WO2014089636A1 - Biomarkers of asthma inflammatory phenotypes - Google Patents

Biomarkers of asthma inflammatory phenotypes Download PDF

Info

Publication number
WO2014089636A1
WO2014089636A1 PCT/AU2013/001466 AU2013001466W WO2014089636A1 WO 2014089636 A1 WO2014089636 A1 WO 2014089636A1 AU 2013001466 W AU2013001466 W AU 2013001466W WO 2014089636 A1 WO2014089636 A1 WO 2014089636A1
Authority
WO
WIPO (PCT)
Prior art keywords
asthma
genes
subject
expression
eosinophilic
Prior art date
Application number
PCT/AU2013/001466
Other languages
French (fr)
Inventor
Katherine Joanne BAINES
Peter G. Gibson
Original Assignee
Newcastle Innovation Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012905473A external-priority patent/AU2012905473A0/en
Application filed by Newcastle Innovation Limited filed Critical Newcastle Innovation Limited
Priority to AU2013359959A priority Critical patent/AU2013359959A1/en
Priority to DK13862455.6T priority patent/DK2931920T3/en
Priority to EP13862455.6A priority patent/EP2931920B1/en
Publication of WO2014089636A1 publication Critical patent/WO2014089636A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates generally to the use of biomarkers for discriminating between inflammatory phenotypes of asthma, based on differential expression profiles of such biomarkers. Also provided are methods for predicting the efficacy of treatments for asthma, and in particular for determining or predicting the responsiveness of subjects to corticosteroid treatment.
  • Asthma is the most widespread chronic health problem in the Western world and is increasing in prevalence around the world. In Australia alone, it affects over 2 million individuals.
  • Worldwide bronchial asthma is the most common chronic disease in childhood with an overall prevalence between 5 and 20 percent across all ages.
  • the pathogenesis is suggested to be complex and is centred on an aberrant immune response to inhalant allergens, most commonly house dust mite (HDM) allergens, that results in an inflammation of the airway wall together with an episodic constriction of the airways resulting in symptoms such as shortness of breath, wheezing, coughing, and life- threatening dyspnoea.
  • HDM house dust mite
  • Asthma is a common disease of the airways that is characterised by airway hyperresponsiveness, reversible airway obstruction and episodic respiratory symptoms that results from genetic and environmental risk factors.
  • the pathogenesis of asthma is complex with heterogenous airway inflammation and remodelling that underlies the development of different phenotypes of the disease. Responsiveness to the current available treatments is variable, with a substantial amount of patients having symptoms refractory to complex treatment regimens including high doses of inhaled or oral corticosteroids (Ito et al, 2006).
  • improvements in asthma diagnosis and management will only arise from a better understanding of disease heterogeneity and the development of tools for phenotype recognition to guide personalised treatment approaches.
  • EA eosinophilic asthma
  • NA neutrophilic asthma
  • MCA mixed granulocytic asthma
  • PGA paucigranulocytic asthma
  • Biomarkers of inflammation particularly those capable of distinguishing between sputum inflammatory phenotypes, have great potential value as diagnostic tools.
  • bronchoscopy and sputum induction are the most accurate techniques for discrimination between the four inflammatory phenotypes.
  • the analysis of lung tissue by bronchoscopy is invasive and requires specialized expertise.
  • Sputum induction is less invasive and, although not technically demanding, requires a certain degree of expertise and cross-centre standardization. Consequently, this technique has not been implemented on a wide scale.
  • Exhaled biomarkers such as fractional exhaled nitric oxide (FENO) and exhaled breath condensate (EBC) are non-invasive direct markers of airway inflammation.
  • FENO fractional exhaled nitric oxide
  • EBC exhaled breath condensate
  • Airway inflammation the precursor to symptom development and alterations in lung function in asthma, is essentially the basis for treatment. Consequently, a knowledge of the inflammatory phenotype of an individual patient is advantageous as it has potential impact on treatment options and long-term clinical management.
  • Corticosteroid treatment suppresses eosinophilic inflammation, thus the presence of airway eosinophilia may indicate non-adherence to corticosteroid therapy or insufficient dosing.
  • Patients with NEA respond poorly to inhaled corticosteroids (ICS) and add-on therapies which target neutrophilic inflammation, such as macrolides, show potential in this patient population. As newer therapies for asthma focus on increasingly specific mechanistic pathways, identification of different forms of asthma will assume greater importance.
  • ICS corticosteroids
  • the present disclosure provides a method for determining the asthma inflammatory phenotype in a subject suffering from asthma, the method comprising:
  • the expression profile of said genes and the determination of inflammatory phenotype is based on multiple logistic regression analysis of the gene expression levels.
  • the biological sample comprises sputum.
  • the sputum is induced sputum.
  • the sputum may be induced using hypertonic saline.
  • the method enables the determination of whether the subject has eosinophilic asthma or non-eosinophilic asthma.
  • multiple logistic regression analysis of the expression profile of said genes facilitates the distinction between:
  • eosinophilic asthma and non-eosinophilic asthma typically where non-eosinophilic asthma is neutrophilic asthma or paucigranulocytic asthma;
  • neutrophilic asthma and non-neutrophilic asthma typically where non-neutrophilic asthma is eosinophilic asthma or paucigranulocytic asthma;
  • paucigranulocytic asthma and non-paucigranulocytic asthma typically where non- paucigranulocytic asthma is neutrophilic asthma or eosinophilic asthma;
  • the expression profile of the genes in the sample from the subject is compared to a reference expression profile, wherein the reference expression profile comprises an expression profile of the same genes derived from one or more individuals known not to suffer from asthma, or alternatively known to have a particular asthma inflammatory phenotype.
  • expression may be measured at the messenger ribonucleic acid (mRNA) or gene level, or at the polypeptide or protein level.
  • mRNA messenger ribonucleic acid
  • gene level or at the polypeptide or protein level.
  • the present disclosure provides a method for distinguishing between eosinophilic asthma and non-eosinophilic asthma in a subject, the method comprising:
  • the present disclosure provides a method for determining the response of a subject having asthma to corticosteroid therapy, the method comprising the steps of:
  • a reduction in expression of one or more of CLC, CP A3 and DNASE1L3 and/or an increase in expression of one or more of ILIB and ALPL following administration step (b) is indicative that the subject is responsive to corticosteroid therapy.
  • the present disclosure provides a method for diagnosing responders to corticosteroid therapy for treating asthma, the method comprising the steps of:
  • a reference expression profile indicative of responsiveness to corticosteroid therapy is typically obtained from one or more individuals responsive to corticosteroid therapy.
  • a reference expression profile indicative of non-responsiveness to corticosteroid therapy is typically obtained from one or more individuals non-responsive to corticosteroid therapy.
  • the present disclosure provides a method for distinguishing eosinophilic asthma from non-eosinophilic, paucigranulocytic or neutrophilic asthma in a subject, the method comprising:
  • the expression profiles of one or more of said genes is indicative of the subject having (i) eosinophilic asthma or non-eosinophilic asthma, (ii) eosinophilic asthma or paucigranulocytic asthma, or (iii) eosinophilic asthma or neutrophilic asthma.
  • the present disclosure provides a method for distinguishing neutrophilic asthma from non-neutrophilic, paucigranulocytic or eosinophilic asthma in a subject, the method comprising:
  • the expression profiles of one or more of said genes is indicative of the subject having (i) neutrophilic asthma or non-neutrophilic asthma, (ii) neutrophilic asthma or paucigranulocytic asthma, or (iii) neutrophilic asthma or eosinophilic asthma.
  • a method for determining a treatment regime for a subject suffering from asthma comprising determining the asthma inflammatory phenotype in the subject in accordance with a method of one or more of the above identified aspects, and selecting an appropriate treatment regime for the subject on the basis of the determination.
  • Figure 1 Receiver operating characteristic curves demonstrating that the 6 gene biomarker signature (Example 4) identifies eosinophilic from neutrophilic asthma (A), eosinophilic from paucigranulocytic asthma (B) and neutrophilic from paucigranulocytic asthma (C).
  • FIG. 1 Receiver operating characteristic curves demonstrating that the 6 gene biomarker signature (Example 4) identifies eosinophilic (A) and neutrophilic (B) asthma from healthy controls.
  • Figure 3 Relative gene expression levels of A) CLC, B) CP A3, C) DNASEIL3, D) ILIB, E) ALPL and F) IL8RB in induced sputum samples from subjects with inflammatory phenotypes of asthma compared to healthy controls. Gene expression is calculated relative to ⁇ -actin and expressed as a fold change from the healthy control group mean. *p ⁇ 0.05 versus healthy controls, #p ⁇ 0.05 A p ⁇ 0.05.
  • FIG. 4 Receiver operating characteristic curves demonstrating that the 6 gene biomarker signature (Example 4) identifies ICS treatment responsiveness determined by A) a 12% change in FEVi, B) a 0.5 point decreased in ACQ score and C) a 40% reduction in FENO.
  • FIG. 5 Relative gene expression levels of A) CLC, B) CP A3, C) DNASEIL3, D) ILIB, E) ALPL and F) IL8RB in induced sputum samples from subjects with eosinophilic or non-eosinophilic asthma before and after corticosteroid treatment. Gene expression is calculated relative to ⁇ -actin and expressed as a fold change from the healthy control group mean. *p ⁇ 0.05 versus healthy controls, #p ⁇ 0.05 versus non-eosinophilic asthma before ICS.
  • the subject specification contains amino acid and nucleotide sequence information prepared using the programme Patentln Version 3.4, presented herein in a Sequence Listing.
  • the nucleotide sequences of the human CLC, CP A3, DNASE1L3, IL1B, ALPL, IL8RB, HOC and PI3 genes are provided in SEQ ID NOs:l, 3/ 5, 7, 9, ⁇ , 13 and 15 respectively.
  • the amino acid sequences of the polypeptides encoded by these genes are provided in SEQ ID NOs:2, 4, 6, 8, 10, 12, 14 and 16 respectively.
  • CLC refers to the gene encoding the Charcot-Leyden crystal protein. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed.
  • the cDNA encoding human CLC is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_0Q 1828.5.
  • An exemplary nucleotide sequence of human CLC is set forth in SEQ ID NO:l
  • an exemplary encoded polypeptide sequence is set forth in SEQ ID NO:2.
  • CCA3 refers to the gene encoding carboxypeptidase A3. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed.
  • the cDNA encoding human CP A3 is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_001870.2.
  • An exemplary nucleotide sequence of human CP A 3 is set forth in SEQ ID NO:3, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO:4.
  • DNASE1L3 refers to the gene encoding deoxyribonuclease I-like 3. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed.
  • the cDNA encoding human DNASE1L3 is located in the National Center for Biotechnology Information (NCB1) database as Accession No. NM_004944.3.
  • An exemplary nucleotide sequence of human DNASEIL3 is set forth in SEQ ID NO:5, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO:6.
  • ILIB refers to the gene encoding interleukin-1 ⁇ . Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed.
  • the cDNA encoding human ILIB is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_000576.2.
  • An exemplary nucleotide sequence of human ILIB is set forth in SEQ ID NO:7, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO:8.
  • ALPL refers to the gene encoding alkaline phosphatase, tissue-nonspecific isozyme. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed.
  • the cDNA encoding human ALPL is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_000478.4.
  • An exemplary nucleotide sequence of human ALPL is set forth in SEQ ID NO:9, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO: 10.
  • '7 ⁇ ,# ? ⁇ refers to the gene encoding interleukin-8 receptor B, also known as CXCR2 (chemokine (C-X-C motif) receptor 2).
  • CXCR2 chemokine (C-X-C motif) receptor 2.
  • Reference herein to IL8RB should be understood to be a reference to CXCR2. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed.
  • the cDNA encoding human IL8RB is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_001557.3.
  • An exemplary nucleotide sequence of human IL8RB is set forth in SEQ ID NO: 1 1, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO: 12.
  • HDC refers to the gene encoding histidine decarboxylase C. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed.
  • NCBI National Center for Biotechnology Information
  • An exemplary nucleotide sequence of human HDC is set forth in SEQ ID NO: 13, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO: 14.
  • /J refers to the gene encoding peptidase inhibitor 3. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed.
  • the cDNA encoding human PIS is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_002638.3.
  • An exemplary nucleotide sequence of human PI3 is set forth in SEQ ID NO: 15, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO: 16.
  • the term “gene” means a nucleic acid molecule having a particular function. As such the term “gene” encompasses not only the genomic nucleic acid molecule, but also the mRNA product of the genomic molecule, and equivalent cDNA molecules, as well as functionally equivalent genomic variants, alternative splicing variants and genetic isoforms of the gene.
  • protein means a peptide or polypeptide molecule having a particular function.
  • protein encompasses not only the peptide or polypeptide product of a gene, but also functionally equivalent fragments, derivatives and variants thereof and post-translationally modified forms of the peptide or polypeptide product. Different isoforms of a protein are also encompassed by this general term.
  • protein as used herein are mature protein and polypeptide sequences, in addition to proproteins, preproproteins and other precursor molecules including, for example, signal peptides, activation peptides or other sequences cleaved from a precursor molecule to generate the mature protein or polypeptide sequence.
  • expression profile may refer to the expression level of one or more genes or proteins in a given sample or to a value determined from the expression level of one or more genes or proteins. Such a value may be determined by statistical analysis of expression levels as described herein.
  • the expression profile of a group or set of two or more genes or proteins may be referred to herein as a 'combined expression profile'.
  • Expression levels of genes and proteins may be measured for example by any suitable method for determining, and typically quantifying, gene and protein expression known to those skilled in the art. The person of skill in the art can determine the most appropriate means of analysis in any given situation.
  • an increase or decrease in an expression profile or combined expression profile in a given sample means an increase or decrease in the level of expression of the gene(s) or protein(s) in question in the sample, typically when compared to the expression levels in one or more control samples.
  • an increase or decrease in an expression profile or combined expression profile in a given sample obtained from a subject following therapy or treatment may refer to an increase or decrease in the level of expression of the gene(s) or protein(s) in question when compared to the expression levels prior to, or in the absence of, said therapy or treatment.
  • the expression profile employed in diagnostic methods disclosed herein may be subject to, or may result from statistical analysis of expression levels, for example, in comparing expression profiles between samples including control samples.
  • Statistical techniques that may be employed for such analyses are known to those skilled in the art and include, but are not limited to, meta-analysis, multiple regression analysis, and receiver operator curve (ROC) analysis.
  • ROC analysis is used to determine a score that is diagnostic with the greatest sensitivity and specificity. The 'squarer' the look of the curve, the simpler the determination of a diagnostic level or score. The closer the area under the curve is to 1 also indicates a result with high sensitivity and specificity.
  • subject refers to mammals and includes humans, primates, livestock animals (eg.
  • sheep, pigs, cattle, horses, donkeys laboratory test animals (eg. mice, rabbits, rats, guinea pigs), companion animals (eg. dogs, cats) and captive wild animals (eg. foxes, kangaroos, deer).
  • laboratory test animals eg. mice, rabbits, rats, guinea pigs
  • companion animals eg. dogs, cats
  • captive wild animals eg. foxes, kangaroos, deer.
  • the mammal is human or a laboratory test animal. Even more typically, the mammal is a human.
  • treatment refers to any and all treatments that remedy a condition or one or more symptoms of a condition or'disease, prevent the establishment of a condition or disease, or otherwise prevent, hinder, retard, or reverse the progression of a condition or disease or other undesirable symptoms in any way whatsoever.
  • treatment is to be considered in its broadest context. For example, treatment does not necessarily imply that a patient is treated until total recovery.
  • genes capable of serving as non-invasive discriminatory biomarkers based on expression levels determined from sputum samples.
  • the genes are selected from CLC, CP A3, DNASE1L3, IL1B, ALPL, IL8RB, HDC and PI3.
  • the expression signature or profile of six genes is able to distinguish between asthma inflammatory phenotypes and predict response to corticosteroid treatment. Accordingly, provided herein are methods for determining the inflammatory phenotype (or distinguishing between inflammatory phenotypes) in asthma sufferers and methods for determining or predicting the responsiveness of a subject to asthma therapies, in particular corticosteroid therapy.
  • the present disclosure provides methods for distinguishing between asthma inflammatory phenotypes in a subject suffering from asthma, comprising determining the level of expression of one or more genes selected from CLC, CPA3, DNASEIL3, IL1B, ALPL, JL8RB, HDC and PI3 in a biological sample isolated from the subject, wherein the expression profile of the one or more proteins in the sample is indicative of the inflammatory phenotype in the subject, wherein the inflammatory phenotype is selected from eosinophilic asthma, neutrophilic asthma and paucigranulocytic asthma.
  • the inflammatory phenotypes may also be distinguished as eosinophilic versus non-eosinophilic asthma or as neutrophilic versus non-neutrophilic asthma or paucigranulocytic asthma versus non-paucigranulocytic asthma.
  • the present disclosure provides a method for determining the asthma inflammatory phenotype in a subject suffering from asthma, the method comprising:
  • Another aspect provides a method for distinguishing between eosinophilic asthma and non-eosinophilic asthma in a subject, the method comprising:
  • eosinophilic asthma and non-eosinophilic asthma typically where non-eosinophilic asthma is neutrophilic asthma or paucigranulocytic asthma;
  • neutrophilic asthma and non-neutrophilic asthma typically where non-neutrophilic asthma is eosinophilic asthma or paucigranulocytic asthma;
  • the correlation between expression of the protein(s) and an asthma inflammatory phenotype is determined by statistical analysis of the protein expression levels, such as by logistic regression analysis, as described herein.
  • determining the level of expression of a gene is intended as a reference to the use of any suitable technique that will provide information in relation to the level of expression of the encoding nucleic acid molecule (DNA or mRNA) or the encoded protein or polypeptide in the relevant tissue of the subject. Accordingly, these techniques include both in vivo techniques, as well as in vitro techniques that are applied to a biological sample extracted from the subject. Such in vitro techniques are likely to be preferred due to their significantly more simplistic and routine nature. Those skilled in the art will readily appreciate that in accordance with embodiments of the invention gene expression may be determined by any suitable technique or assay known in the art. Methods disclosed herein typically require quantitation of expression levels.
  • Gene expression may be measured, for example, using microarrays and/or using amplification based assays such as reverse-transcription PCR (RT-PCR) coupled with real time quantitative PCR (qPCR).
  • RT-PCR reverse-transcription PCR
  • qPCR real time quantitative PCR
  • expression may be determined, for example, by immunoassay using an antibody(ies) that bind with the protein such as enzyme-linked immunosorbent assay (ELISA) or immunoblotting, 2D-gel electrophoresis (including 2D-DIGE), multiplex protein expression assays, flow cytometry and protein expression profiling arrays and microarrays.
  • ELISA enzyme-linked immunosorbent assay
  • 2D-gel electrophoresis including 2D-DIGE
  • multiplex protein expression assays flow cytometry and protein expression profiling arrays and microarrays.
  • Methods of the present disclosure may be employed to determine or distinguish between asthma inflammatory phenotypes either in subjects that are known to have asthma (symptomatic or asymptomatic) or in subjects suspected of having asthma. Moreover, embodiments of the present disclosure may be used alone or in conjunction with, or as an adjunct to, one or more other diagnostic methods and tests to determine the asthma inflammatory phenotype experienced by a subject. Such other diagnostic methods and tests will be well known to those skilled in the art.
  • the expression profiles determined in samples from subjects in accordance with methods of the present disclosure can be compared to control values as a suitable reference to assist in diagnosis, for example such that abnormal expression profiles of genes in a sample from a subject of interest compared to the expression profiles of the same genes in one or more control samples is indicative of a specific inflammatory phenotype.
  • suitable control or reference expression profiles may be determined in one or more, typically a population, of individuals without an inflammatory phenotype of interest or known not to suffer from asthma.
  • a comparison of the expression profiles with those obtained from the appropriate reference or control may determine diagnosis.
  • Reliable diagnoses of asthma inflammatory phenotypes such as are possible utilising methods of the present disclosure also facilitate decision making with respect to the most appropriate intervention or treatment regime for individual subjects.
  • the treatment regime may be tailored not only to the specific inflammatory phenotype suffered by the subject but also to the subject themselves based on one or more other factors such as the severity of the symptoms, the subjects lifestyle, age, weight, general health etc. For example, this may comprise introducing a new treatment regime or modifying an existing regime employed by the subject.
  • the modification of a regime may be modification with respect to any one or more of a variety of factors, such as the nature of any anti-asthma medication, the dosage thereof, the timing of administration and/or any supplementary management strategies.
  • Such decision making with respect to treatment regimes will vary from case to case and the determination of the most appropriate strategy is well within the expertise and experience of those skilled in the art.
  • a treatment regime for the treatment of asthma in a subject in accordance with the present disclosure may involve administration of any of the medications commonly utilised in the treatment of the disease.
  • the treatment regime may comprise the administration of a number of drugs simultaneously, sequentially, or in combination with each other or with non-drug treatments.
  • the type of drug(s) administered, dosage, and the frequency of administration can be determined by medical physicians in accordance with accepted medical principles, and will depend on factors such as the severity of the disease, the age and weight of the subject, the medical history of the subject, other medication being taken by the subject, existing ailments and any other health related factors normally considered when determining treatments for obstructive airways disease.
  • a commonly employed therapy in the treatment of asthma is corticosteroid inhalation.
  • corticosteroids are not effective in all individuals; whilst effectively treating eosinophilic asthma, corticosteroids are of little benefit in the treatment of individuals with non-eosinophilic inflammation.
  • ICS response is greater in eosinophilic asthma compared to non-eosinophilic asthma.
  • Recognition of eosinophilic asthma also results in better application of new therapies (Nair et al., 2009). Poor responses may be mediated by an inflammatory pattern that is insensitive to corticosteroids, thought to be the case for airway neutrophilia.
  • the present disclosure provides methods for predicting whether a -subject will respond to corticosteroid therapy, based on an analysis of the expression levels of one or more genes selected from CLC, CPA3, DNASE1L3, ILIB and ALPL, typically before and after administration of corticosteroids (for example by inhalation).
  • the method comprises the steps of:
  • a reduction in expression of one or more of CLC, CP A3 and DNASE1L3 and/or an increase in expression of one or more of 1L1B and ALPL following administration step (b) is indicative that the subject is responsive to corticosteroid therapy.
  • the present disclosure provides a method for diagnosing responders to corticosteroid therapy for treating asthma, the method comprising the steps of:
  • kits suitable for use in accordance with the methods of the disclosure include for example diagnostic kits for assaying biological samples, comprising an agent(s) for detecting expression levels discriminatory proteins disclosed herein or encoding nucleic acid molecules, and reagents useful for facilitating the determination of expression by .
  • the agent(s) may be any suitable detecting molecule.
  • Kits according to the present disclosure may also include other components required to conduct the methods of the present invention, such as buffers and/or diluents.
  • the kits typically include containers for housing the various components and instructions for using the kit components in the methods of the present disclosure.
  • RNA (200ng) was reverse-transcribed to cDNA using the high capacity cDNA reverse transcription kit (Applied Biosystems, Foster City,USA).
  • Taqman qPCR primer and probes were purchased in kit form (Applied Biosystems, Foster City,USA). PCR primers and probes were combined with Taqman gene expression master mix as per manufacturer's instructions in duplicate singleplex real-time PCRs (7500 Real Time PCR System, Applied Biosystems).
  • Statistical analysis was performed on the change in cycle threshold (ACt) between the target gene and ⁇ -actin the housekeeping gene. Fold change results were calculated using 2 "AACl relative to both the housekeeping gene ( ⁇ -actin) and the mean of the healthy control group.
  • Logistic regression was used to calculate the predicted value of an individual having the disease phenotype based on their level of a particular marker (simple logistic regression) or combination of markers (multiple logistic regression).
  • Receiver Operating Characteristic (ROC) Curves were generated from the predicted values of the regression analyses, and the predicted values, the detection rate and the area under the curve (AUC) were calculated.
  • Bland-Altman plots and Intra Class Correlation (ICC) coefficients were used to determine reproducibility.
  • Table 4 Analysis of diagnostic value of 4 individual gene expression biomarkers to diagnose eosinophilic asthma
  • the 4 most significant (ANOVA p ⁇ 0.003 for both the discovery and validation populations) genes (ALPL, ILIB, IL8RB and PI3) were further investigated for their potential to predict neutrophilic asthma. Each of these markers individually was able to discriminate neutrophilic asthma from non-neutrophilic asthma, as well as paucigranuiocytic and eosinophilic asthma separately (Table 5). ILIB was the best individual discriminator for neutrophilic asthma, followed by ALPL, IL8RB and PI3. 2, 3, 4, 5 and 6 multiple combinations of the top 6 gene biomarkers were then evaluated across all phenotype comparisons.
  • the 6 gene signature was able to discriminate eosinophilic asthma from non-eosinophilic asthma (AUC 89.6%, p ⁇ 0.0001), neutrophilic asthma ( Figure 1A, AUC 91.4%, p ⁇ 0.0001), and paucigranuiocytic asthma (Figure I B, AUC 92.6%, pO.0001 ).
  • the 6 gene signature was also able to discriminate neutrophilic asthma from non-neutrophilic asthma (AUC 84.5%, p ⁇ 0.0001 ), and paucigranuiocytic asthma (Figure 1C, AUC 85.7%, p ⁇ 0.0001).
  • Table 5 Analysis of diagnostic value of 4 individual gene expression biomarkers to diagnose neutrophilic asthma
  • Table 6 Analysis of diagnostic values of CLC, CPA3, DNASE1L3, ALPL, 1L1B, IL8RB in combination for asthma inflammatory phenotype
  • the study described in the above examples identified a 6 gene expression biomarker signature derived from induced sputum samples that reproducibly discriminates the inflammatory phenotypes of asthma and predicts ICS responsiveness.
  • the top 6 genes including CLC, CP A3, DNASE1L3, IL1B, ALPL and CXCR2 in combination were shown to accurately identify asthma inflammatory phenotype, thereby demonstrating their potential use as a clinical biomarker.
  • CLC, CPA3 and DNASE1L3 are shown to have increased gene expression in eosinophilic asthma, whereas IL1B, ALPL and CXCR2 have increased gene expression in neutrophilic asthma.
  • This 6 gene expression signature distinguishes eosinophilic asthma from non-eosinophilic asthma with substantial agreement, and could predict ICS responsiveness defined by a greater than 12% decrease in FEVl, 0.5 decrease in ACQ score and 40% reduction in FENO.
  • the 6 gene biomarker signature could predict asthma and phenotype of asthma from healthy controls and demonstrated predominant eosinophilia and neutrophilia in MGA. Expression levels of the 6 gene signature were modified by ICS treatment, with CLC, CPA3 and DNASE1 L3 being decreased and IL1 B and ALPL being increased after ICS treatment of eosinophilic asthma.
  • Cowan DC et al. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax 2010; 65:384-90..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides methods for determining the asthma inflammatory phenotype in a subject suffering from asthma, and the response of a subject having asthma to corticosteroid therapy, based on the expression profile of the genes CLC, CPA3, DNASE1L3, IL1B, ALPL and IL8RB.

Description

BIOMARKERS OF ASTHMA INFLAMMATORY PHENOTYPES
Technical Field
[001] The present invention relates generally to the use of biomarkers for discriminating between inflammatory phenotypes of asthma, based on differential expression profiles of such biomarkers. Also provided are methods for predicting the efficacy of treatments for asthma, and in particular for determining or predicting the responsiveness of subjects to corticosteroid treatment.
Background
[002] Asthma is the most widespread chronic health problem in the Western world and is increasing in prevalence around the world. In Australia alone, it affects over 2 million individuals. Worldwide bronchial asthma is the most common chronic disease in childhood with an overall prevalence between 5 and 20 percent across all ages. The pathogenesis is suggested to be complex and is centred on an aberrant immune response to inhalant allergens, most commonly house dust mite (HDM) allergens, that results in an inflammation of the airway wall together with an episodic constriction of the airways resulting in symptoms such as shortness of breath, wheezing, coughing, and life- threatening dyspnoea.
[003] Asthma is a common disease of the airways that is characterised by airway hyperresponsiveness, reversible airway obstruction and episodic respiratory symptoms that results from genetic and environmental risk factors. The pathogenesis of asthma is complex with heterogenous airway inflammation and remodelling that underlies the development of different phenotypes of the disease. Responsiveness to the current available treatments is variable, with a substantial amount of patients having symptoms refractory to complex treatment regimens including high doses of inhaled or oral corticosteroids (Ito et al, 2006). Thus improvements in asthma diagnosis and management will only arise from a better understanding of disease heterogeneity and the development of tools for phenotype recognition to guide personalised treatment approaches. [004] With recognition that airway inflammation in asthma is inherently heterogeneous the cytological analysis of induced sputum has enabled the description of eosinophilic and non-eosinophilic asthma (NEA) inflammatory phenotypes (see, for example, Gibson et al., 2001 ), with each phenotype comprising approximately 50% of total cases. Further, an examination of the percentage levels of induced sputum neutrophils alongside eosinophils has facilitated the description of four distinct inflammatory phenotypes: eosinophilic asthma (EA), neutrophilic asthma (NA), mixed granulocytic asthma (MGA), in which levels of both eosinophils and neutrophils are elevated, and paucigranulocytic asthma (PGA), in which granulocyte levels are within the normal range (Simpson et al., 2006).
[005] Biomarkers of inflammation, particularly those capable of distinguishing between sputum inflammatory phenotypes, have great potential value as diagnostic tools. Currently, bronchoscopy and sputum induction are the most accurate techniques for discrimination between the four inflammatory phenotypes. The analysis of lung tissue by bronchoscopy is invasive and requires specialized expertise. Sputum induction, however, is less invasive and, although not technically demanding, requires a certain degree of expertise and cross-centre standardization. Consequently, this technique has not been implemented on a wide scale.
[006] Exhaled biomarkers, such as fractional exhaled nitric oxide (FENO) and exhaled breath condensate (EBC), are non-invasive direct markers of airway inflammation. However, neither FENO or EBC are capable of discriminating between each of the inflammatory phenotypes and studies investigating the potential application of FENO, in combination with EBC H, to predict inflammatory phenotype have demonstrated limited success (e.g. Hillas e/ al, 201 1).
[007] Airway inflammation, the precursor to symptom development and alterations in lung function in asthma, is essentially the basis for treatment. Consequently, a knowledge of the inflammatory phenotype of an individual patient is advantageous as it has potential impact on treatment options and long-term clinical management. Corticosteroid treatment suppresses eosinophilic inflammation, thus the presence of airway eosinophilia may indicate non-adherence to corticosteroid therapy or insufficient dosing. Patients with NEA, however, respond poorly to inhaled corticosteroids (ICS) and add-on therapies which target neutrophilic inflammation, such as macrolides, show potential in this patient population. As newer therapies for asthma focus on increasingly specific mechanistic pathways, identification of different forms of asthma will assume greater importance. This concept has been demonstrated in a randomised trial by Green ei al. (2002), whereby basing asthma treatment on sputum eosinophils, a 50% reduction in asthma exacerbations was observed. This important effect is all the more significant since it was seen over and above current best practice using British Thoracic Society guidelines. In order to capitalise on this new knowledge of heterogeneity in asthma, measurements that are simple, repeatable, and have good performance characteristics are needed.
[008j It is now increasingly acknowledged that a systemic inflammatory component to asthma exists. Blood collection is minimally invasive and sample processing procedures are highly standardized. Thus, blood based biomarkers would be highly desirable for routine use in asthma and the identification of circulating biomarkers, which enable inflammatory phenotype classification, is important.
Summary of the Disclosure
[009] In a first aspect, the present disclosure provides a method for determining the asthma inflammatory phenotype in a subject suffering from asthma, the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profile of the genes CLC, CPA3, DNASE1L3, JL1B, ALPL and IL8RB, wherein the expression profile comprises or is based on the expression levels of said genes in the sample,
wherein the expression profile of said genes is indicative of the asthma inflammatory phenotype.
[0010] Typically the expression profile of said genes and the determination of inflammatory phenotype is based on multiple logistic regression analysis of the gene expression levels.
[0011] Typically the biological sample comprises sputum. Typically the sputum is induced sputum. The sputum may be induced using hypertonic saline. [0012] In an embodiment, the method enables the determination of whether the subject has eosinophilic asthma or non-eosinophilic asthma.
[0013] In an embodiment, multiple logistic regression analysis of the expression profile of said genes facilitates the distinction between:
(i) eosinophilic asthma and non-eosinophilic asthma, typically where non-eosinophilic asthma is neutrophilic asthma or paucigranulocytic asthma;
(ii) neutrophilic asthma and non-neutrophilic asthma, typically where non-neutrophilic asthma is eosinophilic asthma or paucigranulocytic asthma;
(iii) neutrophilic asthma and paucigranulocytic asthma;
(iv) paucigranulocytic asthma and non-paucigranulocytic asthma, typically where non- paucigranulocytic asthma is neutrophilic asthma or eosinophilic asthma; or
(v) eosinophilic asthma and neutrophilic asthma.
[0014] Typically the expression profile of the genes in the sample from the subject is compared to a reference expression profile, wherein the reference expression profile comprises an expression profile of the same genes derived from one or more individuals known not to suffer from asthma, or alternatively known to have a particular asthma inflammatory phenotype.
[0015] For determination of the expression profile, expression may be measured at the messenger ribonucleic acid (mRNA) or gene level, or at the polypeptide or protein level.
[0016] In a second aspect, the present disclosure provides a method for distinguishing between eosinophilic asthma and non-eosinophilic asthma in a subject, the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profile of the genes CLC, CPA3, DNASE1L3, IL1B, ALPL and JL8RB, based on the expression levels of said genes in the sample,
wherein the expression profile of said genes is indicative of the subject having eosinophilic asthma or non-eosinophilic asthma.
[0017] In a third aspect, the present disclosure provides a method for determining the response of a subject having asthma to corticosteroid therapy, the method comprising the steps of:
(a) obtaining a biological sample from the subject and determining the expression levels of the genes CLC, CP A3, DNASE1L3, 1L1B and ALPL in the sample;
(b) administering a corticosteroid to the subject; and
(c) obtaining a further biological sample from the subject and determining the expression levels of the genes CLC, CPA3, DNASE1L3, 1L1B and ALPL in the sample;
wherein a reduction in expression of one or more of CLC, CP A3 and DNASE1L3 and/or an increase in expression of one or more of ILIB and ALPL following administration step (b) is indicative that the subject is responsive to corticosteroid therapy.
[0018] In a fourth aspect, the present disclosure provides a method for diagnosing responders to corticosteroid therapy for treating asthma, the method comprising the steps of:
(a) obtaining a biological sample from a subject;
(b) determining the expression profile of the genes CLC, CP A3, , DNASEJL3, ILIB, ALPL and IL8RB, wherein the expression profile comprises or is based on the expression levels of said genes in the sample; and
(c) comparing the gene expression profile from the sample with a reference gene expression profile indicative of responsiveness to corticosteroid therapy, and/or to a reference gene expression profile indicative of non- responsiveness to corticosteroid therapy,
wherein similarity in expression profiles between the sample and reference profiles is indicative of the subject being a responder or non-responder to corticosteroid therapy.
[00191 A reference expression profile indicative of responsiveness to corticosteroid therapy is typically obtained from one or more individuals responsive to corticosteroid therapy. A reference expression profile indicative of non-responsiveness to corticosteroid therapy is typically obtained from one or more individuals non-responsive to corticosteroid therapy. [0020J In a fifth aspect, the present disclosure provides a method for distinguishing eosinophilic asthma from non-eosinophilic, paucigranulocytic or neutrophilic asthma in a subject, the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profiles of one or more genes selected from CLC, CPAS, DNASE1L3 and HDC ,wherein the expression profiles of the genes comprise or are based on the expression levels of the genes in the sample,
wherein the expression profiles of one or more of said genes is indicative of the subject having (i) eosinophilic asthma or non-eosinophilic asthma, (ii) eosinophilic asthma or paucigranulocytic asthma, or (iii) eosinophilic asthma or neutrophilic asthma.
[0021] In a sixth aspect, the present disclosure provides a method for distinguishing neutrophilic asthma from non-neutrophilic, paucigranulocytic or eosinophilic asthma in a subject, the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profiles of one or more genes selected from ALPL, IL1B, IL8RB and PI3 ,wherein the expression profiles of the genes comprise or are based on the expression levels of the genes in the sample,
wherein the expression profiles of one or more of said genes is indicative of the subject having (i) neutrophilic asthma or non-neutrophilic asthma, (ii) neutrophilic asthma or paucigranulocytic asthma, or (iii) neutrophilic asthma or eosinophilic asthma.
[0022] In a further aspect of the present disclosure there is provided a method for determining a treatment regime for a subject suffering from asthma, the method comprising determining the asthma inflammatory phenotype in the subject in accordance with a method of one or more of the above identified aspects, and selecting an appropriate treatment regime for the subject on the basis of the determination. Brief Description of the Drawings
[0023J Embodiments of the present disclosure are described, by way of example only, with reference to the following drawings.
[0024] Figure 1. Receiver operating characteristic curves demonstrating that the 6 gene biomarker signature (Example 4) identifies eosinophilic from neutrophilic asthma (A), eosinophilic from paucigranulocytic asthma (B) and neutrophilic from paucigranulocytic asthma (C).
[0025] Figure 2. Receiver operating characteristic curves demonstrating that the 6 gene biomarker signature (Example 4) identifies eosinophilic (A) and neutrophilic (B) asthma from healthy controls.
[0026] Figure 3. Relative gene expression levels of A) CLC, B) CP A3, C) DNASEIL3, D) ILIB, E) ALPL and F) IL8RB in induced sputum samples from subjects with inflammatory phenotypes of asthma compared to healthy controls. Gene expression is calculated relative to β-actin and expressed as a fold change from the healthy control group mean. *p<0.05 versus healthy controls, #p<0.05 Ap<0.05.
[0027] Figure 4. Receiver operating characteristic curves demonstrating that the 6 gene biomarker signature (Example 4) identifies ICS treatment responsiveness determined by A) a 12% change in FEVi, B) a 0.5 point decreased in ACQ score and C) a 40% reduction in FENO.
[0028] Figure 5. Relative gene expression levels of A) CLC, B) CP A3, C) DNASEIL3, D) ILIB, E) ALPL and F) IL8RB in induced sputum samples from subjects with eosinophilic or non-eosinophilic asthma before and after corticosteroid treatment. Gene expression is calculated relative to β-actin and expressed as a fold change from the healthy control group mean. *p<0.05 versus healthy controls, #p<0.05 versus non-eosinophilic asthma before ICS.
[0029] The subject specification contains amino acid and nucleotide sequence information prepared using the programme Patentln Version 3.4, presented herein in a Sequence Listing. The nucleotide sequences of the human CLC, CP A3, DNASE1L3, IL1B, ALPL, IL8RB, HOC and PI3 genes are provided in SEQ ID NOs:l, 3/ 5, 7, 9, Π , 13 and 15 respectively. The amino acid sequences of the polypeptides encoded by these genes are provided in SEQ ID NOs:2, 4, 6, 8, 10, 12, 14 and 16 respectively.
Detailed Description
[0030] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
[0031] The articles "a" and "an" are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.
[0032] "CLC refers to the gene encoding the Charcot-Leyden crystal protein. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed. The cDNA encoding human CLC is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_0Q 1828.5. An exemplary nucleotide sequence of human CLC is set forth in SEQ ID NO:l, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO:2.
[0033] "CPA3" refers to the gene encoding carboxypeptidase A3. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed. The cDNA encoding human CP A3 is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_001870.2. An exemplary nucleotide sequence of human CP A 3 is set forth in SEQ ID NO:3, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO:4. [0034] "DNASE1L3" refers to the gene encoding deoxyribonuclease I-like 3. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed. The cDNA encoding human DNASE1L3 is located in the National Center for Biotechnology Information (NCB1) database as Accession No. NM_004944.3. An exemplary nucleotide sequence of human DNASEIL3 is set forth in SEQ ID NO:5, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO:6.
[0035] "ILIB" refers to the gene encoding interleukin-1 β. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed. The cDNA encoding human ILIB is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_000576.2. An exemplary nucleotide sequence of human ILIB is set forth in SEQ ID NO:7, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO:8.
[0036] "ALPL" refers to the gene encoding alkaline phosphatase, tissue-nonspecific isozyme. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed. The cDNA encoding human ALPL is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_000478.4. An exemplary nucleotide sequence of human ALPL is set forth in SEQ ID NO:9, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO: 10.
[0037] '7Ζ,# ?Ζ refers to the gene encoding interleukin-8 receptor B, also known as CXCR2 (chemokine (C-X-C motif) receptor 2). Reference herein to IL8RB should be understood to be a reference to CXCR2. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed. The cDNA encoding human IL8RB is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_001557.3. An exemplary nucleotide sequence of human IL8RB is set forth in SEQ ID NO: 1 1, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO: 12.
[0038] "HDC refers to the gene encoding histidine decarboxylase C. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed. The cDNA encoding human HDC is located in the National Center for Biotechnology Information NCBI) database as Accession No. NM_002l 12.3. An exemplary nucleotide sequence of human HDC is set forth in SEQ ID NO: 13, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO: 14.
[0039] " /J" refers to the gene encoding peptidase inhibitor 3. Whilst the present disclosure typically refers to the gene and polypeptide as found in humans, or to derivatives, fragments or variants thereof, those skilled in the art will appreciate that homologues of human from other species are also contemplated and encompassed. The cDNA encoding human PIS is located in the National Center for Biotechnology Information (NCBI) database as Accession No. NM_002638.3. An exemplary nucleotide sequence of human PI3 is set forth in SEQ ID NO: 15, and an exemplary encoded polypeptide sequence is set forth in SEQ ID NO: 16.
[0040] As used herein the term "gene" means a nucleic acid molecule having a particular function. As such the term "gene" encompasses not only the genomic nucleic acid molecule, but also the mRNA product of the genomic molecule, and equivalent cDNA molecules, as well as functionally equivalent genomic variants, alternative splicing variants and genetic isoforms of the gene.
[0041] As used herein the term "protein" means a peptide or polypeptide molecule having a particular function. As such the term "protein" encompasses not only the peptide or polypeptide product of a gene, but also functionally equivalent fragments, derivatives and variants thereof and post-translationally modified forms of the peptide or polypeptide product. Different isoforms of a protein are also encompassed by this general term. Also encompassed by the term "protein" as used herein are mature protein and polypeptide sequences, in addition to proproteins, preproproteins and other precursor molecules including, for example, signal peptides, activation peptides or other sequences cleaved from a precursor molecule to generate the mature protein or polypeptide sequence.
[0042] As used herein the term "expression profile" may refer to the expression level of one or more genes or proteins in a given sample or to a value determined from the expression level of one or more genes or proteins. Such a value may be determined by statistical analysis of expression levels as described herein. The expression profile of a group or set of two or more genes or proteins may be referred to herein as a 'combined expression profile'. Expression levels of genes and proteins may be measured for example by any suitable method for determining, and typically quantifying, gene and protein expression known to those skilled in the art. The person of skill in the art can determine the most appropriate means of analysis in any given situation.
[0043] in the context of the present disclosure, reference to an increase or decrease in an expression profile or combined expression profile in a given sample means an increase or decrease in the level of expression of the gene(s) or protein(s) in question in the sample, typically when compared to the expression levels in one or more control samples. In some embodiments an increase or decrease in an expression profile or combined expression profile in a given sample obtained from a subject following therapy or treatment may refer to an increase or decrease in the level of expression of the gene(s) or protein(s) in question when compared to the expression levels prior to, or in the absence of, said therapy or treatment.
[0044J The expression profile employed in diagnostic methods disclosed herein may be subject to, or may result from statistical analysis of expression levels, for example, in comparing expression profiles between samples including control samples. Statistical techniques that may be employed for such analyses are known to those skilled in the art and include, but are not limited to, meta-analysis, multiple regression analysis, and receiver operator curve (ROC) analysis. ROC analysis is used to determine a score that is diagnostic with the greatest sensitivity and specificity. The 'squarer' the look of the curve, the simpler the determination of a diagnostic level or score. The closer the area under the curve is to 1 also indicates a result with high sensitivity and specificity. [0045] The term "subject" as used herein refers to mammals and includes humans, primates, livestock animals (eg. sheep, pigs, cattle, horses, donkeys), laboratory test animals (eg. mice, rabbits, rats, guinea pigs), companion animals (eg. dogs, cats) and captive wild animals (eg. foxes, kangaroos, deer). Typically, the mammal is human or a laboratory test animal. Even more typically, the mammal is a human.
[0046] As used herein the term "treatment" refers to any and all treatments that remedy a condition or one or more symptoms of a condition or'disease, prevent the establishment of a condition or disease, or otherwise prevent, hinder, retard, or reverse the progression of a condition or disease or other undesirable symptoms in any way whatsoever. Thus the term "treatment" is to be considered in its broadest context. For example, treatment does not necessarily imply that a patient is treated until total recovery.
[0047] Effective clinical management of asthma requires objective measurement of inflammatory phenotype. However, the most direct measures of airway inflammation are too invasive and have limited clinical use. By using the genome wide expression analysis described herein the present inventors have identified that the combined expression profile of specific genes can distinguish between inflammatory phenotypes of asthma, and thus can also be employed to predict and monitor patient response to therapeutic intervention.
[0048] Specifically, as exemplified herein, the inventors have identified genes capable of serving as non-invasive discriminatory biomarkers, based on expression levels determined from sputum samples. The genes are selected from CLC, CP A3, DNASE1L3, IL1B, ALPL, IL8RB, HDC and PI3. In particular the expression signature or profile of six genes (CLC, CP A3, DNASE1L3, IL1B, ALPL and IL8RB) is able to distinguish between asthma inflammatory phenotypes and predict response to corticosteroid treatment. Accordingly, provided herein are methods for determining the inflammatory phenotype (or distinguishing between inflammatory phenotypes) in asthma sufferers and methods for determining or predicting the responsiveness of a subject to asthma therapies, in particular corticosteroid therapy.
[0049] In broad terms, the present disclosure provides methods for distinguishing between asthma inflammatory phenotypes in a subject suffering from asthma, comprising determining the level of expression of one or more genes selected from CLC, CPA3, DNASEIL3, IL1B, ALPL, JL8RB, HDC and PI3 in a biological sample isolated from the subject, wherein the expression profile of the one or more proteins in the sample is indicative of the inflammatory phenotype in the subject, wherein the inflammatory phenotype is selected from eosinophilic asthma, neutrophilic asthma and paucigranulocytic asthma. The inflammatory phenotypes may also be distinguished as eosinophilic versus non-eosinophilic asthma or as neutrophilic versus non-neutrophilic asthma or paucigranulocytic asthma versus non-paucigranulocytic asthma.
[0050] In a particular aspect the present disclosure provides a method for determining the asthma inflammatory phenotype in a subject suffering from asthma, the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profile of the genes CLC, CPA3, DNASEIL3, ILIB, ALPL and 1L8RB, wherein the expression profile comprises or is based on the expression levels of said genes in the sample,
wherein the expression profile of said genes is indicative of the asthma inflammatory phenotype.
[0051] Another aspect provides a method for distinguishing between eosinophilic asthma and non-eosinophilic asthma in a subject, the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profile of the genes CLC, CPAS, DNASEIL3, ILIB, ALPL and IL8RB, based on the expression levels of said genes in the sample,
wherein the expression profile of said genes is indicative of the subject having eosinophilic asthma or non-eosinophilic asthma.
[0052] Methods disclosed herein enable the distinction between:
(i) eosinophilic asthma and non-eosinophilic asthma, typically where non-eosinophilic asthma is neutrophilic asthma or paucigranulocytic asthma;
(ii) neutrophilic asthma and non-neutrophilic asthma, typically where non-neutrophilic asthma is eosinophilic asthma or paucigranulocytic asthma;
(iii) neutrophilic asthma and paucigranulocytic asthma; (iv) paucigranulocytic asthma and non-paucigranulocytic asthma, typically where non- paucigranulocytic asthma is neutrophilic asthma or eosinophilic asthma; or
(v) eosinophilic asthma and neutrophilic asthma.
[0053] Also provided are methods enabling:
(i) the distinction between eosinophilic asthma and non-eosinophilic asthma, eosinophilic asthma and paucigranulocytic asthma, or eosinophilic asthma or neutrophilic asthma, based on the expression levels of one or more genes selected from CLC, CPA3, DNASE1L3 and HDC; and
(ii) the distinction between neutrophilic asthma and non-neutrophilic asthma, neutrophilic asthma and paucigranulocytic asthma, or neutrophilic asthma and eosinophilic asthma, based on the expression levels of one or more genes selected from A LPL, IL1B, 1L8RB and PI3.
[0054] Typically, the correlation between expression of the protein(s) and an asthma inflammatory phenotype is determined by statistical analysis of the protein expression levels, such as by logistic regression analysis, as described herein.
[0055] It should be understood that reference to determining the level of expression of a gene is intended as a reference to the use of any suitable technique that will provide information in relation to the level of expression of the encoding nucleic acid molecule (DNA or mRNA) or the encoded protein or polypeptide in the relevant tissue of the subject. Accordingly, these techniques include both in vivo techniques, as well as in vitro techniques that are applied to a biological sample extracted from the subject. Such in vitro techniques are likely to be preferred due to their significantly more simplistic and routine nature. Those skilled in the art will readily appreciate that in accordance with embodiments of the invention gene expression may be determined by any suitable technique or assay known in the art. Methods disclosed herein typically require quantitation of expression levels. Gene expression may be measured, for example, using microarrays and/or using amplification based assays such as reverse-transcription PCR (RT-PCR) coupled with real time quantitative PCR (qPCR). At the protein or polypeptide level, expression may be determined, for example, by immunoassay using an antibody(ies) that bind with the protein such as enzyme-linked immunosorbent assay (ELISA) or immunoblotting, 2D-gel electrophoresis (including 2D-DIGE), multiplex protein expression assays, flow cytometry and protein expression profiling arrays and microarrays. The skilled addressee will appreciate that the invention is not limited by reference to the means by which gene expression is determined and/or quantified.
[0056] Methods of the present disclosure may be employed to determine or distinguish between asthma inflammatory phenotypes either in subjects that are known to have asthma (symptomatic or asymptomatic) or in subjects suspected of having asthma. Moreover, embodiments of the present disclosure may be used alone or in conjunction with, or as an adjunct to, one or more other diagnostic methods and tests to determine the asthma inflammatory phenotype experienced by a subject. Such other diagnostic methods and tests will be well known to those skilled in the art.
[0057] The expression profiles determined in samples from subjects in accordance with methods of the present disclosure can be compared to control values as a suitable reference to assist in diagnosis, for example such that abnormal expression profiles of genes in a sample from a subject of interest compared to the expression profiles of the same genes in one or more control samples is indicative of a specific inflammatory phenotype. For example, suitable control or reference expression profiles may be determined in one or more, typically a population, of individuals without an inflammatory phenotype of interest or known not to suffer from asthma. In subjects to which methods disclosed herein are applied, a comparison of the expression profiles with those obtained from the appropriate reference or control may determine diagnosis.
[0058] Reliable diagnoses of asthma inflammatory phenotypes, such as are possible utilising methods of the present disclosure also facilitate decision making with respect to the most appropriate intervention or treatment regime for individual subjects. The treatment regime may be tailored not only to the specific inflammatory phenotype suffered by the subject but also to the subject themselves based on one or more other factors such as the severity of the symptoms, the subjects lifestyle, age, weight, general health etc. For example, this may comprise introducing a new treatment regime or modifying an existing regime employed by the subject. The modification of a regime may be modification with respect to any one or more of a variety of factors, such as the nature of any anti-asthma medication, the dosage thereof, the timing of administration and/or any supplementary management strategies. Such decision making with respect to treatment regimes will vary from case to case and the determination of the most appropriate strategy is well within the expertise and experience of those skilled in the art.
[0059] A treatment regime for the treatment of asthma in a subject in accordance with the present disclosure may involve administration of any of the medications commonly utilised in the treatment of the disease. The treatment regime may comprise the administration of a number of drugs simultaneously, sequentially, or in combination with each other or with non-drug treatments. The type of drug(s) administered, dosage, and the frequency of administration can be determined by medical physicians in accordance with accepted medical principles, and will depend on factors such as the severity of the disease, the age and weight of the subject, the medical history of the subject, other medication being taken by the subject, existing ailments and any other health related factors normally considered when determining treatments for obstructive airways disease.
[0060] A commonly employed therapy in the treatment of asthma is corticosteroid inhalation. However treatment with corticosteroids is not effective in all individuals; whilst effectively treating eosinophilic asthma, corticosteroids are of little benefit in the treatment of individuals with non-eosinophilic inflammation. ICS response is greater in eosinophilic asthma compared to non-eosinophilic asthma. Recognition of eosinophilic asthma also results in better application of new therapies (Nair et al., 2009). Poor responses may be mediated by an inflammatory pattern that is insensitive to corticosteroids, thought to be the case for airway neutrophilia.
[0061] Accordingly, the present disclosure provides methods for predicting whether a -subject will respond to corticosteroid therapy, based on an analysis of the expression levels of one or more genes selected from CLC, CPA3, DNASE1L3, ILIB and ALPL, typically before and after administration of corticosteroids (for example by inhalation). In one embodiment the method comprises the steps of:
(a) obtaining a biological sample from the subject and determining the expression levels of the genes CLC, CP A3, DNASEIL3, ILIB and ALPL in the sample;
(b) administering a corticosteroid to the subject; and
(c) obtaining a further biological sample from the subject and determining the expression levels of the genes CLC, CPA3, DNASE1L3, ILIB and ALPL in the sample;
wherein a reduction in expression of one or more of CLC, CP A3 and DNASE1L3 and/or an increase in expression of one or more of 1L1B and ALPL following administration step (b) is indicative that the subject is responsive to corticosteroid therapy.
[0062] In an alternative embodiment, the present disclosure provides a method for diagnosing responders to corticosteroid therapy for treating asthma, the method comprising the steps of:
(a) obtaining a biological sample from a subject;
(b) determining the expression profile of the genes CLC, CPAS, DNASE1L3, ILIB, ALPL and IL8RB, wherein the expression profile comprises or is based on the expression levels of said genes in the sample; and
(c) comparing the gene expression profile from the sample with a reference gene expression profile indicative of responsiveness to corticosteroid therapy, and/or to a reference gene expression profile indicative of non- responsiveness to corticosteroid therapy,
wherein similarity in expression profiles between the sample and reference profiles is indicative of the subject being a responder or non-responder to corticosteroid therapy.
[0063] The present disclosure also provides kits suitable for use in accordance with the methods of the disclosure. Such kits include for example diagnostic kits for assaying biological samples, comprising an agent(s) for detecting expression levels discriminatory proteins disclosed herein or encoding nucleic acid molecules, and reagents useful for facilitating the determination of expression by . the agent(s). The agent(s) may be any suitable detecting molecule. Kits according to the present disclosure may also include other components required to conduct the methods of the present invention, such as buffers and/or diluents. The kits typically include containers for housing the various components and instructions for using the kit components in the methods of the present disclosure.
[0064] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
[0065] The present invention will now be described with reference to the following specific examples, which should not be construed as in any way limiting the scope of the invention.
Examples
General Methods
Study Design
[0066] The inventors conducted 3 studies: a sputum gene expression profiling discovery study (n=47), a clinical validation study (n=80), and an evaluation of the biomarker signature to predict corticosteroid responsiveness (n=71). The discovery study assessed changes in the sputum gene expression profile of 47 subjects with stable non-smoking asthma that were related to asthma inflammatory phenotype (Table 1 , eosinophilic asthma n=17; neutrophilic asthma n=12; paucigranulocytic asthma n=18). Gene biomarkers that were shown to be differentially expressed in the discovery microarray study were then validated by real-time PCR in this population. Those confirmed differentially regulated genes were followed up in a clinical validation study of 59 subjects with stable asthma (Table 2, eosinophilic asthma n=20; neutrophilic asthma n=18; paucigranulocytic asthma n=21) and a group of healthy volunteers (n=21). The top 6 genes were investigated for their ability to predict asthma inflammatory phenotype. Steroid response of 6 gene biomarkers was then assessed in a third population of asthmatics. The studies were approved by the relevant institutional ethics committees: The University of Newcastle Research Ethics Committee and the Lower South Regional Ethics Committee New Zealand.
Study Population
[0067] For the discovery and clinical validation studies, adults with stable asthma were recruited from the John Hunter Hospital Ambulatory Care Clinic; NSW; Australia. For the corticosteroid responsiveness study, adults with stable persistent asthma were enrolled. Asthma was diagnosed according to American Thoracic Society guidelines based upon current (past 12 months) episodic respiratory symptoms, doctor's diagnosis (ever) and demonstrated evidence of airway hyperresponsiveness to hypertonic saline. Healthy nonasthmatic controls were recruited by advertisement. Exclusion criteria included: recent (past month) respiratory tract infection, recent asthma exacerbation, recent unstable asthma or change in maintenance therapy, and current smoking. Asthma inflammatory phenotype was assigned based on sputum eosinophil cut off of >3%, and sputum neutrophil cut off of >61 % (Simpson et al, 2006).
Sputum Induction and Analysis
[0068] Spirometry ( o o PD Instrumentation, Louisville, USA) and sputum induction with hypertonic saline (4.5%) were performed as previously described (Simpson et al., 2006). For inflammatory cell counts, selected sputum was dispersed using dithiothreitol, and a total cell count viability was performed. Cytospins were prepared,* stained (May- Grunwald Giemsa) and a differential cell count obtained from 400 non-squamous cells. For gene expression microarray analysis, ΙΟΟμί of selected sputum was added to Buffer RLT (Qiagen, Hilden, Germany) and stored at -80°C until RNA extraction.
Whole Genome Gene Expression Microarrays
[0069] RNA was extracted from induced sputum samples using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and quantitated using the Quant-iT RiboGreen RNA Quantitation Assay Kit (Molecular Probes · Inc, Invitrogen, Eugene, USA), as per manufacturers instructions. 500ng of RNA was reverse transcribed into cRNA and biotin- UTP labeled using the Illumina TotalPrep RNA Amplification Kit (Ambion, Texas, USA). 750ng of cRNA was hybridised to the Illumina Sentrix HumanRef-8 Version 2 Expression BeadChips, and scanned using the Illumina Bead Station and captured using BeadScan 3.5.11 (Illumina, San Diego, USA). Samples and gene profiling results were included in the analysis if the sample was of suitable purity (OD 260/280 1.7-2.1), successfully amplified (sufficient cRNA generated) and hybridized (GP95 score>500) and the data passed quality controls in GeneSpring GX (correlation coefficients and principle component analysis plots).
Ranking of Differentially Expressed Genes as Potential Biomarkers
[0070] Differentially expressed genes due to asthma inflammatory phenotype were ranked in terms of 1) level of significance (ANOVA adjusted p value), 2) extent of the change expressed as fold difference between phenotypes, 3) abundance of mRNA expression in sputum 4) biological plausibility as to the candidates potential involvement in asthma pathogenesis; including their involvement in known biological pathways, and 5) importance and relevance as a biomarker and potential therapeutic target.
Quantitative real-time PCR Validation
[0071] Sputum RNA (200ng) was reverse-transcribed to cDNA using the high capacity cDNA reverse transcription kit (Applied Biosystems, Foster City,USA). Taqman qPCR primer and probes were purchased in kit form (Applied Biosystems, Foster City,USA). PCR primers and probes were combined with Taqman gene expression master mix as per manufacturer's instructions in duplicate singleplex real-time PCRs (7500 Real Time PCR System, Applied Biosystems). Statistical analysis was performed on the change in cycle threshold (ACt) between the target gene and β-actin the housekeeping gene. Fold change results were calculated using 2"AACl relative to both the housekeeping gene (β-actin) and the mean of the healthy control group.
Statistical Analysis
[0072] Clinical and cell count data were analysed using Stata 9 (Stata Corporation, College Station, Texas,USA) and reported as mean (SD) for normally distributed data and median (Ql, Q3) for non-parametric data. Statistical comparisons were performed using the multiple comparison ANOVA for parametric data and the Kruskal Wallis test for non- parametric data, p<0.05 was considered significant.
[0073] Microarray data was exported using Genome Studio (Illumina, San Diego,USA) and analysed using GeneSpring GX1 1 (Agilent Technologies, Santa Clara,USA). Data were log transformed, normalised and baseline converted to the median of all samples. Data were filtered and only genes flagged as present (<0.05 detection p value) in about half of the samples (n=23/47, 49%) were included in the further analysis. Differential gene expression was determined using ANOVA, with Tukey post hoc testing (p<0.05 adjusted for multiple comparisons using Benjamini Hochberg method) and fold change of >2.
[0074] Logistic regression was used to calculate the predicted value of an individual having the disease phenotype based on their level of a particular marker (simple logistic regression) or combination of markers (multiple logistic regression). Receiver Operating Characteristic (ROC) Curves were generated from the predicted values of the regression analyses, and the predicted values, the detection rate and the area under the curve (AUC) were calculated. Bland-Altman plots and Intra Class Correlation (ICC) coefficients were used to determine reproducibility.
Example 1 - Differentially Expressed Genes between Asthma Inflammatory Phenotypes
[0075] Whole genome gene expression profiles (including 22,184 entities) were generated from induced sputum samples from 17 subjects with eosinophilic asthma, 12 subjects with neutrophilic asthma and 18 subjects with paucigranulocytic asthma (Table 1).
[0076] A gene was considered to be expressed if it was flagged as present in about half (n=23/47, 49%) of samples tested, and this resulted in 14,573 entities out of 22,184 (65.7%) being expressed. Out of these 14,573 entities, 5284 were significantly different due to asthma inflammatory phenotype (ANOVA, p<0.05 adjusted for multiple comparisons using Benjamini Hochberg false discovery rate). There were 277 entities that had a >2 change of gene expression between comparisons (data not shown), of which 36 differentially expressed genes were selected as candidates for validation by real-time PCR.
[0077] The real-time PCR results for all genes analysed were significantly correlated With the array results, however, only 28 genes remained significantly differentially expressed between asthma inflammatory phenotypes (Table 2), with 9 of these genes reaching a significance of p<0.001. Expression of BIRC3, CCR7, CP A3, CEBPE, CLC, DNASEIL3, HDC, and TFF3 were significantly highest in eosinophilic asthma. Expression of ALPL, CXCR1, CXCR2, ILIB, ILJR2, IL1RN, IRAK2, ISG20, NFKB2, NFKBIZ, NLRP3, ORM1, PEL/1, PI3, TNFAIP3, TNFRSFIB and VNN2were highest in neutrophilic asthma. Expression of DEFBl was highest in paucigranulocytic astma, d TNFSFN was similarly increased in both eosinophilic asthma and neutrophilic asthma compared to paucigranulocytic asthma. CAMP, FPR2, GBPI, GCHFR, IL18RAP, NAMPT and PLAU although correlated with the array results, did not reach significance between inflammatory phenotypes, so were not tested in the clinical validation population. Table 1: Clinical characteristics of the participants in the microarray discovery study
Figure imgf000023_0001
Bonferroni post hoc test *p<0.017 versus PGA; kwallis2 Tp<0.008 versus PGA; ^ρΟ.ΟΟδ versus EA; $p<0.008 versus NA; !,Chi s p<0.017
Table 2: Differential expression of biomarker candidates in both study groups determined by qPCRA
Figure imgf000024_0001
Figure imgf000025_0001
AData expressed as the change in cycle threshold (Ct) compared to the housekeeping gene β-actin (ACt), mean (SD). A lower ACt corresponds to a stronger expression of the target gene.
*p<0.017 bonferroni post hoc test versus paucigranulocytic asthma, #p<0.017 bonferroni post hoc test versus neutrophilic asthma, p<0.017 bonferroni post hoc test versus eosinophilic asthma
Example 2 - Validation of Candidate Genes in the Secondary Validation Asthma Population
[0078] The inventors then tested the 28 validated candidate gene expression biomarkers in a secondary population of subjects with eosinophilic asthma n=20, neutrophilic asthma n=18, and paucigranulocytic asthma n=21 (Table 3). There were 26 genes that remained significantly different between inflammatory phenotypes of asthma (see Table 2), with 15 of these reaching a significance of p<0.001. Expression of BPIFBl, CLC, CP A3, DNASE1L3, and HDC were the highest in eosinophilic asthma, whereas expression of ALPL, CXCRl , CXCR2, ILIB, IL1R2, ILIRN, IRAK2, ISG20, NFKB2, NFKBIZ, NLRP3, ORMI, PELII, PI3, TNFAIP3, TNFRSF1B, TNFSF14 and VNN2 were highest in neutrophilic asthma. Although expression of BIRC3, DEFB1, and TFF3 reached significance overall, a post hoc analysis of individual phenotypes was not significant. CCR7 and CEBPE did not reach significance in the clinical validation population. This left 23 genes consistently different between inflammatory phenotype in both discovery and validation populations.
Example 3 - Analysis of the Biomarker Signature
[0079] The performance of the selected gene expression biomarkers to discriminate asthma inflammatory phenotype was investigated as single markers (using simple logistic regression) and as a combination of biomarkers (using multiple logistic regression). Only those genes that were confirmed using real-time PCR as significantly different between phenotype in both the discovery and the validation population were further investigated for their potential to predict asthma inflammatory phenotype. 4 genes (CLC, CP A3, DNASEIL3 and HDC) were further investigated for their potential to predict eosinophilic asthma. Each of these markers individually was able to discriminate eosinophilic asthma from non-eosinophilic asthma, as well as neutrophilic and paucigranulocytic asthma separately (Table 4). CPA 3 was the best individual discriminator for eosinophilic asthma, followed by CLC, DNASEIL3 and HDC. Table 3: Clinical characteristics of the participants in the clinical validation population
Figure imgf000027_0001
Figure imgf000028_0001
Bonferroni post hoc test *ρ<0.017 versus PGA; kwallis2 Tp<0 01 versus healthy controls; ip<0.01 versus paucigranulocytic asthma; sp<0.01 versus neutrophilic asthma; " p<0.01 versus eosinophilic asthma; BDP = beclomethasone dipropionate
Table 4: Analysis of diagnostic value of 4 individual gene expression biomarkers to diagnose eosinophilic asthma
Minimal False Negatives Minimal False Positives
Gene AUC Cutoff Cutoff
Sensitivity Specificity Sensitivity Specificity
Comparison Biomarker % P value Predicted Value Predicted Value
EA vs. NEA CLC 80.2 <0.0001 >0.319 78.4% 74.6% >0.41 1 73.0% 83.6%
CPA3 86.1 O.0001 >0.256 89.2% 67.2% >0.407 70.3% 88.1%
DNASE1L3 76.5 <0.0001 >0.351 75.7% 65.7% >0.422 67.6% 77.6%
HDC 75.5 <0.0001 >0.346 70.3% 65.2% >0.419 56.8% 72.7%
EA vs. PGA CLC 86.6 <0.0001 >0.308 86.5% 67.6% >0.667 73.0% 91.9%
CPA3 90.6 O.OOOl >0.294 94.6% 62.2% >0.634 70.3% 94.6%
DNASE1L3 80.3 O.0001 >0.440 86.5% 70.3% >0.534 75.7% 78.4%
HDC 84.7 0.0001 >0.338 91.9% 63.9% >0.569 70.3% 77.8%
EA vs. NA CLC 72.3 0.002 >0.496 75.7% 66.7% >0.544 73.0% 73.3%
CP A3 80.5 O.OOOl >0.438 86.5% 63.3% >0.553 73.0% 80.0%
DNASE1L3 71.9 0.006 >0„569 70.3% 73.3% >0.572 67.6% .76.7%
HDC 64.4 0.019 >0.51 1 67.6% 53.3% >0.567 51.4% 60.0%
[0080] The 4 most significant (ANOVA p<0.003 for both the discovery and validation populations) genes (ALPL, ILIB, IL8RB and PI3) were further investigated for their potential to predict neutrophilic asthma. Each of these markers individually was able to discriminate neutrophilic asthma from non-neutrophilic asthma, as well as paucigranuiocytic and eosinophilic asthma separately (Table 5). ILIB was the best individual discriminator for neutrophilic asthma, followed by ALPL, IL8RB and PI3. 2, 3, 4, 5 and 6 multiple combinations of the top 6 gene biomarkers were then evaluated across all phenotype comparisons. The combination of 6 genes including CLC, CPA3, DNASE1L3, ILIB, ALPL, IL8RB gave the strongest performance to discriminate asthma inflammatory phenotypes (Table 6). The 6 gene signature was able to discriminate eosinophilic asthma from non-eosinophilic asthma (AUC 89.6%, p<0.0001), neutrophilic asthma (Figure 1A, AUC 91.4%, p<0.0001), and paucigranuiocytic asthma (Figure I B, AUC 92.6%, pO.0001 ). The 6 gene signature was also able to discriminate neutrophilic asthma from non-neutrophilic asthma (AUC 84.5%, p<0.0001 ), and paucigranuiocytic asthma (Figure 1C, AUC 85.7%, p<0.0001).
Table 5: Analysis of diagnostic value of 4 individual gene expression biomarkers to diagnose neutrophilic asthma
Minimal False Negatives Minimal False Positives
Gene AUC Cutoff Cutoff
Sensitivity Specificity Sensitivity Specificity
Comparison Biomarker % P value Predicted Value Predicted Value
NA vs. NNA ALPL 71.9 O.0001 >0.234 86.7% 64.9% >0.397 63.3% 79.7%
IL1B 78.9 <0.0001 >0.248 73.3% 64.9% >0.347 63.3% 77.0%
IL8RB 77.6 <0.0001 >0.269 76.7% 67.6% >0.369 66.7% 82.4%
PI3 75.8 O.0001 >0.250 73.3% 59.5% >0.351 56.7% 78.4%
NA. vs. PGA ALPL 81.0 <0.0001 >0.438 83.3% 73.0% >0.536 70.0% 78.4%
IL1B 83.1 <0.0001 >0.337 83.3% 64.9% >0.519 70.0% 78.4%
IL8 B 81.9 <0.0001 >0.360 83.3% 62.2% >0.519 70.0% 81.1%
PI3 78.8 <0.0001 >0.355 83.3% 59.5% >0.560 56.7% 86.5%
NA vs. EA ALPL 77.4 O.0001 >0.495 75.7% 63.3% >0.648 62.2% 86.7%
IL1B 74.8 0.0006 >0.529 73.0% 63.3% >0.632 62.2% 76.7%
IL8RB 73.2 0.0008 >0.512 81.1% 66.7% >0.597 62.2% 76.7%
PIS 72.7 0.0009 >0.539 70,3% 56.7% >0.612 56.8% 73.3%
Table 6: Analysis of diagnostic values of CLC, CPA3, DNASE1L3, ALPL, 1L1B, IL8RB in combination for asthma inflammatory phenotype
Minimal False Negatives Minimal False Positives
Cutoff Cutoff
Sensitivity Specificity Sensitivity Specificity
Comparison AUC% P value Predicted Value Predicted Value
EA vs. NEA 89.6 0,0001 >0.250 89.2% 73.1% >0.51 70.3% 91.0%
EA vs. PGA 92.6 O.OOOl >0.361 94.6% 75.7% >0,782 70.3% 97.3%
EA vs. NA 91.4 O.OOOl >0.372 94.6% 73.3% >0.653 78.4% 86.7%
NA vs. NNA 84.5 O.OOOl >0.290 86.7% 75.7% >0.398 73.3% 82.4%
NA vs. PGA 85.7 .OOOl >0.330 86.7% 62.2% >0.543 73.3% 86.5%
PGA vs. NPGA 85.4 .OOOl >0.244 91.9% 67.2% >0.458 70.3% 83.6%
Example 4 - Validation of 6 Gene Expression Biomarker Signature compared to Healthy Controls
[0081) The expression of the 6 gene expression biomarkers {CLC, CPA3, DNASE1L3, IL1B, ALPL and IL8RB) was further investigated in comparison to induced sputum samples from healthy control subjects. The 6 gene expression biomarker signature was able to discriminate asthma from healthy controls with 85% accuracy, eosinophilic asthma from healthy controls with 98% accuracy (Figure 2A), and neutrophilic asthma from healthy controls with 91% accuracy (Figure 2B). As expected, CLC (Figure 3A), CPA3 (Figure 3B) and DNASE1L3 (Figure 3C) had significantly increased gene expression in eosinophilic asthma compared to healthy controls. 1L1B (Figure 3D), ALPL (Figure 3E) and IL8RB (Figure 3F) had significantly increased gene expression in neutrophilic asthma compared to healthy controls.
[0082] Sputum gene expression of the 6 biomarkers was measured in 30 subjects (n=9 EA, n=7 NA, n=14 PGA) on 2 occasions, an average of 30 days apart. The bias of measurement was small with equal scatter for all genes (data not shown). ICC coefficients were almost perfect for CLC (0.84), substantial for CPAS (0.71), DNASE1L3 (0.75), and IL1B (0.66), and moderate for ALPL (0.55) and CXCR2 (0.47).
Example 5 - Assessment of the 6 Gene Biomarker Signature to predict Steroid Responsiveness
[0083] To investigate the responsiveness of the 6 gene biomarker signature to inhaled corticosteroids (ICS) the expression of the markers were investigated in 71 asthmatics before and after corticosteroid treatment (1000μg fluticasone per day for 28 days). The effects of ICS treatment on inflammatory phenotype of asthma and other information regarding this population have been previously published (Cowan et al, 2010), and consisted of subjects with eosinophilic (n=48) and non-eosinophilic (n=23) asthma. Neutrophilic asthma was rare in this population. The 6 gene biomarker signature successfully predicted 92% of subjects with eosinophilic asthma, and 74% of subjects with non-eosinophilic asthma (Table 7). Table 8: Predicted Phenotypes in New Zealand Population
Figure imgf000034_0001
[0084] Comparison of the sputum cell counts and the gene signature methods to determine inflammatory phenotype showed an 86% agreement with a statistic of 0.67 (p<0.0001), which is a substantial agreement according to the Landis and Koch classifications. Further statistical testing demonstrated that the 6 gene biomarker signature could discriminate ICS responsiveness particularly a >12% improvement in FEV1 (Figure 4A; AUC 91.5%; p<0.0001), 0.5 point decrease in ACQ score (Figure 4B; AUC=85.7%; p=0.0022), or a 40% decrease in FE O (Figure 4C, AUC=87.1%; pO.0001)
[0085] All 6 gene expression biomarkers were significantly elevated in eosinophilic asthma compared to healthy controls (Figure 5). Expression of CLC (Figure 5A), and DNASEIL3 (Figure 5C) were also significantly elevated in eosinophilic asthma compared to non-eosinophilic asthma. Expression of 1L1B was significantly higher in both eosinophilic and non-eosinophilic asthma compared to healthy controls (Figure 5D). In response to steroid treatment, the expression of CLC (Figure 5A), CPAS (Figure 5B) and DNASE1L3 (Figure 5C) were reduced in eosinophilic asthma, and CPA3 was also reduced in non-eosinophilic asthma. In contrast, the expression of IL1B (Figure 5D) and ALPL (Figure 5E) were increased with steroid treatment of eosinophilic asthma.
Discussion
[0086] The study described in the above examples identified a 6 gene expression biomarker signature derived from induced sputum samples that reproducibly discriminates the inflammatory phenotypes of asthma and predicts ICS responsiveness. The top 6 genes including CLC, CP A3, DNASE1L3, IL1B, ALPL and CXCR2 in combination were shown to accurately identify asthma inflammatory phenotype, thereby demonstrating their potential use as a clinical biomarker. CLC, CPA3 and DNASE1L3 are shown to have increased gene expression in eosinophilic asthma, whereas IL1B, ALPL and CXCR2 have increased gene expression in neutrophilic asthma. This 6 gene expression signature distinguishes eosinophilic asthma from non-eosinophilic asthma with substantial agreement, and could predict ICS responsiveness defined by a greater than 12% decrease in FEVl, 0.5 decrease in ACQ score and 40% reduction in FENO. The 6 gene biomarker signature could predict asthma and phenotype of asthma from healthy controls and demonstrated predominant eosinophilia and neutrophilia in MGA. Expression levels of the 6 gene signature were modified by ICS treatment, with CLC, CPA3 and DNASE1 L3 being decreased and IL1 B and ALPL being increased after ICS treatment of eosinophilic asthma.
References
Cowan DC, et al. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax 2010; 65:384-90..
Gibson PG, et al. Heterogeneity of airway inflammation in persistent asthma : evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 200\ ; 1 19:1329-36.
Green RH, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 2002; 30:1715-21.
Hillas G, et al. Exhaled nitric oxide and exhaled breath condensate pH as predictors of sputum cell counts in optimally treated asthmatic smokers. Respirology 2011 ; 16:811-18.
Ito , et al. Update on glucocorticoid action and resistance. J Allergy Clin Immunol 2006: 1 17:522-43.
Nair P, et al. Mepolizumab for Prednisone-Dependent Asthma with Sputum Eosinophilia. N Engl JMed 2009; 360:985-93.
Simpson JL, et al. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology 2006; 1 1 :54-61.

Claims

1. A method for determining the asthma inflammatory phenotype in a subject suffering from asthma, the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profile of the genes CLC, CP A3, DNASEIL3, /LIB, ALPL and IL8RB, wherein the expression profile comprises or is based on the expression levels of said genes in the sample,
wherein the expression profile of said genes is indicative of the asthma inflammatory phenotype.
2. A method according to claim 1 , wherein the expression profile of said genes and the determination of inflammatory phenotype is based on multiple logistic regression analysis of the gene expression levels.
3. A method according to claim 1 or 2, wherein the method enables the determination of whether the subject has eosinophilic asthma or non-eosinophilic asthma.
4. A method according to claim 2, wherein multiple logistic regression analysis of the expression profile of said genes facilitates the distinction between:
(i) eosinophilic asthma and non-eosinophilic asthma, typically where non-eosinophilic asthma is neutrophilic asthma or paucigranulocytic asthma;
(ii) neutrophilic asthma and non-neutrophilic asthma, typically where non-neutrophilic asthma is eosinophilic asthma or paucigranulocytic asthma;
(iii) neutrophilic asthma and paucigranulocytic asthma;
(iv) paucigranulocytic asthma and non-paucigranulocytic asthma, typically where non- paucigranulocytic asthma is neutrophilic asthma or eosinophilic asthma; or
(v) eosinophilic asthma and neutrophilic asthma.
5. A method according to any one of claims 1 to 4, wherein the expression profile of the genes in the sample from the subject is compared to a reference expression profile, wherein the reference expression profile comprises an expression profile of the same genes derived from one or more individuals known not to suffer from asthma, or alternatively kno n to have a particular asthma inflammatory phenotype.
6. A method according to any one of claims 1 to 5, wherein for determination of the expression profile, expression is measured at the messenger ribonucleic acid (mRNA) or gene level,
7. A method according to any one of claims 1 to 5, wherein for determination of the expression profile, expression is measured at the at the polypeptide or protein level.
8. A method for distinguishing between eosinophilic asthma and non-eosinophilic asthma in a subject, the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profile of the genes CLC, CPAS, DNASE1L3, IL1B, ALPL and IL8RB, based on the expression levels of said genes in the sample,
wherein the expression profile of said genes is indicative of the subject having eosinophilic asthma or non-eosinophilic asthma.
9. A method for determining the response of a subject having asthma to corticosteroid therapy, the method comprising the steps of:
(a) obtaining a biological sample from the subject and determining the expression levels of the genes CLC, CPAS, DNASE1L3, [LIB and ALPL in the sample;
(b) administering a corticosteroid to the subject; and
(c) obtaining a further biological sample from the subject and determining the expression levels of the genes CLC, CP A3, DNASE1L3, ILIB and ALPL in the sample;
wherein a reduction in expression of one or more of CLC, CP A3 and DNASE1L3 and/or an increase in expression of one or more of ILIB and ALPL following administration step (b) is indicative that the subject is responsive to corticosteroid therapy.
10. A method for diagnosing responders to corticosteroid therapy for treating asthma, the method comprising the steps of:
(a) obtaining a biological sample from a subject;
(b) determining the expression profile of the genes CLC, CP A3, DNASEIL3, ILIB, ALPL and IL8RB, wherein the expression profile comprises or is based on the expression levels of said genes in the sample; and
(c) comparing the gene expression profile from the sample with a reference gene expression profile indicative of responsiveness to corticosteroid therapy, and/or to a reference gene expression profile indicative of non-responsiveness to corticosteroid therapy,
wherein similarity in expression profiles between the sample and reference profiles is indicative of the subject being a responder or non-responder to corticosteroid therapy.
1 1. A method according to claim 10, wherein a reference expression profile indicative of responsiveness to corticosteroid therapy is obtained from one or more individuals responsive to corticosteroid therapy.
12. A method according to claim 10 or 11, wherein a reference expression profile indicative of non-responsiveness to corticosteroid therapy is obtained from one or more individuals non-responsive to corticosteroid therapy.
13. A method for distinguishing eosinphiUc asthma from non-eosinophilic, paucigranulocytic or neutrophilic asthma in a subject, the the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profiles of one or more genes selected from CLC, CPAS, DNASE1L3 and HDC , wherein the expression profiles of the genes comprise or are based on the expression levels of the genes in the sample,
wherein the expression profiles of one or more of said genes is indicative of the subject having (i) eosinophilic asthma or non-eosinophilic asthma, (ii) eosinophilic asthma or paucigranulocytic asthma, or (iii) eosinophilic asthma or neutrophilic asthma.
14. A method for distinguishing neutrophilic asthma from non-neutrophilic, paucigranulocytic or eosinophilic asthma in a subject, the the method comprising:
(a) isolating a biological sample from the subject; and
(b) determining the expression profiles of one or more genes selected from ALPL, ILIB, IL8RB and PI3 ,wherein the expression profiles of the genes comprise or are based on the expression levels of the genes in the sample,
wherein the expression profiles of one or more of said genes is indicative of the subject having (i) neutrophilic asthma or non-neutrophilic asthma, (ii) neutrophilic asthma or paucigranulocytic asthma, or (iii) neutrophilic asthma or eosinophilic asthma.
15. A method according to any one of claims 1 to 14, wherein the biological sample comprises sputum.
16. A method according to claim 15, wherein the sputum is induced sputum.
17. A method according to claim 16, wherein the sputum is induced using hypertonic saline.
18. A method for determining a treatment regime for a subject suffering from asthma, the method comprising determining the asthma inflammatory phenotype in the subject in accordance with a method of one or more of the preceding claims, and selecting an appropriate treatment regime for the subject on the basis of the determination.
PCT/AU2013/001466 2012-12-14 2013-12-13 Biomarkers of asthma inflammatory phenotypes WO2014089636A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2013359959A AU2013359959A1 (en) 2012-12-14 2013-12-13 Biomarkers of asthma inflammatory phenotypes
DK13862455.6T DK2931920T3 (en) 2012-12-14 2013-12-13 BIOMARKERS FOR INFLAMMATORY ASTMPHENotypes AND TREATMENT RESPONSE
EP13862455.6A EP2931920B1 (en) 2012-12-14 2013-12-13 Biomarkers of asthma inflammatory phenotypes and response to therapy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2012905473 2012-12-14
AU2012905473A AU2012905473A0 (en) 2012-12-14 Biomarkers of asthma inflammatory phenotypes

Publications (1)

Publication Number Publication Date
WO2014089636A1 true WO2014089636A1 (en) 2014-06-19

Family

ID=50933598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2013/001466 WO2014089636A1 (en) 2012-12-14 2013-12-13 Biomarkers of asthma inflammatory phenotypes

Country Status (4)

Country Link
EP (1) EP2931920B1 (en)
AU (1) AU2013359959A1 (en)
DK (1) DK2931920T3 (en)
WO (1) WO2014089636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019000029A1 (en) * 2017-06-26 2019-01-03 The University Of Newcastle Methods for diagnosing inflammatory phenotypes of chronic obstructive pulmonary disease

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102005B2 (en) 2016-09-15 2022-07-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Improved hybrid terrorist dendrimer
EP3599285A1 (en) * 2018-07-25 2020-01-29 Rheinische Friedrich-Wilhelms-Universität Bonn Method of diagnosing asthma subtypes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119343A1 (en) * 2005-05-03 2006-11-09 Children's Hospital Medical Center Determination of eosinophilic esophagitis
WO2008086043A2 (en) * 2007-01-10 2008-07-17 Wyeth Methods and compositions for assessment and treatment of asthma
KR20100131003A (en) * 2008-03-31 2010-12-14 제넨테크, 인크. Compositions and methods for treating and diagnosing asthma

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BAINES, KJ. ET AL.: "Differential gene expression and cytokine production from neutrophils in asthma phenotypes", EUR. RESPIR. J., vol. 35, 2010, pages 522 - 531, XP055258968 *
BAINES, KJ. ET AL.: "Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples", J. ALLERGY CLIN. IMMUNOL., vol. 127, 2011, pages 153 - 160, XP028150399 *
DATABASE GEO [online] 1 June 2007 (2007-06-01), "Illumina HumanRef-8 Expression BeadChip", XP055258985, accession no. NCBI Database accession no. GPL5060 *
FU, J-J. ET AL.: "Systemic inflammation is associated with differential gene expression and airway neutrophilia in asthma", OMICS., vol. 17, 2013, pages 187 - 199, XP055258970 *
SIMPSON, JL. ET AL.: "Elevated expression of the NLRP3 inflammasome in neutrophilic asthma", EUR. RESPIR. J., 2013, XP055258971 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019000029A1 (en) * 2017-06-26 2019-01-03 The University Of Newcastle Methods for diagnosing inflammatory phenotypes of chronic obstructive pulmonary disease
CN111356773A (en) * 2017-06-26 2020-06-30 纽卡斯尔大学 Method of diagnosing inflammatory phenotype of chronic obstructive pulmonary disease
EP3645747A4 (en) * 2017-06-26 2021-06-23 The University of Newcastle Methods for diagnosing inflammatory phenotypes of chronic obstructive pulmonary disease

Also Published As

Publication number Publication date
EP2931920B1 (en) 2018-03-07
EP2931920A4 (en) 2016-11-30
DK2931920T3 (en) 2018-06-14
AU2013359959A1 (en) 2015-07-30
EP2931920A1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
Baines et al. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes
US9624543B2 (en) Markers for diagnosis of pulmonary inflammation and methods related thereto
CA2988673A1 (en) Epigenetic chromosome interactions
US20190367984A1 (en) Methods for predicting response to anti-tnf therapy
WO2008109773A2 (en) Chronic obstructive pulmonary disease susceptibility and related compositions and methods
EP3420101B1 (en) Method for detecting active tuberculosis
EP2931920B1 (en) Biomarkers of asthma inflammatory phenotypes and response to therapy
US20230014092A1 (en) Materials and methods for monitoring inflammation
US10597728B2 (en) Methylation site regulating expression of mda-9/syntenin
US12077820B2 (en) Biomarkers for assessing the response status for treatment of Inflammatory condition or disease affecting the digestive tract such as inflammatory bowel disease in human patients
US10078086B2 (en) Use of interleukin-27 as a diagnostic biomarker for bacterial infection in critically ill patients
US20230003719A1 (en) Materials and methods for inflammatory molecular markers
JP7392224B2 (en) miRNA diagnostic biomarker for drug-induced interstitial pneumonia with diffuse alveolar injury
EP3143164A1 (en) Methods for assessing responsiveness to asthma treatment based on vnn-1 expression and promoter methylation
US20120034214A1 (en) Methods and kits for determining the prognosis of pulmonary sarcoidosis
US20200308646A1 (en) Methods for diagnosing inflammatory phenotypes of chronic obstructive pulmonary disease
WO2017158152A1 (en) Diagnosis of chronic obstructive pulmonary disease (copd)
EP3633050A2 (en) In vitro method for diagnosing asthma or subforms thereof
JP2022049694A (en) Method for detecting infantile atopic dermatitis
US20190093164A1 (en) Biomarker for diagnosis of allergic rhinitis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013862455

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013359959

Country of ref document: AU

Date of ref document: 20131213

Kind code of ref document: A