WO2014095894A1 - Method and system for purifying the exhaust gases of a combustion engine - Google Patents

Method and system for purifying the exhaust gases of a combustion engine Download PDF

Info

Publication number
WO2014095894A1
WO2014095894A1 PCT/EP2013/076942 EP2013076942W WO2014095894A1 WO 2014095894 A1 WO2014095894 A1 WO 2014095894A1 EP 2013076942 W EP2013076942 W EP 2013076942W WO 2014095894 A1 WO2014095894 A1 WO 2014095894A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
ammonia gas
tank
absorbing matrix
solid absorbing
Prior art date
Application number
PCT/EP2013/076942
Other languages
French (fr)
Inventor
François Dougnier
Jules-Joseph VANSCHAFTINGEN
Dominique Madoux
Paul Wouters
Original Assignee
Inergy Automotive Systems Research (Société Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inergy Automotive Systems Research (Société Anonyme) filed Critical Inergy Automotive Systems Research (Société Anonyme)
Priority to EP13805924.1A priority Critical patent/EP2941550A1/en
Priority to US14/654,156 priority patent/US20150345355A1/en
Publication of WO2014095894A1 publication Critical patent/WO2014095894A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/003Storage or handling of ammonia
    • C01C1/006Storage or handling of ammonia making use of solid ammonia storage materials, e.g. complex ammine salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/08Preparation of ammonia from nitrogenous organic substances
    • C01C1/086Preparation of ammonia from nitrogenous organic substances from urea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/32Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel cell
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/11Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present application relates to a method and a system for purifying the exhaust gases of a combustion engine by injecting exclusively ammonia gas, and more particularly ammonia gas that is released from one or several solid absorbing matrices where it is stored by sorption.
  • a reduction in the release of nitrogen oxides NO x into the atmosphere stipulates, amongst other things, a reduction in the release of nitrogen oxides NO x into the atmosphere.
  • SCR Selective Catalytic Reduction
  • This ammonia may be obtained by using different techniques.
  • One known technique is based on the use of a solid absorbing matrix where the ammonia is trapped by sorption. Generally, the solid absorbing matrix is stored in a container (or tank) (called hereafter matrix storage container) mounted on the vehicle. According to this known technique, the ammonia is released by heating the solid absorbing matrix, and then the released ammonia is injected into the exhaust line.
  • This known technique offers high performance since it allows to send pure NH 3 in the exhaust gases of the vehicle.
  • the main disadvantage of this known technique is the complexity of the refilling procedure (i.e. the solid absorbing matrix regeneration).
  • the actual refilling procedure consists of connecting the matrix storage container to an external ammonia source, typically a highly pressurized cylinder.
  • the matrix storage container has to be dismounted from the vehicle for ammonia loading.
  • sending a high pressure of ammonia in the solid matrix results in a huge heat generation due to exothermal sorption reaction (tens of thousands J/mol NH 3 , as a likely order of magnitude), hence the need of a cooling unit as heat sink. High temperature can damage parts of the system and induce long regeneration time.
  • An object of the present invention is to solve this above-mentioned problem by proposing an SCR method for_purifying the exhaust gases of an internal combustion engine of a vehicle, according to which ammonia gas is exclusively metered in the exhaust gases, the method comprising a step of releasing ammonia gas from at least one solid absorbing matrix where it is stored by sorption and a step of metering the released ammonia gas in the exhaust gases.
  • the method comprises a step of regenerating the solid absorbing matrix that consists in:
  • the regeneration procedure according to the invention is based on the decomposition of an ammonia precursor.
  • Such decomposition is obtained by using a biochemical decomposition unit mounted on board the vehicle.
  • the biochemical decomposition unit according to the invention stores one or several protein component(s) that catalyze a chemical reaction. More precisely, the protein component(s) is(are) adapted to catalyze the hydrolysis (i.e.
  • the regeneration procedure according to the invention is simple, faster and safer.
  • a predetermined amount of ammonia precursor is stored on board the vehicle. For example, during vehicle (engine) operation, it is calculated a desired amount of ammonia precursor to be injected into the biochemical decomposition unit. Such calculation can be made as a function of information relative to the amount of ammonia gas that has been injected into the exhaust line. In a particular embodiment, such information may derive from data provided by a temperature sensor, a pressure sensor or a flow meter, or any combination of these sensors. In another particular embodiment, such
  • this information may derive from data provided by a device configured to measure the concentration of ammonia stored in the solid absorbing matrix. In another particular embodiment, this information may be derived from an estimation of the consumption of ammonia.
  • the protein component (stored in the biochemical decomposition unit) comprises at least one enzyme.
  • thermophile- type enzymes are well suited.
  • the biochemical decomposition unit can store urease. Urease can be stored in any suitable manner. For example, in a first embodiment urease can be immobilized in different layers of resin. In a second embodiment urease can be fixed on membranes.
  • the SCR method according to the present invention is aiming at injecting exclusively ammonia gas in the exhaust gases. In other words, no ammonia precursor is injected in the exhaust gases.
  • the ammonia precursor is an aqueous urea solution.
  • urea solution are understood to mean any, generally aqueous, solution containing urea.
  • the invention gives good results with eutectic water/urea solutions for which there is a quality standard: for example, according to the standard ISO 22241, in the case of the AdBlue ® solution (commercial solution of urea), the urea content is between 31.8 % and 33.2 % (by weight) (i.e. 32.5 +/- 0.7 wt%) hence an available amount of ammonia between 18.0 % and 18.8 %.
  • the invention may also be applied to the urea/ammonium formate mixtures, also in aqueous solution, sold under the trade name DenoxiumTM and of which one of the compositions (Denoxium-30) contains an equivalent amount of ammonia to that of the AdBlue ® solution.
  • the latter have the advantage of only freezing from -30°C onwards (as opposed to -11°C), but have the disadvantages of corrosion problems linked to the possible release of formic acid.
  • the invention can also apply to guanidinium formate.
  • the present invention is particularly advantageous in the context of eutectic water/urea solutions, which are widely available in gas stations.
  • no urea solution is injected in the exhaust gases.
  • the urea solution is exclusively transported to the biochemical decomposition unit, where it enters into a chemical reaction with the enzyme so as to generate the refilling ammonia gas.
  • the urea solution can be partially stored in a chamber located within the biochemical decomposition unit, before it is chemically decomposed.
  • the solid absorbing matrix is stored in a first tank and the ammonia precursor is stored in a second tank.
  • the second tank (storing the ammonia precursor) is connected in a
  • the first tank and the second tank can be separate storage tanks.
  • the first tank and the second tank can be two separate chambers of a same container.
  • the biochemical decomposition unit can be located below the storage tank of the ammonia precursor.
  • a stream (i.e. part) of the ammonia precursor can be transported towards the biochemical decomposition unit by gravity.
  • the ammonia precursor if the ammonia precursor generates water by thermal decomposition, this water is separated from the ammonia, collected and preferably prevented from being stored on the solid absorbing matrix. Separation of the water from the ammonia, and generally from the eventual other thermal decomposition products (generally gases like C0 2 ), can be made using a liquid- vapour separator unit.
  • the liquid- vapour separator unit can comprise (or be) a condenser or one or several membranes like disclosed in US patent 4758250 for instance, which is a polymeric membrane.
  • the condenser may be a specific one comprising a specific shaped tube having different parts at different temperatures (as described in example 2 below); a phase change material, or any other means for cooling and condensing the gases.
  • the condenser may be part of a device already onboard the vehicle, for instance: part of the vehicle air conditioning system.
  • the water collected may be vaporised in the exhaust gases and/or at least part of it can be stored for instance to be available for dissolving excess ammonia that would pressurize unduly the storage tank of the solid absorbing matrix (see embodiment with pressure relief valve described below).
  • the ammonia is metered using a gas line which may comprise a non return valve close to the metering point.
  • the method according to the invention uses two separate storage tanks: one for the ammonia precursor and one for the solid absorbing matrix which stores ammonia by sorption.
  • metal ammine salts preferably alkaline earth metal chlorides
  • solid storage media for ammonia.
  • the biochemical decomposition unit is equipped with a heater.
  • a heater can provide the optimum temperature for the desired activity of the enzyme or protein.
  • the heater can be configured to maintain within the biochemical decomposition unit a temperature range between 30°C and 60°C.
  • the heater is a chamber whose temperature is controlled within predetermined ranges; in case the predetermined range falls below the temperature of the environment, cooling means will also be made available within the heater.
  • the heater can either be controlled so as to rise up the temperature within the chamber or controlled so as to cool down the temperature within the chamber.
  • the heater is configured to work within at least one predetermined temperature range corresponding to the activation of the protein component when conversion is needed, and within at least another predetermined temperature range corresponding to the preservation of the protein component, so as to extend its lifetime.
  • the heater can comprise resistive heating elements.
  • These resistive heating elements may be metallic heating filaments (wires), flexible heaters, (that is to say heaters comprising one or more resistive track(s) affixed to a film or placed between two films (that is to say two substantially flat supports, the material and thickness of which are such that they are flexible)) or any other type of resistive elements that have a shape, size and flexibility suitable for being inserted into and/or wound around the components of the SCR system.
  • PTC Pressure Temperature Coefficient
  • the heater uses the dissipated heat of the engine (for instance, a flow of the liquid engine cooling system) and/or exhaust line (gases) for heating the biochemical decomposition unit.
  • this gas pressurisation unit After generating the refilling ammonia gas, it can be compressed by means of a gas pressurisation unit.
  • the function of this gas pressurisation unit is to compress the refilling ammonia gas to a suitable pressure for absorption by the solid absorbing matrix.
  • the excess of gaseous ammonia is preferably released by a safety valve and either directly returned to the ammonia precursor tank (preferred embodiment in the case of a solid ammonia precursor), or first dissolved in an adequate amount of water, for instance coming from the evaporation of the precursor solution the case being, and stored on purpose, and at a composition involving an amount of available ammonia identical to the one of the precursor solution (preferred embodiment in the case of urea precursor solutions).
  • the excess of ammonia released can merely be dissolved in water and the ammonia solution so obtained can be used later on for thermal ammonia generation and storage on the solid absorbing matrix.
  • the present invention also concerns a system for applying the SCR method as described above, said system comprising:
  • a first tank mounted on board a vehicle and storing at least one solid
  • the storage tank for the solid absorbing matrix comprises or is connected to a pressure release valve as described above.
  • the means for directing the stream of ammonia precursor solution to the biochemical decomposition unit generally comprise a pipe, a valve and eventually a pump, although if the biochemical decomposition unit is located below the storage tank of the ammonia precursor solution, the stream can merely be generated by gravity.
  • the means for separating the water from the ammonia may be a condenser and/or a membrane as set forth above.
  • the means for directing the refilling ammonia gas to the storage tank of the solid storage absorbing matrix may be a simple tube (pipe) and said refilling ammonia gas may be mixed with other gaseous decomposition product(s) like C0 2 for instance.
  • the system of the invention also comprises a pressure relief valve enabling to release pressure above a given set point in the storage tank of the solid absorbing matrix.
  • a pressure relief valve enabling to release pressure above a given set point in the storage tank of the solid absorbing matrix.
  • it also comprises means for dissolving the gases so released into a given amount of water and means for returning the so obtained solution to the storage tank of an ammonia precursor solution.
  • Figure 1 is a schematic view of a SCR system according to a particular embodiment of the present invention.
  • a liquid solution of an ammonia precursor is stored in a tank [1] and a solid absorbing matrix is stored in a tank [2].
  • the tank [1] and the tank [2] are connected together in a communicating manner via a communication line [9].
  • the communication line [9] comprises a biochemical decomposition unit [3] and a condenser [4].
  • the SCR system of the invention is designed to exclusively inject ammonia gas (NH 3 ) in the exhaust gases.
  • NH 3 ammonia gas
  • the biochemical decomposition unit [3] receives a stream (i.e. part) of the ammonia precursor.
  • the biochemical decomposition unit [3] contains an enzyme (for example, urease) that catalyzes the hydrolysis (i.e. decomposition) of the ammonia precursor to ammonia.
  • an enzyme for example, urease
  • the biochemical decomposition unit [3] generates the refilling ammonia gas for the regeneration of the solid absorbing matrix.
  • FIG 4 is a schematic view of the tank [2] according to a particular embodiment of the present invention.
  • the tank [2] comprises one cell [20].
  • the cell [20] comprises two chambers [21] and [22], each containing a solid absorbing matrix.
  • the chambers can contain similar or distinct type of solid absorbing matrix.
  • the chambers [21] and [22] are separated by a gas flow channel [23].
  • the ammonia gas released from the solid absorbing matrices (contained in the chambers [21] and [22]) and (eventually) the refilling ammonia gas (generated by the biochemical decomposition unit) can flow through the channel [23] towards the condenser [4].
  • the cell [20] can comprise one or more than two chamber(s).
  • the tank [2] can comprise a plurality of cells connected in series and/or in parallel.
  • FIG. 5 is a schematic view of the tank [2] according to another particular embodiment of the present invention.
  • the tank [2] comprises three cells (A, B, C) containing, for example, solid materials showing different ammonia sorption properties.
  • the tank [2] is based on a two-stage unit.
  • the first stage comprises the cells A and B, and the second stage comprises the cell C.
  • the cells A and B are filled with magnesium chloride and the cell C is filled with calcium chloride or barium chloride.
  • One magnesium chloride- filled cell for example, cell A
  • the second one for example, cell B
  • ammonia gas which is further absorbed in the cell C.
  • the roles of cells A and B are reversed.
  • This two-stage unit combines the enhanced absorption properties of one matrix material (for example, magnesium chloride) for ammonia capture, and the advantage of the desorption properties of a second matrix material (for example, calcium chloride or barium chloride) to make ammonia readily available for the selective catalytic reduction (i.e. purification of the exhaust gases).
  • one matrix material for example, magnesium chloride
  • a second matrix material for example, calcium chloride or barium chloride
  • the tank [2] is connected to the exhaust pipe [5] via an injection line [10] configured to transport exclusively ammonia gas.
  • ammonia gas (NH 3 ) released from the solid absorbing matrix flows through the injection line [10] and is metered in the exhaust pipe [5].
  • no liquid solution is injected in the exhaust pipe [5].
  • the liquid solution is exclusively transported to the biochemical decomposition unit [3], where it is chemically decomposed to generate the refilling ammonia gas for the solid absorbing matrix stored in tank [2].
  • the liquid solution stored in tank [1] is preferably a 32.5% urea solution commercially available under the brand name Adblue ® , but other soluble ammonia compounds (like ammonium carbamate or guanidinium formate) are also suitable.
  • a stream (i.e. part) of the solution enters inside the biochemical decomposition unit [3], where water evaporation and urea decomposition occur.
  • the water is further separated in the condenser [4], and the remaining gaseous flow (i.e. the refilling ammonia gas) goes through the tank [2] where ammonia is trapped on the solid absorbing matrix.
  • a stream (i.e. part) or all of the refilling ammonia gas can flow through the injection line [10] and can be metered in the exhaust pipe [5].
  • the stream or all of the refilling ammonia gas can flow through the solid absorbing matrix, i.e. the stream or all of the refilling ammonia gas is not trapped on the solid absorbing matrix.
  • the biochemical decomposition unit [3] is equipped with a heater [31].
  • the heater [31] can provide inside the biochemical decomposition unit [3] the optimum temperature for the desired activity of the enzyme.
  • the heat source of the heater [31] can be derived from a hot part of the vehicle, and is preferably a section of the exhaust line.
  • the heater can also be electrical.
  • the temperature range is 30°C - 60°C.
  • the refilling ammonia gas generated by the biochemical decomposition unit can be compressed to a suitable pressure before absorption by the solid absorbing matrix.
  • a gas pressurisation unit (not shown) can be mounted between the biochemical decomposition unit [3] and the condenser [4].
  • the gas pressurisation unit can comprise a pump.
  • the gas pressurisation unit can comprise a piston system.
  • the gas pressurisation unit can comprise a controllable valve system.
  • any material showing ammonia sorption properties is convenient; however, a matrix containing alkaline earth metal chloride is particularly adapted.
  • the excess of carbon dioxide is either trapped in the condensed water or released in the exhaust pipe [5], when the pressure inside the tank [2] reaches a pre-set level.
  • ammonia is desorbed from the solid which is stored in the tank [2], and carried to the exhaust line [5], upstream of the SCR catalyst.
  • the condensed water can be further vaporized in the exhaust line of the vehicle.
  • an ammonia adsorption loop can also be used, for example in the form of a convection system with a carrier gas used for ammonia depletion of the biochemical decomposition unit [3], and transfer of the ammonia gas to the solid absorbing matrix. After absorption, the ammonia-free carrier gas is available to be enriched with ammonia by flowing again through the decomposition unit [3].
  • FIG. 1 illustrates the case in which the condenser [4] is made of a shaped tube.
  • the tank [1] is filled with a urea solution.
  • the gas flow resulting from the water evaporation and the urea decomposition goes through the inlet part [4a] of the condenser.
  • Water vapors are condensed in part [4b] of the device, having a temperature lower than part [4a]. Liquid water is further collected in part [4c], and is removed by opening the valve [6].
  • Ammonia vapor goes to tank [2] through the outlet of the part [4b] of the condenser.
  • the condenser of example 1 is removed and the water/gas separation is made effective by using a membrane or a series of membranes at the outlet of the biochemical decomposition unit [3].
  • tank [1] is filled with a solid state ammonia precursor, for example: urea or ammonium carbamate, in the form of powder, pellets or flakes.
  • a stream (part) of the solid is drawn to the biochemical decomposition unit [3] where ammonia is generated, and further trapped in a solid material in the tank [2].
  • No separator device water condenser, for example
  • Example 5 is needed in this example.
  • line [7] does not return ammonia directly to tank [1] but instead, it conveys it first to a chamber/tank where it is dissolved in an appropriate amount of water so as to reach the right composition (preferably having the same amount of available ammonia as the solution in tank [1] and the urea solution so obtained is then sent to tank [1].

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Zoology (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Fuel Cell (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Method and system for purifying the exhaust gases of a combustion engine SCR method for purifying the exhaust gases of an internal combustion engine of a vehicle, according to which ammonia gas is exclusively metered in the exhaust gases, the method comprising a step of releasing ammonia gas from at least one solid absorbing matrix where it is stored by sorption and a step of metering the released ammonia gas in the exhaust gases. The method is such that it comprises a step of regenerating the solid absorbing matrix that consists in: -generating a refilling ammonia gas by chemically decomposing a ammonia precursor in a biochemical decomposition unit (3) mounted on board the vehicle and storing at least one protein component adapted to decompose said ammonia precursor; -directing the refilling ammonia gas to the solid absorbing matrix where it is stored thereon.

Description

Method and system for purifying the exhaust gases of a combustion engine
The present application relates to a method and a system for purifying the exhaust gases of a combustion engine by injecting exclusively ammonia gas, and more particularly ammonia gas that is released from one or several solid absorbing matrices where it is stored by sorption.
Legislation on vehicle and truck emissions stipulates, amongst other things, a reduction in the release of nitrogen oxides NOx into the atmosphere. One known way to achieve this objective is to use the SCR (Selective Catalytic Reduction) process which enables the reduction of nitrogen oxides by injection of a reducing agent, generally ammonia, into the exhaust line. This ammonia may be obtained by using different techniques. One known technique is based on the use of a solid absorbing matrix where the ammonia is trapped by sorption. Generally, the solid absorbing matrix is stored in a container (or tank) (called hereafter matrix storage container) mounted on the vehicle. According to this known technique, the ammonia is released by heating the solid absorbing matrix, and then the released ammonia is injected into the exhaust line.
This known technique offers high performance since it allows to send pure NH3 in the exhaust gases of the vehicle.
However, the main disadvantage of this known technique is the complexity of the refilling procedure (i.e. the solid absorbing matrix regeneration). Indeed, the actual refilling procedure consists of connecting the matrix storage container to an external ammonia source, typically a highly pressurized cylinder. In this procedure, the matrix storage container has to be dismounted from the vehicle for ammonia loading. Moreover, sending a high pressure of ammonia in the solid matrix results in a huge heat generation due to exothermal sorption reaction (tens of thousands J/mol NH3, as a likely order of magnitude), hence the need of a cooling unit as heat sink. High temperature can damage parts of the system and induce long regeneration time.
In view of the above-mentioned disadvantage, there exists a need for an improved method for the regeneration of the solid absorbing matrix.
An object of the present invention is to solve this above-mentioned problem by proposing an SCR method for_purifying the exhaust gases of an internal combustion engine of a vehicle, according to which ammonia gas is exclusively metered in the exhaust gases, the method comprising a step of releasing ammonia gas from at least one solid absorbing matrix where it is stored by sorption and a step of metering the released ammonia gas in the exhaust gases. According to one aspect of the present invention, the method comprises a step of regenerating the solid absorbing matrix that consists in:
- generating a refilling ammonia gas by chemically decomposing a ammonia precursor in a biochemical decomposition unit mounted on board the vehicle and storing at least one protein component adapted to decompose said ammonia precursor;
- directing the refilling ammonia gas to the solid absorbing matrix where it is stored thereon.
Thus, it is proposed an in situ regeneration procedure. In other words, the regeneration of the solid absorbing matrix takes place on board the vehicle. More precisely, the regeneration procedure according to the invention is based on the decomposition of an ammonia precursor. Such decomposition is obtained by using a biochemical decomposition unit mounted on board the vehicle. The biochemical decomposition unit according to the invention stores one or several protein component(s) that catalyze a chemical reaction. More precisely, the protein component(s) is(are) adapted to catalyze the hydrolysis (i.e.
decomposition) of the ammonia precursor to ammonia. This decomposition results in the generation of a refilling ammonia gas. The refilling ammonia gas is then directed (i.e. transmitted) to the solid absorbing matrix where it is stored thereon. According to the invention, no external ammonia source is used and no disassembly manual operations are needed for the regeneration of the solid absorbing matrix(ces). Thus, the regeneration procedure according to the invention is simple, faster and safer.
In a preferred embodiment, a predetermined amount of ammonia precursor is stored on board the vehicle. For example, during vehicle (engine) operation, it is calculated a desired amount of ammonia precursor to be injected into the biochemical decomposition unit. Such calculation can be made as a function of information relative to the amount of ammonia gas that has been injected into the exhaust line. In a particular embodiment, such information may derive from data provided by a temperature sensor, a pressure sensor or a flow meter, or any combination of these sensors. In another particular embodiment, such
information may derive from data provided by a device configured to measure the concentration of ammonia stored in the solid absorbing matrix. In another particular embodiment, this information may be derived from an estimation of the consumption of ammonia.
Advantageously, the protein component (stored in the biochemical decomposition unit) comprises at least one enzyme. In particular, thermophile- type enzymes are well suited. In a preferred embodiment, the biochemical decomposition unit can store urease. Urease can be stored in any suitable manner. For example, in a first embodiment urease can be immobilized in different layers of resin. In a second embodiment urease can be fixed on membranes.
The SCR method according to the present invention is aiming at injecting exclusively ammonia gas in the exhaust gases. In other words, no ammonia precursor is injected in the exhaust gases.
In a particular embodiment, the ammonia precursor is an aqueous urea solution.
The terms "urea solution" are understood to mean any, generally aqueous, solution containing urea. The invention gives good results with eutectic water/urea solutions for which there is a quality standard: for example, according to the standard ISO 22241, in the case of the AdBlue® solution (commercial solution of urea), the urea content is between 31.8 % and 33.2 % (by weight) (i.e. 32.5 +/- 0.7 wt%) hence an available amount of ammonia between 18.0 % and 18.8 %. The invention may also be applied to the urea/ammonium formate mixtures, also in aqueous solution, sold under the trade name Denoxium™ and of which one of the compositions (Denoxium-30) contains an equivalent amount of ammonia to that of the AdBlue® solution. The latter have the advantage of only freezing from -30°C onwards (as opposed to -11°C), but have the disadvantages of corrosion problems linked to the possible release of formic acid. The invention can also apply to guanidinium formate. The present invention is particularly advantageous in the context of eutectic water/urea solutions, which are widely available in gas stations.
According to the invention, no urea solution is injected in the exhaust gases. There is no line (or conduit) for transporting the urea solution up to the exhaust line and there is no metering device for injecting the urea solution in the exhaust gases. According to the invention, the urea solution is exclusively transported to the biochemical decomposition unit, where it enters into a chemical reaction with the enzyme so as to generate the refilling ammonia gas. In a particular embodiment, the urea solution can be partially stored in a chamber located within the biochemical decomposition unit, before it is chemically decomposed.
In another particular embodiment, the solid absorbing matrix is stored in a first tank and the ammonia precursor is stored in a second tank. Advantageously, the second tank (storing the ammonia precursor) is connected in a
communicating manner to said biochemical decomposition unit, and said biochemical decomposition unit is connected in a communicating manner to the first tank (storing the solid absorbing matrix). In a first embodiment, the first tank and the second tank can be separate storage tanks. In a second embodiment, the first tank and the second tank can be two separate chambers of a same container.
It should be noted that it exists well known refilling standards and systems for ammonia precursor, in particular for the AdBlue® solution (commercial solution of urea). The refilling of the storage tank of the ammonia precursor is trivial. For example, this can be achieved by using available standard-designed nozzle and/or bottles with dedicated interfaces.
In a particular embodiment, the biochemical decomposition unit can be located below the storage tank of the ammonia precursor. In this particular embodiment, a stream (i.e. part) of the ammonia precursor can be transported towards the biochemical decomposition unit by gravity.
According to the invention, if the ammonia precursor generates water by thermal decomposition, this water is separated from the ammonia, collected and preferably prevented from being stored on the solid absorbing matrix. Separation of the water from the ammonia, and generally from the eventual other thermal decomposition products (generally gases like C02), can be made using a liquid- vapour separator unit. For example, the liquid- vapour separator unit can comprise (or be) a condenser or one or several membranes like disclosed in US patent 4758250 for instance, which is a polymeric membrane. The condenser may be a specific one comprising a specific shaped tube having different parts at different temperatures (as described in example 2 below); a phase change material, or any other means for cooling and condensing the gases. Alternatively, the condenser may be part of a device already onboard the vehicle, for instance: part of the vehicle air conditioning system.
The water collected may be vaporised in the exhaust gases and/or at least part of it can be stored for instance to be available for dissolving excess ammonia that would pressurize unduly the storage tank of the solid absorbing matrix (see embodiment with pressure relief valve described below).
The ammonia is metered using a gas line which may comprise a non return valve close to the metering point.
The method according to the invention uses two separate storage tanks: one for the ammonia precursor and one for the solid absorbing matrix which stores ammonia by sorption. As described in patent application WO 2006/012903, metal ammine salts (preferably alkaline earth metal chlorides) can be used as solid storage media for ammonia.
Advantageously, the biochemical decomposition unit is equipped with a heater. Such heater can provide the optimum temperature for the desired activity of the enzyme or protein. For example, the heater can be configured to maintain within the biochemical decomposition unit a temperature range between 30°C and 60°C.
More generally, the heater is a chamber whose temperature is controlled within predetermined ranges; in case the predetermined range falls below the temperature of the environment, cooling means will also be made available within the heater. In other words, the heater can either be controlled so as to rise up the temperature within the chamber or controlled so as to cool down the temperature within the chamber.
In a particular embodiment, the heater is configured to work within at least one predetermined temperature range corresponding to the activation of the protein component when conversion is needed, and within at least another predetermined temperature range corresponding to the preservation of the protein component, so as to extend its lifetime.
In a particular embodiment of the invention, the heater can comprise resistive heating elements. These resistive heating elements may be metallic heating filaments (wires), flexible heaters, (that is to say heaters comprising one or more resistive track(s) affixed to a film or placed between two films (that is to say two substantially flat supports, the material and thickness of which are such that they are flexible)) or any other type of resistive elements that have a shape, size and flexibility suitable for being inserted into and/or wound around the components of the SCR system. PTC (Positive Temperature Coefficient) elements are more particularly suitable for heating.
In another particular embodiment of the invention, the heater uses the dissipated heat of the engine (for instance, a flow of the liquid engine cooling system) and/or exhaust line (gases) for heating the biochemical decomposition unit.
According to the invention, after generating the refilling ammonia gas, it can be compressed by means of a gas pressurisation unit. The function of this gas pressurisation unit is to compress the refilling ammonia gas to a suitable pressure for absorption by the solid absorbing matrix.
When heating the solid absorbing matrix to release ammonia, it can be that too high ammonia pressure build up occurs inside the system, due to thermal inertia or to a potential failure of the heating power regulation. In order to release the pressure above a given set-point, the excess of gaseous ammonia is preferably released by a safety valve and either directly returned to the ammonia precursor tank (preferred embodiment in the case of a solid ammonia precursor), or first dissolved in an adequate amount of water, for instance coming from the evaporation of the precursor solution the case being, and stored on purpose, and at a composition involving an amount of available ammonia identical to the one of the precursor solution (preferred embodiment in the case of urea precursor solutions). In another preferred embodiment, the excess of ammonia released can merely be dissolved in water and the ammonia solution so obtained can be used later on for thermal ammonia generation and storage on the solid absorbing matrix.
The present invention also concerns a system for applying the SCR method as described above, said system comprising:
- a first tank mounted on board a vehicle and storing at least one solid
absorbing matrix where ammonia is stored by sorption, - means for metering ammonia gas released from the solid absorbing matrix, in the exhaust gases,
- means for directing a stream of ammonia precursor solution to a biochemical decomposition unit mounted on board the vehicle and storing at least one protein component adapted to decompose said stream to generate a refilling ammonia gas
- means for directing the refilling ammonia gas to the solid absorbing matrix stored in the first tank.
Preferably, the storage tank for the solid absorbing matrix comprises or is connected to a pressure release valve as described above. The means for directing the stream of ammonia precursor solution to the biochemical decomposition unit generally comprise a pipe, a valve and eventually a pump, although if the biochemical decomposition unit is located below the storage tank of the ammonia precursor solution, the stream can merely be generated by gravity.
The means for separating the water from the ammonia may be a condenser and/or a membrane as set forth above.
The means for directing the refilling ammonia gas to the storage tank of the solid storage absorbing matrix may be a simple tube (pipe) and said refilling ammonia gas may be mixed with other gaseous decomposition product(s) like C02 for instance.
In one embodiment, the system of the invention also comprises a pressure relief valve enabling to release pressure above a given set point in the storage tank of the solid absorbing matrix. Preferably, it also comprises means for dissolving the gases so released into a given amount of water and means for returning the so obtained solution to the storage tank of an ammonia precursor solution.
The present invention is illustrated in a non limitative way by the examples below relying on figures 1 to 5 attached. In these figures, identical or similar devices bear identical reference numbers.
Example 1
Figure 1 is a schematic view of a SCR system according to a particular embodiment of the present invention.
As illustrated in Figure 1, a liquid solution of an ammonia precursor is stored in a tank [1] and a solid absorbing matrix is stored in a tank [2]. The tank [1] and the tank [2] are connected together in a communicating manner via a communication line [9]. The communication line [9] comprises a biochemical decomposition unit [3] and a condenser [4].
The SCR system of the invention is designed to exclusively inject ammonia gas (NH3) in the exhaust gases. Thus, the SCR system of the invention is simple and efficient, since only pure NH3 is sent in the exhaust gases (no liquid solution or solid compound is injected in the exhaust gases).
According to one aspect of the invention, the biochemical decomposition unit [3] receives a stream (i.e. part) of the ammonia precursor. The biochemical decomposition unit [3] contains an enzyme (for example, urease) that catalyzes the hydrolysis (i.e. decomposition) of the ammonia precursor to ammonia. Thus, the biochemical decomposition unit [3] generates the refilling ammonia gas for the regeneration of the solid absorbing matrix.
Figure 4 is a schematic view of the tank [2] according to a particular embodiment of the present invention. As illustrated in this example, the tank [2] comprises one cell [20]. The cell [20] comprises two chambers [21] and [22], each containing a solid absorbing matrix. The chambers can contain similar or distinct type of solid absorbing matrix. The chambers [21] and [22] are separated by a gas flow channel [23]. The ammonia gas released from the solid absorbing matrices (contained in the chambers [21] and [22]) and (eventually) the refilling ammonia gas (generated by the biochemical decomposition unit) can flow through the channel [23] towards the condenser [4]. Of course, in another embodiment the cell [20] can comprise one or more than two chamber(s).
According to another particular embodiment of the present invention, the tank [2] can comprise a plurality of cells connected in series and/or in parallel.
Figure 5 is a schematic view of the tank [2] according to another particular embodiment of the present invention. As illustrated in this example, the tank [2] comprises three cells (A, B, C) containing, for example, solid materials showing different ammonia sorption properties. The tank [2] is based on a two-stage unit. The first stage comprises the cells A and B, and the second stage comprises the cell C. For example, the cells A and B are filled with magnesium chloride and the cell C is filled with calcium chloride or barium chloride. One magnesium chloride- filled cell (for example, cell A) is used for the absorption of ammonia generated by the biochemical decomposition unit [3] while the second one (for example, cell B), previously saturated with ammonia (coming from the biochemical decomposition unit [3]), is used to provide ammonia gas which is further absorbed in the cell C. When the cell A is ammonia saturated and the cell B is empty, the roles of cells A and B are reversed. This two-stage unit combines the enhanced absorption properties of one matrix material (for example, magnesium chloride) for ammonia capture, and the advantage of the desorption properties of a second matrix material (for example, calcium chloride or barium chloride) to make ammonia readily available for the selective catalytic reduction (i.e. purification of the exhaust gases).
As illustrated in figure 1, the tank [2] is connected to the exhaust pipe [5] via an injection line [10] configured to transport exclusively ammonia gas. According to one aspect of the invention, ammonia gas (NH3) released from the solid absorbing matrix flows through the injection line [10] and is metered in the exhaust pipe [5].
According to another aspect of the invention, no liquid solution is injected in the exhaust pipe [5]. As illustrated in figure 1, there is no line (or pipe) for transporting the liquid solution stored in tank [1] up to the exhaust pipe [5]. The liquid solution is exclusively transported to the biochemical decomposition unit [3], where it is chemically decomposed to generate the refilling ammonia gas for the solid absorbing matrix stored in tank [2].
The liquid solution stored in tank [1] is preferably a 32.5% urea solution commercially available under the brand name Adblue®, but other soluble ammonia compounds (like ammonium carbamate or guanidinium formate) are also suitable. A stream (i.e. part) of the solution enters inside the biochemical decomposition unit [3], where water evaporation and urea decomposition occur. The water is further separated in the condenser [4], and the remaining gaseous flow (i.e. the refilling ammonia gas) goes through the tank [2] where ammonia is trapped on the solid absorbing matrix.
In a particular embodiment, for example when the solid absorbing matrix is saturated with ammonia, a stream (i.e. part) or all of the refilling ammonia gas can flow through the injection line [10] and can be metered in the exhaust pipe [5]. In this particular embodiment, the stream or all of the refilling ammonia gas can flow through the solid absorbing matrix, i.e. the stream or all of the refilling ammonia gas is not trapped on the solid absorbing matrix.
As illustrated in figure 1, the biochemical decomposition unit [3] is equipped with a heater [31]. The heater [31] can provide inside the biochemical decomposition unit [3] the optimum temperature for the desired activity of the enzyme. For example, the heat source of the heater [31] can be derived from a hot part of the vehicle, and is preferably a section of the exhaust line.
Alternatively, the heater can also be electrical. For example, the temperature range is 30°C - 60°C.
In a particular embodiment, the refilling ammonia gas generated by the biochemical decomposition unit can be compressed to a suitable pressure before absorption by the solid absorbing matrix. To this aim, a gas pressurisation unit (not shown) can be mounted between the biochemical decomposition unit [3] and the condenser [4]. In a particular embodiment, the gas pressurisation unit can comprise a pump. In another embodiment, the gas pressurisation unit can comprise a piston system. In yet another embodiment, the gas pressurisation unit can comprise a controllable valve system.
As regards the content of the tank [2], any material showing ammonia sorption properties is convenient; however, a matrix containing alkaline earth metal chloride is particularly adapted. The excess of carbon dioxide is either trapped in the condensed water or released in the exhaust pipe [5], when the pressure inside the tank [2] reaches a pre-set level. In vehicle operation, ammonia is desorbed from the solid which is stored in the tank [2], and carried to the exhaust line [5], upstream of the SCR catalyst. The condensed water can be further vaporized in the exhaust line of the vehicle.
In a particular embodiment, an ammonia adsorption loop can also be used, for example in the form of a convection system with a carrier gas used for ammonia depletion of the biochemical decomposition unit [3], and transfer of the ammonia gas to the solid absorbing matrix. After absorption, the ammonia-free carrier gas is available to be enriched with ammonia by flowing again through the decomposition unit [3].
Example 2
This example, relying on Figure 2 attached, illustrates the case in which the condenser [4] is made of a shaped tube. The tank [1] is filled with a urea solution. The gas flow resulting from the water evaporation and the urea decomposition goes through the inlet part [4a] of the condenser. Water vapors are condensed in part [4b] of the device, having a temperature lower than part [4a]. Liquid water is further collected in part [4c], and is removed by opening the valve [6]. Ammonia vapor goes to tank [2] through the outlet of the part [4b] of the condenser.
Example 3
In this example, the condenser of example 1 is removed and the water/gas separation is made effective by using a membrane or a series of membranes at the outlet of the biochemical decomposition unit [3].
Example 4
In this case, tank [1] is filled with a solid state ammonia precursor, for example: urea or ammonium carbamate, in the form of powder, pellets or flakes. A stream (part) of the solid is drawn to the biochemical decomposition unit [3] where ammonia is generated, and further trapped in a solid material in the tank [2]. No separator device (water condenser, for example) is needed in this example. Example 5
In this example, relying on Figure 3, a pressure safety function of tank [2] is described in this example. When pressure build up inside the tank [2] is higher than a set value, the pressure valve [8] is open, and the ammonia gas flows to the tank [1], through the line [7]. Ammonia is further dissolved in the solution which is stored in the tank [1].
In a preferred embodiment, which is not illustrated in Figure 3, line [7] does not return ammonia directly to tank [1] but instead, it conveys it first to a chamber/tank where it is dissolved in an appropriate amount of water so as to reach the right composition (preferably having the same amount of available ammonia as the solution in tank [1] and the urea solution so obtained is then sent to tank [1].
This can be done for instance by storing a given amount of water in the chamber, by deducing the amount of ammonia released from the pressure difference since the beginning of the pressure release and by returning the solution to the tank when the right ammonia concentration is reached.

Claims

C L A I M S
1. - SCR or Selective Catalytic Reduction method for purifying the exhaust gases of an internal combustion engine of a vehicle, according to which ammonia gas is exclusively metered in the exhaust gases, the method comprising a step of releasing ammonia gas from at least one solid absorbing matrix where it is stored by sorption and a step of metering the released ammonia gas in the exhaust gases, wherein the method comprises a step of regenerating the solid absorbing matrix that consists in:
- generating a refilling ammonia gas by chemically decomposing a ammonia precursor in a biochemical decomposition unit (3) mounted on board the vehicle and storing at least one protein component adapted to decompose said ammonia precursor;
- directing the refilling ammonia gas to the solid absorbing matrix where it is stored thereon.
2. - SCR method according to claim 1, wherein said protein component comprises at least one enzyme.
3. - SCR method according to claim 2, wherein said enzyme is urease.
4. - SCR method according to any one of claims 1 to 3, wherein said biochemical decomposition unit is equipped with a heater.
5. - SCR method according to any one of claims 1 to 4, wherein it comprises a step of separating water from the refilling ammonia gas by means of a liquid- vapour separator unit.
6. - SCR method according to any one of claims 1 to 5, wherein it comprises a step of compressing the refilling ammonia gas by means of a gas pressurisation unit, the step of compressing being performed before the step of directing the refilling ammonia gas to the solid absorbing matrix.
7. - SCR method according to the any one of claims 1 to 6, wherein a stream of the refilling ammonia gas is metered in the exhaust gases.
8. - SCR method according to any one of claims 1 to 7, wherein the solid absorbing matrix is stored in a first tank (2) and the ammonia precursor is stored in a second tank (1), and wherein the second tank (1) is connected in a communicating manner to said biochemical decomposition unit (3), and said biochemical decomposition unit (3) is connected in a communicating manner to the first tank (2).
9. - SCR method according to any one of claims 1 to 8, wherein the solid absorbing matrix comprises a plurality of cells containing material(s) adapted to store ammonia by sorption.
10. - SCR method according to any one of claims 1 to 9, wherein the ammonia precursor is a solid compound.
11. - SCR method according to any one of claims 1 to 9, wherein the ammonia precursor is an aqueous urea solution.
12. - SCR method according to any one of claims 1 to 11, wherein the first tank in which the solid absorbing matrix is stored is connected to a safety valve configured to release the excess of gaseous ammonia in order to release the pressure above a given set-point.
13. - System for applying an SCR method according to any one of the preceding claims, said system comprising: - a first tank mounted on board a vehicle and storing at least one solid
absorbing matrix where ammonia is stored by sorption,
- means for metering ammonia gas released from the solid absorbing matrix, in the exhaust gases,
- means for directing a stream of ammonia precursor solution to a biochemical decomposition unit mounted on board the vehicle and storing at least one protein component adapted to decompose said stream to generate a refilling ammonia gas
- means for directing the refilling ammonia gas to the solid absorbing matrix stored in the first tank.
14. - System according to the preceding claim, wherein said protein component comprises at least one enzyme.
15. - System according to the preceding claim, wherein said enzyme is urease.
PCT/EP2013/076942 2012-12-21 2013-12-17 Method and system for purifying the exhaust gases of a combustion engine WO2014095894A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13805924.1A EP2941550A1 (en) 2012-12-21 2013-12-17 Method and system for purifying the exhaust gases of a combustion engine
US14/654,156 US20150345355A1 (en) 2012-12-21 2013-12-17 Method and system for purifying the exhaust gases of a combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12199278.8A EP2746548B1 (en) 2012-12-21 2012-12-21 Method and system for purifying the exhaust gases of a combustion engine.
EP12199278.8 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014095894A1 true WO2014095894A1 (en) 2014-06-26

Family

ID=47678520

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2013/076942 WO2014095894A1 (en) 2012-12-21 2013-12-17 Method and system for purifying the exhaust gases of a combustion engine
PCT/EP2013/077851 WO2014096426A1 (en) 2012-12-21 2013-12-20 Method and system for generating power on board a vehicle

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/077851 WO2014096426A1 (en) 2012-12-21 2013-12-20 Method and system for generating power on board a vehicle

Country Status (5)

Country Link
US (2) US20150345355A1 (en)
EP (3) EP2746548B1 (en)
JP (1) JP2016503947A (en)
CN (1) CN105209728B (en)
WO (2) WO2014095894A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165732A1 (en) 2015-11-09 2017-05-10 Plastic Omnium Advanced Innovation and Research A method for activating/deactivating a biological catalyst used in a conversion system on board a vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2881558B1 (en) 2013-12-05 2016-09-14 Inergy Automotive Systems Research (Société Anonyme) Method and system for purifying the exhaust gases of a combustion engine
EP3026251A1 (en) * 2014-11-27 2016-06-01 Inergy Automotive Systems Research (Société Anonyme) Assembly with improved system for attaching a component to a container
EP3150813A1 (en) 2015-09-30 2017-04-05 Plastic Omnium Advanced Innovation and Research Feed line system for a vehicle system
WO2018055174A1 (en) 2016-09-26 2018-03-29 Plastic Omnium Advanced Innovation And Research Vehicle system and method for generating ammonia in batches
DK181016B1 (en) * 2021-05-26 2022-09-26 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland A large two-stroke uniflow scavenged turbocharged internal combustion engine with ammonia absorption system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273509A (en) * 2004-03-24 2005-10-06 Mitsubishi Fuso Truck & Bus Corp NOx REMOVAL EQUIPMENT AND NOx REMOVING METHOD
DE102008042735A1 (en) * 2008-10-10 2010-04-15 Robert Bosch Gmbh Ammonia storage and delivery system useful in internal combustion engine of motor vehicle by introducing ammonia into vehicle exhaust gas tract for selective catalytic reaction of exhaust gas, comprises container, and water reception units

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340702A (en) * 1986-08-01 1988-02-22 Nippon Oil Co Ltd Production of hydrogen for fuel cell
US4758250A (en) 1987-06-01 1988-07-19 Air Products And Chemicals, Inc. Ammonia separation using ion exchange polymeric membranes and sorbents
DE4425420A1 (en) * 1994-07-19 1995-07-27 Daimler Benz Ag Denitrification of engine exhaust gas with ammonia generated as required
US6077491A (en) * 1997-03-21 2000-06-20 Ec&C Technologies Methods for the production of ammonia from urea and/or biuret, and uses for NOx and/or particulate matter removal
WO2003029138A1 (en) * 2001-10-01 2003-04-10 Gama-Greenol Research & Development Ltd. Method and device for providing at least one fuel, in particular, for motor vehicle engines
DE10154421A1 (en) * 2001-11-06 2003-05-22 Bosch Gmbh Robert Method and device for reducing nitrogen oxides in an exhaust gas
US7140187B2 (en) * 2002-04-15 2006-11-28 Amendola Steven C Urea based composition and system for same
DE10251472A1 (en) * 2002-11-06 2004-05-19 Robert Bosch Gmbh Reduction of automotive nitrous oxide emissions during cold start comprises supplementary injection of ammonia from holding reservoir
CN1976874A (en) * 2004-05-05 2007-06-06 罗伯特·K·格劳普讷 Guanidine based composition and system for same
JP2006049040A (en) * 2004-08-03 2006-02-16 Ebara Ballard Corp Fuel cell power generation system
EP1778586B1 (en) 2004-08-03 2017-04-05 Amminex Emissions Technology A/S A solid ammonia storage and delivery material
CN101128394B (en) * 2005-02-03 2012-07-18 氨合物公司 High density storage of ammonia
US8015801B2 (en) * 2006-09-18 2011-09-13 Ford Global Technologies, Llc Management of a plurality of reductants for selective catalytic reduction
DE102006061370A1 (en) * 2006-12-22 2008-06-26 Amminex A/S Storing and supplying ammonia comprises using two storage materials, where one has a higher vapor pressure than the other and serves as an ammonia source for the other when it becomes depleted
ATE489158T1 (en) * 2007-03-30 2010-12-15 Amminex As SYSTEM FOR STORING AMMONIA IN AND FOR DISCHARGING IT FROM A STORAGE MATERIAL AND METHOD FOR STORING AND DISCHARGING AMMONIA
CA2654823C (en) * 2008-02-19 2016-06-21 University Of Ontario Institute Of Technology Methods and apparatus for using ammonia as sustainable fuel, refrigerant and nox reduction agent
JP5211357B2 (en) * 2008-03-10 2013-06-12 国立大学法人広島大学 Hydrogen storage station, hydrogen supply station and composite cartridge
JP2010127374A (en) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd Hydrogen storage system
TW201103090A (en) * 2009-07-01 2011-01-16 Univ Nat Chiao Tung Method for manufacturing a self-aligned thin film transistor and a structure of the same
NL2003429C2 (en) * 2009-09-02 2011-03-03 Dhv B V Method for the production of electrical energy from ammonium.
US8562929B2 (en) * 2010-04-02 2013-10-22 Ohio University Selective catalytic reduction via electrolysis of urea
DE102010032075A1 (en) * 2010-07-23 2012-01-26 Eads Deutschland Gmbh Hydrogen production by means of hydrogenated polysilanes for the operation of fuel cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273509A (en) * 2004-03-24 2005-10-06 Mitsubishi Fuso Truck & Bus Corp NOx REMOVAL EQUIPMENT AND NOx REMOVING METHOD
DE102008042735A1 (en) * 2008-10-10 2010-04-15 Robert Bosch Gmbh Ammonia storage and delivery system useful in internal combustion engine of motor vehicle by introducing ammonia into vehicle exhaust gas tract for selective catalytic reaction of exhaust gas, comprises container, and water reception units

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2941550A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165732A1 (en) 2015-11-09 2017-05-10 Plastic Omnium Advanced Innovation and Research A method for activating/deactivating a biological catalyst used in a conversion system on board a vehicle

Also Published As

Publication number Publication date
US20150345429A1 (en) 2015-12-03
JP2016503947A (en) 2016-02-08
CN105209728A (en) 2015-12-30
EP2941551A1 (en) 2015-11-11
EP2746548A1 (en) 2014-06-25
EP2941550A1 (en) 2015-11-11
US20150345355A1 (en) 2015-12-03
CN105209728B (en) 2018-10-30
EP2941551B1 (en) 2018-04-25
WO2014096426A1 (en) 2014-06-26
EP2746548B1 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
US9393523B2 (en) Method and system for purifying the exhaust gases of a combustion engine
EP2746548B1 (en) Method and system for purifying the exhaust gases of a combustion engine.
US6387336B2 (en) Method and device for selective catalytic NOx reduction
US10695719B2 (en) Producing ammonium carbamate and reducing nitrogen oxides
WO2007000170A1 (en) Method and device for safe and controlled delivery of ammonia from a solid ammonia storage medium
EP2846011A1 (en) Method and system for purifying the exhaust gases of a combustion engine
US20100062296A1 (en) Method and device for ammonia storage and delivery using in situ re-saturation of a delivery unit
EP2784282B1 (en) A tank for selective catalytic reduction purification of the exhaust gases of a combustion engine of a vehicle
JP2005507985A (en) Method and apparatus for reducing nitrogen oxides in exhaust gas
US9400064B2 (en) Method and device for ammonia storage and delivery using in-situ re-saturation of a delivery unit
EP2927451B1 (en) Supply system for use in a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13805924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14654156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013805924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013805924

Country of ref document: EP