WO2014077471A1 - Stator used in resolvers, and resolver including same - Google Patents

Stator used in resolvers, and resolver including same Download PDF

Info

Publication number
WO2014077471A1
WO2014077471A1 PCT/KR2013/002548 KR2013002548W WO2014077471A1 WO 2014077471 A1 WO2014077471 A1 WO 2014077471A1 KR 2013002548 W KR2013002548 W KR 2013002548W WO 2014077471 A1 WO2014077471 A1 WO 2014077471A1
Authority
WO
WIPO (PCT)
Prior art keywords
output coil
coil
slots
wound
output
Prior art date
Application number
PCT/KR2013/002548
Other languages
French (fr)
Korean (ko)
Inventor
나병철
이원용
Original Assignee
대성전기공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120131094A external-priority patent/KR101417416B1/en
Priority claimed from KR1020130010429A external-priority patent/KR101407097B1/en
Application filed by 대성전기공업 주식회사 filed Critical 대성전기공업 주식회사
Priority to EP17165263.9A priority Critical patent/EP3205985B1/en
Priority to EP13854536.3A priority patent/EP2921827B1/en
Priority to US14/716,726 priority patent/US20150338244A1/en
Priority to EP17166425.3A priority patent/EP3211383B1/en
Publication of WO2014077471A1 publication Critical patent/WO2014077471A1/en
Priority to US15/476,913 priority patent/US10514275B2/en
Priority to US15/476,897 priority patent/US20170261350A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/188Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers comprising rotatable parts, e.g. moving coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/20Measuring number of turns; Measuring transformation ratio or coupling factor of windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/04Synchronous motors for single-phase current
    • H02K19/06Motors having windings on the stator and a variable-reluctance soft-iron rotor without windings, e.g. inductor motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/24DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having commutating-pole windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/10Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type
    • H02K37/20Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of permanent magnet type with rotating flux distributors, the armatures and magnets both being stationary
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K47/00Dynamo-electric converters
    • H02K47/18AC/AC converters
    • H02K47/22Single-armature frequency converters with or without phase-number conversion
    • H02K47/24Single-armature frequency converters with or without phase-number conversion having windings for different numbers of poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • G01V3/165Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat operating with magnetic or electric fields produced or modified by the object or by the detecting device

Definitions

  • the present invention relates to a resolver which is a non-contact rotation detection means, and more particularly, to a resolver stator having an improved method of winding a coil in a plurality of slots.
  • the present invention relates to a variable magneto-resistive resolver including a stator in which an excitation winding and an output winding are accommodated in a plurality of slots formed in the annular inner circumferential surface, and a rotor disposed to have a predetermined gap with the inner circumferential surface of the stator.
  • a resolver is a kind of sensor for precisely measuring the rotational speed and the rotation angle of a motor.
  • a variable reluctance type resolver to which the present invention belongs may have an ellipse or The rotor having a multipole salient pole is arranged to be spaced apart at predetermined intervals inside the stator.
  • the conventional resolver includes a stator 10 as shown in FIG.
  • the stator 10 is also called a stator.
  • a plurality of slots 11 protrude from the circumferential direction at regular intervals on an inner circumferential surface thereof.
  • Each of these slots 11 has an excitation coil, a first output coil, and a second output coil, respectively.
  • the excitation coil 12 is formed on the outer circumferential surface of the core portion 11a of the slot 11.
  • the first output coil 13 and the second output coil 14 were simply wound.
  • the conventional resolver has a problem that the harmonic influence is sensitive and the influence on the precision under an external magnetic field environment is large.
  • the prior art has configured the excitation coil, the first output coil and the second output coil in a winding pattern as shown in Figure 11a.
  • the harmonic effect of the present invention is to reduce the sensitivity, to provide a resolver stator that can maintain precision even in the change of the external magnetic field environment and a resolver including the same.
  • an object of the present invention is to provide a resolver stator and a resolver including the same that can reduce the manufacturing cost or manufacturing process.
  • Another object of the present invention is to provide a resolver stator for easy analysis of an output signal and a resolver including the same.
  • a plurality of slots are formed at a predetermined interval in the circumferential direction as a resolver stator winding the excitation coil, the first output coil and the second output coil in each of the plurality of slots,
  • the excitation coil is wound with a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots, and after the winding number obtained by dividing the total number of windings of the first output coil by a predetermined ratio, the second output is wound.
  • the coil is wound, and the rest of the first output coil is wound.
  • a resolver stator is a resolver stator in which a plurality of slots are formed at regular intervals in a circumferential direction and an excitation coil, a first output coil, and a second output coil are wound around the plurality of slots, respectively. After the winding number obtained by dividing the total number of turns of the first output coil by a predetermined ratio is wound, the second output coil is wound, and the rest of the first output coil is wound, and the plurality of slots are divided into even numbers. Characterized in that it is provided.
  • a resolver stator is a resolver stator in which a plurality of slots are formed at regular intervals in a circumferential direction and an excitation coil, a first output coil, and a second output coil are wound around the plurality of slots, respectively.
  • the excitation coil is wound with a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots, and the plurality of slots is provided with a plurality of even numbers.
  • the second output coil is wound, and the rest of the first output coil may be wound again.
  • the first output coil or the second output coil, the winding direction may be changed by alternating by a predetermined number according to the circumferential order of the plurality of slots.
  • the excitation coil is wound with a winding number that sinusoidally changes according to the circumferential order of the plurality of slots, and the first output coil has a sinusoidal phase having a phase of +90 degrees to the sine wave for the excitation coil.
  • the winding may have a varying number of turns, and the second output coil may be wound to have a sinusoidally varying number of turns having a phase of ⁇ 90 degrees to a sine wave for the exciting coil.
  • a resolver stator is a resolver stator in which a plurality of slots are formed at regular intervals in a circumferential direction and an excitation coil, a first output coil, and a second output coil are wound around the plurality of slots, respectively.
  • the first output coil is wound by alternately winding two slots according to the circumferential order of the slots with the same number of turns
  • the second output coil is wound around the circumferential order of the slots with the same number of turns.
  • the winding direction is alternately wound by two slots
  • the excitation coil is wound in a manner of alternating winding directions by two or more slots, and has a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots. Can be.
  • the first output coil and the second output coil may have a phase difference of 90 degrees.
  • the total number of turns of the first output coil or the second output coil may be two or more times and three times or less of the total number of turns of the exciting coil.
  • a plurality of slots are formed at regular intervals in the circumferential direction and the resolver stator winding the excitation coil, the first output coil and the second output coil in each of the plurality of slots
  • the number of consecutive windings in the same direction of the first output coil and the second output coil (the number of times the windings are continuous based on the circumferential order of the plurality of slots in the same direction) is two or more times, and the excitation coil is in the same direction.
  • the winding continuous recovery may have a multiple of two or more times the continuous winding in the same direction of the first output coil or the second output coil.
  • the first output coil and the second output coil may have a phase difference of 90 degrees.
  • the first output coil or the second output coil may have the same number of turns in each slot.
  • the number of consecutive windings in the same direction of the first output coil and the second output coil may be three or more times, and the number of turns of the first output coil or the second output coil may have a sine wave shape in each slot.
  • the total number of turns of the first output coil or the second output coil may be two or more times and three times or less of the total number of turns of the exciting coil.
  • the first output coil or the second output coil, the number of windings in each slot may have a sine wave or square wave form.
  • the plurality of slots may be provided with at least 20 or more.
  • the harmonic effect is less sensitive, and there is an advantage that accuracy can be maintained even in the change of the external magnetic field environment.
  • the present invention has the advantage of easy analysis of the output signal of the resolver stator.
  • FIG. 1 is a partial perspective view of a resolver stator
  • FIG. 2 is a schematic diagram illustrating a coil stacking structure according to coil windings for the resolver stator of FIG. 1;
  • Figure 3 is a graph showing the number of windings of the coil wound for each slot of the resolver stator according to an embodiment of the present invention.
  • 5A and 5B are conceptual views illustrating a winding method of another embodiment for illustrating a method of winding an excitation coil and a first / second output coil according to the spirit of the present invention.
  • 6A and 6B are conceptual diagrams illustrating the concept of simulating that a resolver having a stator according to the present invention is used in an environment in which a high magnetic field is present, and illustrating a magnetic flux distribution as a result of the simulation.
  • FIG. 7A and 7B are graphs showing THD factor results according to FFT analysis of a first output signal and a second output signal in the simulation of FIG. 6A for the stator of the present invention.
  • FIG. 8A and 8B are graphs showing THD factor results according to FFT analysis of a first output signal and a second output signal in the simulation of FIG. 6A for a prior art stator.
  • Figure 9a is a graph showing the number of windings of the coil wound for each slot of the resolver stator according to another embodiment of the present invention.
  • 9B is a table showing the total number of turns and the number of poles related to the number of input turns and output turns of the excitation coil and the first and second output coils of the resolver stator of FIG. 9A;
  • 10A is a graph showing the number of turns of a coil wound for each slot of a resolver stator according to another embodiment of the present invention.
  • FIG. 10B is a table showing the total number of turns and the number of poles related to the number of input turns and output turns of the excitation coil and the first and second output coils of the resolver stator of FIG. 10A;
  • FIG. 10B is a table showing the total number of turns and the number of poles related to the number of input turns and output turns of the excitation coil and the first and second output coils of the resolver stator of FIG. 10A;
  • 11A is a graph showing the number of turns of a coil wound per slot of a resolver stator according to the prior art
  • FIG. 11B is a table showing the total number of turns and the number of poles related to the number of input turns and output turns of the excitation coil and the first and second output coils of the resolver stator of FIG. 11A;
  • FIG. 11B is a table showing the total number of turns and the number of poles related to the number of input turns and output turns of the excitation coil and the first and second output coils of the resolver stator of FIG. 11A;
  • the resolver stator according to the embodiment of the present invention basically has a structure as shown in FIG. 1, and as in FIG. 2, the excitation coil 12, the first output coil 13, and the second output coil ( 14) is wound.
  • the first feature relates to the excitation coil 12, which takes the manner in which the excitation coil 12 is wound in accordance with the graph values shown in FIG.
  • the horizontal axis represents the sequence number of the slot and the vertical axis represents the number of windings of the excitation coil for each slot.
  • the coil 12 is wound by the vertical value indicated by the point on the graph, that is, the number of turns, every slot sequence of the horizontal axis on the graph.
  • the slot 11 of the stator of the embodiment shown in the graph shown was provided with twenty.
  • the excitation coils 12 are all wound with the number of windings that are sinusoidally changed according to the slot numbers 1 to 20. That is, the excitation coil 12 is wound with a winding number that is changed into a sine wave or cosine wave to have a sine wave shape as the winding number.
  • the number of turns on the graph of the negative (-) value indicates that the winding direction is reversed.
  • 5A and 5B show a winding method of another embodiment to illustrate how the winding of the excitation coil 12 and the first / second output coils 13, 14 in accordance with the teachings of the present invention.
  • the illustrated stator has 24 slots, and 6 slots constitute one sine wave cycle for the exciting coil 24.
  • the first output coil is divided into two parts by 50%, part of which is wound first, and the other part of which is wound after the second output coil is wound.
  • 5B is a conceptual diagram illustrating the order relationship, and the rule divided into two parts may be variously applied.
  • the number of turns may be divided in half for all slots, one half for all slots first, then the second output coil for all slots, and then the other half for all slots.
  • the first output coil of half of all slots may be wound first, and then the second output coil may be wound for all slots, followed by the first output coil of the remaining slots.
  • the slot in which the first output coil is wound before the second output coil and the slot in which the first output coil is wound after the second output coil may be implemented to alternate with each other one by one).
  • the first output coil and the second output coil may be wound in various ways in a form that follows the winding rules of the first output coil and the second output coil.
  • the first output coil, the number of turns of each slot is wound in the same number, but the sinusoidal winding direction having a phase difference of +90 degrees in the sinusoidal form of the excitation coil (ie, only + /-applied in the sinusoidal form
  • the second output coil, the number of turns of each slot is wound in the same number, but the sinusoidal winding direction (that is, the sinusoidal shape) having a phase difference of -90 degrees from the sinusoidal shape of the excitation coil. Only apply +/- at).
  • the first output coil is wound to have a sinusoidal winding direction and the number of windings having a phase difference of +90 degrees from the sinusoidal waveform of the excitation coil
  • the second output coil is + in the sinusoidal waveform of the exciting coil. It can be wound to have a sinusoidal winding direction and the number of windings having a phase difference of 90 degrees.
  • first output coil 13 and the second output coil 14 may be wound in alternating order in every slot 11, or alternately in order of two or more slots 11. Alternatively, it may be wound.
  • FIG. 6A illustrates the concept of simulating that a resolver having a stator according to the present invention is used in an environment in which a high magnetic field is present
  • FIG. 6B illustrates a magnetic flux distribution as a result of the simulation.
  • the high magnetic field object of 300 gauss is placed next to the resolver of the present invention, and the magnetic flux change of the stator according to the operation of the resolver is observed. It can be seen that the magnetic flux change is small.
  • the first output signal of the first output coil and the second output signal of the second output coil were observed.
  • Figure 7a shows the THD factor results of the FFT analysis of the first output signal in the simulation of Figure 6a for a resolver with a stator according to the present invention
  • Figure 7b shows a level with a stator according to the invention 6A shows the THD factor result according to the FFT analysis of the second output signal in the simulation of FIG. 6A for the solver.
  • FIG. 8A illustrates a THD factor result of FFT analysis of the first output signal in the simulation of FIG. 6A of a resolver having a stator according to the prior art
  • FIG. 8B includes a stator according to the prior art.
  • the THD factor result according to the FFT analysis of the second output signal is shown.
  • the maximum THD factor is 0.49 in the case of the present invention, and the maximum THD is 0.72 in the prior art. That is, the resolver according to the present invention shows that the robustness of the external magnetic field is better.
  • the excitation coil 12 is described as being wound in the slot 11 before the first output coil 13 and the second output coil 14, but the present invention is not limited thereto. 12 applies equally to the case where the first output coil 13 and the second output coil 14 are wound up and finally wound in the slot 11.
  • FIG. 9A is a graph showing a winding pattern of the resolver stator according to the present embodiment
  • FIG. 9B is a table showing the number of poles and the total number of turns of the resolver stator according to the present embodiment.
  • the first output coil, and the second output coil are wound around the plurality of slots, respectively
  • the output coil is wound by winding two slots by the same number of turns according to the circumferential order of the plurality of slots
  • the second output coil is two slots according to the circumferential order of the plurality of slots by the same number of turns.
  • the winding direction is alternately wound by winding
  • the excitation coil is wound in a manner of alternating winding directions by four or more slots, and has a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots. do.
  • the winding form of the first output coil and the second output coil has 4 slots as one cycle, and the winding form of the excitation coil has 20 slots as the total number of slots as one cycle.
  • the excitation coil is wound in the positive direction for the ten slots and in the negative direction for the remaining ten slots, with the number of turns increasing in the circumferential direction so that the number of turns is sinusoidal and decreasing after the vertex. .
  • a sinusoidal winding having a longer period is performed on the excitation coil, and the first / second output coil has the following advantages as the winding of the above-described form having the same number of windings is performed.
  • the output turns can be distributed in a square, so that the output stage can receive a constant magnetic field strength.
  • the sine wave shape is given to the excitation coil having a relatively small number of windings, and the first and second output coils with a large number of windings are wound at the same number of times, so that the winding thickness of each slot can be uniformly reduced as a whole. .
  • the second output coil has a shape that is 90 degrees ahead of the first output coil.
  • the total turns of the first output coil and the second output coil are 1220, respectively, and the total turns of the excitation coil are 524, which satisfies the transformer ratio 0.27.
  • the value obtained by multiplying the total number of turns of the excitation coil by the number of poles is much smaller than the product of the total number of turns of the first and second output coils by the number of poles (i.e., the number of input turns poles < This has the advantage of maximizing the transformer ratio with a smaller number of turns than before.
  • FIG. 11B is a table showing the total number of turns and the number of poles related to the input turns and output turns of the resolver stator and the first / second output coil in the prior art to obtain the same transformer ratio 0.27, as described above.
  • the total number of turns of the first output coil or the second output coil of the present embodiment is two or more and three times or less of the total number of turns of the exciting coil. This has the advantage of reducing the total number of turns while ensuring a stable operation of resolver detection while obtaining a widely used transformer ratio.
  • the same number of times of continuous winding in the same direction of the first output coil and the second output coil (the number of times the windings continue in the same direction based on the circumferential order of the plurality of slots) is two times.
  • the number of consecutive windings of the female coil in the same direction is 10 times.
  • the same direction winding number of times of the first / second output coil may be three or more times, and the same direction winding number of times of the excitation coil may be the same as that of the first output coil or the second output coil. It may have more than twice the number of consecutive turns of the direction winding. For example, if the same number of consecutive windings of the first / second output coil is three times, the number of consecutive windings of the excitation coil of the excitation coil may be six or more times.
  • stator having the characteristics of the winding sequence of the first / second output coil having a pattern of the excitation coil having a sinusoidally varying number of windings according to the spirit of the present embodiment and / or the pattern of pulses with the same number of windings
  • the number of slots 18 or more preferably 20 or more
  • the resolver stator basically has a structure as shown in FIG. 1, and as in FIG. 2, the excitation coil 12, the first output coil 13, and the second output coil 14. ) Is wound, and the winding method of these coils 12, 13, 14 is similar to that of the first embodiment, but it is distinguished that the winding pattern of the first / second output coils follows a sinusoidal shape.
  • FIG. 10A is a graph showing a winding pattern of the resolver stator according to the present embodiment
  • FIG. 10B is a table showing the number of poles and the total number of turns of the resolver stator according to the present embodiment.
  • the resolver stator of the present embodiment in the resolver stator in which a plurality of slots are formed at regular intervals in the circumferential direction and the excitation coil, the first output coil, and the second output coil are wound around the plurality of slots, respectively,
  • the number of consecutive windings in the same direction of the output coil and the second output coil (the number of times the windings are continuous based on the circumferential order of the plurality of slots in the same direction) is three or more times. It characterized in that it has a multiple of two or more times the continuous winding of the same direction winding of the first output coil or the second output coil.
  • the winding patterns of the first output coil and the second output coil may have a sine wave shape.
  • the number of consecutive windings in the same direction of the first output coil and the second output coil (the number of times the windings are continuous based on the circumferential order of the plurality of slots in the same direction) is three times. Since the number of consecutive windings of the excitation coil is 9 times, the winding number of the slots among the three slots wound in the same direction is the most because the winding patterns of the first output coil and the second output coil have a sine wave shape. Many, the number of turns of both slots can be implemented equal to each other.
  • the continuous winding number of the same direction winding of the first / second output coil may be four or more times, and the continuous winding number of the same direction winding of the excitation coil is the same as that of the first output coil or the second output coil. It may have a number of multiples of two or more times the direction winding continuous recovery. For example, if the same number of consecutive windings of the first and second output coils are four times, the number of consecutive windings of the same direction of the excitation coil may be eight or more times a multiple of four.
  • the number of continuous windings in the same direction of the first / second output coil is four times, and the number of continuous windings in the same direction of the excitation coil is 12 times.
  • the total number of slots of the stator is 24, the number of poles of the first and second output coils is six, and the number of poles of the excitation coil is two.
  • the resolver stator of the present embodiment having the above-described configuration is used to induce phenomena between the excitation coil having a longer period sinusoidal winding pattern and the first / second output coils having a shorter period sinusoidal winding pattern.
  • a signal for calculating the rotational speed and rotational angle of the rotational shaft can be detected.
  • the manufacturing process may be somewhat complicated, but the sine wave winding pattern of the excitation coil and the output coil has an advantage of enhancing the distinction of the phase detection signal of the resolver.
  • the second output coil has a shape 90 degrees ahead of the first output coil.
  • the number of slots is applied to 18 or more. It has been found that the effect according to the features of the present invention is further improved.
  • the number of slots of 18 or more, preferably 24 or more can more faithfully implement that the number of windings of the excitation coil and the first / second output coil is sinusoidally changed.
  • the excitation coil 12 has been described as being wound in the slot 11 before the first output coil 13 and the second output coil 14, but the present invention is not limited thereto. 12 applies equally to the case where the first output coil 13 and the second output coil 14 are wound up and finally wound in the slot 11.
  • resolver stator described above and the resolver including the same are only examples for helping the understanding of the present invention, and thus the scope of the present invention should not be understood as being limited to the above description.

Abstract

The present invention relates to a stator used in resolvers, in which multiple slots are formed at constant intervals in the circumferential direction and an excitation coil, a first output coil, and a second output coil are respectively wound around the multiple slots. The excitation coil is wound by a number of windings that is changed on the basis of a sine wave in accordance with the order of the multiple slots in the circumferential direction. After the first output coil is wound by a number of windings resulting from the division of the total number of windings by a constant ratio, the second output coil is wound, and then the rest of the first output coil is wound.

Description

레졸버용 스테이터 및 이를 포함하는 레졸버Resolver stator and resolver comprising the same
본 발명은 비접촉식 회전검출수단인 레졸버(Resolver)에 관한 것으로서, 특히 다수의 슬롯에 코일이 권선되는 방식이 개선된 레졸버용 스테이터에 관한 것이다.The present invention relates to a resolver which is a non-contact rotation detection means, and more particularly, to a resolver stator having an improved method of winding a coil in a plurality of slots.
본 발명은, 환형의 내주면에 형성된 다수 개의 슬롯에 여자권선과 출력권선이 수납되는 고정자와 상기 고정자의 내주면과 소정의 간극을 갖도록 배치되는 회전자를 포함하는 가변자기저항형 레졸버에 관한 것이다.The present invention relates to a variable magneto-resistive resolver including a stator in which an excitation winding and an output winding are accommodated in a plurality of slots formed in the annular inner circumferential surface, and a rotor disposed to have a predetermined gap with the inner circumferential surface of the stator.
레졸버(resolver)는 모터의 회전속도 및 회전각을 정밀하게 측정하기 위한 센서의 일종으로서, 특히 본 발명이 속하는 가변자기저항형 레졸버(variable reluctance type resolver)는 코일권선이 고정자에 위치하고 타원 또는 다극의 돌극을 갖는 회전자가 상기 고정자의 내측에 소정 간격으로 이격되게 배치되는 구조를 갖는다.A resolver is a kind of sensor for precisely measuring the rotational speed and the rotation angle of a motor. In particular, a variable reluctance type resolver to which the present invention belongs may have an ellipse or The rotor having a multipole salient pole is arranged to be spaced apart at predetermined intervals inside the stator.
종래의 레졸버는 도 1에 도시된 바와 같은 스테이터(stator, 10)를 포함한다. 스테이터(10)는 고정자라고도 칭하며, 내주면으로 다수의 슬롯(11)이 원주방향으로 일정 간격으로 돌출 형성된다.The conventional resolver includes a stator 10 as shown in FIG. The stator 10 is also called a stator. A plurality of slots 11 protrude from the circumferential direction at regular intervals on an inner circumferential surface thereof.
이들 슬롯(11)에는 여자코일, 제1 출력코일 및 제2 출력코일이 각기 권선되는데, 종래에는 도 2에 도시된 바와 같이, 슬롯(11)의 코어부(11a) 외주면으로 여자코일(12), 제1 출력코일(13) 및 제2 출력코일(14)을 단순히 순차 권선하는 방법을 취하였다.Each of these slots 11 has an excitation coil, a first output coil, and a second output coil, respectively. In the related art, as shown in FIG. 2, the excitation coil 12 is formed on the outer circumferential surface of the core portion 11a of the slot 11. In this case, the first output coil 13 and the second output coil 14 were simply wound.
이로 인해, 제2 출력코일(14)의 경우, 제1 출력코일(13)과 동일한 권선수로 감더라도 제1 출력코일(13)의 권선작업 후 적층된 두께에 따라 더 많은 코일이 소요되었으며, 결과적으로 제1 출력코일(13)과 제2 출력코일(14) 간에는 임피던스(Impedence) 차가 발생한다는 문제가 있었다.For this reason, in the case of the second output coil 14, even more windings with the same number of windings as the first output coil 13, more coils were required according to the thickness laminated after the winding operation of the first output coil 13, As a result, there is a problem that an impedance difference occurs between the first output coil 13 and the second output coil 14.
또한, 종래의 레졸버는, 고조파 영향이 민감하며 외부자기장 환경하에서 정밀도에 미치는 영향이 크다는 문제점도 있었다.In addition, the conventional resolver has a problem that the harmonic influence is sensitive and the influence on the precision under an external magnetic field environment is large.
또한, 종래기술은 도 11a에 도시한 바와 같은 권선 패턴으로 상기 여자코일, 제1 출력코일 및 제2 출력코일을 구성하였다. 그런데, 이러한 종래기술을 따라 레졸버용 스테이터를 제작하는 경우, 소정의 변압비를 얻기 위한 총 턴수가 증대되어 제작 비용이 증가하였으며, 출력신호의 분석이 복잡하다는 문제점이 있었다.In addition, the prior art has configured the excitation coil, the first output coil and the second output coil in a winding pattern as shown in Figure 11a. By the way, when manufacturing the resolver stator according to the prior art, the total number of turns to obtain a predetermined transformer ratio is increased to increase the manufacturing cost, there was a problem that the analysis of the output signal is complicated.
본 발명의 고조파 영향이 민감도를 떨어뜨려, 외부자기장 환경의 변화에도 정밀도를 유지할 수 있는 레졸버용 스테이터 및 이를 포함하는 레졸버를 제공하는 데 있다.The harmonic effect of the present invention is to reduce the sensitivity, to provide a resolver stator that can maintain precision even in the change of the external magnetic field environment and a resolver including the same.
또한, 본 발명의 목적은 제작 비용 또는 제작 공정을 절감할 수 있는 레졸버용 스테이터 및 이를 포함하는 레졸버를 제공하는데 있다.In addition, an object of the present invention is to provide a resolver stator and a resolver including the same that can reduce the manufacturing cost or manufacturing process.
또는, 본 발명의 목적은 출력신호의 분석이 용이한 레졸버용 스테이터 및 이를 포함하는 레졸버를 제공하는데 있다.Another object of the present invention is to provide a resolver stator for easy analysis of an output signal and a resolver including the same.
본 발명의 일 측면에 따른 레졸버용 스테이터는, 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터로서, 상기 여자코일은 상기 다수의 슬롯의 원주방향 순번에 따라 정현파적으로 변화하는 권선수를 갖고서 권선되고, 상기 제1 출력코일의 전체 권선수를 일정 비율로 나눈 권선수가 권선된 후, 상기 제2 출력코일이 권선되고, 다시 상기 제1 출력 코일의 나머지가 권선되는 것을 특징으로 한다.Resolver stator according to an aspect of the present invention, a plurality of slots are formed at a predetermined interval in the circumferential direction as a resolver stator winding the excitation coil, the first output coil and the second output coil in each of the plurality of slots, The excitation coil is wound with a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots, and after the winding number obtained by dividing the total number of windings of the first output coil by a predetermined ratio, the second output is wound. The coil is wound, and the rest of the first output coil is wound.
본 발명의 다른 측면에 따른 레졸버용 스테이터는, 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터로서, 상기 제1 출력코일의 전체 권선수를 일정 비율로 나눈 권선수가 권선된 후, 상기 제2 출력코일이 권선되고, 다시 상기 제1 출력 코일의 나머지가 권선되며, 상기 다수의 슬롯은 다수의 짝수개로 구비되는 것을 특징으로 한다.A resolver stator according to another aspect of the present invention is a resolver stator in which a plurality of slots are formed at regular intervals in a circumferential direction and an excitation coil, a first output coil, and a second output coil are wound around the plurality of slots, respectively. After the winding number obtained by dividing the total number of turns of the first output coil by a predetermined ratio is wound, the second output coil is wound, and the rest of the first output coil is wound, and the plurality of slots are divided into even numbers. Characterized in that it is provided.
본 발명의 또 다른 측면에 따른 레졸버용 스테이터는, 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터로서, 상기 여자코일은 상기 다수의 슬롯의 원주방향 순번에 따라 정현파적으로 변화하는 권선수를 갖고서 권선되고, 상기 다수의 슬롯은 다수의 짝수개로 구비되는 것을 특징으로 한다.A resolver stator according to another aspect of the present invention is a resolver stator in which a plurality of slots are formed at regular intervals in a circumferential direction and an excitation coil, a first output coil, and a second output coil are wound around the plurality of slots, respectively. The excitation coil is wound with a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots, and the plurality of slots is provided with a plurality of even numbers.
여기서, 상기 제1 출력코일의 전체 권선수의 절반 회수가 권선된 후, 상기 제2 출력코일이 권선되고, 다시 상기 제1 출력 코일의 나머지가 권선될 수 있다.Here, after half the number of turns of the total number of windings of the first output coil is wound, the second output coil is wound, and the rest of the first output coil may be wound again.
여기서, 상기 제1 출력 코일 또는 제2 출력 코일은, 상기 다수의 슬롯의 원주방향 순번에 따라 소정 개수씩 교변하여 권선 방향이 바뀔 수 있다.Here, the first output coil or the second output coil, the winding direction may be changed by alternating by a predetermined number according to the circumferential order of the plurality of slots.
여기서, 상기 여자코일은 상기 다수의 슬롯의 원주방향 순번에 따라 정현파적으로 변화하는 권선수를 갖고서 권선되고, 상기 제1 출력코일은 상기 여자코일에 대한 정현파에 +90도의 위상을 가지는 정현파적으로 변화하는 권선수를 갖도록 권선되고, 상기 제2 출력코일은 상기 여자코일에 대한 정현파에 -90도의 위상을 가지는 정현파적으로 변화하는 권선수를 갖도록 권선될 수 있다.Here, the excitation coil is wound with a winding number that sinusoidally changes according to the circumferential order of the plurality of slots, and the first output coil has a sinusoidal phase having a phase of +90 degrees to the sine wave for the excitation coil. The winding may have a varying number of turns, and the second output coil may be wound to have a sinusoidally varying number of turns having a phase of −90 degrees to a sine wave for the exciting coil.
본 발명의 또 다른 측면에 따른 레졸버용 스테이터는, 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터로서, 상기 제1 출력코일은 동일한 권선수로 상기 다수의 슬롯의 원주 순번에 따라 2개의 슬롯씩 권선 방향을 교변하여 권선되고, 상기 제2 출력코일은 동일한 권선수로 상기 다수의 슬롯의 원주 순번에 따라 2개의 슬롯씩 권선 방향을 교변하여 권선되고, 상기 여자코일은 2개 이상의 슬롯씩 권선 방향을 교번하는 방식으로, 상기 다수의 슬롯의 원주방향 순번에 따라 정현파적으로 변화하는 권선수를 갖고서 권선될 수 있다.A resolver stator according to another aspect of the present invention is a resolver stator in which a plurality of slots are formed at regular intervals in a circumferential direction and an excitation coil, a first output coil, and a second output coil are wound around the plurality of slots, respectively. The first output coil is wound by alternately winding two slots according to the circumferential order of the slots with the same number of turns, and the second output coil is wound around the circumferential order of the slots with the same number of turns. The winding direction is alternately wound by two slots, and the excitation coil is wound in a manner of alternating winding directions by two or more slots, and has a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots. Can be.
여기서, 상기 제1 출력 코일 및 제2 출력 코일은 90도의 위상차를 가질 수 있다.Here, the first output coil and the second output coil may have a phase difference of 90 degrees.
여기서, 상기 제1 출력 코일 또는 제2 출력 코일의 총 턴수는 상기 여자 코일의 총 턴수의 2배 이상 3배 이하일 수 있다.Here, the total number of turns of the first output coil or the second output coil may be two or more times and three times or less of the total number of turns of the exciting coil.
본 발명의 또 다른 측면에 따른 레졸버용 스테이터는, 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터에 있어서, 상기 제1 출력코일 및 제2 출력 코일의 동일방향권선 연속회수(동일한 방향으로 권선이 상기 다수의 슬롯의 원주순번을 기준으로 연속되는 회수)는 2회 이상이며, 상기 여자코일의 동일방향권선 연속회수는, 상기 제1 출력코일 또는 제2 출력코일의 동일방향권선 연속회수의 2배 이상의 배수를 가질 수 있다.Resolver stator according to another aspect of the present invention, a plurality of slots are formed at regular intervals in the circumferential direction and the resolver stator winding the excitation coil, the first output coil and the second output coil in each of the plurality of slots The number of consecutive windings in the same direction of the first output coil and the second output coil (the number of times the windings are continuous based on the circumferential order of the plurality of slots in the same direction) is two or more times, and the excitation coil is in the same direction. The winding continuous recovery may have a multiple of two or more times the continuous winding in the same direction of the first output coil or the second output coil.
여기서, 상기 제1 출력 코일 및 제2 출력 코일은 90도의 위상차를 가질 수 있다. Here, the first output coil and the second output coil may have a phase difference of 90 degrees.
여기서, 상기 제1 출력코일 또는 제2 출력코일은, 각 슬롯에서의 권선 회수가 동일할 수 있다.The first output coil or the second output coil may have the same number of turns in each slot.
여기서, 상기 제1 출력코일 및 제2 출력 코일의 동일방향권선 연속회수는 3회 이상이며, 상기 제1 출력코일 또는 제2 출력코일은, 각 슬롯에서의 권선 회수가 정현파형태를 가질 수 있다. The number of consecutive windings in the same direction of the first output coil and the second output coil may be three or more times, and the number of turns of the first output coil or the second output coil may have a sine wave shape in each slot.
여기서, 상기 제1 출력 코일 또는 제2 출력 코일의 총 턴수는 상기 여자 코일의 총 턴수의 2배 이상 3배 이하일 수 있다.Here, the total number of turns of the first output coil or the second output coil may be two or more times and three times or less of the total number of turns of the exciting coil.
여기서, 상기 제1 출력코일 또는 제2 출력코일은, 각 슬롯에서의 권선 회수가 정현파 또는 구형파 형태를 가질 수 있다.Here, the first output coil or the second output coil, the number of windings in each slot may have a sine wave or square wave form.
여기서, 상기 다수의 슬롯은 적어도 20개 이상으로 구비될 수 있다.Here, the plurality of slots may be provided with at least 20 or more.
상기 구성에 따른 본 발명의 레졸버를 실시하면, 고조파 영향이 민감도를 떨어뜨려, 외부자기장 환경의 변화에도 정밀도를 유지할 수 있는 이점이 있다.When the resolver of the present invention according to the above structure is implemented, the harmonic effect is less sensitive, and there is an advantage that accuracy can be maintained even in the change of the external magnetic field environment.
또한, 본 발명에 의해, 스테이터의 형상 개선을 통한 레졸버의 성능 개선 및 고 신뢰성을 확보할 수 있다.In addition, according to the present invention, it is possible to secure the performance and the high reliability of the resolver by improving the shape of the stator.
또한, 상기 구성에 따른 본 발명의 레졸버를 실시하면, 제작 비용 또는 제작 공정을 절감할 수 있는 이점이 있다.In addition, by implementing the resolver of the present invention according to the above configuration, there is an advantage that can reduce the manufacturing cost or manufacturing process.
또한, 본 발명은 레졸버 스테이터의 출력신호의 분석이 용이한 이점이 있다.In addition, the present invention has the advantage of easy analysis of the output signal of the resolver stator.
도 1은 레졸버용 스테이터의 부분 사시도.1 is a partial perspective view of a resolver stator;
도 2는 도 1의 레졸버용 스테이터에 대한 코일 권선에 따른 코일 적층 구조를 설명하기 위한 개략도.FIG. 2 is a schematic diagram illustrating a coil stacking structure according to coil windings for the resolver stator of FIG. 1; FIG.
도 3은 본 발명의 실시예에 따른 레졸버용 스테이터의 슬롯마다 권선되는 코일의 권선수를 도시한 그래프.Figure 3 is a graph showing the number of windings of the coil wound for each slot of the resolver stator according to an embodiment of the present invention.
도 4는 도 3의 그래프 값에 절대치를 적용하여 얻어지는 그래프.4 is a graph obtained by applying an absolute value to the graph value of FIG.
도 5a 및 5b는 본 발명의 사상에 따른 여자 코일과 제1/제2 출력 코일의 권선하는 방법을 예시하기 위한 다른 실시예의 권선 방법을 도시한 개념도.5A and 5B are conceptual views illustrating a winding method of another embodiment for illustrating a method of winding an excitation coil and a first / second output coil according to the spirit of the present invention.
도 6a 및 6b는 본 발명에 따른 스테이터를 구비한 레졸버가 높은 자기장이 존재하는 환경에서 사용되는 것을 모의실험하는 개념 및 모의실험의 결과로서 자속 분포를 나타낸 것 개념도.6A and 6B are conceptual diagrams illustrating the concept of simulating that a resolver having a stator according to the present invention is used in an environment in which a high magnetic field is present, and illustrating a magnetic flux distribution as a result of the simulation.
도 7a 및 7b는 본 발명의 스테이터에 대한 도 6a의 모의 실험에서 제1 출력 신호 및 제2 출력 신호의 FFT 분석에 따른 THD factor 결과를 도시한 그래프. 7A and 7B are graphs showing THD factor results according to FFT analysis of a first output signal and a second output signal in the simulation of FIG. 6A for the stator of the present invention.
도 8a 및 8b는 종래 기술의 스테이터에 대한 도 6a의 모의 실험에서 제1 출력 신호 및 제2 출력 신호의 FFT 분석에 따른 THD factor 결과를 도시한 그래프. 8A and 8B are graphs showing THD factor results according to FFT analysis of a first output signal and a second output signal in the simulation of FIG. 6A for a prior art stator.
도 9a는 본 발명의 다른 실시예에 따른 레졸버용 스테이터의 슬롯마다 권선되는 코일의 권선수를 도시한 그래프.Figure 9a is a graph showing the number of windings of the coil wound for each slot of the resolver stator according to another embodiment of the present invention.
도 9b는 도 9a의 레졸버용 스테이터의 여자코일 및 제1/제2 출력코일의 입력 턴수 및 출력 턴수에 관련된 총 턴수 및 극수를 나타낸 테이블.9B is a table showing the total number of turns and the number of poles related to the number of input turns and output turns of the excitation coil and the first and second output coils of the resolver stator of FIG. 9A;
도 10a는 본 발명의 다른 실시예에 따른 레졸버용 스테이터의 슬롯마다 권선되는 코일의 권선수를 도시한 그래프.10A is a graph showing the number of turns of a coil wound for each slot of a resolver stator according to another embodiment of the present invention.
도 10b는 도 10a의 레졸버용 스테이터의 여자코일 및 제1/제2 출력코일의 입력 턴수 및 출력 턴수에 관련된 총 턴수 및 극수를 나타낸 테이블.FIG. 10B is a table showing the total number of turns and the number of poles related to the number of input turns and output turns of the excitation coil and the first and second output coils of the resolver stator of FIG. 10A; FIG.
도 11a는 종래 기술에 따른 레졸버용 스테이터의 슬롯마다 권선되는 코일의 권선수를 도시한 그래프.11A is a graph showing the number of turns of a coil wound per slot of a resolver stator according to the prior art;
도 11b는 도11a의 레졸버용 스테이터의 여자코일 및 제1/제2 출력코일의 입력 턴수 및 출력 턴수에 관련된 총 턴수 및 극수를 나타낸 테이블.FIG. 11B is a table showing the total number of turns and the number of poles related to the number of input turns and output turns of the excitation coil and the first and second output coils of the resolver stator of FIG. 11A; FIG.
본 발명의 실시예에 따른 레졸버용 스테이터는 기본적으로 도 1에 도시된 것과 같은 구조를 가지며, 여기에는 도 2에서와 마찬가지로 여자코일(12), 제1 출력코일(13) 및 제2 출력코일(14)이 권선된다.The resolver stator according to the embodiment of the present invention basically has a structure as shown in FIG. 1, and as in FIG. 2, the excitation coil 12, the first output coil 13, and the second output coil ( 14) is wound.
다만, 이들 코일(12, 13, 14)의 권선방법이 상이한 바, 권선방법에 있어 하기 2가지의 특징이 존재한다.However, since the winding methods of these coils 12, 13, 14 are different, the following two characteristics exist in the winding method.
첫번째 특징은, 여자코일(12)에 관한 것으로서, 상기 여자코일(12)은 도 3에 도시된 그래프 값에 따라 권선되는 방식을 취한다. 그래프에서 가로축은 슬롯의 순번이고 세로축은 각 슬롯에 대한 여자코일의 권선수를 나타낸다. 그래프 상에서 가로축의 슬롯 순번마다 그래프 상의 점으로 표시된 세로값, 즉 권선수만큼 해당 코일(12)이 권선된다.The first feature relates to the excitation coil 12, which takes the manner in which the excitation coil 12 is wound in accordance with the graph values shown in FIG. In the graph, the horizontal axis represents the sequence number of the slot and the vertical axis represents the number of windings of the excitation coil for each slot. The coil 12 is wound by the vertical value indicated by the point on the graph, that is, the number of turns, every slot sequence of the horizontal axis on the graph.
도시한 그래프에서 나타낸 실시예의 스테이터의 슬롯(11)은 20개를 구비하였다. 도 3에 도시된 바와 같이, 여자코일(12)은 모두 슬롯의 순번(1~20)에 따라 정현파적으로 변화하는 권선수를 갖고서 권선됨을 알 수 있다. 즉, 여자코일(12)은 사인파(Sine wave) 또는 코사인파(Cosine wave)적으로 변화하는 권선수로 권선됨으로써 권선수로 정현파 형태를 띠게 된다. 도 3에서 음(-)의 값을 그래프 상의 권선수는 권선되는 방향이 반대방향으로 바뀜을 나타낸다.The slot 11 of the stator of the embodiment shown in the graph shown was provided with twenty. As shown in FIG. 3, it can be seen that the excitation coils 12 are all wound with the number of windings that are sinusoidally changed according to the slot numbers 1 to 20. That is, the excitation coil 12 is wound with a winding number that is changed into a sine wave or cosine wave to have a sine wave shape as the winding number. In FIG. 3, the number of turns on the graph of the negative (-) value indicates that the winding direction is reversed.
도 4는 상기 여자코일(12)의 권선되는 방향에 관계없이 권선수만을 확인하기 위해 각 그래프의 절대값을 취하여 수정한 그래프를 나타낸다.4 shows a graph modified by taking the absolute value of each graph to check only the number of turns regardless of the winding direction of the excitation coil 12.
도 5a 및 5b는 본 발명의 사상에 따른 여자 코일(12)과 제1/제2 출력 코일(13, 14)의 권선하는 방법을 예시하기 위한 다른 실시예의 권선 방법을 도시한다. 도시한 스테이터는 24개의 슬롯을 가지고 있으며, 6개의 슬롯이 여자 코일(24)에 대한 정현파 1 사이클을 구성한다. 5A and 5B show a winding method of another embodiment to illustrate how the winding of the excitation coil 12 and the first / second output coils 13, 14 in accordance with the teachings of the present invention. The illustrated stator has 24 slots, and 6 slots constitute one sine wave cycle for the exciting coil 24.
한편, 여자코일 이후로 권선되는 제1 출력코일(13)과 제2 출력코일(14)의 경우에는, 도 5b에 도시한 바와 같이, 상기 제1 출력코일의 전체 권선수의 절반 회수가 권선된 후, 상기 제2 출력코일이 권선되고, 다시 상기 제1 출력 코일의 나머지가 권선되는 방식으로 권선된다. 이때, 반드시 전체 권선수의 절반 회수가 권선될 필요는 없으며 일정 비율로 나눈 권선수를 적용할 수 있다.Meanwhile, in the case of the first output coil 13 and the second output coil 14 wound after the excitation coil, as shown in FIG. 5B, half the number of turns of the first output coil is wound. Thereafter, the second output coil is wound, and again, in such a manner that the rest of the first output coil is wound. At this time, it is not necessary to winding half of the total number of turns, it is possible to apply the number of turns divided by a certain ratio.
상기 특징에 따라, 상기 제1 출력 코일은, 50%씩 2부분으로 구분되어, 일부는 먼저 권선되고, 나머지는 상기 제2 출력 코일이 권선된 다음에 권선된다. 이 순서 관계를 나타낸 것이 도 5b의 개념도이며, 상기 2부분으로 나누는 규칙은 다양하게 적용될 수 있다. 예컨대, 모든 슬롯에 대하여 각각 그 권선수를 절반으로 나누어, 모든 슬롯에 대하여 절반을 먼저 권선하고, 다음 제2 출력 코일을 모든 슬롯들에 대하여 권선한 후, 다시 모든 슬롯에 대하여 나머지 절반을 권선할 수 있다. 다른 구현에서는, 모든 슬롯들의 절반의 제1 출력 코일을 먼저 권선하고, 다음 제2 출력 코일을 모든 슬롯들에 대하여 권선한 후, 나머지 슬롯들의 제1 출력 코일을 권선할 수 있다.(예컨대, 상기 제2 출력 코일 전에 제1 출력 코일이 권선되는 슬롯과 상기 제2 출력 코일 후에 제1 출력 코일이 권선되는 슬롯은, 하나씩 서로 교번하도록 구현할 수 있다)According to the above feature, the first output coil is divided into two parts by 50%, part of which is wound first, and the other part of which is wound after the second output coil is wound. 5B is a conceptual diagram illustrating the order relationship, and the rule divided into two parts may be variously applied. For example, the number of turns may be divided in half for all slots, one half for all slots first, then the second output coil for all slots, and then the other half for all slots. Can be. In another implementation, the first output coil of half of all slots may be wound first, and then the second output coil may be wound for all slots, followed by the first output coil of the remaining slots. The slot in which the first output coil is wound before the second output coil and the slot in which the first output coil is wound after the second output coil may be implemented to alternate with each other one by one).
상기 제1 출력 코일 및 제2 출력 코일의 권선 규칙을 따르는 형태로, 다양한 방법으로 상기 제1 출력 코일 및 제2 출력 코일을 권선할 수 있다.The first output coil and the second output coil may be wound in various ways in a form that follows the winding rules of the first output coil and the second output coil.
예컨대, 상기 제1 출력 코일은, 각 슬롯의 권선수는 동수로 권선하되, 상기 여자 코일의 정현파 형태에서 +90도의 위상차를 가지는 정현파 형태의 권선 방향(즉, 상기 정현파 형태에서 +/-만 적용함)을 가지도록 권선하고, 상기 제2 출력 코일은, 각 슬롯의 권선수는 동수로 권선하되, 상기 여자 코일의 정현파 형태에서 -90도의 위상차를 가지는 정현파 형태의 권선 방향(즉, 상기 정현파 형태에서 +/-만 적용함)을 가지도록 권선할 수 있다.For example, the first output coil, the number of turns of each slot is wound in the same number, but the sinusoidal winding direction having a phase difference of +90 degrees in the sinusoidal form of the excitation coil (ie, only + /-applied in the sinusoidal form The second output coil, the number of turns of each slot is wound in the same number, but the sinusoidal winding direction (that is, the sinusoidal shape) having a phase difference of -90 degrees from the sinusoidal shape of the excitation coil. Only apply +/- at).
또는, 상기 제1 출력 코일은 상기 여자 코일의 정현파 형태에서 +90도의 위상차를 가지는 정현파 형태의 권선 방향 및 권선 개수를 가지고록 권선하고, 상기 제2 출력 코일은, 상기 여자 코일의 정현파 형태에서 +90도의 위상차를 가지는 정현파 형태의 권선 방향 및 권선 개수를 가지도록 권선할 수 있다.Alternatively, the first output coil is wound to have a sinusoidal winding direction and the number of windings having a phase difference of +90 degrees from the sinusoidal waveform of the excitation coil, and the second output coil is + in the sinusoidal waveform of the exciting coil. It can be wound to have a sinusoidal winding direction and the number of windings having a phase difference of 90 degrees.
또는, 상기 제1 출력코일(13)과 제2 출력코일(14)은 매 슬롯(11)마다 교대로 순서를 바꾸어 권선될 수도 있으며, 또는 2 이상의 슬롯(11)을 단위로 하여 교대로 순서를 바꾸어 권선될 수도 있다.Alternatively, the first output coil 13 and the second output coil 14 may be wound in alternating order in every slot 11, or alternately in order of two or more slots 11. Alternatively, it may be wound.
상술한 제1 출력코일(13)과 제2 출력코일(14)의 권선에 대한 모든 방식 순서는 예시적일 뿐이며, 공지 또는 실시 중인 다양한 방법을 적용할 수 있다.The order of all methods of the windings of the first output coil 13 and the second output coil 14 described above is merely exemplary, and various methods known or implemented may be applied.
도 6a는 본 발명에 따른 스테이터를 구비한 레졸버가 높은 자기장이 존재하는 환경에서 사용되는 것을 모의실험하는 개념을 나타낸 것이며, 도 6b는 모의실험의 결과로서 자속 분포를 나타낸 것이다. 도시한 모의실험에서는 본 발명의 레졸버 바로 옆에 300 가우스의 높은 자기장 물체를 배치하고, 레졸버의 동작에 따른 스테이터의 자속 변화를 관찰한 바, 본 발명에 따른 경우가 외부 자기장 물체로부터 유발되는 자속 변화가 적음을 알 수 있다.FIG. 6A illustrates the concept of simulating that a resolver having a stator according to the present invention is used in an environment in which a high magnetic field is present, and FIG. 6B illustrates a magnetic flux distribution as a result of the simulation. In the simulation, the high magnetic field object of 300 gauss is placed next to the resolver of the present invention, and the magnetic flux change of the stator according to the operation of the resolver is observed. It can be seen that the magnetic flux change is small.
제1 출력 코일의 제1 출력 신호 및 제2 출력 코일의 제2 출력 신호를 관찰하였다. The first output signal of the first output coil and the second output signal of the second output coil were observed.
도 7a는 본 발명에 따른 스테이터를 구비한 레졸버에 대한 도 6a의 모의 실험에서 제1 출력 신호의 FFT 분석에 따른 THD factor 결과를 도시한 것이며, 도 7b는 본 발명에 따른 스테이터를 구비한 레졸버에 대한 도 6a의 모의 실험에서 제2 출력 신호의 FFT 분석에 따른 THD factor 결과를 도시한 것이다. Figure 7a shows the THD factor results of the FFT analysis of the first output signal in the simulation of Figure 6a for a resolver with a stator according to the present invention, Figure 7b shows a level with a stator according to the invention 6A shows the THD factor result according to the FFT analysis of the second output signal in the simulation of FIG. 6A for the solver.
한편, 도 8a는 종래 기술에 따른 스테이터를 구비한 레졸버에 대한 도 6a의 모의 실험에서 제1 출력 신호의 FFT 분석에 따른 THD factor 결과를 도시한 것이며, 도 8b는 종래 기술에 따른 스테이터를 구비한 레졸버에 대한 도 6a의 모의 실험에서 제2 출력 신호의 FFT 분석에 따른 THD factor 결과를 도시한 것이다.Meanwhile, FIG. 8A illustrates a THD factor result of FFT analysis of the first output signal in the simulation of FIG. 6A of a resolver having a stator according to the prior art, and FIG. 8B includes a stator according to the prior art. In the simulation of FIG. 6A for one resolver, the THD factor result according to the FFT analysis of the second output signal is shown.
상기 도 7a 내지 도 8b의 THD factor 결과들을 살펴보면, 외부 자기장 영향에 대하여 본 발명에 따른 경우 최대 THD factor는 0.49이고, 종래기술의 경우 최대 THD는 0.72인 것을 알 수 있다. 즉, 본 발명에 따른 레졸버가 외부 자기장에 대한 강건도(robust)가 더 우수함을 나타내고 있다.Referring to the results of the THD factor of FIGS. 7A to 8B, it can be seen that the maximum THD factor is 0.49 in the case of the present invention, and the maximum THD is 0.72 in the prior art. That is, the resolver according to the present invention shows that the robustness of the external magnetic field is better.
또한, 상기 도 6a의 실험에서, 본 발명의 사상에 따른 정현파적으로 변하는 권선수를 가지는 여자 코일의 특징 및/또는 제1/제2 출력 코일의 권선 순서의 특징을 가지는 스테이터의 경우, 슬롯의 개수를 20개 이상으로 적용할 때, 본 발명의 특징들에 따른 효과가 보다 향상되는 것을 발견하였다. 또한, 슬롯의 개수가 20개 이상인 것이 정현파적으로 권선수가 변하는 것을 보다 충실히 구현할 수 있다.In addition, in the experiment of FIG. 6A, in the case of a stator having a characteristic of an exciting coil having a sinusoidally varying number of windings and / or a characteristic of a winding sequence of a first / second output coil according to the spirit of the present invention, When applying the number more than 20, it was found that the effect according to the features of the present invention is further improved. In addition, the number of slots of 20 or more can be implemented more faithfully that the number of turns sinusoidally.
한편, 본 실시예에서는 여자코일(12)이 제1 출력코일(13)과 제2 출력코일(14)에 앞서 슬롯(11)에 권선되는 것으로 설명되었으나, 본 발명은 이에 한정되지 않고 상기 여자코일(12)은 제1 출력코일(13)과 제2 출력코일(14)이 권선된 후 마지막으로 슬롯(11)에 권선되는 경우에도 동일하게 적용된다.Meanwhile, in the present embodiment, the excitation coil 12 is described as being wound in the slot 11 before the first output coil 13 and the second output coil 14, but the present invention is not limited thereto. 12 applies equally to the case where the first output coil 13 and the second output coil 14 are wound up and finally wound in the slot 11.
도 9a는 본 실시예에 따른 레졸버용 스테이터의 권선 패턴을 나타낸 그래프이며, 도 9b는 본 실시예에 따른 레졸버용 스테이터의 권선의 극수 및 총 턴수를 나타낸 표이다.9A is a graph showing a winding pattern of the resolver stator according to the present embodiment, and FIG. 9B is a table showing the number of poles and the total number of turns of the resolver stator according to the present embodiment.
본 실시예의 레졸버용 스테이터는, 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터에 있어서, 상기 제1 출력코일은 동일한 권선수로 상기 다수의 슬롯의 원주 순번에 따라 2개의 슬롯씩 권선 방향을 교변하여 권선되고, 상기 제2 출력코일은 동일한 권선수로 상기 다수의 슬롯의 원주 순번에 따라 2개의 슬롯씩 권선 방향을 교변하여 권선되고, 상기 여자코일은 4개 이상의 슬롯씩 권선 방향을 교번하는 방식으로, 상기 다수의 슬롯의 원주방향 순번에 따라 정현파적으로 변화하는 권선수를 갖고서 권선되는 것을 특징으로 한다.In the resolver stator of the present embodiment, in the resolver stator in which a plurality of slots are formed at regular intervals in the circumferential direction and the excitation coil, the first output coil, and the second output coil are wound around the plurality of slots, respectively, The output coil is wound by winding two slots by the same number of turns according to the circumferential order of the plurality of slots, and the second output coil is two slots according to the circumferential order of the plurality of slots by the same number of turns. The winding direction is alternately wound by winding, and the excitation coil is wound in a manner of alternating winding directions by four or more slots, and has a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots. do.
도시한 권선 구조에서, 상기 제1 출력코일 및 제2 출력코일의 권선 형태는 4슬롯을 하나의 주기로 하고, 상기 여자코일의 권선 형태는 전체 슬롯의 개수인 20 슬롯을 하나의 주기로 하고 있다. In the illustrated winding structure, the winding form of the first output coil and the second output coil has 4 slots as one cycle, and the winding form of the excitation coil has 20 slots as the total number of slots as one cycle.
여자코일은 10개의 슬롯들에 대해서는 양의 방향으로 권선되고 나머지 10개의 슬롯들에 대해서는 음의 방향으로 권선되는데, 그 권선수가 정현파 형태를 이루도록 원주방향으로 권선수가 증가하다가 정점 이후 감소하는 형태를 가진다.The excitation coil is wound in the positive direction for the ten slots and in the negative direction for the remaining ten slots, with the number of turns increasing in the circumferential direction so that the number of turns is sinusoidal and decreasing after the vertex. .
여자코일에 보다 주기가 긴 정현파 형태의 권선을 수행하고, 제1/제2 출력코일은 동일 권선수의 상술한 형태의 권선을 수행함에 따라 다음과 같은 이점이 있다.A sinusoidal winding having a longer period is performed on the excitation coil, and the first / second output coil has the following advantages as the winding of the above-described form having the same number of windings is performed.
먼저, 입력턴수를 SIN WAVE(정현파)와 같이 분포시켜 공극의 기자력 분포를 SIN 형상으로 분포시키면, 출력턴수를 사각형으로 분포시킬 수 있어, 출력단이 일정하게 자계의 세기를 받을 수 있게 되는 이점이 있다.First, by distributing the input turns as SIN WAVE (sine wave) to distribute the magnetic force distribution of the air gaps in the SIN shape, the output turns can be distributed in a square, so that the output stage can receive a constant magnetic field strength. .
또한, 비교적 권선회수가 작은 여자코일에 정현파 형태를 부여하고, 권선회수가 많은 제1/제2 출력코일은 동일한 회수로 권선함으로써, 전체적으로 각 슬롯의 권선 두께를 균일하게 완화할 수 있는 이점이 있다.In addition, the sine wave shape is given to the excitation coil having a relatively small number of windings, and the first and second output coils with a large number of windings are wound at the same number of times, so that the winding thickness of each slot can be uniformly reduced as a whole. .
또한, 여자코일의 권선 형태에 대응하여, 여자코일에 입력하는 신호의 형태 및 위상을 다양하게 적용하여, 레졸버의 다양한 효과를 달설할 수 있고, 다양한 분야에 적용을 용이하게 한다.In addition, corresponding to the winding form of the excitation coil, by applying a variety of forms and phases of the signal input to the excitation coil, it is possible to solve the various effects of the resolver, it is easy to apply to various fields.
한편, 비록 동일한 권선수를 가지지만 정현파 형태로 관측하였을 때, 상기 제2 출력 코일은 제1 출력 코일보다 위상이 90도 앞서는 형태를 가짐을 알 수 있다.On the other hand, although it has the same number of turns, when viewed in the form of a sine wave, it can be seen that the second output coil has a shape that is 90 degrees ahead of the first output coil.
이에 따라, 최종적으로 회전축의 회전 속도 및 회전각을 계산하는데 보다 편리한 출력신호들을 얻을 수 있다. Accordingly, output signals that are more convenient for finally calculating the rotation speed and the rotation angle of the rotation shaft can be obtained.
도 9b에서 제1 출력코일 및 제2 출력코일의 총 턴수는 각각 1220이며, 여자코일의 총 턴수는 524이며, 이는 변압비 0.27을 만족시키기 위한 것이다. 상기 관계에서, 여자코일의 입력 총 턴수과 극수를 곱한 값이, 제1/제2 출력코일의 총 턴수와 극수를 곱한 값보다 훨씬 작은 값을 가지게 되는데(즉, 입력 턴수 극수 ≪ 출력 턴수 극수), 이는 기존 보다 작은 턴수로 변압비를 극대화 할 수 있는 이점이 있다.In FIG. 9B, the total turns of the first output coil and the second output coil are 1220, respectively, and the total turns of the excitation coil are 524, which satisfies the transformer ratio 0.27. In this relationship, the value obtained by multiplying the total number of turns of the excitation coil by the number of poles is much smaller than the product of the total number of turns of the first and second output coils by the number of poles (i.e., the number of input turns poles < This has the advantage of maximizing the transformer ratio with a smaller number of turns than before.
동일한 변압비 0.27을 얻기 위한 종래기술에서의 레졸버용 스테이터의 여자코일 및 제1/제2 출력코일의 입력 턴수 및 출력 턴수에 관련된 총 턴수 및 극수를 나타낸 테이블인 도 11b의 경우와 비교하면, 상술한 이점을 확인할 수 있다. Compared with the case of FIG. 11B, which is a table showing the total number of turns and the number of poles related to the input turns and output turns of the resolver stator and the first / second output coil in the prior art to obtain the same transformer ratio 0.27, as described above. One advantage can be seen.
본 실시예의 상기 제1 출력 코일 또는 제2 출력 코일의 총 턴수는 상기 여자 코일의 총 턴수의 2배 이상 3배 이하인 것이 바람직하다. 이는 널리 사용되는 변압비를 얻을 수 있으면서, 레졸버 검출의 안정적인 동작을 보장하면서도, 전체 턴수를 절감할 수 있는 이점이 있다.Preferably, the total number of turns of the first output coil or the second output coil of the present embodiment is two or more and three times or less of the total number of turns of the exciting coil. This has the advantage of reducing the total number of turns while ensuring a stable operation of resolver detection while obtaining a widely used transformer ratio.
도시한 레졸버용 스테이터의 경우, 상기 제1 출력코일 및 제2 출력 코일의 동일방향권선 연속회수(동일한 방향으로 권선이 상기 다수의 슬롯의 원주순번을 기준으로 연속되는 회수)는 2회이며, 상기 여자코일의 동일방향권선 연속회수는, 10회이다. 그러나, 다른 구현에서는, 상기 제1/제2 출력코일의 동일방향권선 연속회수는 3회 이상일 수 있으며, 상기 여자코일의 동일방향권선 연속회수는, 상기 제1 출력코일 또는 제2 출력코일의 동일방향권선 연속회수의 2배 이상의 개수를 가질 수 있다. 예컨대, 상기 제1/제2 출력코일의 동일방향권선 연속회수가 3회라면, 상기 여자코일의 동일방향권선 연속회수는 6회 이상의 회수일 수 있다. In the illustrated resolver stator, the same number of times of continuous winding in the same direction of the first output coil and the second output coil (the number of times the windings continue in the same direction based on the circumferential order of the plurality of slots) is two times. The number of consecutive windings of the female coil in the same direction is 10 times. However, in another implementation, the same direction winding number of times of the first / second output coil may be three or more times, and the same direction winding number of times of the excitation coil may be the same as that of the first output coil or the second output coil. It may have more than twice the number of consecutive turns of the direction winding. For example, if the same number of consecutive windings of the first / second output coil is three times, the number of consecutive windings of the excitation coil of the excitation coil may be six or more times.
또한, 본 실시예의 사상에 따른 정현파적으로 변하는 권선수를 가지는 여자 코일의 특징 및/또는 동일 권선수로 펄스 형태로 변화는 패턴을 가지는 제1/제2 출력 코일의 권선 순서의 특징을 가지는 스테이터의 경우, 슬롯의 개수를 18개 이상, 바람직하게는 20개 이상으로 적용할 때, 본 발명의 특징들에 따른 상술한 효과들이 보다 향상되는 것을 확인하였다. In addition, the stator having the characteristics of the winding sequence of the first / second output coil having a pattern of the excitation coil having a sinusoidally varying number of windings according to the spirit of the present embodiment and / or the pattern of pulses with the same number of windings In the case of, when applying the number of slots 18 or more, preferably 20 or more, it was confirmed that the above-described effects according to the features of the present invention is improved more.
또 다른 실시예에 따른 레졸버용 스테이터는 기본적으로 도 1에 도시된 것과 같은 구조를 가지며, 여기에는 도 2에서와 마찬가지로 여자코일(12), 제1 출력코일(13) 및 제2 출력코일(14)이 권선되며, 이들 코일(12, 13, 14)의 권선방법이 상기 제1 실시예의 경우와 유사하나, 제1/제2 출력코일의 권선 패턴이 정현파 형태를 따르는 것에 구별되는 특징이 있다.The resolver stator according to yet another embodiment basically has a structure as shown in FIG. 1, and as in FIG. 2, the excitation coil 12, the first output coil 13, and the second output coil 14. ) Is wound, and the winding method of these coils 12, 13, 14 is similar to that of the first embodiment, but it is distinguished that the winding pattern of the first / second output coils follows a sinusoidal shape.
도 10a는 본 실시예에 따른 레졸버용 스테이터의 권선 패턴을 나타낸 그래프이며, 도 10b는 본 실시예에 따른 레졸버용 스테이터의 권선의 극수 및 총 턴수를 나타낸 표이다.10A is a graph showing a winding pattern of the resolver stator according to the present embodiment, and FIG. 10B is a table showing the number of poles and the total number of turns of the resolver stator according to the present embodiment.
본 실시예의 레졸버용 스테이터는, 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터에 있어서, 상기 제1 출력코일 및 제2 출력코일의 동일방향권선 연속회수(동일한 방향으로 권선이 상기 다수의 슬롯의 원주순번을 기준으로 연속되는 회수)는 3회 이상이며, 상기 여자코일의 동일방향권선 연속회수는, 상기 제1 출력코일 또는 제2 출력코일의 동일방향권선 연속회수의 2배 이상의 배수를 가지는 것을 특징으로 한다.In the resolver stator of the present embodiment, in the resolver stator in which a plurality of slots are formed at regular intervals in the circumferential direction and the excitation coil, the first output coil, and the second output coil are wound around the plurality of slots, respectively, The number of consecutive windings in the same direction of the output coil and the second output coil (the number of times the windings are continuous based on the circumferential order of the plurality of slots in the same direction) is three or more times. It characterized in that it has a multiple of two or more times the continuous winding of the same direction winding of the first output coil or the second output coil.
여기서, 상기 제1 출력코일 및 제2 출력코일의 권선 패턴은 정현파 형태를 가질 수 있다. 도시한 레졸버용 스테이터의 경우, 상기 제1 출력코일 및 제2 출력 코일의 동일방향권선 연속회수(동일한 방향으로 권선이 상기 다수의 슬롯의 원주순번을 기준으로 연속되는 회수)는 3회이며, 상기 여자코일의 동일방향권선 연속회수는, 9회인 바, 상기 제1 출력코일 및 제2 출력코일의 권선 패턴이 정현파 형태를 가지기 위해, 동일방향권선되는 3개의 슬롯들 중 가운데 슬롯의 권선 회수가 가장 많고, 양쪽 슬롯의 권선 회수를 서로 동일하게 구현될 수 있다.Here, the winding patterns of the first output coil and the second output coil may have a sine wave shape. In the case of the illustrated resolver stator, the number of consecutive windings in the same direction of the first output coil and the second output coil (the number of times the windings are continuous based on the circumferential order of the plurality of slots in the same direction) is three times. Since the number of consecutive windings of the excitation coil is 9 times, the winding number of the slots among the three slots wound in the same direction is the most because the winding patterns of the first output coil and the second output coil have a sine wave shape. Many, the number of turns of both slots can be implemented equal to each other.
한편, 다른 구현에서는, 상기 제1/제2 출력코일의 동일방향권선 연속회수는 4회 이상일 수 있으며, 상기 여자코일의 동일방향권선 연속회수는, 상기 제1 출력코일 또는 제2 출력코일의 동일방향권선 연속회수의 2배 이상의 배수의 개수를 가질 수 있다. 예컨대, 상기 제1/제2 출력코일의 동일방향권선 연속회수가 4회라면, 상기 여자코일의 동일방향권선 연속회수는 8회 이상의 4의 배수의 회수일 수 있다. On the other hand, in another embodiment, the continuous winding number of the same direction winding of the first / second output coil may be four or more times, and the continuous winding number of the same direction winding of the excitation coil is the same as that of the first output coil or the second output coil. It may have a number of multiples of two or more times the direction winding continuous recovery. For example, if the same number of consecutive windings of the first and second output coils are four times, the number of consecutive windings of the same direction of the excitation coil may be eight or more times a multiple of four.
도 10a에서, 상기 제1/제2 출력코일의 동일방향권선 연속회수는 4회이며, 상기 여자코일의 동일방향권선 연속회수는 12회이다. 스테이터의 전체 슬롯수는 24개이며, 상기 제1/제2 출력코일의 극수는 6이며, 상기 여자코일의 극수는 2이다.In FIG. 10A, the number of continuous windings in the same direction of the first / second output coil is four times, and the number of continuous windings in the same direction of the excitation coil is 12 times. The total number of slots of the stator is 24, the number of poles of the first and second output coils is six, and the number of poles of the excitation coil is two.
상술한 구성의 본 실시예의 레졸버용 스테이터는, 보다 긴 주기의 정현파 형태의 권선 패턴을 가지는 여자코일과, 보다 짧은 주기의 정현파 형태의 권선 패턴을 가지는 제1/제2 출력코일 상호간의 유도 현상에 의해, 회전축의 회전속도 및 회전각을 산출하기 위한 신호를 검출할 수 있다. The resolver stator of the present embodiment having the above-described configuration is used to induce phenomena between the excitation coil having a longer period sinusoidal winding pattern and the first / second output coils having a shorter period sinusoidal winding pattern. Thus, a signal for calculating the rotational speed and rotational angle of the rotational shaft can be detected.
이에 따라, 상기 실시예 1과 비교하여, 제작 과정은 다소 복잡할 수 있으나여자코일 및 출력코일의 정현파 권선 패턴으로, 레졸버의 위상 검출 신호의 구별성을 강화할 수 있는 이점이 있다.Accordingly, compared with the first embodiment, the manufacturing process may be somewhat complicated, but the sine wave winding pattern of the excitation coil and the output coil has an advantage of enhancing the distinction of the phase detection signal of the resolver.
한편, 도면에서 서로 동일한 주기의 정현파 형태의 권선 패턴을 가지는 제1/제2 출력코일의 관계에 있어, 상기 제2 출력 코일은 제1 출력 코일보다 위상이 90도 앞서는 형태를 가짐을 알 수 있다.Meanwhile, in the drawing, it can be seen that in the relationship between the first and second output coils having the sine wave winding patterns having the same period, the second output coil has a shape 90 degrees ahead of the first output coil. .
이에 따라, 최종적으로 회전축의 회전 속도 및 회전각을 계산하는데 보다 편리한 출력신호들을 얻을 수 있다. Accordingly, output signals that are more convenient for finally calculating the rotation speed and the rotation angle of the rotation shaft can be obtained.
또한, 본 실시예의 사상에 따른 정현파적으로 변하는 권선수를 가지는 여자 코일의 특징 및/또는 제1/제2 출력 코일의 권선 순서의 특징을 가지는 스테이터의 경우, 슬롯의 개수를 18개 이상으로 적용할 때, 본 발명의 특징들에 따른 효과가 보다 향상되는 것을 발견하였다. 또한, 슬롯의 개수가 18개 이상인 바람직하게는 24개 이상인 것이 상기 여자코일 및 제1/제2 출력코일이 정현파적으로 권선수가 변하는 것을 보다 충실히 구현할 수 있다.In addition, in the case of the stator having the characteristic of the excitation coil having a sinusoidally varying number of windings and / or the characteristic of the winding sequence of the first / second output coil according to the spirit of the present embodiment, the number of slots is applied to 18 or more. It has been found that the effect according to the features of the present invention is further improved. In addition, the number of slots of 18 or more, preferably 24 or more, can more faithfully implement that the number of windings of the excitation coil and the first / second output coil is sinusoidally changed.
상술한 실시예들에서는 여자코일(12)이 제1 출력코일(13)과 제2 출력코일(14)에 앞서 슬롯(11)에 권선되는 것으로 설명되었으나, 본 발명은 이에 한정되지 않고 상기 여자코일(12)은 제1 출력코일(13)과 제2 출력코일(14)이 권선된 후 마지막으로 슬롯(11)에 권선되는 경우에도 동일하게 적용된다.In the above-described embodiments, the excitation coil 12 has been described as being wound in the slot 11 before the first output coil 13 and the second output coil 14, but the present invention is not limited thereto. 12 applies equally to the case where the first output coil 13 and the second output coil 14 are wound up and finally wound in the slot 11.
나아가, 이상에서 설명된 레졸버용 스테이터 및 이를 포함하는 레졸버는 본 발명의 이해를 돕기 위한 일 실시예에 불과하므로 본 발명의 권리범위 내지 기술적 범위가 상기 설명된 바에 한정하는 것으로 이해되어서는 안 된다.Furthermore, the resolver stator described above and the resolver including the same are only examples for helping the understanding of the present invention, and thus the scope of the present invention should not be understood as being limited to the above description.
본 발명의 권리범위 내지 기술적 범위는 후술하는 특허청구범위 및 그 균등범위에 의해 정하여진다.The scope of the invention to the technical scope is defined by the claims and equivalents described below.

Claims (16)

  1. 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터에 있어서,In the resolver stator in which a plurality of slots are formed at regular intervals in the circumferential direction and the excitation coil, the first output coil and the second output coil are wound in the plurality of slots, respectively.
    상기 여자코일은 상기 다수의 슬롯의 원주방향 순번에 따라 정현파적으로 변화하는 권선수를 갖고서 권선되고, 상기 제1 출력코일의 전체 권선수를 일정 비율로 나눈 권선수가 권선된 후, 상기 제2 출력코일이 권선되고, 다시 상기 제1 출력 코일의 나머지가 권선되는 것을 특징으로 하는 레졸버용 스테이터.The excitation coil is wound with a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots, and after the winding number obtained by dividing the total number of windings of the first output coil by a predetermined ratio, the second output is wound. A coil stator is wound, and the remainder of the first output coil is wound.
  2. 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터에 있어서,In the resolver stator in which a plurality of slots are formed at regular intervals in the circumferential direction and the excitation coil, the first output coil and the second output coil are wound in the plurality of slots, respectively.
    상기 제1 출력코일의 전체 권선수를 일정 비율로 나눈 권선수가 권선된 후, 상기 제2 출력코일이 권선되고, 다시 상기 제1 출력 코일의 나머지가 권선되며, 상기 다수의 슬롯은 다수의 짝수개로 구비되는 것을 특징으로 하는 레졸버용 스테이터.After the winding number obtained by dividing the total number of turns of the first output coil by a predetermined ratio is wound, the second output coil is wound, and the rest of the first output coil is wound, and the plurality of slots are divided into even numbers. Resolver stator characterized in that it is provided.
  3. 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터에 있어서,In the resolver stator in which a plurality of slots are formed at regular intervals in the circumferential direction and the excitation coil, the first output coil and the second output coil are wound in the plurality of slots, respectively.
    상기 여자코일은 상기 다수의 슬롯의 원주방향 순번에 따라 정현파적으로 변화하는 권선수를 갖고서 권선되고, 상기 다수의 슬롯은 다수의 짝수개로 구비되는 것을 특징으로 하는 레졸버용 스테이터.The excitation coil is wound with a winding number that is sinusoidally changed according to the circumferential order of the plurality of slots, the plurality of slots is a resolver stator, characterized in that provided with a plurality of even numbers.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제1 출력코일의 전체 권선수의 절반 회수가 권선된 후, 상기 제2 출력코일이 권선되고, 다시 상기 제1 출력 코일의 나머지가 권선되는 것을 특징으로 하는 레졸버용 스테이터.And after half the number of turns of the first output coil is wound, the second output coil is wound, and the rest of the first output coil is wound again.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 제1 출력 코일 또는 제2 출력 코일은 상기 다수의 슬롯의 원주방향 순번에 따라 소정 개수씩 교변하여 권선 방향이 바뀌는 것을 특징으로 하는 레졸버용 스테이터.The first output coil or the second output coil stator for a resolver, characterized in that the winding direction is changed by a predetermined number of turns in accordance with the circumferential order of the plurality of slots.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 여자코일은 상기 다수의 슬롯의 원주방향 순번에 따라 정현파적으로 변화하는 권선수를 갖고서 권선되고, The excitation coil is wound with a winding number that sinusoidally changes according to the circumferential order of the plurality of slots,
    상기 제1 출력코일은 상기 여자코일에 대한 정현파에 +90도의 위상을 가지는 정현파적으로 변화하는 권선수를 갖도록 권선되고,The first output coil is wound to have a sinusoidally varying number of turns having a phase of +90 degrees to the sine wave for the excitation coil,
    상기 제2 출력코일은 상기 여자코일에 대한 정현파에 -90도의 위상을 가지는 정현파적으로 변화하는 권선수를 갖도록 권선되는 것을 특징으로 하는 레졸버용 스테이터.And the second output coil is wound to have a sinusoidally varying number of turns having a phase of −90 degrees to a sine wave for the excitation coil.
  7. 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터에 있어서,In the resolver stator in which a plurality of slots are formed at regular intervals in the circumferential direction and the excitation coil, the first output coil and the second output coil are wound in the plurality of slots, respectively.
    상기 제1 출력코일은 동일한 권선수로 상기 다수의 슬롯의 원주 순번에 따라 2개의 슬롯씩 권선 방향을 교변하여 권선되고,The first output coil is wound by alternating winding directions by two slots according to the circumferential order of the plurality of slots with the same number of turns,
    상기 제2 출력코일은 동일한 권선수로 상기 다수의 슬롯의 원주 순번에 따라 2개의 슬롯씩 권선 방향을 교변하여 권선되고,The second output coil is wound by alternating winding directions by two slots according to the circumferential order of the plurality of slots with the same number of turns,
    상기 여자코일은 2개 이상의 슬롯씩 권선 방향을 교번하는 방식으로, 상기 다수의 슬롯의 원주방향 순번에 따라 정현파적으로 변화하는 권선수를 갖고서 권선되는 것을 특징으로 하는 레졸버용 스테이터.The excitation coil is wound in a manner that alternates the winding direction by two or more slots, the stator for a resolver, characterized in that the winding with a winding number that changes sinusoidally according to the circumferential order of the plurality of slots.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제1 출력 코일 및 제2 출력 코일은 90도의 위상차를 가지는 것을 특징으로 하는 레졸버용 스테이터.And the first output coil and the second output coil have a phase difference of 90 degrees.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 제1 출력 코일 또는 제2 출력 코일의 총 턴수는 상기 여자 코일의 총 턴수의 2배 이상 3배 이하인 것을 특징으로 하는 레졸버용 스테이터.The total number of turns of the first output coil or the second output coil is a stator for a resolver, characterized in that more than two times three times the total number of turns of the exciting coil.
  10. 원주방향으로 일정 간격으로 다수의 슬롯이 형성되고 상기 다수의 슬롯에 각각 여자코일, 제1 출력코일 및 제2 출력코일이 권선되는 레졸버용 스테이터에 있어서,In the resolver stator in which a plurality of slots are formed at regular intervals in the circumferential direction and the excitation coil, the first output coil and the second output coil are wound in the plurality of slots, respectively.
    상기 제1 출력코일 및 제2 출력 코일의 동일방향권선 연속회수(동일한 방향으로 권선이 상기 다수의 슬롯의 원주순번을 기준으로 연속되는 회수)는 2회 이상이며, The number of consecutive windings in the same direction (the number of times the windings are continuous based on the circumference order of the plurality of slots in the same direction) of the first output coil and the second output coil is two or more times.
    상기 여자코일의 동일방향권선 연속회수는, 상기 제1 출력코일 또는 제2 출력코일의 동일방향권선 연속회수의 2배 이상의 배수를 가지는 것을 특징으로 하는 레졸버용 스테이터.The continuous winding in the same direction winding of the excitation coil has a multiple of twice or more times the continuous winding in the same direction of the first output coil or the second output coil.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 제1 출력 코일 및 제2 출력 코일은 90도의 위상차를 가지는 것을 특징으로 하는 레졸버용 스테이터.And the first output coil and the second output coil have a phase difference of 90 degrees.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 제1 출력코일 또는 제2 출력코일은, 각 슬롯에서의 권선 회수가 동일한 것을 특징으로 하는 레졸버용 스테이터.The first output coil or the second output coil, stator for the resolver, characterized in that the number of windings in each slot is the same.
  13. 제 10 항에 있어서,The method of claim 10,
    상기 제1 출력코일 및 제2 출력 코일의 동일방향권선 연속회수는 3회 이상이며, The number of continuous windings in the same direction of the first output coil and the second output coil is three or more times.
    상기 제1 출력코일 또는 제2 출력코일은, 각 슬롯에서의 권선 회수가 정현파 또는 구형파 형태를 가지는 것을 특징으로 하는 레졸버용 스테이터.The first output coil or the second output coil, stator for the resolver, characterized in that the number of windings in each slot has a sine wave or square wave form.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 제1 출력 코일 또는 제2 출력 코일의 총 턴수는 상기 여자 코일의 총 턴수의 2배 이상 3배 이하인 것을 특징으로 하는 레졸버용 스테이터.The total number of turns of the first output coil or the second output coil is a stator for a resolver, characterized in that more than two times three times the total number of turns of the exciting coil.
  15. 제1항 내지 제3항 또는 제7항 또는 제10항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3 or 7 or 10,
    상기 다수의 슬롯은 적어도 20개 이상으로 구비되는 것을 특징으로 하는 레졸버용 스테이터.Resolver stator is characterized in that the plurality of slots are provided with at least 20 or more.
  16. 제1항 내지 제3항 또는 제7항 내지 제14항 중 어느 한 항의 레졸버용 스테이터를 포함하는 레졸버.A resolver comprising the resolver stator of any one of claims 1 to 3 or 7 to 14.
PCT/KR2013/002548 2012-11-19 2013-03-27 Stator used in resolvers, and resolver including same WO2014077471A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17165263.9A EP3205985B1 (en) 2012-11-19 2013-03-27 Stator used in resolvers, and resolver including same
EP13854536.3A EP2921827B1 (en) 2012-11-19 2013-03-27 Stator used in resolvers, and resolver including same
US14/716,726 US20150338244A1 (en) 2012-11-19 2013-03-27 Stator used in resolvers, and resolver including same
EP17166425.3A EP3211383B1 (en) 2012-11-19 2013-03-27 Stator used in resolvers, and resolver including same
US15/476,913 US10514275B2 (en) 2012-11-19 2017-03-31 Stator used in resolvers, and resolver including same
US15/476,897 US20170261350A1 (en) 2012-11-19 2017-03-31 Stator used in resolvers, and resolver including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020120131094A KR101417416B1 (en) 2012-11-19 2012-11-19 Stator for resolver and resolver comprising the same
KR10-2012-0131094 2012-11-19
KR1020130010429A KR101407097B1 (en) 2013-01-30 2013-01-30 Stator for resolver and resolver comprising the same
KR10-2013-0010429 2013-01-30

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/716,726 A-371-Of-International US20150338244A1 (en) 2012-11-19 2013-03-27 Stator used in resolvers, and resolver including same
US15/476,913 Division US10514275B2 (en) 2012-11-19 2017-03-31 Stator used in resolvers, and resolver including same
US15/476,897 Division US20170261350A1 (en) 2012-11-19 2017-03-31 Stator used in resolvers, and resolver including same

Publications (1)

Publication Number Publication Date
WO2014077471A1 true WO2014077471A1 (en) 2014-05-22

Family

ID=50731362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002548 WO2014077471A1 (en) 2012-11-19 2013-03-27 Stator used in resolvers, and resolver including same

Country Status (3)

Country Link
US (3) US20150338244A1 (en)
EP (3) EP3205985B1 (en)
WO (1) WO2014077471A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205985B1 (en) * 2012-11-19 2018-12-12 LS Automotive Technologies Co., Ltd. Stator used in resolvers, and resolver including same
CN112737164A (en) * 2020-12-24 2021-04-30 中国航空工业集团公司金城南京机电液压工程研究中心 Rotary transformer and wire embedding method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307436A (en) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp Rotation angle detecting apparatus and dynamo-electric machine using the same
JP2009183035A (en) * 2008-01-29 2009-08-13 Ichinomiya Denki:Kk Resolver stator and resolver
KR100927690B1 (en) * 2005-01-31 2009-11-18 도요타 지도샤(주) Resolver fixing structure
KR20120023800A (en) * 2009-05-15 2012-03-13 타이코 일렉트로닉스 벨지움 이씨 비브이비에이 Magnetoelectronic angle sensor, in particular a reluctance resolver
KR20120112704A (en) * 2010-02-23 2012-10-11 타마가와 세이키 가부시키가이샤 Method of detecting rotational angle or method of winding for synchronizing device windings

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3182493B2 (en) * 1994-12-27 2001-07-03 多摩川精機株式会社 Variable reluctance angle detector
JPH10307043A (en) 1997-05-02 1998-11-17 Denso Corp Variable reluctance type resolver
JP4181380B2 (en) * 2002-11-01 2008-11-12 三菱電機株式会社 Rotation angle detector and rotating electric machine
JP4199826B2 (en) * 2003-02-19 2008-12-24 ミネベア株式会社 Variable reluctance angle detector using iron core winding and method of manufacturing the iron core winding
JP2006064513A (en) * 2004-08-26 2006-03-09 Minebea Co Ltd Vr type resolver and multiplex resolver using it
JP4781666B2 (en) * 2004-11-17 2011-09-28 三菱電機株式会社 Variable reluctance angle detector
JP4521700B2 (en) * 2005-04-13 2010-08-11 康雄 飯島 Variable reluctance angle detector
JP4708992B2 (en) * 2005-12-12 2011-06-22 日立オートモティブシステムズ株式会社 Position detecting apparatus and synchronous motor driving apparatus using the same
JP4745857B2 (en) * 2006-02-20 2011-08-10 三菱電機株式会社 Electric machine
JP4790478B2 (en) * 2006-04-19 2011-10-12 康雄 飯島 Variable reluctance angle detector
JP2009131092A (en) * 2007-11-26 2009-06-11 Denso Corp Stator of dynamo electric machine, and dynamo electric machine
JP5105169B2 (en) * 2008-01-11 2012-12-19 日本電産株式会社 Resolver, motor, power steering device, and resolver manufacturing method
CN102047079B (en) * 2008-05-27 2013-09-04 三菱电机株式会社 Turning angle detecting device
US8710829B2 (en) * 2009-06-19 2014-04-29 Minebea Co., Ltd. Sheet coil type resolver
US8729887B2 (en) * 2009-11-09 2014-05-20 Aisan Kogyo Kabushiki Kaisha Rotation angle sensor
JP5629955B2 (en) 2010-05-06 2014-11-26 多摩川精機株式会社 Rotation angle detection or rotation synchronization device
WO2011158415A1 (en) * 2010-06-18 2011-12-22 パナソニック株式会社 Method and structure of winding of stator for rotation detector, and electric motor comprising rotation detector
EP2566019B1 (en) * 2011-01-27 2017-03-08 Panasonic Corporation Winding method for stator of rotation detector, winding structure therefor, and electric motor using rotation detector
TWI431896B (en) 2011-04-15 2014-03-21 Simplo Technology Co Ltd Battery balancing circuit and balancing method thereof and battery module activating method
JP5764373B2 (en) * 2011-04-15 2015-08-19 株式会社一宮電機 Variable reluctance resolver
US8947075B2 (en) * 2011-07-05 2015-02-03 Asmo Co., Ltd. Variable reluctance type angle sensor
JP5726329B2 (en) * 2011-12-02 2015-05-27 三菱電機株式会社 Permanent magnet type concentrated winding motor
KR101350266B1 (en) 2012-03-20 2014-01-16 대성전기공업 주식회사 Stator for resolver and resolver comprising the same
JP2014039372A (en) * 2012-08-13 2014-02-27 Asmo Co Ltd Dc motor
KR101964371B1 (en) * 2012-11-02 2019-04-01 한화디펜스 주식회사 Resolver and manufacturing manufacturing method thereof
EP3205985B1 (en) * 2012-11-19 2018-12-12 LS Automotive Technologies Co., Ltd. Stator used in resolvers, and resolver including same
KR101335162B1 (en) 2012-11-19 2013-12-02 한밭대학교 산학협력단 Position aberration correction device and method for resolver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307436A (en) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp Rotation angle detecting apparatus and dynamo-electric machine using the same
KR100927690B1 (en) * 2005-01-31 2009-11-18 도요타 지도샤(주) Resolver fixing structure
JP2009183035A (en) * 2008-01-29 2009-08-13 Ichinomiya Denki:Kk Resolver stator and resolver
KR20120023800A (en) * 2009-05-15 2012-03-13 타이코 일렉트로닉스 벨지움 이씨 비브이비에이 Magnetoelectronic angle sensor, in particular a reluctance resolver
KR20120112704A (en) * 2010-02-23 2012-10-11 타마가와 세이키 가부시키가이샤 Method of detecting rotational angle or method of winding for synchronizing device windings

Also Published As

Publication number Publication date
EP2921827A4 (en) 2016-10-19
US10514275B2 (en) 2019-12-24
EP3205985B1 (en) 2018-12-12
EP3205985A1 (en) 2017-08-16
US20170207670A1 (en) 2017-07-20
EP3211383B1 (en) 2020-05-06
EP3211383A1 (en) 2017-08-30
EP2921827A1 (en) 2015-09-23
US20170261350A1 (en) 2017-09-14
EP2921827B1 (en) 2019-03-20
US20150338244A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
CN102034596B (en) Axial magnetic path multi-pole pair reluctance type rotary transformer
CN112113585B (en) Encoder and method for detecting absolute angle of encoder
WO2016003014A1 (en) Motor using complex magnetic flux
WO2017082463A1 (en) Resolver
CN102723185B (en) Double-channel axial magnetic circuit reluctance type rotary transformer
CN108369112A (en) Rotation angle detection apparatus and electric rotating machine
WO2014077471A1 (en) Stator used in resolvers, and resolver including same
WO2014044043A1 (en) Brushless linear rotary transformer
CN102664095B (en) Double-stator double-channel axial magnetic circuit reluctance type rotary transformer
CN106895856B (en) Radial position sensor
WO2017082462A1 (en) Resolver
RU2474032C2 (en) Magnetoelectric generator
TW201632838A (en) Electrostatic encoder
WO2011145778A1 (en) Variable reluctance resolver
CN103222020A (en) Rotary transformer and motion encoder using the transformer
CN208476266U (en) A kind of rotation angle sensing device
WO2016108614A1 (en) Rotor of electric motor
CN106767954A (en) A kind of Rotary transformer system and the rotary body with this Rotary transformer system
CN206772221U (en) Rotation angle detection apparatus, rotary angle sensing system and rotary body
CN206556672U (en) A kind of Rotary transformer system and the rotary body with this Rotary transformer system
CN206148262U (en) Multipolar high frequency vernier resolver
KR101417416B1 (en) Stator for resolver and resolver comprising the same
CN110081914A (en) A kind of rotation angle sensing device
CN218727948U (en) Magnetic force value detection device
TWI797970B (en) Tachometer generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013854536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14716726

Country of ref document: US