WO2014090670A1 - A method of forming a cured mineral fibre product - Google Patents

A method of forming a cured mineral fibre product Download PDF

Info

Publication number
WO2014090670A1
WO2014090670A1 PCT/EP2013/075607 EP2013075607W WO2014090670A1 WO 2014090670 A1 WO2014090670 A1 WO 2014090670A1 EP 2013075607 W EP2013075607 W EP 2013075607W WO 2014090670 A1 WO2014090670 A1 WO 2014090670A1
Authority
WO
WIPO (PCT)
Prior art keywords
web
base layer
top layer
cured
mineral
Prior art date
Application number
PCT/EP2013/075607
Other languages
French (fr)
Inventor
Dag NIELSEN
Gorm Rosenberg
Original Assignee
Rockwool International A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwool International A/S filed Critical Rockwool International A/S
Priority to RS20170021A priority Critical patent/RS55583B1/en
Priority to SI201330472A priority patent/SI2931955T1/en
Priority to CA2894501A priority patent/CA2894501C/en
Priority to US14/648,774 priority patent/US9889639B2/en
Priority to CN201380064952.3A priority patent/CN105051278A/en
Priority to EP13799568.4A priority patent/EP2931955B1/en
Priority to EA201591101A priority patent/EA031337B1/en
Priority to LTEP13799568.4T priority patent/LT2931955T/en
Publication of WO2014090670A1 publication Critical patent/WO2014090670A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • D04H1/4226Glass fibres characterised by the apparatus for manufacturing the glass fleece

Definitions

  • the present invention relates to a method of forming a cured mineral fibre product. From e.g. WO 95/20708 and WO 2008/155401 it is well known to form a primary web of mineral fibres which are produced from a melt of mineral material and where the primary web is laid out on a secondary web by a pendulum conveyor. The secondary web is then processed to form a multi-layered mineral fibre product with a base layer and at least a top layer having a higher density than the base layer.
  • WO 2008/155401 there is described a method where the top layer is separated from the secondary web after the compression of the web in a "peel off-like manner, i.e. splitting the web in the thickness direction by means of a horizontal knife.
  • the base layer on the secondary web is then cured and the separated top layer is then later re-joined with the mineral fibre web to form a multi-layered product, such as a sandwich or dual density product.
  • the uncured top layer web is compressed by at least 50 % upon entry into the curing oven.
  • the base layer which is cured when the uncured top layer is laminated onto the base layer, may act as a backing layer and therefore the entry into the curing oven can be used as a compression zone for the uncured top layer.
  • the fibre orientation of the top layer is substantially horizontal.
  • the fibre orientation of the base layer is preferably substantially vertical, i.e. substantially in the direction of the compression of the top layer, since this increases the compression strength of the base layer.
  • the vertical fibre orientation of the base layer is achieved by cutting the cured base layer web into lamellae, which are turned 90° and reassembled to form the base layer web with a vertical fibre orientation. This provides the final dual density product with additional compression strength just as this ensures an enhanced backing layer when the top layer is compressed.
  • the vertical fibre orientation of the base layer is achieved by pleating a mineral fibre web.
  • the top layer may be provided with a density of two to three times the density of the base layer.
  • Fig . 1 is a schematic illustration of a process of making a mineral fibre product according to the prior art
  • Fig . 2 is a detailed schematic side view of an embodiment of the invention.
  • a mineral melt is fiberised and the fibres collected on a permeable conveyor as an air-laid web (not shown).
  • the air laid web 1 is passed on conveyors to a pair of pendulum conveyors 3 which cross-lap the web 1 to form a cross-lapped web 4.
  • the cross-lapped web 4 is then passed through sets of rollers 5 to subject the cross-lapped web 4 to height compression and longitudinal compression.
  • a horizontal knife is positioned at point 7 which cuts the web 4 in the horizontal plane to separate the web 4 into two layers, the base layer 6 and the covering top layer 2.
  • the base layer 6 is cured in a first curing oven 10 and is then cut into lamellae 9 by circular saws 11.
  • the lamellae 9 are cut into lengths corresponding to the desired dimensions of the final product by a circular saw 12 and the lamellae are then turned by 90 degrees to form a lamellar base section 14.
  • the covering top layer 2 is split into two by cutting the layer in the horizontal plane with a saw 15 to make an upper covering layer and a lower covering layer.
  • the upper and lower covering layers are placed on each side of the lamellar base section 14 at point 18 to form a covered lamellar section 20 and subsequently cured in a second curing oven 16.
  • Fig . 2 shows the position where the top layer 2 is re-joined to the base layer 6 as the two layers 2, 6 enter the second curing oven 16.
  • the base layer 6 is preferably lamellae 9 of mineral fibres having a vertical fibre orientation and already cured before being formed in this configuration .
  • the top layer 2 is uncured and it is compressed as it enters into the nip between the upper belt 17 of the curing oven and the cured base layer 6 at the entry into the curing oven 16.
  • the thickness of the top layer 2 before it enters the curing oven 16 is J 1 and when the top layer 2 is compressed having entered the curing oven 16 between the belt 17 and the cured base layer 6 the thickness is reduced to T 2 .
  • the base layer 6 is cured, and preferably also configured with lamellae having vertically oriented fibres (i.e. fibres oriented in the direction of the compression of the top layer 2), the base layer 6 has a relatively high compression strength and it is therefore the still uncured top layer 2 which is compressed rather than the base layer 6.
  • a significant reduction in thickness of the top layer 2 can be achieved .
  • An example of an insulating roof product comprises a base layer made of lamellae elements of stone wool provided with a high-density stone wool top layer.
  • the product was made to meet requirements of a compression strength of at least 60 kPa. Therefore, the cured lamella base layer with a vertical fibre orientation was made to have a compression strength of at least 60 kPa.
  • the cured base layer preferably comprises lamellae with vertical fibre orientation, since this provides high compression strength in the vertical direction and thereby a relatively high compression of the top layer on entry into the curing oven is possible.
  • the invention is also applicable when the cured base layer has horizontal fibre direction or any other fibre direction, as long as the relevant process parameters are adjusted to fit this lower compression strength . It should be mentioned that the compression strength is not only dependent on the fibre orientation, but also on the density and binder content.

Abstract

The present invention concerns a method of forming a cured mineral fibre product comprising at least a top layer comprising mineral fibres and a base layer comprising mineral fibres, said method comprising the steps of providing the top layer web comprising uncured mineral wool; providing the base layer web comprising cured mineral wool; joining the uncured top layer web and the cured base layer web to form an assembled laminate; curing the top layer web in a curing oven by transporting the assembled laminate into a curing oven comprising an upper conveyor and a lower conveyor for curing the assembled laminate, said assembled laminate being positioned between said upper and lower conveyors; wherein the uncured top layer web is compressed by at least 50 % upon entry into the curing oven.

Description

A method of forming a cured mineral fibre product
The present invention relates to a method of forming a cured mineral fibre product. From e.g. WO 95/20708 and WO 2008/155401 it is well known to form a primary web of mineral fibres which are produced from a melt of mineral material and where the primary web is laid out on a secondary web by a pendulum conveyor. The secondary web is then processed to form a multi-layered mineral fibre product with a base layer and at least a top layer having a higher density than the base layer.
In WO 2008/155401 there is described a method where the top layer is separated from the secondary web after the compression of the web in a "peel off-like manner, i.e. splitting the web in the thickness direction by means of a horizontal knife. The base layer on the secondary web is then cured and the separated top layer is then later re-joined with the mineral fibre web to form a multi-layered product, such as a sandwich or dual density product.
The problem associated with this known method is that the top layer also requires processing before being re-joined with the base layer. However, by the invention it is realised that this aspect can be improved by a method of forming a cured mineral fibre product comprising at least a top layer comprising mineral fibres and a base layer comprising mineral fibres, said method comprising the steps of:
- providing the top layer web comprising uncured mineral wool;
- providing the base layer web comprising cured mineral wool;
- joining the uncured top layer web and the cured base layer web to form an assembled laminate;
- curing the top layer web in a curing oven by transporting the assembled laminate into a curing oven comprising an upper conveyor and a lower conveyor for curing the assembled laminate, said assembled laminate being positioned between said upper and lower conveyors;
wherein the uncured top layer web is compressed by at least 50 % upon entry into the curing oven.
By the invention it is found that the base layer, which is cured when the uncured top layer is laminated onto the base layer, may act as a backing layer and therefore the entry into the curing oven can be used as a compression zone for the uncured top layer. This is advantageous since the step of compressing the top layer prior to the joining and curing thereby may be omitted or at least reduced. Preferably, the fibre orientation of the top layer is substantially horizontal. Moreover, the fibre orientation of the base layer is preferably substantially vertical, i.e. substantially in the direction of the compression of the top layer, since this increases the compression strength of the base layer.
In general when terms like "horizontal" and "vertical" or similar directional references are used in the present disclosure, these terms are meant to be understood as relative terms e.g. where the term "vertical" refers to the direction of the thickness of the web or product and "horizontal" refers to a direction perpendicular to the thickness of the web or product.
In a preferred embodiment of the invention, the vertical fibre orientation of the base layer is achieved by cutting the cured base layer web into lamellae, which are turned 90° and reassembled to form the base layer web with a vertical fibre orientation. This provides the final dual density product with additional compression strength just as this ensures an enhanced backing layer when the top layer is compressed. In an alternative embodiment of the invention, the vertical fibre orientation of the base layer is achieved by pleating a mineral fibre web.
By the invention it is realised that by the compression the top layer according to the method, the top layer may be provided with a density of two to three times the density of the base layer.
In the following the invention is described in more detail with reference to the accompanying drawings, in which : Fig . 1 is a schematic illustration of a process of making a mineral fibre product according to the prior art; and
Fig . 2 is a detailed schematic side view of an embodiment of the invention.
A process according to the prior art illustrating the context in which the method according to the present invention pertains is described below with reference to fig. 1.
A mineral melt is fiberised and the fibres collected on a permeable conveyor as an air-laid web (not shown). The air laid web 1 is passed on conveyors to a pair of pendulum conveyors 3 which cross-lap the web 1 to form a cross-lapped web 4. The cross-lapped web 4 is then passed through sets of rollers 5 to subject the cross-lapped web 4 to height compression and longitudinal compression.
A horizontal knife is positioned at point 7 which cuts the web 4 in the horizontal plane to separate the web 4 into two layers, the base layer 6 and the covering top layer 2. The base layer 6 is cured in a first curing oven 10 and is then cut into lamellae 9 by circular saws 11. The lamellae 9 are cut into lengths corresponding to the desired dimensions of the final product by a circular saw 12 and the lamellae are then turned by 90 degrees to form a lamellar base section 14.
In the embodiment in fig . 1, which corresponds to the disclosure of WO 2008/155401, the covering top layer 2 is split into two by cutting the layer in the horizontal plane with a saw 15 to make an upper covering layer and a lower covering layer. The upper and lower covering layers are placed on each side of the lamellar base section 14 at point 18 to form a covered lamellar section 20 and subsequently cured in a second curing oven 16. Fig . 2 shows the position where the top layer 2 is re-joined to the base layer 6 as the two layers 2, 6 enter the second curing oven 16. The base layer 6 is preferably lamellae 9 of mineral fibres having a vertical fibre orientation and already cured before being formed in this configuration . The top layer 2 is uncured and it is compressed as it enters into the nip between the upper belt 17 of the curing oven and the cured base layer 6 at the entry into the curing oven 16. As indicated in figure 2, the thickness of the top layer 2 before it enters the curing oven 16 is J1 and when the top layer 2 is compressed having entered the curing oven 16 between the belt 17 and the cured base layer 6 the thickness is reduced to T2. Since the base layer 6 is cured, and preferably also configured with lamellae having vertically oriented fibres (i.e. fibres oriented in the direction of the compression of the top layer 2), the base layer 6 has a relatively high compression strength and it is therefore the still uncured top layer 2 which is compressed rather than the base layer 6. Hereby a significant reduction in thickness of the top layer 2 can be achieved .
Example :
An example of an insulating roof product comprises a base layer made of lamellae elements of stone wool provided with a high-density stone wool top layer. The product was made to meet requirements of a compression strength of at least 60 kPa. Therefore, the cured lamella base layer with a vertical fibre orientation was made to have a compression strength of at least 60 kPa.
An uncured top layer with an initial thickness of 125,3 mm and a density of 46,7 kg/m3 was compressed to a thickness of 25,3 mm and a density of 231,4 kg/m3, corresponding to a compression of 79,8 %. This compression required a pressure of 22,2 kPa, which is well below the compression strength of at least 60 kPa of the lamella base layer, and it is therefore possible to make such product in accordance with the invention .
The cured base layer preferably comprises lamellae with vertical fibre orientation, since this provides high compression strength in the vertical direction and thereby a relatively high compression of the top layer on entry into the curing oven is possible. However, the invention is also applicable when the cured base layer has horizontal fibre direction or any other fibre direction, as long as the relevant process parameters are adjusted to fit this lower compression strength . It should be mentioned that the compression strength is not only dependent on the fibre orientation, but also on the density and binder content.

Claims

Claims
1. A method of forming a cured mineral fibre product comprising at least a top layer comprising mineral fibres and a base layer comprising mineral fibres, said method comprising the steps of:
- providing the top layer web comprising uncured mineral wool;
- providing the base layer web comprising cured mineral wool;
- joining the uncured top layer web and the cured base layer web to form an assembled laminate;
- curing the top layer web in a curing oven by transporting the assembled laminate into a curing oven comprising an upper conveyor and a lower conveyor for curing the assembled laminate, said assembled laminate being positioned between said upper and lower conveyors;
wherein the uncured top layer web is compressed by at least 50 % upon entry into the curing oven.
2. A method according to claim 1, wherein the top web layer is compressed by at least 60%, preferably at least 70%, such as 75-80% .
3. A method according to claim 1 or 2, wherein the fibre orientation of the top layer is substantially horizontal.
4. A method according to any of claims 1 to 3, wherein the fibre orientation of the base layer is substantially vertical.
5. A method according to claim 4, wherein the vertical fibre orientation of the base layer is achieved by cutting a mineral fibre web into lamellae, which are turned 90° and reassembled to form the base layer web.
6. A method according to claim 4, wherein the vertical fibre orientation of the base layer is achieved by pleating a mineral fibre web.
7. A method according to any of the preceding claims, wherein the top layer after compression is provided with a density of two to three times the density of the base layer.
PCT/EP2013/075607 2012-12-11 2013-12-05 A method of forming a cured mineral fibre product WO2014090670A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RS20170021A RS55583B1 (en) 2012-12-11 2013-12-05 A method of forming a cured mineral fibre product
SI201330472A SI2931955T1 (en) 2012-12-11 2013-12-05 A method of forming a cured mineral fibre product
CA2894501A CA2894501C (en) 2012-12-11 2013-12-05 A method of forming a cured mineral fibre product
US14/648,774 US9889639B2 (en) 2012-12-11 2013-12-05 Method of forming a cured mineral fibre product
CN201380064952.3A CN105051278A (en) 2012-12-11 2013-12-05 A method of forming a cured mineral fibre product
EP13799568.4A EP2931955B1 (en) 2012-12-11 2013-12-05 A method of forming a cured mineral fibre product
EA201591101A EA031337B1 (en) 2012-12-11 2013-12-05 Method of forming a cured mineral fibre product
LTEP13799568.4T LT2931955T (en) 2012-12-11 2013-12-05 A method of forming a cured mineral fibre product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12196426.6 2012-12-11
EP12196426 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014090670A1 true WO2014090670A1 (en) 2014-06-19

Family

ID=47500940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/075607 WO2014090670A1 (en) 2012-12-11 2013-12-05 A method of forming a cured mineral fibre product

Country Status (10)

Country Link
US (1) US9889639B2 (en)
EP (1) EP2931955B1 (en)
CN (1) CN105051278A (en)
CA (1) CA2894501C (en)
EA (1) EA031337B1 (en)
LT (1) LT2931955T (en)
PL (1) PL2931955T3 (en)
RS (1) RS55583B1 (en)
SI (1) SI2931955T1 (en)
WO (1) WO2014090670A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083368A1 (en) * 2014-11-24 2016-06-02 Rockwool International A/S A method of producing a sandwich panel core of mineral wool fibres
WO2017162955A1 (en) * 2016-03-24 2017-09-28 Saint-Gobain Isover Method for manufacturing self-adhesive mineral wool pads

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564423B2 (en) 2018-04-30 2023-07-12 Betek Boya ve Kimya Sanayi A.S. Process for the manufacture of mineral wool panels made of two or more layers having different densities
CN113574234A (en) * 2019-02-15 2021-10-29 洛科威国际有限公司 Heat and/or sound insulation system for flat roofs or flat pitched roofs of buildings as a waterproof and method for producing a heat and/or sound insulation system as a waterproof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950355A (en) * 1987-01-21 1990-08-21 Deutsche Rockwool Mineralwoll - Gmbh Method of and apparatus for manufacturing a mineral fiber insulating web
WO1994016164A1 (en) * 1993-01-14 1994-07-21 Rockwool International A/S A method of producing a mineral fiber-insulating web, a plant for producing a mineral fiber web, and a mineral fiber-insulated plate
WO1997036035A1 (en) * 1996-03-25 1997-10-02 Rockwool International A/S Process and apparatus for the production of a mineral fibreboard
WO2008155401A1 (en) * 2007-06-20 2008-12-24 Rockwool International A/S Mineral fibre product

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK165926B (en) * 1990-12-07 1993-02-08 Rockwool Int PROCEDURE FOR THE MANUFACTURE OF INSULATION PLATES COMPOSED BY INVOLVED CONNECTED STABLE MINERAL FIBER ELEMENTS
DK1266991T3 (en) * 1994-01-28 2012-11-26 Rockwool Int A mineral fiber board and a tubular insulating element
DK0771142T3 (en) * 1994-07-13 1999-11-15 Rockwool Grodan Bv Culture medium comprising short mineral wool fibers extending transversely
DE19834963A1 (en) * 1998-08-03 2000-02-17 Pfleiderer Daemmstofftechnik G Device and method for producing mineral wool fleece
US20050221061A1 (en) * 2004-04-02 2005-10-06 Toas Murray S Method and apparatus for forming shiplap edge in air duct board using molding and machining
PL2826903T3 (en) * 2007-01-25 2023-07-24 Knauf Insulation Method of manufacturing mineral fiber insulation product
AU2008292450B2 (en) * 2007-08-31 2014-11-06 Kuraray Co., Ltd. Base material for cushioning and use thereof
JP5391489B2 (en) * 2007-12-26 2014-01-15 旭ファイバーグラス株式会社 Manufacturing method of inorganic fiber mat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950355A (en) * 1987-01-21 1990-08-21 Deutsche Rockwool Mineralwoll - Gmbh Method of and apparatus for manufacturing a mineral fiber insulating web
WO1994016164A1 (en) * 1993-01-14 1994-07-21 Rockwool International A/S A method of producing a mineral fiber-insulating web, a plant for producing a mineral fiber web, and a mineral fiber-insulated plate
WO1997036035A1 (en) * 1996-03-25 1997-10-02 Rockwool International A/S Process and apparatus for the production of a mineral fibreboard
WO2008155401A1 (en) * 2007-06-20 2008-12-24 Rockwool International A/S Mineral fibre product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016083368A1 (en) * 2014-11-24 2016-06-02 Rockwool International A/S A method of producing a sandwich panel core of mineral wool fibres
US10214840B2 (en) 2014-11-24 2019-02-26 Rockwool International A/S Method of producing a sandwich panel core of mineral wool fibres
RU2694377C2 (en) * 2014-11-24 2019-07-12 Роквул Интернэшнл А/С Method for production of sandwich panel core of mineral wool fibers
WO2017162955A1 (en) * 2016-03-24 2017-09-28 Saint-Gobain Isover Method for manufacturing self-adhesive mineral wool pads
FR3049278A1 (en) * 2016-03-24 2017-09-29 Saint Gobain Isover METHOD FOR MANUFACTURING SELF-ADHESIVE MINERAL WOOL MATTRESS
RU2728750C2 (en) * 2016-03-24 2020-07-30 Сэн-Гобэн Изовер Method of producing self-adhesive mats from mineral wool
US10941073B2 (en) 2016-03-24 2021-03-09 Saint-Gobain Isover Method for manufacturing self-adhesive mineral wool pads

Also Published As

Publication number Publication date
CA2894501A1 (en) 2014-06-19
SI2931955T1 (en) 2017-04-26
EA031337B1 (en) 2018-12-28
PL2931955T3 (en) 2017-04-28
US9889639B2 (en) 2018-02-13
LT2931955T (en) 2017-03-27
EP2931955B1 (en) 2016-11-23
EP2931955A1 (en) 2015-10-21
CA2894501C (en) 2020-01-14
EA201591101A1 (en) 2015-10-30
US20150298449A1 (en) 2015-10-22
CN105051278A (en) 2015-11-11
RS55583B1 (en) 2017-06-30

Similar Documents

Publication Publication Date Title
EP2931955B1 (en) A method of forming a cured mineral fibre product
US9758966B2 (en) Lamella core and a method for producing it
US6248420B1 (en) Method of producing a mineral fiber-insulating web, a plant for producing a mineral fiber-insulating web, and a mineral fiber-insulated plate
WO2008155401A1 (en) Mineral fibre product
CZ282594B6 (en) Process for producing insulating boards
EP3548243B1 (en) Floor tile and process for manufacturing thereof
NO340389B1 (en) Sandwich construction, method of manufacture thereof, and construction method using at least one architectural insulation element of roof, partition or wall cladding type.
EP2809489B1 (en) Building panel comprising a lamella core
RU2694377C2 (en) Method for production of sandwich panel core of mineral wool fibers
EP2931956B1 (en) A method and an apparatus for making mineral fibre products
EP3323924B1 (en) Method for manufacturing a double or multi-layer mineral wool insulation
CN104002361A (en) Flame retardant crop straw/wood composite board paving system and paving method
US11905702B2 (en) Fabrication method and use of interlocking joints for fiberglass mat products
EP1559845A1 (en) Process for manufacturing an insulating mat of mineral fibres and insulating mat
EP3653375B1 (en) A method of producing an insulation board for a sandwich panel, an insulation board and a method for producing a sandwich panel
JP3003520B2 (en) Method of manufacturing rock wool products
CN102729573A (en) Manufacturing method of metal surface rock wool sandwich plate
FI20065659A (en) Mineral wool laminate carpet manufacturing methods and lamella carpet
EP3564423B1 (en) Process for the manufacture of mineral wool panels made of two or more layers having different densities
WO2018055447A1 (en) Inorganic fiber laminate, vacuum insulation material using same, and manufacturing method for same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380064952.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13799568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14648774

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2894501

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013799568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201591101

Country of ref document: EA

Ref document number: 2013799568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: P-2017/0021

Country of ref document: RS