WO2014079206A1 - 一种用于室温甲醛净化的金属载体负载的催化剂 - Google Patents

一种用于室温甲醛净化的金属载体负载的催化剂 Download PDF

Info

Publication number
WO2014079206A1
WO2014079206A1 PCT/CN2013/075700 CN2013075700W WO2014079206A1 WO 2014079206 A1 WO2014079206 A1 WO 2014079206A1 CN 2013075700 W CN2013075700 W CN 2013075700W WO 2014079206 A1 WO2014079206 A1 WO 2014079206A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
catalyst
carrier
mixture
oxide
Prior art date
Application number
PCT/CN2013/075700
Other languages
English (en)
French (fr)
Inventor
贺泓
张长斌
王少莘
Original Assignee
中国科学院生态环境研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院生态环境研究中心 filed Critical 中国科学院生态环境研究中心
Publication of WO2014079206A1 publication Critical patent/WO2014079206A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2022Potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • B01D2255/2027Sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Definitions

  • the present invention relates to a catalyst, and more particularly to a metal carrier supported catalyst for room temperature formaldehyde purification. Background technique
  • the existing indoor formaldehyde purification technology is mainly based on adsorption technology and photocatalysis technology.
  • the adsorption technology mainly uses high specific surface materials such as activated carbon and molecular sieve to adsorb formaldehyde.
  • the adsorption technology mainly uses high specific surface materials such as activated carbon and molecular sieve to adsorb formaldehyde.
  • due to the limited adsorption capacity of the adsorbent material it needs to be periodically regenerated or replaced, and it is easy to cause secondary pollution.
  • Photocatalytic main use of nano-102 as a photocatalyst for the decomposition of formaldehyde requires the presence of ultraviolet excitation light source, visible light use efficiency is low, problems such as catalyst deactivation and easy.
  • Non-photocatalytic oxidation purification of indoor formaldehyde can completely catalyze the oxidation of formaldehyde-forming water and carbon dioxide end products at room temperature because it does not require light and other energy input. This technology has been widely applied.
  • CN101274281A discloses a high-efficiency oxidation catalyst for oxidizing formaldehyde to H 2 O and CO 2 at room temperature, which is supported by a cordierite honeycomb ceramic coated with a CO-CE-SN porous composite oxide. 0 to 10% of Pt is used as an active component, and M00 3 , CUOX, MNOX, TI0 2 and the like are used as auxiliary agents.
  • CN102247842A discloses a high-efficiency catalyst for oxidizing low concentration formaldehyde in indoor air to carbon dioxide and water under room temperature and humidity conditions, the catalyst is coated with cordierite honeycomb ceramic coated with T SnC ⁇ composite oxide as 0 ⁇ 5. % Pt is the active component.
  • the prior art catalytic assembly for room temperature formaldehyde purification uses cordierite honeycomb ceramics as a unitary shaped carrier, and the powder catalyst is supported thereon for formaldehyde purification.
  • the catalyst with cordierite honeycomb ceramic as a carrier has a problem of weak bonding strength between the carrier and the active component in use, especially in the long-term use process, the catalyst has low mechanical resistance, and the powder dropping phenomenon is serious, resulting in a catalyst. Long-term activity is unstable.
  • the catalyst using cordierite honeycomb ceramics as a carrier has a high wind resistance and a low catalytic efficiency in the air purification process, and the energy consumption caused by the assembly of the purification equipment is high.
  • the object of the present invention is to provide a metal carrier-supported catalyst for room temperature formaldehyde purification, wherein the catalyst metal carrier and the active component have high bonding strength, and the catalyst has a small wind resistance under the same purification efficiency, and the catalyst High efficiency, low energy consumption caused by assembly after purification equipment.
  • a metal carrier-supported catalyst for room temperature formaldehyde purification comprising a metal carrier, a porous inorganic material supported on a metal carrier, a noble metal active component supported on the porous inorganic material, and an auxiliary agent, the metal
  • the carrier is an iron chromium aluminum alloy
  • the noble metal is selected from the group consisting of any one of platinum, rhodium, palladium, gold or silver or a mixture of at least two
  • the auxiliary agent being an alkali metal element, an alkali metal compound, an alkaline earth metal element or Any one or a mixture of at least two of the alkaline earth metal compounds.
  • the wall thickness of the metal carrier is less than 30% of the wall thickness of the ceramic carrier, and the opening ratio is increased by nearly 1/3 compared with the ceramic carrier. Moreover, the surface area per unit volume is significantly higher than that of the ceramic carrier, and these characteristics of the metal carrier are for reducing formaldehyde purification. The wind resistance is very favorable.
  • the metal carrier iron chrome aluminum alloy is honeycomb, the specific surface The product is higher than the ceramic carrier, so the metal-supported catalyst has a higher formaldehyde conversion efficiency than the ceramic supported catalyst.
  • the precious metal active component is selected from any one of a noble metal element, a noble metal oxide or a noble metal inorganic salt or a mixture of at least two.
  • the mixture comprises a mixture of different precious metal elements, a mixture of different noble metal oxides, a mixture of different noble metal inorganic salts, a mixture of precious metal elements and noble metal oxides, a mixture of precious metal elements and noble metal inorganic salts, noble metal oxides and noble metal inorganic salts.
  • the precious metals are platinum, rhodium, palladium, gold and silver.
  • Exemplary noble metal oxides are: platinum oxide, ruthenium oxide, palladium oxide, gold oxide, and silver oxide.
  • Exemplary noble metal inorganic salts are silver chloride, platinum chloride, palladium chloride, gold chloride.
  • the alkali metal compound is an alkali metal oxide or/and an alkali metal inorganic salt
  • the alkaline earth metal compound is an alkaline earth metal oxide or/and an alkaline earth metal inorganic salt.
  • the adjuvant is selected from any one or a mixture of at least two of an alkali metal element, an alkali metal oxide or an alkali metal inorganic salt.
  • the present invention can be practiced in the form of any of the inorganic salts of the alkali metal without changing the alkali metal inorganic salt which promotes the catalytic action.
  • the auxiliary agent is selected from any one or a mixture of at least two of an alkaline earth metal element, an alkaline earth metal oxide or an alkaline earth metal inorganic salt.
  • the present invention can be practiced in the form of any of the inorganic salts of the alkaline earth metal without changing the catalytic action of the alkaline earth metal inorganic salt.
  • the alkali metal is selected from any one of lithium, sodium, potassium, rubidium or cesium or a mixture of at least two.
  • the mixture is for example a mixture of cerium and lanthanum, a mixture of potassium and sodium, a mixture of lithium and cerium, a mixture of cerium, potassium and sodium, a mixture of lithium, cerium, lanthanum and potassium, sodium, lithium, cesium, cesium and potassium. mixture.
  • the alkaline earth metal is selected from any one or a mixture of at least two of cerium, magnesium, calcium, strontium or barium.
  • the mixture for example a mixture of magnesium and calcium, a mixture of magnesium and strontium, a mixture of calcium and strontium, a mixture of magnesium and calcium, a mixture of magnesium, calcium and strontium, a mixture of strontium, magnesium, calcium, strontium and barium.
  • An exemplary noble metal active component is selected from the group consisting of platinum, rhodium, palladium, gold, silver, platinum oxide, ruthenium oxide, palladium oxide, gold oxide, silver oxide or silver chloride, or a mixture of at least two Mixtures such as a mixture of platinum and rhodium, a mixture of palladium and gold, a mixture of silver and platinum oxide, a mixture of ruthenium oxide and palladium oxide, a mixture of gold oxide and silver oxide, a mixture of silver chloride and platinum.
  • the auxiliary agent may be a mixture of different alkali metal elements, a mixture of different alkali metal oxides, a mixture of different alkali metal inorganic salts, a mixture of the same alkali metal oxide and an inorganic salt, and different kinds of inorganic salts of the same alkali metal. a mixture of different alkaline earth metals, a mixture of different alkaline earth metal oxides, a mixture of different alkaline earth metal inorganic salts, a mixture of oxides and inorganic salts of the same alkaline earth metal, a mixture of different kinds of inorganic salts of the same alkaline earth metal, Wait.
  • Exemplary alkali metal oxides and inorganic salts are selected from the group consisting of sodium carbonate, potassium carbonate, lithium carbonate, barium carbonate, barium carbonate, sodium nitrate, potassium nitrate, lithium nitrate, barium nitrate, barium nitrate, lithium oxide, sodium oxide, potassium oxide. Any one or a mixture of at least two of cerium oxide, cerium oxide, sodium chloride, potassium chloride, lithium chloride, cerium chloride or cerium chloride.
  • the mixture is, for example, a mixture of sodium carbonate and potassium carbonate, a mixture of lithium carbonate and cesium carbonate, a mixture of sodium carbonate and potassium carbonate, a mixture of lithium carbonate and cesium carbonate, a mixture of lithium oxide and sodium oxide, potassium oxide and strontium oxide.
  • the mixture is, for example, a mixture of calcium titanate and magnesium titanate, a mixture of barium titanate and barium hydroxide, a mixture of barium hydroxide and calcium hydroxide, a mixture of magnesium hydroxide and barium hydroxide, barium oxide and barium oxide.
  • mixture a mixture of magnesium oxide and cerium oxide, a mixture of cerium hydroxide and calcium hydroxide, a mixture of cerium oxide and magnesium oxide.
  • the noble metal active component and the alkali metal compound may be arbitrarily combined, combined with an iron-chromium aluminum alloy and a porous inorganic material to form a metal carrier-supported catalyst for room temperature formaldehyde purification.
  • the precious metal active component is 0.1% by weight, based on the weight of the catalyst, based on the weight of the precious metal element, of the precious metal active component, for example, 0.5%, 1.2%, 1.8%, 2.4%, 3.2%, 3.8%. 4.5%, 6.1%, 6.9%, 7.2%, 7.8%, 8.4%, 9.2%, 9.6%, preferably 0.2-8%, further preferably 0.3-2%.
  • the weight percentage of the noble metal active component is less than 0.1%, the catalytic room temperature catalyzes the activity of the formaldehyde to be poor.
  • the weight percentage of the auxiliary agent is 0.2-30% by weight of the metal element based on the weight of the catalyst, for example, 1.5%, 3%, 7%, 10%, 14%, 18%, 22%, 25%. 27%, 29%, preferably 1 to 20%, and further preferably 1 to 10%.
  • the porous inorganic material is a porous inorganic oxide or a porous carbon material.
  • the porous inorganic oxide or the porous carbon material is commercially available, and those skilled in the art can also prepare the porous material according to the preparation method of the porous inorganic oxide or the porous carbon material disclosed in the prior art. Sexual inorganic oxide or porous carbon material.
  • Exemplary metal carrier supported catalysts for room temperature formaldehyde purification are:
  • the iron-chromium-aluminum alloy carrier, the noble metal active component is a catalyst composed of platinum elemental and the alkali metal is sodium chloride; the iron-chromium-aluminum alloy carrier, the porous inorganic oxide supported on the iron-chromium-aluminum alloy carrier, and the porous inorganic oxide
  • the precious metal active component is a catalyst composed of platinum and an alkali metal compound as sodium carbonate; an iron chromium aluminum alloy carrier, a porous carbon material supported on an iron chromium aluminum alloy carrier, and a noble metal active group supported on the porous carbon material Divided into a catalyst composed of palladium and an alkali metal compound as sodium oxide; an iron-chromium-aluminum alloy carrier, a porous inorganic oxide supported on an iron-chromium-aluminum alloy support, supported on a porous inorganic
  • the precious metal active component on the oxide is a catalyst composed of ruthenium and an alkali metal compound as sodium carbonate; an
  • the preparation method of the metal carrier-supported catalyst for room temperature formaldehyde purification is prior art, and those skilled in the art can prepare the above catalyst according to the preparation method of the catalyst disclosed in the prior art and the method of supporting the catalyst with a metal carrier. .
  • An exemplary method of preparing a metal carrier supported catalyst for room temperature formaldehyde purification comprises the following steps:
  • the noble metal active component precursor may be selected according to the last prepared precious metal active group
  • the precious metal active component is platinum
  • the noble metal active component precursor may be selected from chloroplatinic acid
  • the noble metal active component is palladium
  • the noble metal active component precursor may be selected from palladium chloride.
  • Exemplary noble metal active component precursors are, for example: Ag(acac), A g Cl, A g N0 3 , 3 ⁇ 4AuCl 4 , Pd(acac) 2 , Pt(acac) 2 , Rh(acac) 3 , 3 ⁇ 4PtCl 6 -63 ⁇ 40 , PtCl 4 , PtCl 2 , Pt(N0 2 ) 2 (N3 ⁇ 4) 2 , Pt(N3 ⁇ 4) 4 ((N0 3 ) 2 , Pd(Ac) 2 , Pd(N0 3 ) 2 , Rh(N0 3 ) 2 , Platinum chloride, palladium chloride, gold chloride or ruthenium chloride.
  • the above noble metal active component precursors may be used singly or in combination.
  • the metal carrier-supported catalyst for room temperature formaldehyde purification according to the present invention is used for room temperature methanol purification, and most or all of the formaldehyde in the system can be converted into carbon dioxide and water without by-products such as formic acid, carbon monoxide and methyl formate.
  • the formaldehyde conversion can be as high as 100%.
  • the present invention has the following beneficial effects:
  • the bonding strength between the metal carrier-supported catalyst metal carrier for the room temperature formaldehyde purification and the active component is better than the bonding strength between the cordierite carrier and the active component, the bonding strength is high, and the catalyst has the same purification efficiency.
  • the lower wind resistance is lower, the catalytic efficiency is high, and the energy consumption caused by assembling the purification equipment is low.
  • the metal carrier-supported catalyst for room temperature formaldehyde purification has simple use conditions and convenient operation, and can be effectively used for catalytic oxidation of formaldehyde, a main pollutant in a room at room temperature, and the catalyst can catalyze oxidation of formaldehyde to carbon dioxide at room temperature.
  • Water, without by-products such as formic acid, carbon monoxide and methyl formate, can convert formaldehyde up to 100%.
  • the metal carrier-supported catalyst for room temperature formaldehyde purification is used in a small amount, does not require a specific light source, does not consume electric power and heat, and saves energy.
  • Example 1 In order to better explain the present invention, it is convenient to understand the technical solution of the present invention, and a typical but non-limiting embodiment of the present invention is as follows: Example 1
  • a metal carrier-supported catalyst for room temperature formaldehyde purification comprising a metal carrier, a porous inorganic oxide supported on a metal carrier, a noble metal active component supported on the porous inorganic oxide, and an auxiliary agent.
  • the metal carrier is an iron chromium aluminum alloy
  • the noble metal active component is palladium oxide
  • the auxiliary agent is sodium carbonate.
  • the weight percentage of palladium oxide is 0.1% by weight of the palladium element based on the weight of the catalyst, and the weight percentage of the sodium carbonate is 30% by weight of the sodium carbonate based on the weight of the catalyst. %.
  • a metal carrier-supported catalyst for room temperature formaldehyde purification comprising a metal carrier, a porous inorganic oxide supported on a metal carrier, a noble metal active component supported on the porous inorganic oxide, and an auxiliary agent.
  • the metal carrier is an iron chromium aluminum alloy
  • the noble metal active component is cerium oxide
  • the auxiliary agent is potassium chloride.
  • the weight percentage of cerium oxide is 10% by weight of the catalyst based on the weight of the catalyst, and the weight percentage of potassium chloride is 100% by weight of the catalyst. It is 0.2%.
  • a metal carrier-supported catalyst for room temperature formaldehyde purification comprising a metal carrier, a porous carbon material supported on a metal carrier, a noble metal active component supported on the porous carbon material, and an auxiliary agent.
  • the metal carrier is an iron chromium aluminum alloy
  • the noble metal active component is AgCl and gold
  • the auxiliary agent is sodium carbonate and barium carbonate.
  • AgCl and gold are 5% by weight of Ag and gold based on the weight of the catalyst, and the weight percentage of AgCl and gold is 5%; sodium carbonate and cesium carbonate are sodium and cesium based on 100% by weight of the catalyst. The weight percentage of sodium carbonate and barium carbonate is 15% by weight.
  • Example 3 60 mg of the catalysts described in Examples 1-3 were separately placed in a tubular fixed bed reactor for experiments.
  • the experimental conditions were as follows: oxygen 20%, helium 80%, formaldehyde gas was generated by a formaldehyde gas generator, blown by helium
  • the reaction system was controlled to have a formaldehyde concentration of 0.01% and a reaction space velocity (GHSV) of 50,000 h.
  • the reaction temperature was room temperature, and the activity evaluation results are shown in Table 1.
  • Catalyst drop rate is less than 0.5%
  • the present invention illustrates the detailed composition of the catalyst of the present invention by the above examples, but the present invention is not limited to the above detailed composition, that is, it does not mean that the present invention must be implemented by relying on the above detailed composition. It will be apparent to those skilled in the art that any modifications of the present invention, equivalent substitution of the various materials of the present invention, and addition of auxiliary components, selection of specific means, etc., are within the scope of the invention and the scope of the disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种用于室温甲酸净化的金属载体负载的催化剂,其由金属载体、负载于金属载体上的多孔无机材料、负载于多孔无机材料上的贵金属活性组分和助剂组成。金属载体为铁铬铝合金,贵金属选自铂、铑、钯、金或银中的任意一种或者至少两种的混合物,助剂为碱金属单质、碱金属化合物、碱土金属单质或碱土金属化合物中的任意一种或者至少两种的混合物。催化剂可有效用于室温条件下催化氧化室内主要污染物甲酸。

Description

一种用于室温甲醛净化的金属载体负载的催化剂 技术领域 本发明涉及一种催化剂, 特别涉及一种用于室温甲醛净化的金属载体负载 的催化剂。 背景技术
随着人们物质文化生活水平的提高, 室内装修已成为时尚, 但室内空气污 染也越来越严重。 甲醛是室内环境中最典书型、 最严重的污染物之一。 我国国家 标准规定的室内空气中甲醛污染物的浓度限值是 0.08mg/m3。 目前, 我国室内环 境中甲醛浓度超标的情况非常严重, 根据国家疾病控制中心的抽样检测调查发 现, 我国 60%以上的新装修居民住宅甲醛浓度超标, 给人们身体健康造成了极 大的危害。 随着环保意识的提高, 人们对室内甲醛污染愈发关注, 近年来因室 内甲醛浓度超标引起的投诉案例也是屡见报道。 因此, 研究甲醛净化技术, 有 效消除室内甲醛污染已成为改善人们生活环境的迫切任务。 现有室内甲醛净化技术以吸附技术、 光催化技术为主。 吸附技术主要采用 活性炭、 分子筛等高比表面材料来吸附甲醛, 但由于吸附材料吸附能力有限, 需定期再生或更换, 同时易产生二次污染。 光催化技术主要利用纳米 1 02作为 光催化剂来分解甲醛, 存在需要紫外激发光源、 对可见光利用效率低、 催化剂 易失活等问题。 非光催化氧化净化室内甲醛由于不需要光和其他能量输入, 在 室温下就能完全催化氧化甲醛生成水和二氧化碳最终产物, 该技术得到了广泛 推广应用。
CN101274281A公开了一种在室温下将甲醛氧化成 H20和 C02的高效氧化 催化剂, 该催化剂以涂有 CO-CE-SN多孔复合氧化物的堇青石蜂窝陶瓷为载体, 以 0〜10%的 Pt为活性组分, 并以 M003、 CUOX、 MNOX、 TI02等作为助剂。
CN102247842A公开了一种在室温常湿条件下将室内空气中低浓度甲醛氧化成 二氧化碳和水的高效催化剂,该催化剂以涂有 T SnC^复合氧化物的堇青石蜂 窝陶瓷为载体, 以 0〜5%的 Pt为活性组分。 现有技术用于室温甲醛净化的催化 组件都采用堇青石蜂窝陶瓷作为整体成型载体, 把粉末催化剂负载在上面后用 于甲醛净化。 但是, 以堇青石蜂窝陶瓷作为载体的催化剂, 在使用中存在载体 和活性组分之间的结合强度弱的问题, 尤其是长期使用过程中, 催化剂抗机械 性能低, 掉粉现象严重, 导致催化剂长期活性不稳定。 另外, 以堇青石蜂窝陶 瓷作为载体的催化剂, 在空气净化过程中, 风阻较高, 催化效率较低, 组装在 净化设备后引起的能耗高。
发明内容
本发明的目的在于提供一种用于室温甲醛净化的金属载体负载的催化剂, 所述催化剂金属载体和活性组分之间的结合强度高, 且该催化剂在相同净化效 率下的风阻较小, 催化效率高, 组装在净化设备后引起的能耗低。
为了达到上述目的, 本发明采用了如下技术方案:
一种用于室温甲醛净化的金属载体负载的催化剂, 所述催化剂由金属载体、 负载于金属载体上的多孔无机材料、 负载于多孔无机材料上的贵金属活性组分 和助剂组成, 所述金属载体为铁铬铝合金, 所述贵金属选自铂、 铑、 钯、 金或 银中的任意一种或者至少两种的混合物, 所述助剂为碱金属单质、 碱金属化合 物、 碱土金属单质或碱土金属化合物中的任意一种或者至少两种的混合物。
金属载体的壁厚不到陶瓷载体壁厚的 30%, 开孔率比陶瓷载体提高近 1/3, 而且, 其单位体积的表面积明显高于陶瓷载体, 金属载体的这些特点对于降低 甲醛净化的风阻十分有利。 另外, 由于金属载体铁铬铝合金呈蜂窝状, 比表面 积高于陶瓷载体, 所以金属载体催化剂的甲醛转化效率也高于陶瓷载体催化剂。 优选地, 所述贵金属活性组分选自贵金属单质、 贵金属氧化物或贵金属无 机盐中的任意一种或者至少两种的混合物。 所述混合物包括不同贵金属单质的 混合物, 不同贵金属氧化物的混合物, 不同贵金属无机盐的混合物, 贵金属单 质和贵金属氧化物的混合物, 贵金属单质和贵金属无机盐的混合物, 贵金属氧 化物和贵金属无机盐的混合物, 贵金属单质、 贵金属氧化物和贵金属无机盐的 混合物。
贵金属单质有铂、 铑、 钯、 金和银。
示例性的贵金属氧化物有: 氧化铂、 氧化铑、 氧化钯、 氧化金和氧化银。 示例性的贵金属无机盐有氯化银、 氯化铂、 氯化钯、 氯化金。
所述碱金属化合物为碱金属氧化物或 /和碱金属无机盐; 所述碱土金属化合 物为碱土金属氧化物或 /和碱土金属无机盐。
优选地, 所述助剂选自碱金属单质、 碱金属氧化物或碱金属无机盐中的任 意一种或者至少两种的混合物。碱金属任何一种无机盐的形式而不改变其助催 化作用的碱金属无机盐均可实现本发明。
优选地, 所述助剂选自碱土金属单质、 碱土金属氧化物或碱土金属无机盐 中的任意一种或者至少两种的混合物。碱土金属任何一种无机盐的形式而不改 变其助催化作用的碱土金属无机盐均可实现本发明。
所述碱金属选自锂、 钠、 钾、 铷或铯中的任意一种或者至少两种的混合物。 所述混合物例如铯和铷的混合物, 钾和钠的混合物, 锂和铯的混合物, 铷、 钾 和钠的混合物, 锂、 铯、 铷和钾的混合物, 钠、 锂、 铯、 铷和钾的混合物。
所述碱土金属选自铍、 镁、 钙、 锶或钡中的任意一种或者至少两种的混合 物。 所述混合物例如镁和钙的混合物, 镁和钡的混合物, 钙和钡的混合物, 铍、 镁和钙的混合物, 镁、 钙和钡的混合物, 铍、 镁、 钙、 锶和钡的混合物。
示例性的贵金属活性组分选自铂、 铑、 钯、 金、 银、 氧化铂、 氧化铑、 氧 化钯、 氧化金、 氧化银或氯化银中的任意一种或者至少两种的混合物, 所述混 合物例如铂和铑的混合物, 钯和金的混合物, 银和氧化铂的混合物, 氧化铑和 氧化钯的混合物, 氧化金和氧化银的混合物, 氯化银和铂的混合物。
所述助剂可以为不同碱金属单质的混合物, 不同碱金属氧化物的混合物, 不同碱金属无机盐的混合物, 相同碱金属的氧化物和无机盐的混合物, 相同碱 金属的不同种类的无机盐的混合物, 不同碱土金属单质的混合物, 不同碱土金 属氧化物的混合物, 不同碱土金属无机盐的混合物, 相同碱土金属的氧化物和 无机盐的混合物, 相同碱土金属的不同种类的无机盐的混合物, 等。
示例性的碱金属氧化物和无机盐选自碳酸钠、 碳酸钾、 碳酸锂、 碳酸铷、 碳酸铯、 硝酸钠、 硝酸钾、 硝酸锂、 硝酸铷、 硝酸铯、 氧化锂、 氧化钠、 氧化 钾、 氧化铷、 氧化铯、 氯化钠、 氯化钾、 氯化锂、 氯化铯或氯化铷中的任意一 种或者至少两种的混合物。 所述混合物例如碳酸钠和碳酸钾的混合物, 碳酸锂 和碳酸铷的混合物, 碳酸钠和碳酸钾的混合物, 碳酸锂和碳酸铷的混合物, 氧 化锂和氧化钠的混合物, 氧化钾和氧化铷的混合物, 氧化铯和氧化钠的混合物, 氯化钠和氯化钾的混合物, 氯化锂和氯化铯的混合物, 氯化铷和氯化铯的混合 示例性的碱土金属氧化物和无机盐选自氧化铍、 氧化镁、 氧化钙、 氧化锶、 氧化钡、 氢氧化铍、 氢氧化镁、 氢氧化钙、 氢氧化钡、 氢氧化锶、 钛酸铍、 钛 酸镁、 钛酸钙、 钛酸锶或钛酸钡中的任意一种或者至少两种的混合物。 所述混 合物例如钛酸钙和钛酸镁的混合物, 钛酸铍和氢氧化锶的混合物, 氢氧化钡和 氢氧化钙的混合物, 氢氧化镁和氢氧化铍的混合物, 氧化钡和氧化锶的混合物, 氧化镁和氧化铍的混合物, 氢氧化锶和氢氧化钙的混合物, 氧化钡和氧化镁的 混合物。
所述贵金属活性组分和碱金属化合物可以任意搭配, 并结合铁铬铝合金以 及多孔无机材料, 形成用于室温甲醛净化的金属载体负载的催化剂。
以催化剂的重量为 100%计, 贵金属活性组分按贵金属元素重量计, 贵金属 活性组分的重量百分比为 0.1-10%,例如 0.5%、 1.2%、 1.8%、 2.4%、 3.2%、 3.8%、 4.5%、 6.1%、 6.9%、 7.2%、 7.8%、 8.4%、 9.2%、 9.6%, 优选 0.2-8%, 进一歩 优选 0.3~2%。 当贵金属活性组分重量百分比小于 0.1%时, 所述催化室温催化甲 醛的活性差。
以催化剂的重量为 100%计, 按金属元素重量计, 助剂的重量百分比为 0.2-30%, 例如 1.5%、 3%、 7%、 10%、 14%、 18%、 22%、 25%、 27%、 29%, 优选 1~20%, 进一歩优选 1~10%。
所述多孔无机材料为多孔无机氧化物或多孔性炭材料。 所述多孔性无机氧 化物或多孔性炭材料均可市售得到, 本领域技术人员也可以根据现有技术中所 公开的多孔性无机氧化物或者多孔性炭材料的制备方法, 进行制备得到多孔性 无机氧化物或多孔性炭材料。
示例性的用于室温甲醛净化的金属载体负载的催化剂有:
铁铬铝合金载体、 贵金属活性组分为铂单质和碱金属为氯化钠组成的催化 剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多 孔无机氧化物上的贵金属活性组分为铂和碱金属化合物为碳酸钠组成的催化 剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔性炭材料、 负载于多孔 性炭材料上的贵金属活性组分为钯和碱金属化合物为氧化钠组成的催化剂; 铁 铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无机 氧化物上的贵金属活性组分为铑和碱金属化合物为碳酸钠组成的催化剂; 铁铬 铝合金载体、 负载于铁铬铝合金载体上的多孔性炭材料、 负载于多孔性炭材料 上的贵金属活性组分为金和碱金属化合物为氯化钠组成的催化剂; 铁铬铝合金 载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无机氧化物上 的贵金属活性组分为银和碱金属化合物为氯化钠组成的催化剂; 铁铬铝合金载 体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无机氧化物上的 贵金属活性组分为氧化银和碱金属化合物为碳酸锂组成的催化剂; 铁铬铝合金 载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无机氧化物上 的贵金属活性组分为氧化铂和碱金属化合物为锂组成的催化剂; 铁铬铝合金载 体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无机氧化物上的 贵金属活性组分为氯化银和碱金属化合物为碳酸钾组成的催化剂; 铁铬铝合金 载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无机氧化物上 的贵金属活性组分为氧化金和氧化钯和碱金属化合物为氯化锂组成的催化剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无 机氧化物上的贵金属活性组分为钯和金和碱金属化合物为碳酸钾组成的催化 剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多 孔无机氧化物上的贵金属活性组分为银和金和碱金属化合物为碳酸锂组成的催 化剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于 多孔无机氧化物上的贵金属活性组分为 AgCl和金和碱金属化合物为碳酸钾组成 的催化剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负 载于多孔无机氧化物上的贵金属活性组分为氧化铂和碱金属化合物为碳酸锂组 成的催化剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无机氧化物上的贵金属活性组分为氧化钯和碱金属化合物为氯化钾 组成的催化剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无机氧化物上的贵金属活性组分为氧化铂和碱金属化合物为氧化锂 组成的催化剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化物、 负载于多孔无机氧化物上的贵金属活性组分为氯化银和碱土金属化合物为氧化 镁组成的催化剂; 铁铬铝合金载体、 负载于铁铬铝合金载体上的多孔无机氧化 物、 负载于多孔无机氧化物上的贵金属活性组分为氧化铂和碱土金属化合物为 氢氧化钡组成的催化剂。
所述用于室温甲醛净化的金属载体负载的催化剂的制备方法为已有技术, 所属领域的技术人员可以根据现有技术中所公开的催化剂的制备方法以及金属 载体负载催化剂的方法制备得到上述催化剂。
示例性的所述用于室温甲醛净化的金属载体负载的催化剂的制备方法包括 如下歩骤:
( 1 ) 铁铬铝合金作为载体, 对该载体进行焙烧预处理;
(2 ) 根据配方, 首先制备出多孔无机材料负载助剂和贵金属活性组分的粉 末催化剂;
( 3 ) 将上述粉末催化剂与水混合, 充分搅拌均匀, 将制得的浆液球磨, 得 到涂敷液;
(4 ) 以浸渍的方式对金属载体挂浆, 挂浆完后将金属载体中多余的涂敷液 去除, 随后把涂敷好的金属载体烘干, 在马弗炉中焙烧; 再次对金属载体进行 涂敷, 烘干, 焙烧, 至少重复 1~2遍;
( 5 ) 焙烧: 将载有催化剂涂敷液的金属载体置于马弗炉中焙烧, 得到上述 催化剂。
所述贵金属活性组分前驱体的选择可以根据最后制备得到的贵金属活性组 分选择, 例如所述贵金属活性组分为铂, 贵金属活性组分前驱体可以选择氯铂 酸; 贵金属活性组分为钯, 贵金属活性组分前驱体可以选择氯化钯。 示例性的 贵金属活性组分前驱体例如: Ag(acac)、 AgCl、 AgN03、 ¾AuCl4、 Pd(acac)2, Pt(acac)2、 Rh(acac)3、 ¾PtCl6-6¾0、 PtCl4、 PtCl2、 Pt(N02)2(N¾)2、 Pt(N¾)4((N03)2、 Pd(Ac)2, Pd(N03)2, Rh(N03)2, 氯化铂、 氯化钯、 氯化金或氯化铑。 上述贵金 属活性组分前驱体可以单独使用, 也可以混合使用。
将本发明所述用于室温甲醛净化的金属载体负载的催化剂, 用于室温甲醇 净化, 可以将体系中大部分或者全部甲醛转化为二氧化碳和水, 没有甲酸、 一 氧化碳和甲酸甲酯等副产物, 甲醛转化率可高达 100%。
与现有技术相比, 本发明具有如下有益效果:
所述用于室温甲醛净化的金属载体负载的催化剂金属载体和活性组分之间 的结合强度优于堇青石载体与活性组分之间的结合强度, 结合强度高, 且该催 化剂在相同净化效率下的风阻较小, 催化效率高, 组装在净化设备后引起的能 耗低。
所述用于室温甲醛净化的金属载体负载的催化剂的使用条件简单, 操作方 便, 可有效用于室温条件下催化氧化室内主要污染物甲醛, 该催化剂在室温条 件下就可以催化氧化甲醛为二氧化碳和水, 没有甲酸、 一氧化碳和甲酸甲酯等 副产物, 甲醛转化率可高达 100%。
所述用于室温甲醛净化的金属载体负载的催化剂的用量少, 且不需要特定 光源, 不耗费电力热力, 节约能源。
具体实施方式
为更好地说明本发明, 便于理解本发明的技术方案, 本发明的典型但非限 制性的实施例如下: 实施例 1
一种用于室温甲醛净化的金属载体负载的催化剂, 所述催化剂由金属载体、 负载于金属载体上的多孔无机氧化物、 负载于多孔无机氧化物上的贵金属活性 组分和助剂组成, 所述金属载体为铁铬铝合金, 所述贵金属活性组分为氧化钯, 所述助剂为碳酸钠。
以催化剂的重量为 100%计, 氧化钯按钯元素重量计, 氧化钯的重量百分比 为 0.1%; 以催化剂的重量为 100%计, 碳酸钠按钠元素重量计, 碳酸钠的重量百 分比为 30%。
实施例 2
一种用于室温甲醛净化的金属载体负载的催化剂, 所述催化剂由金属载体、 负载于金属载体上的多孔无机氧化物、 负载于多孔无机氧化物上的贵金属活性 组分和助剂组成, 所述金属载体为铁铬铝合金, 所述贵金属活性组分为氧化铑, 所述助剂为氯化钾。
以催化剂的重量为 100%计, 氧化铑按铑元素重量计, 氧化铑的重量百分比 为 10%; 以催化剂的重量为 100%计, 氯化钾按钾元素重量计, 氯化钾的重量百 分比为 0.2%。
实施例 3
一种用于室温甲醛净化的金属载体负载的催化剂, 所述催化剂由金属载体、 负载于金属载体上的多孔性炭材料、 负载于多孔性炭材料上的贵金属活性组分 和助剂组成, 所述金属载体为铁铬铝合金, 所述贵金属活性组分为 AgCl和金, 所述助剂为碳酸钠和碳酸铯。
以催化剂的重量为 100%计, AgCl和金按 Ag和金元素重量计, AgCl和金 的重量百分比为 5%; 以催化剂的重量为 100%计, 碳酸钠和碳酸铯按钠和铯元 素重量计, 碳酸钠和碳酸铯的重量百分比为 15%。
分别取 60mg实施例 1-3所述催化剂,放置于管式固定床反应器中进行实验, 实验条件如下: 氧气 20%, 氦气 80%, 甲醛气体用甲醛气体发生器产生, 由氦 气吹入反应体系, 控制甲醛浓度为 0.01%, 反应空速 (GHSV) 为 50000h— 反 应温度为室温, 活性评价结果如表 1所示。
表 1催化剂活性评价结果
Figure imgf000011_0001
催化剂的脱落率低于 0.5%
申请人声明, 本发明通过上述实施例来说明本发明所述催化剂的详细组成, 但本发明并不局限于上述详细组成, 即不意味着本发明必须依赖上述详细组成 才能实施。 所属技术领域的技术人员应该明了, 对本发明的任何改进, 对本发 明产品各原料的等效替换及辅助成分的添加、 具体方式的选择等, 均落在本发 明的保护范围和公开范围之内。

Claims

权 利 要 求 书
1、 一种用于室温甲醛净化的金属载体负载的催化剂, 其特征在于, 所述催 化剂由金属载体、 负载于金属载体上的多孔无机材料、 负载于多孔无机材料上 的贵金属活性组分和助剂组成, 所述金属载体为铁铬铝合金, 所述贵金属选自 铂、 铑、 钯、 金或银中的任意一种或者至少两种的混合物, 所述助剂为碱金属 单质、 碱金属化合物、 碱土金属单质或碱土金属化合物中的任意一种或者至少 两种的混合物。
2、 如权利要求 1所述的催化剂, 其特征在于, 所述贵金属活性组分选自贵 金属单质、 贵金属氧化物或贵金属无机盐中的任意一种或者至少两种的混合物。
3、 如权利要求 1或 2所述的催化剂, 其特征在于, 所述碱金属化合物为碱 金属氧化物或 /和碱金属无机盐; 所述碱土金属化合物为碱土金属氧化物或 /和碱 土金属无机盐;
优选地, 所述助剂选自碱金属单质、 碱金属氧化物或碱金属无机盐中的任 意一种或者至少两种的混合物;
优选地, 所述助剂选自碱土金属单质、 碱土金属氧化物或碱土金属无机盐 中的任意一种或者至少两种的混合物。
4、 如权利要求 1-3之一所述的催化剂, 其特征在于, 所述碱金属选自锂、 钠、 钾、 铷或铯中的任意一种或者至少两种的混合物。
5、如权利要求 1-4之一所述的催化剂, 其特征在于, 所述碱土金属选自铍、 镁、 钙、 锶或钡中的任意一种或者至少两种的混合物。
6、如权利要求 1-5之一所述的催化剂,其特征在于,以催化剂的重量为 100% 计, 贵金属活性组分按贵金属元素重量计, 贵金属活性组分的重量百分比为 0.1-10%, 优选 0.2~8%, 进一歩优选 0.3~2%。
7、如权利要求 1-6之一所述的催化剂,其特征在于,以催化剂的重量为 100% 计, 按金属元素重量计, 助剂的重量百分比为 0.2~30%, 优选 1~20%, 进一歩 优选 1~10%。
8、 如权利要求 1-7之一所述的催化剂, 其特征在于, 所述多孔无机材料为 多孔无机氧化物或多孔性炭材料。
9、 一种如权利要求 1-8之一所述催化剂的制备方法, 其特征在于, 所述方 法包括如下歩骤:
( 1 ) 铁铬铝合金作为载体, 对该载体进行焙烧预处理;
(2) 根据配方, 首先制备出多孔无机材料负载助剂和贵金属活性组分的粉 末催化剂;
(3 ) 将上述粉末催化剂与水混合, 充分搅拌均匀, 将制得的浆液球磨, 得 到涂敷液;
(4) 以浸渍的方式对金属载体挂浆, 挂浆完后将金属载体中多余的涂敷液 去除, 随后把涂敷好的金属载体烘干, 在马弗炉中焙烧; 再次对金属载体进行 涂敷, 烘干, 焙烧, 至少重复 1~2遍;
(5)将载有催化剂涂敷液的金属载体置于马弗炉中焙烧, 得到用于室温甲 醛净化的金属载体负载的催化剂。
10、一种如权利要求 1-8之一所述的催化剂的用途, 其特征在于, 所述催化 剂用于室温甲醛净化。
PCT/CN2013/075700 2012-11-20 2013-05-16 一种用于室温甲醛净化的金属载体负载的催化剂 WO2014079206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210470821.2 2012-11-20
CN2012104708212A CN102941111A (zh) 2012-11-20 2012-11-20 一种用于室温甲醛净化的金属载体负载的催化剂

Publications (1)

Publication Number Publication Date
WO2014079206A1 true WO2014079206A1 (zh) 2014-05-30

Family

ID=47724154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075700 WO2014079206A1 (zh) 2012-11-20 2013-05-16 一种用于室温甲醛净化的金属载体负载的催化剂

Country Status (2)

Country Link
CN (1) CN102941111A (zh)
WO (1) WO2014079206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377686A (zh) * 2022-01-26 2022-04-22 华中师范大学 一种基于微波定位组装的电焦耳热催化材料及其制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941111A (zh) * 2012-11-20 2013-02-27 中国科学院生态环境研究中心 一种用于室温甲醛净化的金属载体负载的催化剂
CN104368335B (zh) * 2014-10-15 2016-08-17 深圳市艾迪盈创科技有限公司 一种甲醛净化用贵金属整体式催化剂的制备方法及其应用
CN106362765A (zh) * 2015-07-24 2017-02-01 苏州工业园区新国大研究院 甲醛室温氧化催化剂的制备方法及其制备的催化剂
CN106040233B (zh) * 2016-06-03 2018-08-17 南通斐腾新材料科技有限公司 一种毛细管柱式可等离子再生催化剂的制备方法
CN106075798A (zh) * 2016-07-02 2016-11-09 李康 一种装修材料中甲醛的去除方法
JP6837828B2 (ja) * 2016-12-26 2021-03-03 太陽化学株式会社 低温酸化触媒
CN108236952A (zh) * 2016-12-27 2018-07-03 天津众华鑫环保科技有限公司 一种贵金属甲醛消除剂暖气片涂层的制备方法
CN108187690B (zh) * 2017-12-07 2021-05-07 广东省石油与精细化工研究院 一种用于室温除甲醛的钴锰复合氧化物负载型催化剂及其制备方法
CN108176399A (zh) * 2017-12-27 2018-06-19 中国科学院宁波城市环境观测研究站 一种贵金属负载型催化剂及其制备方法和用途
CN108786844A (zh) * 2018-05-31 2018-11-13 佛山中科鸿翔空气净化技术有限公司 一种用于室温下净化甲醛的金属载体催化剂
CN109954384A (zh) * 2018-07-09 2019-07-02 河北中科百盾环保科技有限公司 多孔吸附载体上负载氨基酸的甲醛净化材料及其制备方法
CN108997785A (zh) * 2018-08-03 2018-12-14 李远奖 一种具有持久抗菌功效的纳米改性贝壳粉的制备方法
CN109233448A (zh) * 2018-08-03 2019-01-18 李远奖 一种具有持久抗菌、快速降甲醛功效的环保贝壳粉涂料
CN109126443B (zh) * 2018-08-09 2020-05-05 河南工程学院 一种车用甲醛快速清除剂的制备方法
CN109107380B (zh) * 2018-08-09 2020-05-05 河南工程学院 一种应用于车用地毯的长效voc清除剂的制备方法
CN111068660A (zh) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 用于净化室内甲醛的催化剂及其应用
CN112517070B (zh) * 2020-12-25 2021-11-16 珠海格力电器股份有限公司 一种核壳结构的除醛催化剂及其制备方法和应用
CN112742449A (zh) * 2021-01-12 2021-05-04 中国科学院城市环境研究所 一种分子筛催化剂及其制备方法和应用
CN115970708A (zh) * 2022-12-28 2023-04-18 昆明理工大学 一种负载型催化剂及其制备方法和应用以及整体式负载型催化剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050228A2 (en) * 2002-01-25 2004-06-17 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ruthenium stabilization for improved oxidation/reduction catalyst systems
CN101380574A (zh) * 2007-09-06 2009-03-11 中国科学院生态环境研究中心 一种室温催化完全氧化甲醛的催化剂
CN101497042A (zh) * 2009-03-11 2009-08-05 华东理工大学 一种空气中甲醛低温催化氧化消除催化剂
CN102357361A (zh) * 2011-09-06 2012-02-22 大连理工大学 一种催化净化含氨废气的整体式催化剂制备方法及应用
CN102941111A (zh) * 2012-11-20 2013-02-27 中国科学院生态环境研究中心 一种用于室温甲醛净化的金属载体负载的催化剂

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143840A (ja) * 1982-02-22 1983-08-26 Bridgestone Corp パ−テイキユレ−ト浄化用触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050228A2 (en) * 2002-01-25 2004-06-17 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ruthenium stabilization for improved oxidation/reduction catalyst systems
CN101380574A (zh) * 2007-09-06 2009-03-11 中国科学院生态环境研究中心 一种室温催化完全氧化甲醛的催化剂
CN101497042A (zh) * 2009-03-11 2009-08-05 华东理工大学 一种空气中甲醛低温催化氧化消除催化剂
CN102357361A (zh) * 2011-09-06 2012-02-22 大连理工大学 一种催化净化含氨废气的整体式催化剂制备方法及应用
CN102941111A (zh) * 2012-11-20 2013-02-27 中国科学院生态环境研究中心 一种用于室温甲醛净化的金属载体负载的催化剂

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377686A (zh) * 2022-01-26 2022-04-22 华中师范大学 一种基于微波定位组装的电焦耳热催化材料及其制备方法
CN114377686B (zh) * 2022-01-26 2024-04-02 华中师范大学 一种基于微波定位组装的电焦耳热催化材料及其制备方法

Also Published As

Publication number Publication date
CN102941111A (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
WO2014079206A1 (zh) 一种用于室温甲醛净化的金属载体负载的催化剂
CN101380574B (zh) 一种室温催化完全氧化甲醛的催化剂
CN103736484B (zh) 一种用于甲醛净化的负载型类整体式催化剂及其制备方法
CN102114428B (zh) 一种用于常温氧化co、甲醛的整体式催化剂及其制备方法
CN104907069B (zh) 一种用于室温甲醛净化的催化剂及其用途
CN103071489A (zh) 室温消除甲醛的负载型活性炭催化材料及制备方法
JP2020507445A (ja) ホルムアルデヒド浄化に用いられている遷移金属と窒素を共ドープした炭素複合材料及びその調製方法
CN104338528A (zh) 常温甲醛催化剂的制备
CN107398272B (zh) 一种甲醛室温催化用复合载体催化剂及其制备方法
CN108212153B (zh) 一种自支撑贵金属改性的锰基复合氧化物催化剂及其制备方法和应用
CN104162425A (zh) 一种室温条件下完全催化氧化室内低浓度甲醛的催化剂
JP2006187760A (ja) 常温でホルムアルデヒドガスを完全酸化分解する触媒およびその使用方法
KR20160045689A (ko) 일산화탄소 및/또는 휘발성 유기 화합물의 산화를 위한 촉매
CN103357409B (zh) 一种室温复合贵金属合金甲醛催化氧化剂及其制备方法
CN106423149B (zh) 一种整体式甲醛室温氧化催化剂及其制备方法
JP5876436B2 (ja) 排ガス浄化触媒及び排ガス浄化方法
CN110773158A (zh) 基于金属单原子的室温催化净化VOCs的材料及其制备方法
CN108187690A (zh) 一种用于室温除甲醛的钴锰复合氧化物负载型催化剂及其制备方法
JP2004074069A (ja) ホルムアルデヒドの酸化除去方法
CN110314531A (zh) 一种VOCs吸附-电热催化耦合功能组件及其制备方法
CN101116822A (zh) 非均布燃烧催化剂及其制备方法
JP5503155B2 (ja) 一酸化炭素除去フィルター
CN110038558B (zh) 一种低贵金属含量高活性催化剂的制备方法及其应用
JP5896902B2 (ja) 排気ガス浄化用触媒及びその製造方法
CN115722220B (zh) 一种催化氧化催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856941

Country of ref document: EP

Kind code of ref document: A1