment, prevention, delay of onset, amelioration of any pathology associated with ⁇ and/or a symptom thereof.
- Non-limiting examples of pathologies associated with ⁇ include:
- Alzheimer's Disease Down's syndrome, Parkinson's disease, memory loss, memory loss associated with Alzheimer's disease, memory loss associated with Parkinson's disease, attention deficit symptoms, attention deficit symptoms associated with Alzheimer's disease (“AD"), Parkinson's disease, and/orDown's syndrome, dementia, stroke, microgliosis and brain inflammation, pre-senile dementia, senile dementia, dementia associated with AD.
- Alzheimer's disease, Parkinson's disease, and/or Down's syndrome progressive supranuclear palsy, cortical basal degeneration, neurodegeneration, olfactory impairment, olfactory impairment associated with Alzheimer's disease, Parkinson's disease, and/or Down's syndrome, ⁇ -amyloid angiopathy, cerebral amyloid angiopathy, hereditary cerebral hemorrhage, mild cognitive impairment ("MCI"), glaucoma, amyloidosis, type II diabetes, hemodialysis complications (from ⁇ 2 microglobulins and complications arising therefrom in hemodialysis patients), scrapie, bovine spongiform encephalitis, and Creutzfeld- Jakob disease, comprising administering to said patient at least one compound of the invention, or a tautomer or isomer thereof, or pharmaceutically acceptable salt or solvate of said compound or said tautomer, in an amount effective to inhibit or treat said pathology or pathologies.
- cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists gamma secretase modulators; gamma secretase inhibitors; non-steroidal anti-inflammatory agents; antiinflammatory agents that can reduce neuroinf ammation; anti-amyloid antibodies (such as bapineuzemab, Wyeth/Elan); vitamin E; nicotinic acetylcholine receptor agonists; CB1 receptor inverse agonists or CB1 receptor antagonists; antibiotics; growth hormone
- GSK3beta inhibitors cdk5 inhibitors, or ERK inhibitors
- Tau aggregation inhibitors e.g., Rember®
- RAGE inhibitors e.g., TTP 488 (PF-4494700)
- anti-Abeta vaccine APP ligands
- agents that upregulate insulin cholesterol lowering agents such as HMG-CoA reductase inhibitors (for example, statins such as Atorvastatin, Fluvastatin, Lovastatin, Mevastatin, Pitavastatin, Pravastatin, Rosuvastatin, Simvastatin) and/or cholesterol absorption inhibitors (such as Ezetimibe), or combinations of HMG-CoA reductase inhibitors and cholesterol absorption inhibitors (such as, for example, Vytorin®); fibrates (such as, for example, clofibrate, Clofibride, Etofibrate, and Aluminium Clofibrate); combinations of fibrates and cholesterol lowering agents and/
- Another embodiment provides a method of preparing a pharmaceutical composition
- a method of preparing a pharmaceutical composition comprising the step of admixing at least one compound of the invention or pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.
- Another embodiment provides a method of inhibiting ⁇ -secretase comprising exposing a population of cells expressing ⁇ -secretase to at least one compound of the invention, or a tautomer thereof, in an amount effective to inhibit ⁇ -secretase.
- said population of cells is in vivo.
- said population of cells is ex vivo.
- said population of cells is in vitro.
- Additional embodiments in which the compounds of the invention may be useful include: a method of inhibiting ⁇ -secretase in a patient in need thereof. A method of inhibiting the formation of ⁇ from APP in a patient in need thereof. A method of inhibiting the formation of ⁇ plaque and/or ⁇ fibrils and/or ⁇ oligomers and/or senile plaques and/or neurofibrillary tangles and/or inhibiting the deposition of amyloid protein (e.g., amyloid beta protein) in, on or around neurological tissue (e.g., the brain), in a patient in need thereof. Each such embodiment comprises administering at least one compound of the invention, or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer, in a therapeutically effective amount to inhibit said pathology or condition in said patient.
- amyloid protein e.g., amyloid beta protein
- Additional embodiments in which the compounds of the invention may be useful include: a method of treating, preventing, and/or delaying the onset of one or more pathologies associated with ⁇ and/or one or more symptoms of one or more pathologies associated with ⁇ .
- pathologies which may be associated with ⁇ include:
- Alzheimer's Disease Down's syndrome, Parkinson's disease, memory loss, memory loss associated with Alzheimer's disease, memory loss associated with Parkinson's disease, attention deficit symptoms, attention deficit symptoms associated with Alzheimer's disease (“AD"), Parkinson's disease, and/orDown's syndrome, dementia, stroke, microgliosis and brain inflammation, pre-senile dementia, senile dementia, dementia associated with AD.
- said method(s) comprising administering to said patient in need thereof at least one compound of the invention, or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer, in an amount effective to inhibit said pathology or pathologies.
- Another embodiment in which the compounds of the invention may be useful includes a method of treating Alzheimer's disease, wherein said method comprises administering an effective (i.e., therapeutically effective) amount of one or more compounds of the invention (or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer), optionally in further combination with one or more additional therapeutic agents which may be effective to treat Alzheimer's disease or a disease or condition associated therewith, to a patient in need of treatment.
- one or more additional therapeutic agents may be administered sequentially or together.
- Non-limiting examples of associated diseases or conditions, and non-limiting examples of suitable additional therapeutically active agents are as described above.
- Another embodiment in which the compounds of the invention may be useful includes a method of preventing, or alternatively of delaying the onset, of mild cognitive impairment or, in a related embodiment, of preventing or alternatively of delaying the onset of Alzheimer's disease.
- treatment can be initiated prior to the onset of symptoms, in some embodiments significantly before (e.g., from several months to several years before) the onset of symptoms to a patient at risk for developing MCI or Alzheimer's disease.
- such methods comprise administering, prior to the onset of symptoms or clinical or biological evidence of MCI or Alzheimer's disease (e.g., from several months to several yeards before, an effective (i.e., therapeutically effective), and over a period of time and at a frequency of dose sufficient for the therapeutically effective degree of inhibition of the BACE enzyme over the period of treatment, an amount of one or more compounds of the invention (or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer) to a patient in need of treatment.
- an effective i.e., therapeutically effective
- kits comprising, in separate containers, in a single package, pharmaceutical compositions for use in combination, wherein one container comprises an effective amount of a compound of the invention (or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer) in a pharmaceutically acceptable carrier, and another container (i.e., a second container) comprises an effective amount of another pharmaceutically active ingredient, the combined quantities of the compound of the invention and the other pharmaceutically active ingredient being effective to: (a) treat Alzheimer's disease, or (b) inhibit the deposition of amyloid protein in, on or around neurological tissue (e.g., the brain), or (c) treat
- neurodegenerative diseases or (d) inhibit the activity of BACE- 1 and/or BACE-2.
- the invention provides methods of treating a disease or pathology, wherein said disease or pathology is Alzheimer's disease, olfactory impairment associated with Alzheimer's disease, Down's syndrome, olfactory impairment associated with Down's syndrome, Parkinson's disease, olfactory impairment associated with Parkinson's disease, stroke, microgliosis brain inflammation, pre-senile dementia, senile dementia, progressive supranuclear palsy, cortical basal degeneration, ⁇ -amyloid angiopathy, cerebral amyloid angiopathy, hereditary cerebral hemorrhage, mild cognitive impairment, glaucoma, amyloidosis, type II diabetes, diabetes-associated amyloido genesis, scrapie, bovine
- spongiform encephalitis traumatic brain injury, or Creutzfeld- Jakob disease
- said method comprising administering a compound of the invention, or a pharmaceutically acceptable salt of said compound or said tautomer, to a patient in need thereof in an amount effective to treat said disease or pathology.
- the invention provides for the use of any of the compounds of the invention for use as a medicament, or in medicine, or in therapy.
- the invention provides for use of a compound of the invention for the manufacture of a medicament for the treatment of a disease or pathology, wherein said disease or pathology is Alzheimer's disease, olfactory impairment associated with Alzheimer's disease, Down's syndrome, olfactory impairment associated with Down's syndrome,
- Parkinson's disease olfactory impairment associated with Parkinson's disease, stroke, microgliosis brain inflammation, pre-senile dementia, senile dementia, progressive
- “Pharmaceutical composition” means a composition suitable for administration to a patient. Such compositions may contain the neat compound (or compounds) of the invention or mixtures thereof, or salts, solvates, prodrugs, isomers, or tautomers thereof, or they may contain one or more pharmaceutically acceptable carriers or diluents.
- pharmaceutically acceptable carriers or diluents may contain one or more pharmaceutically acceptable carriers or diluents.
- pharmaceutical composition is also intended to encompass both the bulk composition and individual dosage units comprised of more than one (e.g., two) pharmaceutically active agents such as, for example, a compound of the present invention and an additional agent selected from the lists of the additional agents described herein, along with any pharmaceutically inactive excipients.
- the bulk composition and each individual dosage unit can contain fixed amounts of the afore-said "more than one pharmaceutically active agents".
- the bulk composition is material that has not yet been formed into individual dosage units.
- An illustrative dosage unit is an oral dosage unit such as tablets, pills and the like.
- Alkyl means an aliphatic hydrocarbon group, which may be straight or branched, comprising 1 to about 10 carbon atoms.
- “Lower alkyl” means a straight or branched alkyl group comprising 1 to about 4 carbon atoms. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain.
- suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, i-butyl, and t-butyl.
- Haloalkyl means an alkyl as defined above wherein one or more hydrogen atoms on the alkyl is replaced by a halo group defined above.
- Heteroalkyl means an alkyl moiety as defined above, which is substituted by one or more (e.g., one, two, or three) moieties independently selected from the group consisting of: - O-alkyl, -S-alkyl, -S(0)-alkyl, -S(0) 2 -alkyl, -N(H)alkyl, and -N(alkyl) 2 .
- Alkenyl means an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched and comprising about 2 to about 10 carbon atoms in the straight or branched chain.
- Alkylene means a difunctional group obtained by removal of a hydrogen atom from an alkyl group that is defined above.
- alkylene include methylene, ethylene and propylene. More generally, the suffix "ene” on alkyl, aryl, hetercycloalkyl, etc. indicates a divalent moiety, e.g., -CH 2 CH 2 - is ethylene, and is para-phenylene.
- Heteroaryl may also include a heteroaryl as defined above fused to an aryl as defined above.
- suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl (which alternatively may be referred to as thiophenyl), pyrimidinyl, pyridone (including N- substituted pyridones), isoxazolyl, isothiazolyl, oxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, oxindolyl, imidazo[l,2-a]pyridinyl, imidazo[2,l-b]thiazolyl, benzof
- heteroaryl also refers to partially saturated heteroaryl moieties such as, for example, tetrahydroisoquinolyl, tetrahydroquinolyl and the like.
- monocyclic heteroaryl refers to monocyclic versions of heteroaryl as described above and includes 4- to 7-membered monocyclic heteroaryl groups comprising from 1 to 4 ring heteroatoms, said ring heteroatoms being independently selected from the group consisting of N, O, and S, and oxides thereof. The point of attachment to the parent moiety is to any available ring carbon or ring heteroatom.
- Non-limiting examples of monocyclic heteroaryl moities include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, pyridazinyl, pyridoneyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, isoxazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, thiadiazolyl (e.g., 1,2,4- thiadiazolyl), imidazolyl, and triazinyl (e.g., 1,2,4-triazinyl), and oxides thereof.
- thiadiazolyl e.g., 1,2,4- thiadiazolyl
- imidazolyl e.g., 1,2,4-triazinyl
- oxides thereof e.g., 1,2,4-triazinyl
- Cycloalkyl means a non-aromatic monocyclic or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 3 to about 6 carbon atoms.
- the cycloalkyl can be optionally substituted with one or more substituents, which may be the same or different, as described herein.
- Monocyclic cycloalkyl refers to monocyclic versions of the cycloalkyl moieties described herein.
- suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
- Non- limiting examples of multicyclic cycloalkyls include [l . l .l]-bicyclopentane, 1-decalinyl, norbornyl, adamantyl and the like.
- Cycloalkenyl means a non-aromatic mono or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms which contain at least one carbon-carbon double bond. Preferred cycloalkenyl rings contain about 5 to about 7 ring atoms. The cycloalkenyl can be optionally substituted with one or more substituents, which may be the same or different, as described herein.
- the term “monocyclic cycloalkenyl” refers to monocyclic versions of cycloalkenyl groups described herein and includes non- aromatic 3- to 7-membered monocyclic cycloalkyl groups which contains one or more carbon- carbon double bonds.
- Non- limiting examples include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclohetpenyl, cyclohepta-l,3-dienyl, and the like.
- Non-limiting example of a suitable multicyclic cycloalkenyl is norbornylenyl.
- Heterocycloalkyl (or “heterocyclyl”) means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. There are no adjacent oxygen and/or sulfur atoms present in the ring system.
- Preferred heterocyclyls contain about 5 to about 6 ring atoms.
- the prefix aza, oxa or thia before the heterocyclyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom.
- any -NH in a heterocyclyl ring may exist protected such as, for example, as an -N(Boc), -N(CBz), -N(Tos) group and the like; such protections are also considered part of this invention.
- the heterocyclyl can be optionally substituted by one or more substituents, which may be the same or different, as described herein.
- the nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide.
- pyrrolidinone or pyrrolidone: d
- the term "monocyclic heterocycloalkyl” refers monocyclic versions of the heterocycloalkyl moities decribed herein and include a 4- to 7-membered monocyclic heterocycloalkyl groups comprising from 1 to 4 ring heteroatoms, said ring heteroatoms being independently selected from the group consisting of N, N-oxide, O, S, S-oxide, S(O), and S(0) 2 .
- the point of attachment to the parent moiety is to any available ring carbon or ring heteroatom.
- Non- limiting examples of monocyclic heterocycloalkyl groups include piperidyl, oxetanyl, pyrrolyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1 ,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, beta lactam, gamma lactam, delta lactam, beta lactone, gamma lactone, delta lactone, and pyrrolidinone, and oxides thereof.
- substituted oxetanyl include the moiety:
- Heterocycloalkenyl (or “heterocyclenyl”) means a non-aromatic monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur atom, alone or in combination, and which contains at least one carbon-carbon double bond or carbon-nitrogen double bond. There are no adjacent oxygen and/or sulfur atoms present in the ring system.
- Preferred heterocyclenyl rings contain about 5 to about 6 ring atoms.
- the prefix aza, oxa or thia before the heterocyclenyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom.
- the heterocyclenyl can be optionally substituted by one or more substituents, which may be the same or different, as described herein.
- the nitrogen or sulfur atom of the heterocyclenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S- dioxide.
- Non- limiting examples of suitable heterocyclenyl groups include 1,2,3,4- tetrahydropyridinyl, 1 ,2-dihydropyridinyl, 1 ,4-dihydropyridinyl, 1,2,3,6-tetrahydropyridinyl, 1,4,5,6-tetrahydropyrimidinyl, 2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, dihydroimidazolyl, dihydrooxazolyl, dihydrooxadiazolyl, dihydrothiazolyl, 3,4-dihydro-2H- pyranyl, dihydrofuranyl, fluorodihydrofuranyl, 7-oxabicyclo[2.2.1]heptenyl,
- the term "monocyclic heterocycloalkenyl” refers to monocyclic versions of the heterocycloalkenyl moities described herein and include 4- to 7-membered monocyclic heterocycloalkenyl groups comprising from 1 to 4 ring heteroatoms, said ring heteroatoms being independently selected from the group consisting of N, N-oxide, O, S, S-oxide, S(O), and S(0) 2 .
- the point of attachment to the parent moiety is to any available ring carbon or ring heteroatom.
- Non-limiting examples of monocyclic heterocyloalkenyl groups include 1,2,3,4- tetrahydropyridinyl, 1 ,2-dihydropyridinyl, 1,4- dihydropyridinyl, 1,2,3,6-tetrahydropyridinyl, 1,4,5,6-tetrahydropyrimidinyl, 2-pyrrolinyl, 3- pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, dihydroimidazolyl, dihydrooxazolyl,
- fluorodihydrofuranyl dihydrothiophenyl, and dihydrothiopyranyl, and oxides thereof.
- hetero-atom containing ring systems of this invention there are no hydroxyl groups on carbon atoms adjacent to a N, O or S, as well as there are no N or S
- Arylalkyl (or “aralkyl”) means an aryl-alkyl- group in which the aryl and alkyl are as previously described, except that in this context the "alkyl” portion of the “arylalkyl” (or “-alkyl-aryl”) group refers to a straight or branched lower alkyl group.
- Preferred aralkyls comprise a lower alkyl group.
- suitable aralkyl groups include benzyl, 2-phenethyl and naphthalenylmethyl.
- the bond to the parent moiety is through the alkyl.
- the term (and similar terms) may be written as "arylalkyl-" (or as “-alkyl-aryl") to indicate the point of attachment to the parent moiety.
- heteroarylalkyl may be written as "arylalkyl-" (or as "-alkyl-aryl" to indicate the point of attachment to the parent moiety.
- heteroarylalkyl
- cycloalkylalkyl mean a heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, etc. as described herein bound to a parent moiety through an alkyl group.
- the "alkyl” group in this context represents a lower alkyl group, which may be straight or branched, or unsubstituted and/or substituted as described herein.
- Alkylaryl means an alkyl-aryl- group in which the alkyl and aryl are as previously described. Preferred alkyl aryls comprise a lower alkyl group. Non- limiting example of a suitable alkylaryl group is tolyl. The bond to the parent moiety is through the aryl.
- Cycloalkylether means a non-aromatic ring of 3 to 7 members comprising an oxygen atom and 2 to 7 carbon atoms. Ring carbon atoms can be substituted, provided that substituents adjacent to the ring oxygen do not include halo or substituents joined to the ring through an oxygen, nitrogen or sulfur atom.
- Cycloalkylalkyl means a cycloalkyl moiety as defined above linked via an alkyl moiety (defined above) to a parent core.
- suitable cycloalkylalkyls include cyclohexylmethyl, adamantylmethyl, adamantylpropyl, and the like.
- Cycloalkenylalkyl means a cycloalkenyl moiety as defined above linked via an alkyl moiety (defined above) to a parent core.
- suitable cycloalkenylalkyls include cyclopentenylmethyl, cyclohexenylmethyl and the like.
- Heteroarylalkyl means a heteroaryl moiety as defined above linked via an alkyl moiety (defined above) to a parent core.
- suitable heteroaryls include 2-pyridinylmethyl, quinolinylmethyl and the like.
- Heterocyclylalkyl (or “heterocycloalkylalkyl”) means a heterocyclyl moiety as defined above linked via an alkyl moiety (defined above) to a parent core.
- suitable heterocyclylalkyls include piperidinylmethyl, piperazinylmethyl and the like.
- Heterocyclenylalkyl means a heterocyclenyl moiety as defined above linked via an alkyl moiety (defined above) to a parent core.
- Alkynylalkyl means an alkynyl-alkyl- group in which the alkynyl and alkyl are as previously described. Preferred alkynylalkyls contain a lower alkynyl and a lower alkyl group. The bond to the parent moiety is through the alkyl.
- suitable alkynylalkyl groups include propargylmethyl.
- Heteroaralkyl means a heteroaryl-alkyl- group in which the heteroaryl and alkyl are as previously described. Preferred heteroaralkyls contain a lower alkyl group. Non- limiting examples of suitable aralkyl groups include pyridylmethyl, and quinolin-3-ylmethyl. The bond to the parent moiety is through the alkyl.
- Alkoxy means an alkyl-O- group in which the alkyl group is as previously described.
- suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy and n-butoxy.
- the bond to the parent moiety is through the ether oxygen.
- any of the foregoing functional groups may be unsubstituted or substituted as described herein.
- substituted means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
- stable compound' or “stable structure” is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
- Substitution on a cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, heteroarylalkyl, arylfused cycloalkylalkyl- moiety or the like includes substitution on any ring portion and/or on the alkyl portion of the group.
- variables can be the same or different.
- the line as a bond generally indicates a mixture of, or either of, the possible isomers, e.g., containing (R)- and (S)- stereochemistry.
- the possible isomers e.g., containing (R)- and (S)- stereochemistry.
- Lines drawn into the ring systems such as, for example: 0- , indicate that the indicated line (bond) may be attached to any of the substitutable ring carbon atoms.
- Oxo is defined as a oxygen atom that is double bonded to a ring carbon in a cycloalkyl, cycloalkenyl, heterocyclyl, heterocyclenyl, or other ring described herein, e.g.,
- the compounds of the invention, and/or compositions comprising them are present in isolated and/or purified form.
- purified refers to the physical state of said compound after being isolated from a synthetic process (e.g. from a reaction mixture), or natural source or combination thereof.
- purified in purified form or “in isolated and purified form” for a compound refers to the physical state of said compound (or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer) after being obtained from a purification process or processes described herein or well known to the skilled artisan (e.g., chromatography, recrystallization and the like), in sufficient purity to be suitable for in vivo or medicinal use and/or characterizable by standard analytical techniques described herein or well known to the skilled artisan.
- prodrugs means a compound (e.g, a drug precursor) that is transformed in vivo to yield a compound of the invention or a pharmaceutically acceptable salt, hydrate or solvate of the compound.
- the transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood.
- mechanisms e.g., by metabolic or chemical processes
- prodrugs are provided by T. Higuchi and W. Stella, "Pro-drugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and
- One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms where they exist.
- Effective amount or “therapeutically effective amount” is meant to describe an amount of compound or a composition of the present invention effective in inhibiting the above-noted diseases and thus producing the desired therapeutic, ameliorative, inhibitory or preventative effect.
- salts denotes any of the following: acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases.
- a compound of the invention contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions ("inner salts") may be formed and are included within the term “salt(s)" as used herein.
- Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also potentially useful.
- Salts of the compounds of the invention may be formed by methods known to those of ordinary skill in the art, for example, by reacting a compound of the invention with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
- exemplary acid addition salts which may be useful include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates,
- camphorsulfonates fumarates, hydrochlorides, hydrobromides, hydroiodides, lactates, maleates, methanesulfonates, naphthalenesulfonates, nitrates, oxalates, phosphates,
- Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as dicyclohexylamines, t-butyl amines, and salts with amino acids such as arginine, lysine and the like.
- Basic nitrogen- containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g.
- dimethyl, diethyl, and dibutyl sulfates dimethyl, diethyl, and dibutyl sulfates
- long chain halides e.g. decyl, lauryl, and stearyl chlorides, bromides and iodides
- aralkyl halides e.g. benzyl and phenethyl bromides
- the compounds of the invention may form tautomers.
- Such tautomers when present, comprise another embodiment of the invention. It shall be understood that all tautomeric forms of such compounds are within the scope of the compounds of the invention. For example, all keto-enol and imine-enamine forms of the compounds, when present, are included in the invention.
- the compounds of the invention may contain asymmetric or chiral centers, and, therefore, exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds of the invention as well as mixtures thereof, including racemic mixtures, form part of the present invention.
- the present invention embraces all geometric and positional isomers. For example, if a compound of the invention incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention.
- Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as, for example, by chromatography and/or fractional
- Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers.
- the chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations.
- the use of the terms "salt”, “solvate”, “ester”, “prodrug” and the like, is intended to equally apply to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, tautomers, positional isomers, racemates or prodrugs of the inventive compounds.
- isotopically-labelled compounds of the invention Such compounds are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
- isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2 H, 3 H, U C, 13 C, 14 C, 15 N, 18 0, 17 0, 31 P, 32 P, 35 S, 18 F, and 36 C1, respectively.
- the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature.
- the present invention is meant to include all suitable isotopic variations of the compounds of the invention.
- different isotopic forms of hydrogen (H) include protium ( 1 H) and deuterium ( 2 H).
- Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
- Isotopically-enriched compounds of the invention can be prepared without undue
- Suitable dosages and dosage forms of the compounds of the invention may readily be determined by those skilled in the art, e.g., by an attending physician, pharmacist, or other skilled worker, and may vary according to patient health, age, weight, frequency of administration, use with other active ingredients, and/or indication for which the compounds are administered. Doses may range from about 0.001 to 500 mg/kg of body weight/day of the compound of the invention. In one embodiment, the dosage is from about 0.01 to about 25 mg/kg of body weight/day of a compound of the invention, or a pharmaceutically acceptable salt or solvate of said compound.
- the quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 100 mg, preferably from about 1 mg to about 50 mg, more preferably from about 1 mg to about 25 mg, according to the particular application.
- a typical recommended daily dosage regimen for oral administration can range from about 1 mg/day to about 500 mg/day, preferably 1 mg/day to 200 mg/day, in two to four divided doses.
- the compounds of this invention When used in combination with one or more additional therapeutic agents, the compounds of this invention may be administered together or sequentially.
- compounds of the invention may be administered before or after the one or more additional therapeutic agents, as determined by those skilled in the art or patient preference.
- such combination products employ the compounds of this invention within the dosage range described herein and the other pharmaceutically active agent or treatment within its dosage range.
- Another embodiment provides combinations comprising an amount of at least one compound of the invention, or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof, and an effective amount of one or more additional agents described above.
- compositions comprising a compound of the invention, either as the neat chemical or optionally further comprising additional ingredients.
- inert, pharmaceutically acceptable carriers can be either solid or liquid.
- Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 95 percent active ingredient.
- Suitable solid carriers are known in the art, e.g., magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), Remington 's Pharmaceutical Sciences, 18 th Edition, (1990), Mack Publishing Co., Easton, Pennsylvania.
- Liquid form preparations include solutions, suspensions and emulsions. Non-limiting examples which may be useful include water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.
- Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas, e.g. nitrogen.
- a pharmaceutically acceptable carrier such as an inert compressed gas, e.g. nitrogen.
- solid form preparations that are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration.
- liquid forms include solutions, suspensions and emulsions.
- compositions comprising a compound of the invention formulated for transdermal delivery.
- compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
- compositions comprising a compound of the invention formulated for subcutaneous delivery or for oral delivery.
- the pharmaceutical preparation compring one or more compounds of the invention be prepared in a unit dosage form.
- the preparation may be subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.
- reaction schemes show typical procedures, but those skilled in the art will recognize that other procedures can also be suitable.
- Reactions may involve monitoring for consumption of starting material, and there are many methods for said monitoring, including but not limited to thin layer chromatography (TLC) and liquid chromatography mass spectrometry (LCMS), and those skilled in the art will recognize that where one method is specified, other non- limiting methods may be substituted.
- TLC thin layer chromatography
- LCMS liquid chromatography mass spectrometry
- Hexanes hex Retention time: t R or Ret. Time
- Example la To a solution of compound All (120 mg, 0.223 mmol) in DCM (2 mL) at 0°C was added HC1 (4M in dioxane, 2 mL). The reaction was warmed to RT and stirred for 2 h at which point the reaction mixture was concentrated in vacuo. The crude residue was purified by flash column chromatography over silica gel (10-15% methanol in dichloromethane) to afford Example la.
- Allyl ether C2 (1.0 g, 3.65 mmol) was dissolved in a mixture of 15 ml of MeCN and 2.5 mL (18.2 mmol) of Et 3 N. The mixture was vacuum degassed (3 cycles) followed by the addition of Pd(OAc) 2 (40.88 mg, 0.182 mmol) and PPh 3 (95.73 mg, 0.365 mmol). The mixture was heated to 80°C for 2 h. The mixture was then cooled to room temperature and diluted with water. The mixture was extracted with ethyl acetate. The organic layer was washed sequentially with IN HCl(aq.), sat. NaHC0 3(aq . ) and brine.
- Step 1 Ketone Fl was converted to intermediate F2 using procedures similar to those described in Method C steps 5-8.
- Step 2 To a mixture of compound F2 (350 mg, 0.853 mmol) in methanol (6 mL) and water (2 mL) was added Zinc (278 mg, 4.27 mmol) and ammonium chloride (228 mg, 4.268 mmol). The resulting mixture was stirred at room temperature for 1 h. The reaction mixture was then filtered through celite and the filter cake was washed with excess of 1 : 1 mixture of methanol and dichloromethane. The filtrate was and concentrated and the product was used without further purification, m/z: 381.2
- Step 3 Amine F3 was converted to Example 6a following procedures similar to those described in Method A steps 9 and 10.
- Step 2 Bromide G3 can be treated with nBuLi to afford the aryl lithium intermediate in which G2 can be added to afford ketone G4.
- Steps 3-7 Ketone G4 can be converted to compound G9 following procedures similar to Method A steps 3-7.
- Step 11 Compound G12 can be converted to Example 7a following the procedures similar to those described in Method A steps 7 and 9-10.
- Reagents Na + -Acetate pH 5.0; 1 % Brij-35; Glycerol; Dimethyl Sulfoxide (DMSO); Recombinant human soluble BACEl catalytic domain (>95% pure); APP Swedish mutant peptide substrate (QSY7-APP swe -Eu): QSY7-EISEVNLDAEFC-Europium-amide.
- a homogeneous time-resolved FRET assay can be used to determine IC 5 o values for inhibitors of the soluble human BACEl catalytic domain.
- This assay monitors the increase of 620 nm fluorescence that resulted from BACEl cleavage of an APPswedish APP swe mutant peptide FRET substrate (QSY7-EISEVNLDAEFC-Europium-amide).
- This substrate contains an N-terminal QSY7 moiety that serves as a quencher of the C-terminal Europium fluorophore (620nm Em).
- 620 nm fluorescence is low in the assay and increased linearly over 3 hours in the presence of uninhibited BACEl enzyme. Inhibition of BACEl cleavage of the QSY7-APP swe -Eu substrate by inhibitors is manifested as a suppression of 620 nm fluorescence.
- Varying concentrations of inhibitors at 3x the final desired concentration in a volume of lOul are preincubated with purified human BACEl catalytic domain (3 nM in 10 ⁇ ) for 30 minutes at 30° C in reaction buffer containing 20 mM Na- Acetate pH 5.0, 10% glycerol, 0.1% Brij-35 and 7.5% DSMO. Reactions are initiated by addition of 10 ⁇ of 600 nM QSY7- APP swe -Eu substrate (200 nM final) to give a final reaction volume of 30 ⁇ in a 384 well Nunc HTRF plate. The reactions are incubated at 30° C for 1.5 hours.
- 620nm fluorescence is then read on a Rubystar HTRF plate reader (BMG Labtechnologies) using a 50 millisecond delay followed by a 400 millisecond acquisition time window.
- Inhibitor IC 5 o values are derived from non-linear regression analysis of concentration response curves. K; values are then calculated from IC 5 o values using the Cheng-Prusoff equation using a previously determined ⁇ value of 8 ⁇ for the QSY7-APP swe -Eu substrate at BACEl .
- Inhibitor ICso s at purified human autoBACE-2 are determined in a time-resolved endpoint proteolysis assay that measures hydrolysis of the QSY7-EISEVNLDAEFC-Eu-amide FRET peptide substrate (BACE-HTRF assay). BACE-mediated hydrolysis of this peptide results in an increase in relative fluorescence (RFU) at 620 nm after excitation with 320 nm light.
- REU relative fluorescence
- Inhibitor compounds prepared at 3x the desired final concentration in lx BACE assay buffer (20 mM sodium acetate pH 5.0, 10%> glycerol, 0.1%> Brij-35) supplemented with 7.5% DMSO are pre-incubated with an equal volume of autoBACE-2 enzyme diluted in lx BACE assay buffer (final enzyme concentration 1 nM) in black 384-well NUNC plates for 30 minutes at 30°C.
- Raw RFU data is normalized to maximum (1.0 nM BACE/DMSO) and minimum (no enzyme/DMSO) RFU values.
- ICso s are determined by nonlinear regression analysis (sigmoidal dose response, variable slope) of percent inhibition data with minimum and maximum values set to 0 and 100 percent respectively. Similar IC 5 os are obtained when using raw RFU data.
- the K; values are calculated from the IC50 using the Cheng-Prusoff equation.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Psychiatry (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Hospice & Palliative Care (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
In its many embodiments, the present invention provides certain C5-spiro iminothiadiazine dioxide compounds, including compounds Formula (I): (structurally represented) or tautomers thereof, and pharmaceutically acceptable salts of said compounds, wherein R1, R2, R3, X, Y, s, ring A, RA, m, -L1-, and RL are as defined herein. The novel compounds of the invention are useful as BACE inhibitors and/or for the treatment and prevention of various pathologies related thereto. Pharmaceutical compositions comprising one or more such compounds (alone and in combination with one or more other active agents), and methods for their preparation and use, including for the possible treatment of Alzheimer's disease, are also disclosed:
Description
C5-SPIRO IMINOTHIADIAZINE DIOXIDES AS BACE INHIBITORS.
FIELD OF THE INVENTION
This invention provides certain C5-spiro iminothiadiazine dioxide compounds, and compositions comprising these compounds, as inhibitors of BACE, which may be useful for treating or preventing pathologies related thereto.
BACKGROUND
Amyloid beta peptide ("Αβ") is a primary component of β amyloid fibrils and plaques, which are regarded as having a role in an increasing number of pathologies. Examples of such pathologies include, but are not limited to, Alzheimer's disease, Down's syndrome,
Parkinson's disease, memory loss (including memory loss associated with Alzheimer's disease and Parkinson's disease), attention deficit symptoms (including attention deficit symptoms associated with Alzheimer's disease ("AD"), Parkinson's disease, and Down's syndrome), dementia (including pre-senile dementia, senile dementia, dementia associated with
Alzheimer's disease, Parkinson's disease, and Down's syndrome), progressive supranuclear palsy, cortical basal degeneration, neurodegeneration, olfactory impairment (including olfactory impairment associated with Alzheimer's disease, Parkinson's disease, and Down's syndrome), β-amyloid angiopathy (including cerebral amyloid angiopathy), hereditary cerebral hemorrhage, mild cognitive impairment ("MCI"), glaucoma, amyloidosis, type II diabetes, hemodialysis (β2 microglobulins and complications arising therefrom), neurodegenerative diseases such as scrapie, bovine spongiform encephalitis, Creutzfeld- Jakob disease, traumatic brain injury and the like.
Αβ peptides are short peptides which are made from the proteolytic break-down of the transmembrane protein called amyloid precursor protein ("APP"). Αβ peptides are made from the cleavage of APP by β-secretase activity at a position near the N-terminus of Αβ, and by gamma-secretase activity at a position near the C-terminus of Αβ. (APP is also cleaved by a- secretase activity, resulting in the secreted, non-amyloidogenic fragment known as soluble APPa.) Beta site APP Cleaving Enzyme ("BACE-1") is regarded as the primary aspartyl protease responsible for the production of Αβ by β-secretase activity. The inhibition of BACE-1 has been shown to inhibit the production of Αβ.
AD is estimated to afflict more than 20 million people worldwide and is believed to be the most common cause of dementia. AD is a disease characterized by degeneration and loss
of neurons and also by the formation of senile plaques and neurofibrillary tangles. Presently, treatment of Alzheimer's disease is limited to the treatment of its symptoms rather than the underlying causes. Symptom-improving agents approved for this purpose include, for example, N-methyl-D-aspartate receptor antagonists such as memantine (Namenda®, Forest Pharmaceuticals, Inc.), cholinesterase inhibitors such as donepezil (Aricept®, Pfizer), rivastigmine (Exelon®, Novartis), galantamine (Razadyne Reminyl®), and tacrine
(Cognex®).
In AD, Αβ peptides, formed through β-secretase and gamma-secretase activity, can form tertiary structures that aggregate to form amyloid fibrils. Αβ peptides have also been shown to form Αβ oligomers (sometimes referred to as "Αβ aggregates" or "Abeta
oligomers"). Αβ oligomers are small multimeric structures composed of 2 to 12 Αβ peptides that are structurally distinct from Αβ fibrils. Amyloid fibrils can deposit outside neurons in dense formations known as senile plaques, neuritic plaques, or diffuse plaques in regions of the brain important to memory and cognition. Αβ oligomers are cytotoxic when injected in the brains of rats or in cell culture. This Αβ plaque formation and deposition and/or Αβ oligomer formation, and the resultant neuronal death and cognitive impairment, are among the hallmarks of AD pathophysiology. Other hallmarks of AD pathophysiology include intracellular neurofibrillary tangles comprised of abnormally phosphorylated tau protein, and
neuroinflammation.
Evidence suggests that Αβ, Αβ fibrils, aggregates, oligomers, and/or plaque play a causal role in AD pathophysiology. (Ohno et al, Neurobiology of Disease, No. 26 (2007), 134-145). Mutations in the genes for APP and presenilins 1/2 (PS 1/2) are known to cause familial AD and an increase in the production of the 42-amino acid form of Αβ is regarded as causative. Αβ has been shown to be neurotoxic in culture and in vivo. For example, when injected into the brains of aged primates, fibrillar Αβ causes neuronal cell death around the injection site.
Other direct and circumstantial evidence of the role of Αβ in Alzheimer etiology has also been published.
BACE-1 has become an accepted therapeutic target for the treatment of Alzheimer's disease. For example, McConlogue et al, J. Bio. Chem., Vol. 282, No. 36 (Sept. 2007), have shown that partial reductions of BACE-1 enzyme activity and concomitant reductions of Αβ levels lead to a dramatic inhibition of Αβ-driven AD-like pathology, making β-secretase a target for therapeutic intervention in AD. Ohno et al. Neurobiology of Disease, No. 26 (2007),
134-145, report that genetic deletion of BACE-1 in 5XFAD mice abrogates Αβ generation, blocks amyloid deposition, prevents neuron loss found in the cerebral cortex and subiculum (brain regions manifesting the most severe amyloidosis in 5XFAD mice), and rescues memory deficits in 5XFAD mice. The group also reports that Αβ is ultimately responsible for neuron death in AD and concludes that BACE-1 inhibition has been validated as an approach for the treatment of AD. Roberds et al, Human Mol. Genetics, 2001, Vol. 10, No. 12, 1317-1324, established that inhibition or loss of β-secretase activity produces no profound phenotypic defects while inducing a concomitant reduction in Αβ. Luo et al, Nature Neuroscience, Vol. 4, No. 3, March 2001, report that mice deficient in BACE-1 have normal phenotype and abolished β-amyloid generation.
More recently, Jonsson, et al. have reported in Nature, Vol. 488, pp. 96-99 (Aug.
2012), that a coding mutation (A673T) in the APP gene protects against Alzheimer's disease and cognitive decline in the elderly without Alzheimer's disease. More specifically, the A allele of rs63750847, a single nucleotide polymorphism (SNP), results in an alanine to threonine substitution at position 673 in APP (A673T). This SNP was found to be
significantly more common in a healthy elderly control group than in an Alzheimer's disease group. The A673T substitution is adjacent to the aspartyl protease beta-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in a heterologous cell expression system in vitro. Jonsson, et al. report that an APP-derived peptide substrate containing the A673T mutation is processed 50%> less efficiently by purified human BACE1 enzyme when compared to a wild-type peptide. Jonsson et al. indicate that the strong protective effect of the APP-A673T substitution against Alzheimer's disease provides proof of principle for the hypothesis that reducing the ^eto-cleavage of APP may protect against the disease.
BACE-1 has also been identified or implicated as a therapeutic target for a number of other diverse pathologies in which Αβ or Αβ fragments have been identified to play a causative role. One such example is in the treatment of AD-type symptoms of patients with Down's syndrome. The gene encoding APP is found on chromosome 21, which is also the
chromosome found as an extra copy in Down's syndrome. Down's syndrome patients tend to acquire AD at an early age, with almost all those over 40 years of age showing Alzheimer's- type pathology. This is thought to be due to the extra copy of the APP gene found in these patients, which leads to overexpression of APP and therefore to increased levels of Αβ causing
the prevalence of AD seen in this population. Furthermore, Down's patients who have a duplication of a small region of chromosome 21 that does not include the APP gene do not develop AD pathology. Thus, it is thought that inhibitors of BACE-1 could be useful in reducing Alzheimer's type pathology in Down's syndrome patients.
Another example is in the treatment of glaucoma (Guo et al., PNAS, Vol. 104, No. 33,
August 14, 2007). Glaucoma is a retinal disease of the eye and a major cause of irreversible blindness worldwide. Guo et al. report that Αβ colocalizes with apoptotic retinal ganglion cells (RGCs) in experimental glaucoma and induces significant RGC cell loss in vivo in a dose- and time-dependent manner. The group report having demonstrated that targeting different components of the Αβ formation and aggregation pathway, including inhibition of β- secretase alone and together with other approaches, can effectively reduce glaucomatous RGC apoptosis in vivo. Thus, the reduction of Αβ production by the inhibition of BACE-1 could be useful, alone or in combination with other approaches, for the treatment of glaucoma.
Another example is in the treatment of olfactory impairment. Getchell et al.,
Neurobiology of Aging, 24 (2003), 663-673, have observed that the olfactory epithelium, a neuroepithelium that lines the posterior-dorsal region of the nasal cavity, exhibits many of the same pathological changes found in the brains of AD patients, including deposits of Αβ, the presence of hyperphosphorylated tau protein, and dystrophic neurites among others. Other evidence in this connection has been reported by Bacon AW, et al., Ann NY Acad Sci 2002; 855:723-31; Crino PB, Martin JA, Hill WD, et al, Ann Otol Rhinol Laryngol, 1995;104:655- 61; Davies DC, et al, Neurobiol Aging, 1993;14:353-7; Devanand DP, et al, Am J Psychiatr, 2000;157: 1399-405; and Doty RL, et al, Brain Res Bull, 1987;18:597-600. It is reasonable to suggest that addressing such changes by reduction of Αβ by inhibition of BACE-1 could help to restore olfactory sensitivity in patients with AD.
For compounds which are inhibitors of BACE-2, another example is in the treatment of type-II diabetes, including diabetes associated with amyloido genesis. BACE-2 is expressed in the pancreas. BACE-2 immunoreactivity has been reported in secretory granules of beta cells, co-stored with insulin and IAPP, but lacking in the other endocrine and exocrine cell types. Stoffel et al, WO2010/063718, disclose the use of BACE-2 inhibitors in the treatment of metabolic diseases such as Type-II diabetes. The presence of BACE-2 in secretory granules of beta cells suggests that it may play a role in diabetes-associated amyloidogenesis. (Finzi, G. Franzi, et al, Ultrastruct Pathol. 2008 Nov-Dec;32(6):246-51.)
Other diverse pathologies characterized by the formation and deposition of Αβ or fragments thereof, and/or by the presence of amyloid fibrils, oligomers, and/or plaques, include neurodegenerative diseases such as scrapie, bovine spongiform encephalitis, traumatic brain injury ("TBI"), Creutzfeld- Jakob disease and the like, type II diabetes (which is characterized by the localized accumulation of cytotoxic amyloid fibrils in the insulin producing cells of the pancreas), and amyloid angiopathy. In this regard reference can be made to the patent literature. For example, Kong et al, US2008/0015180, disclose methods and compositions for treating amyloidosis with agents that inhibit Αβ peptide formation. As another example, Loane, et al. report the targeting of amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. (Loane et al., "Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury", Nature Medicine, Advance Online Publication, published online March 15, 2009.) Still other diverse pathologies characterized by the inappropriate formation and deposition of Αβ or fragments thereof, and/or by the presence of amyloid fibrils, and/or for which inhibitor(s) of BACE-1 is expected to be of therapeutic value are discussed further hereinbelow.
SUMMARY OF THE INVENTION
The present invention provides certain C5-spiro iminothiadiazine dioxide compounds, which are collectively or individually referred to herein as "compound(s) of the invention," as described herein. The compounds of the invention are useful as inhibitors of BACE-1 and/or BACE-2.
In one embodiment, the compounds of the invention have the structural Formula (I):
(Γ)
or pharmaceutically acceptable salt thereof, wherein:
R1 is selected from the group consisting of H, alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, wherein each said alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, is optionally substituted with one or more halogen;
R is selected from the group consisting of H, halogen, alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, wherein each said alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl is optionally substituted with one or more halogen;
R is selected from the group consisting of H, halogen, alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, wherein each said alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl is optionally substituted with one or more halogen;
s is 0 or 1 ;
when s is 0, then Y is absent and X is selected from the group consisting of -C(R )2-, -0-, -S-, -S(O)-, and -S(0)2-, and
when s is 1, then X is selected from the group consisting of -C(R )2-, -0-, -S-, -S(O)-, and -S(0)2-, and Y is -C(R1Y)2-,
or, alternatively, when s is 1 , then X is -C(R )2- and Y is selected from the group consisting of -C(R1Y)2-, -0-, -S-, -S(O)-, and -S(0)2-;
each R (when present) is independently selected from the group consisting of: H, halogen, alkyl, heteroalkyl, and cycloalkyl,
wherein said alkyl, heteroalkyl, and cycloalkyl are each optionally independently unsubstituted or substituted with one or more halogen;
each R1Y (when present) is independently selected from the group consisting of: H, halogen, alkyl, heteroalkyl, and cycloalkyl,
wherein said alkyl, heteroalkyl, and cycloalkyl are each optionally independently unsubstituted or substituted with one or more halogen;
ring A is selected from the group consisting of aryl and heteroaryl;
m is 0 or more;
each RA (when present) is independently selected from the group consisting of:
halogen, -OH, -CN, -SF5, -OSF5, -Si(R5A)3, -N(R6A)2, -OR6A, -SR6A, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl, wherein said alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl of RA are each optionally independently unsubstituted or substituted with one or more groups independently selected from R ; n is 0 or 1 ;
-Li- represents a bond or a divalent moiety selected from the group consisting of
-alkyl-, -haloalkyl-, -heteroalkyl-, -alkenyl-, -alkynyl-, -NHC(O)-, -C(0)NH-, -C(S)NH-, -NHC(S)-, -NH-, -NHS(0)2-, -S(0)2NH-, -0-CH2-, -CH2-0-, -NHCH2-, and -CH2NH-;
RL is selected from the group consisting of alkyl and heteroalkyl, wherein said alkyl and heteroalkyl of RL are each optionally unsubstituted or substituted with one or more halogen;
-LB- (when present) is a divalent moiety selected from the group consisting of lower alkyl and lower heteroalkyl, wherein each said lower alkyl and lower heteroalkyl is optionally substituted with one or more halogen;
ring B is selected from the group consisting of aryl, heteroaryl, cycloalkyl,
cycloalkenyl, heterocycloalkyl, and heterocycloalkenyl;
p is 0 or more; and
each RB (when present) is independently selected from the group consisting of:
halogen, oxo, -OH, -CN, -SF5, -OSF5, -Si(R5B)3, -N(R6B)2, -NR7BC(0)R6B, -NR7S(0)2R6B, -NR7BS(0)2N(R6B)2, -NR7BC(0)N(R6B)2, -NR7BC(0)OR6B, -C(0)R6B, -C(0)OR6B,
-C(0)N(R6B)2, -S(0)R6B, -S(0)2R6B, -S(0)2N(R6B)2, -OR6B, -SR6B, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-aryl, heteroaryl, and -alkyl-heteroaryl,
wherein said alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-aryl, heteroaryl, and
-alkyl-heteroaryl of RB are each optionally independently unsubstituted or substituted with one or more groups independently selected from R9;
each R5X, R5Y, R5A, R5B, and R5C (when present) is independently selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl,
wherein each said alkyl, heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl of R5X, R5Y, R5A, R5B, and R5C is unsubstituted or substituted with one or more halogen;
each R6X, R^, R6A and R6C (when present) is independently selected from the group consisting of H, alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl,
wherein each said alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-aryl, heteroaryl, and -alkyl-heteroaryl of R6X, R^, R6A and R6C is unsubstituted or substituted with one or more groups independently selected from halogen, alkyl, cycloalkyl, heteroalkyl, haloalkyl, alkoxy, heteroalkoxy, and haloalkoxy;
each R6B (when present) is independently selected from the group consisting of H, alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-aryl, heteroaryl, and -alkyl-heteroaryl, wherein each said alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-
aryl, heteroaryl, and -alkyl -heteroaryl of R is unsubstituted or substituted with one or more groups independently selected from halogen, alkyl, cycloalkyl, heteroalkyl, haloalkyl, alkoxy, heteroalkoxy, and haloalkoxy;
each R 7X , R 7Y , R 7 A , R 7B , and R 7(~* (when present) is independently selected from the group consisting of H, alkyl, heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl,
wherein each said alkyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl of R7X, R7Y, R7A, R7B, and R7C is unsubstituted or substituted with one or more halogen;
Q
each R (when present) is independently selected from the group consisting of halogen, lower alkyl, lower heteroalkyl, lower alkoxy, lower cycloalkyl, and lower heterocycloalkyl, wherein each said lower alkyl, lower heteroalkyl, lower alkoxy, lower cycloalkyl, and lower
Q
heterocycloalkyl of R is optionally substituted with halogen; and
each R9 (when present) is independently selected from the group consisting of halogen, -OH, -CN, -SF5, -OSF5, alkyl, -alkyl-OH, heteroalkyl, -heteroalkyl-OH, alkoxy,
-O-heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, -O-cycloalkyl, -O-alkyl-cycloalkyl,
-heterocycloalkyl, -alkyl-heterocycloalkyl, -O-heterocycloalkyl and -O-alkyl-heterocycloalkyl, wherein each said alkyl, -alkyl-OH, heteroalkyl, -heteroalkyl-OH, alkoxy, -O-heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, -O-cycloalkyl, -O-alkyl-cycloalkyl, -heterocycloalkyl,
-alkyl-heterocycloalkyl, -O-heterocycloalkyl and -O-alkyl-heterocycloalkyl are optionally substituted with one or more halogen.
In other embodiments, the invention provides compositions, including pharmaceutical compositions, comprising one or more compounds of the invention (e.g., one compound of the invention), or a tautomer thereof, or a pharmaceutically acceptable salt or solvate of said compound(s) and/or said tautomer(s), optionally together with one or more additional therapeutic agents, optionally in an acceptable (e.g., pharmaceutically acceptable) carrier or diluent.
In other embodiments, the invention provides various methods of treating, preventing, ameliorating, and/or delaying the onset of an Αβ pathology and/or a symptom or symptoms thereof, comprising administering a composition comprising an effective amount of one or more compounds of the invention, or a tautomer thereof, or pharmaceutically acceptable salt or solvate of said compound(s) and/or said tautomer(s), to a patient in need thereof. Such
methods optionally additionally comprise administering an effective amount of one or more additional therapeutic agents, simultaneously or sequentially, suitable for treating the patient being treated.
These and other embodiments of the invention, which are described in detail below or will become readily apparent to those of ordinary skill in the art, are included within the scope of the invention.
DETAILED DESCRIPTION
For each of the following embodiments, any variable not explicitly defined in the embodiment is as defined in Formula (I) or (IA). In each of the embodiments described herein, each variable is selected independently of the other unless otherwise noted.
In one embodiment, the compounds of the invention have the structural Formula (IA):
(IA)
or a tautomer thereof having the structural Formula (Γ):
(LA)
or a pharmaceutically acceptable salt thereof, wherein each variable is as defined in
Formula (I).
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R1 is selected from the group consisting of H, methyl, ethyl, cyclopropyl,
-CH2-cyclopropyl, and -CH2CH2OCH3.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R1 is selected from the group consisting of H and methyl.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R1 is methyl.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R is selected from the group consisting of H, fluoro, methyl, ethyl, propyl, butyl, cyclopropyl, -CH2-cyclopropyl, and -CH2OCH3.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R is selected from the group consisting of H and methyl.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R2 is H.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R is selected from the group consisting of H, fluoro, methyl, ethyl, propyl, butyl, cyclopropyl, -CH2-cyclopropyl, and -CH2OCH3.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R is selected from the group consisting of H and methyl.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R3 is H.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R is selected from the group consisting of of H, fluoro, methyl, ethyl, propyl, butyl, cyclopropyl, -CH2-cyclopropyl, and -CH2OCH3; and R is H.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
2 3
R is selected from the group consisting of H and methyl; and R is H.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R2 is H; and R3 is H.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
R1 is methyl; R2 is H; and R3 is H.
In some embodiments, s is 0 and Y is absent. In these embodiments, the moiety:
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
s is 0;
Y is absent; and
IX
X is selected from the group consisting of -C(R )2- and -0-,
wherein each R IX (when present) is independently selected from the group consisting of H, halogen, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen.
In an alternative of the immediately preceding embodiment, each R IX (when present) is independently selected from the group consisting of H, fluoro, methyl, ethyl, -CF3, -CHF2, and -CH2F.
In another alternative of the immediately preceding embodiment, each R (when present) is H.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
s is 1;
IX
X is selected from the group consisting of -C(R )2-, and -O-
R (when present) is independently selected from the group consisting of H, halogen, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen; and
R is H.
In an alternative of the immediately preceding embodiment, each R (when present) is selected from the group consisting of H, methyl, ethyl, -CF3, -CHF2, and -CH2F.
In another alternative of the immediately preceding embodiment, each R IX (when present) is H.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
s is 1;
X is -C(R1X)2-; and
Y is selected from the group consisting of -C(R1Y)2- and -0-;
each R IX is independently selected from the group consisting of H, halogen, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen; and
each R1Y (when present) is H.
In an alternative of the immediately preceding embodiment, each R IX (when present) is selected from the group consisting of H, methyl, ethyl, -CF3, -CHF2, and -CH2F.
In another alternative of the immediately preceding embodiment, each R IX is H.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
X is -0-; and
Y is -C(R1Y)2-,
wherein each R1Y is independently selected from the group consisting of H, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen.
In an alternative of the immediately preceding embodiment, each R1Y is selected from the group consisting of H, methyl, ethyl, -CF3, -CHF2, and -CH2F.
In another alternative of the immediately preceding embodiment, each R1Y is H.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
X is - C(R1X)2-; and
Y is -0-,
wherein each R is independently selected from the group consisting of H, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen.
IX
In an alternative of the immediately preceding embodiment, each R is selected from the group consisting of H, methyl, ethyl, -CF3, -CHF2, and -CH2F.
In another alternative of the immediately preceding embodiment, each R IX is H.
The following alternatives of ring A are applicable to any of the embodiments described hereinabove.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
ring A is selected from the group consisting of phenyl, pyridyl, pyridazinyl,
pyrimidinyl, pyrazinyl, thienyl, and triazinyl.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
ring A is selected from the group consisting of phenyl, pyridyl, pyrimidinyl, pyrazinyl, and thienyl.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
ring A is selected from the group consisting of phenyl, pyridyl, and thienyl.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
ring A is selected from the group consisting of phenyl and pyridyl.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
ring A is phenyl.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
each RA (when present) is independently selected from the group consisting of halogen, -CN, -SF5, -NHCH3, -N(CH3)2, -OCH3, -OCH2CH3, -O-cyclopropyl, -0-CH2-cyclopropyl, -CH2OCH3, -S(CH3), methyl, ethyl, cyclopropyl, -CH2-cyclopropyl, -CF3, -CHF2, -CH2F, -OCF3, and -OCHF2.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
each RA (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -CN, -OCH3, -CH2OCH3, methyl, cyclopropyl, -CF3, -CHF2, -CH2F, -OCF3, and -OCHF2.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
each RA (when present) is independently selected from the group consisting of fluoro, chloro, -CN, -OCH3, -CH2OCH3, methyl, cyclopropyl, -CF3, -CHF2, and -CH2F.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
ring A is selected from the group consisting of phenyl, pyridyl, pyridi
pyrimidinyl, pyrazinyl, thienyl, and triazinyl;
m is 0, 1, or 2; and
each RA (when present) is independently selected from the group consisting of halogen, -CN, -SF5, -NHCH3, -N(CH3)2, -OCH3, -OCH2CH3, -O-cyclopropyl, -0-CH2-cyclopropyl, -CH2OCH3, -S(CH3), methyl, ethyl, cyclopropyl, -CH2-cyclopropyl, -CF3, -CHF2, -CH2F, -OCF3, and -OCHF2.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
ring A is selected from the group consisting of phenyl, pyridyl, pyrimidinyl, pyrazinyl, and thienyl;
m is 0 or 1 ; and
each RA (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -CN, -OCH3, -CH2OCH3, methyl, cyclopropyl, -CF3, -CHF2, -CH2F, -OCF3, and -OCHF2.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
ring A is selected from the group consisting of phenyl, pyridyl, and thienyl;
m is 0 or 1 ; and
each RA (when present) is independently selected from the group consisting of fluoro, chloro, -CN, -OCH3, -CH2OCH3, methyl, cyclopropyl, -CF3, -CHF2, and -CH2F.
It shall be understood that the phrase "m is 0 or more" means m is an integer from 0 up to the number that corresponds to the maximum number of substitutable hydrogen atoms of the ring to which RA is shown attached.
Thus, in embodiments wherein ring A is a moiety having 4 substitutable hydrogen atoms, m is 0, 1, 2, 3, or 4. In an alternative of such embodiments wherein ring A is a moiety having 4 substitutable hydrogen atoms, m is 0, 1, 2, or 3. In an alternative of such
embodiments wherein ring A is a moiety having 4 substitutable hydrogen atoms, m is 0, 1, or 2. In an alternative of such embodiments wherein ring A is a moiety having 3 substitutable hydrogen atoms, m is 0 or 1. In alternative of such embodiments wherein ring A is a moiety having 3 substitutable hydrogen atoms, m is 0.
In embodiments wherein ring A is a moiety having 3 substitutable hydrogen atoms, m is 0, 1, 2, or 3. In an alternative of such embodiments wherein ring A is a moiety having 3 substitutable hydrogen atoms, m is 0, 1, or 2. In an alternative of such embodiments wherein
ring A is a moiety having 3 substitutable hydrogen atoms, m is 0 or 1. In alternative of such embodiments wherein ring A is a moiety having 3 substitutable hydrogen atoms, m is 0.
In embodiments wherein ring A is a moiety having 2 substitutable hydrogen atoms, m is 0, 1, or 2. In an alternative of such embodiments wherein ring A is a moiety having 2 substitutable hydrogen atoms, m is 0 or 1. In alternative of such embodiments wherein ring A is a moiety having 2 substitutable hydrogen atoms, m is 0.
In embodiments wherein ring A is a moiety having 1 substitutable hydrogen atom, m is 0 or 1. In an alternative of such embodiments wherein ring A is a moiety having 1
substitutable hydrogen atoms, m is 0.
The following alternatives of RL are applicable to any of the embodiments described hereinabove.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
RL is selected from the group consisting of lower alkyl and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl of RL are each optionally unsubstituted or substituted with one or more halogen.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
RL is selected from the group consisting of methyl, ethyl, propyl, butyl, -CF , -CHF2, -CH2F, -CH2CF3, -CF2CH3, -CH2OCH3, -CH2OCH2CH3, -CH2CH2OCH3, -CH2SCH3, -CH2SCH2CH3, -CH2CH2SCH3, -CH2N(CH3)2, -CH2NHCH3, -CH2CH2N(CH3)2, -CH2OCF3, and -CH2OCHF2.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'): RL is selected from the group consisting of methyl, ethyl, -CF3, -CHF2, -CH2F, -CH2CF3, -CF2CH3, -CH2OCH3, -CH2OCH2CH3, -CH2SCH3, -CH2N(CH3)2, -CH2OCF3, and -CH2OCHF2.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'): RL is selected from the group consisting of methyl, ethyl, -CF3, -CHF2, -CH2F, -CH2CF3, -CF2CH3, -CH2OCH3, CH2OCF3, and -CH2OCHF2.
In one embodiment, in each of Fo '):
wherein q, LB, ring B, p, and RB are each as defined in Formula (I)
In some embodiments, in each of Formulas (I), (Γ), (IA), and (IA)
is absent; RL is a moiety having the formula i- are directly connected as
s own:
In some embodiments in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
q is 1 ; and
-LB- is a divalent moiety selected from the group consisting of -CH2
-CH2CH2-, -CH20-, and -CF20-.
In some embodiments in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
q is 1 ; and
-LB- is a divalent moiety selected from the group consisting of -CH2-, -CF2-, and -CH2CH2-.
In some embodiments in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
q is 1 ; and
-LR- is -CH 2"·
In one embodiment, in each of For (ΙΑ'):
ring B is selected from the group consisting of azetidinyl, benzimidazolyl, benzoisothiazolyl, benzoisoxazolyl, benzothiazolyl, benzoxazolyl, cyclobutyl, cyclohexyl, cyclopentyl, cyclopropyl, dihydroindenyl, dihydrooxazolyl, furanyl, imidazolyl,
imidazopyridinyl, imidazopyrimidinyl, indenyl, indolyl, isothiazolyl, isoxazolyl, morpholinyl, oxadiazolyl, oxazolyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazinyl, pyrazolyl, pyrazolopyridinyl, pyrazolopyrimidinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrazolopyridinyl, pyrrolidinyl, pyrrolyl, pyrrolopyridinyl, pyrrolopyrimidinyl, tetrahydrofuranyl,
tetrahydropyranyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, thienylpyridine, thiomorpholinyl, thiomorpholinyl dioxide, and triazolyl.
In one embodiment, in each of Fo (ΙΑ'):
ring B is selected from the group consisting of cyclobutyl, cyclopropyl, furanyl, imidazopyridinyl, indolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, oxetanyl, phenyl, pyrazinyl, pyrazolyl, pyrazolopyridinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, and thienyl.
In one embodiment, in each of For (ΙΑ'):
ring B is selected from the group consisting of furanyl, imidazopyridinyl, indolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, phenyl, pyrazinyl, pyrazolopyridinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, thiadiazolyl, thiazolyl, and thienyl.
In one embodiment, in each of For (ΙΑ'):
ring B is selected from the group consisting of imidazopyridinyl, isoxazolyl, oxadiazoyl, oxazolyl, phenyl, pyrazolopyridinyl, pyridinyl, pyrazinyl, pyrimidinyl,pyrazolyl, thiadiazolyl and thiazolyl.
In one embodiment, in each of For (ΙΑ'):
each RB group (when present) is independently selected from the group consisting of halogen, oxo, -OH, -CN, -SF5, -NH2, -NH(CH3), -N(CH3)2, -NHC(0)CH3, -N(CH3)C(0)CH3
-NHS(0)2CH3, -N(CH3)S(0)2CH3, -C(0)OCH3, -C(0)OCH2CH3, -C(0)N(CH3)2,
-C(0)NHCH3, -S(0)2CH3, -S(0)2N(CH3)2, - S(0)2NHCH3, -OCH3, -OCH2CH3,
-O-cyclopropyl, -0-CH2-cyclopropyl, OCH2-C=C-H ^ OCH2-C=C-CH3 ^ _§^jj3^ methyl, ethyl, propyl, cyclopropyl, -CH2-cyclopropyl, -CH2OCH3, -CH2OCH2CH3,— c≡c — C≡C-CH3 _Cp3 _CHp2 _CH2p _0CF3 _OCH2CF3, -OCHF2, -OCH2F, -OCH2CH2F, phenyl, pyridyl, oxadiazoyl, isoxazolyl, oxazolyl, and pyrrolyl,
wherein each said phenyl, pyridyl, oxadiazoyl, isoxazolyl, oxazolyl, and pyrrolyl is optionally substituted with from 1 to 3 substituents independently selected from the group consisting of F, CI, -CN, -CH3, -OCH3, and -CF3.
In one embodiment, in each of For '):
each RB group (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -OH, -CN, -SF5, -NH2, -NH(CH3), -N(CH3)2, -NHC(0)CH3,
-N(CH3)C(0)CH3, -NHS(0)2CH3, -N(CH3)S(0)2CH3, -C(0)OCH3, -C(0)OCH2CH3, -C(0)N(CH3)2, -C(0)NHCH3, -S(0)2CH3, -S(0)2N(CH3)2, - S(0)2NHCH3, -OCH3,
-OCH2CH3, -O-cyclopropyl, -0-CH2-cyclopropyl, OCH2-C=C-H ^ OCH2-C=C-CH3 ^ -S(CH3), methyl, ethyl, propyl, cyclopropyl, -CH2-cyclopropyl, -CH2OCH3, -CH2OCH2CH3, — C≡CH ^— C≡C-CH3 ^ _CF^ _cliFi _CH2p? _OCF3, -OCH2CF3, -OCHF2, -OCH2F, and -OCH2CH2F.
In one embodiment, in each of For '):
each RB group (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -CN, -S(0)2CH3, -OCH3, -O-cyclopropyl, -0-CH2-cyclopropyl,
OCH2-C=C-H ^ OCH2-C=C-CH3 ^ memy^ CyCl0propyl, -CH2-cyclopropyl, -CH2OCF — C≡CH ?— C≡C-CH3 ^ _CF^ _cliFi -CH2F, -OCF3, -OCHF2, -OCH2F, and -OCH2CH2F.
In one embodiment, in each of Formulas (I), (Γ), (IA), and (ΙΑ'):
RL is a moiety having the formula
, wherein:
q is 0 or 1 ;
-LB- (when present) is a divalent moiety selected from the group consisting of -CH2-, -CF2-, -CH2CH2-, -CH20-, and -CF20-;
ring B is selected from the group consisting of azetidinyl, benzimidazolyl,
benzoisothiazolyl, benzoisoxazolyl, benzothiazolyl, benzoxazolyl, cyclobutyl, cyclohexyl, cyclopentyl, cyclopropyl, dihydroindenyl, dihydrooxazolyl, furanyl, imidazolyl,
imidazopyridinyl, imidazopyrimidinyl, indenyl, indolyl, isothiazolyl, isoxazolyl, morpholinyl, oxadiazolyl, oxazolyl, oxetanyl, phenyl, piperazinyl, piperidinyl, pyrazinyl, pyrazolyl, pyrazolopyridinyl, pyrazolopyrimidinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrazolopyridinyl, pyrrolidinyl, pyrrolyl, pyrrolopyridinyl, pyrrolopyrimidinyl, tetrahydrofuranyl,
tetrahydropyranyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, thienylpyridine, thiomorpholinyl, thiomorpholinyl dioxide, and triazolyl;
p is 0 or more; and
each RB group (when present) is independently selected from the group consisting of halogen, oxo, -OH, -CN, -SF5, -NH2, -NH(CH3), -N(CH3)2, -NHC(0)CH3, -N(CH3)C(0)CH3, -NHS(0)2CH3, -N(CH3)S(0)2CH3, -C(0)OCH3, -C(0)OCH2CH3, -C(0)N(CH3)2,
-C(0)NHCH3, -S(0)2CH3, -S(0)2N(CH3)2, - S(0)2NHCH3, -OCH3, -OCH2CH3,
-O-cyclopropyl, -0-CH2-cyclopropyl, OCH2-C=C-H ^ OCH2-C=C-CH3 ^ _§^jj3^ methyl, ethyl, propyl, cyclopropyl, -CH2-cyclopropyl, -CH2OCH3, -CH2OCH2CH3,— C≡CH , — C≡C-CH3 _Cp3 _CHp2 _CH2p _0CF3 _OCH2CF3, -OCHF2, -OCH2F, -OCH2CH2F, phenyl, pyridyl, oxadiazoyl, isoxazolyl, oxazolyl, and pyrrolyl,
wherein each said phenyl, pyridyl, oxadiazoyl, isoxazolyl, oxazolyl, and pyrrolyl is optionally substituted with from 1 to 3 substituents independently selected from the group consisting of F, CI, CN, -CH3, -OCH3, and -CF3.
In an alternative of the immediately preceding embodiment, q is 0.
In another alternative of the immediately preceding embodiment, q is 1 ; and
-LB- is a divalent moiety selected from the group consisting of -CH2-, -CF2-, and -CH2CH2-.
In another alternative of the immediately preceding embodiment, q is 1 ; and
-LB- is -CH 2"·
In one embodiment, in each of For '):
q is 0 or 1 ;
-LB- (when present) is a divalent moiety selected from the group consisting of -CH2-, -CF2-, -CH2CH2-, -CH20-, and -CF20-;
ring B is selected from the group consisting of cyclobutyl, cyclopropyl, furanyl, imidazopyridinyl, indolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, oxetanyl, phenyl, pyrazinyl, pyrazolyl, pyrazolopyridinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, tetrahydrofuranyl, tetrahydropyranyl, thiadiazolyl, thiazolyl, and thienyl;
p is 0 or more; and
each RB group (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -OH, -CN, -SF5, -NH2, -NH(CH3), -N(CH3)2, -NHC(0)CH3,
-N(CH3)C(0)CH3, -NHS(0)2CH3, -N(CH3)S(0)2CH3, -C(0)OCH3, -C(0)OCH2CH3, -C(0)N(CH3)2, -C(0)NHCH3, -S(0)2CH3, -S(0)2N(CH3)2, - S(0)2NHCH3, -OCH3,
-OCH2CH3, -O-cyclopropyl, -0-CH2-cyclopropyl,— OCH2-C≡C-H — OCH2-C≡C-CH3 ^ -S(CH3), methyl, ethyl, propyl, cyclopropyl, -CH2-cyclopropyl, -CH2OCH3, -CH2OCH2CH3, — C≡CH ?— C≡C-CH3 ^ _CF^ _cliFi -CH2F, -OCF3, -OCH2CF3, -OCHF2, -OCH2F, and -OCH2CH2F.
In an alternative of the immediately preceding embodiment, q is 0.
In another alternative of the immediately preceding embodiment, q is 1 ; and
-LB- is a divalent moiety selected from the group consisting of -CH2-, -CF2-, and -CH2CH2-.
In another alternative of the immediately preceding embodiment, q is 1 ; and
-LB- is -CH2-.
In one embodiment, in each of Formulas (I), '):
q is 1 ; and RL is a moiety having the formula
, wherein:
-LB- is a divalent moiety selected from the group consisting of -CH2-, -CF2-, and -CH2CH2-;
ring B is selected from the group consisting of furanyl, imidazopyridinyl, indolyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolyl, phenyl, pyrazinyl, pyrazolopyridinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, thiadiazolyl, thiazolyl, and thienyl;
p is 0 or more; and
each RB group (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -CN, -S(0)2CH3, -OCH3, -O-cyclopropyl, -0-CH2-cyclopropyl, — OCH2-C≡C-H ^ _oCH2-C≡C-CH3 ^ memyl? cyciopropyl, -CH2-cyclopropyl, -CH2OCH3, — C≡C-CH3 ^ _CF^ _cliFi -CH2F, -OCF3, -OCHF2, -OCH2F, and -OCH2CH2F.
In an alternative of the immediately preceding embodiment, -LB- is -CH2-.
In one embodiment, in each of Formulas (I), '):
ring B is selected from the group consisting of imidazopyridinyl, isoxazolyl, oxadiazoyl, oxazolyl, phenyl, pyrazolopyridinyl, pyridinyl, pyrazinyl, pyrimidinyl,pyrazolyl, thiadiazolyl and thiazolyl;
p is 0 or more; and
each RB group (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -CN, -S(0)2CH3, -OCH3, -O-cyclopropyl, -0-CH2-cyclopropyl,
_oCH2-C≡C-H ^ _oCH2-C≡C-CH3 ^ memyl? cyciopropyl, -CH2-cyclopropyl, -CH2OCH3, — C≡CH ^— C≡C-CH3 ^ _CF^ _cliFi _CH2p? _ocF3, -OCHF2, -OCH2F, and -OCH2CH2F.
It shall be understood that the phrase "p is 0 or more" means p is an integer from 0 up to the number that corresponds to the maximum number of substitutable hydrogen atoms of the ring to which RB is shown attached.
Thus, in embodiments wherein ring B is a moiety having 4 substitutable hydrogen atoms, p is 0, 1 , 2, 3, or 4. In an alternative of such embodiments wherein ring B is a moiety having 4 substitutable hydrogen atoms, p is 0, 1 , 2, or 3. In an alternative of such
embodiments wherein ring B is a moiety having 4 substitutable hydrogen atoms, p is 0, 1 , or 2. In an alternative of such embodiments wherein ring B is a moiety having 3 substitutable
hydrogen atoms, p is 0 or 1. In alternative of such embodiments wherein ring B is a moiety having 3 substitutable hydrogen atoms, p is 0.
In embodiments wherein ring B is a moiety having 3 substitutable hydrogen atoms, p is 0, 1, 2, or 3. In an alternative of such embodiments wherein ring B is a moiety having 3 substitutable hydrogen atoms, p is 0, 1, or 2. In an alternative of such embodiments wherein ring B is a moiety having 3 substitutable hydrogen atoms, p is 0 or 1. In alternative of such embodiments wherein ring B is a moiety having 3 substitutable hydrogen atoms, p is 0.
In embodiments wherein ring B is a moiety having 2 substitutable hydrogen atoms, p is 0, 1, or 2. In an alternative of such embodiments wherein ring B is a moiety having 2 substitutable hydrogen atoms, p is 0 or 1. In alternative of such embodiments wherein ring B is a moiety having 2 substitutable hydrogen atoms, p is 0.
In embodiments wherein ring B is a moiety having 1 substitutable hydrogen atom, p is 0 or 1. In an alternative of such embodiments wherein ring B is a moiety having 1
substitutable hydrogen atoms, p is 0.
In an alternative of each of the embodiments described herein, -Li- is selected from the group consisting of -C(0)NH-, -NHC(O)-, -C(S)NH-, -NHC(S)-, -NH-, -0-CH2-, -CH2-0-, -NHCH2-, and -CH2NH-.
In another alternative of each of the embodiments described herein, -Li- is selected from the group consisting of -C(0)NH-, -NHC(O)-, -C(S)NH-, -NHC(S)-, -NH-, -0-CH2-, and -CH2-0-.
In another alternative of each of the embodiments described herein, -Li- is selected from the group consisting of -C(0)NH-, and -NHC(O)-.
In another alternative of each of the embodiments described herein, -Li- is -C(0)NH-.
As noted above, -Li- (and -LB- when present) represents a divalent moiety. The orientation of such divalent moieties in the formula is the same as the orientation of the moiety as written. Thus, w
group, the moiety '
Specific non-limiting examples of compounds of the invention are shown in the tables of examples below. While only one tautomeric form of each compound is shown in the tables, it shall be understood that all tautomeric forms of the compounds are contemplated as being within the scope of the non-limiting examples.
In another embodiment, 1 to 3 carbon atoms of the compounds of the invention may be replaced with 1 to 3 silicon atoms so long as all valency requirements are satisfied.
In another embodiment, there is provided a composition comprising a compound of the invention and a pharmaceutically acceptable carrier or diluent.
Another embodiment provides a composition comprising a compound of the invention, either as the sole active agent, or optionally in combination with one or more additional therapeutic agents, and a pharmaceutically acceptable carrier or diluent. Non-limiting examples of additional therapeutic agents which may be useful in combination with the compounds of the invention include those selected from the group consisting of: (a) drugs that may be useful for the treatment of Alzheimer's disease and/or drugs that may be useful for treating one or more symptoms of Alzheimer's disease, (b) drugs that may be useful for inhibiting the synthesis Αβ, (c) drugs that may be useful for treating neurodegenerative diseases, and (d) drugs that may be useful for the treatment of type II diabetes and/or one or more symptoms or associated pathologies thereof.
Non-limiting examples of additional therapeutic agents which may be useful in combination with the compounds of the invention include drugs that may be useful for the treatment, prevention, delay of onset, amelioration of any pathology associated with Αβ and/or a symptom thereof. Non-limiting examples of pathologies associated with Αβ include:
Alzheimer's Disease, Down's syndrome, Parkinson's disease, memory loss, memory loss associated with Alzheimer's disease, memory loss associated with Parkinson's disease, attention deficit symptoms, attention deficit symptoms associated with Alzheimer's disease ("AD"), Parkinson's disease, and/orDown's syndrome, dementia, stroke, microgliosis and brain inflammation, pre-senile dementia, senile dementia, dementia associated with
Alzheimer's disease, Parkinson's disease, and/or Down's syndrome, progressive supranuclear palsy, cortical basal degeneration, neurodegeneration, olfactory impairment, olfactory impairment associated with Alzheimer's disease, Parkinson's disease, and/or Down's syndrome, β-amyloid angiopathy, cerebral amyloid angiopathy, hereditary cerebral hemorrhage, mild cognitive impairment ("MCI"), glaucoma, amyloidosis, type II diabetes,
hemodialysis complications (from β2 microglobulins and complications arising therefrom in hemodialysis patients), scrapie, bovine spongiform encephalitis, and Creutzfeld- Jakob disease, comprising administering to said patient at least one compound of the invention, or a tautomer or isomer thereof, or pharmaceutically acceptable salt or solvate of said compound or said tautomer, in an amount effective to inhibit or treat said pathology or pathologies.
Non-limiting examples of additional therapeutic agents for that may be useful in combination with compounds of the invention include: muscarinic antagonists (e.g., mi agonists (such as acetylcholine, oxotremorine, carbachol, or McNa343), or m2 antagonists (such as atropine, dicycloverine, tolterodine, oxybutynin, ipratropium, methoctramine, tripitamine, or gallamine)); cholinesterase inhibitors (e.g., acetyl- and/or butyrylchlolmesterase inhibitors such as donepezil (Aricept®, (±)-2,3-dihydro-5,6-dimethoxy-2-[[l-(phenylmethyl)- 4-piperidinyl]methyl]-l H -inden-l-one hydrochloride), galantamine (Razadyne®), and rivastigimine (Exelon®); N-methyl-D-aspartate receptor antagonists (e.g., Namenda®
(memantine HC1, available from Forrest Pharmaceuticals, Inc.); combinations of
cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists; gamma secretase modulators; gamma secretase inhibitors; non-steroidal anti-inflammatory agents; antiinflammatory agents that can reduce neuroinf ammation; anti-amyloid antibodies (such as bapineuzemab, Wyeth/Elan); vitamin E; nicotinic acetylcholine receptor agonists; CB1 receptor inverse agonists or CB1 receptor antagonists; antibiotics; growth hormone
secretagogues; histamine H3 antagonists; AMPA agonists; PDE4 inhibitors; GABAA inverse agonists; inhibitors of amyloid aggregation; glycogen synthase kinase beta inhibitors;
promoters of alpha secretase activity; PDE-10 inhibitors; Tau kinase inhibitors (e.g.,
GSK3beta inhibitors, cdk5 inhibitors, or ERK inhibitors); Tau aggregation inhibitors (e.g., Rember®); RAGE inhibitors (e.g., TTP 488 (PF-4494700)); anti-Abeta vaccine; APP ligands; agents that upregulate insulin, cholesterol lowering agents such as HMG-CoA reductase inhibitors (for example, statins such as Atorvastatin, Fluvastatin, Lovastatin, Mevastatin, Pitavastatin, Pravastatin, Rosuvastatin, Simvastatin) and/or cholesterol absorption inhibitors (such as Ezetimibe), or combinations of HMG-CoA reductase inhibitors and cholesterol absorption inhibitors (such as, for example, Vytorin®); fibrates (such as, for example, clofibrate, Clofibride, Etofibrate, and Aluminium Clofibrate); combinations of fibrates and cholesterol lowering agents and/or cholesterol absorption inhibitors; nicotinic receptor agonists; niacin; combinations of niacin and cholesterol absorption inhibitors and/or
cholesterol lowering agents (e.g., Simcor® (niacin/simvastatin, available from Abbott Laboratories, Inc.); LXR agonists; LRP mimics; H3 receptor antagonists; histone deacetylase inhibitors; hsp90 inhibitors; 5-HT4 agonists (e.g., PRX-03140 (Epix Pharmaceuticals)); 5-HT6 receptor antagonists; mGluRl receptor modulators or antagonists; mGluR5 receptor modulators or antagonists; mGluR2/3 antagonists; Prostaglandin EP2 receptor antagonists; PAI-1 inhibitors; agents that can induce Abeta efflux such as gelsolin; Metal-protein attenuating compound (e.g, PBT2); and GPR3 modulators; and antihistamines such as Dimebolin (e.g., Dimebon®, Pfizer).
Another embodiment provides a method of preparing a pharmaceutical composition comprising the step of admixing at least one compound of the invention or pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.
Another embodiment provides a method of inhibiting β-secretase comprising exposing a population of cells expressing β-secretase to at least one compound of the invention, or a tautomer thereof, in an amount effective to inhibit β-secretase. In one such embodiment, said population of cells is in vivo. In another such embodiment, said population of cells is ex vivo. In another such embodiment, said population of cells is in vitro.
Additional embodiments in which the compounds of the invention may be useful include: a method of inhibiting β-secretase in a patient in need thereof. A method of inhibiting the formation of Αβ from APP in a patient in need thereof. A method of inhibiting the formation of Αβ plaque and/or Αβ fibrils and/or Αβ oligomers and/or senile plaques and/or neurofibrillary tangles and/or inhibiting the deposition of amyloid protein (e.g., amyloid beta protein) in, on or around neurological tissue (e.g., the brain), in a patient in need thereof. Each such embodiment comprises administering at least one compound of the invention, or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer, in a therapeutically effective amount to inhibit said pathology or condition in said patient.
Additional embodiments in which the compounds of the invention may be useful include: a method of treating, preventing, and/or delaying the onset of one or more pathologies associated with Αβ and/or one or more symptoms of one or more pathologies associated with Αβ. Non-limiting examples of pathologies which may be associated with Αβ include:
Alzheimer's Disease, Down's syndrome, Parkinson's disease, memory loss, memory loss associated with Alzheimer's disease, memory loss associated with Parkinson's disease,
attention deficit symptoms, attention deficit symptoms associated with Alzheimer's disease ("AD"), Parkinson's disease, and/orDown's syndrome, dementia, stroke, microgliosis and brain inflammation, pre-senile dementia, senile dementia, dementia associated with
Alzheimer's disease, Parkinson's disease, and/or Down's syndrome, progressive supranuclear palsy, cortical basal degeneration, neurodegeneration, olfactory impairment, olfactory impairment associated with Alzheimer's disease, Parkinson's disease, and/or Down's syndrome, β-amyloid angiopathy, cerebral amyloid angiopathy, hereditary cerebral
hemorrhage, mild cognitive impairment ("MCI"), glaucoma, amyloidosis, type II diabetes, hemodialysis complications (from β2 microglobulins and complications arising therefrom in hemodialysis patients), scrapie, bovine spongiform encephalitis, and Creutzfeld- Jakob disease, said method(s) comprising administering to said patient in need thereof at least one compound of the invention, or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer, in an amount effective to inhibit said pathology or pathologies.
Another embodiment in which the compounds of the invention may be useful includes a method of treating Alzheimer's disease, wherein said method comprises administering an effective (i.e., therapeutically effective) amount of one or more compounds of the invention (or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer), optionally in further combination with one or more additional therapeutic agents which may be effective to treat Alzheimer's disease or a disease or condition associated therewith, to a patient in need of treatment. In embodiments wherein one or more additional therapeutic agents are administered, such agents may be administered sequentially or together. Non-limiting examples of associated diseases or conditions, and non-limiting examples of suitable additional therapeutically active agents, are as described above.
Another embodiment in which the compounds of the invention may be useful includes a method of treating mild cognitive impairment ("MCI"), wherein said method comprises administering an effective (i.e., therapeutically effective) amount of one or more compounds of the invention (or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer) to a patient in need of treatment. In one such embodiment, treatment is commenced prior to the onset of symptoms.
Another embodiment in which the compounds of the invention may be useful includes a method of preventing, or alternatively of delaying the onset, of mild cognitive impairment or, in a related embodiment, of preventing or alternatively of delaying the onset of Alzheimer's
disease. In such embodiments, treatment can be initiated prior to the onset of symptoms, in some embodiments significantly before (e.g., from several months to several years before) the onset of symptoms to a patient at risk for developing MCI or Alzheimer's disease. Thus, such methods comprise administering, prior to the onset of symptoms or clinical or biological evidence of MCI or Alzheimer's disease (e.g., from several months to several yeards before, an effective (i.e., therapeutically effective), and over a period of time and at a frequency of dose sufficient for the therapeutically effective degree of inhibition of the BACE enzyme over the period of treatment, an amount of one or more compounds of the invention (or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer) to a patient in need of treatment.
Another embodiment in which the compounds of the invention may be useful includes a method of treating Down's syndrome, comprising administering an effective (i.e., therapeutically effective) amount of one or more compounds of the invention (or a tautomer thereof, or pharmaceutically acceptable salt or solvate of said compound or said tautomer) to a patient in need of treatment.
Another embodiment in which the compounds of the invention may be useful includes a kit comprising, in separate containers, in a single package, pharmaceutical compositions for use in combination, wherein one container comprises an effective amount of a compound of the invention (or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer) in a pharmaceutically acceptable carrier, and another container (i.e., a second container) comprises an effective amount of another pharmaceutically active ingredient, the combined quantities of the compound of the invention and the other pharmaceutically active ingredient being effective to: (a) treat Alzheimer's disease, or (b) inhibit the deposition of amyloid protein in, on or around neurological tissue (e.g., the brain), or (c) treat
neurodegenerative diseases, or (d) inhibit the activity of BACE- 1 and/or BACE-2.
In various embodiments, the compositions and methods disclosed above and below wherein the compound(s) of the invention is a compound or compounds selected from the group consisting of the exemplary compounds of the invention described herein.
In another embodiment, the invention provides methods of treating a disease or pathology, wherein said disease or pathology is Alzheimer's disease, olfactory impairment associated with Alzheimer's disease, Down's syndrome, olfactory impairment associated with Down's syndrome, Parkinson's disease, olfactory impairment associated with Parkinson's
disease, stroke, microgliosis brain inflammation, pre-senile dementia, senile dementia, progressive supranuclear palsy, cortical basal degeneration, β-amyloid angiopathy, cerebral amyloid angiopathy, hereditary cerebral hemorrhage, mild cognitive impairment, glaucoma, amyloidosis, type II diabetes, diabetes-associated amyloido genesis, scrapie, bovine
spongiform encephalitis, traumatic brain injury, or Creutzfeld- Jakob disease, said method comprising administering a compound of the invention, or a pharmaceutically acceptable salt of said compound or said tautomer, to a patient in need thereof in an amount effective to treat said disease or pathology.
In another embodiment, the invention provides for the use of any of the compounds of the invention for use as a medicament, or in medicine, or in therapy.
In another embodiment, the invention provides for use of a compound of the invention for the manufacture of a medicament for the treatment of a disease or pathology, wherein said disease or pathology is Alzheimer's disease, olfactory impairment associated with Alzheimer's disease, Down's syndrome, olfactory impairment associated with Down's syndrome,
Parkinson's disease, olfactory impairment associated with Parkinson's disease, stroke, microgliosis brain inflammation, pre-senile dementia, senile dementia, progressive
supranuclear palsy, cortical basal degeneration, β-amyloid angiopathy, cerebral amyloid angiopathy, hereditary cerebral hemorrhage, mild cognitive impairment, glaucoma, amyloidosis, type II diabetes, diabetes-associated amyloido genesis, scrapie, bovine
spongiform encephalitis, traumatic brain injury, or Creutzfeld- Jakob disease.
DEFINITIONS
The terms used herein have their ordinary meaning and the meaning of such terms is independent at each occurrence thereof. That notwithstanding and except where stated otherwise, the following definitions apply throughout the specification and claims. Chemical names, common names and chemical structures may be used interchangeably to describe that same structure. These definitions apply regardless of whether a term is used by itself or in combination with other terms, unless otherwise indicated. Hence the definition of "alkyl" applies to "alkyl" as well as the "alkyl" protion of "hydroxyalkyl", "haloalkyl", arylalkyl-, alkylaryl-, "alkoxy" etc.
It shall be understood that, in the various embodiments of the invention described herein, any variable not explicitly defined in the context of the embodiment is as defined in Formula (I). All valences not explicitly filled are assumed to be filled by hydrogen.
"Patient" includes both human and non-human animals. Non-human animals include those research animals and companion animals such as mice, primates, monkeys, great apes, canine (e.g., dogs), and feline (e.g., house cats).
"Pharmaceutical composition" (or "pharmaceutically acceptable composition") means a composition suitable for administration to a patient. Such compositions may contain the neat compound (or compounds) of the invention or mixtures thereof, or salts, solvates, prodrugs, isomers, or tautomers thereof, or they may contain one or more pharmaceutically acceptable carriers or diluents. The term "pharmaceutical composition" is also intended to encompass both the bulk composition and individual dosage units comprised of more than one (e.g., two) pharmaceutically active agents such as, for example, a compound of the present invention and an additional agent selected from the lists of the additional agents described herein, along with any pharmaceutically inactive excipients. The bulk composition and each individual dosage unit can contain fixed amounts of the afore-said "more than one pharmaceutically active agents". The bulk composition is material that has not yet been formed into individual dosage units. An illustrative dosage unit is an oral dosage unit such as tablets, pills and the like.
Similarly, the herein-described method of treating a patient by administering a pharmaceutical composition of the present invention is also intended to encompass the administration of the afore-said bulk composition and individual dosage units.
"Halogen" (or "halo") means fluorine, chlorine, bromine, or iodine. Preferred are fluorine, chlorine and bromine.
"Alkyl" means an aliphatic hydrocarbon group, which may be straight or branched, comprising 1 to about 10 carbon atoms. "Lower alkyl" means a straight or branched alkyl group comprising 1 to about 4 carbon atoms. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain. Non-limiting examples of suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, i-butyl, and t-butyl.
"Haloalkyl" means an alkyl as defined above wherein one or more hydrogen atoms on the alkyl is replaced by a halo group defined above.
"Heteroalkyl" means an alkyl moiety as defined above, which is substituted by one or more (e.g., one, two, or three) moieties independently selected from the group consisting of: - O-alkyl, -S-alkyl, -S(0)-alkyl, -S(0)2-alkyl, -N(H)alkyl, and -N(alkyl)2.
"Alkenyl" means an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and which may be straight or branched and comprising about 2 to about 10 carbon atoms in the straight or branched chain. Branched means that one or more lower alkyl groups such as methyl, ethyl propyl, ethenyl or propenyl are attached to a linear or branched alkenyl chain. "Lower alkenyl" means about 2 to about 4 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl.
"Alkylene" means a difunctional group obtained by removal of a hydrogen atom from an alkyl group that is defined above. Non-limiting examples of alkylene include methylene, ethylene and propylene. More generally, the suffix "ene" on alkyl, aryl, hetercycloalkyl, etc. indicates a divalent moiety, e.g., -CH2CH2- is ethylene, and is para-phenylene.
"Alkynyl" means an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and which may be straight or branched and comprising about 2 to about 10 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, or lower alkenyl or lower alkynyl groups, are attached to a linear alkynyl chain.
"Lower alkynyl" means about 2 to about 4 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkynyl groups include ethynyl, propynyl, 2- butynyl and 3-methylbutynyl.
"Alkenylene" means a difunctional group obtained by removal of a hydrogen from an alkenyl group that is defined above. Non-limiting examples of alkenylene include -CH=CH-, -C(CH3)=CH-, and -CH=CHCH2-.
"Aryl" means an aromatic monocyclic or multicyclic ring system comprising about 6 to about 14 carbon atoms, preferably about 6 to about 10 carbon atoms. The aryl group can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined herein. Non-limiting examples of suitable aryl groups include phenyl and naphthyl. "Monocyclic aryl" means phenyl.
"Heteroaryl" means an aromatic monocyclic or multicyclic ring system comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. Preferred heteroaryls contain about 5 to about 6 ring atoms. The "heteroaryl" can be optionally substituted by one or more substituents, which may be the same or different, as defined herein. The prefix aza, oxa or thia before the heteroaryl root name
means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom. A nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide.
"Heteroaryl" may also include a heteroaryl as defined above fused to an aryl as defined above. Non-limiting examples of suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl (which alternatively may be referred to as thiophenyl), pyrimidinyl, pyridone (including N- substituted pyridones), isoxazolyl, isothiazolyl, oxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, oxindolyl, imidazo[l,2-a]pyridinyl, imidazo[2,l-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl, pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindolyl, 1,2,4-triazinyl, benzothiazolyl and the like. The term "heteroaryl" also refers to partially saturated heteroaryl moieties such as, for example, tetrahydroisoquinolyl, tetrahydroquinolyl and the like. The term "monocyclic heteroaryl" refers to monocyclic versions of heteroaryl as described above and includes 4- to 7-membered monocyclic heteroaryl groups comprising from 1 to 4 ring heteroatoms, said ring heteroatoms being independently selected from the group consisting of N, O, and S, and oxides thereof. The point of attachment to the parent moiety is to any available ring carbon or ring heteroatom. Non-limiting examples of monocyclic heteroaryl moities include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, pyridazinyl, pyridoneyl, thiazolyl, isothiazolyl, oxazolyl, oxadiazolyl, isoxazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, thiadiazolyl (e.g., 1,2,4- thiadiazolyl), imidazolyl, and triazinyl (e.g., 1,2,4-triazinyl), and oxides thereof.
"Cycloalkyl" means a non-aromatic monocyclic or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 3 to about 6 carbon atoms. The cycloalkyl can be optionally substituted with one or more substituents, which may be the same or different, as described herein. Monocyclic cycloalkyl refers to monocyclic versions of the cycloalkyl moieties described herein. Non-limiting examples of suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Non- limiting examples of multicyclic cycloalkyls include [l . l .l]-bicyclopentane, 1-decalinyl, norbornyl, adamantyl and the like.
"Cycloalkenyl" means a non-aromatic mono or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms which contain at least one carbon-carbon double bond. Preferred cycloalkenyl rings contain about 5 to about
7 ring atoms. The cycloalkenyl can be optionally substituted with one or more substituents, which may be the same or different, as described herein. The term "monocyclic cycloalkenyl" refers to monocyclic versions of cycloalkenyl groups described herein and includes non- aromatic 3- to 7-membered monocyclic cycloalkyl groups which contains one or more carbon- carbon double bonds. Non- limiting examples include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclohetpenyl, cyclohepta-l,3-dienyl, and the like. Non-limiting example of a suitable multicyclic cycloalkenyl is norbornylenyl.
"Heterocycloalkyl" (or "heterocyclyl") means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocyclyls contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. Any -NH in a heterocyclyl ring may exist protected such as, for example, as an -N(Boc), -N(CBz), -N(Tos) group and the like; such protections are also considered part of this invention. The heterocyclyl can be optionally substituted by one or more substituents, which may be the same or different, as described herein. The nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Thus, the term "oxide," when it appears in a definition of a variable in a general structure described herein, refers to the corresponding N-oxide, S-oxide, or S,S-dioxide. "Heterocyclyl" also includes rings wherein =0 replaces two available hydrogens on the same carbon atom (i.e., heterocyclyl includes rings having a carbonyl group in the ring). Such =0 groups may be referred to herein as "oxo." An example
of such a moiety is pyrrolidinone (or pyrrolidone):
d herein, the term "monocyclic heterocycloalkyl" refers monocyclic versions of the heterocycloalkyl moities decribed herein and include a 4- to 7-membered monocyclic heterocycloalkyl groups comprising from 1 to 4 ring heteroatoms, said ring heteroatoms being independently selected from the group consisting of N, N-oxide, O, S, S-oxide, S(O), and S(0)2. The point of attachment to the parent moiety is to any available ring carbon or ring heteroatom. Non- limiting examples of monocyclic heterocycloalkyl groups include piperidyl, oxetanyl, pyrrolyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1 ,4-dioxanyl, tetrahydrofuranyl,
tetrahydrothiophenyl, beta lactam, gamma lactam, delta lactam, beta lactone, gamma lactone, delta lactone, and pyrrolidinone, and oxides thereof. Non- limiting examples of lower alkyl-
"Heterocycloalkenyl" (or "heterocyclenyl") means a non-aromatic monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur atom, alone or in combination, and which contains at least one carbon-carbon double bond or carbon-nitrogen double bond. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocyclenyl rings contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclenyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. The heterocyclenyl can be optionally substituted by one or more substituents, which may be the same or different, as described herein. The nitrogen or sulfur atom of the heterocyclenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S- dioxide. Non- limiting examples of suitable heterocyclenyl groups include 1,2,3,4- tetrahydropyridinyl, 1 ,2-dihydropyridinyl, 1 ,4-dihydropyridinyl, 1,2,3,6-tetrahydropyridinyl, 1,4,5,6-tetrahydropyrimidinyl, 2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, dihydroimidazolyl, dihydrooxazolyl, dihydrooxadiazolyl, dihydrothiazolyl, 3,4-dihydro-2H- pyranyl, dihydrofuranyl, fluorodihydrofuranyl, 7-oxabicyclo[2.2.1]heptenyl,
dihydrothiophenyl, dihydrothiopyranyl, and the like. "Heterocyclenyl" also includes rings wherein =0 replaces two available hydrogens on the same carbon atom (i.e., heterocyclyl includes rings having a carbonyl group in the ring). Example of such moiety is pyrrolidenone
(or pyrrolone): . As used herein, the term "monocyclic heterocycloalkenyl" refers to monocyclic versions of the heterocycloalkenyl moities described herein and include 4- to 7-membered monocyclic heterocycloalkenyl groups comprising from 1 to 4 ring heteroatoms, said ring heteroatoms being independently selected from the group consisting of N, N-oxide, O, S, S-oxide, S(O), and S(0)2. The point of attachment to the parent moiety is to any available ring carbon or ring heteroatom. Non-limiting examples of monocyclic heterocyloalkenyl groups include 1,2,3,4- tetrahydropyridinyl, 1 ,2-dihydropyridinyl, 1,4-
dihydropyridinyl, 1,2,3,6-tetrahydropyridinyl, 1,4,5,6-tetrahydropyrimidinyl, 2-pyrrolinyl, 3- pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, dihydroimidazolyl, dihydrooxazolyl,
dihydrooxadiazolyl, dihydrothiazolyl, 3,4-dihydro-2H-pyranyl, dihydrofuranyl,
fluorodihydrofuranyl, dihydrothiophenyl, and dihydrothiopyranyl, and oxides thereof.
It should be noted that in hetero-atom containing ring systems of this invention, there are no hydroxyl groups on carbon atoms adjacent to a N, O or S, as well as there are no N or S
groups on carbon adjacent to another heteroatom. H , there is no -OH attached directly to carbons marked 2 and 5.
"Arylalkyl"(or "aralkyl") means an aryl-alkyl- group in which the aryl and alkyl are as previously described, except that in this context the "alkyl" portion of the "arylalkyl" (or "-alkyl-aryl") group refers to a straight or branched lower alkyl group. Preferred aralkyls comprise a lower alkyl group. Non- limiting examples of suitable aralkyl groups include benzyl, 2-phenethyl and naphthalenylmethyl. The bond to the parent moiety is through the alkyl. The term (and similar terms) may be written as "arylalkyl-" (or as "-alkyl-aryl") to indicate the point of attachment to the parent moiety. Similarly, "heteroarylalkyl",
"cycloalkylalkyl", "cycloalkenylalkyl", "heterocycloalkylalkyl", "heterocycloalkenylalkyl", etc., mean a heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, etc. as described herein bound to a parent moiety through an alkyl group. As indicated above, the "alkyl" group in this context represents a lower alkyl group, which may be straight or branched, or unsubstituted and/or substituted as described herein.
"Alkylaryl" means an alkyl-aryl- group in which the alkyl and aryl are as previously described. Preferred alkyl aryls comprise a lower alkyl group. Non- limiting example of a suitable alkylaryl group is tolyl. The bond to the parent moiety is through the aryl.
"Cycloalkylether" means a non-aromatic ring of 3 to 7 members comprising an oxygen atom and 2 to 7 carbon atoms. Ring carbon atoms can be substituted, provided that substituents adjacent to the ring oxygen do not include halo or substituents joined to the ring through an oxygen, nitrogen or sulfur atom.
"Cycloalkylalkyl" means a cycloalkyl moiety as defined above linked via an alkyl moiety (defined above) to a parent core. Non-limiting examples of suitable cycloalkylalkyls include cyclohexylmethyl, adamantylmethyl, adamantylpropyl, and the like.
"Cycloalkenylalkyl" means a cycloalkenyl moiety as defined above linked via an alkyl moiety (defined above) to a parent core. Non-limiting examples of suitable cycloalkenylalkyls include cyclopentenylmethyl, cyclohexenylmethyl and the like.
"Heteroarylalkyl" means a heteroaryl moiety as defined above linked via an alkyl moiety (defined above) to a parent core. Non-limiting examples of suitable heteroaryls include 2-pyridinylmethyl, quinolinylmethyl and the like.
"Heterocyclylalkyl" (or "heterocycloalkylalkyl") means a heterocyclyl moiety as defined above linked via an alkyl moiety (defined above) to a parent core. Non-limiting examples of suitable heterocyclylalkyls include piperidinylmethyl, piperazinylmethyl and the like.
"Heterocyclenylalkyl" means a heterocyclenyl moiety as defined above linked via an alkyl moiety (defined above) to a parent core.
"Alkynylalkyl" means an alkynyl-alkyl- group in which the alkynyl and alkyl are as previously described. Preferred alkynylalkyls contain a lower alkynyl and a lower alkyl group. The bond to the parent moiety is through the alkyl. Non- limiting examples of suitable alkynylalkyl groups include propargylmethyl.
"Heteroaralkyl" means a heteroaryl-alkyl- group in which the heteroaryl and alkyl are as previously described. Preferred heteroaralkyls contain a lower alkyl group. Non- limiting examples of suitable aralkyl groups include pyridylmethyl, and quinolin-3-ylmethyl. The bond to the parent moiety is through the alkyl.
"Hydroxyalkyl" means a HO-alkyl- group in which alkyl is as previously defined. Preferred hydroxyalkyls contain lower alkyl. Non-limiting examples of suitable hydroxyalkyl groups include hydroxymethyl and 2-hydroxyethyl.
"Alkoxy" means an alkyl-O- group in which the alkyl group is as previously described. Non-limiting examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy and n-butoxy. The bond to the parent moiety is through the ether oxygen.
"Alkyoxyalkyl" means a group derived from an alkoxy and alkyl as defined herein. The bond to the parent moiety is through the alkyl.
Any of the foregoing functional groups may be unsubstituted or substituted as described herein. The term "substituted" means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution
results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By "stable compound' or "stable structure" is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
The term "optionally substituted" means optional substitution with the specified groups, radicals or moieties.
Substitution on a cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, heteroarylalkyl, arylfused cycloalkylalkyl- moiety or the like includes substitution on any ring portion and/or on the alkyl portion of the group.
When a variable appears more than once in a group, e.g., R6 in -N(R6)2, or a variable appears more than once in a structure presented herein, the variables can be the same or different.
The line , as a bond generally indicates a mixture of, or either of, the possible isomers, e.g., containing (R)- and (S)- stereochemistry. For example:
The wavy line "wvro , as used herein, indicates a point of attachment to the rest of the
compound. Lines drawn into the ring systems, such as, for example: 0- , indicate that the indicated line (bond) may be attached to any of the substitutable ring carbon atoms.
"Oxo" is defined as a oxygen atom that is double bonded to a ring carbon in a cycloalkyl, cycloalkenyl, heterocyclyl, heterocyclenyl, or other ring described herein, e.g.,
In this specification, where there are multiple oxygen and/or sulfur atoms in a ring system, there cannot be any adjacent oxygen and/or sulfur present in said ring system.
As well known in the art, a bond drawn from a particular atom wherein no moiety is depicted at the terminal end of the bond indicates a methyl group bound through that bond to the atom, unless stated otherwise. For example:
In another embodiment, the compounds of the invention, and/or compositions comprising them, are present in isolated and/or purified form. The term "purified", "in purified form" or "in isolated and purified form" for a compound refers to the physical state of said compound after being isolated from a synthetic process (e.g. from a reaction mixture), or natural source or combination thereof. Thus, the term "purified", "in purified form" or "in isolated and purified form" for a compound refers to the physical state of said compound (or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer) after being obtained from a purification process or processes described herein or well known to the skilled artisan (e.g., chromatography, recrystallization and the like), in sufficient purity to be suitable for in vivo or medicinal use and/or characterizable by standard analytical techniques described herein or well known to the skilled artisan.
When a functional group in a compound is termed "protected", this means that the group is in modified form to preclude undesired side reactions at the protected site when the compound is subjected to a reaction. Suitable protecting groups will be recognized by those with ordinary skill in the art as well as by reference to standard textbooks such as, for example, T. W. Greene et al, Protective Groups in organic Synthesis (1991), Wiley, New York.
Those skilled in the art will recognize those instances in which the compounds of the invention may be converted to prodrugs and/or solvates, another embodiment of the present invention. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press. The term "prodrug" means a compound (e.g, a drug precursor) that is transformed in vivo to yield a compound of the invention or a pharmaceutically acceptable salt, hydrate or solvate of the compound. The transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood. A discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, "Pro-drugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible
Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and
Pergamon Press, 1987.
One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms where they exist.
"Solvate" means a physical association of a compound of the invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like. "Hydrate" is a solvate wherein the solvent molecule is H20.
"Effective amount" or "therapeutically effective amount" is meant to describe an amount of compound or a composition of the present invention effective in inhibiting the above-noted diseases and thus producing the desired therapeutic, ameliorative, inhibitory or preventative effect.
Those skilled in the art will recognize those instances in which the compounds of the invention may form salts. In such instances, another embodiment provides pharmaceutically acceptable salts of the compounds of the invention. Thus, reference to a compound of the invention herein is understood to include reference to salts thereof, unless otherwise indicated. The term "salt(s)", as employed herein, denotes any of the following: acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a compound of the invention contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions ("inner salts") may be formed and are included within the term "salt(s)" as used herein. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also potentially useful. Salts of the compounds of the invention may be formed by methods known to those of ordinary skill in the art, for example, by reacting a compound of the invention with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
Exemplary acid addition salts which may be useful include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates,
camphorsulfonates, fumarates, hydrochlorides, hydrobromides, hydroiodides, lactates, maleates, methanesulfonates, naphthalenesulfonates, nitrates, oxalates, phosphates,
propionates, salicylates, succinates, sulfates, tartarates, thiocyanates, toluenesulfonates (also known as tosylates,) and the like. Additionally, acids which are generally considered suitable for the formation of pharmaceutically useful salts from basic pharmaceutical compounds are discussed, for example, by P. Stahl et al, Camille G. (eds.) Handbook of Pharmaceutical Salts. Properties, Selection and Use. (2002) Zurich: Wiley- VCH; S. Berge et al, Journal of
Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, InternationalJ. of Pharmaceutics
(1986) 33 201-217; Anderson et al, The Practice of Medicinal Chemistry (1996), Academic Press, New York; and in The Orange Book (Food & Drug Administration, Washington, D.C. on their website). These disclosures are incorporated herein by reference thereto.
Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as dicyclohexylamines, t-butyl amines, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen- containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, and dibutyl sulfates), long chain halides (e.g. decyl, lauryl, and stearyl chlorides, bromides and iodides), aralkyl halides (e.g. benzyl and phenethyl bromides), and others.
All such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered as potentially useful alternatives to the free forms of the corresponding compounds for purposes of the invention.
Another embodiment which may be useful includes pharmaceutically acceptable esters of the compounds of the invention. Such esters may include the following groups: (1) carboxylic acid esters obtained by esterification of the hydroxy groups, in which the non- carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (for example, acetyl, n-propyl, t-butyl, or n-butyl), alkoxyalkyl (for example, methoxymethyl), aralkyl (for example, benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (for example, phenyl optionally substituted with, for example, halogen, Ci_4alkyl, or Ci_4alkoxy or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for
example, methanesulfonyl); (3) amino acid esters (for example, L-valyl or L-isoleucyl); (4) phosphonate esters and (5) mono-, di- or triphosphate esters. The phosphate esters may be further esterified by, for example, a Ci_2o alcohol or reactive derivative thereof, or by a 2,3-di (C6_24)acyl glycerol.
As mentioned herein, under certain conditions the compounds of the invention may form tautomers. Such tautomers, when present, comprise another embodiment of the invention. It shall be understood that all tautomeric forms of such compounds are within the scope of the compounds of the invention. For example, all keto-enol and imine-enamine forms of the compounds, when present, are included in the invention.
The compounds of the invention may contain asymmetric or chiral centers, and, therefore, exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds of the invention as well as mixtures thereof, including racemic mixtures, form part of the present invention. In addition, the present invention embraces all geometric and positional isomers. For example, if a compound of the invention incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention.
Where various stereoisomers of the compounds of the invention are possible, another embodiment provides for diastereomeric mixtures and individual enantiomers of the compounds of the invention. Diastereomeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as, for example, by chromatography and/or fractional
crystallization. Enantiomers can be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Also, some of the compounds of the invention may be atropisomers (e.g., substituted biaryls) and are considered as part of this invention. Enantiomers can also be separated by use of chiral HPLC column.
All stereoisomers (for example, geometric isomers, optical isomers and the like) of the compounds of the invention (including those of the salts, solvates, esters and prodrugs of the compounds as well as the salts, solvates and esters of the prodrugs), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which
may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated as embodiments within the scope of this invention, as are positional isomers (such as, for example, 4-pyridyl and 3-pyridyl). (For example, if a compound of the invention incorporates a double bond or a fused ring, both the cis- and trans- forms, as well as mixtures, are embraced within the scope of the invention. Also, for example, all keto-enol and imine-enamine forms of the compounds are included in the invention.).
Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations. The use of the terms "salt", "solvate", "ester", "prodrug" and the like, is intended to equally apply to the salt, solvate, ester and prodrug of enantiomers, stereoisomers, rotamers, tautomers, positional isomers, racemates or prodrugs of the inventive compounds.
Another embodiment which may be useful include isotopically-labelled compounds of the invention. Such compounds are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2H, 3H, UC, 13C, 14C, 15N, 180, 170, 31P, 32P, 35S, 18F, and 36C1, respectively.
In the compounds of the invention, the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature. The present invention is meant to include all suitable isotopic variations of the compounds of the invention. For example, different isotopic forms of hydrogen (H) include protium ( 1 H) and deuterium ( 2 H). Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
Isotopically-enriched compounds of the invention can be prepared without undue
experimentation by conventional techniques well known to those skilled in the art or by
processes analogous to those described in the schemes and examples herein using appropriate isotopically-enriched reagents and/or intermediates.
Polymorphic forms of the compounds of the invention, and of the salts, solvates, esters and prodrugs of the compounds of the invention, are intended to be included in the present invention.
Another embodiment provides suitable dosages and dosage forms of the compounds of the invention. Suitable doses for administering compounds of the invention to patients may readily be determined by those skilled in the art, e.g., by an attending physician, pharmacist, or other skilled worker, and may vary according to patient health, age, weight, frequency of administration, use with other active ingredients, and/or indication for which the compounds are administered. Doses may range from about 0.001 to 500 mg/kg of body weight/day of the compound of the invention. In one embodiment, the dosage is from about 0.01 to about 25 mg/kg of body weight/day of a compound of the invention, or a pharmaceutically acceptable salt or solvate of said compound. In another embodiment, the quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 100 mg, preferably from about 1 mg to about 50 mg, more preferably from about 1 mg to about 25 mg, according to the particular application. In another embodiment, a typical recommended daily dosage regimen for oral administration can range from about 1 mg/day to about 500 mg/day, preferably 1 mg/day to 200 mg/day, in two to four divided doses.
When used in combination with one or more additional therapeutic agents, the compounds of this invention may be administered together or sequentially. When
administered sequentially, compounds of the invention may be administered before or after the one or more additional therapeutic agents, as determined by those skilled in the art or patient preference.
If formulated as a fixed dose, such combination products employ the compounds of this invention within the dosage range described herein and the other pharmaceutically active agent or treatment within its dosage range.
Accordingly, another embodiment provides combinations comprising an amount of at least one compound of the invention, or a pharmaceutically acceptable salt, solvate, ester or prodrug thereof, and an effective amount of one or more additional agents described above.
Another embodiment provides for pharmaceutically acceptable compositions comprising a compound of the invention, either as the neat chemical or optionally further
comprising additional ingredients. For preparing pharmaceutical compositions from the compounds of the invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 95 percent active ingredient. Suitable solid carriers are known in the art, e.g., magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), Remington 's Pharmaceutical Sciences, 18th Edition, (1990), Mack Publishing Co., Easton, Pennsylvania.
Liquid form preparations include solutions, suspensions and emulsions. Non-limiting examples which may be useful include water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions for intranasal administration.
Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas, e.g. nitrogen.
Also included are solid form preparations that are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.
Another embodiment which may be useful includes compositions comprising a compound of the invention formulated for transdermal delivery. The transdermal
compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.
Other embodiment which may be useful includes compositions comprising a compound of the invention formulated for subcutaneous delivery or for oral delivery. In some embodiments, it may be advantageous for the pharmaceutical preparation compring one or more compounds of the invention be prepared in a unit dosage form. In such forms, the preparation may be subdivided into suitably sized unit doses containing appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose. Each of the
foregoing alternatives, together with their corresponding methods of use, are considered as included in the various embodiments of the invention.
PREPARATIVE EXAMPLES
Compounds of the invention can be made using procedures known in the art. The following reaction schemes show typical procedures, but those skilled in the art will recognize that other procedures can also be suitable. Reactions may involve monitoring for consumption of starting material, and there are many methods for said monitoring, including but not limited to thin layer chromatography (TLC) and liquid chromatography mass spectrometry (LCMS), and those skilled in the art will recognize that where one method is specified, other non- limiting methods may be substituted.
Techniques, solvents and reagents may be referred to by their abbreviations as follows:
Acetic acid: AcOH Inhibition: Inh.
Acetonitrile: MeCN Iron(III) acetylacetonate: Fe(acac)3
Aqueous: aq. Liquid chromatography mass
Benzyl: Bn Spectrometry: LCMS
tert-Butyl: t-Bu or tBu Methanesulfonyl chloride: MsCl
Centimeters: cm Methanol: MeOH
Dichloromethane: DCM Methyl iodide: Mel
Diisopropylamine: iPr2NH or DIP A Microliters: μΐ or
Diisopropylethylamine: DIEA or iPr2NEt Milligrams: mg
Dimethylformamide: DMF Milliliters: mL
Dimethylsulfoxide: DMSO Millimoles: mmol
Ether or diethyl ether: Et20 Minutes: min
Ethanol: EtOH n-Butyllithium: nBuLi or n-BuLi
Ethyl: Et Nuclear magnetic resonance spectroscopy:
Ethyl acetate: AcOEt, EtOAc, or EA NMR
Example: Ex. Para-methoxy benzyl: PMB
Grams: g Petroleum ether: PE
Hexanes: hex Retention time: tRor Ret. Time
High performance liquid chromatography: Room temperature (ambient, about 25°C): HPLC rt or RT
tert-Butoxycarbonyl: t-Boc or Boc Triethylamine: Et3N or TEA
Temperature: temp. 5 Trifluoroacetic acid: TFA
Tetrahydrofuran: THF
2,4,6-tripropyl-l, 3,5,2,4,6- trioxatriphosphorinane-2,4-6-trioxide: T3P
Method A:
A11 Example 1 a
Step 1:
To a stirred solution of compound Al (200 g, 1.46 mol) in pyridine (400 mL) was added MsCl (167 g, 1.46 mol) dropwise via an addition funnel at 0°C. After the addition was completed, the mixture was stirred at room temperature for 6 h. After that time, the reaction was concentrated under vacuum. To the residue was added CH2CI2 (1 L) and the resulting mixture was washed with IN HCl(aq.) (2 x 1 L), sat. NaHC03(aq.) (2 x 1 L) and brine (500 mL). The organic layer was dried over anhydrous Na2S04, filtered and concentrated to afford crude product, which was washed with (petroleum ether/ethyl acetate, 2: 1, 300 mL). The product was isolated by filtration and the solid was dried under vacuum. To a solution of the solid (220 g, 1.02 mol) in DMF (1100 mL) at 0°C was added Cs2C03 (500 g, 1.53 mol) followed by the dropwise addition of CH3I (188.6 g, 1.33 mol). The mixture was stirred at room
temperature overnight. The reaction was then poured into cold water which caused a solid to precipitate. The solid was removed via filtration and washed with water. The solid was then dissolved in CH2CI2 (3 L), and the resulting solution was washed with brine (500 mL), dried over anhydrous Na2S04, filtered and dried under vacuum to afford compound A2.
Step 2:
To a solution of 90% HNO3 (2 mL) at -40 °C was added compound A3 (500 mg, 3.4 mmol) dropwise over 15 min. The resulting solution was stirred at -40 °C for 30 min. The reaction was then slowly poured into ice water and the resultant mixture was extracted with dichloromethane (50 mL). The combined organic layers were washed successively with sat. NaHCC"3 (aq.), water and brine. The organic layer was then dried over Na2S04, filtered and concentrated under reduced pressure to afford A4. 1H NMR (DMSO-d6, 300 MHz): 8.46 (d, J= 2.91 Hz, 1H), 8.37 (dd, J= 2.91 Hz, J= 9.15 Hz, 1H), 7.27 (d, J= 9.15 Hz, 1H), 4.70 (d, J= 6.36 Hz, 2H), 2.90 (d, J= 6.39 Hz, 2H). MS: ES/APCI-MS [M - H+] m/z 192.2.
Step 3:
To a stirred solution of compound A4 (1.0 g, 5.5 mmol) in tetrahydrofuran (10 mL) under nitrogen was added (R)-(+)-t-butyl sulfinamide (727 mg, 6.0 mmol) followed by Ti(OEt)4 (1.6 mL, 6.8 mmol). The reaction mixture was heated to reflux for 18 h. After that time, the reaction mixture was cooled to RT and diluted with ice water. The mixture was filtered through a pad of celite. The filter pad was thoroughly washed with dichloromethane. The phases of the filtrate were separated. The organic layer was washed with water and brine then dried over anhydrous Na2S04, filtered and concentrated. The crude residue was purified by column chromatography over silica gel (gradient 12-15% ethyl acetate in petroleum ether) to obtain compound A5. 1H NMR (DMSO-d6, 400 MHz): 8.65 (d, J= 2.88 Hz, 1H), 8.28 (dd, J= 2.88 Hz, J= 9.12 Hz, 1H), 7.22 (d, J= 9.16 Hz, 1H), 4.53-4.48 (m, 2H), 3.41-3.37 (m, 2H), 1.24 (s, 9H).
Step 4:
To a solution of compound A2 (905 mg, 3.06 mmol) in tetrahydrofuran (15 mL) at -78 °C was added n-BuLi (1.8 mL, 4.4 mmol, 2.5 M in hexane) dropwise. The reaction mixture was stirred for 30 min at -78°C. To the mixture was then added a solution of compound A5 (1 g, 4.4 mmol) in tetrahydrofuran (15 mL) and the mixture was stirred for 3.5 h at -78°C. The reaction mixture was quenched with saturated NH4Cl(aq.) (20 mL) and the resulting mixture was warmed to RT. The mixture was then extracted with ethyl acetate. The combined organic
layers were washed with water and brine, dried over anhydrous Na2S04 and concentrated in vacuo. The crude residue was purified by flash column chromatography over silica gel (gradient 15-20% ethyl acetate in petroleum ether) to yield compound A6. 1H NMR (DMSO- d6, 300 MHz): 8.17 (d, J= 2.67 Hz, 1H), 8.10-8.06 (m, 1H), 7.28-7.25 (m, 2H), 6.99-6.89 (m, 3H), 4.65-4.57 (m, 1H), 4.42-4.35 (m, 2H), 4.27-4.24 (m, 1H), 4.15-4.07 (m, 1H), 3.81 (s, 3H), 3.32-3.20 (m, 2H), 2.90-2.84 (m,lH), 2.82 (s, 3H), 1.29 (s, 9H). MS: ES/APCI-MS [M+H+] m/z 526.2.
Step 5:
To a solution of the sulfanamide A6 (1.0 g, 1.90 mmol) in dichloromethane (10 mL) was added a solution of HC1 (4 M in dioxane, 3 mL). The resultant solution was stirred at room temperature for 1 h. After that time, the solution was concentrated in vacuo. The obtained residue was dissolved in trifluoroacetic acid (10 mL). To this mixture was added thioglycolic acid (1.73 mL, 23.8 mmol). The resultant mixture was stirred at room temperature overnight and concentrated. The residue was partitioned between DCM and NaHC03 (aq.) and the layers were separated. The organic layer was washed with water and brine, dried over anhydrous Na2S04 and concentrated. The crude residue was purified by flash column chromatography over silica gel (gradient elution: 55-60% ethyl acetate in petroleum ether) to afford compound A7. 1H NMR (DMSO-d6, 300 MHz): 8.51 (d, J= 2.79 Hz, 1H), 8.01 (dd, J= 2.82 Hz, J= 9.06 Hz, 1H), 6.93 (d, J= 9.06 Hz, 1H), 4.40-4.36 (m, 2H), 4.08-4.06 (m, 1H), 3.63 (d, J= 14.46 Hz, 1H), 3.48 (d, J= 14.46 Hz, 1H), 3.15 (d, J= 5.19 Hz, 1H), 2.58 (s, 3H). MS: ES/APCI-MS [M+H+] m/z 302.0.
Step 6:
To a slurry of the amine A7 (340 mg 1.13 mmol) in n-butanol (5 mL) and acetonitrile (5 mL) was added cyanogen bromide (593 mg, 5.65 mmol). The resultant mixture was heated to reflux and stirred for 16 h. The mixture was then concentrated and purified by flash column chromatography over silica gel (gradient elution 80-90% ethyl acetate in petroleum ether) to afford compound A8.
Step 7:
To a solution of compound A8 (180 mg, 0.553 mmol) in dichloromethane was added Boc20 (0.18 mL, 0.828 mmol) and triethylamine (0.19 mL, 1.38 mmol). The resultant mixture was stirred at room temperature overnight. The mixture was then diluted with water and extracted with dichloromethane. The combined organic layers were washed with brine, dried over
anhydrous Na2S04, and concentrated. The crude product was purified by flash column chromatography over silica gel (gradient elution 15-25% ethyl acetate in petroleum ether) to afford compound A9. 1H NMR (CD3OD, 400 MHz): 8.45 (d, J= 2.40 Hz, 1H), 8.16 (dd, J= 2.48 Hz, J= 9.08 Hz, 1H), 7.03 (d, J= 9.12 Hz, 1H), 4.54-4.50 (m, 1H), 4.48-4.40 (m, 1H), 4.39-4.32 (m, 1H), 4.27-4.23 (m, 1H), 3.29 (s, 3H), 2.91-2.87 (m, 1H), 2.53-2.49 (m, 1H), 1.29 (s, 9H). MS: 98.46%; ES/APCI-MS [M+H+] m/z 427.
Step 8.
A solution of compound A9 (120 mg, 0.281 mmol) in methanol (2 mL) was degassed with nitrogen for 5 min. To the solution was added Pd/C (20%> w/w, 50%> H20, 25 mg). The resulting mixture was stirred at room temperature under a hydrogen balloon for 2 h. After that time, the reaction mixture was filtered through celite and concentrated. The crude residue was purified by flash column chromatography over silica gel (gradient elution 55-60% ethyl acetate in petroleum ether) to afford compound A10. 1H NMR (CD3OD, 400 MHz): 6.81 (d, J= 2.52 Hz, 1H), 6.71-6.66 (m, 2H), 4.29-4.23 (m, 2H), 4.15-4.10 (m, 2H), 3.17 (s, 3H), 2.80-2.74 (m, 1H), 2.44-2.41(m, 1H), 1.44 (s, 9H). MS: ES/APCI-MS [M+H+] m/z 397.2.
Step 9:
To a solution of 5-chloropicolinic acid (71 mg, 0.621 mmol) in tetrahydrofuran (2 mL) at room temperature under nitrogen was added N,N-diisopropylethylamine (0.21 mL, 1.134 mmol) and 50% solution of T3P in ethyl acetate (0.17 mL, 0.529 mmol). The reaction mixture was stirred at room temperature for 15 min. After that time, aniline A10 (150 mg, 0.378 mmol) dissolved in THF (3 mL) was added slowly and the reaction mixture was stirred at room temperature for 3 h. Water was added to the reaction and the mixture was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over anhydrous Na2S04 and concentrated. The crude residue was purified by flash column chromatography over silica gel (gradient elution 22-25% ethyl acetate in petroleum ether) to afford All. MS: ES/APCI-MS [M+] m/z 536.0.
Step 10:
To a solution of compound All (120 mg, 0.223 mmol) in DCM (2 mL) at 0°C was added HC1 (4M in dioxane, 2 mL). The reaction was warmed to RT and stirred for 2 h at which point the reaction mixture was concentrated in vacuo. The crude residue was purified by flash column chromatography over silica gel (10-15% methanol in dichloromethane) to afford Example la. 1H NMR (DMSO-de, 400 MHz): 10.48 (s, 1H), 10.23 (bs, 1H), 8.78 (s, 1H), 8.45 (bs, 1H),
8.35-8.33(m, 1H), 8.22-8.20 (m, 1H), 7.97(d, J= 2.32 Hz, 1H), 7.86 (dd, J= 2.41 Hz, J= 8.92 Hz, 1H), 6.90(d, J= 8.92 Hz, 1H), 4.86-4.82 (m, 1H), 4.39-4.31 (m, 1H), 4.27-4.19 (m, 2H), 3.35 (s, 3H), 2.63-2.60 (m, 1H), 2.49-2.46(m, 1H). MS: ES/APCI-MS [M+H+] m/z 436.0. The examples in Table 1 were prepared using procedures similar to those described in Method A using the requisite carboxylic acid in step 9.
Table 1:
Examples 2a-2w
Parallel preparation of Examples 2a-2w: To a set of vials containing the requisite carboxylic acid (0.076 mmol) was added a solution of A10 (25 mg, 0.063 mmol) in DCM (0.75 mL) followed by the addition of iPr2NEt (0.033 mL, 0.19 mmol) and a solution of T3P (50% in
EtOAc, 0.075 mL, 0.13 mmol). The vials were capped and the mixtures were shaken at RT overnight. After that time, water (0.050 mL) and TFA (0.50 mL) were added to each vial. The mixtures were then shaken at RT for 3 hours. After that time, the mixtures were concentrated in vacuo. The crude residues were dissolved in DMSO (1 mL) and filtered. The crude products were purified by mass triggered HPLC using the following conditions:
[column: Waters Sunfire C18, 5μιη , 19x100 mm; solvent: gradient range 10% initial to 18- 29% final MeCN (0.1% formic acid) in water (0.1% formic acid) 25 mL/min; 9-12 min run time] to afford Examples 2a-2w.
Table 2:
C10 C11
Step 1:
NaH (1.8 g, 46.6 mmol) was added to a THF (60 mL) solution of 2-iodo-benzyl alcohol CI (7.3 g, 31.19 mmol) at 0°C, in small portions. After the complete addition of NaH, allyl bromide (3.9 mL, 46.73 mmol) was added. The mixture was stirred overnight at room temperature. The resultant heterogeneous mixture was quenched with a saturated cold NH4Cl(aq.) solution and extracted with ethyl acetate. The combined organic layers were washed with H20 and brine, dried over anhydrous Na2S04, and concentrated in vacuo. The crude residue was purified by flash chromatography over silica gel using 5% ethyl acetate in petroleum ether as the eluent to yield C2. 1H-NMR (CDC13, 400 MHz): δ 7.83 (dd, J = 7.6, 0.8 Hz, 1H), 7.47 (d, J = 6.4 Hz, 1H), 7.36 (dt, J = 7.6, 0.8 Hz, 1H), 6.99 (dt, J = 7.6, 1.6 Hz, 1H), 6.05-5.96 (m, 1H), 5.40-5.39 (m, 0.5 H), 5.35-5.34 (m, 0.5 H), 5.25 (dd, J = 10.4, 1.6 Hz, 1H), 4.51 (s, 2H), 4.14-4.12 (m, 2H).
Step 2:
Allyl ether C2 (1.0 g, 3.65 mmol) was dissolved in a mixture of 15 ml of MeCN and 2.5 mL (18.2 mmol) of Et3N. The mixture was vacuum degassed (3 cycles) followed by the addition of
Pd(OAc)2 (40.88 mg, 0.182 mmol) and PPh3 (95.73 mg, 0.365 mmol). The mixture was heated to 80°C for 2 h. The mixture was then cooled to room temperature and diluted with water. The mixture was extracted with ethyl acetate. The organic layer was washed sequentially with IN HCl(aq.), sat. NaHC03(aq.) and brine. The organic layer was then dried over Na2S04, filtered and concentrated in vacuo. The crude residue was purified by flash chromatography over silica gel using a gradient elution of 0-2% ethyl acetate in petroleum ether to provide C3. 1H-NMR (CDCI3, 400 MHz): δ 7.72-7.69 (m, 1H), 7.28-7.24 (m, 2H), 7.07-7.04 (m, 1H), 5.63 (s, 1H), 5.04 (s, 1H), 4.84 (s, 2H), 4.47 (s, 2H).
Step 3:
To a mixture of C3 (3.0 g, 20.55 mmol) in dioxane -water (1 : 1, 40 mL) at 0°C was added NaI04 (13.1 g, 61.5 mmol). The reaction mixture was stirred for 10 min. After that time, a solution of Os04 (2.5 % in t-butanol, 0.104 g, 0.41 mmol) was added dropwise. The reaction was allowed to warm to RT and stirred overnight. After that time, water was added to the reaction flask and the mixture was extracted with ethyl acetate. The organic layer was washed with water and brine, then dried over Na2S04, filtered and concentrated in vacuo. The crude residue was purified by flash chromatography over silica gel eluting with 10% ethyl acetate in petroleum ether to afford C4. 1H-NMR (CDC13, 400 MHz): δ 8.06 (d, J = 7.7 Hz, 1H), 7.61- 7.56 (m, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 4.91 (s, 2H), 4.39 (s, 2H). Step 4:
To a cooled solution of 90% HNO3 (47.6 mL) at -30°C, C4 (7 g, 47.3 mmol) was added dropwise over 30 min. The resultant solution was stirred at -30°C for 5 h and then slowly poured onto ice. The reaction mixture was diluted by adding cold water and the mixture was extracted with dichloromethane. The combined organic layers were washed sequentally with sat. NaHC03(aq.), water and brine. The organic layer was then dried over anhydrous Na2S04, filtered and concentrated in vacuo. The crude residue was purified by flash chromatography over silica gel using a gradient elution of 30-50% ethyl acetate in petroleum ether to afford C5. 1H NMR (CDCI3, 400 MHz): δ. 8.88 (d, J = 2.4 Hz, 1H), 8.43 (dd, J = 8.4, 2.4 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 5.00 (s, 2H), 4.45 (s, 2H).
Step 5:
To a solution of C5 (6 g, 31.09 mmol) in THF (80 mL) was added (R)-(+)-2-methyl-2- propanesulfinamide (6.77 g, 55.95 mmol) and Ti(OEt)4, (12.76 g, 55.96 mmol). The resultant solution was heated to reflux for 1 h. After that time, the solution was cooled to RT and poured
into ice cold water. The mixture was filtered and the filter cake was washed with CH2CI2. The layers were separated and the aqueous layer was extracted with CH2CI2. The combined organic layers were dried over Na2S04, filtered and concentrated. The crude residue was purified by flash chromatography over silica gel eluting with 15% ethyl acetate in petroleum ether to afford C6. 1H NMR (CDCI3, 400 MHz): δ. 8.88 (d, J = 2 Hz, 1H), 8.30 (dd, J = 8.2, 2.4 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 5.24 (d, J = 17.2 Hz, 1H), 5.05 (d, J = 17.2 Hz, 1H), 4.87 (d, J = 2.4 Hz, 2H), 1.38 (s, 9H).
Step 6:
To a solution of the sulfonamide A2 (4.64 g, 20.26 mmol) in anhydrous THF (25 mL) at -78°C under an atmosphere of N2 was added dropwise a solution of n- BuLi (2.5 M in hexane, 8.11 mL, 20.28 mmol). The resultant solution was stirred at -78°C for 1 h. After that time, a solution of the ketimine C6 (3 g, 10.14 mmol) in THF (25 mL) precooled to -78°C in a separate round bottom flask was transferred via cannula to the solution above. The resultant solution was stirred at -78°C for 3.5 h. The reaction was the quenched with a saturated aqueous solution of NH4C1 and the mixture was extracted with EtOAc (3x). The combined organic layers were washed with water and brine then dried over Na2S04 and concentrated. The crude residue was purified by flash chromatography over silica gel eluting with a gradient of 50-60% EtOAc in petroleum ether to afford C7.
Step 7:
To a solution of C7 (3.0 g, 5.7 mmol) in dichloromethane (30 mL) was added a solution of HC1 in dioxane (30 mL, 4.5 M) at 0 °C and the resultant solution was stirred at RT for 3 h. After that time, the reaction mixture was concentrated. To the residue was added TFA (30 mL) at 0 °C followed by the addition of thioglycolic acid (4.14 mL, 57.13 mmol). The reaction mixture was stirred RT for 16 h. The solution was then concentrated. The residue was partitioned between aq. NaHC03 (pH 8) and DCM. The layers were separated and the aqueous layer was extracted with DCM. The combined extracts were washed with brine, dried over Na2S04, filtered and concentrated. The crude residue was purified over silica gel eluting with 80% EtOAc in petroleum ether to afford C8
Step 8:
To slurry of C8 (1.3 g, 3.98 mmol) in 1 : 1 mixture of acetonitrile and n-butanol (25 mL:25 mL) was added cyanogen bromide (2.11 g, 19.9 mmol). The resultant mixture was heated to reflux overnight. The reaction mixture was cooled to RT and the volatiles removed under reduced
pressure. The crude residue was washed with diethyl ether (3X) and the product C9 was isolated via filtration.
Step 9:
To a solution of C9 (1.3 g, 3.99 mmol) in CH2C12 (25 niL) was added Boc20 (2.6 niL, 11.93 mmol) and DIEA (3.0 mL, 19.88 mmol). The resultant solution was stirred at RT overnight. The volatiles were removed under reduced pressure and the crude residue was purified by flash chromatography over silica gel eluting with 20% EtOAc in petroleum ether to afford CIO. Ή NMR (CDCI3, 400 MHz): δ. 10.56 (s, 1H), 8.36 (d, J = 2.0 Hz, 1H), 8.21 (dd, J = 2.0 & 8.4 Hz, 1H), 7.28 (s, 1H), 5.01 - 4.86 (m, 2H), 4.20 (d, J = 14 Hz, 2H), 3.67 (dd, J = 1.6 & 11.6 Hz, 1H), 3.51 (dd, J = 1.6 & 14 Hz, 1H), 3.40 (s, 3H), 1.48 (s, 9H). m/z: 425.02 (M-H; negative mode)"
Step 10:
A solution of the CIO (1.3 g, 3.05 mmol) in 1 : 1 mixture of methanol and ethanol (40 mL) was degassed by bubbling N2 through the solution for 3 min. To this solution was added Pd/C (10% w/w, 400 mg.). The mixture was placed under an atmosphere of N2. The atmosphere was evacuated and back-filled with hydrogen. The resulting mixture was stirred at RT under an atmosphere of hydrogen for 2 h. The mixture was then filtered through celite and concentrated. The crude residue was purified by flash chromatography over silica gel eluting with a gradient 20-30% EtOAc in petroleum ether to afford Cll. Ή NMR (DMSO-d6, 400 MHz): δ. 9.95 (s, 1H), 6.79-6.76 (m, 1H), 6.71 (s, 1H), 6.57-6.54 (m, 1H), 5.13 (s, 2H), 4.64-4.54 (m, 1H), 4.42-4.37 (m, 1H), 4.27-4.23 (m, 1H), 4.04-3.85 (m, 3H), 3.12 (s, 3H), 1.36 (s, 9H). m/z: 397.4 (M+H)+
Table 3 The following examples were prepared from Cll using the requisite carboxylic acid following procedures similar to those described in Method A, steps 9-10.
Ex. BACE1 BACE2
Example
no. ml/ tR Conditions Kj (nM) Kj (nM)
(niiii)
HN N
3b 432.2 2.24 1 1160 354
Method D:
Dl was converted to D2 using conditions similar to those described in Method B steps 5-11.
Table 4 The following examples were prepared from D2 using the requisite carboxylic acid following procedures similar to those described in Method A, steps 9-10.
Parallel preparation of Examples 5a- 5w: These examples were prepared from D2 and the requisite carboxylic acid using a procedure similar to that described in Method B. The crude products were purified by mass triggered HPLC using the following conditions: [column: Waters XBridge C18, 5μιη , 19x100 mm; solvent: gradient range 15-30% initial to 50-65%) final MeCN (0.1% NH4OH) in water (0.1% NH4OH) 50 mL/min; 8 min run time] to afford Examples 5a- 5w.
Table 5:
Example 6a
Step 1: Ketone Fl was converted to intermediate F2 using procedures similar to those described in Method C steps 5-8.
Step 2: To a mixture of compound F2 (350 mg, 0.853 mmol) in methanol (6 mL) and water (2 mL) was added Zinc (278 mg, 4.27 mmol) and ammonium chloride (228 mg, 4.268 mmol). The resulting mixture was stirred at room temperature for 1 h. The reaction mixture was then filtered through celite and the filter cake was washed with excess of 1 : 1 mixture of methanol and dichloromethane. The filtrate was and concentrated and the product was used without further purification, m/z: 381.2
Step 3: Amine F3 was converted to Example 6a following procedures similar to those described in Method A steps 9 and 10.
Table 6:
Table 7:
Method G:
o
o Step 1 Bno^^
N'
OH 0.
G1 G2
Step 1: To a solution of 2-(benzyloxy)acetic acid Gl (3.23 g, 19.5 mmol) in DCM (60 mL) was added EDCI (6.1 g, 29.2 mmol), followed by N, O-dimethylhydroxylamine hydrochloride (2.8 g, 29.2 mmol) and pyridine (10 mL). The mixture was stirred at 25 °C for 16 h, then
washed with 0.1 M aq. HCl, brine, dried (Na2S04), and concentrated. The residue was purified by silica gel chromatography (PE:EA = 10: 1) to afford G2.
Step 2: Bromide G3 can be treated with nBuLi to afford the aryl lithium intermediate in which G2 can be added to afford ketone G4.
Steps 3-7: Ketone G4 can be converted to compound G9 following procedures similar to Method A steps 3-7.
Step 8. Compound G9 can be treated with NBS and the like in the appropriate solvent to afford bromide G10.
Step 9. Treatment of G10 with BBr3 in the appropriate solvent and temperature can provide compound Gil.
Step 10: Compound Gil can be treated under the appropriate conditions such as Mitsunobu or BBr3 to afford the dihydrobenzofuran G12.
Step 11. Compound G12 can be converted to Example 7a following the procedures similar to those described in Method A steps 7 and 9-10.
LCMS Conditions
Conditions 1: Column: Atlantis dC18 (50 x 4.6mm) 5.0 micron; Column temp: Ambient; Mobile phase: A: 0.1% Formic acid in water, B: 100% Acetonitrile; Gradient: From 0 to 3 min 95:5 to 5:95 (A:B), from 3-4 min 5:95 (A:B), from 4 to 4.5 min 5:95 to 95:5 (A:B), from 4.5 to 6 min 95:5 (A:B); Flow rate: 1.5mL/min; UV detection: 215 nm; Mass spectrometer: Agilent 6130 (Single) quadrupole.
Conditions 2: Waters Acquity UPLC/MS, Electrospray positive ion mode; Column: Waters Acquity UPLC BEH CI 8, 2.1x50 mm, 1.7 micron; Gradient elution 5:95 to 100:0 MeCN (0.1 % NH4OH): water (0.1 % NH4OH) over 1.4 min 0.8 mL/min; UV: 220 nm. ASSAYS
Protocols that used to determine the recited potency values for the compounds of the invention are described below.
BACE1 HTRF FRET Assay
Reagents: Na+-Acetate pH 5.0; 1 % Brij-35; Glycerol; Dimethyl Sulfoxide (DMSO); Recombinant human soluble BACEl catalytic domain (>95% pure); APP Swedish mutant peptide substrate (QSY7-APPswe-Eu): QSY7-EISEVNLDAEFC-Europium-amide.
A homogeneous time-resolved FRET assay can be used to determine IC5o values for inhibitors of the soluble human BACEl catalytic domain. This assay monitors the increase of 620 nm fluorescence that resulted from BACEl cleavage of an APPswedish APPswe mutant peptide FRET substrate (QSY7-EISEVNLDAEFC-Europium-amide). This substrate contains an N-terminal QSY7 moiety that serves as a quencher of the C-terminal Europium fluorophore (620nm Em). In the absence of enzyme activity, 620 nm fluorescence is low in the assay and increased linearly over 3 hours in the presence of uninhibited BACEl enzyme. Inhibition of BACEl cleavage of the QSY7-APPswe-Eu substrate by inhibitors is manifested as a suppression of 620 nm fluorescence.
Varying concentrations of inhibitors at 3x the final desired concentration in a volume of lOul are preincubated with purified human BACEl catalytic domain (3 nM in 10 μΐ) for 30 minutes at 30° C in reaction buffer containing 20 mM Na- Acetate pH 5.0, 10% glycerol, 0.1% Brij-35 and 7.5% DSMO. Reactions are initiated by addition of 10 μΐ of 600 nM QSY7- APPswe-Eu substrate (200 nM final) to give a final reaction volume of 30 μΐ in a 384 well Nunc HTRF plate. The reactions are incubated at 30° C for 1.5 hours. The 620nm fluorescence is then read on a Rubystar HTRF plate reader (BMG Labtechnologies) using a 50 millisecond delay followed by a 400 millisecond acquisition time window. Inhibitor IC5o values are derived from non-linear regression analysis of concentration response curves. K; values are then calculated from IC5o values using the Cheng-Prusoff equation using a previously determined μιη value of 8μΜ for the QSY7-APPswe-Eu substrate at BACEl .
BACE-2 Assay
Inhibitor ICsos at purified human autoBACE-2 are determined in a time-resolved endpoint proteolysis assay that measures hydrolysis of the QSY7-EISEVNLDAEFC-Eu-amide FRET peptide substrate (BACE-HTRF assay). BACE-mediated hydrolysis of this peptide results in an increase in relative fluorescence (RFU) at 620 nm after excitation with 320 nm light. Inhibitor compounds, prepared at 3x the desired final concentration in lx BACE assay buffer (20 mM sodium acetate pH 5.0, 10%> glycerol, 0.1%> Brij-35) supplemented with 7.5% DMSO are pre-incubated with an equal volume of autoBACE-2 enzyme diluted in lx BACE
assay buffer (final enzyme concentration 1 nM) in black 384-well NUNC plates for 30 minutes at 30°C. The assay is initiated by addition of an equal volume of the QSY7- EISEVNLDAEFC-Eu-amide substrate (200 nM final concentration, Km=8 μΜ for 4 μΜ for autoBACE-2) prepared in lx BACE assay buffer supplemented with 7.5% DMSO and incubated for 90 minutes at 30°C. DMSO is present at 5% final concentration in the assay. Following laser excitation of sample wells at 320 nm, the fluorescence signal at 620 nm is collected for 400 ms following a 50 delay on a RUBYstar HTRF plate reader (BMG Labtechnologies). Raw RFU data is normalized to maximum (1.0 nM BACE/DMSO) and minimum (no enzyme/DMSO) RFU values. ICsos are determined by nonlinear regression analysis (sigmoidal dose response, variable slope) of percent inhibition data with minimum and maximum values set to 0 and 100 percent respectively. Similar IC5os are obtained when using raw RFU data. The K; values are calculated from the IC50 using the Cheng-Prusoff equation.
Claims
Claim 1. A compound, or a pharmaceutically acceptable salt thereof, said compound having the structural Formula (I):
(I)
or a tautomer thereof having the structural Formula (Γ):
(Γ)
or pharmaceutically acceptable salt thereof, wherein:
R1 is selected from the group consisting of H, alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, wherein each said alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, is optionally substituted with one or more halogen;
R is selected from the group consisting of H, halogen, alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, wherein each said alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl is optionally substituted with one or more halogen;
R is selected from the group consisting of H, halogen, alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl, wherein each said alkyl, heteroalkyl, cycloalkyl, and -alkyl-cycloalkyl is optionally substituted with one or more halogen;
s is 0 or 1 ;
IX when s is 0, then Y is absent and X is selected from the group consisting of -C(R )2-, -0-, -S-, -S(O)-, and -S(0)2-, and
IX
when s is 1 , then X is selected from the group consisting of -C(R )2-, -0-, -S-, -S(O)-, and -S(0)2-, and Y is -C(R1Y)2-,
IX
or, alternatively, when s is 1 , then X is -C(R )2- and Y is selected from the group consisting of -C(R1Y)2-, -0-, -S-, -S(O)-, and -S(0)2-;
each R (when present) is independently selected from the group consisting of: H, halogen, alkyl, heteroalkyl, and cycloalkyl,
wherein said alkyl, heteroalkyl, and cycloalkyl are each optionally independently unsubstituted or substituted with one or more halogen;
each R1Y (when present) is independently selected from the group consisting of: H, halogen, alkyl, heteroalkyl, and cycloalkyl,
wherein said alkyl, heteroalkyl, and cycloalkyl are each optionally independently unsubstituted or substituted with one or more halogen;
ring A is selected from the group consisting of aryl and heteroaryl;
m is 0 or more;
each RA (when present) is independently selected from the group consisting of:
halogen, -OH, -CN, -SF5, -OSF5, -Si(R5A)3, -N(R6A)2, -OR6A, -SR6A, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl, wherein said alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl of RA are each optionally independently
Q
unsubstituted or substituted with one or more groups independently selected from R ; n is 0 or 1 ;
-Li- represents a bond or a divalent moiety selected from the group consisting of -alkyl-, -haloalkyl-, -heteroalkyl-, -alkenyl-, -alkynyl-, -NHC(O)-, -C(0)NH-, -C(S)NH-, -NHC(S)-, -NH-, -NHS(0)2-, -S(0)2NH-, -0-CH2-, -CH2-0-, -NHCH2-, and -CH2NH-;
RL is selected from the group consisting of alkyl and heteroalkyl, wherein said alkyl and heteroalkyl of RL are each optionally unsubstituted or substituted with one or more halogen;
or, alternatively, R is a moiety having the formula
Vi , wherein q is 0 or 1 ;
-LB- (when present) is a divalent moiety selected from the group consisting of lower alkyl and lower heteroalkyl, wherein each said lower alkyl and lower heteroalkyl is optionally substituted with one or more halogen;
ring B is selected from the group consisting of aryl, heteroaryl, cycloalkyl,
cycloalkenyl, heterocycloalkyl, and heterocycloalkenyl;
p is 0 or more; and
each RB (when present) is independently selected from the group consisting of:
halogen, oxo, -OH, -CN, -SF5, -OSF5, -Si(R5B)3, -N(R6B)2, -NR7BC(0)R6B, -NR7S(0)2R6B, -NR7BS(0)2N(R6B)2, -NR7BC(0)N(R6B)2, -NR7BC(0)OR6B, -C(0)R6B, -C(0)OR6B,
-C(0)N(R6B)2, -S(0)R6B, -S(0)2R6B, -S(0)2N(R6B)2, -OR6B, -SR6B, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-aryl, heteroaryl, and -alkyl-heteroaryl,
wherein said alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-aryl, heteroaryl, and
-alkyl-heteroaryl of RB are each optionally independently unsubstituted or substituted with one or more groups independently selected from R9;
each R5X, R5Y, R5A, R5B, and R5C (when present) is independently selected from the group consisting of alkyl, heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl,
wherein each said alkyl, heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl,
-alkyl-heterocycloalkyl of R5X, R5Y, R5A, R5B, and R5C is unsubstituted or substituted with one or more halogen;
each R6X, R^, R6A and R6C (when present) is independently selected from the group consisting of H, alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl,
wherein each said alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-aryl, heteroaryl, and -alkyl-heteroaryl of R6X, R^, R6A and R6C is unsubstituted or substituted with one or more groups independently selected from halogen, alkyl, cycloalkyl, heteroalkyl, haloalkyl, alkoxy, heteroalkoxy, and haloalkoxy;
each R (when present) is independently selected from the group consisting of H, alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl-aryl, heteroaryl, and -alkyl-heteroaryl, wherein each said alkyl, -alkyl-OH, alkenyl, alkynyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, -alkyl-heterocycloalkyl, aryl, -alkyl- aryl, heteroaryl, and -alkyl-heteroaryl of R6B is unsubstituted or substituted with one or more groups independently selected from halogen, alkyl, cycloalkyl, heteroalkyl, haloalkyl, alkoxy, heteroalkoxy, and haloalkoxy;
each R 7X , R 7Y , R 7 A , R 7B , and R 7(~* (when present) is independently selected from the group consisting of H, alkyl, heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl,
wherein each said alkyl, heteroalkyl, -heteroalkyl-OH, cycloalkyl, -alkyl-cycloalkyl, heterocycloalkyl, and -alkyl-heterocycloalkyl of R7X, R7Y, R7A, R7B, and R7C is unsubstituted or substituted with one or more halogen;
Q
each R (when present) is independently selected from the group consisting of halogen, lower alkyl, lower heteroalkyl, lower alkoxy, lower cycloalkyl, and lower heterocycloalkyl, wherein each said lower alkyl, lower heteroalkyl, lower alkoxy, lower cycloalkyl, and lower
Q
heterocycloalkyl of R is optionally substituted with halogen; and
each R9 (when present) is independently selected from the group consisting of halogen, -OH, -CN, -SF5, -OSF5, alkyl, -alkyl-OH, heteroalkyl, -heteroalkyl-OH, alkoxy,
-O-heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, -O-cycloalkyl, -O-alkyl-cycloalkyl,
-heterocycloalkyl, -alkyl-heterocycloalkyl, -O-heterocycloalkyl and -O-alkyl-heterocycloalkyl, wherein each said alkyl, -alkyl-OH, heteroalkyl, -heteroalkyl-OH, alkoxy, -O-heteroalkyl, cycloalkyl, -alkyl-cycloalkyl, -O-cycloalkyl, -O-alkyl-cycloalkyl, -heterocycloalkyl,
-alkyl-heterocycloalkyl, -O-heterocycloalkyl and -O-alkyl-heterocycloalkyl are optionally substituted with one or more halogen.
Claim 2. A compound of claim 1, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
R1 is methyl;
R is H; and
R3 is H.
Claim 3. A compound of claim 2, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
s is 1;
X is -0-; and
Y is -C(R1Y)2-,
wherein each R1Y is independently selected from the group consisting of H, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen.
Claim 4. A compound of claim 2, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
s is 0;
Y is absent; and
X is selected from the group consisting of -C(R )2- and -0-,
wherein each R IX (when present) is independently selected from the group consisting of H, halogen, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen.
Claim 5. A compound of claim 2, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
s is 1;
X is -C(R1X)2-; and
Y is selected from the group consisting of -C(R1Y)2- and -0-;
R IX is independently selected from the group consisting of H, halogen, lower alkyl, and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl are each optionally independently unsubstituted or substituted with one or more halogen; and
R1Y is H.
Claim 6. A compound of claim 2, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
ring A is selected from the group consisting of phenyl, pyridyl, thienyl, pyrimidinyl, and pyrazinyl;
m is 0, 1, or 2; and
each RA (when present) is independently selected from the group consisting of halogen, -CN, -SF5, -NHCH3, -N(CH3)2, -OCH3, -OCH2CH3, -O-cyclopropyl, -0-CH2-cyclopropyl, -CH2OCH3, -S(CH3), methyl, ethyl, cyclopropyl, -CH2-cyclopropyl,— C≡C-CH3 ^ ^
-CHF2, -CH2F, -OCF3, and -OCHF2.
Claim 7. A compound of claim 6, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
RL is selected from the group consisting of lower alkyl and lower heteroalkyl, wherein said lower alkyl and lower heteroalkyl of RL are each optionally unsubstituted or substituted with one or more halogen.
Claim 8. A compound of claim 7, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
-Li- is -C(0)NH-.
Claim 9. A compound of claim 6, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
q is 1;
-LB- (when present) is a divalent moiety selected from the group consisting of -CH2-, -CF2-, and -CH2CH2-;
ring B is selected from the group consisting of isoxazolyl, oxadiazoyl, oxazolyl, phenyl, pyridinyl, pyrazinyl, pyrimidinyl, and pyrazolyl;
p is 0 or more; and
each RB group (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -CN, -S(0)2CH3, -OCH3, -O-cyclopropyl, -0-CH2-cyclopropyl,
— OCH2-C≡C-H ^ _oCH2-C≡C-CH3 ^ memyl? cyciopropyl, -CH2-cyclopropyl, -CH2OCH3, — C≡CH ?— C≡C-CH3 ^ _CF^ _cliFi -CH2F, -OCF3, -OCHF2, -OCH2F, and -OCH2CH2F.
Claim 10. A compound of claim 9, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
-Li- is -C(0)NH-.
Claim
1 1. A compound of claim 6, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
ring B is selected from the group consisting of isoxazolyl, oxadiazoyl, oxazolyl, phenyl, pyridinyl, pyrazinyl, pyrimidinyl, and pyrazolyl;
p is 0 or more; and
each RB group (when present) is independently selected from the group consisting of fluoro, chloro, bromo, -CN, -S(0)2CH3, -OCH3, -O-cyclopropyl, -0-CH2-cyclopropyl, — OCH2-C≡C-H ^ _oCH2-C≡C-CH3 ^ memyl? cyciopropyl, -CH2-cyclopropyl, -CH2OCH3, — C≡CH ^— C≡C-CH3 ^ _CF^ _cliFi _CH2p? _ocF3, -OCHF2, -OCH2F, and -OCH2CH2F.
Claim 12. A compound of claim 1 1 , or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, wherein:
-Li- is -C(0)NH-.
Claim 13. A compound of claim 1 , or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, said compound selected from the group consisting of:
Claiml4. A pharmaceutical composition comprising a compound according to any one of claims 1 to 13, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, and a pharmaceutically acceptable carrier or diluent.
Claiml5. A method of treating a disease or pathology, wherein said disease or pathology is Alzheimer's disease, olfactory impairment associated with Alzheimer's disease, Down's syndrome, olfactory impairment associated with Down's syndrome, Parkinson's disease, olfactory impairment associated with Parkinson's disease, stroke, microgliosis brain inflammation, pre-senile dementia, senile dementia, progressive supranuclear palsy, cortical basal degeneration, β-amyloid angiopathy, cerebral amyloid angiopathy, hereditary cerebral
hemorrhage, mild cognitive impairment, glaucoma, amyloidosis, type II diabetes, diabetes- associated amyloidogenesis, scrapie, bovine spongiform encephalitis, traumatic brain injury, or Creutzfeld- Jakob disease, said method comprising administering a compound according to any one of claims 1 to 13, or a tautomer thereof, or a pharmaceutically acceptable salt of said compound or said tautomer, to a patient in need thereof in an amount effective to treat said disease or pathology.
Claiml6. The method of claim 15, wherein disease or pathology is Alzheimer's disease. Claiml7. A compound according to any one of claims 1 to 13, or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer, for use as a medicament.
Claiml8. Use of a compound according to any one of claims 1 to 13, or a tautomer thereof, or pharmaceutically acceptable salt of said compound or said tautomer, for the manufacture of a medicament for the treatment of a disease or pathology, wherein said disease or pathology is Alzheimer's disease, olfactory impairment associated with Alzheimer's disease, Down's syndrome, olfactory impairment associated with Down's syndrome,
Parkinson's disease, olfactory impairment associated with Parkinson's disease, stroke, microgliosis brain inflammation, pre-senile dementia, senile dementia, progressive
supranuclear palsy, cortical basal degeneration, β-amyloid angiopathy, cerebral amyloid angiopathy, hereditary cerebral hemorrhage, mild cognitive impairment, glaucoma, amyloidosis, type II diabetes, diabetes-associated amyloidogenesis, scrapie, bovine
spongiform encephalitis, traumatic brain injury, or Creutzfeld- Jakob disease. Claiml9. Use according to claim 18, wherein said disease or pathology is Alzheimer's disease.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/653,671 US9580396B2 (en) | 2012-12-21 | 2013-12-16 | C6-spiro iminothiadiazine dioxides as BACE inhibitors, compositions, and their use |
EP13864070.1A EP2934534B1 (en) | 2012-12-21 | 2013-12-16 | C5-spiro iminothiadiazine dioxides as bace inhibitors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261740511P | 2012-12-21 | 2012-12-21 | |
US61/740,511 | 2012-12-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014099788A1 true WO2014099788A1 (en) | 2014-06-26 |
WO2014099788A9 WO2014099788A9 (en) | 2015-01-08 |
Family
ID=50979081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/075400 WO2014099788A1 (en) | 2012-12-21 | 2013-12-16 | C5-spiro iminothiadiazine dioxides as bace inhibitors |
Country Status (3)
Country | Link |
---|---|
US (1) | US9580396B2 (en) |
EP (1) | EP2934534B1 (en) |
WO (1) | WO2014099788A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9096615B2 (en) | 2013-07-30 | 2015-08-04 | Amgen Inc. | Bridged bicyclic amino thiazine dioxide compounds as inhibitors of beta-secretase and methods of use thereof |
WO2016012422A1 (en) * | 2014-07-25 | 2016-01-28 | F. Hoffmann-La Roche Ag | Pyridyl-triazabicycles |
WO2016022724A1 (en) | 2014-08-08 | 2016-02-11 | Amgen Inc. | Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use |
US9296734B2 (en) | 2013-03-01 | 2016-03-29 | Amgen Inc. | Perfluorinated 5,6-dihydro-4H-1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use |
WO2016053828A1 (en) * | 2014-10-03 | 2016-04-07 | Merck Sharp & Dohme Corp. | C5-c6-fused tricyclic iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use |
US9309263B2 (en) | 2013-01-29 | 2016-04-12 | Amgen Inc. | Fused multi-cyclic sulfone compounds as inhibitors of beta-secretase and methods of use thereof |
US9365589B2 (en) | 2012-12-20 | 2016-06-14 | Merck Sharp & Dohme Corp. | C5, C6 oxacyclic-fused thiazine dioxide compounds as BACE inhibitors, compositions, and their use |
US9489013B2 (en) | 2012-12-20 | 2016-11-08 | Merck Sharp & Dohme Corp. | C6-azaspiro iminothiadiazine dioxides as bace inhibitors, compositions, and their use |
EP3043802A4 (en) * | 2013-09-13 | 2017-03-01 | Merck Sharp & Dohme Corp. | C5-spiro iminothiazine dioxides as bace inhibitors, compositions, and their use |
US9611261B2 (en) | 2013-03-08 | 2017-04-04 | Amgen Inc. | Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use |
WO2017095759A1 (en) * | 2015-12-04 | 2017-06-08 | Merck Sharp & Dohme Corp. | C5-c6-carbocyclic fused iminothiadiazine dioxides as bace inhibitors, compositions, and their use |
US9802928B2 (en) | 2013-12-18 | 2017-10-31 | Merck Sharp & Dohme Corp. | C-6 spirocarbocyclic iminothiadiazine dioxides as BACE inhibitors, compositions, and their use |
WO2018112083A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | Thiazine derivatives as beta-secretase inhibitors and methods of use |
WO2018112094A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | 1,4-thiazine dioxide and 1,2,4-thiadiazine dioxide derivatives as beta-secretase inhibitors and methods of use |
WO2018112084A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | Bicyclic thiazine and oxazine derivatives as beta-secretase inhibitors and methods of use |
WO2018112081A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | Oxazine derivatives as beta-secretase inhibitors and methods of use |
WO2018112086A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | Cyclopropyl fused thiazine derivatives as beta-secretase inhibitors and methods of use |
US10246429B2 (en) | 2015-08-06 | 2019-04-02 | Amgen Inc. | Vinyl fluoride cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3223820B1 (en) | 2014-11-25 | 2020-07-22 | Merck Sharp & Dohme Corp. | 3-methyl-2-imino-hexahydro-1h-pyrano[3,4-d]pyrimidin-4-one compounds as bace inhibitors, compositions, and their use |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040043979A1 (en) * | 2002-08-13 | 2004-03-04 | Picard Joseph Armand | Monocyclic derivatives as matrix metalloproteinase inhibitors |
US20060111370A1 (en) * | 2003-12-15 | 2006-05-25 | Schering Corporation | Heterocyclic aspartyl protease inhibitors |
US20080015180A1 (en) | 2003-06-23 | 2008-01-17 | Neurochem (International) Limited | Methods and compositions for treating amyloid-related diseases |
US20090131342A1 (en) * | 2004-01-22 | 2009-05-21 | Nitromed, Inc. | Nitrosated and/or nitrosylated compounds, compositions and methods of use |
WO2010063718A1 (en) | 2008-12-02 | 2010-06-10 | ETH Zürich | Screening assay for metabolic disease therapeuticals |
US20110110957A1 (en) * | 2008-04-22 | 2011-05-12 | Stamford Andrew W | Phenyl-substituted 2-imino-3-methyl pyrrolo pyrimidinone compounds as bace-1 inhibitors, compositions, and their use |
US20120148603A1 (en) * | 2009-10-08 | 2012-06-14 | Schering Corporation | Pentafluorosulfur imino heterocyclic compounds as bace-1 inhibitors, compositions, and their use |
US20120183563A1 (en) | 2009-10-08 | 2012-07-19 | Scott Jack D | Iminothiadiazine dioxide compounds as bace inhibitors, compositions and their use |
US20120189642A1 (en) * | 2009-10-08 | 2012-07-26 | Schering Corporation | Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use |
US20120195881A1 (en) * | 2009-10-08 | 2012-08-02 | Schering Corporation | Pentafluorosulfur imino heterocyclic compounds as bace-1 inhibitors, compositions and their use |
WO2012138734A1 (en) * | 2011-04-07 | 2012-10-11 | Merck Sharp & Dohme Corp. | C5-c6 oxacyclic-fused thiadiazine dioxide compounds as bace inhibitors, compositions, and their use |
WO2012138590A1 (en) * | 2011-04-07 | 2012-10-11 | Merck Sharp & Dohme Corp. | Pyrrolidine-fused thiadiazine dioxide compounds as bace inhibitors, compositions, and their use |
WO2012139425A1 (en) * | 2011-04-13 | 2012-10-18 | Schering Corporation | 5-substituted iminothiazines and their mono-and dioxides as bace inhibitors,compositions,and their use |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5534520A (en) | 1990-04-10 | 1996-07-09 | Fisher; Abraham | Spiro compounds containing five-membered rings |
CN102627609B (en) | 2003-12-15 | 2016-05-04 | 默沙东公司 | Heterocyclic aspartyl protease inhibitors |
US7763609B2 (en) | 2003-12-15 | 2010-07-27 | Schering Corporation | Heterocyclic aspartyl protease inhibitors |
US7592348B2 (en) | 2003-12-15 | 2009-09-22 | Schering Corporation | Heterocyclic aspartyl protease inhibitors |
WO2006138264A2 (en) | 2005-06-14 | 2006-12-28 | Schering Corporation | Aspartyl protease inhibitors |
AU2006259609A1 (en) | 2005-06-14 | 2006-12-28 | Pharmacopeia, Inc. | Aspartyl protease inhibitors |
CN103936690B (en) | 2005-10-25 | 2016-06-08 | 盐野义制药株式会社 | Aminodihydrothiazine derivatives |
WO2007050721A2 (en) | 2005-10-27 | 2007-05-03 | Schering Corporation | Heterocyclic aspartyl protease inhibitors |
EP2032542A2 (en) | 2006-06-12 | 2009-03-11 | Schering Corporation | Heterocyclic aspartyl protease inhibitors |
JP5383483B2 (en) | 2007-04-24 | 2014-01-08 | 塩野義製薬株式会社 | Pharmaceutical composition for the treatment of Alzheimer's disease |
WO2010013794A1 (en) | 2008-07-28 | 2010-02-04 | Eisai R&D Management Co., Ltd. | Spiroaminodihydrothiazine derivatives |
WO2010013302A1 (en) | 2008-07-28 | 2010-02-04 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Spiroaminodihydrothiazine derivative |
US8450308B2 (en) | 2008-08-19 | 2013-05-28 | Vitae Pharmaceuticals, Inc. | Inhibitors of beta-secretase |
JPWO2010047372A1 (en) | 2008-10-22 | 2012-03-22 | 塩野義製薬株式会社 | 2-Aminopyrimidin-4-one and 2-aminopyridine derivatives having BACE1 inhibitory activity |
US8461160B2 (en) | 2009-05-08 | 2013-06-11 | Hoffmann-La Roche, Inc. | Dihydropyrimidinones |
US20120065195A1 (en) | 2010-03-31 | 2012-03-15 | Clark Christopher T | Compounds for treating neurodegenerative diseases |
AR083953A1 (en) | 2010-11-22 | 2013-04-10 | Array Biopharma Inc | COMPOUNDS TO TREAT NEURODEGENERATIVE DISEASES |
US9079919B2 (en) | 2011-05-27 | 2015-07-14 | Hoffmann-La Roche Inc. | Spiro-[1,3]-oxazines and spiro-[1,4]-oxazepines as BACE1 and/or BACE2 inhibitors |
EP2669286A1 (en) | 2012-05-31 | 2013-12-04 | Ares Trading S.A. | Spiro tetrahydro-benzothiophen derivatives useful for the treatment of neurodegenerative diseases |
WO2014099768A1 (en) | 2012-12-20 | 2014-06-26 | Merck Sharp & Dohme Corp. | C6-azaspiro iminothiadiazine dioxides as bace inhibitors |
WO2015038446A1 (en) | 2013-09-13 | 2015-03-19 | Merck Sharp & Dohme Corp. | C5-spiro iminothiazine dioxides as bace inhibitors, compositions, and their use |
EP3083575B1 (en) | 2013-12-18 | 2021-11-03 | Merck Sharp & Dohme Corp. | C-6 spirocarbocyclic iminothiadiazine dioxides as bace inhibitors, compositions, and their use |
US10238743B2 (en) | 2014-10-03 | 2019-03-26 | Merck Sharp & Dohme Corp. | C5-C6-fused tricyclic iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use |
-
2013
- 2013-12-16 WO PCT/US2013/075400 patent/WO2014099788A1/en active Application Filing
- 2013-12-16 EP EP13864070.1A patent/EP2934534B1/en active Active
- 2013-12-16 US US14/653,671 patent/US9580396B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040043979A1 (en) * | 2002-08-13 | 2004-03-04 | Picard Joseph Armand | Monocyclic derivatives as matrix metalloproteinase inhibitors |
US20080015180A1 (en) | 2003-06-23 | 2008-01-17 | Neurochem (International) Limited | Methods and compositions for treating amyloid-related diseases |
US20060111370A1 (en) * | 2003-12-15 | 2006-05-25 | Schering Corporation | Heterocyclic aspartyl protease inhibitors |
US20090131342A1 (en) * | 2004-01-22 | 2009-05-21 | Nitromed, Inc. | Nitrosated and/or nitrosylated compounds, compositions and methods of use |
US20110110957A1 (en) * | 2008-04-22 | 2011-05-12 | Stamford Andrew W | Phenyl-substituted 2-imino-3-methyl pyrrolo pyrimidinone compounds as bace-1 inhibitors, compositions, and their use |
WO2010063718A1 (en) | 2008-12-02 | 2010-06-10 | ETH Zürich | Screening assay for metabolic disease therapeuticals |
US20120148603A1 (en) * | 2009-10-08 | 2012-06-14 | Schering Corporation | Pentafluorosulfur imino heterocyclic compounds as bace-1 inhibitors, compositions, and their use |
US20120183563A1 (en) | 2009-10-08 | 2012-07-19 | Scott Jack D | Iminothiadiazine dioxide compounds as bace inhibitors, compositions and their use |
US20120189642A1 (en) * | 2009-10-08 | 2012-07-26 | Schering Corporation | Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use |
US20120195881A1 (en) * | 2009-10-08 | 2012-08-02 | Schering Corporation | Pentafluorosulfur imino heterocyclic compounds as bace-1 inhibitors, compositions and their use |
WO2012138734A1 (en) * | 2011-04-07 | 2012-10-11 | Merck Sharp & Dohme Corp. | C5-c6 oxacyclic-fused thiadiazine dioxide compounds as bace inhibitors, compositions, and their use |
WO2012138590A1 (en) * | 2011-04-07 | 2012-10-11 | Merck Sharp & Dohme Corp. | Pyrrolidine-fused thiadiazine dioxide compounds as bace inhibitors, compositions, and their use |
WO2012139425A1 (en) * | 2011-04-13 | 2012-10-18 | Schering Corporation | 5-substituted iminothiazines and their mono-and dioxides as bace inhibitors,compositions,and their use |
Non-Patent Citations (25)
Title |
---|
"Bioreversible Carriers in Drug Design", 1987, AMERICAN PHARMACEUTICAL ASSOCIATION AND PERGAMON PRESS |
"Handbook of Pharmaceutical Salts. Properties, Selection and Use", 2002, WILEY-VCH |
"Remington's Pharmaceutical Sciences", 1990, MACK PUBLISHING CO. |
"The Orange Book", FOOD & DRUG ADMINISTRATION |
AD. OHNO ET AL., NEUROBIOLOGY OF DISEASE, 2007, pages 134 - 145 |
AD. ROBERDS ET AL., HUMAN MOL. GENETICS, vol. 10, no. 12, 2001, pages 1317 - 1324 |
ANDERSON ET AL.: "The Practice of Medicinal Chemistry", 1996, ACADEMIC PRESS |
AP. LUO ET AL., NATURE NEUROSCIENCE, vol. 4, no. 3, March 2001 (2001-03-01) |
BACON AW ET AL., ANN NY ACAD SCI, vol. 855, 2002, pages 723 - 31 |
CRINO PB; MARTIN JA; HILL WD ET AL., ANN OTOL RHINOL LARYNGOL, vol. 104, 1995, pages 655 - 61 |
DAVIES DC ET AL., NEUROBIOL AGING, vol. 14, 1993, pages 353 - 7 |
DEVANAND DP ET AL., AM J PSYCHIATR, vol. 157, 2000, pages 1399 - 405 |
DOTY RL ET AL., BRAIN RES BULL, vol. 18, 1987, pages 597 - 600 |
FINZI, G. FRANZI ET AL., ULTRASTRUCT PATHOL., vol. 32, no. 6, October 2008 (2008-10-01), pages 246 - 51 |
GETCHELL ET AL., NEUROBIOLOGY OF AGING, vol. 24, 2003, pages 663 - 673 |
GUO ET AL., PNAS, vol. 104, no. 33, 14 August 2007 (2007-08-14) |
LOANE ET AL.: "Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury", NATURE MEDICINE, 15 March 2009 (2009-03-15) |
MCCONLOGUE ET AL., J. BIO. CHEM., vol. 282, no. 36, September 2007 (2007-09-01) |
NATURE, vol. 488, August 2012 (2012-08-01), pages 96 - 99 |
OHNO ET AL., NEUROBIOLOGY OF DISEASE, 2007, pages 134 - 145 |
P. GOULD, INTERNATIONAL J. OF PHARMACEUTICS, vol. 33, 1986, pages 201 - 217 |
S. BERGE ET AL., JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 66, no. 1, 1977, pages 1 - 19 |
T. HIGUCHI; V. STELLA: "Pro-drugs as Novel Delivery Systems", vol. 14, 1987, A.C.S. SYMPOSIUM SERIES |
T. HIGUCHI; W. STELLA: "Pro-drugs as Novel Delivery Systems", vol. 14, A.C.S. SYMPOSIUM SERIES |
T. W. GREENE ET AL.: "Protective Groups in organic Synthesis", 1991, WILEY |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9365589B2 (en) | 2012-12-20 | 2016-06-14 | Merck Sharp & Dohme Corp. | C5, C6 oxacyclic-fused thiazine dioxide compounds as BACE inhibitors, compositions, and their use |
US9489013B2 (en) | 2012-12-20 | 2016-11-08 | Merck Sharp & Dohme Corp. | C6-azaspiro iminothiadiazine dioxides as bace inhibitors, compositions, and their use |
US9309263B2 (en) | 2013-01-29 | 2016-04-12 | Amgen Inc. | Fused multi-cyclic sulfone compounds as inhibitors of beta-secretase and methods of use thereof |
US9296734B2 (en) | 2013-03-01 | 2016-03-29 | Amgen Inc. | Perfluorinated 5,6-dihydro-4H-1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use |
US9611261B2 (en) | 2013-03-08 | 2017-04-04 | Amgen Inc. | Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use |
US9096615B2 (en) | 2013-07-30 | 2015-08-04 | Amgen Inc. | Bridged bicyclic amino thiazine dioxide compounds as inhibitors of beta-secretase and methods of use thereof |
EP3043802A4 (en) * | 2013-09-13 | 2017-03-01 | Merck Sharp & Dohme Corp. | C5-spiro iminothiazine dioxides as bace inhibitors, compositions, and their use |
US9725468B2 (en) | 2013-09-13 | 2017-08-08 | Merck Sharp & Dohme Corp. | C5-spiro iminothiazine dioxides as BACE inhibitors, compositions, and their use |
US9802928B2 (en) | 2013-12-18 | 2017-10-31 | Merck Sharp & Dohme Corp. | C-6 spirocarbocyclic iminothiadiazine dioxides as BACE inhibitors, compositions, and their use |
JP2017521453A (en) * | 2014-07-25 | 2017-08-03 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Pyridyl-triazabicycle |
US10047102B2 (en) | 2014-07-25 | 2018-08-14 | Hoffmann-La Roche Inc. | Pyridyl-triazabicycles |
WO2016012422A1 (en) * | 2014-07-25 | 2016-01-28 | F. Hoffmann-La Roche Ag | Pyridyl-triazabicycles |
US10414780B2 (en) | 2014-07-25 | 2019-09-17 | Hoffmann-La Roche Inc. | Pyridyl-triazabicycles |
WO2016022724A1 (en) | 2014-08-08 | 2016-02-11 | Amgen Inc. | Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use |
US9550762B2 (en) | 2014-08-08 | 2017-01-24 | Amgen, Inc. | Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use |
WO2016053828A1 (en) * | 2014-10-03 | 2016-04-07 | Merck Sharp & Dohme Corp. | C5-c6-fused tricyclic iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use |
US10238743B2 (en) | 2014-10-03 | 2019-03-26 | Merck Sharp & Dohme Corp. | C5-C6-fused tricyclic iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use |
US10246429B2 (en) | 2015-08-06 | 2019-04-02 | Amgen Inc. | Vinyl fluoride cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use |
WO2017095759A1 (en) * | 2015-12-04 | 2017-06-08 | Merck Sharp & Dohme Corp. | C5-c6-carbocyclic fused iminothiadiazine dioxides as bace inhibitors, compositions, and their use |
US10329291B2 (en) | 2015-12-04 | 2019-06-25 | Merck Sharp & Dohme Corp. | C5-C6-carbocyclic fused iminothiadiazine dioxides as BACE inhibitors, compositions, and their use |
WO2018112094A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | 1,4-thiazine dioxide and 1,2,4-thiadiazine dioxide derivatives as beta-secretase inhibitors and methods of use |
WO2018112086A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | Cyclopropyl fused thiazine derivatives as beta-secretase inhibitors and methods of use |
WO2018112081A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | Oxazine derivatives as beta-secretase inhibitors and methods of use |
WO2018112084A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | Bicyclic thiazine and oxazine derivatives as beta-secretase inhibitors and methods of use |
WO2018112083A1 (en) | 2016-12-15 | 2018-06-21 | Amgen Inc. | Thiazine derivatives as beta-secretase inhibitors and methods of use |
Also Published As
Publication number | Publication date |
---|---|
EP2934534A4 (en) | 2016-06-01 |
EP2934534A1 (en) | 2015-10-28 |
US9580396B2 (en) | 2017-02-28 |
EP2934534B1 (en) | 2017-12-13 |
US20160264538A1 (en) | 2016-09-15 |
WO2014099788A9 (en) | 2015-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2934534B1 (en) | C5-spiro iminothiadiazine dioxides as bace inhibitors | |
EP2931284B1 (en) | Bace inhibitors of iminothiadiazine dioxides | |
US9365589B2 (en) | C5, C6 oxacyclic-fused thiazine dioxide compounds as BACE inhibitors, compositions, and their use | |
EP2968356B1 (en) | S-imino-s-oxo iminothiadiazine compounds as bace inhibitors, compositions, and their use | |
EP2934149B1 (en) | C6-azaspiro iminothiadiazine dioxides as bace inhibitors | |
EP3083575B1 (en) | C-6 spirocarbocyclic iminothiadiazine dioxides as bace inhibitors, compositions, and their use | |
WO2014150331A1 (en) | S-imino-s-oxo iminothiazine compounds as bace inhibitors, compositions, and their use | |
EP2908824A1 (en) | Tricyclic substituted thiadiazine dioxide compounds as bace inhibitors, compositions, and their use | |
EP3043802B1 (en) | C5-spiro iminothiazine dioxides as bace inhibitors, compositions, and their use | |
EP3082823B1 (en) | Iminothiadiazepane dioxide compounds as bace inhibitors, compositions, and their use | |
WO2014150344A1 (en) | C2-azaspiro iminothiazine dioxides as bace inhibitors | |
EP3191447B1 (en) | S-imino-s-oxo iminothiazine compounds as bace inhibitors, compositions, and their use | |
US9489013B2 (en) | C6-azaspiro iminothiadiazine dioxides as bace inhibitors, compositions, and their use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13864070 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14653671 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013864070 Country of ref document: EP |