WO2014087412A1 - Implants de titane métallique modifiés par une nanosurface pour applications orthopédiques ou dentaires et procédé pour les fabriquer - Google Patents

Implants de titane métallique modifiés par une nanosurface pour applications orthopédiques ou dentaires et procédé pour les fabriquer Download PDF

Info

Publication number
WO2014087412A1
WO2014087412A1 PCT/IN2012/000786 IN2012000786W WO2014087412A1 WO 2014087412 A1 WO2014087412 A1 WO 2014087412A1 IN 2012000786 W IN2012000786 W IN 2012000786W WO 2014087412 A1 WO2014087412 A1 WO 2014087412A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
titanium
implants
product
hydroxide
Prior art date
Application number
PCT/IN2012/000786
Other languages
English (en)
Inventor
Deepthy DEEPTHY MENON SHANTIKUMAR V NAIR MANZOOR KOYAKUTTY DIVYA RANI VV VINOTHKUMAR LAKSHMANAN
Original Assignee
Amrita Vishwa Vidya Peetham University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amrita Vishwa Vidya Peetham University filed Critical Amrita Vishwa Vidya Peetham University
Priority to PCT/IN2012/000786 priority Critical patent/WO2014087412A1/fr
Publication of WO2014087412A1 publication Critical patent/WO2014087412A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/21Pharmaceuticals, e.g. medicaments, artificial body parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Definitions

  • the Invention relates to "The Art, Method and Manner of Nanosurface Modification of titanium implants for orthopedic or dental applications"
  • the present invention relates to a metallic implant product developed with surface nanofeatures by means of wet chemical hydrothermal technique, which provides better biocompatibility and improved osteointegration for specific use in orthopedic and dental applications.
  • Methods of creating nano features on surfaces of titanium dioxide (titania) on Ti implants and the corresponding improved implant behaviour as a consequence under in vivo conditions are demonstrated and proven in this invention.
  • Titanium implants have a surface layer of titanium dioxide and this is responsible for the inertness of titanium-based implants within the human body.
  • their cytocompatibility properties and long- term efficacy are limited without further surface engineering since the average functional lifetime of an orthopedic implant is only 10 to 15 years. Therefore, surface modification of titanium has been explored as a means to improve osteointegration.
  • the surface topography of bio-implant materials influence cell response, including focal adhesion, cellular morphology, cytoskeleton rearrangements, cell proliferation and signalling as well as its gene expression [1-6].
  • ECM extracellular matrix
  • substratum with which cells interact often includes topography at the nanoscale [7-9]. The influence of nanoscale topography on cellular behavior was revealed in various studies (10-13).
  • US Patent No: 5,603,338; 5,876,543, 5,863,201; and 6,652,765 assigned to Implant Innovations Inc. detail the use of acids for etching, either individually or in a defined sequence to prepare Osseotite surfaces for dental implant applications [15-18].
  • a sequence of acid treatments wherein an initial etching with hydrochloric acid uniformly removes the oxide layer, and the subsequent use of hydrochloric and sulphuric acids to etch the exposed titanium surface have yielded commercial success.
  • US Patent No: 5,307,594 describes a method for forming textured surface on orthopedic implants using a resilient mask with openings on the implant surface and subjecting it to high pressure blasting using an erosive blasting media such as metal oxide particles [19].
  • US Patent Application No: US2010 / 0187172 describes the fabrication of vertically oriented, highly ordered nanotube titania (Ti0 2 ) arrays exhibiting lengths of 10-1000 ⁇ formed by anodization of titanium thin or thick films [20].
  • Ti0 2 nanotube titania
  • anodization results in the formation of only uni-dimensional nanostructures of variable aspect ratios and is not effective for complex shaped implants.
  • some of the authors of this invention published a process to produce controlled nanostructures of a variety of shapes using a simple scalable hydrothermal technique in the presence of NaOH [21] .
  • the present invention applies this process for the development of a successful implant product that has the required tissue integration in vivo while maintaining the structural integrity of the implant.
  • the present invention we disclose a product based on metallic orthopedic or dental implants of Titanium with novel nanostructural surface features having controllable morphologies and uniformity with demonstrated in vivo applicability.
  • the surface modified titanium implants were tested both in vitro and in vivo, providing confirmed osteoblast cell response through enhanced cellular adhesion, proliferation as well as differentiation. Enhanced osteointegration was proven in vivo.
  • Fig. la gives a diagrammatic sketch of the hydrothermal chamber used in the study for implant surface modification and lb shows the photograph of the chamber, la gives the details of the necessary components of the setup for hydrothermal processing, i.e., 1 - furnace, 2 - heating coils, 3 - stainless steel (SS) chamber, 4 - SS lid, 5 - screw locks, 6 - Teflon chamber, 7 - Teflon lid, 8 - implant holder, 9 - reaction medium, 10 - implant screw.
  • SS stainless steel
  • the main implant body is a screw-type with a tapered end
  • this is just one of the many variations of implant designs and the present invention is not to be limited to a particular type of implant.
  • the present invention relates directly to nanosurface modification of implant products for any possi ble design alterations as well as metal biomaterials.
  • F ig. 2 gives the schematic of the Ti implant (screw in this case) and the representation of the n anostructures generated on this implant by hydrothermal modification .
  • F ig. 3 gives the representative SEM images of (a) Ti implant surface before hydrothermal treatment; and hydrothermally modified Ti implants with nanostructural features (b) Structure A; (c) Structure B; and (d) Structure C
  • Fig. 4 Graph showing cellular proliferation analysis of primary osteoblast cells using Aiamar blue on nanomodified titanium implants in comparison to nanopolished titanium. Statistical significance was assessed relative to control nanopolished Ti for each nanostructure with * and * * denoting p- ⁇ 0.05 and p ⁇ 0.01 respectively.
  • Fig. 5 Gives the SEM image of cellular proliferation of primary osteoblast cells cultured on nanomodified Ti after a) 24 hours b) 72 hours.
  • Lane 1, 2, 3 and 4 represents control
  • Structure A, structure B and Structure C respetively F ig. 6 depicts the results of osteoblast specific gene expression analysis carried out using RT-PCR on primary osteoblast cells cultured on nanomodified Ti implants after 7 and 14 days of incubation, (a) alakline phosphatse (b) Osteocalcin (c) Collagen (d) Decorin and (e) RunX 2.
  • Fig. 7 represents the in vivo implantation of nanomodified Ti implants surgically implanted into the left femur condyle of a Sprague Dawley rat.
  • Fig. 8 gives the results of the in vivo osseointegration study carried out by implanting various nanosurface modified Ti screws in the left femur condyle of Sprague Dawley rats.
  • the images of qualitative histological analysis for (a) 2 nd (b) 8 th and (c) 12 th weeks after implantation are shown with the percentage of bone contact for the corresponding time points given in the inset.
  • Fig. 9 depicts the inflammatory response to nanomodified Ti implantation after (a) 2 nd , (b) 8 th and (c) 12 th week, in SD rats studied through cytokine analysis from blood serum using flow cytometry.
  • biocompatible component any component that is intended for long or short-term contact with biological tissues and also which does not induce any adverse biological response of the tissue is encompassed by the term "biocompatible component” or “biocompatibility” of the material.
  • biocompatible component is an implant such as orthopedic, dental or cardiovascular implants.
  • the term "implant” includes within its scope any device that is intended to be implanted into a human body and that can serve the purpose of replacing the anatomy and/or restoring any normal function of the body.
  • nanosurface modification refers to the process of surface modification wherein the metallic surface is treated chemically by one or many means to achieve a homogeneous/uniform surface topography with structural features in the nanoscale with dimensions ranging from 1 - 500 nm.
  • hydrophilid treatment refers to a chemical technique of surface modification of the metal, wherein the metals are treated in a sealed autoclave at elevated temperature and pressure, in a chemical environment offered by alkaline solution and in certain cases a combination with suitable chelating agent, thereby providing a roughened nanotexture to the implant surface.
  • osteointegration refers to the capability of any implant to integrate well with bone tissues without inducing any fibrous encapsulation as well as inflammatory response.
  • the present invention relates to. nanosurface modification of titanium based metal implants. It is the primary objective of the present invention to produce a biocompatible implant of metallic titanium having nanoscale roughness which is substantially uniform over the entire area of the implant that is intended to bond to the tissue or bone in a much improved fashion compared to existing implants where the surfaces are not modified.
  • nanosurface modification of the kind produced by the hydrothermal process described, provides substantially improved biocompatibility, with improved cellular functions, when tested in vitro with primary osteoblast cells.
  • Another objective of the invention is to develop a product with a particular nanostructure on the metallic implant surface that would enhance in vivo biocompatibility by promoting improved osteointegration in comparison to unmodified metallic surfaces.
  • Step 1 Mechanically polishing commercially available pure titanium implants. This may be done using 600 grit silicon carbide to a uniform coarseness. This can be done manually using grit paper or automated using grit blasting
  • Ste 2 - Surface cleaning of the coarsened implant This may be done ultrasonically in acetone and successive ultrasonic cleaning in distilled water.
  • Step 3 - Cleaned polished Ti implants are immersed in an autoclave (Fig. lb) containing sodium hydroxide.
  • Step 4 Hydrothermal treatment of the Ti implant samples placed in the autoclave in a programmable temperature controlled furnace (Fig. 1) whose temperature is set to different temperature settings in the range 100 - 300 °C for a period varying from 1-10 hours, followed by ultrasonic or other cleaning action.
  • a programmable temperature controlled furnace Fig. 1
  • Step 5 Drying of the hydrothermaily treated Ti implant samples in a medically sterile environment.
  • Step 6- Medically sterile sealing of the implant in plastic or other container.
  • Structure A obtained through hydrothermal processing has a mesh-like porous architecture with interconnected pores having diameters in the range of 164.5 ⁇ 83.52nm (5) and a pore-to-pore distance of 251.73 ⁇ 115.616 nm (6).
  • Structure B reveals a leafy architecture haying thick irregular ridges of wall thickness 20 ⁇ 5nm (7) and voids of dimensions varying from 249.05 ⁇ 64.08nm (8).
  • Structure C shows 1-D needular features with diameter ranging from 122.88 ⁇ 14.45(9), and intern needular distance in the range of 248.454 ⁇ 85.22 nm (10).
  • ostoeblast specific genes such as Alkaline phosphatase, osteocalcin, collagen, decorin and RunX 2 after 7 and 14 days of growth of primary osteoblast cells using Real Time PCR.
  • F igure 6a-e revealed that implants with surface topography as in Structure B induces a 15-35 fold higher osteoblast specific mRNA production of osteoblast cells in comparison to control polished titanium implant, suggesting the relevance of nano surface modification in promoting osteointegration.
  • Ti screws surface modified to generate nanopatterns were implanted into the femur condyle of Sprague dawley rats (Figure 7).
  • United States Patent 5603338 Keith D, Beaty, Gardens, P B, Fla et al, Implant surface preparation utilizing acid treatment Feb 18, 1997 16.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

La présente invention concerne un produit d'implant métallique développé avec des nanocaractéristiques de surface au moyen d'une technique hydrothermique en conditions humides, qui permet d'obtenir une meilleure biocompatibilité et une meilleure ostéo-intégration pour une utilisation spécifique dans des applications orthopédiques et dentaires. Cette invention concerne des procédés de création de nanocaractéristiques sur des surfaces de dioxyde de titane sur des implants de Ti et le comportement amélioré correspondant de l'implant résultant en conditions in vivo est démontré et prouvé dans cette invention.
PCT/IN2012/000786 2012-12-03 2012-12-03 Implants de titane métallique modifiés par une nanosurface pour applications orthopédiques ou dentaires et procédé pour les fabriquer WO2014087412A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IN2012/000786 WO2014087412A1 (fr) 2012-12-03 2012-12-03 Implants de titane métallique modifiés par une nanosurface pour applications orthopédiques ou dentaires et procédé pour les fabriquer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IN2012/000786 WO2014087412A1 (fr) 2012-12-03 2012-12-03 Implants de titane métallique modifiés par une nanosurface pour applications orthopédiques ou dentaires et procédé pour les fabriquer

Publications (1)

Publication Number Publication Date
WO2014087412A1 true WO2014087412A1 (fr) 2014-06-12

Family

ID=48225091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2012/000786 WO2014087412A1 (fr) 2012-12-03 2012-12-03 Implants de titane métallique modifiés par une nanosurface pour applications orthopédiques ou dentaires et procédé pour les fabriquer

Country Status (1)

Country Link
WO (1) WO2014087412A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671531A (zh) * 2016-01-20 2016-06-15 浙江工业大学 一种金属表面原位生长二氧化钛纳米阵列薄膜的制备方法
WO2017210758A1 (fr) * 2016-06-06 2017-12-14 Brunella Sily De Assis Bumachar Procédé de modification nano-morphologique superficielle sur des implants de titane anodisé
CN112126926A (zh) * 2020-08-17 2020-12-25 南京医科大学附属口腔医院 钛表面修饰纳米结构同步加载生物活性锌离子的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307594A (en) 1992-12-14 1994-05-03 Zimmer, Inc. Method for forming textured surfaces on an orthopaedic implant
US5603338A (en) 1994-11-30 1997-02-18 Innovative Implants, Inc. Implant surface preparation utilizing acid treatment
US5863201A (en) 1994-11-30 1999-01-26 Implant Innovations, Inc. Infection-blocking dental implant
US5876543A (en) 1994-06-30 1999-03-02 Yamaha Corporation Method of finishing board with thick resin film for making under layer invisible
US6652765B1 (en) 1994-11-30 2003-11-25 Implant Innovations, Inc. Implant surface preparation
WO2006104644A2 (fr) * 2005-03-29 2006-10-05 Warsaw Orthopedic, Inc. Implants renfermant des nanotubes et leurs procedes de production
WO2007040298A1 (fr) * 2005-10-04 2007-04-12 Megagen Corp. Solution électrolyte pour traitement de surface d’implant, procéde de traitement de surface d’implant l’utilisant, et implant fabriqué selon ce procédé
US20080318044A1 (en) * 2007-06-25 2008-12-25 Board Of Trustees Of The University Of Arkansas Titanate nanowire, titanate nanowire scaffold, and processes of making same
US20100187172A1 (en) 2007-07-26 2010-07-29 The Penn State Research Foundation Highly-ordered titania nanotube arrays
WO2012011878A1 (fr) * 2010-07-22 2012-01-26 Institut "Jožef Stefan" Implant ayant un revêtement multicouche et procédé pour préparer celui-ci
WO2013086336A1 (fr) * 2011-12-09 2013-06-13 Georgia Tech Research Corporation Modification de surface de dispositifs d'implant

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307594A (en) 1992-12-14 1994-05-03 Zimmer, Inc. Method for forming textured surfaces on an orthopaedic implant
US5876543A (en) 1994-06-30 1999-03-02 Yamaha Corporation Method of finishing board with thick resin film for making under layer invisible
US5603338A (en) 1994-11-30 1997-02-18 Innovative Implants, Inc. Implant surface preparation utilizing acid treatment
US5863201A (en) 1994-11-30 1999-01-26 Implant Innovations, Inc. Infection-blocking dental implant
US6652765B1 (en) 1994-11-30 2003-11-25 Implant Innovations, Inc. Implant surface preparation
WO2006104644A2 (fr) * 2005-03-29 2006-10-05 Warsaw Orthopedic, Inc. Implants renfermant des nanotubes et leurs procedes de production
WO2007040298A1 (fr) * 2005-10-04 2007-04-12 Megagen Corp. Solution électrolyte pour traitement de surface d’implant, procéde de traitement de surface d’implant l’utilisant, et implant fabriqué selon ce procédé
US20080318044A1 (en) * 2007-06-25 2008-12-25 Board Of Trustees Of The University Of Arkansas Titanate nanowire, titanate nanowire scaffold, and processes of making same
US20100187172A1 (en) 2007-07-26 2010-07-29 The Penn State Research Foundation Highly-ordered titania nanotube arrays
WO2012011878A1 (fr) * 2010-07-22 2012-01-26 Institut "Jožef Stefan" Implant ayant un revêtement multicouche et procédé pour préparer celui-ci
WO2013086336A1 (fr) * 2011-12-09 2013-06-13 Georgia Tech Research Corporation Modification de surface de dispositifs d'implant

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
BALASUNDARAM G; SATO M; WEBSTER TJ.: "Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD", BIOMATERIALS, vol. 27, 2006, pages 2798 - 805, XP025097277, DOI: doi:10.1016/j.biomaterials.2005.12.008
BALU H M; BALTIMORE D, J. CELL BIOL., 1991, pages 112 - 781
DALBY J; GADEGAARD N; TARE R; ANDAR A; RIEHLE M O; HERZYK P; WILKINSON C D W; OREFFO R O C., NAT. MATER, 2007, pages 997 - 1003
DIENER A; NEBE B; LUTHEN F; BECKER P; BECK U; NEUMANN H G; RYCHLY J, BIOMATERIALS, vol. 26, 2005, pages 383 - 92
DIVYA RANI V V ET AL: "The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response", NANOTECHNOLOGY, IOP, BRISTOL, GB, vol. 20, no. 19, 13 May 2009 (2009-05-13), pages 195101, XP020152932, ISSN: 0957-4484, DOI: 10.1088/0957-4484/20/19/195101 *
DIVYA RANI V V; MANZOOR K; DEEPTHY MENON; SELVAMURUGAN N; SHANTIKUMAR V NAIR: "The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response", NANOTECHNOLOGY, vol. 20, 2009, pages 195101 - 11
HOW A; APLIN A E; ALAHARI S K; JUL.IANO R L, CURR. OPIN. CELL BIOL., vol. 84, 1998, pages 345 - 57
KEITH D, BEATY; GARDENS, P B ET AL., IMPLANT SURFACE PREPARATION UTILIZING ACID TREATMENT, 18 February 1997 (1997-02-18)
KUNZLER T P; HUWILER C; DROBEK T; VOROS J; SPENCER N D.: "Systematic study of osteoblast response to nanotropgraphy by means of nanoparticle-density gradients", BIOMATERIALS, vol. 28, 2007, pages 5000 - 5006, XP022233268, DOI: doi:10.1016/j.biomaterials.2007.08.009
MARTIN K H; SLACK J K; BOERNER S A; MARTIN C; PARSONS J T, SCIENCE, vol. 296, 2002, pages 1652 - 3
MATTHEW J DALBY: "Cellular response to low adhesion nanotopographies", INTERNATIONAL JOURNAL OF NANOMEDICINE, vol. 2, no. 3, 2007, pages 373 - 381
SCHWARTZ M A; GINSBERGM H, NAT. CELL BIOL., vol. 4, 2002, pages E65 - 8
STEVENS M M; GEORGE J H, SCIENCE, vol. 310, 2005, pages 1135 - 8
TAL DVIR; BRIAN P. TIMKO; DANIEL S. KOHANE; ROBERT LANGER, NATURE NANOTECHNOLOGY, 6 January 2011 (2011-01-06)
WILLIAM C. CLEM; SHAFIUL CHOWDHURY; SHANE A. CATLEDGE; JEFFREY J. WEIMER; FAHEEM M. SHAIKH; KRISTIN M. HENNESSY; VALERY V. KONOVAL: "Mesenchymal stem cell interaction with ultra smooth nanostructured diamond for wear resistant orthopaedic implants", BIOMATERIALS, vol. 29, no. 24-25, 2008, pages 3461 - 3468, XP022733598, DOI: doi:10.1016/j.biomaterials.2008.04.045
XUANYOG LIU; PAUL K CHU; CHUANXIAN DING: "Surface modification of titanium, titanium alloys and related materials for biomedical application", MATERIAL SCIENCE AND ENGINEERING R, vol. 47, 2004, pages 49 - 121, XP004722113, DOI: doi:10.1016/j.mser.2004.11.001
ZAMIR E; GEIGER B, J. CELL SCI., vol. 114, 2001, pages 3577

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671531A (zh) * 2016-01-20 2016-06-15 浙江工业大学 一种金属表面原位生长二氧化钛纳米阵列薄膜的制备方法
WO2017210758A1 (fr) * 2016-06-06 2017-12-14 Brunella Sily De Assis Bumachar Procédé de modification nano-morphologique superficielle sur des implants de titane anodisé
CN112126926A (zh) * 2020-08-17 2020-12-25 南京医科大学附属口腔医院 钛表面修饰纳米结构同步加载生物活性锌离子的制备方法

Similar Documents

Publication Publication Date Title
Rasouli et al. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance
Liu et al. Role of implants surface modification in osseointegration: A systematic review
Awad et al. A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants
Jäger et al. Antimicrobial and osseointegration properties of nanostructured titanium orthopaedic implants
Bandyopadhyay et al. Improving biocompatibility for next generation of metallic implants
Shahali et al. Recent advances in manufacturing and surface modification of titanium orthopaedic applications
Wu et al. Biomimetic porous scaffolds for bone tissue engineering
Shimizu et al. Bioactivity of sol–gel-derived TiO2 coating on polyetheretherketone: In vitro and in vivo studies
Cheng et al. Calcium plasma implanted titanium surface with hierarchical microstructure for improving the bone formation
John et al. Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics
Gulati et al. Titania nanotubes for orchestrating osteogenesis at the bone–implant interface
Nouri et al. Introduction to surface coating and modification for metallic biomaterials
US20200149145A1 (en) Nanostructured titanium-based compositions and methods to fabricate the same
Alipal et al. An updated review on surface functionalisation of titanium and its alloys for implants applications
Variola et al. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives
Zhao et al. Plasma surface functionalized polyetheretherketone for enhanced osseo-integration at bone-implant interface
Bral et al. In vivo biofunctionalization of titanium patient-specific implants with nano hydroxyapatite and other nano calcium phosphate coatings: A systematic review
Jokar et al. Corrosion and bioactivity evaluation of nanocomposite PCL-forsterite coating applied on 316L stainless steel
Myakinin et al. In vitro evaluation of electrochemically bioactivated Ti6Al4V 3D porous scaffolds
Ting et al. Classification and effects of implant surface modification on the bone: human cell–based in vitro studies
Zhang et al. MC3T3-E1 cell response to stainless steel 316L with different surface treatments
Han et al. Tailoring the biologic responses of 3D printed PEEK medical implants by plasma functionalization
Çaha et al. A Review on Bio-functionalization of β-Ti Alloys
da Costa Valente et al. Analysis of the mechanical and physicochemical properties of Ti‐6Al‐4 V discs obtained by selective laser melting and subtractive manufacturing method
Yu et al. 3D printed Ti–6Al–4V implant with a micro/nanostructured surface and its cellular responses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846784

Country of ref document: EP

Kind code of ref document: A1