WO2014073895A1 - Composite, composition containing same, and apparatus - Google Patents

Composite, composition containing same, and apparatus Download PDF

Info

Publication number
WO2014073895A1
WO2014073895A1 PCT/KR2013/010094 KR2013010094W WO2014073895A1 WO 2014073895 A1 WO2014073895 A1 WO 2014073895A1 KR 2013010094 W KR2013010094 W KR 2013010094W WO 2014073895 A1 WO2014073895 A1 WO 2014073895A1
Authority
WO
WIPO (PCT)
Prior art keywords
wax
composite
based compound
quantum
quantum dot
Prior art date
Application number
PCT/KR2013/010094
Other languages
French (fr)
Korean (ko)
Inventor
권두효
최정옥
권오관
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130079501A external-priority patent/KR101396871B1/en
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to US14/442,083 priority Critical patent/US20160068749A1/en
Publication of WO2014073895A1 publication Critical patent/WO2014073895A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium

Definitions

  • the present invention relates to a composite, a composition and a device comprising the same, and a composite, a composition and a device comprising the improved dispersibility and luminescent properties.
  • Quantum dots are materials with crystal structures ranging in size from tens to tens of nanometers and consist of hundreds to thousands of atoms. Quantum dots are very small in size, resulting in quantum confinement effects.
  • the quantum confinement effect refers to a phenomenon in which a band gap of the object becomes large when the object becomes smaller than the nano size.
  • the quantum dots are excited by absorbing the light and falling to the ground state while emitting light of a specific wavelength.
  • the wavelength of the emitted light has a value corresponding to the band gap. Since quantum dots have different light emission characteristics due to quantum confinement effects, they are used in various light emitting devices and electronic devices by controlling them.
  • the quantum dots when a plurality of quantum dots are dispersed in a solvent or a resin, the quantum dots may be easily aggregated with each other, thereby decreasing quantum efficiency.
  • the quantum dots made of metal are very vulnerable to moisture, so that the quantum efficiency may be lowered by being easily oxidized by moisture in the air.
  • the quantum dot has a problem in that it is difficult to store because it has low dispersibility in a solvent or resin and low stability in moisture, heat or light.
  • the quantum dots may be easily damaged as the use time of the light emitting device increases because the quantum dots themselves have low stability against moisture, heat, or light. That is, there is a problem in that the lifetime of the light emitting device is shortened by applying the quantum dots to the light emitting device.
  • One object of the present invention is to provide a composite with improved dispersibility and stability against heat, light and moisture as well as quantum efficiency.
  • Another object of the present invention is to provide a composition comprising the complex.
  • Another object of the present invention is to provide a device comprising a coating layer or a film made of the composition.
  • the composite according to an embodiment of the present invention includes at least one quantum dot and a wax-based compound covering the surface of the quantum dot.
  • the wax-based compound may encapsulate the quantum dots.
  • the wax-based compound may encapsulate one quantum dot.
  • the two or more quantum dots may be spaced apart from each other in the aggregate formed by the wax-based compound, so that the quantum dots may be encapsulated by the wax-based compound.
  • the molecular weight of the wax-based compound may be 1,000 or more and 20,000 or less.
  • the melting point of the wax-based compound may be at least 80 °C 200 °C.
  • the wax-based compound may include a polyethylene-based wax, a polypropylene-based wax or an amide-based wax.
  • the acid value of the wax-based compound may be 1 mg KOH / g to 200 mg KOH / g.
  • the density of the wax-based compound may be 0.95 g / cm 3 or more.
  • composition according to the embodiment of the present invention includes a solvent and a complex.
  • the composite includes a wax-based compound dispersed in the solvent and covering at least one quantum dot and the quantum dot.
  • a composition according to another embodiment of the present invention includes a resin and a composite.
  • the composite includes a wax-based compound dispersed in the resin and covering at least one quantum dot and the quantum dot.
  • the resin may include a silicone resin, an epoxy resin, or an acrylic resin.
  • Coating layer or film according to an embodiment of the present invention is prepared using the composition.
  • the complexes may be uniformly dispersed in a solvent or a resin without aggregation with each other.
  • the composite can be maintained in a uniform dispersed state for a long time.
  • the wax-based compound protects the quantum dots, thereby preventing damage to the quantum dots due to moisture, light, heat, and the like, thereby improving stability of the composite with respect to the surrounding environment such as temperature, humidity, and ultraviolet rays.
  • the wax-based compound may constitute one complex such that each of the wax-based compounds may be encapsulated without being aggregated with each other.
  • the composite having improved quantum efficiency than the respective quantum dots can be manufactured and used in various fields.
  • the composites according to the present invention in a light emitting device or an electronic device, it is possible to prevent the lifespan from being reduced while improving color reproducibility, color rendering index, and the like.
  • FIG. 1A and 1B are conceptual views illustrating a composite according to an embodiment of the present invention.
  • Figure 1c is a conceptual diagram for explaining the composite according to another embodiment of the present invention.
  • Figure 2 is a flow chart for explaining a method for producing a composite and a composition comprising the same according to an embodiment of the present invention.
  • 3 to 5 are cross-sectional views illustrating an apparatus according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1A and 1B are conceptual views illustrating a composite according to an embodiment of the present invention.
  • the composite 101 includes a quantum dot 111 and a wax-based compound 130.
  • the "wax-based compound” is defined as a compound having a melting point (Melting point) higher than the room temperature in the solid state at room temperature. That is, in this specification, unless otherwise specified, “wax” refers to a solid state.
  • “Room temperature” is defined as about 15 ° C to about 25 ° C. Melting point of the wax-based compound 130 may be about 80 °C to about 200 °C.
  • FIG. 1A and FIG. 1B two quantum dots 111 are illustrated to describe the relationship between adjacent quantum dots. However, since the two quantum dots 111 are substantially the same, one quantum dot will be described and overlapping descriptions will be omitted. do.
  • the quantum dot 111 is a particle having a crystal structure of several to several tens of nanometers in size, and is composed of hundreds to thousands of atoms. Since the size of the quantum dot 111 is a nano size, a quantum confinement effect appears in the quantum dot 111.
  • the quantum confinement effect refers to a phenomenon in which the band gap of the particle is discontinuously quantized when the particle size is several tens of nanometers or less. The smaller the particle size, the larger the band gap.
  • the quantum dot 111 absorbs the incident light into an excited state, and the quantum dot in the excited state is based It falls to the ground state and emits light of a specific wavelength corresponding to the band gap.
  • the band gap of the quantum dot 111 may be adjusted through the size, composition, etc. of the quantum dot 111 itself.
  • the structure of the quantum dot 111 is not particularly limited.
  • the quantum dot 111 may be a single structure consisting of only a core, a core-single shell structure consisting of a core and a single layer shell, or a core-multishell shell structure consisting of a core and a multilayer shell.
  • the material forming the core or the shell include II-VI compound semiconductor nanocrystals such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, GaN, GaP, GaAs, InP, InAs, etc.
  • Group III-V compound semiconductor nanocrystal or a mixture thereof is mentioned.
  • the quantum dot 111 may have a CdSe / ZnS (core / shell) structure having a core including CdSe and a shell including ZnS.
  • the quantum dot 111 may have an InP / ZnS (core / shell) structure having a core including InP and a shell including ZnS.
  • the quantum dot 111 may further include a ligand (SC) bonded to the surface of the central particle made of the above-described compounds.
  • the ligand SC may prevent quantum dots 111 adjacent to each other from being aggregated and quenched.
  • the ligand (SC) may include a hydrophobic compound.
  • the amine compound which has a C6-C30 alkyl group or an alkenyl group, the carboxylic acid compound which has a C6-C30 alkyl group or an alkenyl group, etc. are mentioned.
  • the quantum dot 111 illustrated in FIG. 1A may include the ligand SC.
  • the wax-based compound 130 covers the quantum dot 111.
  • the wax-based compound 130 may encapsulate the quantum dot 111 by covering the surface of the quantum dot 111 as a whole. In this case, the wax-based compound 130 may form a capsule layer having a predetermined thickness on the surface of the quantum dot 111.
  • the quantum dot 111 may be prevented from being damaged by moisture, heat, light, or the like caused by an external environment.
  • the molecular weight (MW) of the wax-based compound 130 may be about 1,000 to 20,000.
  • the said molecular weight is a number average molecular weight converted into polystyrene.
  • the wax-based compound 130 cannot encapsulate the quantum dots 111 because the wax-based compound 130 may not have a property of a wax present in a solid state at room temperature. It is difficult.
  • the size (average diameter) of the recrystallization of the wax-based compound 130 is several hundred ⁇ m or more, so that even if a composite is prepared using the solvent or There is a problem that is difficult to disperse in the resin.
  • the wax-based compound 130 may be in a liquid phase at a temperature exceeding about 200 °C in the process of encapsulating the quantum dot 111 The quantum dot 111 may be damaged.
  • Synthetic wax may be used as the wax-based compound 130.
  • the wax-based compound 130 may be a polymer, a copolymer or an oligomer.
  • the wax-based compound 130 may include a polyethylene-based wax, a polypropylene-based wax, or an amide-based wax.
  • the wax compound 130 may include at least one of units represented by the following Chemical Formulas 1 to 7.
  • R 1 , R 3 , R 5, and R 7 each independently represent a single bond or an alkylene group having 1 to 10 carbon atoms (*-(CH 2 )).
  • x- *, x represents an integer of 1 to 10
  • R 2 , R 4 , R 6 and R 8 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms
  • R a , R b , R c , R d , R e , R f and R g each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms.
  • R 2 of Formula 1 when R 2 of Formula 1 includes hydrogen, the unit of Formula 1 includes a carboxyl group.
  • R 2 in Formula 1 represents an alkyl group having 1 to 10 carbon atoms, the unit of Formula 1 includes an ester group.
  • R 4 of Formula 2 includes hydrogen
  • the unit of Formula 2 includes an aldehyde group.
  • R 4 in Formula 2 represents an alkyl group having 1 to 10 carbon atoms
  • the unit of Formula 2 includes a ketone group.
  • R 6 of Formula 3 When R 6 of Formula 3 includes hydrogen, the unit of Formula 3 includes a hydroxy group. On the contrary, when R 6 in Formula 3 represents an alkyl group having 1 to 10 carbon atoms, the unit of Formula 3 includes an ether group.
  • the polyethylene wax may be defined.
  • the polyethylene wax includes a polyethylene wax (PE wax) including only a unit in which R g of Formula 7 is hydrogen.
  • the polyethylene wax is selected from units in which R g of Formula 7 is hydrogen, and units in which R a , R b , R c , R d , R e and R f of Formulas 1 to 6 are hydrogen. At least one oxygen-containing unit may be included at the same time.
  • polyethylene wax containing at least one oxygen-containing unit examples include oxidized polyethylene wax (PE wax), an ethylene-acrylic acid copolymer, and ethylene-vinyl acetate, which are oxides of polyethylene.
  • PE wax oxidized polyethylene wax
  • ethylene-acrylic acid copolymer an ethylene-acrylic acid copolymer
  • ethylene-vinyl acetate which are oxides of polyethylene.
  • Ethylene-vinyl acetate copolymer Ethylene-maleic anhydride copolymer etc. are mentioned.
  • the polypropylene wax may be defined. have.
  • the polypropylene wax includes a polypropylene wax (PP wax) including only a unit in which R g of Formula 7 is a methyl group.
  • the polypropylene wax is a unit in which R g of Formula 7 is a methyl group, and units of R a , R b , R c , R d , R e and R f of Formulas 1 to 6 are hydrogen.
  • At least one oxygen-containing unit selected may be included at the same time.
  • a propylene-maleic anhydride copolymer etc. are mentioned.
  • the amide wax has a main chain including an amide bond (-CONH-). That is, the amide wax may be a polymer, copolymer or oligomer including a unit containing an amide bond.
  • the unit of the amide wax may have 1 to 10 carbon atoms.
  • the amide wax may further include one or more kinds of oxygen-containing units represented by Formulas 1 to 6.
  • the quantum dot 111 may be stably compared with the case where only the unit represented by Chemical Formula 7 is included. It can be encapsulated. That is, the PE wax or the PP wax encapsulates the surface of the quantum dot 111 at random, while the wax-based compound 130 and the quantum dot 111 are formed by the polarity of oxygen included in the oxygen-containing unit. The interaction with the metal constituting the is strong. Therefore, when the wax-based compound 130 includes at least one oxygen-containing unit among the units represented by Chemical Formulas 1 to 6, the wax-based compound 130 may stably encapsulate the quantum dots 111. have.
  • the unit represented by Chemical Formula 1, particularly a carboxyl group is most advantageous for encapsulating the quantum dots 111 because the wax-based compound 130 has a strong interaction with the quantum dots 111. Therefore, the wax compound 130 according to the present invention preferably includes at least a carboxy group as a substituent.
  • the wax-based compound 130 including at least one oxygen-containing unit of the units represented by Formulas 1 to 6 may encapsulate a maximum amount of the quantum dots 111. That is, when the amount of the quantum dot 111 added to the solution in which PE wax, PP wax or the like is dissolved is "1" and the amount of the encapsulated quantum dot 111 is "A", "A" is not 0. It can have a value greater than 1 and less than 1.
  • An oxygen-containing wax-based compound which is a wax-based compound 130 including oxygen-containing units represented by Chemical Formulas 1 to 6, may be prepared by oxidizing polyethylene or polypropylene as a base material.
  • the oxygen-containing wax-based compound may be prepared by polymerizing single monomers or copolymerizing two or more different monomers.
  • the recrystallization formed when the PE wax containing ethylene as a unit is recrystallized, it can be easily used without difficulty in encapsulating the quantum dots 111, but the wax-based compound 130 In consideration of the interaction between the quantum dot 111 and the oxygen-based PE wax, the quantum dot 111 can be encapsulated relatively more stably than the PE wax.
  • the wax-based compound 130 may have an acid value of about 1 mg KOH / g to about 200 mg KOH / g.
  • the "acid value" of the wax-based compound 130 refers to the number of mg of potassium hydroxide (KOH) required to neutralize 1 g of the wax-based compound 130.
  • the wax-based compound 130 may have an acid value of about 1 mg KOH / g or more. That is, the larger the acid value, the more carboxyl groups included in the wax-based compound 130.
  • the acid value of the wax-based compound 130 is less than about 1 mg KOH / g, the amount of the carboxyl group interacting with the quantum dot 111 is very small, so that the wax-based compound 130 and the quantum dot ( 111) the interactions between them are almost the same as with PE wax or PP wax.
  • the acid value of the wax-based compound 130 exceeds about 200 mg KOH / g, the ligand (SC) rather than by the carboxy group may be deteriorated to oxidize the surface of the quantum dot (111). Even if the quantum dot 111 is encapsulated due to oxidation of the quantum dot 111, a problem occurs that quantum efficiency is lowered.
  • the wax-based compound 130 preferably has an acid value of about 1 mg KOH / g to about 200 mg KOH / g. More preferably, the wax-based compound 130 may have an acid value of about 5 mg KOH / g to about 50 mg KOH / g.
  • the acid value of the wax-based compound 130 may be measured according to the ASTM 1386 standard. For example, after quantifying about 2 g of the wax-based compound 130 as a sample, the mixture is put into a Erlenmeyer flask, and 40 ml of xylene is heated to raise the temperature. When the sample becomes a completely colorless transparent solution, 2-3 drops of phenolphthalein solution are added.
  • the acid value can be calculated by adding a titration with a KOH solution of about 0.1 N and maintaining the color of the solution for about 10 seconds.
  • the acid value may be calculated by the following Equation 1.
  • Equation 1 "A” represents the amount of KOH (unit: ml) used for sample titration, "N” represents the normal concentration of KOH (unit: N), and "B” represents the amount of sample (unit) : g) is shown.
  • the wax-based compound 130 may have a high density of about 0.95 g / cm 3 or more.
  • the melting point of the composite 101 including the wax-based compound 130 is higher than that of the low-density wax having a low density of less than about 0.95 g / cm 3 . Heat resistance can be improved.
  • the wax-based compound 130 has a high density, since the crystallinity of recrystallization of the wax-based compound 130 is superior to that of the low-density wax, the quantum dot 111 may be stably encapsulated.
  • PE wax may be classified into high density PE wax (HDPE wax) and low density PE wax (LDPE wax) according to the above criteria. That is, HDPE wax has a density of at least about 0.95 g / cm 3 . In this case, the density of the HDPE wax may be about 1.20 g / cm 3 or less.
  • the HDPE wax may have a melting point of about 120 ° C. to about 200 ° C.
  • LDPE wax may have a density of less than about 0.95 g / cm 3 .
  • the melting point of the LDPE wax may be about 80 ° C to about 110 ° C. Therefore, when using the PE wax as the wax-based compound 130, encapsulating the quantum dots 111 with HDPE wax rather than LDPE wax can encapsulate the quantum dots 111 more uniformly.
  • the content of the units represented by Formulas 1 to 7 included in the wax-based compound 130 may vary depending on the molecular weight of the wax-based compound 130 and the acid value of the wax-based compound 130.
  • the diameter d1 of the composite 101 may be about 10 nm to 50 nm.
  • the diameter d1 of the composite 101 is a value measured by a dynamic light scattering method (DLS method) calculated by a Stokes-Einstein equation for a diffusion coefficient (hydrodynamic diameter).
  • DLS method dynamic light scattering method
  • Figure 1c is a conceptual diagram for explaining the composite according to another embodiment of the present invention.
  • the composite 102 includes at least two or more quantum dots 112 and 114 and a wax-based compound 130.
  • the quantum dots 112 and 114 included in the complex 102 are described for convenience by referring to reference numeral 112 as a “first quantum dot” and referring to reference numeral 114 as a “second quantum dot”. Since each of the first and second quantum dots 112 and 114 is substantially the same as the quantum dot 111 described with reference to FIGS. 1A and 1B, detailed descriptions thereof will be omitted.
  • the wax-based compound 130 may cover the first and second quantum dots 112 and 114 to prevent the first and second quantum dots 112 and 114 from aggregation with each other. That is, the wax-based compound 130 may make one aggregate so that the first and second quantum dots 112 and 114 may be encapsulated without being aggregated with each other.
  • the aggregate may be defined as one "composite 102". In the composite 102, the first and second quantum dots 112 and 114 are disposed in an aggregate formed by the wax-based compound 130. The number of quantum dots disposed in the aggregate may be several tens to tens of millions.
  • the diameter (d2) of the composite (102) may be about 5 nm to about 50 ⁇ m, and the diameter (d2) of the composite (102) is about 0.5 in view of the dispersibility for the resin described below. ⁇ m to about 10 ⁇ m.
  • the diameter d2 of the composite 102 may vary depending on the recrystallization rate (cooling rate) in the process of manufacturing the composite 102.
  • wax-based compound 130 is substantially the same as the wax-based compound described with reference to FIGS. 1A and 1B, detailed descriptions thereof will be omitted.
  • the composite 101 described with reference to FIGS. 1A and 1B may be formed, or the complex 102 described with reference to FIG. 1C may be formed.
  • the composite 101 described with reference to FIGS. 1A and 1B and the composite 102 described with reference to FIG. 1C may be simultaneously manufactured.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a composite according to an embodiment of the present invention.
  • the wax powder is added to the organic solvent (step S210).
  • the organic solvent may include toluene.
  • the wax powder is a solid made of a wax-based compound, and the wax-based compound constituting the wax powder is substantially the same as that described in FIGS. 1A to 1C, and thus detailed descriptions thereof will be omitted.
  • solid wax pellets may be added to the organic solvent.
  • step S220 the wax powder is dissolved.
  • the wax powder or the wax pellet can be dissolved by heating the organic solvent.
  • the organic solvent is heated to a temperature above the melting point of the wax powder.
  • the organic solvent may be heated to about 200 °C to 220 °C. Accordingly, it is possible to prepare a wax solution in which the wax powder is dissolved in the organic solvent.
  • the quantum dots are mixed in the wax solution (step S230).
  • the quantum dots When the quantum dots are mixed with the wax solution, the quantum dots are dispersed in the wax solution. In this case, the ligands of the quantum dots may be easily dispersed in the wax solution without aggregation with each other. Since the quantum dots are substantially the same as the quantum dots described with reference to FIGS. 1A to 1C, detailed descriptions thereof will not be repeated.
  • step S240 the wax solution in which the quantum dots are dispersed is cooled.
  • the dissolved wax compound may be recrystallized.
  • the wax solution in which the quantum dots are dispersed may be slowly cooled to room temperature and cooled or quenched to control the recrystallization rate (cooling rate).
  • the recrystallization rate is high, that is, when the temperature of the wax solution is drastically lowered, the size of the aggregate formed by the wax-based compound may be reduced.
  • the temperature of the wax solution is gradually lowered, the size of the aggregate can be increased.
  • Recrystallized wax-based compound can encapsulate quantum dots.
  • the wax-based compound can encapsulate one quantum dot to form a composite 101, as described in Figure 1c
  • Multiple quantum dots can be encapsulated to form a composite 102.
  • composites 101 and 102 according to the present invention can be manufactured.
  • Composites 101 and 102 according to the present invention described above may be stored and used in powder form by removing the organic solvent.
  • the complexes 101 and 102 may be stored and used in a dispersed state in the organic solvent.
  • the composites 101 and 102 may be stably stored and used by the wax-based compound 130 encapsulating the quantum dots 111, 112 and 114 in a powder form with little effect on moisture.
  • the organic solvent may be uniformly dispersed and stored in the organic solvent without aggregation of the composites 101 and 102.
  • the composition comprising the composites 101 and 102 may include a resin.
  • the resin may itself be a liquid phase.
  • the resin may be dissolved in a solvent even if the resin itself is a solid phase, and the composites 101 and 102 may be dispersed in a solution containing the resin and the solvent.
  • the composition including the resin may include at least one of the composite 101 illustrated in FIGS. 1A and 1B and the composite 102 illustrated in FIG. 1C.
  • Specific examples of the resin include vinyl siloxane resins, epoxy siloxane resins, polydimethylsiloxane (PDMS), thermoplastic silicone vulcanizate (TPSiV), thermoplastic silicone polycarbonate-urethane (TSPCU), and the like.
  • the composition may further include a crosslinking agent, a catalyst, an initiator, and the like together with the resin.
  • the composition is about 0.001 to 10 parts by weight of the composite (101, 102) and about 5 parts by weight to about 60 parts by weight of hydride siloxane as the crosslinking agent based on 100 parts by weight of the vinyl siloxane compound as a resin. , About 0.01 parts by weight to about 0.5 parts by weight of the platinum catalyst.
  • the composition comprising the complexes 101 and 102 may include at least one monomer and an initiator.
  • the monomer may include an acrylate compound, an epoxy compound, a siloxane compound, or the like. These may be used alone or in combination of two or more, respectively.
  • the composition may include at least one of the composite 101 shown in FIGS. 1A and 1B and the complex 102 shown in FIG. 1C.
  • the monomers may be polymerized to form a cured product, and the composites 101 and 102 may be dispersed in the cured product.
  • the present invention provides a coating layer or film formed of the composition.
  • the coating layer or film may be formed by crosslinking the resin of the composition or by drying the composition.
  • the composition may be cured using light or heat, and ultraviolet rays may be used when photocuring.
  • the coating layer or film may be formed by polymerizing monomers of the composition.
  • the method for forming the coating layer or film is not particularly limited.
  • the coating layer or the film may have a form in which the composites 101 and 102 are dispersed in a matrix structure formed by the resin.
  • the present invention also provides a device comprising the coating layer or film.
  • the range of the device is not particularly limited, and may be, for example, a lighting device or a display device.
  • the composite The fields 101 and 102 may be uniformly dispersed in a solvent or a resin without aggregation with each other.
  • the composites 101 and 102 may be maintained in a uniform dispersed state for a long time.
  • the wax-based compound 130 protects the quantum dots (111, 112, 114) to prevent damage to the quantum dots due to moisture, light, heat, etc., so that the stability of the composite (101, 102) to the surrounding environment Can improve.
  • the wax-based compound 130 may constitute one composite 101 and 102 such that each of the quantum dots 111 may be encapsulated without being aggregated with each other. Accordingly, the composite having improved quantum efficiency than the respective quantum dots can be manufactured and used in various fields.
  • the wax compound After mixing 20 mg of the wax compound in 1 ml of toluene, the wax compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution.
  • the wax solution was mixed with a solution of Nanodot-HE-606 (trade name, QD solution, Korea), which was about 20 mg of CdSe-based red quantum dots in 1 ml of toluene, was cooled to room temperature. Then, after removing toluene using an evaporator, a composite according to Example 1 of the present invention in a powder state was prepared.
  • Nanodot-HE-606 trade name, QD solution, Korea
  • Licowax PED 136 wax (trade name, Clariant, Switzerland) having an acid value of about 50 mg KOH / g was used as an oxidized high density polyethylene wax (Oxidized HDPE Wax).
  • Example 2 of the present invention was prepared in substantially the same manner as the composite was prepared in Example 1.
  • Licowax PED 191 wax (trade name, Clariant, Switzerland) was used as Oxidized High Density Polyethylene Wax (Oxidized HDPE Wax) having an Acid value of about 7 mg KOH / g.
  • Example 3 of the present invention was prepared in substantially the same manner as the composite was prepared in Example 1.
  • L-C 301E wax (trade name, Lion Chemtech Co., Korea) was used as an oxidized low density polyethylene wax (Oxidized LDPE Wax) having an acid value of about 16 mg KOH / g.
  • Example 4 of the present invention was prepared in substantially the same manner as the composite was prepared in Example 1.
  • Escor TM 5000 ExCo wax (trade name, ExxonMobil Chemical, USA) is an ethylene acrylic acid copolymer having an acid value of about 75 mg KOH / g (Ethylene-Acrylic Acid Copolymer). was used.
  • Example 5 of the present invention was prepared in substantially the same manner as the composite was prepared in Example 1.
  • an EVATANE 18-150 wax (trade name, ARKEMA, France), which was an ethylene vinyl acetate copolymer, was used.
  • the composite according to Example 6 of the present invention was prepared in substantially the same manner as the composite according to Example 1.
  • Licomont AR 504 wax (trade name, Clariant, Switzerland) is a polypropylene wax having an acid value of about 40 mg KOH / g to about 45 mg KOH / g. ) was used.
  • the composite according to Example 7 was prepared in substantially the same manner as the composite according to Example 1 was prepared.
  • LC 104N wax Non-Oxidized HDPE Wax
  • having an acid value of 0 mg KOH / g (trade name, Lion Chemtech Co., Korea) was used. .
  • the composite according to Example 8 was prepared in substantially the same manner as the composite according to Example 1.
  • Escor TM 5100 ExCo wax (trade name, ExxonMobil Chemical, USA) is an ethylene acrylic acid copolymer having an acid value of about 180 mg KOH / g. Was used.
  • Nanodot-HE-606 (trade name, QD solution, Korea), which is a CdSe-based red quantum dot, was prepared.
  • Measurement samples 1 to 8 were prepared by mixing toluene with each of the composites according to Examples 1 to 8 of the present invention.
  • the quantum efficiency (Quantum Yield, QY) and the emission wavelength of the composite according to Example 1 of the present invention were measured using C9920-02 (trade name, HAMAMATSU, Japan) as an absolute quantum efficiency meter. .
  • Comparative Sample 1 was prepared by mixing quantum dots according to Comparative Example 1 with toluene. Quantum efficiency and emission wavelength of the quantum dots according to Comparative Example 1 were measured using Comparative Sample 1. The results are shown in Table 1.
  • the quantum efficiencies of the composites according to Examples 1 to 6 in the state dispersed in toluene are 83.8%, 83.1%, 83.0%, 82.7%, 82.9% and 82.6%. Able to know.
  • the quantum efficiencies of the composites according to Examples 7 and 8 in the state dispersed in toluene are 82.9% and 82.5%, respectively.
  • the quantum efficiency of the composite according to Examples 1 to 8 of the present invention in the state dispersed in toluene is the same as that of Comparative Example 1 It can be seen that higher than the quantum efficiency. That is, even when the composite is manufactured using the quantum dots, it can be seen that the quantum efficiency of the composite is not lower than the quantum efficiency of the quantum dots themselves.
  • the emission wavelengths of the composites according to Examples 1 to 6 were 606.4 nm, 606.7 nm, 606.5 nm, 606.3 nm, 606.1 nm and 606.9 nm, and Example 7 And it can be seen that the emission wavelength of each of the composites according to 8 are 606.3 nm and 606.8 nm.
  • the emission wavelength of the quantum dot according to Comparative Example 1 is 606.0 nm.
  • the emission wavelength of the composite dispersed in toluene is longer than the emission wavelength of the quantum dot itself.
  • the emission wavelength of the composite according to the present invention is longer than the emission wavelength of the quantum dot itself, but the difference is less than about 1 nm, the emission wavelength of the composite in the state dispersed in toluene is substantially the same as the emission wavelength of the quantum dot itself. The same can be said. That is, even when the quantum dot is encapsulated with a wax-based compound, it can be seen that there is almost no shift in the emission wavelength compared to the emission wavelength of the quantum dot itself.
  • Each of the composites according to Examples 1 to 8 of the present invention has a B kit and an optical density (OD) value of 0.1 in an OE-6630 A / B kit (trade name, Dow Corning Silicon, USA), which is a siloxane resin. Mixtures at concentrations produced measurement samples 9-16.
  • Comparative Sample 2 was prepared by mixing quantum dots according to Comparative Example 1 with OE-6630 and an OD value of 0.1.
  • the quantum efficiencies of the composites according to Examples 1 to 6 were 87.3%, 86.5%, 84.9%, 85.7%, 83.5%, and 82.9. %, And the quantum efficiencies of the composites according to Examples 7 and 8 are 75.0% and 74.6%, respectively.
  • the composite including the quantum dots encapsulated by the wax-based compound shows a high quantum efficiency compared to the quantum dots dispersed in the siloxane resin, even in the state dispersed in the siloxane resin. It can be seen.
  • the quantum efficiency of measurement sample 9 in which the composite was dispersed in siloxane resin was 87.3%, which is different from the quantum efficiency of 83.8% of measurement sample 1 in which the composite was dispersed in toluene. It can be seen that + 3.5%.
  • the quantum efficiency of measurement sample 10 is 86.5%, and it can be seen that the difference from 83.1%, which is the quantum efficiency of measurement sample 2, is + 3.4%. It can be seen that the quantum efficiencies of each of the measurement samples 11 to 14 are + 1.9%, + 3%, + 0.6%, and + 0.3% from the quantum efficiency of each of the measurement samples 3 to 6.
  • the composites according to Examples 1 to 6 of the present invention maintain or increase quantum efficiency even when dispersed in the siloxane resin, whereas the quantum dot is significantly reduced when dispersed in the siloxane resin.
  • the quantum dots are encapsulated when the wax-based compound is an oxygen-free wax or a wax having an acid value of about 180 mg KOH / g. If the quantum dot itself is improved than the quantum efficiency itself, it can be seen that the quantum efficiency may be lowered when mixed with the siloxane resin.
  • the emission wavelength of the composite according to Examples 1 to 6 is 609.5 nm, 609.7 nm, 610.6 nm, 610.3 nm, 611.6 nm and 612.4 nm, and Example 7 and It can be seen that the emission wavelength of each of the composites according to 8 is 614.3 nm and 612.6 nm. It can be seen that the emission wavelength of the quantum dot according to Comparative Example 1 is 614.5 nm.
  • both of the composites according to Examples 1 to 8 of the present invention and the quantum dots according to Comparative Example 1 have a longer emission wavelength when dispersed in the siloxane resin than 606.0 nm, which is the emission wavelength of the quantum dots themselves dispersed in toluene. Able to know.
  • the emission wavelength of Measurement Sample 9 is longer by 3.1 nm than the emission wavelength of Measurement Sample 1. It can be seen that the emission wavelength of each of the measurement samples 10 to 14 increases by 3.0 nm, 4.1 nm, 4.0 nm, 5.0 nm and 5.5 nm compared to the emission wavelength of each of the measurement samples 2 to 6. It can be seen that the emission wavelength of each of the measurement samples 15 and 16 increases by 8 nm and 5.8 nm compared to the emission wavelength of the measurement samples 7 and 8 respectively.
  • the change in the emission wavelength of the composites according to Examples 1 to 6 of the present invention is smaller than the change in the emission wavelength of the quantum dot according to Comparative Example 1. That is, in the process of dispersing the composite or the quantum dots in the siloxane resin, the composite or the quantum dots are aggregated (aggregation), the phenomenon that the emission wavelength is relatively longer when dispersed in the siloxane resin than the emission wavelength in toluene, which is a simple dispersion solvent This happens. Nevertheless, when the composites according to the present invention are dispersed in the siloxane resin, it can be seen that the change in the emission wavelength is relatively small compared to the case where the quantum dots are dispersed in the siloxane resin as it is.
  • the composite according to Example 7 shows quantum efficiency at a level similar to that of the measurement samples 1 to 6 in the state dispersed in toluene.
  • the wax-based compound constituting the composite according to Example 7 does not contain oxygen, so that when dispersed in the siloxane resin, although the quantum efficiency is higher than that of the quantum dots according to Comparative Example 1, the examples 1 to It can be seen that the quantum efficiency is lower than the composite according to 6.
  • the composite according to Example 7 was dispersed in siloxane resin (measurement sample 15), it was found that the change in emission wavelength was large when compared with the case where the emission wavelength was dispersed in toluene (measurement sample 7).
  • the quantum efficiency is shown to be similar to those of the measurement samples 1 to 6 in the state dispersed in toluene.
  • the quantum efficiency is higher than that of the quantum dot according to Comparative Example 1, It can be seen that the quantum efficiency is lower than the resulting composite.
  • transmittance immediately after dispersion is a value calculated from an arithmetic mean of a transmittance within a range of about 400 nm to about 700 nm, which is a visible light region measured by a transmittance measuring device immediately after the measurement sample or the comparative sample is prepared. :%)to be.
  • transmittance measured after one month refers to a transmittance within a range of about 400 nm to about 700 nm, which is a visible light region measured by a transmittance measuring device at a point in which one month has elapsed after the measurement sample or the comparative sample is manufactured. , Calculated as the arithmetic mean (%).
  • Dispersion stability of Table 3 is computed by calculating the transmittance
  • the dispersion stability of measurement samples 9 to 16 is 2%, 4%, 3%, 5%, 6%, 6%, 13% and 14%, respectively.
  • the dispersion stability of Comparative Sample 2 is 18%. That is, it can be seen that the dispersion stability of the measurement samples 9 to 16 including the composite according to the embodiments of the present invention is relatively superior to the comparative sample 2. It can be seen that even after time, no precipitation occurs and the state remains dispersed in the siloxane resin. In particular, in the case of measurement samples 15 and 16, although dispersion stability is good compared with the comparative sample 2, it turns out that dispersion stability is not good compared with the measurement samples 9-14.
  • the ultraviolet stability of the composite according to Examples 1 to 8 is 15%, 19%, 21%, 19%, 22%, 21%, 29% and 30%, respectively, according to Comparative Example 1
  • the UV stability of the quantum dot is 52%.
  • the better the stability to ultraviolet rays the smaller the change in the quantum efficiency under the harsh conditions of the ultraviolet rays (irradiation amount of about 540 J / cm 2 ), the smaller the ultraviolet stability. That is, it can be seen that the ultraviolet stability of the composite according to Examples 1 to 8 of the present invention is superior to the quantum dots according to Comparative Example 1.
  • the ultraviolet stability of the composite according to Examples 1 to 6 is superior to the ultraviolet stability of the composite according to Examples 7 and 8.
  • the thermal / moisture stability of the composites according to Examples 1 to 8 were 16%, 18%, 21%, 21%, 24%, 25%, 41% and 42%, respectively, whereas the quantum dots according to Comparative Example 1
  • the heat / moisture stability is 55%.
  • the greater the stability to temperature and humidity the smaller the change in quantum efficiency under high temperature and high humidity (temperature 85 ° C. and relative humidity 85%), and therefore the smaller the heat / moisture stability. That is, it can be seen that the thermal / moisture stability of the composites according to Examples 1 to 8 of the present invention is superior to the quantum dots according to Comparative Example 1.
  • the thermal / moisture stability of the composites according to Examples 1 to 6 is superior to that of the composites according to Examples 7 and 8.
  • the composite according to Example 1 was dispersed in OE-6630 B kit and OE-6630 A kit and 1: 4 (A kit: B kit) The mixture was mixed at a mass ratio of and a heat treatment was performed in an oven at about 150 ° C. for about 2 hours to prepare a first film sample having a thickness of about 200 ⁇ m.
  • the second to eighth film samples were prepared through a process substantially the same as that of preparing the first film sample.
  • the first comparative film sample was manufactured through a process substantially the same as the process of preparing the first film sample using the quantum dot according to Comparative Example 1.
  • the ultraviolet stability of the first to eighth film samples is compared with the ultraviolet stability of the first comparative film sample, the ultraviolet stability of the film samples including the composite according to Examples 1 to 8 of the present invention is quantum dots It can be seen that it is superior to the first comparative film sample including the.
  • the ultraviolet stability of the seventh and eighth film samples is better than that of the first comparative film sample, but it is not good compared to the first to sixth film samples. That is, it can be seen that the ultraviolet stability of the first to sixth film samples is very excellent at a level of about 6% or less.
  • the heat / moisture stability of the film samples comprising the composite according to Examples 1 to 8 of the present invention. It turns out that it is excellent compared with this 1st comparative film sample.
  • the heat / moisture stability of the seventh and eighth film samples is better than that of the first comparative film sample, but not as good as the first to sixth film samples. have. That is, it can be seen that the heat / moisture stability of the first to sixth film samples is very good at a level of about 11% or less.
  • the ultraviolet stability and the heat / moisture stability of the composite according to the present invention are superior to those of using the quantum dot as it is.
  • Example 1 After dissolving MB2478 (trade name, Mitsubishi Rayon, Japan) in toluene, the composite according to Example 1 was dispersed and dried at about 80 ° C. to prepare a ninth film sample having a thickness of about 200 ⁇ m.
  • the tenth to sixteenth film samples were prepared by substantially the same process as the process for preparing the ninth film sample using the composite according to Examples 2 to 8.
  • the second comparative film sample was manufactured by substantially the same process as the process of manufacturing the ninth film sample using the quantum dot according to Comparative Example 1.
  • the ultraviolet stability of the ninth to sixteenth film samples with the ultraviolet stability of the second comparative film sample, the ultraviolet stability of the film samples including the composite according to Examples 1 to 8 of the present invention, respectively 8%, 9%, 11%, 14%, 13%, 16%, 27% and 35%, the UV stability of the second comparative film sample containing quantum dots is excellent when compared to 48%. .
  • the ultraviolet stability of the fifteenth and sixteenth film samples is better than that of the second comparative film sample, but it is not good compared to the ninth to fourteenth film samples. That is, it can be seen that the ultraviolet stability of the ninth to fourteenth film samples is excellent at a level of about 16% or less.
  • the heat / moisture stability of the ninth to sixteenth film samples when comparing the heat / moisture stability of the ninth to sixteenth film samples with the heat / moisture stability of the second comparative film sample, the heat / moisture stability of the film samples including the composite according to Examples 1 to 8 of the present invention. As 5%, 7%, 7%, 13%, 10%, 12%, 32% and 34%, it can be seen that the heat / moisture stability of the first comparative film sample is superior to that of 43%.
  • the heat / moisture stability of the fifteenth and sixteenth film samples is better than that of the second comparative film sample, but not as good as the ninth to fourteenth film samples. have. That is, it can be seen that the heat / moisture stability of the ninth to fourteenth film samples is very good at a level of about 13% or less.
  • the ultraviolet stability and the heat / moisture stability of the composite according to the present invention are superior to those of using the quantum dots as they are.
  • 3 to 5 are cross-sectional views illustrating an apparatus according to another embodiment of the present invention.
  • a light emitting device 501 is formed on a light emitting diode (LED) element portion 10 and the LED element portion 10 and includes a first composite including the composite according to the present invention as described above.
  • the cured product layer 310 and the second cured product layer 320 are included.
  • the LED element part 10 includes a base part 2 and an LED chip 1 formed in a groove part of the base part 2.
  • the first cured product layer 310 includes a green composite 311 dispersed in a matrix structure formed by the curable resin.
  • the green composite 311 includes green quantum dots, and the green quantum dots are encapsulated by a wax-based compound.
  • the "matrix structure” means the internal structure of the cured product formed by the curable resin of the composition used to form the first cured product layer 310 by chemical reaction. Since the wax-based compound is substantially the same as described with reference to FIGS. 1A, 1B, and 1C, detailed descriptions thereof will not be repeated.
  • the second cured product layer 320 includes an encapsulated red composite material 321 dispersed in a matrix structure formed by the curable resin.
  • the red complex 321 includes red quantum dots, and the red quantum dots are encapsulated by a wax-based compound.
  • the wax compound encapsulating the red quantum dots may be the same as or different from the wax compound encapsulating the green quantum dots.
  • the green composite 311 may have a light emission peak at about 520 nm to about 570 nm, which is a green wavelength region.
  • the red complex 321 may have a light emission peak at about 600 nm to about 680 nm, which is a red wavelength region.
  • the red wavelength region may be about 620 nm to about 670 nm.
  • the LED chip 1 generates blue light.
  • the blue light may have a wavelength of about 400 nm to about 480 nm.
  • the blue wavelength region may be about 400 nm to about 450 nm.
  • the first cured material layer 310 may include a red composite 321, and the second cured material layer 320 may include a green composite 311.
  • the light emitting device includes a green composite 311 and a red composite 321, and includes a cured product layer covering the LED chip 1. May have
  • the light emitting device 502 includes a phosphor layer 410 including an LED element unit 10, a first cured product layer 310, a second cured product layer 320, and a phosphor 411. Include.
  • the light emitting device 502 is substantially the same as the light emitting device 501 described with reference to FIG. 3 except for the fluorescent layer 410. Therefore, redundant descriptions are omitted.
  • the fluorescent layer 410 may compensate for light emission of the green composite 311 of the first cured product layer 310 and / or the red composite 321 of the second cured material layer 320.
  • the phosphor 411 may have a light emission peak at, for example, about 520 nm to about 570 nm in a green region and / or about 600 nm to about 680 nm in a red region. In contrast, the phosphor 411 may have a light emission peak at about 580 nm to about 600 nm, which is a yellow region.
  • the light emitting device 503 includes an LED element unit 10 and a cured product layer ML.
  • the cured product layer ML may include all of the green composite 311, the red composite 321, and the phosphor 411 dispersed in a matrix structure formed by the curable resin.
  • the light emitting device includes a first layer including two compounds of the green complex 311, the red complex 321, and the phosphor 411, and a second layer including the remaining one compound. It may include.
  • the light emitting device when the LED chip is a light emitting chip that generates UV light, the light emitting device includes a first layer including a blue composite, a second layer including a green composite, and a third layer including a red composite on the light emitting chip. It may have a laminated structure. At this time, each of the red, green and blue composites includes a quantum dot encapsulated with a wax-based compound according to the present invention. The stacking order of the first to third layers may be variously changed.
  • the composite according to the present invention having good UV stability and heat / moisture stability, and the life of the light emitting device can be shortened due to damage of the quantum dots. You can prevent it.
  • the composite according to the present invention is dispersed in a resin to form a cured product layer, shift of emission peaks can be minimized. Accordingly, the light emitting device or the display device can be easily controlled to have the color characteristics (spectrum) required by the user, and color reproducibility can be improved.
  • a light emitting device that satisfies both color reproducibility and lifespan characteristics can be manufactured.

Abstract

The composite comprises at least one quantum dot and a wax-based compound which covers a surface of the quantum dot. The composite has remarkable quantum efficiency, a small change in emission peak even if the composite is dispersed in a resin, and excellent dispersion stability, UV stability and thermal/moisture stability.

Description

복합체, 이를 포함하는 조성물 및 장치Complexes, compositions and devices comprising the same
본 발명은 복합체, 이를 포함하는 조성물 및 장치에 관한 것으로, 분산성 및 발광 특성이 향상된 복합체, 이를 포함하는 조성물 및 장치에 관한 것이다.The present invention relates to a composite, a composition and a device comprising the same, and a composite, a composition and a device comprising the improved dispersibility and luminescent properties.
양자점은 수 내지 수십 나노미터 크기의 결정 구조를 가진 물질로, 수백에서 수천 개 정도의 원자로 구성된다. 양자점은 크기가 매우 작기 때문에 양자 구속(quantum confinement) 효과가 나타난다. 상기 양자 구속 효과는 물체가 나노 크기 이하로 작아지는 경우 그 물체의 밴드 갭(band gap)이 커지는 현상을 말한다. 이에 따라, 양자점의 밴드 갭보다 큰 에너지를 갖는 파장의 광이 양자점에 입사되는 경우, 양자점은 그 광을 흡수하여 들뜬 상태로 되고, 특정 파장의 광을 방출하면서 바닥 상태로 떨어진다. 방출된 광의 파장은 상기 밴드 갭에 해당되는 값을 갖는다. 양자점은 크기와 조성 등에 따라 양자 구속 효과에 의한 발광 특성이 달라지므로 이를 조절하여 각종 발광 소자 및 전자 장치에 다양하게 이용되고 있다.Quantum dots are materials with crystal structures ranging in size from tens to tens of nanometers and consist of hundreds to thousands of atoms. Quantum dots are very small in size, resulting in quantum confinement effects. The quantum confinement effect refers to a phenomenon in which a band gap of the object becomes large when the object becomes smaller than the nano size. As a result, when light having a wavelength larger than the band gap of the quantum dots is incident on the quantum dots, the quantum dots are excited by absorbing the light and falling to the ground state while emitting light of a specific wavelength. The wavelength of the emitted light has a value corresponding to the band gap. Since quantum dots have different light emission characteristics due to quantum confinement effects, they are used in various light emitting devices and electronic devices by controlling them.
일반적으로, 다수의 양자점들을 용매나 수지에 분산시키는 경우, 양자점들이 서로 쉽게 응집되어 양자 효율이 저하될 수 있다. 또한, 금속으로 이루어진 양자점은 수분에 매우 취약하여, 공기 중의 수분에 의해 쉽게 산화됨으로써 양자 효율이 저하될 수 있다. 이와 같이, 양자점은 용매나 수지에 대한 분산성이 낮고 수분, 열 또는 광에 대한 안정성이 낮아 보관하기 어려운 문제점을 갖고 있다.In general, when a plurality of quantum dots are dispersed in a solvent or a resin, the quantum dots may be easily aggregated with each other, thereby decreasing quantum efficiency. In addition, the quantum dots made of metal are very vulnerable to moisture, so that the quantum efficiency may be lowered by being easily oxidized by moisture in the air. As described above, the quantum dot has a problem in that it is difficult to store because it has low dispersibility in a solvent or resin and low stability in moisture, heat or light.
또한, 색재현성을 향상시키기 위해서 양자점을 이용하여 발광 소자를 제조하더라도, 양자점 자체의 수분, 열 또는 광에 대한 안정성이 낮기 때문에 발광 소자의 사용 시간이 증가할수록 양자점이 쉽게 손상될 수 있다. 즉, 발광 소자에 양자점을 적용함에 따라 발광 소자의 수명이 짧아지는 문제점이 있다.In addition, even when a light emitting device is manufactured using quantum dots to improve color reproducibility, the quantum dots may be easily damaged as the use time of the light emitting device increases because the quantum dots themselves have low stability against moisture, heat, or light. That is, there is a problem in that the lifetime of the light emitting device is shortened by applying the quantum dots to the light emitting device.
본 발명의 일 목적은 분산성과 열, 광 및 수분에 대한 안정성뿐만 아니라 양자 효율도 향상된 복합체를 제공하는 것이다.One object of the present invention is to provide a composite with improved dispersibility and stability against heat, light and moisture as well as quantum efficiency.
본 발명의 다른 목적은 상기 복합체를 포함하는 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition comprising the complex.
본 발명의 또 다른 목적은 상기 조성물로 제조된 코팅층 또는 필름을 포함하는 장치를 제공하는 것이다.Another object of the present invention is to provide a device comprising a coating layer or a film made of the composition.
본 발명의 일 실시예에 따른 복합체는, 적어도 1개의 양자점과, 상기 양자점의 표면을 커버하는 왁스계 화합물을 포함한다.The composite according to an embodiment of the present invention includes at least one quantum dot and a wax-based compound covering the surface of the quantum dot.
일 실시예에서, 상기 왁스계 화합물은 상기 양자점을 캡슐화할 수 있다. 이때, 상기 왁스계 화합물은 1개의 양자점을 캡슐화할 수 있다. 이와 달리, 상기 왁스계 화합물이 형성하는 응집체의 내부에 2개 이상의 양자점들이 서로 이격되어 배치됨으로써 상기 양자점들이 상기 왁스계 화합물에 의해서 캡슐화될 수 있다.In one embodiment, the wax-based compound may encapsulate the quantum dots. In this case, the wax-based compound may encapsulate one quantum dot. In contrast, the two or more quantum dots may be spaced apart from each other in the aggregate formed by the wax-based compound, so that the quantum dots may be encapsulated by the wax-based compound.
일 실시예에서, 상기 왁스계 화합물의 분자량은 1,000 이상 20,000 이하일 수 있다.In one embodiment, the molecular weight of the wax-based compound may be 1,000 or more and 20,000 or less.
일 실시예에서, 상기 왁스계 화합물의 녹는점은 80℃ 이상 200℃ 이하일 수 있다.In one embodiment, the melting point of the wax-based compound may be at least 80 ℃ 200 ℃.
일 실시예에서, 상기 왁스계 화합물은 폴리에틸렌계 왁스(Polyethylene-based wax), 폴리프로필렌계 왁스(Polypropylene-based wax) 또는 아마이드계 왁스(Amide-based wax)를 포함할 수 있다.In one embodiment, the wax-based compound may include a polyethylene-based wax, a polypropylene-based wax or an amide-based wax.
일 실시예에서, 상기 왁스계 화합물의 산가(acid value)는 1 mg KOH/g 내지 200 mg KOH/g일 수 있다.In one embodiment, the acid value of the wax-based compound may be 1 mg KOH / g to 200 mg KOH / g.
일 실시예에서, 상기 왁스계 화합물의 밀도는 0.95 g/cm3이상일 수 있다.In one embodiment, the density of the wax-based compound may be 0.95 g / cm 3 or more.
본 발명의 일 실시예에 따른 조성물은, 용매 및 복합체를 포함한다. 상기 복합체는 상기 용매 내에 분산되고, 적어도 1개의 양자점과 상기 양자점을 커버하는 왁스계 화합물을 포함한다.The composition according to the embodiment of the present invention includes a solvent and a complex. The composite includes a wax-based compound dispersed in the solvent and covering at least one quantum dot and the quantum dot.
본 발명의 다른 실시예에 따른 조성물은, 수지 및 복합체를 포함한다. 상기 복합체는 상기 수지 내에 분산되고, 적어도 1개의 양자점과 상기 양자점을 커버하는 왁스계 화합물을 포함한다. 이때, 상기 수지는 실리콘계 수지, 에폭시계 수지 또는 아크릴계 수지를 포함할 수 있다.A composition according to another embodiment of the present invention includes a resin and a composite. The composite includes a wax-based compound dispersed in the resin and covering at least one quantum dot and the quantum dot. In this case, the resin may include a silicone resin, an epoxy resin, or an acrylic resin.
본 발명의 일 실시예에 따른 코팅층이나 필름은 상기 조성물을 이용하여 제조된다.Coating layer or film according to an embodiment of the present invention is prepared using the composition.
본 발명에 따르면, 왁스계 화합물에 의해 커버된 양자점을 포함하는 다수의 복합체들을 용매나 수지에 분산시키더라도, 상기 복합체들이 서로 응집되지 않고 용매나 수지 내에서 균일하게 분산될 수 있다. 또한, 상기 복합체는 장기간 동안 균일한 분산 상태로 유지될 수 있다. According to the present invention, even when a plurality of complexes including quantum dots covered by a wax-based compound are dispersed in a solvent or a resin, the complexes may be uniformly dispersed in a solvent or a resin without aggregation with each other. In addition, the composite can be maintained in a uniform dispersed state for a long time.
또한, 왁스계 화합물이 양자점을 보호함으로써 수분, 광, 열 등에 의해 양자점이 손상되는 것을 방지하여, 온도, 습도, 자외선 등의 주변 환경에 대한 복합체의 안정성을 향상시킬 수 있다.In addition, the wax-based compound protects the quantum dots, thereby preventing damage to the quantum dots due to moisture, light, heat, and the like, thereby improving stability of the composite with respect to the surrounding environment such as temperature, humidity, and ultraviolet rays.
나아가, 왁스계 화합물은 다수개의 양자점들이 서로 응집되지는 않으면서도 각각이 캡슐화될 수 있도록 하나의 복합체를 구성할 수 있다. Furthermore, the wax-based compound may constitute one complex such that each of the wax-based compounds may be encapsulated without being aggregated with each other.
이에 따라, 각각의 양자점들보다 양자 효율이 향상된 복합체를 제조하여 다양한 분야에 이용할 수 있다. 특히, 발광 소자 또는 전자 장치에 본 발명에 따른 복합체들을 이용하여 색재현성, 연색 지수 등을 향상시키면서도 수명이 저하되는 것을 방지할 수 있다.Accordingly, the composite having improved quantum efficiency than the respective quantum dots can be manufactured and used in various fields. In particular, by using the composites according to the present invention in a light emitting device or an electronic device, it is possible to prevent the lifespan from being reduced while improving color reproducibility, color rendering index, and the like.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 복합체를 설명하기 위한 개념도들이다.1A and 1B are conceptual views illustrating a composite according to an embodiment of the present invention.
도 1c는 본 발명의 다른 실시예에 따른 복합체를 설명하기 위한 개념도이다.Figure 1c is a conceptual diagram for explaining the composite according to another embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 복합체 및 이를 포함하는 조성물을 제조하는 방법을 설명하기 위한 순서도이다. Figure 2 is a flow chart for explaining a method for producing a composite and a composition comprising the same according to an embodiment of the present invention.
도 3 내지 도 5는 본 발명의 또 다른 실시예에 따른 장치를 설명하기 위한 단면도들이다.3 to 5 are cross-sectional views illustrating an apparatus according to another embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. In the accompanying drawings, the dimensions of the structures are shown in an enlarged scale than actual for clarity of the invention.
"제1, 제2" 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as "first and second" may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprises" or "having" are intended to indicate that there is a feature, step, operation, component, part, or combination thereof described on the specification, and one or more other features or steps. It is to be understood that the present invention does not exclude, in advance, the possibility of the presence or the addition of an operation, a component, a part, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 복합체를 설명하기 위한 개념도들이다.1A and 1B are conceptual views illustrating a composite according to an embodiment of the present invention.
도 1a 및 도 1b를 참조하면, 복합체(101)는 양자점(111) 및 왁스계 화합물(wax-based compound, 130)을 포함한다. 본 명세서에서, "왁스계 화합물"은 상온에서 고체 상태이고 상온보다 높은 녹는점(Melting point)을 가지는 화합물로 정의한다. 즉, 본 명세서에서, 특별한 정의가 없는 한 "왁스"는 고체 상태를 지칭하는 것이다. "상온"은 약 15℃ 내지 약 25℃로 정의한다. 상기 왁스계 화합물(130)의 녹는점은 약 80℃ 내지 약 200℃일 수 있다.1A and 1B, the composite 101 includes a quantum dot 111 and a wax-based compound 130. In the present specification, the "wax-based compound" is defined as a compound having a melting point (Melting point) higher than the room temperature in the solid state at room temperature. That is, in this specification, unless otherwise specified, "wax" refers to a solid state. "Room temperature" is defined as about 15 ° C to about 25 ° C. Melting point of the wax-based compound 130 may be about 80 ℃ to about 200 ℃.
도 1a 및 도 1b에서 서로 인접한 양자점들의 관계를 설명하기 위해서 2개의 양자점(111)을 도시하였으나, 2개의 양자점들(111)은 실질적으로 동일하므로 하나의 양자점에 대해서 설명하고, 중복되는 설명은 생략한다.In FIG. 1A and FIG. 1B, two quantum dots 111 are illustrated to describe the relationship between adjacent quantum dots. However, since the two quantum dots 111 are substantially the same, one quantum dot will be described and overlapping descriptions will be omitted. do.
상기 양자점(111)은 수 내지 수십 나노미터 크기의 결정 구조를 가진 입자로서, 수백에서 수천 개의 원자들로 구성된다. 상기 양자점(111)의 크기는 나노 사이즈이므로, 상기 양자점(111)에는 양자 구속 효과(quantum confinement effect)가 나타난다. 양자 구속 효과란, 입자의 크기가 수십 나노미터 이하인 경우에 그 입자의 밴드갭(band gap)이 불연속적으로 양자화되는 현상을 말하고, 입자의 크기가 작아질수록 밴드갭이 커진다. 따라서, 상기 양자점(111)에 상기 밴드갭보다 큰 에너지를 가진 광이 입사되는 경우, 상기 양자점(111)은 입사된 광을 흡수하여 여기 상태(excited state)로 되고, 여기 상태에 있는 양자점은 기저 상태(ground state)로 떨어지면서 상기 밴드갭에 해당하는 특정 파장의 광을 방출한다. 상기 양자점(111)의 밴드갭은, 상기 양자점(111) 그 자체의 크기, 조성 등을 통하여 조절할 수 있다. The quantum dot 111 is a particle having a crystal structure of several to several tens of nanometers in size, and is composed of hundreds to thousands of atoms. Since the size of the quantum dot 111 is a nano size, a quantum confinement effect appears in the quantum dot 111. The quantum confinement effect refers to a phenomenon in which the band gap of the particle is discontinuously quantized when the particle size is several tens of nanometers or less. The smaller the particle size, the larger the band gap. Therefore, when light having energy greater than the band gap is incident on the quantum dot 111, the quantum dot 111 absorbs the incident light into an excited state, and the quantum dot in the excited state is based It falls to the ground state and emits light of a specific wavelength corresponding to the band gap. The band gap of the quantum dot 111 may be adjusted through the size, composition, etc. of the quantum dot 111 itself.
본 발명에 있어서, 상기 양자점(111)의 구조는 특별히 제한되지 않는다. 예를 들면, 상기 양자점(111)은 코어만으로 이루어진 단일 구조, 코어와 단일층의 쉘로 이루어진 코어-단일 쉘 구조 또는 코어와 다중층의 쉘로 이루어진 코어-다중 쉘 구조일 수 있다. 상기 코어 또는 상기 쉘을 형성하는 물질의 예로서는, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe 등과 같은 II-VI족 화합물 반도체 나노 결정, GaN, GaP, GaAs, InP, InAs 등과 같은 III-V족 화합물 반도체 나노 결정 또는 이들의 혼합물 등을 들 수 있다. 일례로, 상기 양자점(111)은 CdSe를 포함하는 코어 및 ZnS를 포함하는 쉘을 갖는 CdSe/ZnS(코어/쉘) 구조를 가질 수 있다. 다른 예로서, 상기 양자점(111)은 InP를 포함하는 코어 및 ZnS를 포함하는 쉘을 갖는 InP/ZnS(코어/쉘) 구조를 가질 수 있다.In the present invention, the structure of the quantum dot 111 is not particularly limited. For example, the quantum dot 111 may be a single structure consisting of only a core, a core-single shell structure consisting of a core and a single layer shell, or a core-multishell shell structure consisting of a core and a multilayer shell. Examples of the material forming the core or the shell include II-VI compound semiconductor nanocrystals such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, GaN, GaP, GaAs, InP, InAs, etc. Group III-V compound semiconductor nanocrystal or a mixture thereof is mentioned. For example, the quantum dot 111 may have a CdSe / ZnS (core / shell) structure having a core including CdSe and a shell including ZnS. As another example, the quantum dot 111 may have an InP / ZnS (core / shell) structure having a core including InP and a shell including ZnS.
이때, 상기 양자점(111)은 상기에서 설명한 화합물들로 이루어진 중심 입자의 표면에 결합된 리간드(SC)를 더 포함할 수 있다. 상기 리간드(SC)는 서로 인접한 양자점들(111)이 서로 응집되어 소광(quenching)되는 것을 방지할 수 있다. 상기 리간드(SC)는 소수성 화합물을 포함할 수 있다. 상기 리간드(SC)의 예로서는, 탄소수 6 내지 30의 알킬기 또는 알케닐기를 갖는 아민계 화합물이나 탄소수 6 내지 30의 알킬기 또는 알케닐기를 갖는 카르복시산 화합물 등을 들 수 있다. 도 1a에 도시된 양자점(111)은 상기 리간드(SC)를 포함할 수 있다.In this case, the quantum dot 111 may further include a ligand (SC) bonded to the surface of the central particle made of the above-described compounds. The ligand SC may prevent quantum dots 111 adjacent to each other from being aggregated and quenched. The ligand (SC) may include a hydrophobic compound. As an example of the said ligand (SC), the amine compound which has a C6-C30 alkyl group or an alkenyl group, the carboxylic acid compound which has a C6-C30 alkyl group or an alkenyl group, etc. are mentioned. The quantum dot 111 illustrated in FIG. 1A may include the ligand SC.
상기 왁스계 화합물(130)은 상기 양자점(111)을 커버한다. 상기 왁스계 화합물(130)은 상기 양자점(111)의 표면을 전체적으로 커버하여 상기 양자점(111)을 캡슐화할 수 있다. 이때, 상기 왁스계 화합물(130)은 상기 양자점(111)의 표면에 소정 두께를 갖는 캡슐층을 형성할 수 있다. 상기 왁스계 화합물(130)이 상기 양자점(111)을 커버함으로써, 상기 양자점(111)이 외부 환경에 의한 수분, 열, 광 등에 의해 손상되는 것을 방지할 수 있다. The wax-based compound 130 covers the quantum dot 111. The wax-based compound 130 may encapsulate the quantum dot 111 by covering the surface of the quantum dot 111 as a whole. In this case, the wax-based compound 130 may form a capsule layer having a predetermined thickness on the surface of the quantum dot 111. By covering the quantum dot 111 with the wax-based compound 130, the quantum dot 111 may be prevented from being damaged by moisture, heat, light, or the like caused by an external environment.
상기 왁스계 화합물(130)의 분자량(Molecular Weight, MW)은 약 1,000 내지 20,000 일 수 있다. 상기 분자량은, 폴리스티렌으로 환산한 수평균 분자량이다. 예를 들어, 상기 왁스계 화합물(130)의 분자량이 약 1,000 미만인 경우에는 상온에서 고체인 상태로 존재하는 왁스의 성질을 가질 수 없어 상기 왁스계 화합물(130)이 상기 양자점(111)을 캡슐화하기 어렵다. 또한, 상기 왁스계 화합물(130)의 분자량이 약 20,000을 초과하는 경우에는, 상기 왁스계 화합물(130)의 재결정의 크기(평균 지름)가 수백 μm 이상이 되어 이를 이용하여 복합체를 제조하더라도 용매나 수지에 분산시키기 어려운 문제가 있다. 뿐만 아니라, 상기 왁스계 화합물(130)의 분자량이 약 20,000을 초과하는 경우에는 약 200℃ 초과 온도에서 상기 왁스계 화합물(130)이 액상이 될 수 있으므로 상기 양자점(111)을 캡슐화하는 공정에서 상기 양자점(111)이 손상될 수 있다.The molecular weight (MW) of the wax-based compound 130 may be about 1,000 to 20,000. The said molecular weight is a number average molecular weight converted into polystyrene. For example, when the molecular weight of the wax-based compound 130 is less than about 1,000, the wax-based compound 130 cannot encapsulate the quantum dots 111 because the wax-based compound 130 may not have a property of a wax present in a solid state at room temperature. It is difficult. In addition, when the molecular weight of the wax-based compound 130 exceeds about 20,000, the size (average diameter) of the recrystallization of the wax-based compound 130 is several hundred μm or more, so that even if a composite is prepared using the solvent or There is a problem that is difficult to disperse in the resin. In addition, when the molecular weight of the wax-based compound 130 exceeds about 20,000, the wax-based compound 130 may be in a liquid phase at a temperature exceeding about 200 ℃ in the process of encapsulating the quantum dot 111 The quantum dot 111 may be damaged.
상기 왁스계 화합물(130)로는 합성 왁스(synthetic wax)가 이용될 수 있다. 상기 왁스계 화합물(130)은 폴리머, 코폴리머 또는 올리고머일 수 있다. 상기 왁스계 화합물(130)은 폴리에틸렌계 왁스(Polyethylene-based wax), 폴리프로필렌계 왁스(Polypropylene-based wax) 또는 아마이드계 왁스(Amide-based wax)를 포함할 수 있다.Synthetic wax may be used as the wax-based compound 130. The wax-based compound 130 may be a polymer, a copolymer or an oligomer. The wax-based compound 130 may include a polyethylene-based wax, a polypropylene-based wax, or an amide-based wax.
상기 왁스계 화합물(130)이 상기 에틸렌계 왁스 또는 폴리프로필렌계 왁스인 경우, 상기 왁스계 화합물(130)은 하기 화학식 1 내지 7로 나타내는 단위체 중 적어도 1종을 포함할 수 있다.When the wax compound 130 is the ethylene wax or the polypropylene wax, the wax compound 130 may include at least one of units represented by the following Chemical Formulas 1 to 7.
<화학식 1><Formula 1>
Figure PCTKR2013010094-appb-I000001
Figure PCTKR2013010094-appb-I000001
<화학식 2><Formula 2>
Figure PCTKR2013010094-appb-I000002
Figure PCTKR2013010094-appb-I000002
<화학식 3><Formula 3>
Figure PCTKR2013010094-appb-I000003
Figure PCTKR2013010094-appb-I000003
<화학식 4><Formula 4>
Figure PCTKR2013010094-appb-I000004
Figure PCTKR2013010094-appb-I000004
<화학식 5><Formula 5>
Figure PCTKR2013010094-appb-I000005
Figure PCTKR2013010094-appb-I000005
<화학식 6><Formula 6>
Figure PCTKR2013010094-appb-I000006
Figure PCTKR2013010094-appb-I000006
<화학식 7><Formula 7>
Figure PCTKR2013010094-appb-I000007
Figure PCTKR2013010094-appb-I000007
상기 화학식 1, 2, 3, 4, 5, 6 및 7에서, R1, R3, R5 및 R7은 각각 독립적으로 단일 결합 또는 탄소수 1 내지 10을 갖는 알킬렌기(*-(CH2)x-*, x는 1 내지 10의 정수)를 나타내고, R2, R4, R6 및 R8은 각각 독립적으로 수소 또는 탄소수 1 내지 10을 갖는 알킬기를 나타내며, Ra, Rb, Rc, Rd, Re, Rf 및 Rg는 각각 독립적으로 수소 또는 탄소수 1 내지 3을 갖는 알킬기를 나타낸다.In Chemical Formulas 1, 2, 3, 4, 5, 6, and 7, R 1 , R 3 , R 5, and R 7 each independently represent a single bond or an alkylene group having 1 to 10 carbon atoms (*-(CH 2 )). x- *, x represents an integer of 1 to 10), R 2 , R 4 , R 6 and R 8 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms, R a , R b , R c , R d , R e , R f and R g each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms.
구체적으로, 상기 화학식 1의 R2가 수소를 포함하는 경우, 상기 화학식 1의 단위체는 카르복시기를 포함한다. 이와 달리, 상기 화학식 1의 R2가 탄소수 1 내지 10의 알킬기를 나타내는 경우, 상기 화학식 1의 단위체는 에스테르기를 포함한다.Specifically, when R 2 of Formula 1 includes hydrogen, the unit of Formula 1 includes a carboxyl group. On the contrary, when R 2 in Formula 1 represents an alkyl group having 1 to 10 carbon atoms, the unit of Formula 1 includes an ester group.
상기 화학식 2의 R4가 수소를 포함하는 경우, 상기 화학식 2의 단위체는 알데히드기를 포함한다. 이와 달리, 상기 화학식 2의 R4가 탄소수 1 내지 10의 알킬기를 나타내는 경우, 상기 화학식 2의 단위체는 케톤기를 포함한다.When R 4 of Formula 2 includes hydrogen, the unit of Formula 2 includes an aldehyde group. On the contrary, when R 4 in Formula 2 represents an alkyl group having 1 to 10 carbon atoms, the unit of Formula 2 includes a ketone group.
상기 화학식 3의 R6이 수소를 포함하는 경우, 상기 화학식 3의 단위체는 히드록시기를 포함한다. 이와 달리, 상기 화학식 3의 R6이 탄소수 1 내지 10의 알킬기를 나타내는 경우, 상기 화학식 3의 단위체는 에테르기를 포함한다.When R 6 of Formula 3 includes hydrogen, the unit of Formula 3 includes a hydroxy group. On the contrary, when R 6 in Formula 3 represents an alkyl group having 1 to 10 carbon atoms, the unit of Formula 3 includes an ether group.
상기 화학식 1 내지 7의 Ra, Rb, Rc, Rd, Re, Rf 및 Rg가 각각 독립적으로 수소를 나타내는 경우, 상기 폴리에틸렌계 왁스가 정의될 수 있다. 일례로, 상기 폴리에틸렌계 왁스는 상기 화학식 7의 Rg가 수소인 단위체만을 포함하는 폴리에틸렌 왁스(polyethylene wax, PE 왁스)를 포함한다. 뿐만 아니라, 상기 폴리에틸렌계 왁스는 상기 화학식 7의 Rg가 수소인 단위체와, 상기 화학식 1 내지 6의 Ra, Rb, Rc, Rd, Re 및 Rf가 수소인 단위체들 중에서 선택된 적어도 1종의 산소 함유 단위체를 동시에 포함할 수 있다. 적어도 1종의 산소 함유 단위체를 포함하는 폴리에틸렌계 왁스의 예로서는, 폴리에틸렌의 산화물인 산화 폴리에틸렌 왁스(oxidized polyethylene wax, 산화 PE 왁스), 에틸렌-아크릴산 코폴리머(ethylene-acrylic acid copolymer), 에틸렌-비닐 아세테이트 코폴리머(ethylene-vinyl acetate copolymer) 에틸렌-무수말레산 코폴리머(ethylene-maleic anhydride copolymer) 등을 들 수 있다.When R a , R b , R c , R d , R e , R f and R g of Formulas 1 to 7 each independently represent hydrogen, the polyethylene wax may be defined. For example, the polyethylene wax includes a polyethylene wax (PE wax) including only a unit in which R g of Formula 7 is hydrogen. In addition, the polyethylene wax is selected from units in which R g of Formula 7 is hydrogen, and units in which R a , R b , R c , R d , R e and R f of Formulas 1 to 6 are hydrogen. At least one oxygen-containing unit may be included at the same time. Examples of the polyethylene wax containing at least one oxygen-containing unit include oxidized polyethylene wax (PE wax), an ethylene-acrylic acid copolymer, and ethylene-vinyl acetate, which are oxides of polyethylene. Ethylene-vinyl acetate copolymer Ethylene-maleic anhydride copolymer etc. are mentioned.
또한, 상기 화학식 1 내지 7의 Ra, Rb, Rc, Rd, Re, Rf 및 Rg가 각각 독립적으로 탄소수 1을 갖는 메틸기를 나타내는 경우, 상기 폴리프로필렌계 왁스가 정의될 수 있다. 일례로, 폴리프로필렌계 왁스는 상기 화학식 7의 Rg가 메틸기인 단위체만을 포함하는 폴리프로필렌 왁스 (polypropylene wax, PP 왁스)를 포함한다. 뿐만 아니라, 상기 폴리프로필렌계 왁스는 상기 화학식 7의 Rg가 메틸기인 단위체와, 상기 화학식 1 내지 6의 Ra, Rb, Rc, Rd, Re 및 Rf가 수소인 단위체들 중에서 선택된 적어도 1종의 산소 함유 단위체를 동시에 포함할 수 있다. 산소 함유 단위체를 포함하는 폴리프로필렌계 왁스의 예로서는, 프로필렌-무수말레산 코폴리머 등을 들 수 있다.In addition, when R a , R b , R c , R d , R e , R f and R g of Formulas 1 to 7 each independently represent a methyl group having 1 carbon number, the polypropylene wax may be defined. have. For example, the polypropylene wax includes a polypropylene wax (PP wax) including only a unit in which R g of Formula 7 is a methyl group. In addition, the polypropylene wax is a unit in which R g of Formula 7 is a methyl group, and units of R a , R b , R c , R d , R e and R f of Formulas 1 to 6 are hydrogen. At least one oxygen-containing unit selected may be included at the same time. As an example of the polypropylene wax containing an oxygen containing unit, a propylene-maleic anhydride copolymer etc. are mentioned.
상기 아마이드계 왁스는, 주쇄가 아미드 결합(amide bond, -CONH-)를 포함한다. 즉, 상기 아마이드계 왁스는 아미드 결합을 포함하는 단위체를 포함하는 폴리머, 코폴리머 또는 올리고머일 수 있다. 상기 아마이드계 왁스의 단위체는 탄소수 1 내지 10을 가질 수 있다. 상기 아마이드계 왁스는, 상기 화학식 1 내지 6으로 나타내는 산소 함유 단위체 중 1종 이상을 더 포함할 수 있다.The amide wax has a main chain including an amide bond (-CONH-). That is, the amide wax may be a polymer, copolymer or oligomer including a unit containing an amide bond. The unit of the amide wax may have 1 to 10 carbon atoms. The amide wax may further include one or more kinds of oxygen-containing units represented by Formulas 1 to 6.
상기 왁스계 화합물(130)이 상기 화학식 1 내지 6으로 나타내는 단위체들 중 적어도 1종의 산소 함유 단위체를 포함하는 경우, 상기 화학식 7로 나타내는 단위체만을 포함하는 경우에 비해서 상기 양자점(111)을 안정적으로 캡슐화시킬 수 있다. 즉, PE 왁스나 PP 왁스는 상기 양자점(111)의 표면을 랜덤하게 캡슐화시키는 반면, 상기 산소 함유 단위체에 포함된 산소의 극성(polarity)에 의해 상기 왁스계 화합물(130)과 상기 양자점(111)을 구성하는 금속과의 상호작용(interaction)이 강하다. 따라서, 상기 왁스계 화합물(130)이 상기 화학식 1 내지 6으로 나타내는 단위체 중 적어도 1종의 산소 함유 단위체를 포함하는 경우, 상기 왁스계 화합물(130)이 상기 양자점(111)을 안정적으로 캡슐화시킬 수 있다. 상기 산소 함유 단위체 중에서도, 상기 화학식 1로 나타내는 단위체, 특히 카르복시기가, 상기 왁스계 화합물(130)과 상기 양자점(111)과의 상호작용이 강하므로 상기 양자점(111)을 캡슐화하는데 가장 유리하다. 따라서, 본 발명에 따른 왁스계 화합물(130)은 치환기로서 적어도 카르복시기를 포함하는 것이 바람직하다.When the wax-based compound 130 includes at least one oxygen-containing unit among units represented by Chemical Formulas 1 to 6, the quantum dot 111 may be stably compared with the case where only the unit represented by Chemical Formula 7 is included. It can be encapsulated. That is, the PE wax or the PP wax encapsulates the surface of the quantum dot 111 at random, while the wax-based compound 130 and the quantum dot 111 are formed by the polarity of oxygen included in the oxygen-containing unit. The interaction with the metal constituting the is strong. Therefore, when the wax-based compound 130 includes at least one oxygen-containing unit among the units represented by Chemical Formulas 1 to 6, the wax-based compound 130 may stably encapsulate the quantum dots 111. have. Among the oxygen-containing units, the unit represented by Chemical Formula 1, particularly a carboxyl group, is most advantageous for encapsulating the quantum dots 111 because the wax-based compound 130 has a strong interaction with the quantum dots 111. Therefore, the wax compound 130 according to the present invention preferably includes at least a carboxy group as a substituent.
또한, 상기 화학식 1 내지 6으로 나타내는 단위체 중 적어도 1종의 산소 함유 단위체를 포함하는 상기 왁스계 화합물(130)을 이용하는 경우, 상기 복합체(101)를 제조하는 공정 중에서, 다수의 양자점들(111)을 상기 왁스계 화합물(130)이 용해(dissolution)된 용액과 반응시킬 때, 상기 양자점들(111)의 최대량을 상기 왁스계 화합물(130)이 캡슐화시킬 수 있다. 즉, PE 왁스나 PP 왁스 등이 용해된 용액에 첨가한 상기 양자점(111)의 양을 "1"이라고 하고 캡슐화된 양자점(111)의 양을 "A"라고 할 때, "A"는 0보다는 크고 1보다는 작은 값을 가질 수 있다. 이와 비교하여, 산소 함유 단위체를 포함하는 왁스계 화합물(130)이 용해된 용액에 첨가한 상기 양자점(111)의 양을 "1"이라고 할 때, 이에 의해 캡슐화된 양자점(111)의 양(B)은, 상기 A보다는 큰 값을 갖는다.In addition, in the case of using the wax-based compound 130 including at least one oxygen-containing unit of the units represented by Formulas 1 to 6, a plurality of quantum dots 111 in the process of manufacturing the composite 101 When reacting with the solution in which the wax compound 130 is dissolved, the wax compound 130 may encapsulate a maximum amount of the quantum dots 111. That is, when the amount of the quantum dot 111 added to the solution in which PE wax, PP wax or the like is dissolved is "1" and the amount of the encapsulated quantum dot 111 is "A", "A" is not 0. It can have a value greater than 1 and less than 1. In contrast, when the amount of the quantum dot 111 added to the solution in which the wax-based compound 130 containing the oxygen-containing unit is dissolved is "1", the amount of the quantum dot 111 encapsulated thereby (B) ) Has a larger value than A.
상기 화학식 1 내지 6으로 나타내는 산소 함유 단위체들을 포함하는 왁스계 화합물(130)인 산소 함유 왁스계 화합물은, 폴리에틸렌이나 폴리프로필렌을 베이스 물질로 하여 이들을 산화(oxidization)시켜 제조할 수 있다. 이와 달리, 상기 산소 함유 왁스계 화합물은 단일한 단량체들을 중합시키거나 서로 다른 2 종류 이상의 단량체들을 공중합시켜 제조할 수 있다.An oxygen-containing wax-based compound, which is a wax-based compound 130 including oxygen-containing units represented by Chemical Formulas 1 to 6, may be prepared by oxidizing polyethylene or polypropylene as a base material. Alternatively, the oxygen-containing wax-based compound may be prepared by polymerizing single monomers or copolymerizing two or more different monomers.
일례로, 단위체로서 에틸렌을 포함하는 PE 왁스가 재결정화될 때에 형성되는 재결정의 결정성이 우수하기 때문에 상기 양자점(111)을 캡슐화하는데 제어의 어려움 없이 용이하게 이용할 수 있으나, 상기 왁스계 화합물(130)과 상기 양자점(111) 사이의 상호작용을 고려할 때, 상기 폴리에틸렌계 왁스 중에서도 산소 함유 PE 왁스가 PE 왁스에 비해 상대적으로 안정적으로 상기 양자점(111)을 캡슐화할 수 있다.For example, since the recrystallization formed when the PE wax containing ethylene as a unit is recrystallized, it can be easily used without difficulty in encapsulating the quantum dots 111, but the wax-based compound 130 In consideration of the interaction between the quantum dot 111 and the oxygen-based PE wax, the quantum dot 111 can be encapsulated relatively more stably than the PE wax.
상기 왁스계 화합물(130)은 약 1 mg KOH/g 내지 약 200 mg KOH/g의 산가(acid value)를 가질 수 있다. 본 발명에서, 상기 왁스계 화합물(130)의 "산가"는 상기 왁스계 화합물(130) 1g을 중화하는데 필요한 수산화칼륨(KOH)의 mg 수를 말한다. 상기 왁스계 화합물(130)이 카르복시기를 포함하는 경우, 약 1 mg KOH/g 이상의 산가를 가질 수 있다. 즉, 산가가 큰 값을 가질수록 상기 왁스계 화합물(130)에 포함된 카르복시기가 많음을 나타낸다. 다만, 상기 왁스계 화합물(130)의 산가가 약 1 mg KOH/g 미만인 경우에는 상기 양자점(111)과의 상호 작용을 하는 카르복시기의 양이 매우 미미하므로 상기 왁스계 화합물(130)과 상기 양자점(111) 사이의 상호 작용이 PE 왁스나 PP 왁스를 이용하는 경우와 거의 유사한 수준에 불과하다. 또한, 상기 왁스계 화합물(130)의 산가가 약 200 mg KOH/g를 초과하는 경우, 카르복시기에 의해서 오히려 리간드(SC)가 변질되어 상기 양자점(111)의 표면이 산화될 수 있다. 상기 양자점(111)의 산화로 인해 상기 양자점(111)이 캡슐화되더라도 양자 효율이 저하되는 문제점이 발생한다. 따라서, 상기 왁스계 화합물(130)은 약 1 mg KOH/g 내지 약 200 mg KOH/g의 산가를 가지는 것이 바람직하다. 보다 바람직하게는, 상기 왁스계 화합물(130)은 약 5 mg KOH/g 내지 약 50 mg KOH/g의 산가를 가질 수 있다.The wax-based compound 130 may have an acid value of about 1 mg KOH / g to about 200 mg KOH / g. In the present invention, the "acid value" of the wax-based compound 130 refers to the number of mg of potassium hydroxide (KOH) required to neutralize 1 g of the wax-based compound 130. When the wax-based compound 130 includes a carboxyl group, the wax-based compound 130 may have an acid value of about 1 mg KOH / g or more. That is, the larger the acid value, the more carboxyl groups included in the wax-based compound 130. However, when the acid value of the wax-based compound 130 is less than about 1 mg KOH / g, the amount of the carboxyl group interacting with the quantum dot 111 is very small, so that the wax-based compound 130 and the quantum dot ( 111) the interactions between them are almost the same as with PE wax or PP wax. In addition, when the acid value of the wax-based compound 130 exceeds about 200 mg KOH / g, the ligand (SC) rather than by the carboxy group may be deteriorated to oxidize the surface of the quantum dot (111). Even if the quantum dot 111 is encapsulated due to oxidation of the quantum dot 111, a problem occurs that quantum efficiency is lowered. Therefore, the wax-based compound 130 preferably has an acid value of about 1 mg KOH / g to about 200 mg KOH / g. More preferably, the wax-based compound 130 may have an acid value of about 5 mg KOH / g to about 50 mg KOH / g.
상기 왁스계 화합물(130)의 산가는 ASTM 1386 기준에 따라 측정될 수 있다. 예를 들어, 상기 왁스계 화합물(130)을 시료로서 약 2g을 정량한 후 삼각플라스크에 넣고 크실렌(xylene) 40ml을 넣어 승온시키다가 시료가 완전히 무색 투명한 용액이 될 때 페놀프탈레인 용액 2~3방울을 첨가하여 약 0.1N의 KOH 용액으로 적정하여 용액의 색이 약 10초간 유지될 때를 최종점으로 하여 산가를 산출할 수 있다. 산가는 하기 식 1로 산출될 수 있다.The acid value of the wax-based compound 130 may be measured according to the ASTM 1386 standard. For example, after quantifying about 2 g of the wax-based compound 130 as a sample, the mixture is put into a Erlenmeyer flask, and 40 ml of xylene is heated to raise the temperature. When the sample becomes a completely colorless transparent solution, 2-3 drops of phenolphthalein solution are added. The acid value can be calculated by adding a titration with a KOH solution of about 0.1 N and maintaining the color of the solution for about 10 seconds. The acid value may be calculated by the following Equation 1.
[식 1][Equation 1]
산가=(A×N×56.1)/BAcid value = (A × N × 56.1) / B
상기 식 1에서, "A"는 시료 적정에 이용된 KOH의 양(단위: ml)을 나타내고, "N"은 KOH의 노르말 농도(단위: N)를 나타내며, "B"는 시료의 양(단위: g)을 나타낸다.In Equation 1, "A" represents the amount of KOH (unit: ml) used for sample titration, "N" represents the normal concentration of KOH (unit: N), and "B" represents the amount of sample (unit) : g) is shown.
한편, 상기 왁스계 화합물(130)은 약 0.95 g/cm3 이상의 고밀도를 가질 수 있다. 상기 왁스계 화합물(130)이 고밀도를 갖는 경우에, 약 0.95 g/cm3 미만의 저밀도를 갖는 저밀도 왁스에 비해서 녹는점이 상대적으로 높아 상기 왁스계 화합물(130)을 포함하는 상기 복합체(101)의 내열성이 향상될 수 있다. 또한, 상기 왁스계 화합물(130)이 고밀도를 갖는 경우, 상기 왁스계 화합물(130)의 재결정의 결정성이 상기 저밀도 왁스에 비해 우수하기 때문에 상기 양자점(111)을 안정적으로 캡슐화시킬 수 있다.On the other hand, the wax-based compound 130 may have a high density of about 0.95 g / cm 3 or more. When the wax-based compound 130 has a high density, the melting point of the composite 101 including the wax-based compound 130 is higher than that of the low-density wax having a low density of less than about 0.95 g / cm 3 . Heat resistance can be improved. In addition, when the wax-based compound 130 has a high density, since the crystallinity of recrystallization of the wax-based compound 130 is superior to that of the low-density wax, the quantum dot 111 may be stably encapsulated.
예를 들어, PE 왁스는, 상기와 같은 기준에 따라 고밀도 PE 왁스(high density PE wax, HDPE 왁스)와 저밀도 PE 왁스(low density PE wax, LDPE 왁스)로 구분할 수 있다. 즉, HDPE 왁스는 약 0.95 g/cm3 이상의 밀도를 갖는다. 이때, HDPE 왁스의 밀도는 약 1.20 g/cm3 이하일 수 있다. HDPE 왁스는 약 120℃ 내지 약 200℃의 녹는점을 가질 수 있다. LDPE 왁스는 약 0.95 g/cm3 미만의 밀도를 가질 수 있다. LDPE 왁스의 녹는점은 약 80℃ 내지 약 110℃일 수 있다. 따라서, 상기 왁스계 화합물(130)로서 PE 왁스를 이용하는 경우, LDPE 왁스보다는 HDPE 왁스로 상기 양자점(111)을 캡슐화하는 것이 보다 더 안정적으로 균일하게 상기 양자점(111)을 캡슐화시킬 수 있다.For example, PE wax may be classified into high density PE wax (HDPE wax) and low density PE wax (LDPE wax) according to the above criteria. That is, HDPE wax has a density of at least about 0.95 g / cm 3 . In this case, the density of the HDPE wax may be about 1.20 g / cm 3 or less. The HDPE wax may have a melting point of about 120 ° C. to about 200 ° C. LDPE wax may have a density of less than about 0.95 g / cm 3 . The melting point of the LDPE wax may be about 80 ° C to about 110 ° C. Therefore, when using the PE wax as the wax-based compound 130, encapsulating the quantum dots 111 with HDPE wax rather than LDPE wax can encapsulate the quantum dots 111 more uniformly.
상기 왁스계 화합물(130)에 포함된 상기 화학식 1 내지 7로 나타내는 단위체들의 함량은 상기 왁스계 화합물(130)의 분자량과 상기 왁스계 화합물(130)의 산가에 따라서 달라질 수 있다.The content of the units represented by Formulas 1 to 7 included in the wax-based compound 130 may vary depending on the molecular weight of the wax-based compound 130 and the acid value of the wax-based compound 130.
다시 도 1a 및 도 1b를 참조하면, 상기 복합체(101)의 직경(d1)은 약 10nm 내지 50nm일 수 있다. 상기 복합체(101)의 직경(d1)은, 확산 계수에 관한 스토크스-아인슈타인 방정식(Stokes-Einstein equation)으로 산출하는 동적 광산란법(Dynamic Light Scattering method, DLS법)에 의해 측정된 값(hydrodynamic diameter)으로 정의될 수 있다.Referring back to FIGS. 1A and 1B, the diameter d1 of the composite 101 may be about 10 nm to 50 nm. The diameter d1 of the composite 101 is a value measured by a dynamic light scattering method (DLS method) calculated by a Stokes-Einstein equation for a diffusion coefficient (hydrodynamic diameter). Can be defined as
도 1c는 본 발명의 다른 실시예에 따른 복합체를 설명하기 위한 개념도이다.Figure 1c is a conceptual diagram for explaining the composite according to another embodiment of the present invention.
도 1c를 참조하면, 복합체(102)는 적어도 2개 이상의 양자점들(112, 114) 및 왁스계 화합물(130)을 포함한다.Referring to FIG. 1C, the composite 102 includes at least two or more quantum dots 112 and 114 and a wax-based compound 130.
상기 복합체(102)에 포함되는 양자점들(112, 114)은 편의상, 참조 번호 112를 "제1 양자점"으로 지칭하고, 참조 번호 114를 "제2 양자점"으로 지칭하여 설명한다. 상기 제1 및 제2 양자점들(112, 114) 각각은 도 1a 및 도 1b에서 설명한 양자점(111)과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.The quantum dots 112 and 114 included in the complex 102 are described for convenience by referring to reference numeral 112 as a “first quantum dot” and referring to reference numeral 114 as a “second quantum dot”. Since each of the first and second quantum dots 112 and 114 is substantially the same as the quantum dot 111 described with reference to FIGS. 1A and 1B, detailed descriptions thereof will be omitted.
상기 왁스계 화합물(130)은 상기 제1 및 제2 양자점들(112, 114)을 커버함으로써, 상기 제1 및 제2 양자점들(112, 114)이 서로 응집되는 것을 방지할 수 있다. 즉, 상기 왁스계 화합물(130)은 상기 제1 및 제2 양자점들(112, 114)이 서로 응집되지는 않으면서도 각각이 캡슐화될 수 있도록 하나의 집합체를 만들 수 있다. 상기 집합체가 하나의 "복합체(102)"로 정의될 수 있다. 상기 복합체(102)에서, 상기 제1 및 제2 양자점들(112, 114)은 상기 왁스계 화합물(130)이 형성하는 응집체 내부에 배치된다. 상기 응집체 내부에 배치되는 양자점의 개수는 수십 내지 수천만일 수 있다.The wax-based compound 130 may cover the first and second quantum dots 112 and 114 to prevent the first and second quantum dots 112 and 114 from aggregation with each other. That is, the wax-based compound 130 may make one aggregate so that the first and second quantum dots 112 and 114 may be encapsulated without being aggregated with each other. The aggregate may be defined as one "composite 102". In the composite 102, the first and second quantum dots 112 and 114 are disposed in an aggregate formed by the wax-based compound 130. The number of quantum dots disposed in the aggregate may be several tens to tens of millions.
상기 복합체(102)의 직경(d2)은 약 5 nm 내지 약 50 μm일 수 있고, 이하에서 설명할 수지(resin)에 대한 분산성을 고려할 때 상기 복합체(102)의 직경(d2)은 약 0.5 μm 내지 약 10 μm일 수 있다. 상기 복합체(102)의 직경(d2)은 상기 복합체(102)를 제조하는 공정에서 재결정화 속도(냉각 속도)에 따라서 달라질 수 있다.The diameter (d2) of the composite (102) may be about 5 nm to about 50 μm, and the diameter (d2) of the composite (102) is about 0.5 in view of the dispersibility for the resin described below. μm to about 10 μm. The diameter d2 of the composite 102 may vary depending on the recrystallization rate (cooling rate) in the process of manufacturing the composite 102.
상기 왁스계 화합물(130)은 도 1a 및 도 1b에서 설명한 왁스계 화합물과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.Since the wax-based compound 130 is substantially the same as the wax-based compound described with reference to FIGS. 1A and 1B, detailed descriptions thereof will be omitted.
상기 왁스계 화합물(130)로 커버된 양자점을 제조하는 공정 중에서, 도 1a 및 도 1b에서 설명한 복합체(101)가 형성되거나, 도 1c에서 설명한 복합체(102)가 형성될 수 있다. 상기 공정 중에서, 도 1a 및 도 1b에서 설명한 복합체(101) 및 상기 도 1c에서 설명한 복합체(102)가 동시에 제조될 수도 있다.In the process of manufacturing the quantum dots covered with the wax-based compound 130, the composite 101 described with reference to FIGS. 1A and 1B may be formed, or the complex 102 described with reference to FIG. 1C may be formed. In the above process, the composite 101 described with reference to FIGS. 1A and 1B and the composite 102 described with reference to FIG. 1C may be simultaneously manufactured.
이하에서는, 도 2를 참조하여 본 발명에 따른 복합체(101, 102)의 제조 방법 및 상기 복합체(101, 102)를 포함하는 조성물에 대해서 상세하게 설명한다.Hereinafter, a method of manufacturing the composites 101 and 102 and a composition including the composites 101 and 102 according to the present invention will be described in detail with reference to FIG. 2.
도 2는 본 발명의 실시예에 따른 복합체를 제조하는 방법을 설명하기 위한 순서도이다. 2 is a flowchart illustrating a method of manufacturing a composite according to an embodiment of the present invention.
도 2를 참조하면, 유기 용매에 왁스 분말을 첨가한다(단계 S210). 2, the wax powder is added to the organic solvent (step S210).
상기 유기 용매는 톨루엔(Toluene)을 포함할 수 있다. 상기 왁스 분말은 왁스계 화합물로 이루어진 고체로서, 상기 왁스 분말을 구성하는 왁스계 화합물은 도 1a 내지 도 1c에서 설명한 것과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다. 상기 왁스 분말 대신, 고체의 왁스 펠릿(pellet)을 상기 유기 용매에 첨가할 수 있다.The organic solvent may include toluene. The wax powder is a solid made of a wax-based compound, and the wax-based compound constituting the wax powder is substantially the same as that described in FIGS. 1A to 1C, and thus detailed descriptions thereof will be omitted. Instead of the wax powder, solid wax pellets may be added to the organic solvent.
이어서, 상기 왁스 분말을 용해시킨다(단계 S220). Then, the wax powder is dissolved (step S220).
상기 왁스 분말이나 왁스 펠릿은 상기 유기 용매를 가열함으로써 용해시킬 수 있다. 상기 유기 용매를 상기 왁스 분말의 녹는점 이상의 온도로 가열한다. 예를 들면, 상기 유기 용매는 약 200℃ 내지 220℃로 가열될 수 있다. 이에 따라, 상기 왁스 분말이 상기 유기 용매 내에서 용해된 왁스 용액을 제조할 수 있다.The wax powder or the wax pellet can be dissolved by heating the organic solvent. The organic solvent is heated to a temperature above the melting point of the wax powder. For example, the organic solvent may be heated to about 200 ℃ to 220 ℃. Accordingly, it is possible to prepare a wax solution in which the wax powder is dissolved in the organic solvent.
이어서, 왁스 용액에 양자점들을 혼합한다(단계 S230). Subsequently, the quantum dots are mixed in the wax solution (step S230).
상기 왁스 용액에 상기 양자점들을 혼합하면, 상기 양자점들은 상기 왁스 용액에 분산된다. 이때, 상기 양자점들의 리간드에 의해서 상기 양자점들은 서로 응집되지 않으면서 상기 왁스 용액에 용이하게 분산될 수 있다. 상기 양자점은 도 1a 내지 도 1c에서 설명한 양자점과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다. When the quantum dots are mixed with the wax solution, the quantum dots are dispersed in the wax solution. In this case, the ligands of the quantum dots may be easily dispersed in the wax solution without aggregation with each other. Since the quantum dots are substantially the same as the quantum dots described with reference to FIGS. 1A to 1C, detailed descriptions thereof will not be repeated.
이어서, 양자점들이 분산된 상기 왁스 용액을 냉각시킨다(단계 S240).Subsequently, the wax solution in which the quantum dots are dispersed is cooled (step S240).
상기 양자점들이 분산된 상기 왁스 용액의 온도를 상온(room temperature)까지 냉각시켜 용해된 왁스계 화합물을 재결정화할 수 있다. 상기 양자점들이 분산된 상기 왁스 용액은 상온까지 서서히 온도를 낮추어 냉각시키거나 급랭시킴으로써 재결정화 속도(냉각 속도)를 조절할 수 있다. 이때, 상기 재결정화 속도가 빠른 경우, 즉 상기 왁스 용액의 온도를 급격하게 낮추면 왁스계 화합물이 형성하는 응집체의 크기가 작아질 수 있다. 반대로, 상기 왁스 용액의 온도를 서서히 낮추면 상기 응집체의 크기가 커질 수 있다.By cooling the temperature of the wax solution in which the quantum dots are dispersed to room temperature, the dissolved wax compound may be recrystallized. The wax solution in which the quantum dots are dispersed may be slowly cooled to room temperature and cooled or quenched to control the recrystallization rate (cooling rate). In this case, when the recrystallization rate is high, that is, when the temperature of the wax solution is drastically lowered, the size of the aggregate formed by the wax-based compound may be reduced. On the contrary, when the temperature of the wax solution is gradually lowered, the size of the aggregate can be increased.
재결정화된 왁스계 화합물이 양자점들을 캡슐화할 수 있다. 이때, 상기 재결정화 속도에 따라서, 도 1a 및 도 1b에서 설명한 것과 같이 상기 왁스계 화합물이 하나의 양자점을 캡슐화하여 복합체(101)를 형성할 수 있고, 도 1c에서 설명한 것과 같이 상기 왁스계 화합물이 다수의 양자점들을 캡슐화하여 복합체(102)를 형성할 수 있다.Recrystallized wax-based compound can encapsulate quantum dots. In this case, according to the recrystallization rate, as described in Figure 1a and 1b, the wax-based compound can encapsulate one quantum dot to form a composite 101, as described in Figure 1c Multiple quantum dots can be encapsulated to form a composite 102.
이에 따라, 본 발명에 따른 복합체(101, 102)를 제조할 수 있다.Accordingly, composites 101 and 102 according to the present invention can be manufactured.
상기에서 설명한 본 발명에 따른 복합체(101, 102)는 상기 유기 용매를 제거하여 파우더 형태로 보관 및 이용될 수 있다. 이와 달리, 상기 복합체(101, 102)는 상기 유기 용매에 분산된 상태로 보관 및 이용될 수 있다. 상기 복합체(101, 102)는, 상기 양자점(111, 112, 114)을 캡슐화하는 상기 왁스계 화합물(130)에 의해서, 파우더 형태로 수분에 거의 영향을 받지 않고 안정적으로 보관 및 이용될 수 있고, 상기 유기 용매에 상기 복합체(101, 102)의 응집 없이 균일하게 분산시켜 보관 이용할 수 있다. Composites 101 and 102 according to the present invention described above may be stored and used in powder form by removing the organic solvent. Alternatively, the complexes 101 and 102 may be stored and used in a dispersed state in the organic solvent. The composites 101 and 102 may be stably stored and used by the wax-based compound 130 encapsulating the quantum dots 111, 112 and 114 in a powder form with little effect on moisture. The organic solvent may be uniformly dispersed and stored in the organic solvent without aggregation of the composites 101 and 102.
다른 실시예에서, 상기 복합체(101, 102)를 포함하는 조성물은 수지(resin)를 포함할 수 있다. 상기 수지는 그 자체가 액상일 수 있다. 이와 달리, 상기 수지는 그 자체가 고상이더라도 용매에 용해될 수 있고, 이때에는 상기 수지 및 용매를 포함하는 용액에 상기 복합체(101, 102)가 분산될 수 있다. 상기 수지를 포함하는 조성물에는, 도 1a 및 도 1b에 도시된 복합체(101) 및 도 1c에 도시된 복합체(102) 중 적어도 어느 하나가 포함될 수 있다. 상기 수지의 구체적인 예로서는, 비닐 실록산계 수지, 에폭시 실록산 수지, PDMS(polydimethylsiloxane), TPSiV(thermoplastic silicone vulcanizate), TSPCU(thermoplastic silicone polycarbonate-urethane) 등을 들 수 있다. 상기 조성물은 상기 수지와 함께 가교제, 촉매, 개시제 등을 더 포함할 수 있다.In another embodiment, the composition comprising the composites 101 and 102 may include a resin. The resin may itself be a liquid phase. Alternatively, the resin may be dissolved in a solvent even if the resin itself is a solid phase, and the composites 101 and 102 may be dispersed in a solution containing the resin and the solvent. The composition including the resin may include at least one of the composite 101 illustrated in FIGS. 1A and 1B and the composite 102 illustrated in FIG. 1C. Specific examples of the resin include vinyl siloxane resins, epoxy siloxane resins, polydimethylsiloxane (PDMS), thermoplastic silicone vulcanizate (TPSiV), thermoplastic silicone polycarbonate-urethane (TSPCU), and the like. The composition may further include a crosslinking agent, a catalyst, an initiator, and the like together with the resin.
일례로, 상기 조성물은, 수지로서 비닐 실록산계 화합물 100 중량부에 대하여 상기 복합체(101, 102) 약 0.001 중량부 내지 10 중량부와, 상기 가교제로서 하이드라이드 실록산 약 5 중량부 내지 약 60 중량부, 백금 촉매 약 0.01 중량부 내지 약 0.5 중량부를 포함할 수 있다.In one example, the composition is about 0.001 to 10 parts by weight of the composite (101, 102) and about 5 parts by weight to about 60 parts by weight of hydride siloxane as the crosslinking agent based on 100 parts by weight of the vinyl siloxane compound as a resin. , About 0.01 parts by weight to about 0.5 parts by weight of the platinum catalyst.
이와 달리, 상기 복합체(101, 102)를 포함하는 조성물은 적어도 1종 이상의 단량체(monomer) 및 개시제를 포함할 수 있다. 상기 단량체는 아크릴레이트계 화합물, 에폭시계 화합물, 실록산계 화합물 등을 포함할 수 있다. 이들은 각각 단독으로 또는 2 이상이 조합되어 이용될 수 있다. 상기 조성물에는, 도 1a 및 도 1b에 도시된 복합체(101) 및 도 1c에 도시된 복합체(102) 중 적어도 어느 하나가 포함될 수 있다. 상기 조성물이 단량체를 포함하는 경우, 상기 단량체들이 중합되어 경화물을 형성하고, 상기 경화물 내에 상기 복합체(101, 102)가 분산될 수 있다.Alternatively, the composition comprising the complexes 101 and 102 may include at least one monomer and an initiator. The monomer may include an acrylate compound, an epoxy compound, a siloxane compound, or the like. These may be used alone or in combination of two or more, respectively. The composition may include at least one of the composite 101 shown in FIGS. 1A and 1B and the complex 102 shown in FIG. 1C. When the composition includes a monomer, the monomers may be polymerized to form a cured product, and the composites 101 and 102 may be dispersed in the cured product.
본 발명은 상기 조성물로 형성한 코팅층 또는 필름을 제공한다. 상기 코팅층 또는 필름은 상기 조성물의 수지를 가교시키거나, 상기 조성물을 건조시킴으로써 형성할 수 있다. 예를 들어, 상기 조성물을 광 또는 열을 이용하여 경화시킬 수 있고, 광경화시키는 경우 자외선을 이용할 수 있다. 이와 달리, 상기 코팅층 또는 필름은 상기 조성물의 단량체를 중합시킴으로써 형성할 수 있다. 상기 코팅층 또는 필름을 형성하는 방법은 특별히 제한되지 않는다.The present invention provides a coating layer or film formed of the composition. The coating layer or film may be formed by crosslinking the resin of the composition or by drying the composition. For example, the composition may be cured using light or heat, and ultraviolet rays may be used when photocuring. Alternatively, the coating layer or film may be formed by polymerizing monomers of the composition. The method for forming the coating layer or film is not particularly limited.
상기 코팅층 또는 필름은 상기 수지가 형성하는 매트릭스 구조 내에 상기 복합체(101, 102)가 분산된 형태일 수 있다.The coating layer or the film may have a form in which the composites 101 and 102 are dispersed in a matrix structure formed by the resin.
또한, 본 발명은 상기 코팅층 또는 필름을 포함하는 장치를 제공한다. 상기 장치의 범위는 특별히 제한되지 않으며, 예를 들어 조명 장치, 또는 디스플레이 장치일 수 있다.The present invention also provides a device comprising the coating layer or film. The range of the device is not particularly limited, and may be, for example, a lighting device or a display device.
이상에서 설명한 본 발명에 따르면, 상기 왁스계 화합물(130)에 의해 커버된 양자점(111, 112, 114)을 포함하는 다수의 복합체들(101, 102)을 용매나 수지에 분산시키더라도, 상기 복합체들(101, 102)이 서로 응집되지 않고 용매나 수지 내에서 균일하게 분산될 수 있다. 또한, 상기 복합체(101, 102)는 장기간 동안 균일한 분산 상태로 유지될 수 있다. According to the present invention described above, even if a plurality of complexes (101, 102) including the quantum dots (111, 112, 114) covered by the wax-based compound 130 is dispersed in a solvent or a resin, the composite The fields 101 and 102 may be uniformly dispersed in a solvent or a resin without aggregation with each other. In addition, the composites 101 and 102 may be maintained in a uniform dispersed state for a long time.
또한, 상기 왁스계 화합물(130)이 상기 양자점(111, 112, 114)을 보호함으로써 수분, 광, 열 등에 의해 양자점이 손상되는 것을 방지하여, 주변 환경에 대한 상기 복합체(101, 102)의 안정성을 향상시킬 수 있다.In addition, the wax-based compound 130 protects the quantum dots (111, 112, 114) to prevent damage to the quantum dots due to moisture, light, heat, etc., so that the stability of the composite (101, 102) to the surrounding environment Can improve.
나아가, 상기 왁스계 화합물(130)은 다수개의 양자점들(111)이 서로 응집되지는 않으면서도 각각이 캡슐화될 수 있도록 하나의 복합체(101, 102)를 구성할 수 있다. 이에 따라, 각각의 양자점들보다 양자 효율이 향상된 복합체를 제조하여 다양한 분야에 이용할 수 있다.Furthermore, the wax-based compound 130 may constitute one composite 101 and 102 such that each of the quantum dots 111 may be encapsulated without being aggregated with each other. Accordingly, the composite having improved quantum efficiency than the respective quantum dots can be manufactured and used in various fields.
[실시예 1]Example 1
톨루엔 1 ml에 왁스계 화합물 20 mg을 혼합한 후, 약 130℃로 온도를 상승시킴으로써 상기 왁스계 화합물을 용해시켜 왁스 용액을 제조하였다. 상기 왁스 용액에, 톨루엔 1ml에 약 20 mg의 CdSe계의 적색 양자점인 Nanodot-HE-606(상품명, QD solution사, 한국)이 분산된 용액을 혼합한 후, 상온으로 냉각시켰다. 이후, 증발기(Evaporator)를 이용하여 톨루엔을 제거한 후, 파우더 상태의 본 발명의 실시예 1에 따른 복합체를 제조하였다.After mixing 20 mg of the wax compound in 1 ml of toluene, the wax compound was dissolved by raising the temperature to about 130 ° C. to prepare a wax solution. The wax solution was mixed with a solution of Nanodot-HE-606 (trade name, QD solution, Korea), which was about 20 mg of CdSe-based red quantum dots in 1 ml of toluene, was cooled to room temperature. Then, after removing toluene using an evaporator, a composite according to Example 1 of the present invention in a powder state was prepared.
상기 왁스계 화합물은, 산화 고밀도 폴리에틸렌 왁스(Oxidized HDPE Wax)로서 산가(Acid value)가 약 50 mg KOH/g인 Licowax PED 136 왁스 (상품명, Clariant사, 스위스)를 사용하였다. As the wax-based compound, Licowax PED 136 wax (trade name, Clariant, Switzerland) having an acid value of about 50 mg KOH / g was used as an oxidized high density polyethylene wax (Oxidized HDPE Wax).
[실시예 2]Example 2
왁스계 화합물의 종류를 제외하고는, 실시예 1에서 복합체를 제조한 방법과 실질적으로 동일한 방법으로 본 발명의 실시예 2에 따른 복합체를 제조하였다. 실시예 2에 따른 복합체의 제조에는, 산가(Acid value)가 약 7 mg KOH/g인 산화 고밀도 폴리에틸렌 왁스(Oxidized HDPE Wax)로서 Licowax PED 191 왁스 (상품명, Clariant사, 스위스)를 사용하였다.Except for the kind of the wax-based compound, a composite according to Example 2 of the present invention was prepared in substantially the same manner as the composite was prepared in Example 1. In preparing the composite according to Example 2, Licowax PED 191 wax (trade name, Clariant, Switzerland) was used as Oxidized High Density Polyethylene Wax (Oxidized HDPE Wax) having an Acid value of about 7 mg KOH / g.
[실시예 3]Example 3
왁스계 화합물의 종류를 제외하고는, 실시예 1에서 복합체를 제조한 방법과 실질적으로 동일한 방법으로 본 발명의 실시예 3에 따른 복합체를 제조하였다. 실시예 3에 따른 복합체의 제조에는, 산가(Acid value)가 약 16 mg KOH/g인 산화 저밀도 폴리에틸렌 왁스(Oxidized LDPE Wax)로서 L-C 301E 왁스 (상품명, 라이온켐텍사, 한국)를 사용하였다.Except for the kind of the wax-based compound, a composite according to Example 3 of the present invention was prepared in substantially the same manner as the composite was prepared in Example 1. In the preparation of the composite according to Example 3, L-C 301E wax (trade name, Lion Chemtech Co., Korea) was used as an oxidized low density polyethylene wax (Oxidized LDPE Wax) having an acid value of about 16 mg KOH / g.
[실시예 4]Example 4
왁스계 화합물의 종류를 제외하고는, 실시예 1에서 복합체를 제조한 방법과 실질적으로 동일한 방법으로 본 발명의 실시예 4에 따른 복합체를 제조하였다. 실시예 4에 따른 복합체의 제조에는, 산가(Acid value)가 약 75 mg KOH/g인 에틸렌 아크릴산 코폴리머(Ethylene-Acrylic Acid Copolymer)로서, EscorTM 5000 ExCo 왁스(상품명, ExxonMobil Chemical사, 미국)를 사용하였다.Except for the type of wax-based compound, the composite according to Example 4 of the present invention was prepared in substantially the same manner as the composite was prepared in Example 1. In preparation of the composite according to Example 4, Escor 5000 ExCo wax (trade name, ExxonMobil Chemical, USA) is an ethylene acrylic acid copolymer having an acid value of about 75 mg KOH / g (Ethylene-Acrylic Acid Copolymer). Was used.
[실시예 5]Example 5
왁스계 화합물의 종류를 제외하고는, 실시예 1에서 복합체를 제조한 방법과 실질적으로 동일한 방법으로 본 발명의 실시예 5에 따른 복합체를 제조하였다. 실시예 5에 따른 복합체의 제조에는, 에틸렌 비닐 아세테이트 코폴리머(Ethylene-Vinyl Acetate Copolymer)인 EVATANE 18-150 왁스(상품명, ARKEMA사, 프랑스)를 사용하였다.Except for the kind of the wax-based compound, a composite according to Example 5 of the present invention was prepared in substantially the same manner as the composite was prepared in Example 1. In preparing the composite according to Example 5, an EVATANE 18-150 wax (trade name, ARKEMA, France), which was an ethylene vinyl acetate copolymer, was used.
[실시예 6]Example 6
왁스계 화합물의 종류를 제외하고는, 실시예 1에 따른 복합체를 제조한 방법과 실질적으로 동일한 방법으로 본 발명의 실시예 6에 따른 복합체를 제조하였다. 실시예 6에 따른 복합체의 제조에는, 산가(Acid value)가 약 40 mg KOH/g 내지 약 45 mg KOH/g인 폴리프로필렌 왁스(Polypropylene Wax)로서, Licomont AR 504 왁스(상품명, Clariant사, 스위스)를 사용하였다.Except for the kind of the wax compound, the composite according to Example 6 of the present invention was prepared in substantially the same manner as the composite according to Example 1. In the preparation of the composite according to Example 6, Licomont AR 504 wax (trade name, Clariant, Switzerland) is a polypropylene wax having an acid value of about 40 mg KOH / g to about 45 mg KOH / g. ) Was used.
[실시예 7]Example 7
왁스계 화합물의 종류를 제외하고는, 실시예 1에 따른 복합체를 제조한 방법과 실질적으로 동일한 방법으로 실시예 7에 따른 복합체를 제조하였다. 실시예 7에 따른 복합체의 제조에는, 산가(Acid value)가 0 mg KOH/g인 비산화 고밀도 폴리에틸렌 왁스(Non-Oxidized HDPE Wax)인 L-C 104N 왁스(상품명, 라이온켐텍사, 한국)를 사용하였다.Except for the kind of the wax compound, the composite according to Example 7 was prepared in substantially the same manner as the composite according to Example 1 was prepared. In preparing the composite according to Example 7, LC 104N wax (Non-Oxidized HDPE Wax) having an acid value of 0 mg KOH / g (trade name, Lion Chemtech Co., Korea) was used. .
[실시예 8]Example 8
왁스계 화합물의 종류를 제외하고는, 실시예 1에 따른 복합체를 제조한 방법과 실질적으로 동일한 방법으로 실시예 8에 따른 복합체를 제조하였다. 실시예 8에 따른 복합체의 제조에는, 산가(Acid value)가 약 180 mg KOH/g인 에틸렌 아크릴산 코폴리머(Ethylene-Acrylic Acid Copolymer)로서, EscorTM 5100 ExCo 왁스(상품명, ExxonMobil Chemical사, 미국)를 사용하였다.Except for the type of wax-based compound, the composite according to Example 8 was prepared in substantially the same manner as the composite according to Example 1. For the preparation of the composite according to Example 8, Escor 5100 ExCo wax (trade name, ExxonMobil Chemical, USA) is an ethylene acrylic acid copolymer having an acid value of about 180 mg KOH / g. Was used.
[비교예 1]Comparative Example 1
CdSe계 적색 양자점인 Nanodot-HE-606(상품명, QD solution사, 한국)을 준비하였다.Nanodot-HE-606 (trade name, QD solution, Korea), which is a CdSe-based red quantum dot, was prepared.
[실험예 1] - 복합체의 특성 평가 1Experimental Example 1-Characterization of the composite 1
본 발명의 실시예 1 내지 8에 따른 복합체들 각각과 톨루엔을 혼합하여 측정 샘플 1 내지 8을 제조하였다. Measurement samples 1 to 8 were prepared by mixing toluene with each of the composites according to Examples 1 to 8 of the present invention.
상기 측정 샘플 1에 대해서, 절대양자효율 측정기로서 C9920-02(상품명, HAMAMATSU사, 일본)를 이용하여 본 발명의 실시예 1에 따른 복합체의 양자효율(Quantum Yield, QY) 및 발광 파장을 측정하였다.For the measurement sample 1, the quantum efficiency (Quantum Yield, QY) and the emission wavelength of the composite according to Example 1 of the present invention were measured using C9920-02 (trade name, HAMAMATSU, Japan) as an absolute quantum efficiency meter. .
동일한 방법으로, 상기 측정 샘플 2 내지 8에 대해서, 본 발명의 실시예 2 내지 8에 따른 복합체의 양자 효율 및 발광 파장을 측정하였다. 그 결과를 표 1에 나타낸다.In the same manner, for the measurement samples 2 to 8, the quantum efficiency and emission wavelength of the composite according to Examples 2 to 8 of the present invention were measured. The results are shown in Table 1.
또한, 비교예 1에 따른 양자점을 톨루엔에 혼합하여 비교 샘플 1을 제조하였다. 비교 샘플 1을 이용하여 비교예 1에 따른 양자점의 양자 효율 및 발광 파장을 측정하였다. 그 결과를 표 1에 나타낸다.In addition, Comparative Sample 1 was prepared by mixing quantum dots according to Comparative Example 1 with toluene. Quantum efficiency and emission wavelength of the quantum dots according to Comparative Example 1 were measured using Comparative Sample 1. The results are shown in Table 1.
표 1
구분(in toluene) 양자효율(QY, %) 발광 파장(nm)
측정 샘플 1 83.8 606.4
측정 샘플 2 83.1 606.7
측정 샘플 3 83.0 606.5
측정 샘플 4 82.7 606.3
측정 샘플 5 82.9 606.1
측정 샘플 6 82.6 606.9
측정 샘플 7 82.9 606.3
측정 샘플 8 82.5 606.8
비교 샘플 1 82.3 606.0
Table 1
In toluene Quantum Efficiency (QY,%) Emission wavelength (nm)
Measurement sample 1 83.8 606.4
Measurement sample 2 83.1 606.7
Measurement sample 3 83.0 606.5
Measurement sample 4 82.7 606.3
Measurement sample 5 82.9 606.1
Measurement sample 6 82.6 606.9
Measurement sample 7 82.9 606.3
Measurement Sample 8 82.5 606.8
Comparison sample 1 82.3 606.0
표 1의 측정 샘플 1 내지 6의 결과를 참조하면, 톨루엔에 분산된 상태의 실시예 1 내지 6에 따른 복합체의 양자 효율은 83.8%, 83.1%, 83.0%, 82.7%, 82.9% 및 82.6%임을 알 수 있다. 또한, 측정 샘플 7 및 8의 결과에서와 같이, 톨루엔에 분산된 상태의 실시예 7 및 8에 따른 복합체들 각각의 양자 효율은 82.9% 및 82.5%임을 알 수 있다. Referring to the results of measurement samples 1 to 6 of Table 1, the quantum efficiencies of the composites according to Examples 1 to 6 in the state dispersed in toluene are 83.8%, 83.1%, 83.0%, 82.7%, 82.9% and 82.6%. Able to know. In addition, as in the results of measurement samples 7 and 8, it can be seen that the quantum efficiencies of the composites according to Examples 7 and 8 in the state dispersed in toluene are 82.9% and 82.5%, respectively.
반면, 톨루엔에 분산된 상태의 비교예 1에 따른 양자점의 양자효율은 82.3%임을 알 수 있다. On the other hand, it can be seen that the quantum efficiency of the quantum dot according to Comparative Example 1 in a state dispersed in toluene is 82.3%.
본 발명의 실시예 1 내지 8 및 비교예 1에 따른 양자 효율 결과에 따르면, 톨루엔에 분산된 상태에서 본 발명의 실시예 1 내지 8에 따른 복합체의 양자 효율이 비교예 1과 같은 양자점 그 자체의 양자 효율보다 높은 것을 알 수 있다. 즉, 양자점을 이용하여 복합체를 제조하더라도, 복합체의 양자 효율은 양자점 그 자체의 양자 효율보다 저하되지 않는다는 점을 알 수 있다.According to the quantum efficiency results according to Examples 1 to 8 and Comparative Example 1 of the present invention, the quantum efficiency of the composite according to Examples 1 to 8 of the present invention in the state dispersed in toluene is the same as that of Comparative Example 1 It can be seen that higher than the quantum efficiency. That is, even when the composite is manufactured using the quantum dots, it can be seen that the quantum efficiency of the composite is not lower than the quantum efficiency of the quantum dots themselves.
또한, 측정 샘플 1 내지 6과 같이 톨루엔에 분산된 상태에서, 실시예 1 내지 6에 따른 복합체의 발광 파장은 606.4 nm, 606.7 nm, 606.5 nm, 606.3 nm, 606.1 nm 및 606.9 nm이고, 실시예 7 및 8에 따른 복합체들 각각의 발광 파장은 606.3 nm 및 606.8 nm임을 알 수 있다. Further, in the state of being dispersed in toluene as in Measurement Samples 1 to 6, the emission wavelengths of the composites according to Examples 1 to 6 were 606.4 nm, 606.7 nm, 606.5 nm, 606.3 nm, 606.1 nm and 606.9 nm, and Example 7 And it can be seen that the emission wavelength of each of the composites according to 8 are 606.3 nm and 606.8 nm.
반면, 비교예 1에 따른 양자점의 발광 파장은 606.0 nm임을 알 수 있다. On the other hand, it can be seen that the emission wavelength of the quantum dot according to Comparative Example 1 is 606.0 nm.
이에 따르면, 본 발명의 실시예 1 내지 8과 같이 왁스계 화합물에 의해서 캡슐화된 경우, 톨루엔에 분산된 복합체의 발광 파장은 양자점 그 자체의 발광 파장보다 길어짐을 알 수 있다. 다만, 본 발명에 따른 복합체의 발광 파장이 양자점 그 자체의 발광 파장보다 길어지기는 하지만 그 차이가 약 1 nm 미만이므로, 톨루엔에 분산된 상태에서 복합체의 발광 파장은 양자점 그 자체의 발광 파장과 실질적으로 동일하다고 볼 수 있다. 즉, 양자점을 왁스계 화합물로 캡슐화하더라도, 양자점 그 자체의 발광 파장 대비, 발광 파장의 변화(shift)가 거의 없음을 알 수 있다.According to this, when encapsulated by the wax-based compound as in Examples 1 to 8 of the present invention, it can be seen that the emission wavelength of the composite dispersed in toluene is longer than the emission wavelength of the quantum dot itself. However, since the emission wavelength of the composite according to the present invention is longer than the emission wavelength of the quantum dot itself, but the difference is less than about 1 nm, the emission wavelength of the composite in the state dispersed in toluene is substantially the same as the emission wavelength of the quantum dot itself. The same can be said. That is, even when the quantum dot is encapsulated with a wax-based compound, it can be seen that there is almost no shift in the emission wavelength compared to the emission wavelength of the quantum dot itself.
[실험예 2] - 복합체 특성 평가 2Experimental Example 2-Evaluation of Composite Properties 2
본 발명의 실시예 1 내지 8에 따른 복합체들 각각을 실록산 수지인 OE-6630 A/B kit(상품명, 다우코닝 실리콘사, 미국) 중 B kit와 광학 밀도(optical density, OD) 값이 0.1인 농도로 혼합하여 측정 샘플 9 내지 16을 제조하였다.Each of the composites according to Examples 1 to 8 of the present invention has a B kit and an optical density (OD) value of 0.1 in an OE-6630 A / B kit (trade name, Dow Corning Silicon, USA), which is a siloxane resin. Mixtures at concentrations produced measurement samples 9-16.
또한, 비교예 1에 따른 양자점을 OE-6630와, OD값이 0.1인 농도로 혼합하여 비교 샘플 2를 제조하였다.Further, Comparative Sample 2 was prepared by mixing quantum dots according to Comparative Example 1 with OE-6630 and an OD value of 0.1.
상기 측정 샘플 9 내지 16 및 상기 비교 샘플 2 각각에 대하여, 절대양자효율측정기로서 C9920-02(상품명, HAMAMATSU사, 일본)를 이용하여 양자효율 및 발광 파장을 측정하였다. 그 결과를 표 2에 나타낸다.For each of the measurement samples 9 to 16 and the comparative sample 2, quantum efficiency and emission wavelength were measured using C9920-02 (trade name, HAMAMATSU, Japan) as an absolute quantum efficiency meter. The results are shown in Table 2.
표 2
구분(in OE-6630) 양자효율(%) 발광 파장(nm)
측정 샘플 9 87.3 609.5
측정 샘플 10 86.5 609.7
측정 샘플 11 84.9 610.6
측정 샘플 12 85.7 610.3
측정 샘플 13 83.5 611.1
측정 샘플 14 82.9 612.4
측정 샘플 15 75.0 614.3
측정 샘플 16 74.6 612.6
비교 샘플 2 73.2 614.5
TABLE 2
Classification (in OE-6630) Quantum Efficiency (%) Emission wavelength (nm)
Measurement Sample 9 87.3 609.5
Measurement sample 10 86.5 609.7
Measurement Sample 11 84.9 610.6
Measurement Sample 12 85.7 610.3
Measurement Sample 13 83.5 611.1
Measurement Sample 14 82.9 612.4
Measurement Sample 15 75.0 614.3
Measurement Sample 16 74.6 612.6
Comparison sample 2 73.2 614.5
표 2를 참조하면, 측정 샘플 9 내지 16에서와 같이 실록산 수지에 분산된 상태에서, 실시예 1 내지 6에 따른 복합체의 양자 효율은 87.3%, 86.5%, 84.9%, 85.7%, 83.5% 및 82.9%이고, 실시예 7 및 8 에 따른 복합체들 각각의 양자 효율은 75.0% 및 74.6%임을 알 수 있다. Referring to Table 2, in the state dispersed in the siloxane resin as in the measurement samples 9 to 16, the quantum efficiencies of the composites according to Examples 1 to 6 were 87.3%, 86.5%, 84.9%, 85.7%, 83.5%, and 82.9. %, And the quantum efficiencies of the composites according to Examples 7 and 8 are 75.0% and 74.6%, respectively.
비교 샘플 2의 결과를 참조하면, 실록산 수지에 분산된 상태에서 비교예 1에 따른 양자점의 양자효율은 73.2%임을 알 수 있다. Referring to the result of Comparative Sample 2, it can be seen that the quantum efficiency of the quantum dot according to Comparative Example 1 in the state dispersed in the siloxane resin is 73.2%.
이에 따르면, 본 발명의 실시예 1 내지 8에서와 같이 왁스계 화합물에 의해 캡슐화된 양자점을 포함하는 복합체는 실록산 수지에 분산된 상태에서도, 실록산 수지에 분산된 양자점과 비교하여, 높은 양자 효율을 나타냄을 알 수 있다.According to this, as in Examples 1 to 8 of the present invention, the composite including the quantum dots encapsulated by the wax-based compound shows a high quantum efficiency compared to the quantum dots dispersed in the siloxane resin, even in the state dispersed in the siloxane resin. It can be seen.
표 2를 표 1의 데이터와 비교하면, 실록산 수지에 복합체가 분산된 상태인 측정 샘플 9의 양자 효율은 87.3%로서, 톨루엔에 복합체가 분산된 상태인 측정 샘플 1의 양자 효율인 83.8%와의 차이가 +3.5%임을 알 수 있다. 또한, 측정 샘플 10의 양자 효율은 86.5%로서, 측정 샘플 2의 양자 효율인 83.1%와의 차이가 +3.4%임을 알 수 있다. 측정 샘플 11 내지 14 각각의 양자 효율은 측정 샘플 3 내지 6 각각의 양자 효율과의 차이가 +1.9%, +3%, +0.6% 및 +0.3%임을 알 수 있다. Comparing Table 2 with the data in Table 1, the quantum efficiency of measurement sample 9 in which the composite was dispersed in siloxane resin was 87.3%, which is different from the quantum efficiency of 83.8% of measurement sample 1 in which the composite was dispersed in toluene. It can be seen that + 3.5%. In addition, the quantum efficiency of measurement sample 10 is 86.5%, and it can be seen that the difference from 83.1%, which is the quantum efficiency of measurement sample 2, is + 3.4%. It can be seen that the quantum efficiencies of each of the measurement samples 11 to 14 are + 1.9%, + 3%, + 0.6%, and + 0.3% from the quantum efficiency of each of the measurement samples 3 to 6.
반면, 실록산 수지에 분산된 양자점의 양자 효율을 나타내는 비교 샘플 2의 데이터를 비교 샘플 1의 양자 효율과 비교하면, 양자점은 실록산 수지에 분산됨에 따라 양자 효율의 차이가 -9.1%임을 알 수 있다. 즉, 양자점은 실록산 수지에 분산될 때에, 톨루엔에 분산된 때에 비해서 양자 효율이 저하됨을 알 수 있다.On the other hand, when comparing the data of Comparative Sample 2 representing the quantum efficiency of the quantum dots dispersed in the siloxane resin with the quantum efficiency of Comparative Sample 1, it can be seen that the difference in the quantum efficiency is -9.1% as the quantum dots are dispersed in the siloxane resin. In other words, it can be seen that when the quantum dots are dispersed in the siloxane resin, the quantum efficiency is lower than when the quantum dots are dispersed in toluene.
상기에서 살펴본 바에 따르면, 본 발명의 실시예 1 내지 6에 따른 복합체들은 실록산 수지에 분산되더라도 양자 효율이 유지되거나 오히려 증가하는 반면, 양자점은 실록산 수지에 분산되는 경우 양자 효율이 큰 폭으로 감소함을 알 수 있다. 다만, 측정 샘플 7 및 8 의 양자 효율 각각과 측정 샘플 15 및 16의 양자 효율 각각을 비교할 때, 왁스계 화합물이 산소 비함유 왁스이거나 산가가 180 mg KOH/g 정도로 높은 왁스인 경우에는 양자점을 캡슐화하면 양자점 그 자체의 양자 효율보다는 향상되기는 하지만, 실록산 수지에 혼합하여 이용하는 경우 양자 효율이 저하될 수도 있음을 알 수 있다.As described above, the composites according to Examples 1 to 6 of the present invention maintain or increase quantum efficiency even when dispersed in the siloxane resin, whereas the quantum dot is significantly reduced when dispersed in the siloxane resin. Able to know. However, when comparing each of the quantum efficiencies of the measurement samples 7 and 8 with the quantum efficiencies of the measurement samples 15 and 16, the quantum dots are encapsulated when the wax-based compound is an oxygen-free wax or a wax having an acid value of about 180 mg KOH / g. If the quantum dot itself is improved than the quantum efficiency itself, it can be seen that the quantum efficiency may be lowered when mixed with the siloxane resin.
다시 표 2를 참조하면, 실록산 수지에 분산된 상태에서, 실시예 1 내지 6에 따른 복합체의 발광 파장은 609.5 nm, 609.7 nm, 610.6 nm, 610.3 nm, 611.6 nm 및 612.4 nm이고, 실시예 7 및 8 에 따른 복합체들 각각의 발광 파장은 614.3 nm 및 612.6 nm임을 알 수 있다. 비교예 1에 따른 양자점의 발광 파장은 614.5 nm임을 알 수 있다. 이에 따르면, 본 발명의 실시예 1 내지 8에 따른 복합체들과 비교예 1에 따른 양자점 모두, 실록산 수지에 분산된 경우의 발광 파장이 톨루엔에 분산된 양자점 그 자체의 발광 파장인 606.0 nm 대비 길어짐을 알 수 있다.Referring back to Table 2, in the state dispersed in the siloxane resin, the emission wavelength of the composite according to Examples 1 to 6 is 609.5 nm, 609.7 nm, 610.6 nm, 610.3 nm, 611.6 nm and 612.4 nm, and Example 7 and It can be seen that the emission wavelength of each of the composites according to 8 is 614.3 nm and 612.6 nm. It can be seen that the emission wavelength of the quantum dot according to Comparative Example 1 is 614.5 nm. According to this, both of the composites according to Examples 1 to 8 of the present invention and the quantum dots according to Comparative Example 1 have a longer emission wavelength when dispersed in the siloxane resin than 606.0 nm, which is the emission wavelength of the quantum dots themselves dispersed in toluene. Able to know.
표 1의 데이터와 비교하면, 측정 샘플 9의 발광 파장은 측정 샘플 1의 발광 파장에 비해 3.1 nm 만큼 길어진 것을 알 수 있다. 측정 샘플 10 내지 14 각각의 발광 파장은, 측정 샘플 2 내지 6 각각의 발광 파장에 비해, 3.0 nm, 4.1 nm, 4.0 nm, 5.0 nm 및 5.5 nm 만큼 증가함을 알 수 있다. 측정 샘플 15 및 16 각각의 발광 파장은, 측정 샘플 7 및 8 각각의 발광 파장에 비해 8 nm 및 5.8 nm 만큼 증가함을 알 수 있다.Comparing with the data of Table 1, it can be seen that the emission wavelength of Measurement Sample 9 is longer by 3.1 nm than the emission wavelength of Measurement Sample 1. It can be seen that the emission wavelength of each of the measurement samples 10 to 14 increases by 3.0 nm, 4.1 nm, 4.0 nm, 5.0 nm and 5.5 nm compared to the emission wavelength of each of the measurement samples 2 to 6. It can be seen that the emission wavelength of each of the measurement samples 15 and 16 increases by 8 nm and 5.8 nm compared to the emission wavelength of the measurement samples 7 and 8 respectively.
반면, 비교 샘플 2의 발광 파장을 비교 샘플 1과 비교하면, 양자점은 실록산 수지에 분산됨에 따라 발광 파장이 8.5 nm만큼 증가함을 알 수 있다. On the other hand, comparing the emission wavelength of Comparative Sample 2 with Comparative Sample 1, it can be seen that the emission wavelength increases by 8.5 nm as the quantum dots are dispersed in the siloxane resin.
상기에서 살펴본 바에 따르면, 실록산 수지에 분산되더라도 본 발명의 실시예 1 내지 6에 따른 복합체들의 발광 파장의 변화가 비교예 1에 따른 양자점의 발광 파장의 변화보다 작은 것을 알 수 있다. 즉, 실록산 수지에 복합체 또는 양자점이 분산되는 과정에서, 복합체 또는 양자점이 응집(aggregation)되기 때문에 단순한 분산 용매인 톨루엔 내에서의 발광 파장에 비해서 실록산 수지에 분산된 경우 상대적으로 발광 파장이 길어지는 현상이 일어난다. 그럼에도 불구하고, 본 발명에 따른 복합체들을 실록산 수지에 분산시키는 경우에는, 양자점을 그대로 실록산 수지에 분산시키는 경우에 비해서 상대적으로 발광 파장의 변화가 적음을 알 수 있다.As described above, even when dispersed in the siloxane resin, it can be seen that the change in the emission wavelength of the composites according to Examples 1 to 6 of the present invention is smaller than the change in the emission wavelength of the quantum dot according to Comparative Example 1. That is, in the process of dispersing the composite or the quantum dots in the siloxane resin, the composite or the quantum dots are aggregated (aggregation), the phenomenon that the emission wavelength is relatively longer when dispersed in the siloxane resin than the emission wavelength in toluene, which is a simple dispersion solvent This happens. Nevertheless, when the composites according to the present invention are dispersed in the siloxane resin, it can be seen that the change in the emission wavelength is relatively small compared to the case where the quantum dots are dispersed in the siloxane resin as it is.
다만, 실시예 7에 따른 복합체는 양자점이 왁스계 화합물에 의해 어느 정도로 캡슐화되어 있으므로, 톨루엔에 분산된 상태에서는 양자 효율이 측정 샘플 1 내지 6과 유사한 수준으로 나타난다. 하지만, 실시예 7에 따른 복합체를 구성하는 왁스계 화합물은 산소를 포함하지 않기 때문에, 양자점의 캡슐화 효과가 낮아서 실록산 수지에 분산되면 비교예 1에 따른 양자점보다는 양자 효율이 높기는 하지만 실시예 1 내지 6에 따른 복합체에 비해서는 양자 효율이 낮게 나타남을 알 수 있다. 또한, 실시예 7에 따른 복합체를 실록산 수지에 분산시킨 경우(측정 샘플 15)의 발광 파장을 톨루엔에 분산시킨 경우(측정 샘플 7)와 비교할 때, 발광 파장의 변화가 큼을 알 수 있다.However, since the quantum dot is encapsulated to some extent by the wax-based compound, the composite according to Example 7 shows quantum efficiency at a level similar to that of the measurement samples 1 to 6 in the state dispersed in toluene. However, since the wax-based compound constituting the composite according to Example 7 does not contain oxygen, the encapsulation effect of the quantum dots is low, so that when dispersed in the siloxane resin, although the quantum efficiency is higher than that of the quantum dots according to Comparative Example 1, the examples 1 to It can be seen that the quantum efficiency is lower than the composite according to 6. In addition, when the composite according to Example 7 was dispersed in siloxane resin (measurement sample 15), it was found that the change in emission wavelength was large when compared with the case where the emission wavelength was dispersed in toluene (measurement sample 7).
또한, 실시예 8에 따른 복합체는 양자점이 왁스계 화합물에 의해 캡슐화되어 있으므로 톨루엔에 분산된 상태에서는 양자 효율이 측정 샘플 1 내지 6과 유사한 수준으로 나타난다. 하지만, 실시예 8에 따른 복합체를 구성하는 화합물에 의해서 양자점 표면의 리간드가 파괴되고 양자점이 산화됨으로써 실록산 수지에 분산되는 경우 비교예 1에 따른 양자점보다는 양자 효율이 높기는 하지만 실시예 1 내지 7에 따른 복합체보다는 양자 효율이 낮음을 알 수 있다.In addition, in the composite according to Example 8, since the quantum dots are encapsulated by the wax-based compound, the quantum efficiency is shown to be similar to those of the measurement samples 1 to 6 in the state dispersed in toluene. However, when the ligand of the surface of the quantum dot is destroyed by the compound constituting the complex according to Example 8 and dispersed in the siloxane resin by oxidizing the quantum dot, the quantum efficiency is higher than that of the quantum dot according to Comparative Example 1, It can be seen that the quantum efficiency is lower than the resulting composite.
[실험예 3] - 분산 안정성의 평가Experimental Example 3-Evaluation of Dispersion Stability
상기 측정 샘플 9 내지 16 및 상기 비교 샘플 2에 대하여, 투과도 측정장치인 Cary-4000(상품명, Agilent사, 미국)을 이용하여 상기 측정 샘플 9 내지 16 및 상기 비교 샘플 2를 제조한 직후의 투과도(분산 직후의 투과도)를 측정하였다. 1개월이 경과한 후에 이들의 투과도(1개월 후의 투과도)를 다시 측정하여 분산 안정성을 산출하였다. 그 결과를 표 3에 나타낸다.Permeability immediately after the measurement samples 9 to 16 and Comparative Sample 2 were prepared using Cary-4000 (trade name, Agilent, USA), which is a transmittance measuring device, Permeability immediately after dispersion) was measured. After 1 month elapsed, their permeability (permeability after 1 month) was measured again to calculate dispersion stability. The results are shown in Table 3.
표 3
구분(in OE-6630) 분산 안정성 (%)
측정 샘플 9 2
측정 샘플 10 4
측정 샘플 11 3
측정 샘플 12 5
측정 샘플 13 6
측정 샘플 14 6
측정 샘플 15 13
측정 샘플 16 14
비교 샘플 2 18
TABLE 3
Classification (in OE-6630) Dispersion stability (%)
Measurement Sample 9 2
Measurement sample 10 4
Measurement Sample 11 3
Measurement Sample 12 5
Measurement Sample 13 6
Measurement Sample 14 6
Measurement Sample 15 13
Measurement Sample 16 14
Comparison sample 2 18
실험예 3에서, "분산 직후의 투과도"는 상기 측정 샘플 또는 비교 샘플을 제조한 직후에 투과도 측정 장비로 측정된 가시광 영역인 약 400nm 내지 약 700nm 범위 내의 투과도를, 산술 평균으로 산출한 값(단위:%)이다. 또한, "1개월 후에 측정된 투과도"는 상기 측정 샘플 또는 비교 샘플을 제조한 후 상온에 방치하여 1개월이 경과된 시점에서 투과도 측정 장비로 측정된 가시광 영역인 약 400nm 내지 약 700nm 범위 내의 투과도를, 산술 평균으로 산출한 값(단위:%)이다. 표 3의 분산 안정성은 양자점 분산 직후의 투과도(%)와, 1개월 후의 투과도(%) 차이의 값(%)을 계산하여 산출된다. 상기 1개월 후에 측정된 투과도가 낮을수록 분산 안정성은 작은 값을 나타내며, 1개월 후에 측정된 투과도가 높을수록 분산 안정성은 큰 값을 나타낸다. 즉, 상기 측정 샘플 또는 비교 샘플의 분산 안정성이 좋지 못한 경우에는 시간이 경과함에 따라 침전이 생겨 투과도가 증가하게 되고, 그 결과 분산 안정성 값이 큰 값을 갖게 된다.In Experimental Example 3, "transmittance immediately after dispersion" is a value calculated from an arithmetic mean of a transmittance within a range of about 400 nm to about 700 nm, which is a visible light region measured by a transmittance measuring device immediately after the measurement sample or the comparative sample is prepared. :%)to be. In addition, "transmittance measured after one month" refers to a transmittance within a range of about 400 nm to about 700 nm, which is a visible light region measured by a transmittance measuring device at a point in which one month has elapsed after the measurement sample or the comparative sample is manufactured. , Calculated as the arithmetic mean (%). Dispersion stability of Table 3 is computed by calculating the transmittance | permeability (%) just after dispersion | distribution of a quantum dot, and the value (%) of the difference (%) after 1 month. The lower the permeability measured after 1 month, the smaller the dispersion stability, and the higher the permeability measured after 1 month, the larger the dispersion stability. That is, when the dispersion stability of the measurement sample or the comparative sample is not good, precipitation occurs and the permeability increases with time, and as a result, the dispersion stability value has a large value.
표 3을 참조하면, 측정 샘플 9 내지 16의 분산 안정성은 각각 2%, 4%, 3%, 5%, 6%, 6%, 13% 및 14%임을 알 수 있다. 반면, 비교 샘플 2의 분산 안정성은 18%임을 알 수 있다. 즉, 본 발명의 실시예들에 따른 복합체를 포함하는 측정 샘플 9 내지 16의 분산 안정성이 비교 샘플 2에 비해서 상대적으로 우수한 것을 알 수 있다. 시간이 경과하더라도 침전이 생기지 않고 실록산 수지에 분산된 상태를 유지함을 알 수 있다. 특히, 측정 샘플 15 및 16의 경우에는, 비교 샘플 2에 비해서는 분산 안정성이 좋기는 하지만, 측정 샘플 9 내지 14에 비해서는 분산 안정성이 좋지 않은 것을 알 수 있다.Referring to Table 3, it can be seen that the dispersion stability of measurement samples 9 to 16 is 2%, 4%, 3%, 5%, 6%, 6%, 13% and 14%, respectively. On the other hand, it can be seen that the dispersion stability of Comparative Sample 2 is 18%. That is, it can be seen that the dispersion stability of the measurement samples 9 to 16 including the composite according to the embodiments of the present invention is relatively superior to the comparative sample 2. It can be seen that even after time, no precipitation occurs and the state remains dispersed in the siloxane resin. In particular, in the case of measurement samples 15 and 16, although dispersion stability is good compared with the comparative sample 2, it turns out that dispersion stability is not good compared with the measurement samples 9-14.
[실험예 4] - 자외선 안정성 및 열/수분 안정성의 평가 -1Experimental Example 4-Evaluation of UV Stability and Heat / Moisture Stability -1
파우더 상태의 실시예 1에 따른 복합체를 준비하고 이에 대한 제1 양자효율(QYT1, 단위:%)을 절대양자효율측정기로서 C9920-02(상품명, HAMAMATSU사, 일본)를 이용하여 측정하였다. 이어서, 파장이 365nm인 자외선(UV)을 약 1 mW/cm2의 복사 강도로 150시간 동안, 즉 약 540 J/cm2의 가혹 조건으로 조사한 후, 제2 양자효율(QYT2, 단위:%)을 측정하였다. 상기 제1 양자효율 및 상기 제2 양자효율의 차이(△QY1=QYT1-QYT2, 단위:%)를 산출하여 실시예 1에 따른 복합체에 대한 자외선 안정성을 평가하였다. 그 결과를 표 4에 나타낸다.The composite according to Example 1 in powder form was prepared and the first quantum efficiency (QYT1, unit:%) was measured using C9920-02 (trade name, HAMAMATSU, Japan) as an absolute quantum efficiency meter. Subsequently, after irradiating ultraviolet (UV) light having a wavelength of 365 nm for 150 hours at a radiation intensity of about 1 mW / cm 2 for a severe condition of about 540 J / cm 2 , the second quantum efficiency (QYT2, unit:%) Was measured. The difference between the first quantum efficiency and the second quantum efficiency (ΔQY1 = QYT1-QYT2, unit:%) was calculated to evaluate ultraviolet stability for the composite according to Example 1. The results are shown in Table 4.
파우더 상태의 실시예 2 내지 실시예 8에 따른 복합체들과 비교예 1에 따른 양자점을 준비하고, 각각에 대해 파우더 상태의 실시예 1에 따른 복합체에 대한 실험 방법과 실질적으로 동일한 방법으로 파우더 상태의 실시예 2 내지 8에 따른 복합체들과 비교예 1에 따른 양자점 각각에 대한 자외선 안정성을 평가하였다. 그 결과를 표 4에 나타낸다.Prepare the composites according to Examples 2 to 8 in the powder state and the quantum dots according to Comparative Example 1, and for each of the powder state in the substantially same manner as the experimental method for the composite according to Example 1 in the powder state Ultraviolet stability for each of the composites according to Examples 2 to 8 and the quantum dots according to Comparative Example 1 was evaluated. The results are shown in Table 4.
또한, 파우더 상태의 실시예 1 내지 8에 따른 복합체들과 비교예 1에 따른 양자점에 대하여, 제1 양자효율(QYT1, 단위:%)을 측정한 후 항온항습기에서 온도 85℃ 및 상대습도 85%의 가혹조건에 방치하였다. 이어서, 실시예 1 내지 8에 따른 복합체들과 비교예 1에 따른 양자점에 대하여 제3 양자효율(QYT3, 단위:%)을 측정하였다. 상기 제1 양자효율 및 상기 제3 양자효율의 차이(△QY2=QYT1-QYT3, 단위:%)를 산출하여 실시예 1 내지 8에 따른 복합체들과 비교예 1에 따른 양자점에 대한 열/수분 안정성을 평가하였다. 그 결과를 표 4에 나타낸다.In addition, for the composites according to Examples 1 to 8 in powder form and the quantum dots according to Comparative Example 1, after measuring the first quantum efficiency (QYT1, unit:%), a temperature of 85 ° C. and a relative humidity of 85% in a thermo-hygrostat It was left under the harsh conditions of. Subsequently, a third quantum efficiency (QYT3, unit:%) was measured for the composites according to Examples 1 to 8 and the quantum dots according to Comparative Example 1. Calculate the difference between the first quantum efficiency and the third quantum efficiency (ΔQY2 = QYT1-QYT3, unit:%) to obtain heat / moisture stability for the composites according to Examples 1 to 8 and the quantum dots according to Comparative Example 1. Was evaluated. The results are shown in Table 4.
표 4
구분 자외선 안정성(△QY1, %) 열/수분 안정성(△QY2, %)
실시예 1 15 16
실시예 2 19 18
실시예 3 21 21
실시예 4 19 21
실시예 5 22 24
실시예 6 21 25
실시예 7 29 41
실시예 8 30 42
비교예 1 52 55
Table 4
division UV stability (△ QY1,%) Heat / moisture stability (△ QY2,%)
Example 1 15 16
Example 2 19 18
Example 3 21 21
Example 4 19 21
Example 5 22 24
Example 6 21 25
Example 7 29 41
Example 8 30 42
Comparative Example 1 52 55
표 4를 참조하면, 실시예 1 내지 8에 따른 복합체의 자외선 안정성은 각각 15%, 19%, 21%, 19%, 22%, 21%, 29% 및 30%인 반면, 비교예 1에 따른 양자점의 자외선 안정성은 52%임을 알 수 있다. 자외선에 대한 안정성이 좋을수록, 자외선의 가혹 조건(조사량 약 540 J/cm2)에서의 양자효율의 변화가 작으므로 자외선 안정성은 작은 값을 갖는다. 즉, 본 발명의 실시예 1 내지 8에 따른 복합체의 자외선 안정성이, 비교예 1에 따른 양자점에 비하여 우수함을 알 수 있다. 실시예 1 내지 8에 따른 복합체 중에서도, 실시예 1 내지 6에 따른 복합체의 자외선 안정성이 실시예 7 및 8에 따른 복합체의 자외선 안정성보다 우수함을 알 수 있다.Referring to Table 4, the ultraviolet stability of the composite according to Examples 1 to 8 is 15%, 19%, 21%, 19%, 22%, 21%, 29% and 30%, respectively, according to Comparative Example 1 It can be seen that the UV stability of the quantum dot is 52%. The better the stability to ultraviolet rays, the smaller the change in the quantum efficiency under the harsh conditions of the ultraviolet rays (irradiation amount of about 540 J / cm 2 ), the smaller the ultraviolet stability. That is, it can be seen that the ultraviolet stability of the composite according to Examples 1 to 8 of the present invention is superior to the quantum dots according to Comparative Example 1. Among the composites according to Examples 1 to 8, it can be seen that the ultraviolet stability of the composite according to Examples 1 to 6 is superior to the ultraviolet stability of the composite according to Examples 7 and 8.
또한, 실시예 1 내지 8에 따른 복합체의 열/수분 안정성은 각각 16%, 18%, 21%, 21%, 24%, 25%, 41% 및 42%인 반면, 비교예 1에 따른 양자점의 열/수분 안정성은 55%임을 알 수 있다. 온도 및 습도에 대한 안정성이 클수록, 고온고습(온도 85℃ 및 상대습도 85%)가혹 조건에서의 양자 효율의 변화가 작으므로 열/수분 안정성은 작은 값을 갖는다. 즉, 본 발명의 실시예 1 내지 8에 따른 복합체의 열/수분 안정성이, 비교예 1에 따른 양자점에 비해 우수함을 알 수 있다. 실시예 1 내지 8에 따른 복합체 중에서도, 실시예 1 내지 6에 따른 복합체의 열/수분 안정성이 실시예 7 및 8에 따른 복합체의 열/수분 안정성보다 우수함을 알 수 있다.In addition, the thermal / moisture stability of the composites according to Examples 1 to 8 were 16%, 18%, 21%, 21%, 24%, 25%, 41% and 42%, respectively, whereas the quantum dots according to Comparative Example 1 It can be seen that the heat / moisture stability is 55%. The greater the stability to temperature and humidity, the smaller the change in quantum efficiency under high temperature and high humidity (temperature 85 ° C. and relative humidity 85%), and therefore the smaller the heat / moisture stability. That is, it can be seen that the thermal / moisture stability of the composites according to Examples 1 to 8 of the present invention is superior to the quantum dots according to Comparative Example 1. Among the composites according to Examples 1 to 8, it can be seen that the thermal / moisture stability of the composites according to Examples 1 to 6 is superior to that of the composites according to Examples 7 and 8.
[실험예 5] - 자외선 안정성 및 열/수분 안정성의 평가 -2Experimental Example 5-Evaluation of UV Stability and Heat / Moisture Stability -2
OE-6630 A/B kit(상품명, 다우코닝 실리콘사, 미국) 중에서, OE-6630 B kit에 실시예 1에 따른 복합체를 분산시키고 OE-6630 A kit와 1:4(A kit:B kit)의 질량비(mass ratio)로 혼합하여, 약 150℃의 오븐에서 약 2시간 동안 열처리하여 두께가 약 200㎛인 제1 필름 샘플을 제조하였다.Among the OE-6630 A / B kit (trade name, Dow Corning Silicone, USA), the composite according to Example 1 was dispersed in OE-6630 B kit and OE-6630 A kit and 1: 4 (A kit: B kit) The mixture was mixed at a mass ratio of and a heat treatment was performed in an oven at about 150 ° C. for about 2 hours to prepare a first film sample having a thickness of about 200 μm.
실시예 2 내지 8에 따른 복합체를 이용하여 상기 제1 필름 샘플을 제조하는 공정과 실질적으로 동일한 공정을 통해 제2 내지 제8 필름 샘플을 제조하였다. 또한, 비교예 1에 따른 양자점을 이용하여 상기 제1 필름 샘플을 제조하는 공정과 실질적으로 동일한 공정을 통해 제1 비교 필름 샘플을 제조하였다.Using the composite according to Examples 2 to 8, the second to eighth film samples were prepared through a process substantially the same as that of preparing the first film sample. In addition, the first comparative film sample was manufactured through a process substantially the same as the process of preparing the first film sample using the quantum dot according to Comparative Example 1.
상기 제1 내지 제8 필름 샘플 및 제1 비교 필름 샘플 각각에 대해서 실험예 4의 평가 방법과 실질적으로 동일한 방법으로 자외선 안정성 및 열/수분 안정성을 평가하였다. 그 결과를 표 5에 나타낸다.UV stability and heat / moisture stability were evaluated for each of the first to eighth film samples and the first comparative film sample in substantially the same manner as in the evaluation method of Experimental Example 4. The results are shown in Table 5.
표 5
구분 자외선 안정성(△QY1, %) 열/수분 안정성(△QY2, %)
제1 필름 샘플 3 4
제2 필름 샘플 4 7
제3 필름 샘플 4 6
제4 필름 샘플 5 10
제5 필름 샘플 5 9
제6 필름 샘플 6 11
제7 필름 샘플 21 30
제8 필름 샘플 28 32
제1 비교 필름 샘플 38 40
Table 5
division UV stability (△ QY1,%) Heat / moisture stability (△ QY2,%)
First film sample 3 4
Second film sample 4 7
Third film sample 4 6
Fourth film sample 5 10
5th film sample 5 9
Sixth film sample 6 11
Seventh film sample 21 30
Eighth film sample 28 32
First Comparative Film Sample 38 40
표 5를 참조하면, 제1 내지 제8 필름 샘플들의 자외선 안정성을 제1 비교 필름 샘플의 자외선 안정성과 비교하면, 본 발명의 실시예 1 내지 8에 따른 복합체를 포함하는 필름 샘플들의 자외선 안정성은 양자점을 포함하는 제1 비교 필름 샘플에 비해 우수한 것을 알 수 있다.Referring to Table 5, when the ultraviolet stability of the first to eighth film samples is compared with the ultraviolet stability of the first comparative film sample, the ultraviolet stability of the film samples including the composite according to Examples 1 to 8 of the present invention is quantum dots It can be seen that it is superior to the first comparative film sample including the.
제1 내지 제8 필름 샘플들 중에서도, 제7 및 제8 필름 샘플들의 자외선 안정성은 제1 비교 필름 샘플에 비해서는 우수한 편이지만 제1 내지 제6 필름 샘플들에 비해서는 좋지 않은 것을 알 수 있다. 즉, 제1 내지 제 6 필름 샘플들의 자외선 안정성은 약 6% 이하의 수준으로 매우 우수한 것을 알 수 있다.Among the first to eighth film samples, the ultraviolet stability of the seventh and eighth film samples is better than that of the first comparative film sample, but it is not good compared to the first to sixth film samples. That is, it can be seen that the ultraviolet stability of the first to sixth film samples is very excellent at a level of about 6% or less.
또한, 제1 내지 제8 필름 샘플들의 열/수분 안정성을 제1 비교 필름 샘플의 열/수분 안정성과 비교하면, 본 발명의 실시예 1 내지 8에 따른 복합체를 포함하는 필름 샘플들의 열/수분 안정성이 제1 비교 필름 샘플에 비해 우수한 것을 알 수 있다. Further, comparing the heat / moisture stability of the first to eighth film samples with the heat / moisture stability of the first comparative film sample, the heat / moisture stability of the film samples comprising the composite according to Examples 1 to 8 of the present invention. It turns out that it is excellent compared with this 1st comparative film sample.
제1 내지 제8 필름 샘플들 중에서도, 제7 및 제8 필름 샘플들의 열/수분 안정성은 제1 비교 필름 샘플에 비해서는 우수한 편이지만 제1 내지 제6 필름 샘플들에 비해서는 좋지 않은 것을 알 수 있다. 즉, 제1 내지 제 6 필름 샘플들의 열/수분 안정성이 약 11% 이하의 수준으로 매우 우수한 것을 알 수 있다.Among the first to eighth film samples, the heat / moisture stability of the seventh and eighth film samples is better than that of the first comparative film sample, but not as good as the first to sixth film samples. have. That is, it can be seen that the heat / moisture stability of the first to sixth film samples is very good at a level of about 11% or less.
상기에서 설명한 바에 따르면, 실록산계 수지를 이용하여 경화물을 제조하더라도, 본 발명에 따른 복합체의 자외선 안정성 및 열/수분 안정성은 양자점을 그대로 이용하는 경우에 비해서 우수한 것을 알 수 있다.As described above, even when the cured product is manufactured using the siloxane-based resin, it can be seen that the ultraviolet stability and the heat / moisture stability of the composite according to the present invention are superior to those of using the quantum dot as it is.
[실험예 6] - 자외선 안정성 및 열/수분 안정성의 평가 -3Experimental Example 6-Evaluation of UV Stability and Heat / Moisture Stability -3
MB2478(상품명, 미츠비시레이온, 일본)을 톨루엔에 용해시킨 후, 실시예 1에 따른 복합체를 분산시키고 약 80℃에서 건조시켜서 두께가 약 200㎛인 제9 필름 샘플을 제조하였다.After dissolving MB2478 (trade name, Mitsubishi Rayon, Japan) in toluene, the composite according to Example 1 was dispersed and dried at about 80 ° C. to prepare a ninth film sample having a thickness of about 200 μm.
실시예 2 내지 8에 따른 복합체를 이용하여 상기 제9 필름 샘플을 제조하는 공정과 실질적으로 동일한 공정을 통해 제10 내지 제16 필름 샘플을 제조하였다. 또한, 비교예 1에 따른 양자점을 이용하여 상기 제9 필름 샘플을 제조하는 공정과 실질적으로 동일한 공정을 통해 제2 비교 필름 샘플을 제조하였다.The tenth to sixteenth film samples were prepared by substantially the same process as the process for preparing the ninth film sample using the composite according to Examples 2 to 8. In addition, the second comparative film sample was manufactured by substantially the same process as the process of manufacturing the ninth film sample using the quantum dot according to Comparative Example 1.
상기 제9 내지 제16 필름 샘플 및 제2 비교 필름 샘플 각각에 대해서 실험예 4의 평가 방법과 실질적으로 동일한 방법으로 자외선 안정성 및 열/수분 안정성을 평가하였다. 그 결과를 표 6에 나타낸다.The UV stability and the heat / moisture stability of each of the ninth through sixteenth film samples and the second comparative film sample were evaluated in substantially the same manner as in the evaluation method of Experimental Example 4. The results are shown in Table 6.
표 6
구분 자외선 안정성(△QY1, %) 열/수분 안정성(△QY2, %)
제9 필름 샘플 8 5
제10 필름 샘플 9 7
제11 필름 샘플 11 7
제12 필름 샘플 14 13
제13 필름 샘플 13 10
제14 필름 샘플 16 12
제15 필름 샘플 27 32
제16 필름 샘플 35 34
제2 비교 필름 샘플 48 43
Table 6
division UV stability (△ QY1,%) Heat / moisture stability (△ QY2,%)
Ninth film sample 8 5
10th film sample 9 7
11th film sample 11 7
12th film sample 14 13
Film film 13 10
Fourteenth film sample 16 12
15th film sample 27 32
16th film sample 35 34
Second Comparative Film Sample 48 43
표 6을 참조하면, 제9 내지 제16 필름 샘플들의 자외선 안정성을 제2 비교 필름 샘플의 자외선 안정성과 비교하면, 본 발명의 실시예 1 내지 8에 따른 복합체를 포함하는 필름 샘플들의 자외선 안정성은 각각 8%, 9%, 11%, 14%, 13%, 16%, 27% 및 35%로서, 양자점을 포함하는 제2 비교 필름 샘플의 자외선 안정성이 48%인 것과 비교할 때, 우수한 것을 알 수 있다.Referring to Table 6, comparing the ultraviolet stability of the ninth to sixteenth film samples with the ultraviolet stability of the second comparative film sample, the ultraviolet stability of the film samples including the composite according to Examples 1 to 8 of the present invention, respectively 8%, 9%, 11%, 14%, 13%, 16%, 27% and 35%, the UV stability of the second comparative film sample containing quantum dots is excellent when compared to 48%. .
제9 내지 제16 필름 샘플들 중에서도, 제15 및 제16 필름 샘플들의 자외선 안정성은 제2 비교 필름 샘플에 비해서는 우수한 편이지만 제9 내지 제14 필름 샘플들에 비해서는 좋지 않은 것을 알 수 있다. 즉, 제9 내지 제 14 필름 샘플들의 자외선 안정성은 약 16% 이하의 수준으로 우수한 것을 알 수 있다.Among the ninth to sixteenth film samples, the ultraviolet stability of the fifteenth and sixteenth film samples is better than that of the second comparative film sample, but it is not good compared to the ninth to fourteenth film samples. That is, it can be seen that the ultraviolet stability of the ninth to fourteenth film samples is excellent at a level of about 16% or less.
또한, 제9 내지 제16 필름 샘플들의 열/수분 안정성을 제2 비교 필름 샘플의 열/수분 안정성과 비교하면, 본 발명의 실시예 1 내지 8에 따른 복합체를 포함하는 필름 샘플들의 열/수분 안정성은 5%, 7%, 7%, 13%, 10%, 12%, 32% 및 34%로서, 제1 비교 필름 샘플의 열/수분 안정성이 43%인 것에 비해 우수한 것을 알 수 있다. In addition, when comparing the heat / moisture stability of the ninth to sixteenth film samples with the heat / moisture stability of the second comparative film sample, the heat / moisture stability of the film samples including the composite according to Examples 1 to 8 of the present invention. As 5%, 7%, 7%, 13%, 10%, 12%, 32% and 34%, it can be seen that the heat / moisture stability of the first comparative film sample is superior to that of 43%.
제9 내지 제16 필름 샘플들 중에서도, 제15 및 제16 필름 샘플들의 열/수분 안정성은 제2 비교 필름 샘플에 비해서는 우수한 편이지만 제9 내지 제14 필름 샘플들에 비해서는 좋지 않은 것을 알 수 있다. 즉, 제9 내지 제14 필름 샘플들의 열/수분 안정성이 약 13% 이하의 수준으로 매우 우수한 것을 알 수 있다.Among the ninth to sixteenth film samples, the heat / moisture stability of the fifteenth and sixteenth film samples is better than that of the second comparative film sample, but not as good as the ninth to fourteenth film samples. have. That is, it can be seen that the heat / moisture stability of the ninth to fourteenth film samples is very good at a level of about 13% or less.
상기에서 설명한 바에 따르면, 아크릴계 수지를 이용하여 경화물을 제조하더라도, 본 발명에 따른 복합체의 자외선 안정성 및 열/수분 안정성은 양자점을 그대로 이용하는 경우에 비해서 우수한 것을 알 수 있다.As described above, even when the cured product is manufactured using acrylic resin, it can be seen that the ultraviolet stability and the heat / moisture stability of the composite according to the present invention are superior to those of using the quantum dots as they are.
이하에서는, 도 3 내지 도 5를 참조하여 본 발명에 따른 장치를 보다 상세하게 설명한다. 다만, 본 발명의 범위가 이로 제한되는 것은 아니다.Hereinafter, the apparatus according to the present invention will be described in more detail with reference to FIGS. 3 to 5. However, the scope of the present invention is not limited thereto.
도 3 내지 도 5는 본 발명의 또 다른 실시예에 따른 장치를 설명하기 위한 단면도들이다.3 to 5 are cross-sectional views illustrating an apparatus according to another embodiment of the present invention.
도 3을 참조하면, 발광 장치(501)는 LED(Light-emitting diode) 소자부(10)와 상기 LED 소자부(10) 위에 형성되고, 상기에서 설명한 본 발명에 따른 복합체를 각각 포함하는 제1 경화물층(310)과 제2 경화물층(320)을 포함한다. 상기 LED 소자부(10)는 베이스부(2)와, 상기 베이스부(2)의 홈부 내에 형성된 LED 칩(1)을 포함한다.Referring to FIG. 3, a light emitting device 501 is formed on a light emitting diode (LED) element portion 10 and the LED element portion 10 and includes a first composite including the composite according to the present invention as described above. The cured product layer 310 and the second cured product layer 320 are included. The LED element part 10 includes a base part 2 and an LED chip 1 formed in a groove part of the base part 2.
상기 제1 경화물층(310)은 경화성 수지가 형성하는 매트릭스 구조 내에 분산되어 있는 녹색 복합체(311)를 포함한다. 상기 녹색 복합체(311)는 녹색 양자점을 포함하고, 상기 녹색 양자점이 왁스계 화합물에 의해 캡슐화된다. "매트릭스 구조"는 상기 제1 경화물층(310)을 형성하는데 이용하는 조성물의 경화성 수지가 화학적으로 반응하여 형성하는 경화물의 내부 구조를 의미한다. 상기 왁스계 화합물은 도 1a, 도 1b 및 도 1c에서 설명한 것과 실질적으로 동일하므로 중복되는 구체적인 설명은 생략한다.The first cured product layer 310 includes a green composite 311 dispersed in a matrix structure formed by the curable resin. The green composite 311 includes green quantum dots, and the green quantum dots are encapsulated by a wax-based compound. The "matrix structure" means the internal structure of the cured product formed by the curable resin of the composition used to form the first cured product layer 310 by chemical reaction. Since the wax-based compound is substantially the same as described with reference to FIGS. 1A, 1B, and 1C, detailed descriptions thereof will not be repeated.
상기 제2 경화물층(320)은 상기 경화성 수지가 형성하는 매트릭스 구조 내에 분산되어 있는 캡슐화된 적색 복합체(321)를 포함한다. 상기 적색 복합체(321)는 적색 양자점을 포함하고, 상기 적색 양자점이 왁스계 화합물에 의해 캡슐화된다. 상기 적색 양자점을 캡슐화하는 왁스계 화합물은 상기 녹색 양자점을 캡슐화하는 왁스계 화합물과 동일하거나 상이할 수 있다.The second cured product layer 320 includes an encapsulated red composite material 321 dispersed in a matrix structure formed by the curable resin. The red complex 321 includes red quantum dots, and the red quantum dots are encapsulated by a wax-based compound. The wax compound encapsulating the red quantum dots may be the same as or different from the wax compound encapsulating the green quantum dots.
상기 녹색 복합체(311)은 녹색 파장 영역인 약 520 nm 내지 약 570 nm에서 발광피크를 가질 수 있다. 또한, 상기 적색 복합체(321)은 적색 파장 영역인 약 600 nm 내지 약 680 nm에 발광피크를 가질 수 있다. 예를 들어, 상기 적색 파장 영역은 약 620 nm 내지 약 670 nm일 수 있다.The green composite 311 may have a light emission peak at about 520 nm to about 570 nm, which is a green wavelength region. In addition, the red complex 321 may have a light emission peak at about 600 nm to about 680 nm, which is a red wavelength region. For example, the red wavelength region may be about 620 nm to about 670 nm.
상기 LED 칩(1)은 청색광을 생성한다. 상기 청색광은 약 400 nm 내지 약 480 nm의 파장을 가질 수 있다. 예를 들어, 상기 청색 파장 영역은 약 400 nm 내지 약 450 nm일 수 있다.The LED chip 1 generates blue light. The blue light may have a wavelength of about 400 nm to about 480 nm. For example, the blue wavelength region may be about 400 nm to about 450 nm.
도 3에 도시된 적층 구조와 달리, 상기 제1 경화물층(310)이 적색 복합체(321)를 포함하고, 상기 제2 경화물층(320)이 녹색 복합체(311)를 포함할 수 있다.Unlike the stacked structure illustrated in FIG. 3, the first cured material layer 310 may include a red composite 321, and the second cured material layer 320 may include a green composite 311.
도면으로 도시하지 않았으나, 도 3에 도시된 적층 구조와 달리, 발광 장치는 녹색 복합체(311)와 적색 복합체(321)를 모두 포함하면서 상기 LED 칩(1)을 커버하는 경화물층을 포함하는 구조를 가질 수도 있다.Although not illustrated in the drawings, unlike the laminated structure illustrated in FIG. 3, the light emitting device includes a green composite 311 and a red composite 321, and includes a cured product layer covering the LED chip 1. May have
도 4를 참조하면, 발광 장치(502)는 LED 소자부(10), 제1 경화물층(310), 제2 경화물층(320) 및 형광체(411)를 포함하는 형광층(410)을 포함한다. 상기 발광 장치(502)는 상기 형광층(410)을 제외하고는 도 3에서 설명한 발광 장치(501)와 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.Referring to FIG. 4, the light emitting device 502 includes a phosphor layer 410 including an LED element unit 10, a first cured product layer 310, a second cured product layer 320, and a phosphor 411. Include. The light emitting device 502 is substantially the same as the light emitting device 501 described with reference to FIG. 3 except for the fluorescent layer 410. Therefore, redundant descriptions are omitted.
상기 형광층(410)은 상기 제1 경화물층(310)의 녹색 복합체(311) 및/또는 상기 제2 경화물층(320)의 적색 복합체(321)의 발광을 보완할 수 있다. 상기 형광체(411)는, 예를 들어, 녹색 영역인 약 520 nm 내지 약 570nm 및/또는 적색 영역인 약 600 nm 내지 약 680 nm에서 발광피크를 가질 수 있다. 이와 달리, 상기 형광체(411)는 황색 영역인 약 580 nm 내지 약 600 nm에서 발광피크를 가질 수 있다.The fluorescent layer 410 may compensate for light emission of the green composite 311 of the first cured product layer 310 and / or the red composite 321 of the second cured material layer 320. The phosphor 411 may have a light emission peak at, for example, about 520 nm to about 570 nm in a green region and / or about 600 nm to about 680 nm in a red region. In contrast, the phosphor 411 may have a light emission peak at about 580 nm to about 600 nm, which is a yellow region.
도 5를 참조하면, 발광 장치(503)는 LED 소자부(10) 및 경화물층(ML)을 포함한다. 상기 경화물층(ML)은 경화성 수지가 형성하는 매트릭스 구조 내에 분산된 녹색 복합체(311), 적색 복합체(321) 및 형광체(411)를 모두 포함할 수 있다.Referring to FIG. 5, the light emitting device 503 includes an LED element unit 10 and a cured product layer ML. The cured product layer ML may include all of the green composite 311, the red composite 321, and the phosphor 411 dispersed in a matrix structure formed by the curable resin.
도면으로 도시하지 않았으나, 발광 장치는 녹색 복합체(311), 적색 복합체(321) 및 형광체(411) 중 2종의 화합물을 포함하는 제1 층과, 나머지 1종의 화합물을 포함하는 제2 층을 포함할 수 있다. Although not shown in the drawings, the light emitting device includes a first layer including two compounds of the green complex 311, the red complex 321, and the phosphor 411, and a second layer including the remaining one compound. It may include.
이와 달리, LED 칩이 UV 광을 생성하는 발광칩인 경우, 발광 장치는 상기 발광칩 상에 청색 복합체를 포함하는 제1 층, 녹색 복합체를 포함하는 제2 층 및 적색 복합체를 포함하는 제3 층이 적층된 구조를 가질 수 있다. 이때, 상기 적색, 녹색 및 청색 복합체들 각각은 본 발명에 따른 왁스계 화합물로 캡슐화된 양자점을 포함한다. 상기 제1 내지 제3 층들의 적층 순서는 다양하게 변경될 수 있다.In contrast, when the LED chip is a light emitting chip that generates UV light, the light emitting device includes a first layer including a blue composite, a second layer including a green composite, and a third layer including a red composite on the light emitting chip. It may have a laminated structure. At this time, each of the red, green and blue composites includes a quantum dot encapsulated with a wax-based compound according to the present invention. The stacking order of the first to third layers may be variously changed.
상기에서 설명한 다양한 구조의 발광 장치에, 자외선 안정성, 열/수분안정성이 좋은 본 발명에 따른 복합체를 이용함으로써 발광 장치의 열화를 최소화시킬 수 있고, 양자점의 손상에 의해서 발광 장치의 수명이 단축되는 것을 방지할 수 있다. 뿐만 아니라, 본 발명에 따른 복합체는 경화물층을 형성하기 위해 수지에 분산시킬 때, 발광 피크의 이동(shift)이 최소화될 수 있다. 이에 따라, 발광 장치나 표시 장치가 사용자가 요구하는 컬러 특성(스펙트럼)을 갖도록 제어하기 용이하고 색재현성이 향상될 수 있다.In the above-described light emitting devices having various structures, deterioration of the light emitting device can be minimized by using the composite according to the present invention having good UV stability and heat / moisture stability, and the life of the light emitting device can be shortened due to damage of the quantum dots. You can prevent it. In addition, when the composite according to the present invention is dispersed in a resin to form a cured product layer, shift of emission peaks can be minimized. Accordingly, the light emitting device or the display device can be easily controlled to have the color characteristics (spectrum) required by the user, and color reproducibility can be improved.
이와 같이, 본 발명에 따른 복합체를 발광 장치에 이용함으로써, 색재현성 및 수명 특성 모두를 만족하는 발광 장치를 제조할 수 있다.As such, by using the composite according to the present invention in a light emitting device, a light emitting device that satisfies both color reproducibility and lifespan characteristics can be manufactured.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the foregoing has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (18)

  1. 적어도 1개의 양자점; 및At least one quantum dot; And
    상기 양자점의 표면을 커버하는 왁스계 화합물을 포함하는 복합체.Composite comprising a wax-based compound covering the surface of the quantum dot.
  2. 제1항에 있어서,The method of claim 1,
    상기 왁스계 화합물은 상기 양자점을 캡슐화하는 것을 특징으로 하는 복합체.The wax-based compound is characterized in that the encapsulation of the quantum dot.
  3. 제1항에 있어서,The method of claim 1,
    상기 왁스계 화합물은 1개의 양자점을 캡슐화하는 것을 특징으로 하는 복합체.The wax-based compound is characterized in that the encapsulation of one quantum dot.
  4. 제1항에 있어서, 상기 왁스계 화합물이 형성하는 응집체의 내부에 2개 이상의 양자점들이 서로 이격되어 배치된 것을 특징으로 하는 복합체.The composite according to claim 1, wherein two or more quantum dots are spaced apart from each other in the aggregate formed by the wax-based compound.
  5. 제1항에 있어서,The method of claim 1,
    상기 왁스계 화합물의 분자량은 1,000 이상 20,000 이하인 것을 특징으로 하는 복합체. The wax-based compound has a molecular weight of 1,000 to 20,000 or less composite.
  6. 제1항에 있어서,The method of claim 1,
    상기 왁스계 화합물의 녹는점(melting point)은 80℃ 이상 200℃ 이하인 것을 특징으로 하는 복합체.Melting point (melting point) of the wax-based compound is a composite, characterized in that more than 80 ℃ 200 ℃.
  7. 제1항에 있어서,The method of claim 1,
    상기 왁스계 화합물은 폴리에틸렌계 왁스(Polyethylene-based wax), 폴리프로필렌계 왁스(Polypropylene-based wax) 또는 아마이드계 왁스(Amide-based wax)를 포함하는 것을 특징으로 하는 복합체.The wax-based compound is a composite comprising a polyethylene-based wax (polyethylene-based wax), polypropylene-based wax (Polypropylene-based wax) or amide-based wax (Amide-based wax).
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 왁스계 화합물은 하기 화학식 1 내지 7로 나타내는 단위체 중 적어도 1종을 포함하는 것을 특징으로 하는 복합체;The wax-based compound is a complex, characterized in that it comprises at least one of the units represented by the formula 1 to 7;
    <화학식 1><Formula 1>
    Figure PCTKR2013010094-appb-I000008
    Figure PCTKR2013010094-appb-I000008
    <화학식 2><Formula 2>
    Figure PCTKR2013010094-appb-I000009
    Figure PCTKR2013010094-appb-I000009
    <화학식 3><Formula 3>
    Figure PCTKR2013010094-appb-I000010
    Figure PCTKR2013010094-appb-I000010
    <화학식 4><Formula 4>
    Figure PCTKR2013010094-appb-I000011
    Figure PCTKR2013010094-appb-I000011
    <화학식 5><Formula 5>
    Figure PCTKR2013010094-appb-I000012
    Figure PCTKR2013010094-appb-I000012
    <화학식 6><Formula 6>
    Figure PCTKR2013010094-appb-I000013
    Figure PCTKR2013010094-appb-I000013
    <화학식 7><Formula 7>
    Figure PCTKR2013010094-appb-I000014
    Figure PCTKR2013010094-appb-I000014
    상기 화학식 1, 2, 3, 4, 5, 6 및 7에서, R1, R3, R5 및 R7은 각각 독립적으로 단일 결합 또는 탄소수 1 내지 10을 갖는 알킬렌기(*-(CH2)x-*, x는 1 내지 10의 정수)를 나타내고, R2, R4, R6 및 R8은 각각 독립적으로 수소 또는 탄소수 1 내지 10을 갖는 알킬기를 나타내며, Ra, Rb, Rc, Rd, Re, Rf 및 Rg는 각각 독립적으로 수소 또는 탄소수 1 내지 3을 갖는 알킬기를 나타낸다.In Chemical Formulas 1, 2, 3, 4, 5, 6, and 7, R 1 , R 3 , R 5, and R 7 each independently represent a single bond or an alkylene group having 1 to 10 carbon atoms (*-(CH 2 )). x- *, x represents an integer of 1 to 10), R 2 , R 4 , R 6 and R 8 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms, R a , R b , R c , R d , R e , R f and R g each independently represent hydrogen or an alkyl group having 1 to 3 carbon atoms.
  9. 제1항에 있어서,The method of claim 1,
    상기 왁스계 화합물의 산가(acid value)는 1 mg KOH/g 내지 200 mg KOH/g인 것을 특징으로 하는 복합체.The acid value of the wax-based compound (complex), characterized in that 1 mg KOH / g to 200 mg KOH / g.
  10. 제9항에 있어서,The method of claim 9,
    상기 왁스계 화합물은 폴리에틸렌계 왁스를 포함하는 것을 특징으로 하는 복합체.The wax compound is a composite, characterized in that it comprises a polyethylene wax.
  11. 제1항에 있어서,The method of claim 1,
    상기 왁스계 화합물의 밀도는 0.95 g/cm3 이상인 것을 특징으로 하는 복합체.The wax-based compound has a density of 0.95 g / cm 3 or more composite.
  12. 제11항에 있어서,The method of claim 11,
    상기 왁스계 화합물은 폴리에틸렌계 왁스를 포함하는 것을 특징으로 하는 복합체.The wax compound is a composite, characterized in that it comprises a polyethylene wax.
  13. 제12항에 있어서,The method of claim 12,
    상기 폴리에틸렌계 왁스의 산가(acid value)는 1 mg KOH/g 내지 200 mg KOH/g인 것을 특징으로 하는 복합체.The acid value of the polyethylene wax is a complex, characterized in that 1 mg KOH / g to 200 mg KOH / g.
  14. 용매; 및menstruum; And
    상기 용매 내에 분산되고, 적어도 1개의 양자점 및 상기 양자점을 커버하는 왁스계 화합물을 포함하는 복합체를 포함하는 조성물.A composition comprising a composite dispersed in the solvent and comprising at least one quantum dot and a wax-based compound covering the quantum dot.
  15. 수지(resin); 및Resins; And
    상기 수지에 분산되고, 적어도 1개 이상의 양자점 및 상기 양자점을 커버하는 왁스계 화합물을 포함하는 조성물.A composition comprising a wax-based compound dispersed in the resin and covering at least one or more quantum dots and the quantum dots.
  16. 제15항에 있어서,The method of claim 15,
    상기 수지는 실리콘계 수지, 에폭시계 수지 및 아크릴계 수지 중 적어도 하나를 포함하는 것을 특징으로 하는 조성물. The resin is a composition, characterized in that it comprises at least one of a silicone resin, an epoxy resin and an acrylic resin.
  17. 제14항 내지 제16항에 따른 조성물로 형성된 코팅층 또는 필름을 포함하는 장치.Device comprising a coating layer or film formed of the composition according to claim 14.
  18. 제17항에 있어서, 조명 또는 디스플레이 장치인 것을 특징으로 하는 장치.18. The device of claim 17, wherein the device is an illumination or display device.
PCT/KR2013/010094 2012-11-09 2013-11-07 Composite, composition containing same, and apparatus WO2014073895A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/442,083 US20160068749A1 (en) 2012-11-09 2013-11-07 Composite, composition containing the same, and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0126925 2012-11-09
KR20120126925 2012-11-09
KR10-2013-0079501 2013-07-08
KR1020130079501A KR101396871B1 (en) 2012-11-09 2013-07-08 Composite, composition including the same and device

Publications (1)

Publication Number Publication Date
WO2014073895A1 true WO2014073895A1 (en) 2014-05-15

Family

ID=50684921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010094 WO2014073895A1 (en) 2012-11-09 2013-11-07 Composite, composition containing same, and apparatus

Country Status (1)

Country Link
WO (1) WO2014073895A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10267488B2 (en) * 2014-12-08 2019-04-23 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
CN112424268A (en) * 2018-06-29 2021-02-26 株式会社尹诺丘迪 Method for preparing quantum dot film, quantum dot film prepared thereby, and wavelength conversion sheet and display including the quantum dot film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070119104A (en) * 2006-06-14 2007-12-20 재단법인서울대학교산학협력재단 Manufacture of white led based on the quantum dots embedded in the matrices thereof
KR20100030264A (en) * 2008-09-10 2010-03-18 연세대학교 산학협력단 Fluorescent magnetic nanohybrids and method for preparing the same
WO2011036446A1 (en) * 2009-09-23 2011-03-31 Nanoco Technologies Ltd Encapsulated semiconductor nanoparticle - based materials comprising an additive
US20120004345A1 (en) * 2010-07-05 2012-01-05 Doris Pik-Yiu Chun Polymer-encapsulated colorant nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070119104A (en) * 2006-06-14 2007-12-20 재단법인서울대학교산학협력재단 Manufacture of white led based on the quantum dots embedded in the matrices thereof
KR20100030264A (en) * 2008-09-10 2010-03-18 연세대학교 산학협력단 Fluorescent magnetic nanohybrids and method for preparing the same
WO2011036446A1 (en) * 2009-09-23 2011-03-31 Nanoco Technologies Ltd Encapsulated semiconductor nanoparticle - based materials comprising an additive
US20120004345A1 (en) * 2010-07-05 2012-01-05 Doris Pik-Yiu Chun Polymer-encapsulated colorant nanoparticles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10267488B2 (en) * 2014-12-08 2019-04-23 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
CN112424268A (en) * 2018-06-29 2021-02-26 株式会社尹诺丘迪 Method for preparing quantum dot film, quantum dot film prepared thereby, and wavelength conversion sheet and display including the quantum dot film

Similar Documents

Publication Publication Date Title
WO2020004927A1 (en) Method for preparing quantum dot film, quantum dot film prepared thereby, and wavelength conversion sheet and display comprising same
KR101396871B1 (en) Composite, composition including the same and device
WO2013115589A1 (en) Composition comprising quantum dot and device using same
WO2017065349A1 (en) Quantum dot, polymer resin, quantum dot sheet, and backlight unit including same
WO2019098601A1 (en) Method for manufacturing quantum dot film, quantum dot film manufactured thereby and wavelength conversion sheet and display comprising same
WO2014007532A1 (en) Encapsulated quantum dots and device using same
WO2015060693A1 (en) Led sealant
WO2016200225A1 (en) Large-surface-area film containing quantum dots or dye, and production method therefor
WO2016108411A1 (en) Metal complex and color conversion film comprising same
WO2021034104A1 (en) Quantum dot film comprising quantum dot composite, and wavelength conversion sheet for display
WO2019132479A1 (en) Nitrogen-containing compound, color conversion film including same, and backlight unit and display device including same
WO2016122283A1 (en) Color conversion film, method for producing same, back-light unit and display apparatus
WO2015060615A1 (en) Light-emitting complex, hardened material comprising same, optical sheet, backlight unit, and display device
WO2014084637A1 (en) Light-emitting diode
WO2019139329A1 (en) Display device
KR101718592B1 (en) Quantum dot composition and color conversion film comprising the same
WO2014148792A1 (en) Color conversion film comprising inorganic coating layer and polymer coating layer, and method for manufacturing same
KR20190090791A (en) Ink composition and organic electroluminescent element using the same
WO2014073895A1 (en) Composite, composition containing same, and apparatus
WO2015190884A1 (en) Adhesive composition, adhesive film, brightness enhancement film, and backlight unit comprising same
WO2019112126A1 (en) Color conversion panel and method for manufacturing color conversion panel
WO2016114598A1 (en) Display device
WO2019216574A1 (en) Nitrogen-containing cyclic compound and color conversion film comprising same
WO2018093021A1 (en) Yellow curable resin composition, and color filter and image display device comprising same
WO2014098332A1 (en) Thermal transfer film, method for manufacturing same, and organic electroluminescent device manufactured therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13852886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14442083

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13852886

Country of ref document: EP

Kind code of ref document: A1