WO2014090010A1 - 太阳能电池片的上下式电极结构 - Google Patents
太阳能电池片的上下式电极结构 Download PDFInfo
- Publication number
- WO2014090010A1 WO2014090010A1 PCT/CN2013/084166 CN2013084166W WO2014090010A1 WO 2014090010 A1 WO2014090010 A1 WO 2014090010A1 CN 2013084166 W CN2013084166 W CN 2013084166W WO 2014090010 A1 WO2014090010 A1 WO 2014090010A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- electrode
- main gate
- grid lines
- row
- Prior art date
Links
- 238000000034 method Methods 0.000 description 7
- 229910021419 crystalline silicon Inorganic materials 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000005360 phosphosilicate glass Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- the invention relates to the field of optoelectronic technology, and in particular to an electrode structure of a solar cell sheet. Background technique
- Photovoltaic power generation has the advantages of safety, reliability, noise-free, low failure rate, etc.
- Solar cells are the main components of photovoltaic power generation technology that directly convert solar energy into electrical energy.
- a common crystalline silicon solar cell is composed of a back electrode, a P-type layer made of a semiconductor material, an N-type layer, a P-N junction, an anti-reflection film, and a front gate electrode.
- the semiconductor structure in the solar cell absorbs solar energy.
- the excitation generates electrons and hole pairs.
- the electrons and hole pairs are separated by the self-built electric field of the P-N junction inside the semiconductor.
- the electron flow enters the N region, and the holes flow into the P region to form a photo-generated electric field. If the crystalline silicon is too energy-efficient battery
- the positive and negative terminals are connected to an external circuit, and a photocurrent is passed through the external circuit.
- crystalline silicon solar cell batteries use a P-type silicon wafer, which forms a P-N junction after diffusion of phosphorus, a back electrode and a back field are formed on the P-type silicon, and a front gate electrode is formed on the N-plane formed by diffusion, and the entire device is utilized.
- the photo-voltaic effect of the P-N junction works.
- the front gate electrode of a 125mm x l25mm single crystal silicon or polycrystalline silicon cell two main gate lines are generally used, and the front gate electrode of the 156mm x l 56mm single crystal silicon or polycrystalline silicon battery can be added to three main gate lines. A number of uniform and parallel distribution sub-gate lines are then applied perpendicular to both sides of the main gate line.
- the current generated by the crystalline silicon solar cell under illumination is electrically conducted through the sub-gate line and the main gate line, the main gate line constitutes the negative electrode of the battery, and the current is concentrated to the main gate line for derivation.
- the current collection method of such a battery still has a lack of power, that is, only unified power generation, and only one power supply mode, which often causes waste when power supply demand is insufficient. Summary of the invention
- a technical solution for achieving the object of the present invention is: a top and bottom electrode structure of a solar cell sheet, comprising a back electrode and a front gate electrode, the back electrode is distributed on the back surface of the solar cell sheet, and the front gate electrode is distributed on the front surface of the solar cell sheet, front side
- the gate electrode includes a main gate line parallel to each other and a plurality of sub-gate lines perpendicular to the main gate line, the main gate line includes three columns, and each column is composed of upper and lower main gate lines separated by lateral intervals. The width of the lateral interval is 0.5 mm to 4 mm.
- the back electrode comprises three columns parallel to each other, and each column is composed of upper and lower back electrodes spaced apart laterally by the back surface, and the width h of the lateral interval of the back surface is 8 mm to 30 mm.
- a column of main gate lines is further disposed adjacent to the middle column of the main gate lines, and the column main gate lines are also composed of upper and lower two main gate lines separated by lateral spacing, and the column of the main gate lines and the middle column There is a vertical spacing between the main grid lines, and the width of the vertical spacing 7 is 0.2 mm to 2 mm.
- a row of back electrodes is disposed beside the back electrode of the middle row, and the back electrodes of the column are composed of upper and lower back electrodes separated by laterally spaced back sides, and between the back electrodes of the row and the back electrodes of the middle row
- the back side is vertically spaced, and the width of the back vertical interval is 0.2 mm to 2 mm.
- the electrodes on the front and the bottom of the cell are not connected to each other, and current collection can be performed independently.
- the distance between the upper and lower parts is controlled to be 0.5mm-4mm. It is also possible to use the upper and lower parts in parallel by the component process. Avoid waste when power supply is insufficient.
- the electrodes on the front and the bottom of the cell are not connected to each other, and the current collection can be performed independently.
- a single unit can be used in parallel with adjacent units, up and down or left and right, or four parts can be used in parallel by component process. Make the use of the battery sheet more flexible.
- Figure 1 is a front elevational view of a first embodiment of the present invention
- Figure 2 is a rear view of Figure 1;
- Figure 3 is a front elevational view of a second embodiment of the present invention.
- Figure 4 is a rear view of Figure 3.
- a top and bottom electrode structure of a solar cell panel includes a back electrode 4 and a front gate electrode.
- the back electrode 4 is distributed on the back surface of the solar cell sheet
- the front gate electrode is distributed on the front surface of the solar cell sheet.
- the electrode includes a main gate line 1 parallel to each other and a plurality of sub-gate lines 3 perpendicular to the main gate line 1.
- the main gate line includes three columns, and each column is separated by upper and lower main gates separated by a lateral interval 2.
- the line composition, the width of the lateral interval 2 is 0.5 mm to 4 mm.
- the width of the main gate line 1 is 0.5 mm to 2 mm.
- the electrodes on the front and the bottom of the cell are not connected to each other, and current collection can be performed independently.
- the distance between the upper and lower parts is controlled to be 0.5mm-4mm. It is also possible to use the upper and lower parts in parallel by the component process. Avoid waste when power supply is insufficient.
- the back electrode 4 comprises three columns parallel to each other, and each column is composed of upper and lower back electrodes 4 spaced apart laterally by the back surface, and the width h of the lateral interval of the back surface is 8 mm to 30 mm.
- a top and bottom electrode structure of a solar cell panel includes a back electrode 4 and a front gate electrode.
- the back electrode 4 is distributed on the back surface of the solar cell sheet
- the front gate electrode is distributed on the front surface of the solar cell sheet.
- the electrode includes a main gate line 1 parallel to each other and a plurality of sub-gate lines 3 perpendicular to the main gate line 1.
- the main gate line includes three columns, and each column is separated by upper and lower main gates separated by a lateral interval 2.
- the line composition, the width of the lateral interval 2 is 0.5 mm to 4 mm.
- a column of main gate lines is further disposed adjacent to the middle column of the main gate line 1.
- the column of the main gate lines is also composed of upper and lower main gate lines separated by a lateral interval 2, and the column of the main gate lines and There is a vertical spacing 7 between the middle row of main grid lines, and the width of the vertical spacing 7 is 0.2 mm to 2 mm.
- the back electrode 4 includes three columns parallel to each other, and each column passes through the back lateral direction.
- the upper and lower back electrodes 4 are spaced apart from each other, and the width h of the lateral interval of the back surface is 8 mm to 30 mm.
- a row of back electrodes is further disposed beside the back electrode 4 in the middle row, and the column back electrodes are composed of upper and lower back electrodes spaced apart laterally by the back surface, and between the back electrode and the middle column of the back electrode
- the back side vertical spacing 8 has a width of 0.2 mm to 2 mm.
- the electrode for fabricating the solar cell sheet 6 may be any method of fabricating electrodes by screen printing, evaporation, sputtering, electroplating, spraying, etc.
- the back field 7, the back electrode 4 and the front side are formed by screen printing.
- An N-type crystalline silicon layer is formed on a P-type single crystal silicon wafer by a high temperature diffusion or ion implantation process, thereby forming a P-N junction structure, and then removing the diffusion layer of the edge by plasma etching, and removing it by chemical etching. Dispersing the formed phosphosilicate glass layer, depositing a silicon nitride antireflection film, the silicon nitride antireflection film can reduce the light emissivity of the surface of the silicon wafer, and utilize the bonding of hydrogen ions to enhance the surface of the silicon wafer and the body. The passivation effect reduces the recombination of carriers, and finally the back electrode 4 and the front gate electrode are formed by screen printing.
- the back electrode 4 is first printed by screen printing, and the back electrode 4 is sintered by silver paste.
- the back field 5 of the solar cell is printed on the back side of the solar cell sheet 6.
Landscapes
- Photovoltaic Devices (AREA)
Abstract
提供一种太阳能电池片的上下式电极结构,包括背电极(4)和正面栅电极,背电极(4)分布于太阳能电池片的背面,正面栅电极分布于太阳能电池片的正面,正面栅电极包括相互平行的主栅线(1)和多根与主栅线(1)相垂直的副栅线(3),主栅线包括三列,且每列由通过横向间隔(2)隔开的上、下两根主栅线组成,横向间隔(2)的宽度为0.5mm~4mm。该太阳能电池片的上下式电极结构具有多个独立发电单元,各部分独立单元可以在并联后合并使用,也可以作为单独发电单元使用。
Description
太阳能电池片的上下式电极结构 技术领域
本发明涉及光电技术领域, 特别是涉及一种太阳能电池片的电极结构。 背景技术
随着全球能源的日趋紧张, 太阳能以无污染、 市场空间大等独有的优势受 到广泛重视。 光伏发电具有安全可靠、 无噪声、 故障率低等优点, 太阳能电池 是光伏发电技术中将太阳能直接转化为电能的主要部件。
常见的晶体硅太阳能电池是由背面电极、 半导体材料构成的 P型层、 N型 层、 P— N 结、 减反射薄膜、 正面栅电极等部分组成。 当太阳光照射到太阳能 电池表面时, 减反射薄膜和绒面结构可有效减少电池表面的光反射损失。 太阳 能电池中的半导体结构吸收太阳能后。 激发产生电子、 空穴对, 电子、 空穴对 被半导体内部 P— N结自建电场分开, 电子流进入 N区, 空穴流入 P区, 形成 光生电场, 如果将晶体硅太能能电池的正、 负极与外部电路连接, 外部电路中 就有光生电流通过。
目前多数的晶体硅太阳能电池电池采用 P型硅片,经过磷扩散后形成 P— N 结, 在 P型硅上制作背电极和背场, 在扩散形成的 N面制作正面栅电极, 整个 器件利用 P— N结的光生伏特效应来工作。 对于 125mmx l25mm的单晶硅或多 晶硅电池的正面栅电极一般采用两条主栅线, 对于 156mmx l 56mm的单晶硅或 多晶硅电池的正面栅电极可增加到三条主栅线。 然后再垂直于主栅线的两边加 上一定数目的均匀且平行分布的副栅线。 在光照下晶体硅太阳能电池产生的电 流通过副栅线和主栅线相互导通, 主栅线构成电池的负电极, 电流汇聚到主栅 线上导出。 但这种电池的电流收集方式还存在下根不足, 即只能统一发电, 只 有一种供电方式, 在供电需求不足时, 往往会造成浪费。 发明内容
本发明的目的是提供一种具有多个独立发电单元的太阳能电池片的上下 式电极结构, 各部分独立单元可以在并联后合并使用, 也可以作为单独发电单 元使用。
实现本发明目的的技术方案是: 一种太阳能电池片的上下式电极结构, 包 括背电极和正面栅电极, 背电极分布于太阳能电池片的背面, 正面栅电极分布 于太阳能电池片的正面, 正面栅电极包括相互平行的主栅线和多根与主栅线相 垂直的副栅线, 主栅线包括三列, 且每列由通过横向间隔隔开的上、 下两根主 栅线组成, 横向间隔的宽度为 0.5mm〜4mm。
所述背电极包括相互平行的三列, 且每列由通过背面横向间隔隔开的上、 下两根背电极组成, 背面横向间隔的宽度 h为 8mm〜30mm。
进一步, 靠近中间一列主栅线旁还设置有一列主栅线, 该列主栅线也由通 过横向间隔的隔开的上、 下两根主栅线组成, 且这列主栅线与中间一列主栅线 之间有竖向间隔, 该竖向间隔 7的宽度为 0.2mm〜2mm。
更进一步, 中间一列背电极旁还设置有一列背电极, 该列背电极由通过背 面横向间隔的隔开的上、 下两根背电极组成, 且这列背电极与中间一列背电极 之间有背面竖向间隔, 该背面竖向间隔的宽度为 0.2mm〜2mm。
采用上述技术方案后, 电池片正面上下两部分电极互不相联, 可以独立进 行电流收集。上下两部分间隔距离控制在 0.5mm-4mm, 也可以通过组件工艺将 上下两部分同时并联使用。 避免了供电需求不足时的浪费。
采用进一步的技术方案后, 电池片正面上下、 左右四部分电极互不相联, 可以独立进行电流收集。单个单元可以和相邻的单元,上下或者左右并联使用, 也可以通过组件工艺将四部分同时并联使用。 使得电池片的使用更加灵活。 附图概述
本发明的特征、 性能由以下的实施例及其附图进一步描述。
图 1为本发明的实施例一的主视图;
图 2为图 1的后视图;
图 3为本发明的实施例二的主视图;
图 4为图 3的后视图。
图中标记为:
1、 主栅线
2、 横向间隔
3、 副栅线
4、 背电极
6、 电池片
7、 竖向间隔
8、 背面竖向间隔。 具体实施方式
为了使本发明的内容更容易被清楚地理解, 下面根据具体实施例并结合附 图, 对本发明作进一步详细的说明。
实施例一
如图 1所示, 一种太阳能电池片的上下式电极结构, 包括背电极 4和正面 栅电极, 背电极 4分布于太阳能电池片的背面, 正面栅电极分布于太阳能电池 片的正面, 正面栅电极包括相互平行的主栅线 1和多根与主栅线 1相垂直的副 栅线 3, 主栅线包括三列, 且每列由通过横向间隔 2隔开的上、 下两根主栅线 组成, 横向间隔 2的宽度为 0.5mm〜4mm。 主栅线 1的宽度为 0.5mm〜2mm。 采 用这种结构, 电池片正面上下两部分电极互不相联, 可以独立进行电流收集。 上下两部分间隔距离控制在 0.5mm-4mm,也可以通过组件工艺将上下两部分同 时并联使用。 避免了供电需求不足时的浪费。
如图 2所示, 所述背电极 4包括相互平行的三列, 且每列由通过背面横向 间隔隔开的上、 下两根背电极 4组成, 背面横向间隔的宽度 h为 8mm〜30mm。 实施例二
如图 3所示, 一种太阳能电池片的上下式电极结构, 包括背电极 4和正面 栅电极, 背电极 4分布于太阳能电池片的背面, 正面栅电极分布于太阳能电池 片的正面, 正面栅电极包括相互平行的主栅线 1和多根与主栅线 1相垂直的副 栅线 3, 主栅线包括三列, 且每列由通过横向间隔 2隔开的上、 下两根主栅线 组成, 横向间隔 2的宽度为 0.5mm〜4mm。 并在靠近中间一列主栅线 1旁还设 置有一列主栅线, 该列主栅线也由通过横向间隔 2的隔开的上、 下两根主栅线 组成, 且这列主栅线与中间一列主栅线之间有竖向间隔 7, 该竖向间隔 7的宽 度为 0.2mm〜2mm。
如图 4所示, 所述背电极 4包括相互平行的三列, 且每列由通过背面横向
间隔隔开的上、 下两根背电极 4组成, 背面横向间隔的宽度 h为 8mm〜30mm。 并在中间一列背电极 4旁还设置有一列背电极, 该列背电极由通过背面横向间 隔的隔开的上、 下两根背电极组成, 且这列背电极与中间一列背电极之间有背 面竖向间隔 8, 该背面竖向间隔 8的宽度为 0.2mm〜2mm。 采用这种结构后, 电 池片正面上下、 左右四部分电极互不相联, 可以独立进行电流收集。 单个单元 可以和相邻的单元, 上下或者左右并联使用, 也可以通过组件工艺将四部分同 时并联使用。 使得电池片的使用更加灵活。
制作太阳能电池片 6的电极可以采用丝网印刷、 蒸发、 溅射、 电镀、 喷涂 等任何制作电极的方法, 在本实施例中, 采用丝网印刷的方式制作背场 7、 背 电极 4和正面栅电极。 首先选取检验合格的 P型单晶硅片, 规格为 156mm X 156mm, 经过化学清洗和表面制绒以在单晶硅片上形成金字塔结构, 增加光的 吸收, 提高电池的短路电流和转换效率; 在利用高温扩散或者离子注入等工艺 在 P型单晶硅片上制作出 N型的晶硅层, 这样便形成 P— N结结构, 然后经过 等离子刻蚀去除边沿的扩散层, 通过化学腐蚀去掉扩散形成的磷硅玻璃层, 淀 积氮化硅增透薄膜, 所述氮化硅增透薄膜能减少硅片表面的光放射率, 同时利 用氢离子的成键来增强硅片表面和体内的钝化效果, 降低载流子的复合, 最后 利用丝网印刷来制作背电极 4和正面栅电极。
在本实施例中, 首先采用丝网印刷方式印刷背电极 4, 背电极 4由银铝浆 烧结而成。 再在所述的太阳能电池片 6的背面印刷太阳能电池的背场 5。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进行了进 一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施例而已, 并不 用于限制本发明, 凡在本发明的精神和原则之内, 所做的任何修改、等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种太阳能电池片的上下式电极结构, 包括背电极(4)和正面栅电极, 背电极 (4) 分布于太阳能电池片的背面, 正面栅电极分布于太阳能电池片的 正面, 正面栅电极包括相互平行的主栅线 (1) 和多根与主栅线 (1) 相垂直的 副栅线 (3) , 其特征在于: 主栅线包括三列, 且每列由通过横向间隔 (2) 隔 开的上、 下两根主栅线组成, 横向间隔 (2) 的宽度为 0.5mm〜4mm。
2、 根据权利要求 1所述的太阳能电池片的上下式电极结构, 其特征在于: 所述背电极 (4) 包括相互平行的三列, 且每列由通过背面横向间隔隔开的上、 下两根背电极 (4) 组成, 背面横向间隔的宽度 h为 8mm〜30mm。
3、 根据权利要求 1所述的太阳能电池片的上下式电极结构, 其特征在于: 靠近中间一列主栅线 (1) 旁还设置有一列主栅线, 该列主栅线也由通过横向 间隔 (2) 的隔开的上、 下两根主栅线组成, 且这列主栅线与中间一列主栅线 之间有竖向间隔 (7) , 该竖向间隔 7的宽度为 0.2mm〜2mm。
4、 根据权利要求 3所述的太阳能电池片的上下式电极结构, 其特征在于: 中间一列背电极 (4) 旁还设置有一列背电极, 该列背电极由通过背面横向间 隔的隔开的上、 下两根背电极组成, 且这列背电极与中间一列背电极之间有背 面竖向间隔 (8) , 该背面竖向间隔 8的宽度为 0.2mm〜2mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015546817A JP2015537389A (ja) | 2012-12-10 | 2013-09-25 | 太陽電池スライスの上下式電極構造 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210524975.5 | 2012-12-10 | ||
CN201210524975.5A CN102983179B (zh) | 2012-12-10 | 2012-12-10 | 太阳能电池片的上下式电极结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014090010A1 true WO2014090010A1 (zh) | 2014-06-19 |
Family
ID=47857035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/084166 WO2014090010A1 (zh) | 2012-12-10 | 2013-09-25 | 太阳能电池片的上下式电极结构 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015537389A (zh) |
CN (1) | CN102983179B (zh) |
WO (1) | WO2014090010A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785445A (zh) * | 2016-08-24 | 2018-03-09 | 天津英利新能源有限公司 | 一种可粘接光伏电池 |
CN108269863A (zh) * | 2017-12-26 | 2018-07-10 | 晶澳太阳能有限公司 | 一种高抗机械载荷晶硅电池 |
CN114318471A (zh) * | 2020-10-12 | 2022-04-12 | 福建钧石能源有限公司 | 一种制备hit晶硅太阳能电池片的水平镀膜装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102983179B (zh) * | 2012-12-10 | 2016-02-10 | 常州天合光能有限公司 | 太阳能电池片的上下式电极结构 |
CN103280465B (zh) * | 2013-04-23 | 2016-12-28 | 合肥晶澳太阳能科技有限公司 | 一种有效提高输出功率的太阳能光伏组件 |
CN108598191A (zh) * | 2018-06-11 | 2018-09-28 | 泰州隆基乐叶光伏科技有限公司 | 一种兼容半片电池的多主栅高效电池片 |
CN108963004A (zh) * | 2018-06-14 | 2018-12-07 | 东方日升(常州)新能源有限公司 | 一种太阳能电池正电极 |
CN109192795A (zh) * | 2018-09-14 | 2019-01-11 | 苏州腾晖光伏技术有限公司 | 一种太阳能电池片 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202231019U (zh) * | 2011-09-14 | 2012-05-23 | 江阴鑫辉太阳能有限公司 | 一种太阳能电池的三栅电极 |
CN102664199A (zh) * | 2012-05-16 | 2012-09-12 | 中利腾晖光伏科技有限公司 | 适用于太阳模拟器测试仪的太阳能电池片及其制造方法 |
CN102983179A (zh) * | 2012-12-10 | 2013-03-20 | 常州天合光能有限公司 | 太阳能电池片的上下式电极结构 |
CN202957263U (zh) * | 2012-12-10 | 2013-05-29 | 常州天合光能有限公司 | 太阳能电池片的上下式电极结构 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005353836A (ja) * | 2004-06-10 | 2005-12-22 | Kyocera Corp | 太陽電池素子及びこれを用いた太陽電池モジュール |
JP2006024857A (ja) * | 2004-07-09 | 2006-01-26 | Sharp Corp | 太陽電池セル及びそれから形成される太陽電池セル片及びそれを用いた太陽電池モジュール並びにその太陽電池モジュール製造方法 |
JP2008135655A (ja) * | 2006-11-29 | 2008-06-12 | Sanyo Electric Co Ltd | 太陽電池モジュール、太陽電池モジュールの製造方法、及び太陽電池セル |
JP5368022B2 (ja) * | 2008-07-17 | 2013-12-18 | 信越化学工業株式会社 | 太陽電池 |
WO2010083435A1 (en) * | 2009-01-15 | 2010-07-22 | Fisker Automotive, Inc. | Solar power management for a vehicle |
CN202275839U (zh) * | 2011-09-06 | 2012-06-13 | 扬州天华光电科技有限公司 | 太阳能电池片 |
CN102615954A (zh) * | 2012-04-16 | 2012-08-01 | 中利腾晖光伏科技有限公司 | 一种太阳能电池正面电极网版 |
-
2012
- 2012-12-10 CN CN201210524975.5A patent/CN102983179B/zh active Active
-
2013
- 2013-09-25 WO PCT/CN2013/084166 patent/WO2014090010A1/zh active Application Filing
- 2013-09-25 JP JP2015546817A patent/JP2015537389A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202231019U (zh) * | 2011-09-14 | 2012-05-23 | 江阴鑫辉太阳能有限公司 | 一种太阳能电池的三栅电极 |
CN102664199A (zh) * | 2012-05-16 | 2012-09-12 | 中利腾晖光伏科技有限公司 | 适用于太阳模拟器测试仪的太阳能电池片及其制造方法 |
CN102983179A (zh) * | 2012-12-10 | 2013-03-20 | 常州天合光能有限公司 | 太阳能电池片的上下式电极结构 |
CN202957263U (zh) * | 2012-12-10 | 2013-05-29 | 常州天合光能有限公司 | 太阳能电池片的上下式电极结构 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785445A (zh) * | 2016-08-24 | 2018-03-09 | 天津英利新能源有限公司 | 一种可粘接光伏电池 |
CN108269863A (zh) * | 2017-12-26 | 2018-07-10 | 晶澳太阳能有限公司 | 一种高抗机械载荷晶硅电池 |
CN114318471A (zh) * | 2020-10-12 | 2022-04-12 | 福建钧石能源有限公司 | 一种制备hit晶硅太阳能电池片的水平镀膜装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2015537389A (ja) | 2015-12-24 |
CN102983179A (zh) | 2013-03-20 |
CN102983179B (zh) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102983179B (zh) | 太阳能电池片的上下式电极结构 | |
AU2015101917A4 (en) | High-efficiency N-type bifacial solar cell | |
CN102969368B (zh) | 太阳能电池片的电极结构 | |
JP7023975B2 (ja) | P型perc両面太陽電池及びそのモジュール、システムと製造方法 | |
US10964828B2 (en) | Bifacial P-type PERC solar cell and module, system, and preparation method thereof | |
US10763377B2 (en) | Bifacial P-type PERC solar cell and module, system, and preparation method thereof | |
CN107039544B (zh) | P型perc双面太阳能电池及其制备方法、组件和系统 | |
CN106098831A (zh) | 一种背接触太阳能电池串及其制备方法和组件、系统 | |
CN106847943A (zh) | 打孔perc双面太阳能电池及其组件、系统和制备方法 | |
KR101612133B1 (ko) | Mwt형 태양전지 및 그 제조방법 | |
CN106887478B (zh) | P型perc双面太阳能电池、组件和系统 | |
CN106449845B (zh) | 一种基于Si/TiOx异质结的双面晶体硅太阳电池 | |
CN102157574A (zh) | 太阳能电池的正面栅电极 | |
CN104465811A (zh) | 一种局部背表面场n型太阳能电池 | |
CN204315591U (zh) | 一种选择性发射极晶硅太阳能电池 | |
CN108336163B (zh) | 一种p型双面太阳能电池组件 | |
CN202957263U (zh) | 太阳能电池片的上下式电极结构 | |
KR101062486B1 (ko) | 발열체를 이용한 저열화 실리콘 박막 태양 전지 | |
US8445311B2 (en) | Method of fabricating a differential doped solar cell | |
CN202957262U (zh) | 太阳能电池片的电极结构 | |
CN202049959U (zh) | 太阳能电池的正面栅电极 | |
CN103035771A (zh) | N型mwt太阳能电池结构及其制造工艺 | |
CN202159675U (zh) | 太阳能电池片的电极结构 | |
CN208385419U (zh) | 一种复合型太阳能电池 | |
CN103633162A (zh) | 晶体硅太阳能电池组件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13862789 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015546817 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13862789 Country of ref document: EP Kind code of ref document: A1 |