WO2014072809A2 - Benzomorphan analogs and the use thereof - Google Patents

Benzomorphan analogs and the use thereof Download PDF

Info

Publication number
WO2014072809A2
WO2014072809A2 PCT/IB2013/002511 IB2013002511W WO2014072809A2 WO 2014072809 A2 WO2014072809 A2 WO 2014072809A2 IB 2013002511 W IB2013002511 W IB 2013002511W WO 2014072809 A2 WO2014072809 A2 WO 2014072809A2
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
compound
membered
ch
ci
Prior art date
Application number
PCT/IB2013/002511
Other languages
French (fr)
Other versions
WO2014072809A3 (en
Inventor
Jeffrey Lockman
Laykea Tafesse
Jiangchao Yao
Jianming Yu
Original Assignee
Purdue Pharma L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201261724786P priority Critical
Priority to US61/724,786 priority
Priority to US201361788618P priority
Priority to US61/788,618 priority
Priority to US61/899,002 priority
Priority to US201361899002P priority
Application filed by Purdue Pharma L.P. filed Critical Purdue Pharma L.P.
Publication of WO2014072809A2 publication Critical patent/WO2014072809A2/en
Publication of WO2014072809A3 publication Critical patent/WO2014072809A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/22Bridged ring systems
    • C07D221/26Benzomorphans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Abstract

The present invention is directed to Benzomorphan Analog compounds of the Formula I", Formula IA", Formula IB", Formula IC", or Formula ID" as shown below; and related Formula I', Formula IA', Formula IB', Formula IC', or Formula ID'; Formula I, Formula IA, Formula IB, Formula IC, or Formula ID;wherein R1, R2a, R2b, R3 and R4 are as defined herein Compounds of the Invention are useful for treating pain, constipation, and other conditions modulated by activity of opioid and ORL-1 receptors.

Description

BENZOMORPHAN ANALOGS AND THE USE THEREOF

FIELD OF THE INVENTION The invention is in the field of medicinal chemistry. It relates to novel benzomorphan analogs having activity as opioid receptor agonists and/or antagonists. In certain embodiments compounds of the invention have dual activity as opioid agonists and ORL- 1 receptor antagonists. BACKGROUND OF THE INVENTION

Pain is the most common symptom for which patients seek medical advice and treatment. While acute pain is usually self-limited, chronic pain can persist for 3 months or longer and lead to significant changes in a patient's personality, lifestyle, functional ability and overall quality of life ( .M. Foley, Pain, in Cecil Textbook of Medicine 100- 107, J.C. Bennett and F. Plum eds., 20th ed. 1996).

Pain has traditionally been managed by administering either a non-opioid analgesic (such as acetylsalicylic acid, choline magnesium trisal icy late,

acetaminophen, ibuprofen, fenoprofen, diflunisal or naproxen), or an opioid analgesic (such as morphine, hydromorphone, methadone, levorphanol, fentanyl, oxycodone or oxymorphone).

Although the term "narcotic" is often used to refer to opioids, the term is not specifically applicable to opioids. The term "narcotic", derived from the Greek word for "stupor", originally referred to any drug that induced sleep, only later being associated with opioids (Gutstein, Howard B., Aki l, Huda, "Chapter 21. Opioid Analgesics" (Chapter 21 ), Brunton, LL, Lazo, JS, Parker, I: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 1 1 th Edition:

http://www.accessmedicine.com/content.aspx?aID=940653). In the legal context, the term "narcotic" refers to a variety of mechanistically unrelated substances with abuse or addictive potential (Gutstein, Howard B., Akil, Huda, "Chapter 21 . Opioid

Analgesics" (Chapter 21), Brunton LL, Lazo JS, Parker KI : Goodman & Gilman's The Pharmacological Basis of Therapeutics, 1 1th Edition: http://www.accessmedicine.co m/content.aspx?aID=940653). Thus, the term

"narcotic" not only refers to opioids, but also refers to such drugs as cocaine, methamphetamine, ecstasy, etc., which exert their pharmacological effects via different receptors than opioids. Furthermore, because the term "narcotic" refers to such a wide variety of unrelated drugs, many of which do not possess analgesic properties, it cannot be assumed that a drug that has "narcotic" properties is necessarily analgesic. For example, drugs such as ecstasy and methamphetamine are not analgesic, and are not used to treat pain.

Until recently, there was evidence of three major classes of opioid receptors in the central nervous system (CNS), with each class having subtype receptors. These receptor classes are known as μ, δ and κ. As opiates have a high affinity to these receptors while not being endogenous to the body, research followed in order to identify and isolate the endogenous ligands to these receptors. These ligands were identified as endorphins, enkephalins, and dynorphins, respectively. Additional experimentation has led to the identification of the opioid receptor-like (ORL- 1 ) receptor, which has a high degree of homology to the known opioid receptor classes. This newly discovered receptor was classified as an opioid receptor based only on structural grounds, as the receptor did not exhibit pharmacological homology. It was initially demonstrated that non-selective ligands having a high affinity for μ, δ and κ receptors had low affinity for the ORL- 1 receptor. This characteristic, along with the fact that an endogenous ligand had not yet been discovered, led to the ORL- 1 receptor being designated as an "orphan receptor".

Subsequent research led to the isolation and structure of the endogenous ligand of the ORL-1 receptor. This ligand, nociceptin (also known as orphanin FQ (OFQ)), is a seventeen amino acid peptide structurally similar to members of the opioid peptide family. (C. Altier et al., "ORL- 1 receptor-mediated internalization of N-type calcium channels." Nature Neuroscience, 2005, 9:31).

The discovery of the ORL-1 receptor and its endogenous ligand, presents an opportunity for the discovery of novel compounds that can be administered for pain management or other syndromes influenced by this receptor. Many publications in the ORL-1 /nociceptin field provide evidence that activation of ORL-1 receptors in the brain can inhibit opioid-mediated analgesia (e.g. , D. Barlocco et al., "The opioid-receptor-like 1 (ORL- 1 ) as a potential target for new analgesics." Eur. J. Med. Chem., 2000, 35:275; J.S. Mogil et al., "Orphanin FQ is a functional anti-opioid peptide." Neurosci. , 1996, 75:333; K. Lutfy et al., "Tolerance develops to the inhibitory effect of orphanin FQ on morphine-induced antinociception in the rat." NeuroReport, 1999, 10: 103; MM Morgan et al., "Antinociception mediated by the periaqueductal gray is attenuated by orphanin FQ." NeuroReport, 1997, 8:3431 ; and J. Tian et al., "Involvement of endogenous Orphanin FQ in electroacupuncture-induced analgesia." NeuroReport, 1 997, 8:497).

A growing body of evidence supports a more generalized regulatory role for ORL-1 against the actions of the μ receptor, possibly contributing to the development of μ-agonist tolerance in patients being treated with classical opiates (e.g., J. Tian et al., "Functional studies using antibodies against orphanin FQ/nociceptin." Peptides, 2000, 21 : 1047; and H. Ueda et al., "Enhanced Spinal Nociceptin Receptor Expression Develops Morphine Tolerance and Dependence." J. Neurosci. , 2000, 20:7640).

Moreover, ORL-1 activation appears to have an inhibitory effect on the rewarding properties of several drugs of abuse, including μ agonists.

Use of opioid analgesics often leads to constipation as a side effect. Constipation associated with the use of opioid analgesics is presumed to occur primarily and mechanistically as a result of the action of mu opioid agonists directly upon mu opioid receptors located in the bowel (Wood & Galligan (2004), Function of opioids in the enteric nervous system. Neurogastroenterology & Motility 16(Suppl.2): 17-28.). Stimulation of the mu opioid receptors in the bowel causes inhibition of normal gastrointestinal (GI) motility, leading to constipation. The effect of μ opioid agonism on μ opioid receptors in the bowel can be observed via the action of loperamide (Imodium™) in treating diarrhea. Loperamide is a potent μ opioid agonist that is administered orally, but which has little to no absorption into the blood stream. As a result, loperamide exerts its action locally upon the μ opioid receptors in the bowel, and this results in inhibition of GI motility, which treats diarrhea. There has been recent interest in developing combinations of μ receptor agonists and antagonists having defined biodistribution properties that might serve to limit opioid-induced constipation. For example, the co-administration of an orally bio- available μ opioid receptor agonist (such as morphine, codeine, oxycodone or hydormorphone) together with a potent μ opioid receptor antagonist (such as N- methylnaloxone or N-methylnaltrexone) that is not orally bio-available may serve to prevent or reduce the constipation otherwise associated with mu opioid receptor agonist therapy. The rationale is that the agonist component will be absorbed and distributed throughout the periphery and the central nervous system (CNS), resulting in the desired analgesia, while the antagonist component will remain in the bowel where it will prevent or reduce any agonist-induced constipation that might otherwise occur.

Benzomorphan analog compounds, such as 3,11,1 l-trimethyl-1,2,3,4,5,6- hexahydro-2,6-methanobenzo[cT|azocine-6,8-diol and 8-methoxy-3,l 1,11-trimethyl- 1 ,2,3,4,5,6-hexahydro-2,6-methanobenzo[i/]azocin-6-ol, having analgesic activity have been described (see, e.g. US 4,425,353; US 4,406,904; and US 4,366,325).

BRIEF SUMMARY OF THE INVENTION

The present invention provides novel benzomorphan analog compounds useful for treating a variety of conditions, including pain, in particular chronic pain, and constipation. More specifically, the present invention provides compounds of Formula I", Formula Γ, and Formula I, below, and the pharmaceutically acceptable salts, prodrugs and solvates thereof, that exhibit affinity for one or more of the ORL-1, μ, δ, and opioid receptors. Such compounds, salts, prodrugs and solvates are collectively referred to hereinafter as "Compounds of the Invention" (each is individually referred to hereinafter as a "Compound of the Invention"). The present invention provides novel compounds of Formula I":

Figure imgf000007_0001

I" wherein

R1 is selected from the group consisting of-(Ci-C io)alkyl, -(C2-Cio)alkenyl, -(C2- C,o)alkynyl, -(C3-C,2)cycloalkyl, (C3-C|2)cycloa!kyl-(C i -C6)alkyl-, -(C3- Ci2)cycloalkenyl, (C3-Ci2)cycloalkenyl-(C| -C6)alkyl-, -(6- to 14-membered)aryl, ((6- tol4-membered)aryl)-(Ci-C6)alkyl-, diphenyl(C rC6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12 mernbered)heterocycle)-(Ci -C6)alkyl-, - (OCH2CH2)s-0-(Ci-C6)alkyl, -(CH2CH20)s-(C ,-C6)alkyl, (C-df alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(O)O-(C, -Ci0)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;

R a is hydrogen, OH, or absent;

R2b is

a) ((6- to 14-membered)aryl), -((5- to 12-membered)heteroaryl), or ((3- to 12- membered)heterocycle), each of which is optionally substituted with one, two, or three independently selected RJ° groups; or

b) -Z-G-R10, provided that -Z-G-R 10 is other than hydrogen; or R2a and R10 together form =0;

Z is absent or -(CH2)m- optionally, substituted with 1 or 2 -(Ci-C6)alkyl;

G is selected from the group consisting of:

a) a bond, -(C i-C6)alkylene, -(C2-C6)alkenylene;

b) 0, -OCO-, -C(=0), =CH;

c) NR8, =N-0, =N-NH;

d) S, SO, S02; and

e) -NH-SO2; and when Z is absent and G is =CH, =N-0, or =N-NH, then R2a is absent;

R10 is selected from the group consisting of hydrogen, -(Ci-Cio)alkyl, -(C2-C i2)alkenyl, -C(=0), -C(=0)-(C ,-C6)alkyl, -C(=0)-(C2-C6)alkenyl, -C(=0)-(6- to 14- membered)aryl, -C(=0)-(C ,-C6)alkyl-(6- to 14-membered)aryl, -(C2-Ci2)alkynyl, -(Cr Cio)alkoxy, -(OCH2CH2)s-0(Ci -C6)alkyl, -(CH2CH20)s-(Ci-C6)alkyl, -NH2, - NH(Ci-C6)alkyl, CN, NR5R6, -(C,-C6)alkyl-NR5R6, -CONR5R6, -(C , -C6)alkyl-CO- NR5R6, -COOR7, -(C,-C6)alkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -CO-(CH2)n-CO-NR5R6, -(C3-C,2)cycloalkyl, ((C3-C12)cycloalkyl)-(Ci - C6)alkyl-, -(C4-C|2)cycloalkenyl, ((C4-Ci2)cycloalkenyl)-(C,-C6)alkyl-, -(C6-

CM)bicycloalkyl, ((C6-C i4)bicycloalkyl)-(Ci-C6)alkyl-, -(C8-C20)tricycloalkyl, ((C8- C2o)tricycloalkyl)-(Ci-C6)alkyl-, -(C7-Ci4)bicycloalkenyl, ((C7-Ci4)bicycloalkenyl)- (C,-C6)alkyl-, -(C8-C20)tricycloalkenyl, ((C8-C20)tricycloalkenyl)-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(Ci-C6)alkyI-, -S02-(C i-C6)alkyl, - S02-((C3-C,2)cycloalkyl), -S02-((C3-C,2)cycloalkyl)-(C, -C6)alkyl, -S02-((5- to 12- membered)heteroaryl), -S02-((5- to 12-membered)heteroaryl)-(Ci-C6)alkyl, -C(=0)- NH-((5- to 12-membered)heteroaryl), -C(=0)-NH-((5- to 12-membered)heteroaryl)- (d-C6)alkyl, -C(=0)-NH-((3- to 12-membered)heterocycle), -C(=0)-NH-((3- to 12- membered)heterocycle)-(C i -C6)alkyl, -S02-((6- to 14-membered)aryl), -S02-((6- to 14 membered)aryl)-(Ci-C6)alkyl, -(7- to 12-membered)bicyclic ring system, ((7- to 12- membered)bicyclic ring system)-(Ci-C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(Ci-C6)alkyl-, -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C i-C )alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(C i-C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12-membered)bicycloheterocycle)-(Ci-C6)alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo)2,

-CH2(halo), -(C,-C6)alkyl, halo(C,-C6)alkyi-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(C,-C6)alkyl-, dihydroxy(CrC6)alkyl-, -(C , -C6)alkoxy, ((C ,- C6)alkoxy)CO(Ci-C6)alkoxy-, phenyl, benzyl, -NH2, -NH(C i -C6)alkyl,

-(C1-C6)alkyl-NH(C, -C6)alkyl-R14, -CN, -SH, -OR1 1, -CONR5R6, -(C,-C6alkyl)-CO- NR5R6, -COOR7, -(C, -C6)aIkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -(OCH2CH2)s- 0(C ,-C6)alkyl, -(CH2CH20)s-(C,-C6)alkyl, -S02-NR5aR6a, (C,-C6)alkyl)sulfonyl, ((C C6)alkyl)sulfonyl(C C6)alkyl-, -NH-S02(C i-C6)alkyl, NH2-S02(CrC6)alkyl-, - N(S02(Ci-C6)alkyl)2, -C(=MH)NH2, -NH-CO-(C,-C6)alkyl, -NH-CO-NH2, -NH- C(=0)-NH-(C1-C6)alkyl, -NH-C(=0)-(6- to 14- membered)aryl, -NH-C(=0)-(C , - C6)alkyl-(6- to 14- membered)aryl, -NH-(Ci-C6)alkyl-CO-OR7, -NH-C(=0)-(C,- C6)alkyl-CO-OR7,

Figure imgf000009_0001
-C6)alkyl-CO-OR7, -(C3-C,2)cycloalkyl, ((C3-Ci2)cycloalkyl)-(C,-C6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(Ci-C6)alkoxy-C(0)NRsR6, -NH-(C,-C6)alkyl-C(0)-NR5R6, - C(0)NH-(C,-C6)alkyl-COOR7, ((6- to 14-membered)aryl)-(C, -C6)alkyI-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Ci-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(C] -C6)alkyl-, -(7- to 12- membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(Ci- C6)alkyl-;

R3 is selected from:

a) -H; or

b) -(C, -C6)alkyl, -(C2-C6)alkenyl, or -(C2-C6)alkynyl; R4 is selected from

a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), COOH, or CONH2; or b) -(Cj.C5)alkyl, -(C2.C5)alkenyl, -(C2,C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, or -(C,. C5)alkoxy, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups;

R5 and R6 are each independently selected from

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);

b) -(C,-C6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(C, - C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci.Cio)alkyl, -(C2_C|0)alkenyl, -(C2. Cio)alkynyl, -(C1_C,0)alkoxy, -(C3_C12)cycloalkyI , -CHO, -C(0)OH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a;

c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(C,-C6)alkyl-, -COOR7, -(CrC6)alkyl- COOR7, -CONH2, or (C,_C6)alkyl-CONH-;

d) ((6- to 14-membered)aryl) optionally substituted with 1 , 2, or 3 independently selected R30 groups;

e) -((5- to 12-membered)heteroaryl) optionally substituted with 1 , 2, or 3

independently selected R30 groups; or

f) R5 and R6 together with the nitrogen atom to which they are attached form a (3- to 12-membered)heterocycle optionally substituted with 1 , 2, or 3

independently selected R30 groups;

R5a and R6a are each independently selected from the group consisting of:

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, and -CH2(halo);

b) -(d-C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(CH2)n-0-(CH2)n-CH3, and - (Ci-C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3

substituents independently selected from -OH, halo, -(Ci.C io)alkyl, -(C2- C ,2)alkenyl, -(C2.Ci2)alkynyl, -(C,.Ci0)alkoxy, -(C3.C,2)cycloaIkyl , -CHO, - COOH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, and phenyl; c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(CrC6)alkyl-, -COOR7, -(C,-C6)alkyl- COOR7, -CONH2, and (C,.C6)alkyl-CONH-; d) -(6- to 14-membered)ary] optionally substituted with 1 , 2, or 3 independently

30

selected R groups;

e) -((5- to 12-membered)heteroaryl) optionally substituted with 1 , 2, or 3

independently selected R groups; or

f) R5a and R6a together with the nitrogen atom to which they are attached form a

(3- to 12-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected R30 groups; each R7 is independently selected from the group consisting of hydrogen, -(Ci - C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3.Cl 2)cycloalkyl, -(C4-Ci2)cycloalkenyl, ((C3-Ci2)cycloalkyl)-(C,-C6)alkyl-, and ((C4-C i2)cycloalkenyI)-(C,-C6)alkyI- ; each R8 is independently selected from H, -(Ci-C6)alkyl, -(C2-Ce)alkenyl, -(C2- C6)alkynyl, -(Ci-Cio)alkoxy, -(C3-Ci2)cycloalkyl, -(C3-Ci2)cycloalkenyl, ((C3- C12)cycloalkyl)-(C,-C6)alkyl-, ((C3-C12)cycloalkenyl)-(C,-C6)alkyl-, -C(=0)(C,- C6)alkyl or S02(C] -C6)alkyl; each R9 is independently selected from -OH, halo, -(C |_Cio)alkyl, -(C2.Cio)alkenyl, - (C2_Ci0)alkynyl, -(Ci_Ci0)alkoxy, -(C3-Ci2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a; each R1 1 is independently selected from -C(halo)3, -CH(halo)2, -CH2(halo), -(C2_ C5)alkenyl, -(C2_C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, (6- to 14-membered)aryl, ((6- to 14-membered)aryl)-(Ci -C6)alkyl-, or (5- to 12-membered)heteroaryl, ((5- to 12- membered)heteroaryl)-(Ci-C6)alkyl-, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(d-C6)alkyl-COOR7, -C(=0)-(C, - C6)alkyl-COOR7,

Figure imgf000011_0001
,-C6)alkyl-COOR7, CONH2, or -(C,- C6)alkyl-CONH; each R30 is independently selected from COOR7, COMR5aR6a, -(C,-C6)alkyl, -C(=0), CN, -(3- to 12-membered)heteroaryl, ((3- to 12-membered)heteroaryl)-(Ci-C6)alkyl-, NH2, halo, and ((6- to 14-membered)aryl)-(Ci-C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or 6;

n is an integer 0, 1 , 2, 3, 4, 5, or 6;

s in an integer 1 , 2, 3, 4, 5, or 6; provided that when R4 is -(Ci-C5)alkoxy then:

a) R2a and R2b cannot be taken together to form =0; or

R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is either:

a. OH;

-(C,-C6)alkyl;

2-propenyl;

2-propynyl; or

cannot be H when the combination -Z-G-R10 is either:

a. OH;

b. -0-C(=0)-(C)-C6)alkyl; or

c. -0-C(=0)-(C2-C6)alkenyl; and provided that when R4 is OH then:

a) R2a cannot be OH when R b is -Z-G-R10, and -Z-G-R10 is:

a. methyl;

b. ethyl;

c. 2-propenyl; or

d. 2-propynyl;

cannot be H when R' is -Z-G-R , and -Z-G-RI U is either:

a. OH;

b. -0-C(=0)-(C,-C6)alkyl; or

c. -0-C(=0)-(C2-C6)alkeny[; and provided that when R3 is (Ci -C6)alkyl or (C2-C6)alkenyl, and R4 is H, OH, or (Ci - C5)alkoxy, then R2b is not:

a) optionally substituted (5- to 12-membered)heteroaryl;

b) optionally substituted (3- to 12-membered)heterocycle; or

c) unsubstituted phenyl or phenyl substituted with F or CI, methyl, CF3, hydroxy, methoxy, (3- to 12-membered)heterocycle, or NH2; and provided that when R4 is OH and R1 is (C|-C|0)alkyl, then R2a and R2b cannot be together selected =0; and provided that when R4 is hydrogen and when R 1 and R3 are both methyl, then: a) R2a and R2b cannot together form =0 or =N-OH; or

b) R2b may not be NH2 or NHC(0)CH3 if R2a is hydrogen; and provided that when R2a is H, then R2b may not be -Z-G-R10, wherein -Z-G-R10 is: a) -CH2-CHR20-C(=O)R21 , wherein

R20 is H, or -(C,-C6)alkyl, and

R21 is selected from the group consisting of H, -(C | -C i0)alkyl,

-(C3-Ci2)cycloalkyl, ((C3-C i2)cycloalkyl)-(C i -C6)alkyl-, phenyl, and phenyl-(Ci-C6)alkyI; or

b) -CH2-CHR20-CR22R23OH, wherein

R20 is defined as above, and

R22 and R23 are each independently selected from the group consisting of H, -(Ci-Cl0)alkyl, ((C3-C,2)cycloalkyl)-(Ci-C6)alkyl-, phenyl, and

phenyl-(C i-C6)alkyl; or

c) -CH2-CR 0=CR23R24, wherein

R20 and R23 are defined as above, and

R24 is selected from the group consisting of H, and -(C i-C6)alkyl;

and the pharmaceutically acceptable salts and solvates thereof.

I I In one embodiment, the present invention provides novel compounds of Formula IA":

Figure imgf000014_0001

wherein R1 , R2a, R2 , R3 and R4 are as defined above for Formula I", and the pharmaceutically acceptable salts and solvates thereof.

In another embodiment, the present invention provides novel compounds of Formula IB":

Figure imgf000014_0002
wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula I", and the pharmaceutically acceptable salts and solvates thereof. In another embodiment, the present invention provides novel compounds of

Formula IC":

Figure imgf000015_0001

IC wherein R' , R2a, R2b, R3 and R4 are as defined above for Formula Γ", and the pharmaceutically acceptable salts and solvates thereof.

In another embodiment, the present invention provides novel compounds Formula ID":

Figure imgf000016_0001

wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula I", and the pharmaceutically acceptable salts and solvates thereof.

Γη one embodiment, the present invention provides novel compounds of Formula Γ:

Figure imgf000016_0002
wherein R1 is selected from the group consisting of-(C | -Cio)alkyl, -(C2-C io)alkenyl, -(C2- C,o)alkynyl, -(C3-C12)cycloalkyl, (C3-C |2)cycloalkyl-(Ci-C6)alkyl-, -(C3- Ci2)cycloalkenyl, (C3-Ci2)cycloalkenyl-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l4-membered)aryl)-(C|-C6)alkyl-, diphenyl(C,-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12 membered)heterocycle)-(C | -C6)alkyl-, - (OCH2CH2)s-0-(C, -C6)alkyl, -(CH2CH20)s-(C1-C6)alkyl, (C C,0)alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(O)O-(C ,-Ci0)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;

R2a is hydrogen, OH, or absent;

R2b is

a) ((6- to 14-membered)aryl), -((5- to 12-membered)heteroaryl), or ((3- to 12- membered)heterocycle), each of which is optionally substituted with one, two, or three independently selected R30 groups; or

b) -Z-G-R10, provided that -Z-G-R10 is other than hydrogen;

or R2a and R2b together form =0;

Z is absent or -(CH2)m-, optionally substituted with 1 or 2 -(Ci -C6)alkyl;

G is selected from the group consisting of:

a) a bond, -(Ci-C6)alkylene, -(C2-C6)alkenylene;

b) O, -OCO-, -C(=0), =CH;

c) NR8, =N-0, =N-NH;

d) S, SO, S02; and

e) -NH-SO2; and when Z is absent and G is =CH, =N-0, or =N-NH, then R2a is absent; R10 is selected from the group consisting of hydrogen, -(C i -C io)alkyl, -(C2-C |2)alkenyl, -C(=0), -C(=0)-(C,-C6)alkyl, -C(=0)-(C2-C6)alkenyl, -C(=0)-(6- to 14- membered)aryl,

Figure imgf000018_0001
to 14-membered)aryl, -(C2-Ci2)alkynyl, -(C i- C,o)alkoxy, -(OCH2CH2)s-0(C ,-C6)alkyl, -(CH2CH20)s-(C 1-C6)alkyl, -NH2, - NH(C| -C6)alkyl, CN, NR5R6, -(d-C6)alkyl-NR5R6, -CONR5R6, -(C ,-C6)alkyl-CO- NR5R6, -COOR7, -(Ci-C6)alkyl-CO-OR7, -(C, -C6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -CO-(CH2)n-CO-NR5R6, -(C3-C i2)cycloalkyl, ((C3-Cl 2)cycloalkyl)-(C| - C6)alkyl-, -(C4-C i2)cycloalkenyl, ((C4-C12)cycloalkenyl)-(C, -C6)alkyl-, -(C6- C] )bicycloalkyl, ((C6-C i4)bicycloalkyl)-(C i-C6)alkyl-, -(C8-C2o)tricycloalkyl, ((C8- C2o)tricycloalkyl)-(C| -C6)alkyl-, -(C7-C|4)bicycloalkenyl, ((C7-C |4)bicycloalkenyl)- (C i-C6)alkyl-, -(C8-C2o)tricycloalkenyl, ((C8-C2o)tricycloalkenyl)-(C i -C6)alkyl-, -(6- to 14-membered)aryl, ((6- tol 4-membered)aryl)-(C,-C6)alkyl-, -S02-(C i-C6)alkyl, - S02-((C3-C l 2)cycloalkyl), -S02-((C3-C,2)cycloalkyl)-(C i-C6)alkyl, -S02-((5- to 12- membered)heteroaryl), -S02-((5- to 12-membered)heteroaryl)-(C| -C6)alkyl, -C(=0)- NH-((5- to 12-membered)heteroaryl), -C(=0)-NH-((5- to 12-membered)heteroaryl)- (C ,-C6)alkyl, -C(=0)-NH-((3- to 12-membered)heterocycle), -C(=0)-NH-((3- to 12- membered)heterocycle)-(C i-C6)alkyl, S02-((6- to 14-membered)aryl), S02-((6- to 14 membered)aryI)-(C| -C6)alkyI, -(7- to 12-membered)bicyclic ring system, ((7- to 12- membered)bicyclic ring system)-(C i-C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(C i-C6)alkyl-, -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C i -C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(C i-C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12-membered)bicycIoheterocycle)-(C i-C6)alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo)2,

-CH2(halo), -(C i-C6)alkyl, halo(C i-C6)alkyl-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(Ci-C6)alkyl-, dihydroxy(Ci-C6)alkyl-, -(Ci-C6)alkoxy, ((C)- C6)alkoxy)CO(C ,-C6)alkoxy-, phenyl, benzyl, -NH2, -NH(C |-C6)alkyl,

-(C,-C6)alkyl-NH(C, -C6)alkyl-R14, -CN, -SH, -OR1 1, -CONR5R6, -(C , -C6alkyl)-CO- NR5R6, -COOR7, -(C,-C6)alkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -(OCH2CH2)s- 0(C, -C6)alkyl, -(CH2CH20)S-(C,-C6)alkyl, -S02-NR5aR6a, (C,-C6)alkyl)sulfonyl, ((C|-C6)alkyl)sulfonyl(C,-C6)alkyl-, -NH-S02(C,-C6)alkyl, NH2-S02(C ,-C6)alkyl-, - N(S02(Cl-C6)alkyl)2, -C(=NH)NH2, -NH-CO-(C, -C6)alkyl, -NH-CO-NH2, -NH- C(=0)-NH-(C]-C6)alkyl, -NH-C(=0)-(6- to 14- membered)aryl, -NH-C(=0)-(C,- C6)alkyl-(6- to 14- membered)aryl, -NH-(C1-C6)alkyl-CO-OR7, -NH-C(=0)-(Ci- C6)alkyl-CO-OR7, -NH-C(=0)-CH(NH2)-(C,-C6)alkyI-CO-OR7, -(C3-C12)cycloalkyI, ((C3-Ci2)cycloalkyl)-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(C, -C6)alkoxy-C(0)NR5R6, -NH-(C i-C6)alkyl-C(0)-NR5R6, - C(0)NH-(C]-C6)alkyl-COOR7, ((6- to 14-membered)aryl)-(C i-C6)alkyl-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Ci -C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(C |-C6)alkyl-, -(7- to 12- membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(C| - C6)alkyl-;

R is selected from:

a) -H; or

b) -(C ,-C6)alkyl, -(C2-C6)alkenyl, or -(C2-C6)alkynyl;

R4 is selected from

a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), COOH, or CONH2; or b) -(C,.C5)alkyi, -(C2.C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, or -(C ,.

C5)alkoxy, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups;

R5 and R6 are each independently selected from

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);

b) -(Cl-C6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(C,- C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(C i-Cio)alkyl, -(C2.Ci0)alkenyl, -(C2. Cio)alkynyl, -(C,.C,0)alkoxy, -(C3.C i2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a;

c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(C, -C6)alkyl-, -COOR7, -(C,-C6)alkyl- COOR7, -CONH2, or (d.C6)alkyl-CONH-; d) ((6- to 14-membered)aryl) optionally substituted with 1 , 2, or 3 independently selected R30 groups;

e) -((5- to 12-membered)heteroaryl) optionally substituted with 1 , 2, or 3

independently selected R30 groups; or

f) R5 and R6 together with the nitrogen atom to which they are attached form a (3- to 12-membered)heterocycle optionally substituted with 1 , 2, or 3

independently selected R groups;

R5a and R6a are each independently selected from the group consisting of:

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, and -CH2(halo);

b) -(C,-C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(CH2)n-0-(CH2)n-CH3, and - (Ci-C6)alkoxy, each of which is optionally substituted with I , 2, or 3 substituents independently selected from -OH, halo, -(Ci.Cio)alkyl, -(C2.

C|2)alkenyl, -(C2.C|2)alkynyl, -(Ci-Cio)alkoxy, -(C3.C)2)cycloalkyl , -CHO, - COOH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, and phenyl; c) -(C3-C8)cycloalkyl, ((C3_C8)cycloalkyl)-(Ci-C6)alkyl-, -COOR7, -(d-C6)alkyl- COOR7, -CONH2, and (C].C6)alkyl-CONH-;

d) -(6- to 14-membered)aryl optionally substituted with 1 , 2, or 3 independently selected R groups;

e) -((5- to 12-membered)heteroaryl) optionally substituted with 1, 2, or 3

independently selected R groups; or

f) R5a and R6a together with the nitrogen atom to which they are attached form a (3- to 12-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected R30 groups; each R7 is independently selected from the group consisting of hydrogen, -(C | - C6)alkyl, -(C -C6)alkenyl, -(C2-C6)alkynyl, -(C3_Ci2)cycloalkyl, -(C4-C i 2)cycloalkenyl, ((C3-C12)cycloalkyl)-(Ci-C6)alkyl-, and ((C4-Ci2)cycloalkenyl)-(C1 -C6)alkyl- ; each R8 is independently selected from H, -(Ci-C6)alkyl, -(C2-C6)alkenyl, -(C2- C6)alkynyl, -(Ci-C io)alkoxy, -(C3-Ci2)cycloalkyl, -(C3-Ci2)cycloalkenyl, ((C3- C12)cycloalkyl)-(Ci-C6)alkyl-, ((C3-C i 2)cycloalkenyl)-(Ci-C6)alkyl-, -C(=0)(C , - C6)alkyl or S02(C,-C6)aIkyl; each R9 is independently selected from -OH, halo, -(Ci-C io)alkyl, -(C2-Cio)alkenyl, - (C2.C io)alkynyl, -(C,.C10)alkoxy, -(C3.C 12)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a; each R1 1 is independently selected from -C(halo)3, -CH(halo)2, -CH2(halo), -(C2_ C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, (6- to 14-membered)aryl, ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, or (5- to 12-membered)heteroaryl, ((5- to 12- membered)heteroaryl)-(C | -C6)alkyl-, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(C |-C6)alkyl-COOR7, -C(=0)-(Cr C6)alkyl-COOR7, -(C,-C6)alkyl-C(=0)-(C , -C6)alkyl-COOR7, CONH2, or -(C,- C6)alkyl-CONH; each R30 is independently selected from COOR7, CONR5aR6a, -(C ,-C6)alkyl, -C(=0), CN, -(3- to 12-membered)heteroaryl, ((3- to 12-membered)heteroaryl)-(Ci-C6)alkyl-, NH2, halo, and ((6- to 14-membered)aryl)-(Ci -C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or 6;

n is an integer 0, 1 , 2, 3, 4, 5, or 6;

s in an integer 1 , 2, 3, 4, 5, or 6; provided that when R4 is -(C i -Cs)alkoxy then:

a) R2a and R2b cannot be taken together to form =0; or

b) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is either:

a. OH;

b. -(CrC6)alkyl;

c. -(C2-C6)alkenyl; or d. -(C2-C6)alkynyl; or

c) R2a cannot be H when the combination -Z-G-R10 is either:

a. OH;

b. -0-C(=0)-(C,-C6)alkyl; or

c. -0-C(=0)-(C2-C6)alkenyl;

and provided that when R4 is OH then:

a) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is:

a. -(C i -C6)alkyl;

b. -(C2-C6)alkenyl;

c. or -(C2-C6)alkynyl;

b) R2a cannot be H when R2b is -Z-G-R10, and -Z-G-R10 is:

a. OH

b. -0-C(=0)-(CrC6)alkyl; or

c. -0-C(=0)-(C2-C6)aIkenyl; and provided that when R3 is (Ci-C6)alkyl or (C2-C6)alkenyl, and R4 is H, OH, or (Ci- C5)alkoxy, then R b is not

a) optionally substituted (5- to l 2-membered)heteroaryl,

b) optionally substituted (3- to 12-membered)heterocycle, or

c) unsubstituted phenyl or phenyl substituted with halo, (Ci -C6)alkyl, C(halo)3, hydroxy, (Ci-C6)alkoxy, (3- to 12-membered)heterocycle, or H2 and provided that when R4 is OH and R1 is (Ci-C10)alkyl, then R2a and R2b cannot be together selected =0. and provided that when R4 is hydrogen and when R1 and R3 are both methyl, then a) R2a and R2b cannot together form =0 or =N-OH; or

b) R2b may not be NH2 or NHC(0)CH3 if R2a is hydrogen. and provided that when R2 is H, then R b may not be -Z-G-R10, wherein -Z-G-R10 is: a) -CH2-CHR20-C(=O)R21, wherein

R20 is H, or -(Ci-C6)alkyl, and

R21 is selected from the group consisting of H, -(C ] -C io)alkyl,

-(C3-Ci2)cycloaIkyl, ((C3-Cl 2)cycloalkyl)-(C, -C6)alkyl-, -(6- to 14- membered)aryl, and ((6- to 14-membered)aryl)-(C i-C )alkyl-; or

b) -CH2-CHR20-CR22R23OH, wherein

R20 is defined as above, and

R22 and R23 are each independently selected from the group consisting of H, -(C i-Cio)alkyl, ((C3-C i2)cycloalkyl)-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, and ((6- to 14-membered)aryl)-(C | -C6)alkyl-; or

c) -CH2-CR20=CR23R24, wherein

R20 and R23 are defined as above, and

R24 is selected from the group consisting of H, and -(Ci-C6)alkyl. and the pharmaceutically acceptable salts and solvates thereof.

In another aspect, the present invention provides novel compounds of Formul

Figure imgf000023_0001

wherein R1 is selected from the group consisting of-(Ci-Cio)alkyl, -(C2-C i0)alkenyl, -(C2- Cio)alkynyl, -(C3-C i2)cycloalkyl, (C3-C i2)cycloalkyl-(Ci-C6)alkyl-, -(C3- C!2)cycloaIkenyI, (C3-C i2)cycloalkenyl-(Ci-C6)alkyl-, -(6- to I 4-membered)aryl, ((6- to l 4-membered)aryl)-(C1 -C6)alkyl-, dipheny!(Ci-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12 membered)heterocycle)-(C) -C6)alkyl-, - (OCH2CH2)s-0-(Ci -C6)alkyl, -(CH2CH20)s-(Ci-C6)alkyl, (C,-C i0)alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(O)O-(Ci-C10)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;

R2a is absent or OH;

R2b is

a) ((6- to 14-membered)aryl) or ((3- to 12-membered)heterocycle), each of which

30 is optionally substituted with one, two, or three independently selected R groups; or

b) -Z-G-R10, provided that -Z-G-R10 is other than hydrogen;

or R2a and R2b together form =0;

Z is absent or -(CH2)m-, optionally substituted with 1 or 2 -(Ci -C6)alkyl;

G is selected from the group consisting of:

a) a bond,

Figure imgf000024_0001
-(C2-C6)alkenylene;

b) O, -OCO-, -C(=0), =CH;

c) NR8, =N-0, =N-NH;

d) S, SO, and S02;

R is selected from the group consisting of hydrogen, -(C i -Cio)alkyl, -(C2-C i2)alkenyl, -C(=0), -C(=0)-(C,-C6)alkyi, -C(=0)-(C2-C6)alkenyl, -C(=0)-(6- to 14- membered)aryl, -C(=0)-(Ci -C6)aIkyl-(6- to 14-membered)aryl, -(C2-C |2)alkynyl, -(Ci - C ,o)alkoxy, -(OCH2CH2)s-0(C,-C6)alkyl, -(CH2CH20)s-(C,-C6)alkyl, -NH2, - NH(C,-C6)alkyl, CN, NR5R6, -(C,-C6)alkyl-NR5R6, -CONR5R6, -(C, -C6)alkyl-CO- NR5R6, -COOR7, -(C,-C6)alkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -C0-(CH2)n-C0-NR5R6, -(C3-C ,2)cycloalkyl, ((C3-Ci2)cycloalkyi)-(C1- C6)alkyl-, -(C4-C,2)cycloaikenyl, ((C4-C i2)cycloalkenyl)-(Ci-C6)alkyl-, -(C6- Ci4)bicycloalkyl, ((C6-Ci4)bicycloalkyl)-(Ci-C6)alkyl-, -(C8.C20)tricycloalkyl, ((C8- C2o)tricycloalkyl)-(Ci-C6)alkyl-, -(C7-C|4)bicycioalkenyl, ((C7-C,4)bicycloalkenyl)- (Ci-C6)alkyl-, -(C8-C2o)tricycloalkenyl, ((C8-C2o)tricycloalkenyl)-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, ((6- tol 4-membered)aryl)-(Ci-C6)alkyl-, -(7- to 12- membered)bicyciic ring system, ((7- to 12-membered)bicyclic ring system)-(Ci- C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(Ci- C6)alkyl-, -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Ci- C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(C i- C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12- membered)bicycloheterocycle)-(Ci-C6)alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(C,-C6)alkyl, halo(C,-C6)alkyl-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(Ci-C6)alkyl-, dihydroxy(C i-C6)alkyl-, -(C i-C6)alkoxy, ((Ci- C6)alkoxy)CO(C ,-C6)alkoxy-, phenyl, benzyl, -NH2, -NH(C,-C6)alkyl,

-(Ci-C6)alkyl-NH(C| -C6)alkyl-R14, -CN, -SH, -OR1 1 , -CONR5R6, -(C,-C6alkyl)-CO- NR5R6, -COOR7, -(C,-C6)alkyl-CO-OR7, -(C ,-C6)alkoxy-COOR7, -(OCH2CH2)s- 0(Ci-C6)alkyl, -(CH2CH20)s-(C,-C5)alkyl, (C , -C6)alkyl)sulfonyl, ((Ci- C6)alkyl)sulfonyl(Ci-C6)alkyl-, -NH-S02(Ci-C6)alkyl, NH2-S02(Cl-C6)aIkyl-, - N(S02(C,-C6)alkyl)2, -C(=NH)NH2, -NH-CO-(C!-C6)alkyl, -NH-CO-NH2, -NH- C(=0)-NH-(C,-C6)alkyl, -NH-C(=0)-(6- to 14- membered)aryl, -NH-C(=0)-(C,- C6)alkyl-(6- to 14- membered)aryl, -NH-(C,-C6)alkyl-CO-OR7, -NH-C(=0)-(C,-

C6)alkyl-CO-OR7, -NH-C(=0)-CH(NH2)-(C ,-C6)alkyl-CO-OR7, -(C3-Ci2)cycloalkyl, ((C3-Ci2)cycloalkyl)-(C|-C6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(C, -C6)alkoxy-C(0)NR5R6, -NH-(C,-C6)alkyl-C(0)-NR5R6, - C(0)NH-(Ci-C6)alkyl-C00R7, ((6- to 14-membered)aryl)-(C, -C6)alkyl-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Ci-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(Ci-C6)alkyl-, -(7- to 12- membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(Ci- C6)alkyl-;

R3 is selected from:

a) -H; or

b) -(C,-C6)alkyl, -(C2-C6)alkenyl, or -(C2-C6)alkynyl;

R4 is selected from

a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(haIo), COOH, or CONH2; or b) -(C,.C5)alkyl, -(C2.C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, or -(C,_

Cs)alkoxy, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups;

R5 and R6 are each independently selected from

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);

b) -(C, -C6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(C,- C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(C|.Cio)alkyl, -(C2.C io)alkenyl, -(C2. Cl0)alkynyl, -(C1 -Ci0)alkoxy, -(C3.C,2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5R6;

c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(CrC6)alkyl-, -COOR7, -(Ci-C6)alkyl- COOR7, -CONH2, or (Ci.C6)alkyl-CONH-;

d) ((6- to 14-membered)aryl) optionally substituted with 1 , 2, or 3 independently selected R groups; or

e) R5 and R6 together with the nitrogen atom to which they are attached form a (4- to 8-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected R30 groups;

R5a and R6a are each independently selected from the group consisting of:

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, and -CH2(halo); b) -(Ci-C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(CH2)n-0-(CH2)n-CH3, and - (Ci-C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci-Cio)alkyl, -(C2.

Ci2)alkenyl, -(C2-Ci2)alkynyl, -(Ci.Cio)alkoxy, -(C3,C12)cycloalkyl , -CHO, - COOH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, and phenyl; c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(Ci-C6)alkyl-, -COOR7, -(C,-C6)alkyl- COOR7, -CONH2, and (C,.C6)alkyl-CONH-;

d) -(6- to 14-membered)aryl optionally substituted with 1 , 2, or 3 independently selected R30 groups; or

e) R5a and R6a together with the nitrogen atom to which they are attached form a (4- to 8-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected Rj0 groups; each R7 is independently selected from the group consisting of hydrogen, -(C \ - C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3.C ,2)cycloalkyl, -(C4-C,2)cycloalkenyl, ((C3-Ci2)cycloalkyl)-(C,-C6)alkyl-, and ((C4-Ci2)cycloalkenyl)-(C1-C6)alkyl- ; each R8 is independently selected from H, -(Ci-C6)alkyl, -(C2-C6)alkenyl, -(C2- C6)alkynyl, -(Ci-Cio)alkoxy, -(C3-C12)cycloalkyl, -(C3-Ci2)cycloalkenyl, ((C3- C,2)cycloalkyl)-(C,-C6)alkyl-, ((C3-Ci2)cycloalkenyl)-(C, -C6)alkyl-, -C(=0)(C,- C6)alkyl or S02(C |-C6)alkyl; each R9 is independently selected from -OH, halo, -(C i.Cio)alkyl, -(C2-Cio)alkenyl, - (C2.C,o)alkynyl, -(C ,.Ci0)alkoxy, -(C3.C,2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR aR6a; each R" is independently selected from -C(halo)3, -CH(halo) , -CH (halo), -(C2_ C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, (6- to 14-membered)aryl, ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, or (5- to 12-membered)heteroaryl, ((5- to 12- membered)heteroaryl)-(Ci-C6)alkyl-, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(Ci-C6)alkyl-COOR7, -C(=0)-(C,- C6)alkyl-COOR7, -(C, -C6)alkyl-C(=0)-(C,-C6)aIkyl-COOR7, CONH2, or -(C,- C6)alkyl-CONH; each R30 is independently selected from COOR7, CONR5aR6a, -(C, -C6)alkyl, -C(=0), CN, -(3- to 12-membered)heteroaryl, ((3- to 12-membered)heteroaryl)-(Ci-C6)alkyl-, NH2, halo, and ((6- to 14-membered)aryi)-(Ci-C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or 6;

n is an integer 0, 1 , 2, 3, 4, 5, or 6;

s in an integer 1 , 2, 3, 4, 5, or 6;

provided that when R4 is -(C | -C5)alkoxy then:

a) R2a and R2b cannot be taken together to form =0; or

b) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is either:

a. OH; or

b. -(C,-C6)alkyl; or

c) R2a cannot be H when the combination -Z-G-R10 is OH; and the pharmaceutically acceptable salts and solvates thereof.

In one embodiment, the present invention provides novel compounds of Formula IA' :

Figure imgf000029_0001

IA' wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula Γ, and the pharmaceutically acceptable salts and solvates thereof.

In another embodiment, the present invention provides novel compounds of Formula IB' :

Figure imgf000029_0002
wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula Γ, and the pharmaceutically acceptable salts and solvates thereof.

In another embodiment, the present invention provides novel compounds of Formula IC :

Figure imgf000030_0001

IC wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula Γ, and the pharmaceutical ly acceptable salts and solvates thereof.

In another embodiment, the present invention provides novel compounds of Formula ID' :

Figure imgf000031_0001

wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula Γ, and the pharmaceutically acceptable salts and solvates thereof.

The present invention further provides novel compounds of Formula I

Figure imgf000031_0002
wherein R1 is selected from the group consisting of-(C]-Cio)alkyl, -(C2-C i0)alkenyl, -(C2- Cio)alkynyl, -(C3-Ci2)cycloalkyl, (C3-C] 2)cycloalkyl-(C| -C6)alkyl-, -(C3- C|2)cycloalkenyl, (C3-Ci2)cycloaIkenyl-(Ci-C6)alkyl-, -(6- to ! 4-membered)aryl, ((6- to l 4-membered)aryl)-(Ci-C6)alkyl-, diphenyl(C,-C6)alkyl-, -(OCH2CH2)s-0-(C,- C6)alkyl, -(CH2CH20)s-(C| -C6)alkyl, (C, -Ci0)alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(0)0-(C, -Cio)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;

R2a is hydrogen or OH;

R2b is

a) ((6- to 14-membered)aryl) or ((3- to 12-membered)heterocycle), each of which is optionally substituted with one, two, or three independently selected Rj0 groups; or

b) -Z-G-R10, provided that -Z-G-R10 is other than hydrogen;

or R2a and R2b together form =0;

Z is absent or -(CH2)m- optionally substituted with 1 or 2 -(C | -C6)alkyl;

G is selected from the group consisting of:

a) a bond, -(C i-C6)alkylene, -(C -C6)alkenylene;

b) O, -OCO-, -C(=0), =CH;

c) NR8, =N-0, =N-NH;

d) S, SO, and S02;

Ri0 is selected from the group consisting of hydrogen, -(Ci-Cio)alkyl, -(C2-C |2)alkenyl, -C(=0), -C(=0)-(Ci-C6)alkyl, -C(=0)-(C2-C6)alkenyl, -C(=0)-(6- to 14- membered)aryl, -C(=0)-(C |-C6)alkyl-(6- to 14-membered)aryl, -(C2-Ci2)alkynyl, -(Ci- C ,o)alkoxy, -(0CH2CH2)S-0(C ,-C6)alkyl, -(CH2CH20)s-(C,-C6)alkyl, -NH2, - NH(C,-C6)alkyl, CN, NR5R6, -(CrC6)alkyl-NR5R6, -CONR5R6, -(C, -C6)alkyl-CO- NR5R6, -COOR7, -(Ci-C6)alkyl-CO-OR7, -(d-C6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -CO-(CH2)n-CO-NR5R6, -(C3-C12)cycloalkyl, ((C3-C,2)cycloalkyl)-(C , - C6)alkyl-, -(C4-Ci2)cycloalkenyl, ((C4-Ci2)cycloalkenyl)-(C |-C6)alkyl-, -(C6- C,4)bicycloalkyl, ((C6-C,4)bicycloalkyl)-(C , -C6)alkyl-, -(C8_C20)tricycloalkyl, ((C8- C2o)tricycloalkyl)-(C] -C6)alkyl-, -(C7-C |4)bicycloalkenyl, ((C7-Ci4)bicycloalkenyl)- (Ci-C6)alkyl-, -(C8-C20)tricycloalkenyl, ((C8-C20)tricycloalkenyl)-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(Ci-C6)alkyI-, -(7- to 12- membered)bicyclic ring system, ((7- to l 2-membered)bicyclic ring system)-(C | -

C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(Ci- C6)alkyl-, -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Cr C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(Ci - C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12- membered)bicycloheterocycle)-(C i -C6)alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo) , -CH2(halo), -(C, -C6)alkyl, halo(C l -C6)alkyl-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(Ci-C6)alkyl-, dihydroxy(C i-C6)alkyl-, -(C] -C6)alkoxy, ((d - C6)alkoxy)CO(C ,-C6)alkoxy-, phenyl, benzyl, -NH2, -NH(C,-C6)alkyl,

-(Ci-C6)alkyl-NH(Ci-C6)alkyl- 14, -CN, -SH, -OR1 1 , -CONR5R6, -(Ci-C6alkyl)-CO- NR5R6, -COOR7, -(C!-C6)alkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -(OCH2CH2)s- 0(C,-C6)alkyl, -(CH2CH20)s-(C,-C6)alkyl, (C| -C6)alkyl)sulfonyl, ((C ,- C6)alkyl)sulfonyl(Ci-C6)alkyl-, -NH-S02(C ,-C6)alkyl, NH2-S02(Ci-C6)alkyl-, - N(S02(CrC6)alkyl)2, -C(=NH)NH2, -NH-CO-(C, -C6)alkyl, -NH-CO-NH2, -NH-

Figure imgf000033_0001

C6)alkyl-(6- to 14- membered)aryl, -NH-(C1-C6)alkyl-C0-0R7, -NH-C(=0)-(Cr C6)alkyl-CO-OR7, -NH-C(=0)-CH(NH2)-(C, -C6)alkyl-CO-OR7, -(C3-C,2)cycloalkyl, ((C3-C12)cycloalkyl)-(C i -C6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(C, -C6)alkoxy-C(0)NR5R6, -NH-(C | -C6)alkyl-C(0)-NR5R6, - C(0)MH-(C, -C6)alkyl-C00R7, ((6- to 14-membered)arylHC, -C6)alkyl-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Ci-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(Ci-C6)alkyl-, -(7- to 12- membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(C i- C6)alkyl-; R is selected from:

a) -H; or

b) -(C,-C6)alkyl, -(C2-C6)alkenyl, or -(C2-C6)alkynyl;

R is selected from

a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), COOH, or CONH2; or b) -(C,.C5)alkyl, -(C2.C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, or -(C,.

C5)alkoxy, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups;

R3 and R6 are each independently selected from

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);

b) -(C, -C6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(C,- C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci.C io)alkyl, -(C2.C i0)alkenyl, -(C2. C ,o)alkynyl, -(Ci.C!0)alkoxy, -(C3.C12)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5R6;

c) -(C3-C8)cycloalkyl, ((C3_C8)cycloalkyl)-(C ,-C6)alkyl-, -COOR7, -(C , -C6)alkyl- COOR7, -CONH2, or (C ,.C6)alkyl-CONH-;

d) ((6- to 14-membered)aryl) optionally substituted with 1 , 2, or 3 independently selected R30 groups; or

e) R3 and R6 together with the nitrogen atom to which they are attached form a (4- to 8-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected Rj0 groups; each R7 is independently selected from the group consisting of hydrogen, -(C| - C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3_C|2)cycloalkyI, -(C4-Ci2)cycloalkenyl, ((C3-C12)cycloalkyl)-(C, -C6)aIkyl-, and ((C4_Ci2)cycloalkenyl)-(C rC6)alkyl- ; each R is independently selected from H, -(Ci-C6)alkyl, -(C2-C6)alkenyl, -(C2- C6)alkynyl, -(Ci-Cio)alkoxy, -(C3-Ci2)cycloalkyl, -(C3-Ci2)cycloalkenyl, ((C3- C 12)cycloalkyl)-(C , -C6)alkyl-, ((C3-C ,2)cycloalkeny])-(C , -C6)alkyl-, -C(=0)(Cr C6)alkyl or S02(C,-C6)alkyl; each R9 is independently selected from -OH, halo, -(Ci.Cio)alkyl, -(C2.Cio)alkenyl, - (C2.C10)alkynyl, -(C l.C10)alkoxy, -(C3.C |2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or C0NR5R6; each Rn is independently selected from -C(halo)3, -CH(haIo)2, -CH2(halo), -(C2.

C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, (6- to 4-membered)aryl, ((6- to 14-membered)aryl)-(C] -C6)alkyl-, or (5- to 12-membered)heteroaryl, ((5- to 12- membered)heteroaryl)-(C| -C6)alkyl-, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(C i-C6)alkyl-COOR7, -C(=0)-(C, - C6)alkyl-COOR7, -(C,-C6)alkyl-C(=0HC , -C6)alkyl-C00R7, CONH2, or -(C,- C6)alkyl-CONH; each R30 is independently selected from COOR7, CONR5R6, -(CrC6)alkyl, CN, -(3- to 12-membered)heteroaryl, ((3- to 12-rnembered)heteroaryl)-(Ci-C6)alkyl-, NH2, halo, and ((6- to 14-membered)aryl)-(C| -C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or 6;

n is an integer 0, 1 , 2, 3, 4, 5, or 6;

s in an integer 1 , 2, 3, 4, 5, or 6;

provided that when R4 is -(C i-C5)alkoxy then:

a) R2a and R2b cannot be taken together to form =0; or

b) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R 10 is either:

a. OH; or

b. -(C| -C6)alkyl; or

c) R2a cannot be H when the combination -Z-G-R10 is OH; and the pharmaceutically acceptable salts, prodrugs and solvates thereof.

In one embodiment, the present invention provides novel compounds of Formula IA:

Figure imgf000036_0001

IA wherein R1 , R2a, R2b, R3 and R4 are as defined above for Formula I, and the pharmaceutically acceptable salts, prodrugs and solvates thereof.

In another embodiment, the present invention provides novel compounds of Formula IB:

Figure imgf000036_0002
wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula 1, and the pharmaceutically acceptable salts, prodrugs and solvates thereof. In another embodiment, the present invention provides novel compounds of

Formula IC:

Figure imgf000037_0001
wherein R1 , R2a, R2b, R3 and R4 are as defined above for Formula I, and the pharmaceutically acceptable salts, prodrugs and solvates thereof.

In another embodiment, the present invention provides novel compounds of Formula ID:

Figure imgf000038_0001

wherein R1, R2 , R2b, R3 and R4 are as defined above for Formula I, and the pharmaceutically acceptable salts, prodrugs and solvates thereof.

It is an object of certain embodiments of the present invention to provide new Compounds of the Invention that have antagonist activity at the ORL-1 receptor which is greater than compounds currently available, e.g. , JTC-801 (described in WO 99/48492; and Shinkai et al., "4-aminoquinol ines: Novel nociceptin antagonists with analgesic activity", J. Med. Chem., 2000, 43:4667-4677) and J- 1 13397 (described in WO 98/54168; and Kawamoto et al., "Discovery of the first potent and selective small molecule opioid receptor-like (ORL- 1 ) antagonist: 1 -[(3R,4R)- 1 -cyclooctylmethyl-3- hydiOxymethyl-4-piperidyl]-3-ethyl- l ,3-dihydro-2H-benzimidazol-2-one (J- 1 13397)", J. Med. Chem. , 1999, 42:5061-6063).

Certain Compounds of the Invention have agonist activity at the μ, δ and/or κ receptors which is greater than currently available compounds, e.g., morphine.

Certain Compounds of the Invention have both: (i) antagonist activity at the

ORL- 1 receptor; and (ii) agonist activity at one or more of the μ, δ and/or opioid receptors. Certain Compounds of the Invention have both: (i) antagonist activity at the ORL-1 receptor; and (ii) agonist activity at the μ opioid receptor. Certain compounds of the invention have both: (i) antagonist activity at the μ opioid receptor; and (ii) agonist activity at the κ opioid receptor. Certain compounds of the invention have: (i) antagonist activity at the ORL-1 receptor; (ii) antagonist activity at the μ opioid receptor; and (iii) agonist activity at the κ opioid receptor. Certain compounds of the invention have: (i) antagonist activity at the μ opioid receptor; (ii) agonist activity at the κ opioid receptor; and (iii) antagonist activity at the δ opioid receptor.

Compounds of the Invention may be useful as analgesics; anti-inflammatories; diuretics; anesthetics; neuroprotective agents; anti-hypertensives; anxiolytics; agents for appetite control; hearing regulators; anti-tussives; anti-asthmatics; anti-epileptics; anti-convulsants; modulators of locomotor activity; modulators of learning and memory; regulators of neurotransmitter release; modulators of hormone release;

kidney function modulators; anti-depressants; agents to treat memory loss due to Alzheimer's disease or other dementias; agents to treat withdrawal from alcohol and/or drugs of addiction; agents to control water balance or sodium excretion; agents to treat arterial blood pressure disorders, or any of the following: UI, ulcers, 1 BD, IBS, diarrhea, constipation, addictive disorders, Parkinson's disease, parkinsonism, anxiety, epilepsy, stroke, a seizure, pruritic conditions, psychosis, cognitive disorders, memory deficits, restricted brain function, Huntington's chorea, ALS, dementia, retinopathy, muscle spasms, migraines, vomiting, dyskinesia, and/or depression (each being a "Condition").

The present invention further provides methods for treating a Condition, comprising administering to a subject in need thereof a therapeutically effective amount of a Compound of the Invention. In certain embodiments, the Condition is pain (chronic or acute pain). The Compounds of the Invention are particularly useful for treating chronic pain. In certain embodiments, the Compound of the Invention is an ORL- 1 receptor antagonist. In other embodiments, the Compound of the Invention is an agonist at one or more of the μ, δ and/or κ opioid receptors. In other

embodiments, the Compound of the Invention is both an ORL- 1 receptor antagonist and an agonist at one or more of the μ, δ and/or κ opioid receptors. In other embodiments, the Compound of the Invention is both an ORL- 1 receptor antagonist and an agonist at the μ opioid receptor. In certain non-limiting embodiments, the Compound of the Invention produces fewer side effects and/or less severe side effects than currently available analgesic opioid compounds when administered at doses producing equivalent levels of analgesia and/or anti-hyperalgesia.

In certain non-limiting embodiments, the Compound of the Invention exhibits a substantially linear dose response curve, such that the bell-shaped dose response curve observed for most opioid analgesics (i.e. low and high doses do not produce significant analgesia, whereas mid-range doses produce analgesia) is not observed for the

Compound of the Invention. It is expected, therefore, that it will be easier to titrate to an effective dose of the Compound of the Invention in a patient than it is for conventional opioid analgesics. It is further expected that the Compound of the Invention will produce effective analgesia and/or anti-hyperalgesia in a patient who has become tolerant to conventional opioids, and for whom a conventional opioid is no longer an effective treatment. It is further expected that a Compound of the Invention will produce effective analgesia and/or anti-hyperalgesia at doses that do not induce side effects such as respiratory depression in patients for whom a dose of a

conventional opioid that is high enough to be an effective treatment also induces significant side effects such as respiratory depression.

The present invention further provides methods for preventing a Condition, comprising administering to s a subject in need thereof a Condition-preventing effective amount of a Compound of the Invention.

Another object of the invention is to provide benzomorphan analog compounds useful for treating or preventing constipation, preferably μ opioid receptor-induced constipation. More specifically, the present invention provides Compounds of the Invention having activity as μ opioid receptor antagonists. In certain embodiments, Compounds of the Invention are expected to have dual activity as both μ opioid receptor antagonists and κ opioid receptor agonists. In other embodiments,

Compounds of the Invention are expected to be μ opioid receptor antagonists, κ opioid receptor agonists, δ opioid receptor antagonists, and inactive at ORL- 1 receptors. In yet other embodiments, certain Compounds of the Invention are expected to be μ opioid receptor antagonists, κ opioid receptor agonists, δ opioid receptor antagonists, and ORL- 1 receptor antagonists. In other embodiments, certain Compounds of the Invention are expected to be μ opioid receptor antagonists, κ opioid receptor agonists, δ opioid receptor antagonists, and ORL- 1 receptor partial agonists. In certain embodiments, Compounds of the Invention will be inactive at δ opioid receptors. Certain Compounds of the Invention are expected to be substantially restricted to the GI tract.

Compounds of the Invention that have μ opioid receptor antagonist activity and are substantially restricted to the GI tract will significantly reduce or prevent constipation that would otherwise occur in a patient as a result of treatment with a μ opioid receptor agonist. In one embodiment, the reduction or prevention of constipation is obtained without reducing the desired analgesic effect of the μ agonist. Compounds of the Invention that also exhibit κ opioid receptor agonist activity should additionally stimulate GI motility via a ηοη-μ receptor mediated mechanism.

The present invention provides a method for treating or preventing a Condition in a subject. In certain embodiments, the Condition treated will be pain (acute or chronic pain). The present invention further provides a method for treating or preventing constipation, preferably constipation associated with μ-opioid agonist therapy, by administering an effective amount of a Compound of the Invention to a patient in need of such treatment or prevention. In one embodiment, the Compound of the Invention is a μ antagonist that is substantially restricted to the GI tract. In another embodiment, the Compound of the Invention is both a μ antagonist and a κ agonist, and is substantially restricted to the GI tract. In another embodiment, the method comprises co-administering to a patient both an effective amount of a Compound of the Invention that is a μ antagonist and is substantial ly restricted to the GI tract, and an analgesically effective amount of a μ agonist. In another embodiment, the method comprises co-administration to a patient of both an effective amount of a Compound of the Invention that is both a μ antagonist and a κ agonist, and which is substantially restricted to the GI tract, and an analgesically effective amount of a μ agonist.

The present invention further provides pharmaceutical compositions comprising a therapeutically effective amount of a Compound of the Invention admixed with a pharmaceutically acceptable carrier or excipient. Such compositions are useful for treating or preventing a Condition in a subject. The pharmaceutical compositions of the present invention may be formulated as immediate release formulations, or as controlled or sustained release formulations. Pharmaceutical compositions of the present invention may be formulated for administration by any of a number of different routes known in the art, including but not limited to, oral, intradermal, intramuscular, intraperitoneal, parenteral, intravenous, subcutaneous, intranasal, epidural, sublingual, intracerebral, intravaginal, transdermal, transmucosal, rectal, by inhalation, or topical (particularly to the ears, nose, eyes, or skin).

The present invention further provides methods for preparing a composition, comprising the step of admixing a Compound of the Invention and a pharmaceutically acceptable carrier or excipient to form a pharmaceutical composition.

The present invention further provides the use of a Compound of the Invention in the manufacturing of a medicament useful to treat or prevent a Condition in a subject.

The invention still further relates to a kit comprising a container (preferably sterile) containing an effective amount of a Compound of the Invention.

DETAILED DESCRIPTION OF THE INVENTION

The Compounds of the Invention are novel benzomorphan analogs. They are useful for treating or preventing one or more Conditions, such as pain or constipation. Compounds of the Invention may provide a reduced l iability for developing analgesic tolerance and physical dependence.

Compounds of the Invention are useful for modulating a pharmacodynamic response from O L- I receptors either centrally or peripheral ly, or both. Compounds of the Invention may also be useful for modulating a pharmacodynamic response from one or more opioid receptors (μ, δ, κ) either centrally or peripherally, or both. The pharmacodynamic response may be attributed to the compound stimulating

(agonizing) or inhibiting (antagonizing) the one or more receptors. Certain

Compounds of the Invention may inhibit (or antagonize) the ORL- 1 receptor, while also stimulating (or agonizing) one or more other opioid receptors (e.g. as a μ, δ and/or K agonist). Compounds of the Invention having agonist activity may be either full or partial agonists.

In certain embodiments, Compounds of the Invention can be used in combination with at least one other therapeutic agent. The other therapeutic agent can be, but is not limited to, a μ-opioid agonist, a non-opioid analgesic, a non-steroidal anti-inflammatory agent, a Cox-II inhibitor, an anti-emetic, a β-adrenergic blocker, an anticonvulsant, an antidepressant, a Ca2+-channel blocker, an anticancer agent, or a mixture thereof.

Various objects and advantages of the present invention will become apparent from the following detailed description.

The present invention provides novel compounds of Formula I":

Figure imgf000043_0001

wherein

R1 is selected from the group consisting of-(C) -Cio)alkyl, -(C2-Cio)alkenyl, -(C2- C|0)alkynyl, -(C3-C 12)cycloalkyl, (C3-C,2)cycloalkyl-(Ci-C6)alkyl-, -(C3- C i 2)cycloalkenyl, (C3-Ci2)cycloalkenyl-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, ((6- tol 4-membered)aryl)-(Ci-C6)alkyl-, diphenyl(Ci-C6)alky!-, -(3- to 12- membered)heterocycle, ((3- to 12 membered)heterocycle)-(C| -C6)alkyl-, - (OCH2CH2)s-0-(C,-C6)alkyl, -(CH2CH20)s-(C ,-C6)alkyl, (Ci-C10)alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(O)O-(C,-C ,0)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;

R2a is hydrogen, OH, or absent;

R2b is

a) ((6- to 14-membered)aryl), -((5- to 12-membered)heteroaryl), or ((3- to 12- membered)heterocycle), each of which is optionally substituted with one, two, or three independently selected R30 groups; or

b) -Z-G-R10, provided that -Z-G-R10 is other than hydrogen;

or R2a and R2b together form =0;

Z is absent or -(CH2)m- optionally substituted with 1 or 2 -(C |-C6)alkyl;

G is selected from the group consisting of:

a) a bond, -(C |-C6)alkylene, -(C2-C6)alkenylene;

b) O, -OCO-, -C(=0), =CH;

c) NR8, =N-0, =N-NH;

d) S, SO, S02; and

e) -NH-S02; and when Z is absent and G is =CH, =N-0, or =N-NH, then R2a is absent; R10 is selected from the group consisting of hydrogen, -(C i-Cio)alkyl, -(C2-C i2)alkenyl, -C(=0), -C(=0)-(C| -C6)alkyl, -C(=0)-(C2-C6)alkenyl, -C(=0)-(6- to 14- membered)aryl, -C(=0)-(C i-C6)alkyl-(6- to 14-membered)aryl, -(C2-Ci2)alkynyl, -(C | - C,0)alkoxy, -(OCH2CH2)s-0(C,-C6)alkyl, -(CH2CH20)s-(C,-C6)alkyl, -NH2, - NH(C,-C6)alkyl, CN, NR5R6, -(C ,-C6)alkyl-NR R6, -CONR5R6, -(C , -C6)alkyl-CO- NR5R6, -COOR7, -(C, -C6)alkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -CO-(CH2)n-CO-NR5R6, -(C3-C12)cycloalkyl, ((C3-C,2)cycloalkyl)-(C,- C6)alkyl-, -(C4-C i2)cycloalkenyl, ((C -Ci2)cycloalkenyl)-(Ci-C6)alkyl-, -(C6- C14)bicycloalkyI, ((C6-C ,4)bicycloalkyl)-(C i-C6)alkyl-, -(C8.C20)tncycloalkyl, ((C8- C2o)tricycioalkyl)-(C | -C6)alkyl-, -(C7-C i4)bicycloalkenyl, ((C7-Ci4)bicycloa!kenyl)- (C!-C6)alkyl-, -(C8-C20)tricycloalkenyl, ((C8-C20)tricycloalkenyl)-(C,-C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(Ci-C6)alkyl-, -S02-(C|-C6)alkyl, - S02-((C3-C12)cycloa!kyl), -S02-((C3-C12)cycloalkyl)-(Ci-C6)alkyl, -S02-((5- to 12- membered)heteroaryl), -S02-((5- to 12-membered)heteroaryl)-(Ci-C6)alkyl, -C(=0)- NH-((5- to 12-membered)heteroaryl), -C(=0)-NH-((5- to 12-membered)heteroaryl)- (C,-C6)alkyl, -C(=0)-NH-((3- to 12-membered)heterocycle), -C(=0)-NH-((3- to 12- membered)heterocycle)-(Ci-C6)alkyl, S02-((6- to 14-membered)aryl), S02-((6- to 14 membered)aryl)-(C|-C6)alkyl, -(7- to 12-membered)bicyclic ring system, ((7- to 12- membered)bicyclic ring system)-(C |-C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(C] -C6)alkyl-, -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Ci -C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(C | -C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12-membered)bicycloheterocycle)-(Ci-C6)alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(C i-C6)alky[, halo(C ,-C6)alkyl-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(Ci-C6)alkyl-, dihydroxy(C,-C6)alkyl-, -(C, -C6)alkoxy, ((C,- C6)alkoxy)CO(C-C6)alkoxy-, phenyl, benzyl, -NH2, -NH(Ci-C6)alkyl,

-(C1-C6)alkyl- H(Ci-C6)alkyl-R14, -CN, -SH, -OR1 1 , -CONR5R6, -(C ,-C6alkyl)-CO- NR5R6, -COOR7, -(C, -C6)alkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -(OCH2CH2)s- 0(C ,-C6)alkyl, -(CH2CH20)s-(C| -C6)alkyl, -S02-NR5aR6a, (d-^alky sulfonyl, ((C1-C6)alkyl)sulfonyl(C | -C6)alkyl-, -NH-S02(C ,-C6)alkyl, NH2-S02(C,-C6)alkyl-, - N(S02(C ,-C6)alkyl)2, -C(=NH) H2, -NH-CO-(d -C6)alkyl, -NH-CO-NH2, -NH- C(=0)-NH-(C, -C6)alkyl, -NH-C(=0)-(6- to 14- membered)aryl, -NH-C(=0)-(C , - C6)alkyl-(6- to 14- membered)aryl, -NH-(C ,-C6)alkyl-CO-OR7, -NH-C(=0)-(C,- C6)alkyl-CO-OR7, -NH-C(=0)-CH(NH2)-(C, -C6)alkyl-CO-OR7, -(C3-Ci2)cycloalkyl, ((C3-Ci2)cycloalkyl)-(C i -C6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(C | -C6)alkoxy-C(0)NR5R6, -NH-(C C6)alkyl-C(0)-NR5R6, - C(0)NH-(C, -C6)alkyl-COOR7, ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C i-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(Ci-C6)alkyI-, -(7- to 12- membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(Ci- C6)alkyl-;

R is selected from:

a) -H; or

b) -(C | -C6)alkyl, -(C2-C6)alkenyl, or -(C2-C6)alkynyl; R4 is selected from

a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), COOH, or CONH2; or b) -(C,_C5)alkyl, -(C2.C5)alkenyl, -(C2.C5)alkynyl, -(CH2)„-0-(CH2)„-CH3, or -(C,.

C5)alkoxy, each of which is optional ly substituted with 1 , 2, or 3 independently selected R9 groups;

R5 and R6 are each independently selected from

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);

b) -(C,-C6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(C- C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci.Cio)alkyl, -(C2-Cio)alkenyl, -(C2. C io)alkynyl, -(Ci.C]0)alkoxy, -(C3.C,2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or C0NR5aR6a;

c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(C ,-C6)alkyl-, -COOR7, -(C,-C6)alkyl- COOR7, -CONH2, or (C|.C6)alkyl-CONH-;

d) ((6- to 14-membered)aryl) optionally substituted with I , 2, or 3 independently selected R30 groups;

e) -((5- to 12-membered)heteroaryl) optionally substituted with 1 , 2, or 3

independently selected R30 groups; or f) R5 and R6 together with the nitrogen atom to which they are attached form a (3 to 12-membered)heterocycle optionally substituted with 1 , 2, or 3

independently selected R30 groups; and R6a are each independently selected from the group consisting of:

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, and -CH2(halo);

b) -(Ci-C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(CH2)„-0-(CH2)n-CH3, and - (C| -C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci.C io)alkyl, -(C2.

Ci2)alkenyl, -(C2.C i2)alkynyl, -(Ci.Cio)alkoxy, -(C3.Ci2)cycloalkyl , -CHO, - COOH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, and phenyl; c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(C 1-C6)alkyl-, -COOR7, -(C,-C6)alkyl- COOR7, -CONH2, and (C,.C6)alkyl-CONH-;

d) -(6- to 14-membered)aryl optionally substituted with 1 , 2, or 3 independently selected R30 groups;

e) -((5- to 12-membered)heteroaryl) optionally substituted with 1 , 2, or 3

independently selected R groups; or

f) R5a and R6a together with the nitrogen atom to which they are attached form a (3- to 12-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected R30 groups; each R7 is independently selected from the group consisting of hydrogen, -(Ci - C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3_Cl 2)cycloalkyl, -(C4-C12)cycloalkenyl, ((C3-C|2)cycloalkyl)-(C | -C6)alkyl-, and ((C4.C|2)cycloalkenyl)-(Ci-C6)alkyl- ; each R8 is independently selected from H, -(C|-C6)alkyl, -(C2-C6)alkenyl, -(C2- C6)alkynyl, -(C i-C io)alkoxy, -(C3-Ci2)cycloalkyl, -(C3-C] 2)cycloalkenyI, ((C3- C,2)cycloalkyl)-(C l-C6)alkyl-, ((C3-C,2)cycloalkenyl)-(C] -C6)alkyl-, -C(=0)(C,- C6)aikyl or S02(C, -C6)alkyl; each R9 is independently selected from -OH, halo, -(C) -Cio)alkyl, -(C2-Cio)alkenyl, - (C2.C io)alkynyl, -(Ci.C10)alkoxy, -(C3.C|2)cycloalky! , -CHO, -C(0)OH, -C(halo)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or C0NR5aR6a; each R1 1 is independently selected from -C(halo)3, -CH(halo)2, -CH2(halo), -(C2.

C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, (6- to 14-membered)aryl, ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, or (5- to 12-membered)heteroaryl, ((5- to 12- membered)heteroaryl)-(Ci-C6)alkyl-, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(C | -C6)alkyl-C00R7, -C(=0)-(C, - C6)alkyl-COOR7, -(C ,-C6)alkyl-C(=0)-(C| -C6)alkyl-COOR7, CONH2, or -(C ,- C6)alkyl-CONH; each R30 is independently selected from COOR7, CONR5aR6a, -(C , -C6)alkyl, -C(=0), CN, -(3- to 12-membered)heteroaryl, ((3- to 12-membered)heteroaryl)-(C i-C6)alkyl-, NH2, halo, and ((6- to 14-membered)aryl)-(C] -C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or 6;

n is an integer 0, 1 , 2, 3, 4, 5, or 6;

s in an integer 1 , 2, 3, 4, 5, or 6;

provided that when R4 is -(Ci-Cs)alkoxy then:

a) R2a and R2b cannot be taken together to form =0; or

b) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is either:

a. OH;

b. -(Q-Ce^lkyl;

c. 2-propenyl;

d. 2-propynyl; or

c) R2a cannot be H when the combination -Z-G-R 10 is either:OH;

a. OH;

b. -0-C(=0)-(C,-C6)alkyl; or c. -0-C(=0)-(C2-C6)alkenyl; and provided that when R4 is OH then:

a) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is:

e. methyl;

f. ethyl;

g. 2-propenyl; or

h. 2-propynyl;

b) R2a cannot be H when R2b is -Z-G-R10, and -Z-G-R10 is either:

a. OH;

b. .-0-C(=0)-(C i-C6)alk l; or

c. -0-C(=0)-(C2-C6)alkenyl; and provided that when R3 is (C |-C6)alkyl or (C2-C6)alkenyl, and R4 is H, OH, or (C , - C5)alkoxy, then R2b is not:

a) optionally substituted (5- to 12-membered)heteroaryl;

b) optionally substituted (3- to 12-membered)heterocycle; or

c) unsubstituted phenyl or phenyl substituted with F or CI, methyl, CF3, hydroxy, methoxy, (3- to 12-membered)heterocycle, or NH2; and provided that when R4 is OH and R1 is (Ci-Cio)alkyl, then R2a and R2b cannot be together selected =0; and provided that when R4 is hydrogen and when R1 and R3 are both methyl, then: a) R2a and R2b cannot together form =0 or =N-OH; or

b) R2b may not be NH2 or NHC(0)CH3 if R2a is hydrogen; and provided that when R2a is H, then R2b may not be -Z-G-R10, wherein -Z-G-R10 is: a) -CH2-CHR20-C(=O)R21, wherein

R20 is H, or -(C, -C6)alkyl, and

R is selected from the group consisting of H, -(Ci-Cio)alkyl, -(C3-C,2)cycloalkyl, ((C3-C,2)cycloall<yl)-(C 1 -C6)alkyl-, phenyl, and phenyl-(C | -C6)alkyl; or

b) -CH2-CHR20-CR22R23OH, wherein

R is defined as above, and

R22 and R23 are each independently selected from the group consisting of H,

-(C-C io)alkyl, ((C3-Ci2)cycloalkyl)-(C , -C6)alkyl-, phenyl, and

phenyl-(Ci-C6)alkyl; or

c) -CH2-CR20=CR23R24, wherein

R20 and R23 are defined as above, and

R24 is selected from the group consisting of H, and -(C i-C6)alkyl; and the pharmaceutically acceptable salts and solvates thereof.

In one embodiment, the present invention provides novel compounds Formula IA":

Figure imgf000050_0001

IA" wherein R1 , R a, R2b, R3 and R4 are as defined above for Formula I", and the pharmaceutically acceptable salts and solvates thereof. In another embodiment, the present invention provides novel compounds of Formula IB":

Figure imgf000051_0001

IB" wherein R1 , R2a, R2b, R3 and R4 are as defined above for Formula I", and the pharmaceutically acceptable salts and solvates thereof.

In another embodiment, the present invention provides novel compounds of Formula lC":

Figure imgf000051_0002
wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula I", and the pharmaceutically acceptable salts and solvates thereof.

In another embodiment, the present invention provides novel compounds Formula ID":

Figure imgf000052_0001

ID wherein R1 , R2a, R2b, R3 and R4 are as defined above for Formula I", and the pharmaceutically acceptable salts and solvates thereof.

In one embodiment, the present invention provides novel compounds of Formula I":

Figure imgf000053_0001
wherein

R1 is selected from the group consisting of-(Ci-C io)alkyl, -(C2-C io)alkenyl, -(C2- C10)alkynyl, -(C3-Ci2)cycloalkyl, (C3-C12)cycloalkyl-(Ci-C6)alkyl-, -(C3- Ci2)cycloalkenyl, (C3-C |2)cycloalkenyi-(C] -C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l4-membered)aryl)-(Ci -C6)alkyl-, diphenyl(C,-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12 membered)heterocycle)-(C] -C6)alkyl-, - (OCH2CH2)s-0-(CrC6)aIkyl, -(CH2CH20)s-(Ci-C6)alkyl, (Ci-C,0)alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(0)0-(C1-C,o)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;

R a is hydrogen, OH, or absent;

R2b is

((6- to 14-membered)aryl), -((5- to 12-membered)heteroaryl), or ((3- to 12- membered)heterocycle), each of which is optionally substituted with one, two, or three independently selected R30 groups; or

-Z-G-R10, provided that -Z-G-R10 is other than hydrogen; or Rza and R b together form =0;

Z is absent or -(CH2)m- optionally substituted with 1 or 2 -(C|-C6)alkyl; G is selected from the group consisting of:

a) a bond, -(C i-C6)alkylene, -(C2-C6)alkenylene;

b) O, -OCO-, -C(=0), =CH;

c) NR8, =N-0, =N-NH;

d) S, SO, S02; and

e) -NH-S02; and when Z is absent and G is =CH, =N-0, or =N-NH, then R2a is absent;

R10 is selected from the group consisting of hydrogen, -(C i -Cio)alkyl, -(C2-Ci2)alkenyl, -C(=0), -C(=0)-(C,-C6)alkyl, -C(=0)-(C2-C6)alkenyl, -C(=0)-(6- to 14- membered)aryl, -C(=0)-(Ci-C6)alkyl-(6- to 14-membered)aryl, -(C2-Ci2)alkynyl, -(Ci- C,o)alkoxy, -(OCH2CH2)s-0(C i-C6)alkyl, -(CH2CH20)s-(C| -C6)alkyl, -NH2, - NH(Ci-C6)alkyl, CM, NR5R6, -(C,-C6)alkyl-NR5R6, -CONR5R6, -(C , -C6)alkyl-CO- NR5R6, -COOR7, -(C,-C6)alkyl-CO-OR7, -(C i-C6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -CO-(CH2)n-CO-NR5R6, -(C3-Ci2)cycloalkyl, ((C3-C12)cycloalkyl)-(C , - C6)alkyl-, -(C4-C|2)cycloalkenyl, ((C4-C i2)cycloalkenyl)-(Ci-C6)alkyl-, -(C6- Ci4)bicycloalkyl, ((C6-Ci4)bicycloalkyl)-(C]-C6)alkyl-, -(C8-C2o)tricycloalkyl, ((C8- C20)tricycloalkyl)-(Ci -C6)alkyl-, -(C7-Ci4)bicycloalkenyl, ((C7-C)4)bicycloalkenyl)- (Ci-C6)alkyl-, -(C8-C2o)tricycloalkenyl, ((C8-C2o)tricycloalkenyl)-(C i-C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(C ,-C6)alkyl-, -S02-(C1-C6)alkyl, - S02-((C3-C,2)cycloalkyl), -S02-((C3-C12)cycloalkyl)-(C i-C6)alkyl, -S02-((5- to 12- membered)heteroaryl), -S02-((5- to 12-membered)heteroaryl)-(C| -C6)alkyl, -C(=0)- NH-((5- to 12-membered)heteroaryl), -C(=0)-NH-((5- to 12-membered)heteroaryl)- (C,-C6)alkyl, -C(=0)-NH-((3- to 12-membered)heterocycle), -C(=0)-NH-((3- to 12- membered)heterocycle)-(C|-C6)alkyl, S02-((6- to 14-membered)aryl), S02-((6- to 14 membered)aryl)-(C i-C6)alkyl, -(7- to 12-membered)bicyclic ring system, ((7- to 12- membered)bicyclic ring system)-(Ci-C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to l2-membered)bicyclic aryl)-(C|-C6)alkyl-, -(5- to I2-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C|-C6)alkyl-, -(3- to 12-membered)heterocycIe, ((3- to 12 membered)heterocycle)-(Ci-C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12-membered)bicycloheterocycle)-(C|-C )alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo)2,

-CH2(halo), -(C,-C6)alkyl, halo(C,-C6)alkyl-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(Ci-C6)alkyl-, dihydroxy(Ci-C6)alkyl-, -(Ci-C6)alkoxy, ((Ci- C6)alkoxy)CO(C,-C6)alkoxy-, phenyl, benzyl, -NH2, -NH(C,-C6)alkyl,

-(C|-C6)alkyl-NH(C,-C6)alkyl-R14, -CN, -SH, -OR11, -CONR5R6, -(Ci-C6alkyl)-CO- NR5R6, -COOR7, -(Ci-C6)alkyl-CO-OR7, -(Ci-C6)alkoxy-COOR7, -(0CH2CH2)s- 0(C,-C6)alkyl, -(CH2CH20)s-(C,-C6)alkyl, -S02-NR5aR6a, (C,-C6)alkyl)sulfonyl, ((Ci-C6)alkyl)sulfonyl(C,-C6)alkyI-, -NH-S02(Ci-C6)aIkyl, NH2-S02(C|-C6)alkyl-, - N(S02(CrC6)alkyl)2, -C(=NH)NH2, -NH-CO-(Ci-C6)alkyl, -NH-CO-NH2, -NH-

Figure imgf000055_0001

C6)alkyl-(6- to 14- membered)aryl, -NH-(C,-C6)alkyl-C0-0R7, -NH-C(=0)-(Cr C6)alkyl-CO-OR7, -NH-C(=0)-CH(NH2)-(C|-C6)alkyl-CO-OR7, -(C3-Ci2)cycloalkyl, ((C3-Ci2)cycloalkyl)-(CrC6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(C,-C6)alkoxy-C(0)NR5R6, -NH-(C,-C6)alkyl-C(0)-NR5R6, - C(0)NH-(C,-C6)alkyl-C00R7, ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(Ci-C6)alkyl-, -(7- to 12- membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(Ci- C6)alkyl-;

R3 is selected from:

a) -H; or

b) -(C,-C6)alkyl, -(C2-C6)alkenyl, or -(C2-C6)alkynyl;

R4 is selected from a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), COOH, or CONH2; or b) -(C,.C5)alkyl, -(C2.C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, or -(C,. C5)alkoxy, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups;

R5 and R6 are each independently selected from

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);

b) -(C,-C6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(C, - C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(C)_Cio)alkyl, -(C2.Cio)alkenyl, -(C2.

C10)alkynyl, -(Ci_C,0)alkoxy, -(C3.C i2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a;

c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(CrC6)alkyl-, -COOR7, -(CrC6)a\ky\- COOR7, -CONH2, or (C,.C6)alkyl-CONH-;

d) ((6- to 14-membered)aryl) optionally substituted with 1 , 2, or 3 independently selected R30 groups;

e) -((5- to 12-membered)heteroaryl) optionally substituted with 1 , 2, or 3

independently selected R30 groups; or

f) R5 and R6 together with the nitrogen atom to which they are attached form a (3- to 12-membered)heterocycle optional ly substituted with 1 , 2, or 3

independently selected R30 groups;

R5a and R6a are each independently selected from the group consisting of:

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, and -CH2(halo);

b) -(C 1-C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(CH2)n-0-(CH2)n-CH3, and -

(Ci -C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(C i.C io)alkyl, -(C2_ Ci2)alkenyl, -(C2.Ci2)alkynyl, -(C,_C,0)alkoxy, -(C3-Ci2)cycloalkyl , -CHO, - COOH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, and phenyl; c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(C| -C6)alkyl-, -COOR7, -(C ,-C6)alkyl-

COOR7, -CONH2, and (Ci.C6)alkyl-CONH-; d) -(6- to 14-membered)aryl optionally substituted with 1 , 2, or 3 independently selected Rj0 groups;

e) -((5- to 12-membered)heteroaryl) optionally substituted with 1 , 2, or 3

independently selected R30 groups; or

t) R5a and R6a together with the nitrogen atom to which they are attached form a

(3- to 12-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected R30 groups; each R7 is independently selected from the group consisting of hydrogen, -(C i- C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3_Ci2)cycloalkyl, -(C4-Ci2)cycloalkenyl, ((C3-Ci2)cycloalkyl)-(C,-C6)alkyl-, and ((C4.Ci2)cycloalkenyl)-(C , -C6)alkyl- ; each R is independently selected from H, -(C) -C6)alkyl, -(C2-C6)alkenyl, -(C2- C6)alkynyl, -(C i-C io)alkoxy, -(C3-Ci2)cycloalkyI, -(C3-Ci2)cycloalkenyl, ((C3- C|2)cycloalkyl)-(C ,-C6)alkyl-, ((C3-C,2)cycloalkenyl)-(C|-C6)alkyl-, -C(=0)(C ,- C6)alkyl or S02(C| -C6)alkyl; each R9 is independently selected from -OH, halo, -(Ci.Cio)alkyl, -(C2.Cio)alkenyl, - (C2_Ci0)alkynyl, -(C,_Ci0)alkoxy, -(C3.Ci2)cycloalkyI , -CHO, -C(0)OH, -C(halo)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a; each R1 1 is independently selected from -C(halo)3, -CH(halo)2, -CH2(halo), -(C2.

C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, (6- to 1 -membered)aryl, ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, or (5- to 12-membered)heteroaryl, ((5- to 12- membered)heteroaryl)-(C| -C6)alkyl-, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(C,-C6)alkyl-COOR7, -C(=0)-(C,- C6)alkyl-COOR7,

Figure imgf000057_0001
-C6)alkyl-COOR7, CONH2, or -(C,- C6)alkyl-CONH; each R30 is independently selected from COOR7, CONR5aR6a, -(C,-C6)alkyl, -C(=0), CTM, -(3- to 12-membered)heteroaryl, ((3- to 12-membered)heteroaryl)-(C i -C6)alkyl-, NH2, halo, and ((6- to 14-membered)aryl)-(C | -C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or

n is an integer 0, 1 , 2, 3, 4, 5, (

s in an integer 1 , 2, 3, 4, 5, or ( provided that when R4 is -(Ci-C5)alkoxy then:

a) R2a and R2b cannot be taken together to form =0; or

b) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is either

a. OH;

b. -(C,-C6)alkyl;

c. -(C2-C6)alkenyl; or

d. -(C2-C6)alkynyl; or

c) R2a cannot be H when the combination -Z-G-R10 is either:

a. OH;

b. -0-C(=0)-(C,-C6)alkyl; or

c. -0-C(=0)-(C2-C6)alkenyl;

and provided that when R4 is OH then:

a) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is:

a. -(d-Q alkyl;

b. -(C2-C6)alkenyl;

c. or -(C2-C6)alkynyl;

b) R a cannot be H when R2b is -Z-G-R10, and -Z-G-R10 is

a. OH

b. -0-C(=0)-(C| -C6)alkyl; or

c. -0-C(=0)-(C2-C6)alkenyl; and provided that when R3 is (C,-C6)alkyl or (C2-C6)alkenyl, and R4 is H, OH, or (C-

C5)alkoxy, then R is not: a) optionally substituted (5- to 12-membered)heteroaryl, b) optionally substituted (3- to 12-membered)heterocycle; or

c) unsubstituted phenyl or phenyl substituted with halo, (Ci-C6)alkyl, C(halo)3, hydroxy, (Ci-C6)alkoxy, (3- to 12-membered)heterocycle, or NH2; and provided that when R4 is OH and R1 is (Ci-Cio)alkyl, then R2a and R2b cannot be together selected =0; and provided that when R4 is hydrogen and when R1 and R3 are both methyl, then: a) R2a and R2b cannot together form =0 or =N-OH; or

b) R2h may not be H2 or NHC(0)CH3 if R2a is hydrogen. d provided that when R2a is H, then R2b may not be -Z-G-R10, wherein -Z-G-R10 is a) -CH2-CHR20-C(=O)R21, wherein

R20 is H, or -(Ci-C6)alkyl, and

R21 is selected from the group consisting of H, -(Ci-Cio)alkyl,

-(C3-C|2)cycloalkyl, ((C3-Ci2)cycloalkyl)-(C |-C6)alkyl-, -(6- to 14- membered)aryl, and ((6- to 14-membered)aryl)-(C | -C6)alkyl-; or

b) -CH2-CHR20-CR 2R2 OH, wherein

R20 is defined as above, and

R22 and R23 are each independently selected from the group consisting of H, -(C1-C10)alkyl, ((C3-Ci2)cycloalkyl)-(C,-C6)alkyl-, -(6- to 14-membered)aryl, and ((6- to 14-membered)aryl)-(Ci-C6)alkyl-; or

c) -CH2-CR 0=CR 3R24, wherein

R20 and R23 are defined as above, and

R24 is selected from the group consisting of H, and -(C |-C6)alkyl; and the pharmaceutically acceptable salts and solvates thereof. The present invention provides novel compounds of Formula Γ :

Figure imgf000060_0001

wherein

R is selected from the group consisting of -(C i-Cio)alkyl, -(C2-C io)alkenyl, -(C2- C,o)alkynyl, -(C3-C12)cycloalkyl, (C3-C,2)cycloalkyl-(C ,-C6)alkyl-, -(C3- Ci2)cycloalkenyl, (C3-C|2)cycloalkenyl-(Ci -C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(C | -C6)alkyl-, diphenyl(CrC6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12 membered)heterocycle)-(C i -C6)alkyl-, - (OCH2CH2)s-0-(Ci-C6)alkyl, -(CH2CH20)S-(C|-C6)alkyl, (C,-Ci0)alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(O)O-(C,-Ci0)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;

R2a is absent or OH;

R2b is

a) ((6- to 14-membered)aryl) or ((3- to 12-membered)heterocycle), each of which is optionally substituted with one, two, or three independently selected R30 groups; or

b) -Z-G-R10, provided that -Z-G-R10 is other than hydrogen;

or R2a and R2b together form =0; Z is absent or -(CH2)m-, optionally substituted with 1 or 2 -(Ci-C6)alkyl;

G is selected from the group consisting of:

a) a bond, -(C i -C6)alkylene, -(C2-C6)alkenylene;

b) O, -OCO-, -C(=0), =CH;

c) NR8, =N-0, =N- H;

d) S, SO, and S02;

R10 is selected from the group consisting of hydrogen, -(Ci-Cio)alkyl, -(C2-C i2)alkenyl, -C(=0), -C(=0)-(C C6)alkyl, -C(=0)-(C2-C6)alkenyl, -C(=0)-(6- to 14- membered)aryl, -C(=0)-(Ci-C6)alkyl-(6- to 14-membered)aryl, -(C2-C i2)alkynyl, -(C , - C ,o)alkoxy, -(OCH2CH2)s-0(C,-C6)alkyl, -(CH2CH20)s-(C,-C6)alkyl, -NH2, - NH(C,-C6)alkyl, CN, NR5R6, -(Ci-C6)alkyl-NR5R6, -CONR5R6, -(C rC6)alkyl-CO- NR5R6, -COOR7, -(Ci-C6)alkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -CO-(CH2)n-CO-NR5R6, -(C3-C i2)cycloalkyl, ((C C,2)cycloalkyl)-(C r C6)alkyl-, -(C4-Ci2)cycloalkenyl, ((C4-Ci2)cycloalkenyl)-(Ci-C6)alkyl-, -(C6- C|4)bicycloalkyl, ((C6-Ci4)bicycloalkyl)-(Ci-C6)alkyl-, -(C8.C20)tricycloalkyl, ((C8- C20)tricycloalkyl)-(Ci-C6)alkyl-, -(C7-Ci4)bicycloalkenyl, ((C7-C|4)bicycIoalkenyl)- (Ci-C6)alkyl-, -(C8-C2o)tricycloalkenyl, ((C8-C2o)tricycloalkenyl)-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, ((6- tol 4-membered)aryl)-(Ci-C6)alkyl-, -(7- to 12- membered)bicyclic ring system, ((7- to 12-membered)bicyclic ring system)-(C | - C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(Cr C6)alkyl-, -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C i- C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(C| - C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12- membered)bicycloheterocycle)-(Ci-C6)alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo)2,

-CH2(halo), -(C] -C6)alkyl, halo(C, -C6)alkyl-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(C,-C6)alkyl-, dihydroxy(C i-C6)alkyl-, -(C , -C6)alkoxy, ((C,- C6)alkoxy)CO(C ,-C6)alkoxy-, phenyl, benzyl, -NH2, -NH(C,-C6)alkyl, -(C | -C6)alkyl-NH(C,-C6)alkyl-R14, -CN, -SH, -OR1 1, -CONR5R6, -(C, -C6alkyl)-CO- NR5R6, -COOR7, -(C,-C6)alkyl-CO-OR7, -(C ,-C6)alkoxy-COOR7, -(OCH2CH2)s- 0(Ci-C6)alkyl, -(CH2CH20)s-(C,-C6)alkyl, (C,-C6)alkyl)sulfonyl, ((C,- C6)alkyl)sulfonyl(C, -C6)alkyl-, -NH-S02(Ci-C6)aIkyl, NH2-S02(Ci-C6)alkyl-, - N(S02(C ,-C6)alkyl)2, -C(=NH)NH , -NH-CO-(C,-C6)alkyl, -NH-CO-NH2, -NH-

Figure imgf000062_0001

C6)alkyl-(6- to 14- membered)aryl, -NH-(C,-C6)alkyl-CO-OR7, -NH-C(=0)-(C,- C6)alkyl-CO-OR7, -NH-C(=0)-CH( H2)-(C ,-C6)alkyl-CO-OR7, -(C3-Ci2)cycloalkyl, ((C3-C 12)cycloalkyl)-(C | -C6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(C C6)alkoxy-C(0)NR5R6, -NH-(CrC6)alkyl-C(0)-NR5R6, - C(0)NH-(C! -C6)alkyl-COOR7, ((6- to 14-membered)aryl)-(Ci -C6)alkyi-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C| -C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(Ci-C6)alkyl-, -(7- to 12- membered)bicycIoheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(Ci- C6)alkyl-;

R3 is selected from:

a) -H; or

b) -(Ci -C6)alkyl, -(C2-C6)alkenyl, or -(C2-C6)alkynyl;

R4 is selected from

a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), COOH, or CONH2; or b) -(C,.C5)alkyl, -(C2.C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, or -(C,.

C5)alkoxy, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; and R6 are each independently selected from

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);

b) -(C ,-C6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(C , C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci.Cio)alkyl, -(C2_Ci0)aIkenyl, -(C2 C io)aIkynyl, -(C,.Cl0)alkoxy, -(C3.Ci2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3,

-CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5R6;

c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(C, -C6)alkyl-, -COOR7, -(C, -C6)alkyl-

COOR7, -CONH2, or (C,.C6)alkyi-CONH-;

d) ((6- to 14-membered)aryl) optionally substituted with 1 , 2, or 3 independently selected Rj0 groups; or

e) R3 and R6 together with the nitrogen atom to which they are attached form a (4- to 8-membered)heterocycIe optionally substituted with I , 2, or 3 independently selected Rj0 groups;

R3a and R6a are each independently selected from the group consisting of:

a) hydrogen, -OH, halo, -C(haIo)3, -CH(halo)2, and -CH2(halo);

b) -(d-C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(CH2)n-0-(CH2)n-CH3, and - (Ci -C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci.Cio)alkyl, -(C .

C i2)alkenyl, -(C2_Ci2)alkynyl, -(Ci-Cio)alkoxy, -(C3_Ci2)cycloalkyl , -CHO, - COOH, -C(haIo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, and phenyl; c) -(C3-C8)cycloalkyl, ((C3.C8)cycloaIkyl)-(C,-C6)alkyl-, -COOR7, -(d-C6)alkyl- COOR7, -CONH2, and (C,,C6)alkyl-CONH-;

d) -(6- to 14-membered)aryl optionally substituted with 1 , 2, or 3 independently selected R30 groups; or

e) R5a and R6a together with the nitrogen atom to which they are attached form a (4- to 8-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected R30 groups; each R7 is independently selected from the group consisting of hydrogen, -(Ci - C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3-C 12)cycloalkyl, -(C4-Ci2)cycloalkenyl, ((C3-Ci2)cycloalkyl)-(C1-C6)alkyl-, and ((C4-Ci2)cycloalkenyl)-(Ci-C6)alkyl- ; each R is independently selected from H, -(C i-C6)alkyl, -(C2-C6)alkenyl, -(C2- C6)alkynyl, -(Ci -C io)alkoxy, -(C3-Ci2)cycloalkyl, -(C3-Ci2)cycloalkenyl, ((C3- C,2)cycloalkyl)-(C |-C6)alkyl-, ((C3-C i2)cycloalkenyl)-(C, -C6)alkyl-, -C(=0)(C ,- C6)alkyl or S02(C,-C6)alkyl; each R9 is independently selected from -OH, halo, -(Ci.C io)alkyl, -(C2.Cio)alkenyl, - (C2.Cio)alkynyl, -(C,-C10)alkoxy, -(C3-C12)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a; each R1 1 is independently selected from -C(halo)3, -CH(halo)2, -CH2(halo), -(C2- C5)alkenyl, -(C2,C5)alkynyl, -(CH2),1-0-(CH2),1-CH3, (6- to 14-membered)aryl, ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, or (5- to 12-membered)heteroaryl, ((5- to 12- membered)heteroaryl)-(C| -C6)alkyl-, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(C rC6)alkyl-COOR7, -C(=0)-(C C6)alkyl-COOR7,

Figure imgf000064_0001
, -C6)alkyl-COOR7, CONH2, or -(C,- C6)alkyl-CONH; each R30 is independently selected from COOR7, CONR5aR6a, -(C, -C6)alkyl, -C(=0), CN, -(3- to 12-membered)heteroaryl, ((3- to 12-membered)heteroaryl)-(Ci-C6)alkyl-, NH , halo, and ((6- to 14-membered)aryl)-(Ci-C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or 6;

n is an integer 0, 1 , 2, 3, 4, 5, or 6;

s in an integer 1 , 2, 3, 4, 5, or 6;

provided that when R4 is -(C | -C5)alkoxy then:

a) R2a and R2b cannot be taken together to form =0; or

b) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is either:

a. OH; or

b. -(C] -C6)alkyl; or

c) R2a cannot be H when the combination -Z-G-R10 is OH; and the pharmaceutically acceptable salts and solvates thereof.

In one embodiment, the present invention provides novel compounds of Formula IA' :

Figure imgf000065_0001

IA' wherein R1 , R2a, R2b, R3 and R4 are as defined above for Formula Γ, and the pharmaceutically acceptable salts and solvates thereof.

In another embodiment, the present invention provides novel compounds Formula IB' :

Figure imgf000065_0002

IB' wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula Γ, and the pharmaceutically acceptable salts and solvates thereof. In another embodiment, the present invention provides novel compounds of

Formula IC :

Figure imgf000066_0001

IC wherein R1 , R2a, R2b, R3 and R4 are as defined above for Formula P, and the pharmaceutically acceptable salts and solvates thereof.

In another embodiment, the present invention provides novel compounds of Formula ID' :

Figure imgf000067_0001

ID wherein R' , R2a, R2b, R3 and R4 are as defined above for Formula Γ, and the pharmaceutically acceptable salts and solvates thereof.

Figure imgf000067_0002

wherein R1 is selected from the group consisting of -(C i -Cio)alkyl, -(C2-Cio)alkenyl, -(C2- C i0)alkynyl, -(C3-C|2)cycloalkyl, (C3-C l 2)cycloaIkyl-(Ci-C6)alkyl-, -(C3- C|2)cycloalkenyl, (C3-Ci2)cycloalkenyl-(C i -C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(C, -C6)alkyl-, diphenyl(Ci-C6)alkyl-, -(OCH2CH2)s-0-(C,- C6)alkyl, -(CH2CH20)S-(C |-C6)alkyl, (C| -C ,0)alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(O)O-(C|-C |0)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;

R2a is hydrogen or OH;

R2b is

a) ((6- to 14-membered)aryl) or ((3- to 12-membered)heterocycle), each of which is optionally substituted with one, two, or three independently selected R groups; or

b) -Z-G-R10, provided that -Z-G-R 10 is other than hydrogen;

or R2a and R2b together form =0;

Z is absent or -(CH2)m- optionally substituted with 1 or 2 -(Ci-C6)alkyl;

G is selected from the group consisting of:

a) a bond, -(C | -C6)alkylene, -(C2-C6)alkenylene;

b) O, -OCO-, -C(=0), =CH;

c) NR8, =N-0, =N-NH;

d) S, SO, and S02;

R10 is selected from the group consisting of hydrogen, -(C| -Cio)alkyl, -(C2-Ci2)alkenyl, -C(=0),

Figure imgf000068_0001
-C(=0)-(6- to 14- membered)aryl, -C(=0)-(C, -C6)alkyl-(6- to 14-membered)aryl, -(C2-Ci2)alkynyl, -(C C,o)alkoxy, -(OCH2CH2)s-0(C1 -C6)alkyl, -(CH2CH20)s-(Ci-C6)alkyi, -NH2, - NH(C,-C6)alkyl, CN, NR5R6, -(C ,-C6)alkyl- R5R6, -CONR5R6, -(Ci -C6)alkyl-CO- NR5R6, -COOR7, -(C,-C6)alkyl-CO-OR7, -(CrC6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -CO-(CH2)n-CO-NR5R6, -(C3-Cl 2)cycloalkyl, ((C3-C ,2)cycloalkyl)-(C i- C6)alkyl-, -(C4-C,2)cycloalkenyl, ((C4-C ,2)cycloalkenyl)-(C |-C6)alkyl-, -(C6-

C,4)bicycloalkyl, ((C6-C i4)bicycloalkyl)-(C,-C6)alkyl-, -(C8.C20)tricycloalkyl, ((C8- C2o)tricycloalkyl)-(C| -C6)alkyl-, -(C7-C i4)bicycloaIkenyl, ((C7-Ci4)bicycloalkenyI)- (C | -C6)alkyl-, -(C8-C2o)tricycloalkenyl, ((C8-C2o)tricycloalkenyl)-(C rC6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(Ci-C6)alkyl-, -(7- to 12- membered)bicyclic ring system, ((7- to 12-membered)bicyclic ring system)-(C i - C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicycltc aryl)-(C t- C6)alkyl-, -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C ] - C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(C i - C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12- membered)bicycloheterocycle)-(C |-C6)alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(C | -C6)alkyl, halo(C ,-C6)alkyl-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(C| -C6)alkyl-, dihydroxy(Ci -C6)alkyl-, -(Ci -C6)alkoxy, ((C |- C6)alkoxy)CO(C i-C6)alkoxy-, phenyl, benzyl, -NH2, -NH(C ,-C6)alkyl,

-(C,-C6)alkyl-NH(C,-C6)alkyl-R14, -CN, -SH, -OR1 1 , -CONR5R6, -(C | -C6alkyl)-CO- NR5R6, -COOR7, -(Ci-C6)alkyl-CO-OR7, -(C| -C6)alkoxy-COOR7, -(OCH2CH2)s- 0(C, -C6)alkyl, -(CH2CH20)s-(C,-C6)alkyl, (C,-C6)alkyl)sulfonyl, ((C,- C6)alkyl)sulfonyl(C | -C6)alkyl-, -NH-S02(C| -C6)alkyl, NH2-S02(C i -C6)alkyl-, - N(S02(C, -C6)alkyl)2, -C(=NH)NH2, -NH-CO-(C,-C6)alkyl, -NH-CO-NH2, -NH- C(=0)-NH-(C,-C6)alkyl, -NH-C(=0)-(6- to 14- membered)aryl, -NH-C(=0)-(C, - C6)alkyl-(6- to 14- membered)aryl, -NH-(Ci-C6)alkyl-CO-OR7, -NH-C(=0)-(C ,- C6)alkyl-CO-OR7, -NH-C(=0)-CH(NH2)-(C,-C6)alkyl-CO-OR7, -(C3-Ct2)cycloalkyl, ((C3-Cl2)cycloalkyl)-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(Ci-C6)alkoxy-C(0) R5R6, -NH-(C,-C6)alkyl-C(0)-NR5R6, - C(0)NH-(C,-C6)alkyl-COOR7, ((6- to 14-membered)aryl)-(Cl -C6)alkyl-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(Ci-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycIe)-(C| -C6)alkyl-, -(7- to 12- membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(Ci- C6)alkyl-;

R is selected from: (a) -H; or

(b) -(C ,-C5)alkyl, -(C2-C5)alkenyl, or -(C2-C5)alkynyl;

R4 is selected from

a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), COOH, or CONH2; or b) -(C,_C5)aikyl, -(C2_C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, or -(C,_ C5)alkoxy, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups;

R5 and R6 are each independently selected from

a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);

b) -(C ,-C6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(d- C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci.Cio)alkyl, -(C2.C io)alkenyl, -(C2. C,o)alkynyl, -(C,.C i0)alkoxy, -(C3.C,2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or C0TSR5R6;

c) -(C3-C8)cycloalkyl, ((C3_C8)cycloalkyl)-(Ci-C6)alkyl-, -COOR7, -(Ci-C6)alkyl- COOR7, -CONH2, or (C,,C6)alkyl-CO H-;

d) ((6- to 14-membered)aryl) optionally substituted with 1 , 2, or 3 independently selected R30 groups; or

e) R5 and R6 together with the nitrogen atom to which they are attached form a (4- to 8-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected R30 groups; each R7 is independently selected from the group consisting of hydrogen, -(Q- C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3_C i2)cycloalkyI, -(C4-Ci2)cycloalkenyl, ((C3-Cl 2)cycloalkyl)-(C,-C6)alkyl-, and ((C4.C 12)cycloalkenyl)-(Ci-C6)alkyl- ; each R8 is independently selected from H, -(Ci -C6)alkyl, -(C2-C6)alkenyl, -(C2- C6)alkynyl, -(C| -C |0)alkoxy, -(C3-C i2)cycloalkyl, -(C3-C|2)cycloalkenyl, ((C3- C i2)cycloaIkyl)-(C , -C6)alkyl-, ((C3-C 12)cycloalkenyl)-(C , -C6)alkyl-, -C(=0)(C, - C6)alkyl or S02(C,-C6)alkyl; each R9 is independently selected from -OH, halo, -(Ci-C io)alkyl, -(C2.C io)alkenyl, - (C2.C ,o)alkynyl, -(C,.C|o)alkoxy, -(C3.C12)cycloalkyl , -CHO, -C(0)OH, -C(haio)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5R6; each R1 1 is is independently selected from -C(halo)3, -CH(halo)2, -CH2(halo), -(C2. C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, (6- to 14-membered)aryl, ((6- to 14-membered)aryl)-(C] -C6)alkyl-, (5- to 12-membered)heteroaryl, or ((5- to 12- membered)heteroaryl)-(C| -C6)alkyl, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(C,-C6)alkyl-COOR7, -C(=0)-(C ,- C6)alkyl-COOR7, -(C i-Ce^lkyl-C^OMC Ceialkyl-COOR7, CONH2, or -(C , - C6)alkyl-CONH; each R30 is independently selected from COOR7, CONR5R6, -(C i-C6)alkyl, CM, -(3- to 12-membered)heteroaryl, ((3- to 12-membered)heteroaryl)-(C | -C6)alkyl-, NH2, halo, and ((6- to 14-mernbered)aryl)-(C] -C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or 6;

n is an integer 0, 1 , 2, 3, 4, 5, or 6;

s in an integer 1, 2, 3, 4, 5, or 6;

provided that when R4 is -(C i-C5)alkoxy then:

a) R2a and R2b cannot be taken together to form =0; or

b) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is either:

a. OH; or

b. -(C, -C6)alkyl; or

c) R2a cannot be H when the combination -Z-G-R10 is OH;

and the pharmaceutically acceptable salts, prodrugs and solvates thereof. In one embodiment, the present invention provides novel compounds of Formula IA:

Figure imgf000072_0001

IA wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula I, and the pharmaceutically acceptable salts, prodrugs, and solvates thereof.

In another embodiment, the present invention provides novel compounds of Formula IB:

Figure imgf000072_0002

IB wherein R1 , R2a, R2b, R3 and R4 are as defined above for Formula I, and the pharmaceutically acceptable salts, prodrugs and solvates thereof. In another embodiment, the present invention provides novel compo Formula IC:

Figure imgf000073_0001

wherein R1 , R2a, R2b, R3 and R4 are as defined above for Formula I, and the pharmaceutically acceptable salts, prodrugs and solvates thereof.

In another embodiment, the present invention provides novel compounds Formula ID:

Figure imgf000073_0002

ID wherein R1, R2a, R2b, R3 and R4 are as defined above for Formula I, and the pharmaceutically acceptable salts, prodrugs and solvates thereof.

The following embodiments may be selected for any of the formulae shown above

Item 1 . In certain embodiments, R2a is absent.

Item 2. In certain embodiments, R2a is hydrogen.

Item 3. In certain embodiments, R2a is OH.

Item 4. In certain embodiments R2a and R2b together form =0.

Item 5. In certain embodiments of any one of Items 1 to 3, R2b is ((6- to 14- membered)aryl) or ((3- to 12-membered)heterocycle), each of which is optionally substituted with one or more RJ°.

Item 6. In certain embodiments of any one of Items 1 to 3, R b is -Z-G-R10, provided that -Z-G-R10 is other than hydrogen.

Item 7. In certain embodiments of any one of Items 1 to 6, Z is absent.

Item 8. In certain embodiments, of any one of Items 1 to 3, or 6 Z is CH2.

Item 9. In certain embodiments of any one of Items 1 to 3, or 6 to 7, G is NR .

Item 10. In certain embodiments of Item 9, G is NR , wherein R is hydrogen.

8 8

Item 1 1. In other embodiments of Item 9, G is NR , wherein R is (Cj- C6)alkyl.

Item 12. In other embodiments of Item Π , G is NR8, wherein R8 is methyl or ethyl.

Item 13. In certain embodiments of any one of Items 1 to 3, or 6 to 8, G is a bond.

Item 14. In certain embodiments of any one of Items 1 to 3, or 6 to 8, G is O.

Item 1 5. In certain embodiments of any one of Items 1 to 3, or 6 to 8, G is -

OCO-.

Item 16. In certain embodiments of any one of Items 1 to 3, or 6 to 8, G is -

C(=0).

Item 17. In certain embodiments of any one of Items 1 to 3, or 6 to 8, G is

=CH. item 18. In certain embodiments of any one of Items 1 to 3, or 6 to 8, G is =N-

O.

Item 19. In certain embodiments of any one of Items 1 to 3, or 6 to 8, G is S. Item 20. In certain embodiments of any one of Items 1 to 3, or 6 to 8, G is SO. Item 21 . In certain embodiments of any one of Items 1 to 3, or 6 to 8, G is

S02.

Item 22. In certain embodiments of any of Items I to 3, or 6 to 21 , R10 is a -(6- to 14-membered)aryl or ((6- to 14-membered)aryl)-(C i-C6)alkyl-, optionally substituted with one, two or three substituents independently selected from -(C i - C6)alkyl, halo, C(halo)3, CH(halo)2, CH2(halo), -(C,-C6)alkyl-CO-NR5R6, NH2- S02(Ci-C6)alkyl-, or -S02-NR5aR6a. In certain embodiments, R10 is substituted with - (C , -C6)alkyl.

Item 23. In certain embodiments of Item 22, R10 is substituted with -S02- R5aR6a.

Item 24. In certain embodiments of Item 23, at least one of R5a or R6a is hydrogen.

Item 25. In certain embodiments of any of Items 22 or 23, both R5a and R6a are hydrogen.

Item 26. In certain embodiments of Item 22, R10 is optionally substituted phenyl or benzyl.

Item 27. In certain embodiments, R10 is -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl-(Ci-C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12-membered)heterocycle)-(Ci-C6)alkyl-, (7- to 12-membered)bicycloheterocycle, or ((7-to 12-membered)bicycloheterocycle)-(Ci -C6)alkyl-, each of which is optionally substituted.

Item 28. In certain embodiments of Item 27, R10 is optionally substituted with one, two or three substituents independently selected from the group consisting of- (C] -C6)alkyl, -(C3-i2)cycloalkyl, -(6-to 14-membered)aryl, and -(5- to 12- membered)heteroaryl.

Item 29. In certain embodiments of Item 27, R10 is substituted with COOR7.

Item 30. In certain embodiments of Item 27, R7 is -(C 1 -C6)alk l. Item 31. In certain embodiments of Item 27, Ri 0 is piperidinyl optionally substituted with COOR7 or NH2.

Item 32. In certain embodiments of Item 27, R10 is pyrrolidinyl.

Item 33. In certain embodiments of Item 27, R10 is optionally substituted pyridinyl.

Item 34. In other embodiments of Item 27, R10 is furanyl.

Item 35. In certain embodiments, R10 is optionally substituted -C(=0)-((6- to 14-membered)ary I).

Item 36. In certain embodiments, R 10 is optionally substituted -C(=0)-NH-(4- to 12-membered)heteroaryl.

Item 37. In other embodiments, R10 is -C(=0) or -C(=0)-(C2-C6)alkenyl, optionally substituted with -(C3-C i2)cycloalkyl, -(6- to 14-membered)aryl or -(5- to 12-membered)heteroaryl.

Item 38. In certain embodiments of item 37, R10 is substituted with -(C3- C,2)cycloalk l.

Item 39. In certain embodiments, R10 is -C(=0)-(Ci-C6)alkyl-(6- to 14- membered)aryl, optionally substituted with halo.

Item 40. In certain embodiments, R10 is NR5R6 or -(C |-C6)alkyl-NR5NR6, each of which is optionally substituted.

Item 41. In certain embodiments of Item 40, at least one of R5 or R6 is hydrogen.

Item 42. In certain embodiments of any one of Items 40 or 41, at least one of R5 or R6 is -(Ci-C6)alkyl.

Item 43. In certain embodiments of Item 40, at least one of R5 or R6 is -(6- to 14-membered)aryl.

Item 44. In certain embodiments of Item 40, at least one of R5 or R6 is -(5- to 12-membered)heteroaryl.

Item 45. In other embodiments of any one of Items 40 or 41 , at least one of R5 or R6 is hydrogen, and the other is -(C | -C6)alkyl-COOR7.

Item 46. In certain embodiments of Item 45, R7 is hydrogen.

Item 47. In certain embodiments of Item 45, R7 is -(C | -C6)alkyl. Item 48. In certain embodiments, R10 is CONR5R6.

Item 49. In certain embodiments of Item 48, at least one of R3 or R6 is optionally substituted -(Ci-C6)alkyl.

Item 50. In certain embodiments of any one of Items 48 or 49, at least one of ^ or R6 is substituted with phenyl.

Item 51 . In other embodiments of Item 48, at least one of R5 or R6 is -(6- to 14-membered)aryl optionally substituted with one, two or three independently selected R30 groups.

Item 52. In other embodiments of Item 48, at least one of R3 or R6 is -(6- to 14-membered)aryl substituted with one Rj0group.

Item 53. In certain embodiments of Item 52, R30 is -(C i -C6)alkyl.

Item 54. In certain embodiments of Item 52, R30 is COOR7.

Item 55. In other embodiments of Item 54, R7 is hydrogen.

Item 56. In certain embodiments of Item 48, at least one of R5 or R6 is -(5- to 12-membered)heteroaryl or -(3- to 12-membered)heterocycle.

Item 57. In certain embodiments of Item 48, R5 and R6 together with the nitrogen to which they are attached, form an optionally substituted -(3- to 12- membered)heterocycle.

Item 58. In certain embodiments of Item 57, the -(3- to 12-membered) heterocycle is substituted with one, two or three independently selected halo, C(halo)3, CH(halo)2, or CH2(halo).

Item 59. In certain embodiments, R10 is optionally substituted -S02-(Ci- C6)alkyl.

Item 60. In certain embodiments, R10 is optionally substituted -S02-(C3- C|2)cycloalkyl.

Item 61 . In certain embodiments, R10 is optionally substituted -S02-(5- to 12- membred)heteroaryl.

Item 62. In certain embodiments, R10 is optionally substituted -S02-((6- to 14- membered)aryl) or -S02-((6- to 14-membered)aryl)-(C i-C6)alkyI.

Item 63. In certain embodiments of Item 60, R10 is substituted with one, two or three independently selected halo, C(halo)3, CH(halo)2, or CH2(halo). Item 64. In certain embodiments, R10 is optionally substituted -(Ci -C6)alkyl-

NR5R6.

Item 65. In certain embodiments of Item 64, at least one of R5 and R6 is hydrogen.

Item 66. In certain embodiments of any one of Items 64 or 65, at least one of

R5 and R6 is COOR7.

Item 67. In certain embodiments of Item 66, R7 is -(C]-C6)alkyl.

Item 68. In certain embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 where R8 is hydrogen, and R10 is -C(=0)-(C2-C6)alkenyl substituted with a -(5- to 12-membered)heteroaryl.

Item 69. In other embodiments, R2a is hydrogen, and R2h is -Z-G-R10, wherein Z is absent, G is NR8wherein R8 is (C C6)alkyl, and R 10 is ((6- to 14-membered)aryl)- (C,-C6)alkyk

Item 70. In other embodiments, R a is hydrogen, and R2b is -Z-G-R10, wherein Z is CH2, G is a bond, and R10 is CO R5R6, wherein one of R5 or R6 is hydrogen, and the other is (6- to 14-membered)aryl substituted with one R30 wherein R30 is COOR7 wherein R7 is hydrogen.

Item 7 1 . In other embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (Ci-C6)alkyl, and R10 is -C(=0) substituted with a (6- to 14-membered)aryl.

Item 72. In certain embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is CH2, G is O, and R10 is (6- 14-membered)aryl substituted with a -(Cp C6)alkyl-CO-NR5R6, wherein R5 and R6 are both hydrogen.

Item 73. In other embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is hydrogen, and R10 is (6- 14-membered)aryl substituted with NH2-S02(CrC6)alkyl-.

Item 74. In other embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (C C6)alkyl, and R10 is -(6- to 14-membered)aryl substituted with NH2-S02(C,-C6)alkyl-. Item 75. In other embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (C1-C6)alkyl, and R10 is -C(=0)-(C2-C6)alkenyl substituted with -(5- to I2-membered)heteroaryl or -(3- to- 12-membered)heterocycle.

Item 76. In other embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is hydrogen, and R 10 is -(6- to 14-membered)aryl substituted with NH2-S02(Ci-C6)alkyl-.

Item 77. In other embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (C, -C6)alkyl, and R10 is CONR5R6 wherein one of R5 or R6 is hydrogen and the other is -(C C6)alkyl-COOR7.

Item 78. In other embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein

Z is absent, G is a bond, and R10 is -(3- to 12-membered)heterocycle substituted with -

7 7

COOR wherein R is hydrogen.

Item 79. In other embodiments, R2a is hydrogen, and R b is -Z-G-R10, wherein Z is CH2, G is NRS wherein R8 is hydrogen, and R10 is -C(0)-(C, -C6)alkyl-(6- to 14- membered)aryl substituted with two halo.

Item 80. In other embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (C,-C6)alkyl, and R10 is CONR5R6 wherein one of R5 or R6 is hydrogen and the other is -(C ,-C6)alkyl-COOR7.

Item 81 . In other embodiments, R2a is hydrogen, and R2b is -Z-G-R 10, wherein Z is absent, G is NR8 wherein R8 is (C, -C6)alkyl, and R10 is -C(=0)-(C2-C6)alkenyl substituted with -(3- to 12-membered)heterocycle.

Item 82. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is R8 wherein R8 is -(C, -C6)alkyl, and R10 is ((3- to 12- membered)heterocycIe)-(Ci-C6)alkyl- substituted with COOR7.

Item 83. In one embodiment of Item 82, R7 is -(Ci-C6)alkyl.

Item 84. In certain embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 where R8 is hydrogen, and R10 is optionally substituted - S02-((6- to 14-membered)aryl).

Item 85. In certain embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is -N-S02, and R10 is -(6- to 14-membred)aryl or ((6- to 14- membered)aryl)-(Ci-C6)alkyl-, each of which is optionally substituted. Item 86. In certain embodiments, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is M R8 where R8 is -(C ,-C6)alkyl, and R10 is -(6- to 14- membered)aryl substituted with -S02-NR5aR6a.

Item 87. In one embodiment, R2a is hydrogen, and R2 is -Z-G-R10, wherein Z is abent, G is NR8 where R8 is hydrogen, and R10 is -(C ,-C6)alkyl-NR5R6.

Item 88. In one embodiment of Item 87, at least one of R5 and R6 is hydrogen.

Item 89. In one embodiment of any one of Items 87 or 88 at least one of R5 and R6 is -COOR7.

Item 90. In one embodiment of Item 89, R7 is -(Ci -C6)alkyl.

Item 91 . In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 where R8 is -(C, -C6)alkyl, and R10 is CONRsR6.

Item 92. In one embodiment of Item 91 , R5 and R6 taken together with the nitrogen atom to which they are attached form an optionally substituted -(3- to 12- membered)heterocycie.

Item 93. In one embodiment of Item 92, the -(3- to 12-membered) heterocycle is substituted with one R30 group.

Item 94. In one embodiment of Item 93, R30 is selected from the group consisting of halo, C(halo)3, CH(halo)2, and CH2(halo).

Item 95. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 where R8 is hydrogen, and R10 is optionally substituted -S02-((6- to 14-membered)aryl).

Item 96. In one embodiment of Item 95, R10 is substituted with one, two or three substituents independently selected from the group consisting of halo, C(halo)3, CH(halo)2, and CH2(halo).

Item 97. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is -N-S02, and R10 is optionally substituted -(6- to 14-membered)aryl.

Item 98. In one embodiment of Item 97, R10 is optionally substituted with one, two or three substituents independently selected from the group consisting of halo, C(halo)3, CH(halo)2, and CH2(halo).

Item 99. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is -CONR5R6. Item 100. In one embodiment of Item 99, R8 is -(C C6)alky].

Item 101 . In one embodiment of any one of Items 99 or 100 at least one of R5 and R6 is hydrogen.

Item 102. In one embodiment of any one of Items 99 to 101 , at least one of R5 and R6 is optionally substituted -(6- to 14-membered)aryl.

Item 103. In one embodiment of Item 102, the -(6 to 14-membered)aryl is substituted with one R30 group.

Item 104. In one embodiment of Item 103, R30 is -(C rC6)alkyl.

Item 105. in one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and Ri 0 is optionally substituted ((6- to 14-membered)aryl)-(C| - C6)alkyl-.

Item 106. In one embodiment of Item 105, R8 is hydrogen.

Item 107. In one embodiment of any one of Items 1 05 or 106, R10 is substituted with -(C] -C6)alkyl.

Item 108. In one embodiment, R2a is hydrogen, and R2 is -Z-G-R10, wherein

Z is absent, G is NR8, and R10 is -(3- to 12-membered)heterocycIe, ((3- to 12- membered)heterocycle)-(Ci-C6)alkyl-, (7- to 12-membered)bicycloheterocycle , or ((7- to 12-membered)bicycloheterocycle)-(C | -C6)alkyl-, each of which is optionally substituted..

Item 109. In one embodiment of Item 108, R8 is hydrogen.

Item 110. In one embodiment of any one of items 108 or 109, R10 is substituted with -COOR7.

Item 1 1 1 . In one embodiment of Item 1 10, R7 is -(C(-C6)alkyl.

Item 1 12. In one embodiment, R a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted -C(=0)-NH-((3- to 12- membered)heterocycle).

Item 1 13. In one embodiment of Item 1 12, R8 is -(C i-C6)alkyl.

Item 1 14. In one embodiment of any one of Items 1 12 or 1 13, R10 is substituted with one, two or three independently selected halo, C(halo)3, CH(halo)2, and CH2(halo). Item 1 1 5. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted ((6- to 14-membered)aryl)-(Ci- C6)alkyl-.

Item 1 16. In one embodiment of Item 1 15, R8 is hydrogen.

Item 1 17, In one embodiment of any one of Items 1 15 or 1 16, R10 is substituted with -S02-NR5aR6a.

Item 1 18. In one embodiment of Item 1 17, at least one of R5 and R6a is hydrogen.

Item 1 19. In one embodiment of any one of Items I 1 7 or 1 18, both R5a and R6a are hydrogen.

Item 120. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted -C(=0).

Item 121. In one embodiment of Item 120, R8 is -(C |-C6)alkyl.

Item 122. In one embodiment of any one of Items 120 or 121 , R10 is substituted with -(6- to 14-membered)aryl.

Item 123. In one embodiment of Item 122, R10 is substituted with phenyl or benzyl.

Item 124. In any one of Items 120 or 121 , R10 is substituted with -(3- to 12- membered)heterocycle or (5- to 12-membered)heteraryl.

Item 125. In one embodiment, R2a is hydrogen, and R2 is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is (6- to 14-membered)aryl or ((6- to 14- membered)aryl)-(C | -C6)alkyl-, each of which is optionally substituted.

Item 126. In one embodiment of Item 125, R8 is hydrogen.

Item 127. In one embodiment of any one of Items 125 or 126, R10 is substituted by one, two or three independently selected halo, C(halo)3, CH(halo)2, or CH2(halo).

Item 128. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted -C(=0)-(C 1 -C6)alkyl.

Item 129. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is NR5R6.

Item 130. In one embodiment of Item 129, R8 is hydrogen. item 131. In any one of Items 129 or 130, at least one of R5 or R6 is hydrogen. Item 132. In any one of Items 129 to 131 , at least one of R5 or R6 is -COOR7. Item 1 33. In one embodiment of Item 132, R7 is -(C |-C6)alkyl.

Item 134. In one embodiment R2 is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted -S02-((6- to 14-membered)aryl).

Item 135. In one embodiment of Item 134, R8 is hydrogen.

Item 136. In one embodiment of any one of Items 134 or 135, R10 is substituted with one, two or three independently selected halo, C(halo)3, CH(halo)2, or CH2(halo).

Item 1 37. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein

Z is absent, G is NR8, and R10 is optionally substituted ((6- to 14-membered)aryl)-(Ci- Q alkyl .

Item 1 38. In one embodiment of Item 137, R8 is -(C] -C6)alkyl.

Item 139. In one embodiment of any one of Items 137or 138, R10 is substituted with -S02-NR5aR6a.

Item 140. In one embodiment of Item 139, at least one of R5a and R6 is hydrogen.

Item 141 . In one embodiment of any one of Items 1 39 or 140, both R5a and R6a are hydrogen.

Item 142. In one embodiment, R2a is hydrogen, and R2b is -Z-G-R10, wherein

Z is absent, G is NR8, and R10 is optionally substituted -(C1-C6)alkyl-NR5R6.

Item 143. I one embodiment of Item 142, at least one of R5 and R6 is hydrogen.

Item 144. In one embodiment of anyone of Items 142 or 143, at least one of R5 and R6 is -COOR7.

Item 145. In one embodiment of Item 144, R7 is -(Ci-C6)alkyl.

Specific Compounds of the Invention include:

2-(((8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6

methanobenzo[ii]azocin- l l -ylidene)amino)oxy)acetic acid (Com 8-methoxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6-methanobenzo[i]azocin- 11-one oxime (Compound 2);

2- (((6R, 1 lJ?)-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[(/Jazocin-l l-yl)oxy)acetamide (Compound 3);

2-(((6R,\ lS 8-methoxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)oxy)acetamide (Compound 4);

8-methoxy-3,6-dimethyl- 1,2, 3,4,5, 6-hexahydro-2,6-methanobenzo[<Jazocin- 1 l-one-(9-(2-(diethylamino)ethyl) oxime (Compound 5);

8-methoxy-3,6-dimethyl-l 1 -propyl idene- 1,2, 3,4,5, 6-hexahydro-2,6- methanobenzo[c/]azocine (Compound 6);

4-( 11 , 11 -dihydroxy-8-methoxy-6-methyl- 1 ,2,5,6-tetrahydro-2,6- methanobenzo[^azocin-3(4/^-yl)-N,N-dimethyl-2,2-diphenylbutanamide

(Compound 7);

(6/?,115 -8-methoxy-iV,3,6-trimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l 1 -amine (Compound 8);

(6i?,11 ?)-8-methoxy-N,3,6-trimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l 1 -amine (Compound 9);

3- (cyclopropylmethyl)-8-methoxy-6-methyI- 1,2,3,4,5, 6-hexahydro-2, 6- methanobenzo[£]azocin-l 1-one Omethyl oxime (Compound 10);

((65,1 li?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)methanol (Compound 11);

(Z)-ethyl 2-(8-methoxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[<i]azocin-l l-ylidene)acetate (Compound 12);

(Z)-2-(8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-ylidene)acetic acid (Compound 13);

ethyl 2-((65", 11 i?)-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin- 1 l-yl)acetate (Compound 14);

2-((65',l l ?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-l l-yl)acetic acid (Compound 15);

(£)-3-(furan-3-yl)-N-((6i?, 11 Z?)-8-methoxy-3,6-dimethyl-l ,2,3,4,5,6- hexahydro-2,6-methanobenzo[(Jazocin-l l-yl)-N-methylacrylamide (Compound 16); 4-((6R, 1 15)- 1 1 -hydroxy-8-methoxy-6-methyl- 1 ,2,5,6-tetrahydro-2,6- methanobenzo[(f]azocin-3(4H)-yl)-N,N-dimethyl-2,2-diphenylbutanarnide

(Compound 17);

8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6-methanobenzo[J|azocin- 1 1 -one oxime (Compound 18);

4-( 1 1 -(hydroxyimino)-8-methoxy-6-methyl- 1 ,2,5,6-tetrahydro-2,6- methanobenzo[i/]azocin-3(4H)-yl)-N,N-dimethyl-2,2-diphenylbutanamide

(Compound 19);

(£)-3-(furan-3-yl)-N-((6#, l 15)-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-l 1 -yl)-N-methylacrylamide (Compound 20);

4-((6R, 1 1 R)-$, 1 1 -dihydiOxy-6-methyl- 1 ,2,5,6-tetrahydro-2,6- methanobenzo[d]azocin-3(4H)-yl)-N,N-dimethyl-2,2-diphenylbutanamide

(Compound 21);

4-((6R, 1 1 S 8, 1 1 -dihydroxy-6-methyl- 1 ,2,5,6-tetrahydro-2,6- methanobenzo[^azocin-3(4H)-yl)-N,N-dimethyl-2,2-diphenyIbutanamide

(Compound 22);

(£)-3-(furan-3-yl)-N-((2i?,6i?, 1 1 S)-8-methoxy-3,6-dimethy 1- 1 ,2,3 ,4,5,6- hexahydro-2,6-methanobenzo[(3i]azocin- l l -yl)acrylamide (Compound 23);

(£)-3-(furan-3-yl)-N-((2i?,6 ?, l lS>8-h ydroxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i Jazocin- 1 1 -yl)-N-methylacrylamide (Compound 24);

(£)-N-ethyl-3-(furan-3-yl)-N-((2#,6i?, l l S)-8-methoxy-3,6-dimethyl- 1 ,2, 3,4,5, 6-hexahydro-2,6-methanobenzo[i/]azocin- l l -yl)acrylamide (Compound 25);

4-fluoro-N'-((25',6^)-8-methoxy-3,6-dimethyI- l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-l l -ylidene)benzohydrazide (Compound 26);

N-{(2R,6R, 1 1 S -8-hydroxy-3,6-dimethy 1- 1 ,2,3,4,5,6-hexahydro-2,6- rnethanobenzo[t ]azocin- l l -yl)-N-methyl-2-(4-(methyIsulfonyl)phenyl)acetamide (Compound 27);

4-(((2^,6i?, 1 15)-8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[cflazocin-l l -yl)(methyl)amino)-4-oxobutanoic acid (Compound 28);

(2i?,6^, l l1S)-3,6-dimethyl- l l -(methy](phenethyl)amino)- l ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i ]azocin-8-ol (Compound 29); ter/-butyl 4-((((27?,6,S,llR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<i]azocin-l l-yl)amino)methyl)piperidine-l-carboxylate (Compound 30);

ter/-butyl 4-((((2i?,65,,lli?)-8-hydroxy-3,6-dimethyl-1,2,3,4,5,6-hexahydro-2,6- methanobenzo[c/]azocin-l l-yl)(methyl)amino)methyI)piperidine-l-carboxylate

(Compound 31);

4- (2-((65,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[if)azocin-l l-yl)acetamido)benzoic acid (Compound 32);

5- (((2i?,65,l l5)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[c]azocin-l l-yl)methoxy)nicotinic acid (Compound 33);

5-(((65,U^)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- met anobenzo[i]azocin-l l-yl)methoxy)nicotinic acid (Compound 34);

2- (2-((6S, 11 ?)-8-hydroxy-3,6-dimethyl- l-,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)acetamido)benzoic acid (Compound 35);

3-((6S, 11 i?)-8-methoxy-3 ,6-dimethy 1- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)benzonitrile (Compound 36);

3- ((6R, 11 S)- 11 -hydroxy-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexa ydro-2,6- methanobenzo[(/Jazocin-l l-yl)benzonitriie (Compound 37);

3-((65,,lli?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[£]azocin- 11 -yl)benzoic acid (Compound 38);

N-((2R,6R, 1 ltf)-8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)-N-methylbenzamide (Compound 39);

3-(((65',lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l -yl)methoxy)benzoic acid (Compound 40);

3-(((2R,6S,\ I5)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[c]azocin-l l-yl)methoxy)benzoic acid (Compound 41);

(6S, 11 R)- 11 -(3-( 1 H-tetrazol-5-y l)pheny l)-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/)azocine (Compound 42);

( 1 S)- 1 -(5-chloro-6-(((6,S, 11 ?)-8-hydroxy-3,6-dimethyI- 1 ,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i]azocin-l l-yl)methoxy)pyridin-3-yl)ethane-l,2-diol (Compound 43); 4-(((65,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[d]azocin-l l-yl)methoxy)benzamide (Compound 44);

4-(3-((2J?,6/?,l 15)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[d]azocin-l l-yl)-3-methylureido)benzoic acid (Compound 45);

4-(3-((2i?,6 ,l li?)-8-hydroxy-3,6-dimethyl-],2,3,4,5,6-hexahydro-2,6- methanobenzo( jazocin-l l-yI)-3-methylureido)benzoic acid (Compound 46);

3-(((2i?,6 ,l 15)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< ]azocin- 1 l-yl)(methyl)carbamoyI)benzoic acid (Compound 47);

3- (((2R,6R, 11 i?)-8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[ii]azocin-l l-yl)(methyl)carbamoyl)benzoic acid (Compound 48);

2-(((2i?,6i?,115 -8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydiO-2,6- methanobenzo[t]azocin-l l-yl)(methyl)carbamoyl)benzoic acid (Compound 49);

2- (4-(((2i?,6i?,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<i]azocin-l l-yl)amino)phenyl)ethanesulfonamide (Compound 50);

2-{A-{((2R,6R,\ l^-S-hydroxy-S^-dimethyl-l^^^^^-hexahydro^^- methanobenzo[d]azocin-l l-yl)(methyl)amino)phenyl)ethanesulfonamide (Compound 51);

4- ((6S, 1 lJ?)-8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[< )azocine-l 1 -carboxamido)benzoic acid (Compound 52);

2-(((65,l li?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< |azocin-l l-yl)methoxy)isonicotinamide (Compound 53);

3- ((6S,l li?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[ifJazocin-l l-yl)benzamide (Compound 54);

(25)-l-(2-((65,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[(f|azocin-l l-yl)acetyl)pyrrolidine-2-carboxylic acid (Compound 55);

(2R,6R, 115)-3-(cyclopropylmethyl)-8-methoxy-N,6-dimethyi- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[c/]azocin-l 1 -amine (Compound 56);

(E)-N-((2R,6RA lS>3-(cyclopropylmethyl)-8-methoxy-6-methyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocin- 11 -yl)-3-(furan-3-y l)-N-methylacry lamide (Compound 57); 2- (4-(((27?,6?,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)amino)phenyl)ethanesulfonamide (Compound 58);

4-(((2R,6R l^)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)(methyl)carbamoyl)benzoic acid (Compound 59);

3-((6i?, 1 \R)- 11 -hydroxy-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo( ]azocin-l l-yl)benzonitrile (Compound 60);

(6S, \]R)-\\ -(3-(benzyloxy)phenyl)-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocine (Compound 61);

methyl 3-((6R, \ \R)- \ l-hydroxy-8-methoxy-3,6-dimethyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[( ]azocin-l l-yl)benzoate (Compound 62);

3- ((6R, 115)-1 l-hydroxy-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)benzamide (Compound 63);

methyl 3-((6R, 115)- 11 -hydroxy-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocin-l l-yl)benzoate (Compound 64);

(6^,1 \R)-] l-(3-(lH-tetrazol-5-yl)phenyl)-8-methoxy-3,6-dimethyl-l, 2,3,4,5,6- hexahydro-2,6-methanobenzo[<si]azocin-l l-ol (Compound 65);

(6R,\\S)-] l-(3-(]H-tetrazol-5-yl)phenyl)-8-methoxy-3,6-dimethyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[</jazocin-l l-ol (Compound 66);

3-((6R, \\R)-\\ -hydroxy-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzoj jazocin-l l-yl)benzamide (Compound 67);

3-(3-((2tf,6?,l I5)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[(i]azocin-l l-yl)-3-methylureido)propanoic acid (Compound 68);

(6?)-8-methoxy-3,6-dimethyi-l l-(pyrrolidin-l -yl)- 1,2,3,4, 5,6-hexahydro-2,6- methanobenzo[i/]azocine (Compound 69);

l-((6i?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< ]azocin-l l-yl)piperidin-4-amine (Compound 70);

3-((6R, 115)- 11 -hydroxy-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[cf)azocin-l l-yl)benzoic acid (Compound 71);

l-(2-((65,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[ ]azocin-l l-yl)acetyl)piperidine-4-carboxylic acid (Compound 72); 2-(((2Λ,6Λ,1 15)-3-(cyclopropylmethy1)-8-methoxy-6-methyl-l ,2,3,4,5,6- exahydro-2,6-methanobenzo[ ]azocin- l l -yl)(methyl)amino)acetic acid (Compound 73);

1 -((6^)-8-methoxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l -yl)piperidine-3-carboxylic acid (Compound 74);

2-(3,4-dichlorophenyl)-N-(((6S, 1 1 S 8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[d]azocin- l 1 -yl)methyl)acetamide (Compound 75);

2- (3-((2i?,65, 1 15)-8-hydroxy-3,6-dimethyl- l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[<f]azocin- l l -yl)-3-methylLireido)-4-methylpentanoic acid (Compound 76);

(£)-N-((2R,6R, 1 1 S)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin- 1 1 -yl)-3-(furan-3-yl)-N-methyiacrylamide (Compound 77);

3- (4-cyanophenyl)- l -((2^,6^, 1 l S -8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin- l I -yl)-l -methyl urea (Compound 78);

3- (4-cyanophenyl)- 1 -{(2R,6R, 1 1 S)-8-hydroxy-3,6-dimethyl - 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i ]azocin- ] l -yl)- l -methylurea (Compound 79); and the pharmaceutically acceptable salts and solvates thereof. Preferred Compounds of the Invention include:

(£)-3-(furan-3-yl)-N-((2i?,6i?, l 15 -8-hydroxy-3,6-dimethyl- 1 , 2,3,4,5,6- hexahydro-2,6-methanobenzo[d]azocin-l l -yl)-N-rnethylacrylamide (Compound 24);

(2R,6i?,l lS)-3,6-dimethyl- l l -(methyl(phenethyl)amino)-l , 2,3,4,5,6- hexahydro-2,6-methanobenzo[flf]azocin-8-oi (Compound 29);

4-(2-((65, 1 1 ?)-8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/|azocin- l l -yl)acetamido)benzoic acid (Compound 32);

N-((2R,6R, 1 li?)-8-hydroxy-3,6-dimethy 1- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin- 1 l -yl)-N-methylbenzamide (Compound 39);

4- (((6S,l lS)-8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[</]azocin- l l -yl)methoxy)benzamide (Compound 44); 2-(4-(((2Λ,6Λ,1 lS)-8-hydroxy-3,6-dimethyl- 1,2,3 ,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)amino)phenyl)ethanesulfonamide (Compound 50);

2-(4-(((2R,6R 15)-8-hydroxy-3,6-dimethyI- 1,2,3 ,4,5,6-hexahydro-2,6- methanobenzo[d]azocin-l l-yl)(methyl)amino)phenyl)ethanesulfonamide (Compound 5 51);

(E)-N-((2R,6R,\ lS)-3-(cyclopropylmethyl)-8-methoxy-6-methyl-l ,2,3,4,5,6- hexahydi -2.6-methanobenzo[c]azocin-l l-yl)-3-(furan-3-yl)-N-methylacrylamide (Compound 57);

2- (4-(((2^,67?,l l^-S-hydroxy-S^-dimethyl-l^^^^^-hexahydro^^- lO methanobenzo[c/]azocin-l l-yl)amino)phenyl)ethanesulfonamide (Compound 58);

Figure imgf000090_0001

methanobenzo[(/Jazocin-l 1 -yl)-3-methylureido)propanoic acid (Compound 68);

1 -((6^)-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[<i]azocin-l 1 -yl)piperidine-3-carboxylic acid (Compound 74);

15 2-(3,4-dichlorophenyl)-N-(((6S,l lS)-8-methoxy-3,6-dimethyl-l, 2,3,4,5,6- hexahydro-2,6-methanobenzo[ |azocin-l l-yl)methyl)acetamide (Compound 75);

2- (3-((2^,6.S',115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[c]azocin-l l-yl)-3-methylureido)-4-methylpentanoic acid (Compound 76);

0 (£)-jV-((2R,6R,l 1 S)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1,2,3,4,5,6- hexahydro-2,6-methaiiobenzo[c/]azocin-l l-yl)-3-(furan-3-yl)-N-methylacrylamide (Compound 77);

3- (4-cyanopheny - 1 -((2R,6R, 1 lS)-8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[<i]azocin-l 1-yl)- 1 -methylurea (Compound 78);

5 3-(4-cyanophenyl)- 1 -((2R,6R, 115 8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocin-l l-yl)-l -methylurea (Compound 79);

and the pharmaceutically acceptable salts and solvates thereof.

Specific Compounds of the Invention also include: 3-(4-cyanophenyl)- l -((6i?, l li?)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1 ,2,3,4,5,6-hexahydro-2,6-methanobenzo[< ]azocin- 1 1 -yl)- 1 -methylurea (Compound

80) ;

3- (4-cyanophenyl)- l -((6 ?, l 15)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl-

1 ,2,3,4,5,6-hexahydro-2,6-methanobenzo[d]azociri-l 1 -yl)- 1 -methylurea (Compound

81) ;

4- (3-((6i?, l lS)-3-(cyclopropylmethyl)-8-methoxy-6-methyl-l , 2,3,4,5,6- hexahydro-2,6-methanobenzo[</)azocin- l l -yl)-3-methylureido)benzamide

(Compound 82);

(E)-N-({6R,\ li -3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[<i]azocin- l 1 -yl)-3-(furan-3-yl)-7V-methylacrylamide (Compound 83);

4-((2R,6R, 1 15)- 1 1 -(3-(4-eyanopheny 1)- 1 -methy lureido)-8-hydroxy-6-methyl- l ,2,5,6-tetrahydro-2,6-methanobenzo[i ]azocin-3(4H)-yl)-N,N-dimethyl-2,2- diphenylbutanamide (Compound 84);

(E)-N-((2R,6R, l 15)-3-(cyclopropylmethyl)-8-methoxy-6-methyl-l , 2,3,4,5,6- hexahydro-2,6-methanobenzo[i |azocin- l l -yl)-3-(furan-3-yl)-N-methylacrylamide (Compound 85);

(Z)-N-((2R,6R, l 1 )-3-(cyclopropylmethyl)-8-methoxy-6-methyl-l , 2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin- l l -yl)-3-(furan-3-yl)-N-methyIacrylamide (Compound 86);

3-(4-cyanophenyl)- 1 -((2R,6R, 1 1 )-8-hydroxy-6-methyl-3-phenethyl- 1 ,2, 3,4,5, 6-hexahydro-2,6-methanobenzo[i/]azocin-l l -yl)-l -methylurea (Compound

87) ;

3-(4-cyanophenyl)-l -((67?, l l ^)-3-(cyclobutylmethyl)-8-hydroxy-6-methyl- 1 ,2,3,4,5, 6-hexahydro-2,6-methanobenzo[i/]azocin- 1 1 -yl)- 1 -methylurea (Compound

88) ;

3-(4-cyanophenyl)- l -((6i?, l l i?)-3-(2,3-difluorobenzyl)-8-hydroxy-6-methyl- 1 ,2,3,4,5,6-hexahydro-2,6-methanobenzo[if|azocin- 1 1 -yl)-l -methylurea (Compound

89) ; 3-(4-cyanophenyl)- 1 -((2R,6R, 1 1 S)-3-(furan-3-ylmethyl)-8-hydroxy-6-methy I- l ,2,3,4,5,6-hexahydro-2,6-methanobenzo[d]azocin- l l -yl)-l -methylurea (Compound 90);

3- ((2R,6R, 1 lS>8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[£ )azocin-l l -yl)-3,4-dihydroquinazoHn-2( lH)-one (Compound 91); and the pharmaceutically acceptable salts and solvates thereof.

Specific Compounds of the Invention further include:

4- (2-(((2R,6S, } 17?)-8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo| |azocin- 1 l -yl)amino)ethyl)benzenesulfonamide (Compound 92);

4-(2-(((2S,6tf, l l1S)-8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin- l l-yl)amino)ethyl)benzenesulfonamide (Coumpand 93);

4-(2-(((2R,6S, 1 l S)-8-hydroxy-3,6-dimethyl- I ,2,3,4,5,6-hexahydro-2,6- methanobenzo[fif]azocin- l l -yl)amino)ethyl)benzenesulfonamide (Compound 94);

4-(2-(((2S,6i?, 1 1 i?)-8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin- l l -yl)amino)ethyl)benzenesulfonamide (Compound 95);

4-(2-(((2i?,65, l l J?)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin- l l -yl)amino)ethyl)benzenesulfonamide

(Compound 96);

4-(2-(((2i?,65, 1 15)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- l ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin- l 1 -yl)amino)ethyl)benzenesulfonamide

(Compound 97);

(2R,6S, l l R i 1 -((3,4-dichlorophenethyl)amino)-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-8-ol (Compound 98);

(2R,6S, 1 15)- 1 1 -((3,4-dichlorophenethyl)amino)-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[< Jazocin-8-ol (Compound 99);

(2^,65, 1 \ R)- I I -((4-methoxyphenethyl)amino)-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[<i]azocin-8-ol (Compound 100);

(2^,65, 1 1 R)-\ I -((4-fluorophenethyl)amino)-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i ]azocin-8-ol (Compound 101); (2R,6S,\ lS)-3-(cyclopropylmethyl)-6-methyl-1 l-((piperidin-4- y lmet y l)amino)- 1 ,2,3,4, 5,6-hexahydro-2,6-methanobenzo[i/]azocin-8-ol (Compound 102);

(2i?,6S,llS)-3,6-dimethyl-l l-((2-(pyridin-4-yl)ethyl)amino)- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[<i]azocin-8-ol (Compound 103);

(2R,6S,\\R)-3,6-d met y\-\ l-((2-(thiophen-2-yl)ethyl)amino)- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[( ]azocin-8-ol (Compound 104);

(2R,6S,]]S)-\ l-((4-(/er/-butyl)phenethyl)amino)-3,6-dimethy 1-1, 2,3,4,5,6- hexahydro^^-methanobenzofiJazocin-S-ol (Compound 105);

/erf-butyl 4-((((2i?,65,l 15 -8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)amino)methyl)piperidine-l-carboxylate (Compound 106);

ter/-butyl 4-{(((2R,6S,] 17?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)amino)methyl)piperidine-l-carboxylate (Compound 107);

tert-buty\ 4-((((2R,65,l li?)-8-hydroxy-3.6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[(i]azocin-l l-yl)(methyl)amino)methyl)piperidine-l-carboxylate

(Compound 108);

4-(2-(((2i?,65,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<f]azocin-l l-yl)(methyl)amino)ethyl)benzenesulfonamide (Compound 109);

(2^,65,1 S)-\ l-((2-(lH-indol-3-yl)ethyl)amino)-3,6-dimethyl-l, 2,3,4,5,6- hexahydro-2,6-methanobenzo[<Jazocin-8-ol (Compound 110);

tert-buty\ (3-(((2R,6S,\ 15)-8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)amino)propyl)carbamate (Compound 111);

tert-b ty\ (2-(((2^,65',115 -8-hydroxy-3,6-dimethyl-l, 2,3,4,5, 6-hexahydro-2,6- methanobenzo[t/]azocin-l l-yl)amino)ethyl)carbamate (Compound 112);

N-((2R,6S,\ lS)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-l l-yl)thiophene-3-carboxamide (Compound 113); N-((2R,6S,] 15)-3-(cycIopropyImethyl)-8-hydroxy-6-methyl- 1,2,3 ,4,5,6- hexahydro-2,6-methanobenzo[d]azocin- 1 l-yl)-N-methylthiophene-3-carboxamide (Compound 114);

N-((2R,6S,\ 15 -3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l, 2,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocin-l l-yl)-N-methylbenzamide (Compound 115);

yV-((2?,65,,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)-N,4-dimethylpentanamide (Compound 116);

N-((2^,6S,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<i]azocin-l l-yl)-N-methyl-2-phenylacetamide (Compound 117);

N-((2R,6S,\ l^)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l 1 -yl)-N-methyl-2-phenylacetamide (Compound 118);

N-((2R,6S,} li?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<i]azocin-l I -yl)-N-methylbenzamide (Compound 119);

N-((2^,65,115)-8-hydroxy-3,6-dimethyi-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[ ]azocin-l l-yl)-N-methylcyclohexanecarboxamide (Compound 120);

N-{{2R,6S,\ li?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexa ydro-2,6- methanobenzo[<i]azocin-l l-yl)-N-methylcyclohexanecarboxamide (Compound 121);

(£)-N-((2#,6S, 1 li?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<i]azocin- 1 l-yl)-N-methyl-3-(pyridin-3-yl)acrylamide (Compound 122);

N-((2R,6S, 117?)-8-liydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[<Jazocin- 1 l-yl)-N-methyl-2-(thiophen-3-yl)acetamide (Compound 123);

N-({2R,6S, 1 li?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[c/lazocin- 1 l-yl)-N-methylthiophene-3-carboxamide (Compound 124);

N-((2R,6S,\ llS)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<Jazocin-l l-yl)-N-methylthiophene-3-carboxamide (Compound 125);

N-((2?,65,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[JJazocin- 11 -yl)-N-methyl-5-(trifluoromethyl)picolinamide

(Compound 126); N-((2R,6S,\ 17?)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[d]azocin- 11 -yl)thiophene-3-carboxamide (Compound 127);

N-((2i?,6S,115)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocifi-l l-yl)-3-(trifluoromethyl)benzenesulfonamide (Compound 128);

N-((2R,6S,l l^)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocin-l l-yl)-3-(trifluoromethyl)benzenesulfonamide (Compound 129);

N-{{2R,6S, 115)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l ,2,3,4,5,6- hexahydro-2,6-methanobenzo[6T|azocin- 11 -yl)-V-methyl-3- (trifluoromethyl)benzenesulfonamide (Compound 130);

N-((2i?,65,115)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)-N-methyl-3-(trifluoromethyl)benzenesulfonamide (Compound 131);

N-((2i?,65,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< ]azocin-l l-yl)-N-methyl-3-(trifluoromethyl)benzenesulfonamide (Compound 132);

3-(4-(ter-butyl)phenyl)- 1 -((2R,6S, 115)-3-(cyclopropylmethyl)-8-hydroxy-6- methyl- 1,2,3,4, 5, 6-hexahydro-2,6-methanobenzo[c/]azocin-l 1 -yl)-l-methylurea

(Compound 133);

l-((2i?,6S,115 -3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l, 2,3,4,5,6- hexahydro-2,6-methanobenzo[d]azocin-l l-yl)-3-(5-fluorobenzo[d]thiazol-2-yl)-l- tnethylurea (Compound 134);

l-((6i?,l li?)-6-allyl-8-methoxy-3-methyl-1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)-3-(4-cyanophenyl)-l-methylurea (Compound 135);

3-(4-cyanophenyl)-l -((6R, 11 #)-8-methoxy-3-methyl-6-propyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocin-l l-yl)-l-methylurea (Compound 136);

3-(4-cyanophenyl)-l-((6i?,115)-8-hydroxy-3-methyl-6-propyl-l, 2,3,4,5,6- hexahydro-2,6-methanobenzo[d]azocin-l 1 -yl)-l-methylurea (Compound 137); 3-(4-(aminomethyl)phenyl)-l-((6J?,l 15 -8-methoxy-3-methyl-6-propyl- l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i/]azocin-l l-yl)-l-methylurea (Compound 138);

l-(5-fluorobenzo[ ]thiazol-2-yl)-3-((2i?,6S,lli?)-8-hydroxy-3,6-dimethyl- 1 ,2,3,4, 5,6-hexahydro-2,6-methanobenzo[i]azocin- 11 -yl)urea (Compound 139);

3-(5-fluorobenzo[ilthiazol-2-yl)-l-((2^,6S,l li?)-8-hydroxy-3,6-dimethyl- 1,2, 3,4,5, 6-hexahydro-2,6-methanobenzo[i|azocin-] l-yl)-l-methylurea (Compound 140);

and the pharmaceutically acceptable salts and solvates thereof.

As used herein, the term "-(Ci-Cio)alkyP' refers to straight-chain and branched non-cyclic saturated hydrocarbons having from 1 to 10 carbon atoms. Representative straight chain— (Ci-Cio) alkyl groups include methyl, -ethyl, -n-propyl, -n-butyl, -n- pentyl, -n-hexyl, n-heptyl, n-octyl, n-nonyl and n-decyl. Representative branched - (C|-Cio)alkyl groups include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, neopentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, 1,2- dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpenty, 4-methylpentyl, 1- ethylbutyl, 2-ethylbutyl, 3-ethylbutyl, 1,1-dimethylbutyl, 1 ,2-dimethylbutyl, 1,3- dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 5- methylhexyl, 6-methylheptyl, and the like.

As used herein, the term "-(C|-C6)alkyl" refers to straight-chain and branched non-cyclic saturated hydrocarbons having from 1 to 6 carbon atoms. Representative straight chain -(Ci-C6)alkyl groups include methyl, -ethyl, -n-propyl, -n-butyl, -n- pentyl, and -n-hexyl. Representative branched-chain -(Ci-C6)alkyl groups include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, neopentyl, 1-methylbutyl, 2- methylbutyl, 3-methylbutyl, 1,1-dimethylpropyl, and 1,2-dimethylpropyl,

methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-mehtylpentyl, 1-ethylbutyl, 2- ethylbutyl, 3-ethylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2- dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, and the like.

As used herein, the term "-(C2-C|o)alkenyl" refers to straight chain and branched non-cyclic hydrocarbons having from 2 to 10 carbon atoms and including at least one carbon-carbon double bond. Representative straight chain and branched - (C2-C i o)alkenyl groups include -vinyl, allyl, - 1 -butenyl, -2-butenyl, -isobutylenyl, - 1 - pentenyl, -2-pentenyl, -3-methyl- 1 -butenyl, -2-methyl-2-butenyl, -2,3-dimethyl-2- butenyl, -1 -hexenyl, -2-hexenyl, 3-hexenyl, and the like.

As used herein, the term "-(C2-C6) lkenyl" refers to straight chain and branched non-cyclic hydrocarbons having from 2 to 6 carbon atoms and including at least one carbon-carbon double bond. Representative straight chain and branched - (C2-C6)alkenyl groups include -vinyl, allyl, - 1 -butenyl, -2-butenyl, -isobutylenyl, -1 - pentenyl, -2-pentenyl, -3-methyl- 1 -butenyl, -2-methyl-2-butenyl, and the l ike.

As used herein, the term "-(C2-C io)alkyny ' refers to straight chain and branched non-cyclic hydrocarbons having from 2 to 10 carbon atoms and including at least one carbon-carbon triple bond. Representative straight chain and branched -(C2- Cio)alkynyl groups include -acetylenyl, -propynyl, - 1 butynyl, -2-butynyl, - 1 - pentynyl, -2-pentynyl, -3-methyl-l -butynyl, -4-pentynyl, - I -hexynyl, -2-hexynyl, -5- hexynyl, and the l ike.

As used herein, the term "-(C2-C6)alkynyl" refers to straight chain and branched non-cyclic hydrocarbons having from 2 to 6 carbon atoms and including at least one carbon-carbon triple bond. Representative straight chain and branched -(C2- C6)alkynyl groups include -acetylenyl, -propynyl, - 1 butynyl, -2-butynyl, - 1 -pentynyl, -2-pentynyl, -3-methyl- l -butynyl, -4-pentynyl, and the like.

As used herein, "-(C i-C io)alkoxy" means a straight chain or branched non-cyclic hydrocarbon having one or more ether groups and from 1 to 10 carbon atoms. Representative straight chain and branched (C| -Cio)alkoxys include -methoxy, -ethoxy, -propoxy, -butyloxy, -pentyloxy, -hexyloxy, -heptyloxy, -methoxymethyl, -2- methoxyethyl, -5-methoxypentyl, -3-ethoxybutyl and the like.

As used herein, "-(C i -C6)alkoxy" means a straight chain or branched non-cyclic hydrocarbon having one or more ether groups and from 1 to 6 carbon atoms. Representative straight chain and branched (C | -C5)alkoxys include -methoxy, - ethoxy, -propoxy, -butyloxy, -pentyloxy, -hexyloxy, -methoxymethyl, -2- methoxyethyl, -5-methoxypentyl, -3-ethoxybutyl and the like. As used herein, "-(Ci-C5)alkoxy" means a straight chain or branched non-cyclic hydrocarbon having one or more ether groups and from 1 to 5 carbon atoms. Representative straight chain and branched (Ci-C5)alkoxys include -methoxy, - ethoxy, -propoxy, -butyloxy, -pentyloxy, -methoxymethyl, -2-methoxyethyl, -5- methoxypentyl, -3-ethoxybutyl and the like.

As used herein, the term "-(C3-C i2)cycloalkyl" refers to a cyclic saturated hydrocarbon having from 3 to 12 carbon atoms. Representative (Q-C ^cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, and the like.

As used herein, "-(C6-C|4)bicycloalkyl" means a bicyclic hydrocarbon ring system having from 6 to 14 carbon atoms and at least one saturated cyclic alkyl ring. Representative -(C6-C |4)bicycloalkyls include -indanyl, -norbornyl, - 1 ,2,3,4- tetrahydronaphthalenyl, -5,6,7,8-tetrahydronaphthaienyl, -perhydronaphthalenyl, and the like.

As used herein, "-(C8-C2o)tricycloalkyl" means a tricyclic hydrocarbon ring system having from 8 to 20 carbon atoms and at least one saturated cyclic alkyl ring. Representative -(C8-C2o)tricycloalkyls include -pyrenyl, -adamantyl, -1 ,2,3,4- tetrahydroanthracenyl, -perhydroanthracenyl -aceanthrenyl, - 1 ,2,3,4- tetrahydropenanthrenyl, -5,6,7,8-tetrahydrophenanthrenyl, -perhydrophenanthrenyl, tetradecahydro- l H-cyclohepta[a]naphthalenyl, tetradecahydro- l H- cyclooctafejindenyl, tetradecahydro- l H-cyclohepta[e]azulenyl,

hexadecahydrocycloocta[6]naphthalenyl, hexadecahydrocyclohepta[o]heptalenyl, tricyclo-pentadecanyl, tricyclo-octadecanyl, tricyclo-nonadecanyl, tricyclo-icosanyl, and the like.

As used herein, the term "-(C4-Ci2)cycloalkenyl" refers to a cyclic hydrocarbon having from 4 to 12 carbon atoms, and including at least one carbon-carbon double bond. Representative -(C4-C i2)cycloalkenyls include -cyclobutenyl, -cyclopentenyl, - cyclopentadienyl, -cyclohexenyl, -cyclohexadienyl, -cycloheptenyl, - cycloheptadienyl, -cycloheptatrienyl, -cyclooctenyl, -cyclooctadienyl, - cyclooctatrienyl, -cyclooctatetraenyl, -cyclononenyl, -cyclononadienyl, -cyclodecenyl, -cyclodecadienyl, -norbornenyl, and the like. As used herein, "-(C7-Ci4)bicycloalkenyl" means a bi-cyclic hydrocarbon ring system having at least one carbon-carbon double bond in at least one of the rings and from 7 to 14 carbon atoms. Representative -(C7-C| 4)bicycloalkenyls include - bicyclo[3.2.0]hept-2-enyl, -indenyl, -pentalenyl, -naphthalenyi, -azulenyl, -heptalenyl, - 1 ,2,7,8-tetrahydronaphthalenyl, and the like.

As used herein, "-(C8-C2o)tricycloalkenyl" means a tri-cyclic hydrocarbon ring system having at least one carbon-carbon double bond in one of the rings and from 8 to 20 carbon atoms. Representative -(C8-C2o)tricycloalkenyls include -anthracenyl, - phenanthrenyl, -phenalenyl, -acenaphthalenyl, as-indacenyl, s-indacenyl,

2,3,6,7,8,9,10, 1 l-octahydro-l H-cycloocta[e]indenyl, 2,3,4,7,8,9, 10, 1 1 -octahydro-l H- cyclohepta[a]naphthalenyl, 8,9, 10, 1 l -tetrahydro-7H-cyclohepta[a]naphthalenyl, 2,3,4,5,6,7,8,9, 10, 1 1 , 12, 13-dodecahydro- l H-cyclohepta[a]heptalenyl,

1 ,2,3,4,5,6,7,8,9, 10, 1 1 , 12, 13, 14-tetradecahydro-dicyclohepta[ , cjcyclooctenyl, 2,3,4,5,6,7,8,9, 10, 1 1 , 12, 13-dodecahydro- l H-dibenzo[a,</]cyclononenyl, and the like.

As used herein, "-(3- to 12-membered)heterocycle" or "-(3- to 12- membered)heterocyclo" means a 3- to 12-membered monocyclic heterocyclic ring which is either saturated, or partially saturated, or non-aromatic. A 3-membered heterocycle can contain up to 1 heteroatom; a 4-membered heterocycle can contain up to 2 heteroatoms; a 5-membered heterocycle can contain up to 4 heteroatoms; a 6- membered heterocycle can contain up to 4 heteroatoms; and a 7-membered heterocycle can contain up to 5 heteroatoms. Each heteroatom is independently selected from nitrogen (which can be quaternized), oxygen, and sulfur (including sulfoxide and sulfone). The -(3- to 12-membered)heterocycle can be attached via a nitrogen or carbon atom. Representative -(3- to 12-membered)heterocycles include aziridinyl, thiazolidinyl, morpholinyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperazinyl, 2,3- dihydrofuranyl, dihydropyranyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, dihydropyridinyl, tetrahydropyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, oxepanyl, thiepinyl, 3,4,5,6-tetrahydro-2H-azepinyl, 1 ,4-thiazepinyl, azocinyl, thiocanyl, and the like. As used herein, "-(5- to 12-membered)heterocycle" or "-(5- to 12- membered)heterocyclo" means a 5- to 12-membered monocyclic heterocycl ic ring which is either saturated, or unsaturated, or non-aromatic. A 5-membered heterocycle can contain up to 4 heteroatoms; a 6-membered heterocycle can contain up to 4 heteroatoms; and a 7-membered heterocycle can contain up to 5 heteroatoms.

Representative (5- to 12-membered)heterocycles include thiazolidinyl, morphol inyl, pyrrolidinonyl, pyrrolidinyl, piperidinyl, piperazinyl, 2,3-dihydrofuranyl,

dihydropyranyl, hydantoinyl, valerolactamyl, tetrahydrofuranyl, tetrahydropyranyl, dihydropyridinyl, tetrahydropyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, oxepanyl, thiepinyl, 3,4,5, 6-tetrahydro-2H-azepinyl, 1 ,4- thiazepinyl, azocinyl, thiocanyl, and the like.

As used herein, "-(4- to 8-membered)heterocycle" or "-(4- to 8- membered)heterocyclo" means a 4- to 8-membered monocyclic heterocyclic ring which is either saturated or unsaturated, or non-aromatic. A 4-membered heterocycle can contain up to 2 heteroatoms; a 5-membered heterocycle can contain up to 4 heteroatoms; a 6-membered heterocycle can contain up to 4 heteroatoms; and a 7- membered heterocycle can contain up to 5 heteroatoms. Each heteroatom is independently selected from nitrogen (which can be quaternized), oxygen, and sulfur (including sulfoxide and sulfone). The -(4- to 8-membered)heterocycle can be attached via a nitrogen or carbon atom. Representative -(4- to 8- membered)heterocycles include morpholinyl, piperidinyl, piperazinyl, 2,3- dihydrofuranyl, dihydropyranyl, hydantoinyl, valerolactamyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, dihydropyridinyl, tetrahydropyridinyl, tetrahydropyrimidinyl, tetrahydrothiophenyl, tetrahydrothiopyranyl, and the like.

As used herein, "-(7- to 12-membered)bicycloheterocycle" or "-(7- to 12- membered)bicycloheterocyclo" means a 7- to 12-membered bicycl ic, heterocyclic ring which is either saturated, unsaturated, or non-aromatic. At least one ring of the bicycloheterocycle contains at least one heteroatom. A -(7- to 12- membered)bicycloheterocycle contains from 1 to 4 heteroatoms independently selected from nitrogen (which can be quaternized), oxygen, and sulfur (including sulfoxide and sulfone). The -(7- to 12-membered)bicycloheterocycle can be attached via a nitrogen or carbon atom. Representative -(7- to 1 0-membered)bicycloheterocycles include -quinolinyl, -isoquinolinyl, -chromonyl, -coumarinyl, -indolyl, -indolizinyl,

-benzo[b]furanyl, -benzo[b]thiophenyl, -benzo[t/][ l ,3]dioxolyl, -indazolyl, -purinyl, - 4H-quinolizinyl, -isoquinolyl, -quinolyl, -phthalazinyl, -naphthyridinyl, -carbazolyl, - β-carbolinyl, -indolinyl, isoindolinyl, - 1 ,2,3,4-tetrahydroquinolinyl, - 1 ,2,3,4- tetrahydroisoquinolinyl, pyrrolopyrrolyl and the like.

As used herein a "-(6- to 14- membered)aryl" means an aromatic carbocyclic ring containing 6 to 14 carbon atoms, including both mono- and bicyclic ring systems. Representative -(5- to 14-membered)aryl groups include -indenyl, -phenyl, -naphthyl, and the like.

As used herein a "-(7- to 12- membered)bicyclic aryl" means an bicyclic aromatic carbocyclic ring containing 7 to 1 2 carbon atoms. Representative -(7- to 12- membered) bicyclic aryl groups include -indenyl, -naphthyl, and the like.

As used herein a "-(6- to 14- membered)aryloxy" means an oxygen substituted by an aromatic carbocyclic ring containing 6 to 14 carbon atoms, including both mono- and bicyclic ring systems. Representative -(6- to 14-membered)aryloxy groups include phenoxy and 4-fluorophenoxy, and the like.

As used herein a "hydroxy(C | -C6)alkyl" means any of the above-mentioned

Figure imgf000101_0001
6 alkyl groups substituted by one or more hydroxy groups. Representative hydroxy(Ci - C6)alkyl groups include hydroxymethyl, hydroxyethyl, hydroxypropyl and

hydroxybutyl groups, and especially hydroxymethyl, 1 -hydroxyethyl, 2-hydroxyethyl, 1 ,2-dihydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 3-hydroxybutyl,

4-hydroxybutyl, 2-hydroxy-l-methylpropyl, and 1 ,3-dihydroxyprop-2-yl.

As used herein a "dihydroxy(C i -C6)alkyl" means any of the above-mentioned C i_6 alkyl groups substituted by two hydroxy groups. Representative dihydroxy(Ci - C6)alkyl groups include dihydroxyethyl, dihydroxypropyl and dihydroxybutyl groups, and especially 1 ,2-dihydroxyethyl, 1 ,3-dihydroxypropyl, 2,3-dihydroxypropyl, 1 ,3- dihydroxybutyl, 1 ,4-dihydroxybutyl, and 1 ,3-dihydroxyprop-2-yl.

As used herein a "-(5- to 12- membered)carbocyclic ring" means a mono- or bicyclic hydrocarbon ring system having from 5 to 12 carbon atoms, which is either saturated, unsaturated, non-aromatic or aromatic. Representative -(5- to 12- membered)carbocyclic rings include cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecy!, cyclododecyl, -indanyl, -norbornyl, - 1 ,2,3,4- tetrahydronaphthalenyl, -5,6,7,8-tetrahydronaphthalenyl, -perhydronaphthalenyl, adamantyl, cyclopentenyl, -cyclopentadtenyl, -cyclohexenyl, -cyclohexadienyl, - cycloheptenyl, -cycloheptadienyl, -cycloheptatrienyl, -cyclooctenyl, -cyclooctadienyl, -cyclooctatrienyl, -cyclooctatetraenyl, -cyclononenyl, -cyclononadienyl, - cyclodecenyl, -cyclodecadienyl, -norbo nenyl, heptalenyl, and the like.

As used herein a "-(7- to 12- membered)bicyclic ring system" means a 7- to 12- membered carbocycl ic or heterocyclic ring, which may be either unsaturated, saturated, non-aromatic or aromatic. Representative -(7- to 12-membered)bicyclic ring systems include azulenyl, -norbornyl, - 1 ,2,3,4-tetrahydronaphthalenyl,

-5,6,7,8-tetrahydronaphthalenyl, -perhydronaphthalenyl, bicyclo[3.2.0]hept-2-enyl, - indenyl, naphthyl, -pentalenyl, -naphthalenyl, -azulenyl, -heptalenyl, -1 ,2,7,8- tetrahydronaphthalenyl, -quinolinyl, -isoquinolinyl, -chromonyl, -coumarinyl, -indolyl, -indolizinyl, -benzo[b]furanyl, -benzo[b]thiophenyl, -benzo[i/][ l ,3]dioxolyl, - indazolyl, -purinyl, -4H-quinolizinyl, -isoquinolyl, -quinolyl, -phthalazinyl, - naphthyridinyl, -carbazolyl, -β-carbolinyl, -indolinyl, isoindolinyl,

- 1 ,2,3,4-tetrahydroquinolinyl, - 1 ,2,3,4-tetrahydroisoquinolinyl, pyrrolopyrrolyl, and the like.

As used herein, "-(5- to 12-membered)heteroaryl" means an aromatic heterocycle ring of 5 to 12 members, including both mono- and bicyclic ring systems, where at least one carbon atom (of one or both of the rings) is replaced with a heteroatom independently selected from nitrogen, oxygen, and sulfur, or at least two carbon atoms of one or both of the rings are replaced with a heteroatom independently selected from nitrogen, oxygen, and sulfur. In one embodiment, one of the bicyclic - (5- to 12-membered)heteroaryl rings contains at least one carbon atom. In another embodiment, both of the bicyclic -(5- to 12-membered)heteroaryl rings contain at least one carbon atom. Representative -(5- to 12-membered)heteroaryls include pyridyl, furyl, benzofuranyl, thiophenyl, benzothiophenyl, quinolinyl, isoquinolinyl, pyrrolyl, indolyl, oxazolyl, benzoxazolyl, imidazolyl, benzimidazolyl, thiazolyl, benzothiazolyl, isoxazolyl, oxadiazoiinyl, pyrazolyl, isothiazolyl, pyridazinyl, pyrimidyl, pyrimidinyl, pyrazinyl, thiadiazolyl, triazinyl, thienyl, thiadiazolyl, cinnolinyl, phthalazinyl, quinazolinyl, and the like.

As used herein, the terms "halo" and "halogen" refer to fluoro, chloro, bromo or iodo.

As used herein, "-CH2(halo)" means a methyl group where one of the hydrogens of the methyl group has been replaced with a halogen. Representative - CH2(halo) groups include -CH2F, -CH2C1, -CH2Br, and -CH2I.

As used herein, "-CH(halo)2" means a methyl group where two of the hydrogens of the methyl group have been replaced with a halogen. Representative - CH(halo)2 groups include -CHF2, -CHC12, -CHBr2, -CHBrCl, -CHCII, and -CHI2.

As used herein, "-C(halo)3" means a methyl group where each of the hydrogens of the methyl grqup has been replaced with a halogen. Representative -C(halo)3 groups include -CF3, -CC13, -CBr3, and -CI3.

As used herein, the term "optionally substituted" refers to a group that is either unsubstituted or substituted.

Optional substituents on optionally substituted groups, when not otherwise indicated, include 1 , 2, or 3 groups each independently selected from the group consisting of -(Ci-C6)alkyl, OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), NH2, - NH(C| -C6)alkyl, CN, SH, -(5- to 12-membered)carbocyclic ring, -(5- to 12- membered)heterocycle, phenyl, benzyl, (=0), halo(C| -C6)alkyl-, -(C2-C6)alkenyl, -(C - C6)alkynyl, hydroxy(Ci-C6)alkyl-, OR4a (such as -OC(halo)3 and -0(C, -C6)alkyl), -CONR5bR6B, and -COOR7a; where R4a is selected from the group consisting of -(C C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -C(halo)3, hydroxy(CrC6)alkyl-, -(C3- Ci2)cycloalkyl, -(C6-C i4)bicycloalkyl, -(C8-C2o)tricycloalkyl, -(C4-Ci2)cycloalkenyl, - (C7-Ci4)bicycloalkenyl, -(C8-C20)tricycloalkenyl, -(5- to 12-membered)aryl, -(5- to 12- membered)heteroaryl, -(3- to 12-membered)heterocycle, and -(7- to 12- membered)bicycloheterocycle; R5b and R6b are each independently selected from the group consisting of -(C C6)alkyl, -(C3-C8)cycloalkyl, ((C3-C8)cycloalkyl)-(C

C6)alkyl-, or together with the nitrogen atom to which they may both be attached form a (4- to 8- membered)heterocycle; and R7a is selected from the group consisting of hydrogen, -(Ci-C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3-C12)cycloalkyl, -(C4- C12)cycloalkenyl, ((C3-C , 2)cycloalkyl)-(C , -C6)alkyl-, ((C4-C i2)cycloalkenyl)-(C , - C6)alkyl-, -(Ci-C6)alkoxy-COO 7, -NH-C(=0)-NH-(CrC6)alkyI, -NH-C(=0)-(5- to 12- membered)aryl, -NH-C(=0)-(C,-C6)alkyI-(5- to 12- membered)aryl, -NH-(C,- C6)alkyl-COOR7, -NH-C(=0)-(C,-C6)alkyl-COOR7, -NH-C(=0)-CH(NH2)-(C,- C6)alkyl-COOR7, -(C3-Cl2)cycloalkyI, -(5- to 12-membered)aryl, -(5- to 12- membered)aryloxy, -(Ci-C5)alkoxy-CONR5R6, -NH-(C,-C6)alkyl-CO^R5R6, - C(0)NH-(Ci-C6)alkyl-COOR7,

Figure imgf000104_0001
-(C,-C6)alkoxy- C(=0)-(C|-C6)alkyi, -(C,-C6)alkyl-CN, -(Ci-C6)alkyI-COOR7, -(C,-C6)alkoxy- COOR7, -(C3-Ci2)cycloalkyl, ((C3-C12)cycloalkyl)-(Ci-C6)alkyl-, ((C3-Ci2)cycloalkyl)- (CrC6)alkoxy-, ((C3-C|2)cycloalkyl)-(C,-C6)alkoxy-(Cl-C6)alkyl-, -(C4-

C|2)cycIoalkenyl, ((C4-C|2)cycloalkenyl)-(Ci-C6)alkyl-, ((C4-Ci2)cycloalkenyl)-(C|- C6)alkoxy-, ((C4-C|2)cycloalkenyl)-(Ci-C6)alkoxy-(C|-C6)alkyl-, -(5- to 12- membered)aryl, ((5- tol2-membered)aryl)-(C|-C6)alkyl-, ((5- tol2-membered)aryl)- (C,-C6)alkoxy-, ((5- tol2-membered)aryl)-(C|-C6)alkoxy-(Ci-C6)alkyl-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C|-C6)alkyl-, ((5- to 12- membered)heteroaryl)-(Ci-C6)alkoxy-, ((5- to 12-membered)heteroaryl)-(Ci- C6)alkoxy-(Ci-C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12

membered)heterocyc!e)-(Ci-C6)alkyl-, ((3- to 12 membered)heterocycle)-(Ci- C6)alkoxy-, and ((3- to 12 membered)heterocycle)-(Ci-C6)alkoxy-(Ci-C6)alkyl-;

wherein R\ R6, and R7 are as defined above for Formula 1.

As used herein, the term "Z is unsubstituted" means that Z is "-(CH2)m-" and m is selected from 1 , 2, 3, 4, 5, or 6.

As used herein, the term "Z is substituted" means that Z is "-(CH2)m-" and m is selected from 1 , 2, 3, 4, 5, or 6 and one or two of the hydrogen atoms has been independently replaced by a -(C|-C6)alkyl group.

As used herein, compounds that bind to receptors and mimic the regulatory effects of endogenous ligands are defined as "agonists". Compounds that bind to receptors and are only partly effective as agonists are defined as "partial agonists". Compounds that bind to receptors but produce no regulatory effect, but rather block the binding of ligands to the receptors are defined as "antagonists". (Ross and

enakin, "Ch.2: Pharmacodynamics: Mechanisms of Drug Action and the Relationship Between Drug Concentration and Effect", pp. 31 -32, in Goodman & Oilman 's the Pharmacological Basis of Therapeutics, 10th Ed. (J.G. Hardman, L.E. Limbird and A.Goodman-Gilman eds., 2001 ).

Compounds of the Invention can be in the form of prodrugs of the compounds of Formula I", Formula IA", Formula IB", Formula IC", Formula ID"; Formula Γ, Formula IA ', Formula IB', Formula IC, or Formula ID'; Formula I, Formula IA, Formula IB, Formula IC, or Formula I D. Prodrugs are covalently bonded carrier molecules that release an active compound of Formula I", Formula IA", Formula IB", Formula IC", Formula ID"; Formula Γ, Formula IA', Formula IB ', Formula IC, or Formula ID' ; Formula I, Formula IA, Formula IB, Formula IC, or Formula ID in vivo. Non-limiting examples of prodrugs will typically include esters of the Compounds of the Invention that can be metabolized to the active compound by the action of enzymes in the body. Such prodrugs may be prepared by reacting a compound of Formula I", Formula IA", Formula IB", Formula IC", Formula ID"; Formula Γ, Formula IA', Formula IB', Formula IC, or Formula ID'; Formula I, Formula IA, Formula IB, Formula IC, or Formula ID, with an anhydride such as succinic anhydride.

Compounds of the Invention can be isotopically-labeled (i.e., radio-labeled). Examples of isotopes that can be incorporated into the disclosed compounds include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as 2H, 3H, 1 'C, 13C, 14C, l 5N, l 80, 170, 3 I P, 32P, 35S, 18F and 36C1, respectively, and preferably 3H, "C, and 14C. Isotopically-labeled Compounds of the Invention can be prepared by methods known in the art in view of this disclosure. For example, tritiated Compounds of the Invention can be prepared by introducing tritium into the particular compound by catalytic dehalogenation with tritium. This method may include reacting a suitable halogen-substituted precursor of a Compound of the Invention with tritium gas in the presence of an appropriate catalyst such as Pd/C in the presence of a base. Other suitable methods for preparing tritiated compounds are generally described in Filer, Isotopes in the Physical and Biomedical Sciences, Vol. 1 , Labeled Compounds (Part A), Chapter 6 (1987). 14C-labeled compounds can be prepared by employing starting materials having a l 4C carbon. Isotopically labeled Compounds of the Invention, as well as the

pharmaceutically acceptable salts, prodrugs and solvates thereof, can be used as radioligands to test for the binding of compounds to an opioid or ORL- 1 receptor. For example, a radio-labeled Compound of the Invention can be used to characterize specific binding of a test or candidate compound to the receptor. Binding assays utilizing such radio-labeled compounds can provide an alternative to animal testing for the evaluation of chemical structure-activity relationships. In a non-limiting embodiment, the present invention provides a method for screening a candidate compound for the ability to bind to an opioid or ORL- 1 receptor, comprising the steps of: a) introducing a fixed concentration of the radio-labeled compound to the receptor under conditions that permit binding of the radio-labeled compound to the receptor to form a complex; b) titrating the complex with a candidate compound; and c) determining the binding of the candidate compound to said receptor.

Compounds of the Invention disclosed herein may contain one or more asymmetric centers, thus giving rise to enantiomers, diastereomers, and other stereoisomeric forms. The present invention encompasses all such possible forms, as well as their racemic and resolved forms and mixtures thereof, and the uses thereof. The individual enantiomers may be separated according to methods known to those of ordinary skill in the art in view of the present disclosure. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, they include both E and Z geometric isomers. All tautomers are intended to be encompassed by the present invention as well.

As used herein, the term "stereoisomer" is a general term for all isomers of individual molecules that differ only in the orientation of their atoms in space. It includes enantiomers and isomers of compounds with more than one chiral center that are not mirror images of one another (diastereoisomers).

The term "chiral center" refers to a carbon atom to which four different groups are attached.

The terms "enantiomer" and "enantiomeric" refer to a molecule that cannot be superimposed on its mirror image and hence is optically active such that the enantiomer rotates the plane of polarized light in one direction and its mirror image compound rotates the plane of polarized light in the opposite direction.

The term "racemic" refers to a mixture of equal parts of enantiomers and which mixture is optically inactive. Racemic compounds can be separated into their enantiomers by chiral chromatography.

The term "resolution" refers to the separation or concentration or depletion of one of the two enantiomeric forms of a molecule.

The terms "a" and "an" refer to one or more.

Compounds of the Invention encompass all salts of the disclosed compounds of Formula I", Formula 1A", Formula IB", Formula IC", Formula ID"; Formula Γ , Formula IA', Formula IB', Formula IC, or Formula ID' ; Formula I, Formula LA, Formula IB, Formula IC, or Formula I D. The present invention preferably includes any and all non-toxic, pharmaceutically acceptable salts of the disclosed compounds. Examples of pharmaceutically acceptable salts include inorganic and organic acid addition salts and basic salts. The pharmaceutically acceptable salts include, but are not limited to, metal salts such as sodium salt, potassium salt, cesium salt, and the like; alkaline earth metals such as calcium salt, magnesium salt and the like; organic amine salts such as triethylamine salt, pyridine salt, picoline salt, ethanolamine salt, triethanolamine salt, dicylohexylamine salt, Ν,Ν'-dibenzylethylenediamine salt and the like; inorganic acid salts such as hydrochloride, hydrobromide, phosphate, sulphate and the like; organic acid salts such as citrate, lactate, tartrate, maleate, fumarate, mandelate, acetate, dichloroacetate, trifluoroacetate, oxalate, formate and the like; sulfonates such as methanesulfonate, benzenesulfonate, p-toluenesulfonate and the like; and amino acid salts such as arginate, glutamate and the like.

Acid addition salts can be formed by mixing a solution of the particular compound of the present invention with a solution of a pharmaceutically acceptable non-toxic acid such as hydrochloric acid, fumaric acid, maleic acid, succinic acid, acetic acid, citric acid, tartaric acid, carbonic acid, phosphoric acid, oxalic acid, dichloroacetic acid, and the like. Basic salts can be formed by mixing a solution of the particular compound of the present invention and a pharmaceutically acceptable non- toxic base such as sodium hydroxide, potassium hydroxide, choline hydroxide, sodium carbonate and the like.

Compounds of the Invention also encompass solvates of the disclosed compounds of Formula I", Formula IA", Formula IB", Formula IC", Formula ID"; Formula , Formula IA', Formula IB', Formula IC, or Formula ID' ; Formula I, Formula IA, Formula IB, Formula IC, or Formula ID. The term "solvate" as used herein is a combination, physical association and/or solvation of a compound of Formula I", Formula IA", Formula IB", Formula IC", Formula I'D"; Formula Γ, Formula IA', Formula IB', Formula IC, or Formula ID'; Formula I, Formula IA, Formula IB, Formula IC, or Formula ID with a solvent molecule such as, e.g. a disolvate, monosolvate or hemisolvate, where the ratio of solvent molecule to compound of Formula I", Formula IA", Formula IB", Formula IC", Formula ID"; Formula Γ, Formula IA', Formula IB', Formula IC, or Formula ID'; Formula I, Formula IA, Formula IB, Formula IC, or Formula ID is 2: 1 , 1 : 1 or 1 :2, respectively. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances, the solvate can be isolated, such as when one or more solvent molecules are incorporated into the crystal lattice of a crystalline sol id. Thus, "solvate" encompasses both solution-phase and isolatable solvates. A compound of Formula I", Formula IA", Formula IB", Formula IC", Formula ID"; Formula Γ, Formula IA', Formula IB', Formula IC, or Formula ID' ;

Formula I, Formula IA, Formula IB, Formula IC, or Formula ID or may be present as a solvated form with a pharmaceutically acceptable solvent, such as water, methanol, ethanol, and the like, and it is intended that the invention include both solvated and unsolvated forms of Formula I", Formula IA", Formula IB", Formula IC", Formula ID"; Formula Γ, Formula IA', Formula ΓΒ', Formula IC, or Formula ID'; Formula I, Formula IA, Formula IB, Formula IC, or Formula ID compounds. One type of solvate is a hydrate. A "hydrate" relates to a particular subgroup of solvates where the solvent molecule is water. Solvates typically can function as pharmacological equivalents. Preparation of solvates is known in the art. See, for example, M. Caira et al, J.

Pharmaceut. Sci., 93(3):601-61 1 (2004), which describes the preparation of solvates of fluconazole with ethyl acetate and with water. Similar preparation of solvates, hemisolvates, hydrates, and the like are described by E.C. van Tonder et al., AAPS Pharm. Sci. Tech., 5( 1 ): Article 12 (2004), and A.L. Bingham et al, Chem. Commun. , 603-604 (2001 ). A typical, non-limiting, process of preparing a solvate would involve dissolving a compound of Formula I", Formula IA", Formula IB", Formula IC", Formula ID"; Formula Γ, Formula IA', Formula IB', Formula IC, or Formula ID' ; Formula I, Formula IA, Formula I B, Formula IC, or Formula ID in a desired solvent (organic, water, or a mixture thereof) at temperatures above about 20°C to about 25°C, then cooling the solution at a rate sufficient to form crystals, and isolating the crystals by known methods, e.g., filtration. Analytical techniques such as infrared

spectroscopy can be used to confirm the presence of the solvent in a crystal of the solvate.

The present invention also provides the use of a Compound of the Invention in the manufacture of a medicament for treating or preventing a Condition. In one embodiment, the Condition is pain, such as acute or chronic pain. In one embodiment, a Compound of the Invention has agonist activity at the μ, δ and/or κ receptors. In another embodiment a Compound of the Invention has agonist activity at the μ receptor. In another embodiment, a Compound of the Invention has antagonist activity at the ORL-1 receptor. In another embodiment, certain Compounds of the invention can stimulate one receptor (e.g., a μ, δ and/or κ agonist) and inhibit a different receptor (e.g., an ORL-1 antagonist). In another embodiment, the Compound of the Invention is an agonist at the μ receptor, and an antagonist at the ORL-1 receptor. In another embodiment, the Compound of the Invention is an antagonist at the μ receptor, and an agonist at the κ receptor. List of abbreviations;

ACN acetonitrile

AcOH acetic acid

AIBN 2,2-azobisisobutyronitrile

Alloc allyloxycarbonyl

aq. aqueous atm atmosphere(s)

Bn benzyl

Boc /er/-butoxycarbonyl

Boc20 di-teri-butyl dicarbonate

Bz benzoyl

°C degrees Celcius

CAN eerie ammonium nitrate

Cbz benzyloxycarbonyl

CSA 10-camphorsuifonic acid

d day(s)

DABCO 1 ,4-diazabicyclo[2.2.2]octane

DBU l ,8-diazabicyclo[5.4.0]undec-7-ene

DCM dichloromethane

DDQ 2,3-dichloro-5,6-dicyano-l ,4-benzoquinone

DEAD diethyl azodicarboxylate

D1AD diisopropyl azodicarboxylate

D1BAL diisobutylaluminum hydride

DIPEA diisopropylethylamine

DMAC d i methy lacetam ide

D AP 4-dimethylaminopyridine

D E 1 ,2-dimethoxyethane

DMF dimethylformamide

DMPU N,N-dimethylpropyleneurea

DMSO dimethylsulfoxide

EDCI l -ethyl-3-(3-dimethylaminopropyl)carbodiimide)

Et20 diethyl ether

EtOAc ethyl acetate

EtOH ethanol

FMOC 9-fluorenylmethyloxycarbonyl

h hour(s) HATU 2-(7-aza- l H-benzotriazole - 1 -yl)- 1 , 1 ,3,3- tetramethyluronium hexafluorophosphate

HPLC high pressure liquid chromatography

i-PrOH wo-propanol

LAH lithium aluminum hydride

LDA lithium diisopropylamide

mCPBA weta-chloroperoxybenzoic acid

MEM β-methoxyethoxymethyl

MeOH methanol

min minute(s)

MOM methoxymethyl

MPLC medium pressure l iquid chromatography

Ms methanesulfonyl

MsCl methanesulfonyl chloride

NaHMDS sodium hexamethyldisilazide

BS N-bromosuccinimide

NMO N-methylmorpholine N-oxide

NMP N-methyl-2-pyrrolidone

PCC pyridinium chlorochromate

Pd/C palladium on carbon

Pd(dppf)Cl2 [ 1 , 1 '-bis(diphenylphosphino)ferrocene]dichloropaIladium(II)

Pd(Ph3P)2Cl2 bis(triphenylphosphine)palladium(II) dichloride

(Ph)3P triphenylphosphine

Piv pivaloyl

PMB p-methoxybenzyl

PTSA p-toluenesulfonic acid

PyBOP benzotriazol- l -yl-oxytripyrrolidinophosphonium

hexafluorophosphate

T room temperature

TBAF tetrabutylammonium fluoride

TBDMS fer/-butyldimethylsilyl t-BuOH tert-butyl alcohol

TEA triethylamine

Tf trifluoromethanesulfonyl

TFA trifluoroacetic acid

TFAA trifluoroacetic anhydride

THF tetrahydrofuran

THP 2-tetrahydropyranyl

TMS trimethylsilyl

TMEDA N,N,N',N'-tetramethylethylenediamine

Synthesis of Compounds

Compounds of Formula I", Γ and I can be made using conventional organic synthesis in view of this disclosure, or by the illustrative methods shown in the schemes below.

Scheme A

Figure imgf000112_0001
Ketone C is prepared as generally described in US Patent 3956336A. Compound A [J. Amer. Chem. Soc, 1961, 83, 1492] is alkylated with a haloethyl amine in the presence of a base such as sodium hydride, in a solvent such as benzene to give compound B. Compound B is treated with bromine in a suitable solvent such as acetic acid to give the alpha-bromo ketone, which is cyclized to give the quaternary salt by treatment with a suitable base such as ammonium hydroxide. Hydrogenolysis of the quaternary salt in the presence of hydrogen and a suitable catalyst such as palladium on carbon in a suitable solvent such as acetic acid gives the amino ketone C.

Scheme B

Figure imgf000113_0001

Ketone C is reduced with a suitable reducing agent such as sodium borohydride in a suitable solvent such as methanol (MeOH) to give alcohol D. Compound D can be converted into ether E by alkylation using a suitable base such as sodium hydride in a suitable solvent such as dimethylformamide (DMF). An alternate method of ether formation is via a Mitsunobu reaction (e.g. Hughes, D.L. Org. Prep. 1996, 28, 127) using the appropriate phenol and suitable reagents such as triphenylphosphine and diisopropyl azodicarboxylate (DIAD) in a suitable solvent such as tetrahydrofuran (THF).

Scheme C

Figure imgf000114_0001
Ketone C is reacted with an organometallic reagent (organomagnesium or organolithium) in a suitable solvent such as TH F to give alcohol F. Conversion of the alcohol to the chloride G is accomplished with thionyl chloride or other suitable reagent. Conversion to compound H is accomplished by treatment with a reducing reagent such as sodium cyanoborohydride and a Lewis acid such as zinc chloride in a suitable solvent such as THF.

Scheme D

Figure imgf000115_0001
Ketone C is reacted with a hydroxyl amine in a suitable solvent such as ethanol (EtOH) in the presence of a suitable base such as sodium acetate to form oxime I. Ketone C is reacted with an amine under reductive amination conditions with a suitable reducing agent such as sodium triacetoxyborohydride in a suitable solvent such as acetonitrile (AcCN) to give amine J, which can be functional ized with suitable reagents such as acid chlorides, sulfonyl chlorides and isocyanates in a suitable solvent such as dichloromethane (DC ) in the presence of a suitable base such as triethyl amine (TEA) to obtain compound K, L, or M. Scheme E

Figure imgf000116_0001
Alcohol is converted to chloride N by treatment with methanesulfonyl chloride in the presence of a suitable base such as triethyl amine (TEA) in a suitable solvent such as DCM. Reaction of compound N with an amine in the presence of a suitable base such as TEA in a suitable solvent such as DCM gives compound O.

Scheme F

Figure imgf000116_0002

Ketone C is converted to aldehyde P by reaction with a suitable phosphonium salt in the presence of a suitable base such as potassium tert-butoxide (KOtBu) in a suitable solvent such as THF. Treatment of compound P with acid gives the aldehyde Q which can be converted to the alcohol R by treatment with a suitable reducing agent such as NaBH4 in a suitable solvent such as EtOH. Scheme G

Figure imgf000117_0001

(EtO)2POCH2C02Et

base

Figure imgf000117_0002

Ketone C is converted to ester S by reaction with an appropriate phosphonate ester in the presence of a suitable base such as sodium hexamethylsilazide (NaHMDS) in a suitable solvent such as THF. Ester S is saponified to acid T by reaction with a suitable base such as potassium hydroxide (KOH) in a suitable solvent such as MeOH/water. Acid T is converted to amide U by conversion to an acid chloride by treatment with a suitable chlorinating agent such as oxalyl chloride and subsequent reaction with an appropriate amine in the presence of a suitable base such as diisopropylethylamine (DIPEA) in a suitable solvent such as DCM. Each of the unsaturated compounds (S, T and U) can be converted to their saturated analogs by reduction with hydrogen in the presence of a suitable catalyst such as Pd/C in a suitable solvent such as MeOH. Scheme H

Figure imgf000118_0001

Aldehyde Q is oxidized to acid Y by reaction with a suitable oxidizing agent such as sodium chlorite and sodium bisulfate in suitable solvent such as a mixture of water and AcCN. Acid Y is converted to amide Z by conversion to an acid chloride by treatment with a suitable chlorinating agent such as oxalyl chloride and subsequent reaction with an appropriate amine in the presence of a suitable base such as DIPEA in a suitable solvent such as DCM.

Scheme I

Figure imgf000118_0002

Aryl ether AA is cleaved to the phenol AB by treatment with a suitable reagent such as boron tribromide (BBr3) in a suitable solvent such as DCM (e.g. Greene, T.W.

"Protective Groups in Organic Synthesis", J. Wiley & Sons, NY, 198 1 ). Scheme J

Figure imgf000119_0001

Acid W is converted to amine AC by Curtius rearrangement using a suitable reagent such as diphenylphosphoryl azide (DPPA) in the presence of a base such as TEA in a suitable solvent such as toluene, followed by an aqueous workup. Coupling with a suitable acid chloride in the presence of a suitable base such as TEA in a suitable solvent such as DC gives the amide AD.

Scheme K

Figure imgf000119_0002

Amine AE is N-dealkylated to give the secondary amine AF by any number of different methods known to one skilled in the art such as treatment with m- chloroperoxybenzoic acid (MCPBA) in the presence of iron (II) chloride (FeCl2) (Monkovic et al. Secondary Amines from the Iron(II) Ion-Catalyzed Reaction of Amine Oxides: A General Method for the Dealkylation of Tertiary Amines. Synthesis, 1985, 770). Amine AF is alkylated to give amine AG by treatment with an appropriate alkyl halide in the presence of a suitable base such as TEA in a suitable solvent such as DCM. Scheme L

Figure imgf000120_0001

Compound J is reacted with an aldehyde under reductive amination conditions with a suitable reducing agent such as sodium triacetoxyborohydride in a suitable solvent such as ACN to give Compound AH.

Testing of Compounds

μ-opioid Receptor Binding Assay Procedures: Radioligand dose- displacement binding assays for μ-opioid receptors used 0.3 nM [3H]-diprenorphine (Perkin Elmer, Shelton, CT), with 5 mg membrane protein/wel l in a final volume of 500 μΙ binding buffer ( 10 mM MgCl2, 1 mM EDTA, 5% DMSO, 50 mM HEPES, pH 7.4). Reactions were carried out in the absence or presence of increasing

concentrations of unlabeled naloxone. All reactions were conducted in 96-deep well polypropylene plates for 2 hr at room temperature. Binding reactions were terminated by rapid filtration onto 96-well Unifilter GF/C filter plates (Perkin Elmer, Shelton, CT), presoaked in 0.5% polyethylenimine using a 96-well tissue harvester (Perkin Elmer, Shelton, CT.) followed by performing three filtration washes with 500 μΐ of ice-cold binding buffer. Filter plates were subsequently dried at 50°C for 2-3 hours. BetaScint scintillation cocktail (Perkin Elmer, Shelton, CT) was added (50 μΐ/well), and plates were counted using a Packard Top-Count for 1 min/well. The data were analyzed using the one-site competition curve fitting functions in GraphPad PRISM™ v. 3.0 or higher (San Diego, Calif.), or an in-house function for one-site competition curve-fitting. U-opioid Receptor Binding Data: Generally, the lower the Ki value, the more effective the Compounds of the Invention will be at treating or preventing pain or another Condition. Typically, the Compounds of the Invention will have a Ki (nM) of about 1000 or less for binding to μ-opioid receptors. In one embodiment the

Compounds of the Invention wi ll have a Ki (nM) of about 300 or less for binding to μ- opioid receptors. In one embodiment, Compounds of the Invention will have a Ki (nM) of about 100 or less. In another embodiment, Compounds of the Invention will have a Ki (nM) of about 10 or less. In still another embodiment, Compounds of the Invention will have a Ki (nM) of about 1 or less. In still another embodiment, Compounds of the Invention will have a Ki (nM) of about 0.1 or less.

u-Opioid Receptor Functional Assay Procedures: [ 5S]GTPyS functional assays were conducted using freshly thawed μ-receptor membranes prepared in-house from a cell line expressing recombinant μ opioid receptor in a HEK-293, CHO or U-2 OS cell background, or purchased from a commercial source (Perkin Elmer, Shelton, CT; or DiscovRx, Fremont, CA). Assay reactions were prepared by sequentially adding the following reagents to binding buffer ( 100 mM NaCI, 10 mM MgCl2, 20 mM HEPES, pH 7.4) on ice (final concentrations indicated): membrane protein (0.026 mg/mL), saponin ( 10 mg/m L), GDP (3mM) and [35S]GTPyS (0.20 nM; Perkin Elmer, Shelton, CT). The prepared membrane solution ( 190 μΐ/well) was transferred to 96- shallow well polypropylene plates containing 10 μΐ of 20x concentrated stock solutions of the agonist [D-Ala2, N-methyl-Phe4 Gly-o ]-enkephalin (DAMGO) prepared in dimethyl sulfoxide (DMSO). Plates were incubated for 30 min at about 25°C with shaking. Reactions were terminated by rapid filtration onto 96-well Unifilter GF/B filter plates (Perkin Elmer, Shelton, CT) using a 96-well tissue harvester (Perkin Elmer, Shelton, CT.) followed by three filtration washes with 200 μΐ of ice-cold wash buffer ( 10 mM NaH2P04, 10 mM Na2HP04, pH 7.4). Filter plates were subsequently dried at 50°C for 2-3 hr. BetaScint scintillation cocktail (Perkin Elmer, Shelton, CT) was added (50 μΐ/well) and plates were counted using a Packard Top-Count for 1 min/well. Data were analyzed using the sigmoidal dose-response curve fitting functions in GraphPad PRISM v. 3.0, or an in-house function for non-linear, sigmoidal dose-response curve-fitting. U-Opioid Receptor Functional Data: μ GTP EC5o is the concentration of a compound providing 50% of the maximal response for the compound at a μ-opioid receptor. Compounds of the Invention will typically have a μ GTP EC5o (nM) of about 5000 or less. In certain embodiments, Compounds of the Invention will have a μ GTP EC50 (nM) of about 2000 or less; or about 1000 or less; or about 100 or less; or about 10 or less; or about 1 or less; or about 0. 1 or less.

μ GTP Emax (%) is the maximal effect elicited by a compound relative to the effect elicited by DAMGO, a standard μ agonist. General ly, the μ GTP Emax (%) value measures the efficacy of a compound to treat or prevent pain or other Conditions. Typically, Compounds of the Invention will have a μ GTP Emax (%) of greater than about 1 0%; or greater than about 20%. In certain embodiments, Compounds of the Invention will have a μ GTP Emax (%) of greater than about 50%; or greater than about 65%; or greater than about 75%; or greater than about 85%; or greater than about 100%.

K-opioid Receptor Binding Assay Procedures: Membranes from

recombinant HEK-293 cells, CHO or U-2 OS cells expressing the recombinant human K opioid receptor (κ) were prepared by lysing cells in ice cold hypotonic buffer (2.5 mM MgCl2, 50 mM HEPES, pH 7.4) (10 mL/ 10 cm dish) followed by homogenization with a tissue grinder/Teflon pestle. Membranes from a cell line naturally expressing kappa opioid receptors can also be used. Membranes were collected by centrifugation at 30,000 x g for 15 min at 4°C and pellets were resuspended in hypotonic buffer to a final concentration of l -3mg/mL. Protein concentrations were determined using the BioRad protein assay reagent with bovine serum albumen as standard. Aliquots of κ receptor membranes were stored at -80 °C.

Radioligand dose displacement assays used 0.4 nM [JH]-U69,593 (GE

Healthcare, Piscataway, NJ; 40 Ci/mmole) with 1 5 μg membrane protein (recombinant K opioid receptor expressed in HEK 293 cells; in-house prep) in a final volume of 200 μΐ binding buffer (5% DMSO, 50 mM Trizma base, pH 7.4). Non-specific binding was determined in the presence of 10 μΜ unlabeled naloxone or U69,593. All reactions were performed in 96-well polypropylene plates for 1 hr at a temperature of about 25°C. Binding reactions were terminated by rapid filtration onto 96-wel l Unifilter GF/C filter plates (Perkin Elmer, Shelton, CT) presoaked in 0.5%

polyethylenimine (Sigma). Harvesting was performed using a 96-well tissue harvester (Perkin Elmer, Shelton, CT) followed by five filtration washes with 200 μΐ ice-cold binding buffer. Filter plates were subsequently dried at 50°C for 1-2 hours. Fifty μΐ/well scintillation cocktail (Perkin Elmer, Shelton, CT) was added and plates were counted in a Packard Top-Count for 1 min/well.

K-opioid Receptor Binding Data: In certain embodiments, the Compounds of the Invention will have a Ki (nM) for κ receptors of about 10,000 or more (which, for purposes of this invention, is interpreted as having no binding to the receptors). Certain Compounds of the Invention will have a Ki (nM) of about 20,000 or less for κ receptors. In certain embodiments, Compounds of the Invention will have a Ki (nM) of about 10,000 or less; or about 5000 or less; or about 1000 or less; or about 500 or less; or about 450 or less; or about 350 or less; or about 200 or less; or about 100 or less; or about 50 or less; or about 10 or less; or about 1 or less; or about 0.1 or less.

K-Opioid Receptor Functional Assay Procedures: Functional [35S]GTPyS binding assays were conducted as follows, κ opioid receptor membrane solution was prepared by sequentially adding final concentrations of 0.026 μg/μl κ membrane protein (in-house), 10 μg/mL saponin, 3 μΜ GDP and 0.20 nM [35S]GTPyS to binding buffer (100 mM NaCl, 10 mM MgCl2, 20 mM HEPES, pH 7.4) on ice. The prepared membrane solution (190 μΐ/well) was transferred to 96-shallow well polypropylene plates containing 10 μΐ of 20x concentrated stock solutions of agonist prepared in DMSO. Plates were incubated for 30 min at a temperature of about 25°C with shaking. Reactions were terminated by rapid filtration onto 96-well Unifilter GF/B filter plates (Perkin Elmer, Shelton, CT) using a 96-well tissue harvester (Packard) and followed by three filtration washes with 200 μΐ ice-cold binding buffer ( 10 mM

NaH2P04, 10 mM Na2HP04, pH 7.4). Filter plates were subsequently dried at 50°C for 2-3 hours. Fifty μΐ/well scintillation cocktail (Perkin Elmer, Shelton, CT) was added and plates were counted in a Packard Top-Count for 1 min/well.

K-Opioid Receptor Functional Data: κ GTP EC5o is the concentration of a compound providing 50% of the maximal response for the compound at a κ receptor. Certain Compounds of the Invention will have a κ GTP EC50 (nM) of about 20,000 or less to stimulate κ opioid receptor function. In certain embodiments, Compounds of the Invention will have a κ GTP EC50 (nM) of about 10, 000 or less; or about 5000 or less; or about 2000 or less; or about 1500 or less; or about 1000 or less; or about 600 or less; or about 100 or less; or about 50 or less; or about 25 or less; or about 10 or less; or about 1 or less; or about 0.1 or less.

GTP Emax (%) is the maximal effect elicited by a compound relative to the effect elicited by U69,593. Certain Compounds of the Invention wil l have a κ GTP Emax (%) of greater than about 1%; or greater than about 5%; or greater than about 10%; or greater than about 20%. In certain embodiments, Compounds of the Invention will have a κ GTP Emax (%) of greater than about 50%; or greater than about 75%; or greater than about 90%; or greater than about 100%.

δ-opioid Receptor Binding Assay Procedures: δ-opioid Receptor Binding Assay Procedures can be conducted as follows. Radioligand dose-displacement assays use 0.3 nM [3H]-NaItrindole (Perkin Elmer, Shelton, CT; 33.0 Ci/mmole) with 5 g membrane protein (Perkin Elmer, Shelton, CT) in a final volume of 500 μΙ binding buffer (5 m MgCl2, 5% DMSO, 50 mM Trizma base, pH 7.4). Non-specific binding is determined in the presence of 25 μΜ unlabeled naloxone. All reactions are performed in 96-deep well polypropylene plates for 1 hr at a temperature of about 25°C. Binding reactions are terminated by rapid filtration onto 96-well Unifilter GF/C filter plates (Perkin Elmer, Shelton, CT) presoaked in 0.5% polyethylenimine (Sigma). Harvesting is performed using a 96-well tissue harvester (Perkin Elmer, Shelton, CT) followed by five filtration washes with 500 μΐ ice-cold binding buffer. Filter plates are subsequently dried at 50°C for 1 -2 hours. Fifty μΐ/well scintillation cocktail (Perkin Elmer, Shelton, CT) is added and plates are counted in a Packard Top-Count for 1 min/well.

δ-opioid Receptor Binding Data: In certain embodiments, the Compounds of the Invention will have a Ki (nM) for δ receptors of about 10,000 or more (which, for the purposes of this invention, is interpreted as having no binding to the δ receptors). Certain Compounds of the Invention will have a Ki (nM) of about 20,000 or less for δ receptors. In one embodiment, the Compounds of the Invention will have a Ki (nM) of about 10,000 or less; or of about 9000 or less. In another embodiment, the Compounds of the Invention will have a i (nM) of about 7500 or less; or of about 6500 or less; or of about 5000 or less; or of about 3000 or less; or of about 2500 or less. In another embodiment, the Compounds of the Invention will have a Ki (nM) of about 1000 or less; or of about 500 or less; or of about 350 or less; or of about 250 or less; or of about 1 00 or less; or of about 10 or less.

δ-Opioid Receptor Functional Assay Procedures: Functional [35S]GTPyS binding assays can be conducted as follows, δ opioid receptor membrane solution is prepared by sequentially adding final concentrations of 0.026 μg/ I δ membrane protein (Perkin Elmer, Shelton, CT), 10 μg/mL saponin, 3 μΜ GDP and 0.20 nM

[35S]GTPyS to binding buffer ( l OOmM NaCl, l OmM MgCl2, 20mM HEPES, pH 7.4) on ice. The prepared membrane solution ( 1 90 μΐ/well) is transferred to 96-shallow well polypropylene plates containing 10 μΐ of 20x concentrated stock solutions of agonist prepared in DMSO. Plates are incubated for 30 min at a temperature of about 25°C with shaking. Reactions are terminated by rapid filtration onto 96-well Unifilter GF/B filter plates (Perkin Elmer, Shelton, CT) using a 96-well tissue harvester

(Packard) and followed by three filtration washes with 200 μΐ ice-cold binding buffer ( 10 mM NaH2P04, 10 mM Na2HP04, pH 7.4). Filter plates are subsequently dried at 50°C for 1 -2 hours. Fifty μΙ/well scintillation cocktail (Perkin Elmer, Shelton, CT) is added and plates are counted in a Packard Top-count for 1 min/well.

δ-Opioid Receptor Functional Data: δ GTP EC5o is the concentration of a compound providing 50% of the maximal response for the compound at a δ receptor. Certain Compounds of the Invention will have a δ GTP EC50 (nM) of about 20, 000 or less; or about 10,000 or less. In certain embodiments, the Compounds of the Invention will have a δ GTP EC50 (nM) of about 3500 or less; or of about 1000 or less; or of about 500 or less; or of about 100 or less; or of about 90 or less; or of about 50 or less; or of about 25 or less; or of about 10 or less.

δ GTP Emax (%) is the maximal effect elicited by a compound relative to the effect elicited by met-enkephalin. Certain Compounds of the Invention of the invention will have a δ GTP Emax (%) of greater than about 1 %; or of greater than about 5%; or of greater than about 10%. In one embodiment, the Compounds of the Invention will have a δ GTP Emax (%) of greater than about 30%. In other embodiments, the Compounds of the Invention will have a δ GTP Emax (%) of greater than about 50%; or of greater than about 75%; or of greater than about 90%. In another embodiment, the Compounds of the Invention will have a δ GTP Emax (%) of about 100% or greater.

ORL-1 Receptor Binding Assay Procedure: Membranes from recombinant

HE -293 cells expressing the human opioid receptor-like receptor (ORL- I ) (Perkin Elmer, Shelton, CT) are prepared by lysing cells in ice-cold hypotonic buffer (2.5 mM MgCl2, 50 mM HEPES, pH 7.4) ( 10 ml/10 cm dish) followed by homogenization with a tissue grinder/Teflon pestle. Membranes are collected by centrifugation at 30,000 x g for 15 min at 4°C and pellets resuspended in hypotonic buffer to a final

concentration of 1 -3 mg/ml. Protein concentrations are determined using the BioRad protein assay reagent with bovine serum albumen as standard. Al iquots of the ORL- 1 receptor membranes are stored at -80°C.

Radioligand binding assays (screening and dose-displacement) use 0.1 nM [ H]-nociceptin (Perkin Elmer, Shelton, CT; 87.7 Ci/mmole) with 12 μg membrane protein in a final volume of 500 μΐ binding buffer ( 10 mM MgCl2, I mM EDTA, 5% DMSO, 50 mM HEPES, pH 7.4). Non-specific binding is determined in the presence of 10 nM unlabeled nociceptin (American Peptide Company). Al l reactions are performed in 96-deep well polypropylene plates for 1 h at room temperature. Binding reactions are terminated by rapid filtration onto 96-well Unifilter GF/C fi lter plates

(Perkin Elmer, Shelton, CT) presoaked in 0.5% polyethylenimine (Sigma). Harvesting is performed using a 96-well tissue harvester (Perkin Elmer, Shelton, CT) followed by three filtration washes with 500 μΐ ice-cold binding buffer. Filter plates are subsequently dried at 50°C for 2-3 hours. Fifty μΐ/well scintillation cocktail (Perkin Elmer, Shelton, CT) is added and plates are counted in a Packard Top-Count for 1 min/well. The data from screening and dose-displacement experiments are analyzed using Microsoft Excel and the curve fitting functions in GraphPad PRISM™, v. 3.0 or higher, respectively, or an in-house function for one-site competition curve-fitting.

ORL-1 Receptor Binding Data: Certain Compounds of the Invention will have a Ki (nM) of about 1000 or less. In one embodiment, the Compounds of the Invention will have a Ki (nM) of about 500 or less. In other embodiments, the Compounds of the Invention will have a Ki (nM) of about 300 or less; or of about 100 or less; or of about 50 or less; or of about 20 or less. In yet other embodiments, the Compounds of the Invention will have a Ki (nM) of about 10 or less; or of about 1 or less; or of about 0.1 or less.

ORL-1 Receptor Functional Assay Procedure: Membranes from recombinant HEK-293 cells expressing the human opioid receptor-like (ORL- 1 ) (Perkin Elmer, Shelton, CT) are prepared by lysing cells in ice-cold hypotonic buffer (2.5 mM Mg Cl2, 50 mM HEPES, pH 7.4) ( 10 ml/10 cm dish) followed by

homogenization with a tissue grinder/Teflon pestle. Membranes are collected by centrifugation at 30,000 x g for 15 min at 4°C, and pellets resuspended in hypotonic buffer to a final concentration of 1 -3 mg/ml. Protein concentrations are determined using the BioRad protein assay reagent with bovine serum albumen as standard.

Aliquots of the ORL- 1 receptor membranes are stored at -80°C.

Functional [j5S]GTPyS binding assays are conducted as follows. ORL- 1 membrane solution is prepared by sequentially adding final concentrations of 0.026 μg/μl ORL- 1 membrane protein, 10 μg/ml saponin, 3 μΜ GDP and 0.20 nM

[35S]GTPyS to binding buffer ( 100 mM NaCl, 10 mM MgCl2, 20 mM HEPES, pH 7.4) on ice. The prepared membrane solution ( 190 μΙ/well) is transferred to 96-shallow well polypropylene plates containing 1 0 μΐ of 20x concentrated stock solutions of agonist/nociceptin prepared in DMSO. Plates are incubated for 30 min at room temperature with shaking. Reactions are terminated by rapid filtration onto 96-well Unifilter GF/B filter plates (Perkin Elmer, Shelton, CT) using a 96-well tissue harvester (Packard) and followed by three filtration washes with 200 μΐ ice-cold binding buffer ( 10 mM NaH2P04, 10 mM Na2HP04, pH 7.4). Filter plates are subsequently dried at 50°C for 2-3 hours. Fifty μΐ/well scintillation cocktail (Perkin Elmer, Shelton, CT) is added and plates are counted in a Packard Top-Count for 1 min/well. Data are analyzed using the sigmoidal dose-response curve fitting functions in GraphPad PRISM v. 3.0 or higher, or an in-house function for non-linear, sigmoidal dose-response curve-fitting.

ORL-1 Receptor Functional Data: ORL- 1 GTP EC5o is the concentration of a compound providing 50% of the maximal response for the compound at an ORL-1 receptor. In certain embodiments, the Compounds of the Invention that have a high binding affinity (i.e. low Kj value) will have an ORL- 1 GTP EC50 (nM) of greater than about 10,000 (i.e. will not stimulate at therapeutic concentrations) In certain embodiments Compounds of the Invention will have an ORL-1 GTP EC50 (n ) of about 20,000 or less. In one embodiment, the Compounds of the Invention will have an ORL- 1 GTP EC50 (nM) of about 10,000 or less; or of about 5000 or less; or of about 1000 or less. In still other embodiments, the Compounds of the Invention will have an ORL- 1 GTP EC50 (nM) of about 100 or less; or of about 10 or less; or of about I or less; or of about 0. 1 or less. .

ORL- 1 GTP Emax 0//° 's the maximal effect elicited by a compound relative to the effect elicited by nociceptin, a standard ORL- 1 agon ist. In certain embodiments, Compounds of the Invention will have an ORL- 1 GTP Emax of less than 10% (which, for the purposes of this invention, is interpreted as having antagonist activity at ORL-1 receptors). Certain Compounds of the Invention will have an ORL-1 GTP Emax (%) of greater than 1 %; or of greater than 5%; or of greater than 10%. In other embodiments the Compounds of the Invention will have an ORL- 1 GTP Emax of greater than 20%; or of greater than 50%; or of greater than 75%; or of greater than 88%; or of greater than 100%. In Vivo Assays for Prevention or Treatment of Pain

Test Animals: Each experiment uses rats weighing between 200-260 g at the start of the experiment. The rats are group-housed and have free access to food and water at all times, except prior to oral administration of a Compound of the Invention when food is removed for about 16 hours before dosing. A control group acts as a comparison to rats treated with a Compound of the Invention. The control group is administered the carrier for the Compound of the Invention. The volume of carrier administered to the control group is the same as the volume of carrier and Compound of the Invention administered to the test group.

Acute Pain: To assess the actions of a Compound of the Invention for the treatment or prevention of acute pain, the rat tail fl ick can be used. Rats are gently restrained by hand and the tail exposed to a focused beam of radiant heat at a point 5 cm from the tip using a tail flick unit (Model 7360, commercially available from Ugo Basile of Italy). Tail flick latencies are defined as the interval between the onset of the thermal stimulus and the flick of the tail. Animals not responding within 20 seconds are removed from the tail flick unit and assigned a withdrawal latency of 20 seconds. Tail flick latencies are measured immediately before (pre-treatment) and 1 , 3, and 5 hours following administration of a Compound of the Invention. Data are expressed as tail flick latency(s) and the percentage of the maximal possible effect (% MPE), i.e. , 20 seconds, is calculated as follows:

[ (post administration latency) - (pre-administration latency) ]

\A D C = ,

(20 s - pre-administration latency)

The rat tail fl ick test is described in F.E. D'Amour et al., "A Method for Determining Loss of Pain Sensation," J. Pharmacol. Exp. Ther. 72:74-79 ( 1941 ).

To assess the actions of a Compound of the Invention for the treatment or prevention of acute pain, the rat hot plate test can also be used. Rats are tested using a hot plate apparatus consisting of a clear plexiglass cylinder with a heated metal floor maintained at a temperature of 48-52 °C (Model 7280, commercially available from Ugo Basile of Italy). Rats are placed into the cylinder on the hot plate apparatus for a maximum duration of 30 s, or until it exhibits a nocifensive behavior (behavioral endpoint), at which time it is removed from the hot plate, and the response latency recorded. Hot plate latencies are measured immediately before (pre-treatment) and 1 , 3, and 5 hours following administration of a Compound of the Invention. The nocifensive behavioral endpoint is defined as any of the following: 1 ) paw withdrawal, either as a sustained lift or with shaking or licking; 2) alternating foot lifting; 3) escape or attempted escape from the testing device; or 4) vocalization. Data are expressed as response latency(s) and the percentage of the maximal possible effect is calculated as described above for the tail flick test. The hot plate test is described in G. Woolfe and A.D. Macdonald, J. Pharmacol. Exp. Ther. 80:300-307 ( 1944). Inflammatory Pain: To assess the actions of a Compound of the Invention for the treatment or prevention of inflammatory pain, the Freund's complete adjuvant ("FCA") model of inflammatory pain can be used. FCA-induced inflammation of the rat hind paw is associated with the development of persistent inflammatory mechanical hyperalgesia and provides reliable prediction of the anti-hyperalgesic action of clinically useful analgesic drugs (L. Bartho et al. , "Involvement of Capsaicin-sensitive Neurones in Hyperalgesia and Enhanced Opioid Antinociception in Inflammation," Naunyn-Schmiedeberg's Archives of Pharmacol. 342:666-670 ( 1990)). The left hind paw of each animal is administered a 50 iL intraplantar injection of 50% FCA. Prior to injection of FCA (baseline) and 24 hour post injection, the animal is assessed for response to noxious mechanical stimuli by determining the PWT, as described below. Rats are then administered a single injection of 1 , 3, or 10 mg/kg of either a

Compound of the Invention; 30mg/kg of a control drug selected from Celebrex, indomethacin or naproxen; or carrier. Responses to noxious mechanical stimuli are determined 1 , 3, 5 and 24 hours post administration. Percentage reversal of hyperalgesia for each animal is defined as:

[ (post administration PWT) - (pre-administration PWT) ]

% Reversal =

[ (baseline PWT) - (pre-administration PWT) ]

Neuropathic Pain: To assess the actions of a Compound of the Invention for the treatment or prevention of neuropathic pain, either the Seltzer model or the Chung model can be used.

In the Seltzer model, the partial sciatic nerve ligation model of neuropathic pain is used to produce neuropathic hyperalgesia in rats (Z. Seltzer et al , "A Novel Behavioral Model of Neuropathic Pain Disorders Produced in Rats by Partial Sciatic Nerve Injury," Pain 43 :205-218 (1990)). Partial ligation of the left sciatic nerve is performed under isoflurane/02 inhalation anaesthesia. Following induction of anesthesia, the left thigh of the rat is shaved and the sciatic nerve exposed at high thigh level through a small incision and is carefully cleared of surrounding connective tissues at a site near the trocanther just distal to the point at which the posterior biceps semitendinosus nerve branches off of the common sciatic nerve. A 7-0 silk suture is inserted into the nerve with a 3/8 curved, reversed-cutting mini-needle and tightly ligated so that the dorsal 73 to ½ of the nerve thickness is held within the ligature. The wound is closed with a single muscle suture (4-0 nylon (Vicryl)) and vetbond tissue glue. Following surgery, the wound area is dusted with antibiotic powder. Sham- treated rats undergo an identical surgical procedure except that the sciatic nerve is not manipulated. Following surgery, animals are weighed and placed on a warm pad until they recover from anesthesia. Animals are then returned to their home cages until behavioral testing begins. The animal is assessed for response to noxious mechanical stimuli by determining PWT, as described below, prior to surgery (baseline), then immediately prior to and 1 , 3, and 5 hours after drug administration. Percentage reversal of neuropathic hyperalgesia is defined as: [ (post administration PWT) - (pre-administration PWT) ]

% Reversal = x 100

[ (baseline PWT) - (pre-administration PWT) ]

In the Chung model, the spinal nerve ligation model of neuropathic pain is used to produce mechanical hyperalgesia, thermal hyperalgesia and tactile allodynia in rats. Surgery is performed under isoflurane/02 inhalation anaesthesia. Following induction of anaesthesia, a 3 cm incision is made and the left paraspinal muscles are separated from the spinous process at the L4 - S2 levels. The L6 transverse process is carefully removed with a pair of small rongeurs to identify visually the L4 - L6 spinal nerves. The left L5 (or L5 and L6) spinal nerve(s) is isolated and tightly ligated with silk thread. A complete hemostasis is confirmed and the wound is sutured using non-absorbable sutures, such as nylon sutures or stainless steel staples. Sham-treated rats undergo an identical surgical procedure except that the spinal nerve(s) is not manipulated.

Following surgery animals are weighed, administered a subcutaneous (s.c.) injection of saline or ringers lactate, the wound area is dusted with antibiotic powder and they are kept on a warm pad until they recover from the anesthesia. Animals are then returned to their home cages until behavioral testing begins. The animals are assessed for response to noxious mechanical stimuli by determining PWT, as described below, prior to surgery (baseline), then immediately prior to and 1 , 3, and 5 hours after being administered a Compound of the Invention. The animal can also be assessed for response to noxious thermal stimuli or for tactile allodynia, as described below. The Chung model for neuropathic pain is described in S.H. Kim, "An Experimental Model for Peripheral Neuropathy Produced by Segmental Spinal Nerve Ligation in the Rat," Pain 50(3):355-363 ( 1992).

Response to Mechanical Stimuli as an Assessment of Mechanical

Hyperalgesia: The paw pressure assay can be used to assess mechanical hyperalgesia. For this assay, hind paw withdrawal thresholds (PWT) to a noxious mechanical stimulus are determined using an analgesymeter (Model 7200, commercially available from Ugo Basile of Italy) as described in C. Stein, "Unilateral Inflammation of the Hindpaw in Rats as a Model of Prolonged Noxious Stimulation: Alterations in Behavior and Nociceptive Thresholds," Pharmacol. Biochem. and Behavior 3_i:45 1 - 455 (1988). The maximum weight that is applied to the hind paw is set at 250 g and the end point is taken as complete withdrawal of the paw. PWT is determined once for each rat at each time point and either only the affected (ipsilateral; same side as the injury) rear paw is tested, or both the ipsilateral and contralateral (non-injured;

opposite to the injury) rear paw are tested.

Response to Thermal Stimuli as an Assessment of Thermal Hyperalgesia: The plantar test can be used to assess thermal hyperalgesia. For this test, hind paw withdrawal latencies to a noxious thermal stimulus are determined using a plantar test apparatus (commercially available from Ugo Basile of Italy) following the technique described by K. Hargreaves et al. , "A New and Sensitive Method for Measuring Thermal Nociception in Cutaneous Hyperalgesia," Pain 32(1 ):77-88 ( 1 988). The maximum exposure time is set at 32 seconds to avoid tissue damage and any directed paw withdrawal from the heat source is taken as the end point. Three latencies are determined at each time point and averaged. Either only the affected (ipsilateral) paw is tested, or both the ipsilateral and contralateral (non-injured) paw are tested. Assessment of Tactile AUodvnia: To assess tactile allodynia, rats are placed in clear, plexiglass compartments with a wire mesh floor and allowed to habituate for a period of at least 1 5 minutes. After habituation, a series of von Frey monofilaments are presented to the plantar surface of the affected (ipsi lateral) foot of each rat. The series of von Frey monofilaments consists of six monofilaments of increasing diameter, with the smal lest diameter fiber presented first. Five trials are conducted with each filament with each trial separated by approximately 2 minutes. Each presentation lasts for a period of 4-8 seconds or until a nociceptive withdrawal behavior is observed. Fl inching, paw withdrawal or licking of the paw are considered nociceptive behavioral responses.

Assessment of Respiratory Depression: To assess respiratory depression, rats can be prepared by implanting a femoral artery cannula via which blood samples are taken. Blood samples are taken prior to drug administration, then 1 , 3, 5 and 24 hours post-treatment. Blood samples are processed using an arterial blood gas analyzer (e.g., 1DEXX VetStat with Respiratory/Blood Gas test cartridges).

Comparable devices are a standard tool for blood gas analysis (e.g., D. Torbati et al., 2000 Intensive Care Med. (26) 585-591 ).

Assessment of Gastric Motility: Animals are treated with vehicle, reference compound or test article by oral gavage at a volume of 10 mL/kg. At one hour post- dose, all animals are treated with charcoal meal solution (5% non-activated charcoal powder in a solution of 1 % carboxymethylcellulose in water) at a volume of 10 mL/kg. At two hours post-dose (one hour post-charcoal), animals are sacrificed by carbon d ioxide inhalation or isoflurane overdose and the transit of charcoal meal identified. The stomach and small intestine are removed carefully and each placed on a saline-soaked absorbent surface. The distance between the pylorus and the furthest progression of charcoal meal is measured and compared to the distance between the pylorus and the ileocecal junction. The charcoal meal transit is expressed as a percentage of small intestinal length traveled. Pharmaceutical Compositions

Due to their activity, the Compounds of the Invention are advantageously useful in human and veterinary medicine. As described above, the Compounds of the Invention are useful for treating or preventing a Condition in a subject in need thereof. The Compounds of the Invention can be administered to any animal requiring modulation of the opioid and/or O L- I receptors.

When administered to a subject, a Compound of the Invention can be administered as a component of a composition that comprises a pharmaceutically acceptable carrier or excipient. A Compound of the Invention can be administered by any appropriate route, as determined by the medical practitioner. Methods of administration may include intradermal, intramuscular, intraperitoneal, parenteral, intravenous, subcutaneous, intranasal, epidural, oral, sublingual, buccal, intracerebral, intravaginal, transdermal, transmucosal, rectal, by inhalation, or topical (particularly to the ears, nose, eyes, or skin). Delivery can be either local or systemic. In certain embodiments, administration will result in the release of a Compound of the Invention into the bloodstream.

Pharmaceutical compositions of the invention can take the form of solutions, suspensions, emulsions, tablets, pills, pellets, multi-particulates, capsules, capsules containing liquids, capsules containing powders, capsules containing multi- particulates, lozenges, sustained-release formulations, thin films, suppositories, aerosols, sprays, or any other form suitable for use. In one embodiment, the composition is in the form of a capsule {see, e.g. , U.S. Patent No. 5,698, 155). Other examples of suitable pharmaceutical excipients are described in Remington's

Pharmaceutical Sciences 1447- 1676 (Alfonso R. Gennaro ed., 19th ed. 1995), incorporated herein by reference.

Pharmaceutical compositions of the invention preferably comprise a suitable amount of a pharmaceutically acceptable excipient so as to provide the form for proper administration to the subject. Such a pharmaceutical excipient can be a diluent, suspending agent, solubilizer, binder, disintegrant, preservative, coloring agent, lubricant, and the like. The pharmaceutical excipient can be a liquid, such as water or an oil, including those of petroleum, animal, vegetable, or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil, and the like. The pharmaceutical excipient can be saline, gum acacia, gelatin, starch paste, talc, keratin, colloidal si lica, urea, and the like. In addition, auxiliary, stabilizing, thickening, lubricating, and coloring agents can be used. In one embodiment, the pharmaceutically acceptable excipient is sterile when administered to an animal. Water is a particularly useful excipient when a Compound of the Invention is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid excipients, particularly for injectable solutions. Suitable pharmaceutical excipients also include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, sil ica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene glycol, water, ethanol, and the like. The invention compositions, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. Specific examples of pharmaceutically acceptable carriers and excipients that can be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients, American Pharmaceutical Association ( 1986).

In certain embodiments, the Compounds of the Invention are formulated for oral administration. A Compound of the Invention to be orally delivered can be in the form of tablets, capsules, gelcaps, caplets, lozenges, aqueous or oily solutions, suspensions, granules, powders, emulsions, syrups, or elixirs, for example. When a Compound of the Invention is incorporated into oral tablets, such tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film-coated, multiply compressed or multiply layered.

An orally administered Compound of the Invention can contain one or more additional agents such as, for example, sweetening agents such as fructose, aspartame or saccharin; flavoring agents such as peppermint, oil of wintergreen, or cherry;

coloring agents; and preserving agents, and stabilizers, to provide stable,

pharmaceutically palatable dosage forms. Techniques and compositions for making solid oral dosage forms are described in Pharmaceutical Dosage Forms: Tablets (Lieberman, Lachman and Schwartz, eds., 2nd ed.) published by Marcel Dekker, Inc. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences 1553- 1593 (Arthur Osol, ed., 16th ed., Mack Publishing, Easton, PA 1980). Liquid oral dosage forms include aqueous and nonaqueous solutions, emulsions, suspensions, and solutions and/or suspensions reconstituted from non-effervescent granules, optionally containing one or more suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, coloring agents, flavoring agents, and the like. Techniques and compositions for making liquid oral dosage forms are described in Pharmaceutical Dosage Forms: Disperse Systems,

(Lieberman, Rieger and Banker, eds.) published by Marcel Dekker, Inc.

When a Compound of the Invention is formulated for parenteral administration by injection (e.g. , continuous infusion or bolus injection), the formulation can be in the form of a suspension, solution, or emulsion in an oi ly or aqueous vehicle, and such formulations can further comprise pharmaceutically necessary additives such as one or more stabilizing agents, suspending agents, dispersing agents, and the like. When a Compound of the Invention is to be injected parenteral ly, it can be, e.g. , in the form of an isotonic sterile solution. A Compound of the Invention can also be in the form of a powder for reconstitution as an injectable formulation.

In certain embodiments, a Compound of the Invention is formulated into a pharmaceutical composition for intravenous administration. Typically, such compositions comprise sterile isotonic aqueous buffer. Where necessary, the compositions can also include a solubilizing agent. A Compound of the Invention for intravenous administration can optionally include a local anesthetic such as benzocaine or prilocaine to lessen pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent. Where a Compound of the Invention is to be administered by infusion, it can be dispensed, for example, with an infusion bottle containing sterile pharmaceutical grade water or saline. Where a Compound of the Invention is administered by injection, an ampule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration. When a Compound of the Invention is to be administered by inhalation, it can be formulated into a dry aerosol, or an aqueous or partially aqueous solution.

In another embodiment, a Compound of the Invention can be delivered in a vesicle, in particular a liposome (see Langer, Science 249: 1527-1533 (1990); and Treat et al.. Liposomes in the Therapy of Infectious Disease and Cancer 3 1 7-327 and 353- 365 ( 1989)).

In certain embodiments, a Compound of the Invention is administered locally. This can be achieved, for example, by local infusion during surgery, topical application, e.g. , in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository or enema, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.

In certain embodiments, a Compound of the Invention can be delivered in an immediate release form. In other embodiments, a Compound of the Invention can be delivered in a controlled-release system or sustained-release system. Controlled- or sustained-release pharmaceutical compositions can have a common goal of improving drug therapy over the results achieved by their non-controlled or non-sustained-release counterparts. In one embodiment, a controlled- or sustained-release composition comprises a minimal amount of a Compound of the Invention to treat or prevent the Condition (or a symptom thereof) in a minimum amount of time. Advantages of controlled- or sustained-release compositions include extended activity of the drug, reduced dosage frequency, and increased compliance. In addition, controlled- or sustained-release compositions can favorably affect the time of onset of action or other characteristics, such as blood levels of the Compound of the Invention, and can thus reduce the occurrence of adverse side effects.

Controlled- or sustained-release compositions can initially release an amount of a Compound of the Invention that promptly produces the desired therapeutic or prophylactic effect, and gradually and continually release other amounts of the Compound of the Invention to maintain a level of therapeutic or prophylactic effect over an extended period of time. To maintain a constant level of the Compound of the Invention in the body, the Compound of the Invention can be released from the dosage form at a rate that will replace the amount of Compound of the Invention being metabolized and excreted from the body. Controlled- or sustained-release of an active ingredient can be stimulated by various conditions, including but not limited to, changes in pH, changes in temperature, concentration or availability of enzymes, concentration or availability of water, or other physiological conditions or compounds.

Controlled-release and sustained-release means for use according to the present invention may be selected from those known in the art. Examples include, but are not limited to, those described in U.S. Patent Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598, 123; 4,008,719; 5,674,533; 5,059,595; 5,591 ,767; 5, 120,548; 5,073,543;

5,639,476; 5,354,556; and 5,733,566, each of which is incorporated herein by reference. Such dosage forms can be used to provide controlled- or sustained-release of one or more active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, multiparticulates, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions. Suitable controlled- or sustained-release formulations known in the art, including those described herein, can be readily selected for use with the active ingredients of the invention in view of this disclosure. See also Goodson, "Dental Applications" (pp. 1 15-138) in Medical Applications of Controlled Release, Vol. 2, Applications and Evaluation, R.S. Langer and D.L. Wise eds., CRC Press ( 1 984). Other controlled- or sustained-release systems that are discussed in the review by Langer, Science

249: 1527-1533 (1990) can be selected for use according to the present invention. In one embodiment, a pump can be used (Langer, Science 249: 1 527-1 533 (1990); Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 ( 1987); Buchwald et al , Surgery 88:507 (1980); and Saudek et al, N. Engl. J. Med. 321:574 ( 1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release (Langer and Wise eds., 1974); Controlled Drug Bioavailability, Drug Product Desig and Performance (Smolen and Ball eds., 1984); Ranger and Peppas, J. Macromol. Sci. Rev. Macromol. Chem. 23:61 ( 1983); Levy et al , Science 228: 190 ( 1985); During et αΙ. , Αηη. Neurol. 25:351 (1989); and Howard et al , J. Neurosurg. 74 : 105 ( 1989)). In yet another embodiment, a controlled- or sustained-release system can be placed in proximity of a target of a Compound of the Invention, e.g. , the spinal column, brain, or gastrointestinal tract, thus requiring only a fraction of the systemic dose.

When in tablet or pill form, a pharmaceutical composition of the invention can be coated to delay disintegration and absorption in the gastrointestinal tract thereby providing a sustained action over an extended period of time. Selectively permeable membranes surrounding an osmotically active driving compound are also suitable for orally administered compositions. In these latter platforms, fluid from the

environment surrounding the capsule is imbibed by the driving compound, which swells to displace the agent or agent composition through an aperture. These delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations. A time-delay material such as glycerol monostearate or glycerol stearate can also be used. Oral compositions can include standard excipients such as mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, and magnesium carbonate. In one embodiment, the excipients are of pharmaceutical grade.

Pharmaceutical compositions of the invention include single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled- or sustained-release.

The amount of the Compound of the Invention that is effective for the treatment or prevention of a condition can be determined by standard clinical techniques. In addition, in vitro and/or in vivo assays can optionally be employed to help identify optimal dosage ranges. The precise dose to be employed will also depend on, e.g. , the route of administration and the extent of the Condition to be treated, and can be decided according to the judgment of a practitioner and/or each animal's circumstances. Variations in dosing may occur depending upon typical factors such as the weight, age, gender and physical condition {e.g., hepatic and renal function) of the animal being treated, the affliction to be treated, the severity of the symptoms, the frequency of the dosage interval, the presence of any deleterious side- effects, and the particular compound utilized, among other things.

Suitable effective dosage amounts can range from about O.O l mg/kg of body weight to about 3000 mg/kg of body weight of the animal per day, although they are typically from about O.Olmg/kg of body weight to about 2500 mg/kg of body weight of the animal per day or from about 0.01 mg/kg of body weight to about 1000 mg/kg of body weight of the animal per day. In one embodiment, the effective dosage amount is about 100 mg/kg of body weight of the animal per day or less. In another

embodiment, the effective dosage amount ranges from about O.O l mg/kg of body weight to about 100 mg/kg of body weight of the animal per day of a Compound of the Invention, in another embodiment, about 0.02 mg/kg of body weight to about 50 mg/kg of body weight of the animal per day, and in another embodiment, about 0.025 mg/kg of body weight to about 20 mg/kg of body weight of the animal per day.

Administration can be as a single dose or as a divided dose. In one

embodiment, an effective dosage amount is administered about every 24h until the Condition is abated. In another embodiment, an effective dosage amount is administered about every 12h until the Condition is abated. In another embodiment, an effective dosage amount is administered about every 8h until the Condition is abated. In another embodiment, an effective dosage amount is administered about every 6h until the Condition is abated. In another embodiment, an effective dosage amount is administered about every 4h until the Condition is abated. The effective dosage amounts described herein refer to total amounts administered; that is, if more than one Compound of the Invention is administered, the effective dosage amounts correspond to the total amount administered.

Where a cell capable of expressing the ORL- 1 receptor is contacted with a Compound of the Invention in vitro, the amount effective for inhibiting or activating the ORL-1 receptor function in a cell wi ll typically range from about 10~12 mol/L to about 1 0"4 moI/L, or from about 10" 12 mol/L to about l O"5 mol/L, or from about l O" 12 mol/L to about 10"6 mol/L, or from about 10"'2 mol/L to about 1 0"9 mol/L of a solution or suspension of the compound in a pharmaceutically acceptable carrier or excipient. In one embodiment, the volume of solution or suspension comprising the Compound of the Invention will be from about 0.01 to about ImL. In another embodiment, the volume of solution or suspension will be about 200

Figure imgf000140_0001

Where a cell capable of expressing the μ-opioid receptors is contacted with a

Compound of the Invention in vitro, the amount effective for inhibiting or activating the μ-opioid receptors function in a cell will typically range from about 10" 12 mol/L to about 10"4 mol/L, or from about 10" 12 mol/L to about l CT5 mol/L, or from about 10' 12 mol/L to about 10"6 mol/L, or from about 10" 12 mol/L to about 10"9 mol/L of a solution or suspension of the Compound of the Invention in a pharmaceutically acceptable carrier or excipient. In one embodiment, the volume of solution or suspension comprising the Compound of the Invention will be from about 0.0 \ μL· to about 1 mL. In another embodiment, the volume of solution or suspension will be about 200 μί.

Where a cell capable of expressing the δ-opioid receptors is contacted with a Compound of the Invention in vitro, the amount effective for inhibiting or activating the δ-opioid receptors function in a cell will typically range from about 10"'2 mol/L to about 1 0"4 mol/L, or from about 1 0" 12 mol/L to about 10"5 mol/L, or from about l O"'2 mol/L to about 10"6 mol/L, or from about 10" 12 mol/L to about I 0"9 mol/L of a solution or suspension of the Compound of the Invention in a pharmaceutically acceptable carrier or excipient. In one embodiment, the volume of solution or suspension comprising the Compound of the Invention will be from about 0.0 \ μL· to about l mL. In another embodiment, the volume of solution or suspension will be about 200 iL.

Where a cell capable of expressing the κ-opioid receptors is contacted with a Compound of the Invention in vitro, the amount effective for inhibiting or activating the K-opioid receptors function in a cell will typically range from about 10"12 mol/L to about 1 0"4 mol/L, or from about 10~'2 mol/L to about 10"5 mol/L, or from about 10" i 2 mol/L to about 10~6 mol/L, or from about 10" 12 mol/L to about 10~9 mol/L of a solution or suspension of the Compound of the Invention in a pharmaceutically acceptable carrier or excipient. In one embodiment, the volume of solution or suspension comprising the Compound of the Invention will be from about 0.0 Ι μί to about 1 mL. In another embodiment, the volume of solution or suspension will be about 200 μί.

The Compounds of the Invention can be assayed in vitro or in vivo for the desired therapeutic or prophylactic activity prior to use in humans. Animal model systems can be used to demonstrate safety and efficacy. Certain Compounds of the Invention will have an ED5o for treating pain ranging from about 0.5 mg/kg to about 20 mg/kg. Certain Compounds of the Invention will produce significant analgesia and/or anti-hyperalgesia at doses that do not induce respiratory depression. In contrast, oxygen tension, oxygen saturation and pH are significantly decreased, while carbon dioxide is significantly increased, in blood samples from rats given effective doses of conventional opioids, such as morphine.

According to the invention, methods for treating or preventing a Condition in an animal in need thereof can further comprise co-administering to the animal an effective amount of a second therapeutic agent in addition to a Compound of the Invention (i.e. , a first therapeutic agent). An effective amount of the second therapeutic agent will be known or determinable by a medical practitioner in view of this disclosure and published clinical studies. In one embodiment of the invention, where a second therapeutic agent is administered to an animal for treatment of a Condition (e.g., pain), the minimal effective amount of the Compound of the Invention (i.e., the first therapeutic agent) will be less than its minimal effective amount would be in circumstances where the second therapeutic agent is not administered. In this embodiment, the Compound of the Invention and the second therapeutic agent can act either additively or synergistically to treat or prevent a Condition. Alternatively, the second therapeutic agent may be used to treat or prevent a disorder that is different from the Condition for which the first therapeutic agent is being administered, and which disorder may or may not be a Condition as defined hereinabove. In one embodiment, a Compound of the Invention is administered concurrently with a second therapeutic agent as a single composition comprising an effective amount of a

Compound of the Invention and an effective amount of the second therapeutic agent. Alternatively, a composition comprising an effective amount of a Compound of the Invention and a second composition comprising an effective amount of the second therapeutic agent are concurrently administered. In another embodiment, an effective amount of a Compound of the Invention is administered prior or subsequent to administration of an effective amount of the second therapeutic agent. In this embodiment, the Compound of the Invention is administered while the second therapeutic agent exerts its therapeutic effect, or the second therapeutic agent is administered while the Compound of the Invention exerts its therapeutic effect for treating or preventing a Condition. The second therapeutic agent can be, but is not limited to, an opioid agonist, a non-opioid analgesic, a non-steroidal anti-inflammatory agent, an antimigraine agent, a Cox-Il inhibitor, a 5-lipoxygenase inhibitor, an anti-emetic, a β-adrenergic blocker, an anticonvulsant, an antidepressant, a Ca2+-channel blocker, an anti-cancer agent, an agent for treating or preventing UI, an agent for treating or preventing anxiety, an agent for treating or preventing a memory disorder, an agent for treating or preventing obesity, an agent for treating or preventing constipation, an agent for treating or preventing cough, an agent for treating or preventing diarrhea, an agent for treating or preventing high blood pressure, an agent for treating or preventing epilepsy, an agent for treating or preventing anorexia/cachexia, an agent for treating or preventing drug abuse, an agent for treating or preventing an ulcer, an agent for treating or preventing IBD, an agent for treating or preventing IBS, an agent for treating or preventing addictive disorder, an agent for treating or preventing Parkinson's disease and parkinsonism, an agent for treating or preventing a stroke, an agent for treating or preventing a seizure, an agent for treating or preventing a pruritic condition, an agent for treating or preventing psychosis, an agent for treating or preventing Huntington's chorea, an agent for treating or preventing ALS, an agent for treating or preventing a cognitive disorder, an agent for treating or preventing a migraine, an agent for treating, preventing or inhibiting vomiting, an agent for treating or preventing dyskinesia, an agent for treating or preventing depression, or any mixture thereof.

Examples of useful opioid agonists include, but are not limited to, alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, desomorphine, dextromoramide, dezocine, diampromide, diamorphone, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene, fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levorphanol, levophenacylmorphan, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbuphine, narceine, nicomorphine, norlevorphanol, normethadone, nalorphine, normorphine, norpipanone, opium, oxycodone, oxymorphone, papaveretum, pentazocine, phenadoxone, phenomorphan, phenazocine, phenoperidine, piminodine, piritramide, proheptazine, promedol, properidine, propiram, propoxyphene, sufentanil, tilidine, tramadol, pharmaceutically acceptable derivatives thereof, or any mixture thereof.

In certain embodiments, the opioid agonist is selected from codeine, hydromorphone, hydrocodone, oxycodone, dihydrocodeine, dihydromorphine, morphine, tramadol, oxymorphone, pharmaceutically acceptable derivatives thereof, or any mixture thereof.

Examples of useful non-opioid analgesics include, but are not limited to, non-steroidal anti-inflammatory agents, such as aspirin, ibuprofen, diclofenac, naproxen, benoxaprofen, flurbiprofen, fenoprofen, flubufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaprozin, pramoprofen, muroprofen, trioxaprofen, suprofen, aminoprofen, tiaprofenic acid, fluprofen, bucloxic acid, indomethacin, sulindac, tolmetin, zomepirac, tiopinac, zidometacin, acemetacin, fentiazac, clidanac, oxpinac, mefenamic acid, meclofenamic acid, flufenamic acid, niflumic acid, tolfenamic acid, diflurisal, flufenisal, piroxicam, sudoxicam, isoxicam, a pharmaceutically acceptable derivative thereof, or any mixture thereof. Other suitable non-opioid analgesics include the following, non-limiting, chemical classes of analgesic, antipyretic, nonsteroidal anti-inflammatory drugs: salicylic acid derivatives, including aspirin, sodium salicylate, choline magnesium trisalicylate, salsalate, diflunisal, salicylsalicylic acid, sulfasalazine, and olsalazin; para-aminophenol derivatives including

acetaminophen and phenacetin; indole and indene acetic acids, including

indomethacin, sulindac, and etodolac; heteroaryl acetic acids, including tolmetin, diclofenac, and ketorolac; anthranilic acids (fenamates), including mefenamic acid and meclofenamic acid; enolic acids, including oxicams (piroxicam, tenoxicam), and pyrazolidinediones (phenylbutazone, oxyphenthartazone); alkanones, including nabumetone; a pharmaceutically acceptable derivative thereof; or any mixture thereof. For a more detailed description of the NSAIDs, see Paul A. Insel,

Analgesic-Antipyretic and Anti-inflammatory Agents and Drugs Employed in the Treatment of Gout, in Goodman & Gilman 's The Pharmacological Basis of

Therapeutics 617-57 (Perry B. Molinhoff and Raymond W. Ruddon eds., 9th ed 1 996); and Glen R. Hanson, Analgesic, Antipyretic and Anti-Inflammatory Drugs in Remington: The Science and Practice of Pharmacy Vol IA 1 196- 1221 (A.R. Gennaro ed. 1 9th ed. 1 995), which are hereby incorporated by reference in their entireties.

Examples of useful Cox-II inhibitors and 5-lipoxygenase inhibitors, as well as combinations thereof, are described in U.S. Patent No. 6, 136,839, which is hereby incorporated by reference in its entirety. Examples of useful Cox-II inhibitors include, but are not limited to, celecoxib, DUP-697, flosulide, meloxicam, 6-MNA, L-745337, rofecoxib, nabumetone, nimesulide, NS-398, SC-5766, T-614, L-768277, GR-253035, JTE-522, RS-57067-000, SC-58125, SC-078, PD- 1 38387, NS-398, flosulide, D- 1367, SC-5766, PD- 164387, etoricoxib, valdecoxib, parecoxib, a pharmaceutically acceptable derivative thereof, or any mixture thereof.

Examples of useful antimigraine agents include, but are not l imited to, alpiropride, bromocriptine, dihydroergotamine, dolasetron, ergocornine, ergocorninine, ergocryptine, ergonovine, ergot, ergotamine, flumedroxone acetate, fonazine, ketanserin, lisuride, lomerizine, methylergonovine, methysergide, metoprolol, naratriptan, oxetorone, pizotyline, propranolol, risperidone, rizatriptan, sumatriptan, timolol, trazodone, zolmitriptan, a pharmaceutically acceptable derivative thereof, or any mixture thereof.

Examples of useful anticonvulsants include, but are not limited to,

acetylpheneturide, albutoin, aloxidone, aminoglutethimide, 4-amino-3-hydroxybutyric acid, atrolactamide, beclamide, buramate, calcium bromide, carbamazepine, cinromide, clomethiazole, clonazepam, decimemide, diethadione, dimethadione, doxenitroin, eterobarb, ethadione, ethosuximide, ethotoin, felbamate, fluoresone, gabapentin, 5-hydroxytryptophan, lamotrigine, magnesium bromide, magnesium sulfate, mephenytoin, mephobarbital, metharbital, methetoin, methsuximide, 5-methyl- 5-(3-phenanthryl)-hydantoin, 3-methyl-5-phenylhydantoin, narcobarbital,

nimetazepam, nitrazepam, oxcarbazepine, paramethadione, phenacemide,

phenetharbital, pheneturide, phenobarbital, phensuximide, phenylmethylbarbituric acid, phenytoin, phethenylate sodium, potassium bromide, pregabaline, primidone, progabide, sodium bromide, solanum, strontium bromide, suclofenide, sulthiame, tetrantoin, tiagabine, topiramate, trimethadione, valproic acid, valpromide, vigabatrin, zonisamide, a pharmaceutically acceptable derivative thereof, or any mixture thereof. Examples of useful Ca -channel blockers include, but are not limited to, bepridil, clentiazem, diltiazem, fendil ine, gallopamil, mibefradil, prenylamine, semotiadil, terodiline, verapamil, amlodipine, aranidipine, barnidipine, benidipine, cilnidipine, efonidipine, elgodipine, felodipine, isradipine, lacidipine, lercanidipine, manidipine, nicardipine, nifedipine, ni lvadipine, nimodipine, nisoldipine, nitrendipine, cinnarizine, flunarizine, lidoflazine, lomerizine, bencyclane, etafenone, fantofarone, perhexiline, a pharmaceutically acceptable derivative thereof, or any mixture thereof.

Examples of useful therapeutic agents for treating or preventing UI include, but are not limited to, propantheline, imipramine, hyoscyamine, oxybutynin, dicyclomine, a pharmaceutically acceptable derivative thereof, or any mixture thereof.

Examples of useful therapeutic agents for treating or preventing anxiety include, but are not l imited to, benzodiazepines, such as alprazolam, brotizolam, chlordiazepoxide, clobazam, clonazepam, clorazepate, demoxepam, diazepam, estazolam, flumazenil, flurazepam, halazepam, lorazepam, midazolam, nitrazepam, nordazepam, oxazepam, prazepam, quazepam, temazepam, and triazolam; non- benzodiazepine agents, such as buspirone, gepirone, ipsapirone, tiospirone, zolpicone, Zolpidem, and zaleplon; tranquilizers, such as barbituates, e.g. , amobarbital, aprobarbital, butabarbital, butalbital, mephobarbital, methohexital, pentobarbital, phenobarbital, secobarbital, and thiopental; propanediol carbamates, such as meprobamate and tybamate; a pharmaceutical ly acceptable derivative thereof; or any mixture thereof.

Examples of useful therapeutic agents for treating or preventing diarrhea include, but are not limited to, diphenoxylate, loperamide, a pharmaceutically acceptable derivative thereof, or any mixture thereof.

Examples of useful therapeutic agents for treating or preventing epilepsy include, but are not limited to, carbamazepine, ethosuximide, gabapentin, lamotrigine, phenobarbital, phenytoin, primidone, valproic acid, trimethadione, benzodiazepines, γ vinyl GABA, acetazolamide, felbamate, a pharmaceutically acceptable derivative thereof, or any mixture thereof.

Examples of useful therapeutic agents for treating or preventing drug abuse include, but are not l imited to, methadone, desipramine, amantadine, fluoxetine, buprenorphine, an opiate agonist, 3-phenoxypyridine, levomethadyl acetate hydrochloride, serotonin antagonists, a pharmaceutically acceptable derivative thereof, or any mixture thereof.

Examples of non-steroidal anti-inflammatory agents, 5-lipoxygenase inhibitors, anti-emetics, β adrenergic blockers, antidepressants, and anti-cancer agents are known in the art and can be selected by those skilled in the art. Examples of useful therapeutic agents for treating or preventing memory disorder, obesity, constipation, cough, high blood pressure, anorexia/cachexia, an ulcer, IBD, IBS, addictive disorder, Parkinson's disease and parkinsonism, a stroke, a seizure, a pruritic condition, psychosis, Huntington's chorea, ALS, a cognitive disorder, a migraine, dyskinesia, depression, and/or treating, preventing or inhibiting vomiting include those that are known in the art and can be selected by those skilled in the art.

A composition of the invention is prepared by a method comprising admixing a Compound of the Invention (or a pharmaceutically acceptable salt, prodrug or solvate thereof) with a pharmaceutically acceptable carrier or excipient. Admixing can be accomplished using methods known for admixing a compound (or derivative) and a pharmaceutically acceptable carrier or excipient. In one embodiment, the Compound of the Invention (or pharmaceutically acceptable salt, prodrug or solvate thereof) is present in the composition in an effective amount.

Examples

EXAMPLE 1

2-(((8-methoxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i ]

l l-ylidene)amino)oxy)acetic acid (Compound 1)

Figure imgf000148_0001

A mixture of RA1 (90mg, 0.37mmol), (aminooxy)acetic acid hemihydrochloride (0.56mmol, Aldrich), IMaOAc (1 .2mmol) and EtOH (2mL) was shaken at 40 °C for 2h. After cooling to RT, the reaction mixture was quenched with water (4mL), and extracted with CHC13 (20mL). The organic layer was concentrated and purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to give Compound 1 (TFA-salt, 85mg, 65%). Ή NMR δΗ (400 MHz, CD3OD) 7.07 (d, J = 8.3 Hz, 1 H), 6.83 (d, J = 2.6 Hz, 1 H), 6.79 (dd, J = 2.6 and 8.3 Hz, 1 H), 5.22 (t, J = 3.5 Hz, l H), 4.65 (d, J = 1 .1 Hz, 2H), 3.69 (s, 3H), 3.35 - 3.40 (m, 2H), 2.95 (br., 4H), 2. 1 - 2.2 (m, 1 H), 1 .78 - 1 .82 (m, 2H), 1 .53 (s, 3H); LC/MS, m/z = 319.2 [M + H]+ (Calc: 31 8.4). EXAMPLE 2

8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6-niethanobenzo[i]azocin-ll-one oxime (Compound 2)

Figure imgf000149_0001

In a similar manner Compound 2 was prepared from RA1 (0.37mmo!) and hydroxylamine hydrochloride (0.56mmol, Aldrich) following the procedure for

Compound 1. Compound 2 was obtained as a white solid (70%).

' H N R 6H (400 MHz, CDC13) 7.43 (br., IH), 7.03 (d, J = 8.3 Hz, I H), 6.81 (d, J = 2.6 Hz, 1 H), 6.73 (dd, J = 2.6 and 8.3 Hz, 1H), 4.62 (d, J = 6.1 Hz, 2H), 3.79 (s, 3H), 3.28 (d, J = 18.0 Hz, 1 H), 2.96 (dd, J = 6.1 and 17.8 Hz, 1 H), 2.48 - 2.56 (m, 2H), 2.46 (s, 3H), 2.08 -2.15 (m, 1H), 1.55 (s, 3H), 1.5-1.54 (m, IH); LC/MS, m/z = 261.1 [M + H]+(Calc: 260.3).

EXAMPLE 3

2-(((6R,llR)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-ll-yl)oxy)acetamide (Compound 3)

Figure imgf000150_0001

RA1 RA2

Figure imgf000150_0002

RA2 was prepared from RA l following the literature procedure (0.5g, 2.0mmol) (T. A. Montzka, and J. D. Matiskella US 3956336, May 1 1 , 1976), and purified by column chromatography (Sil ica gel).

RA2 (CHCl3/MeOH 10/0.5, white solid, 0.35g): Ή NMR δΗ (400 MHz, CDCI3) 7.05 (d, J = 8.3Hz, 1 H), 6.81 (d, J = 2.6 Hz, 1 H), 6.73 (dd, J = 2.6 and 8.3 Hz, l H), 3.79 (s, 3H), 3.76 - 3.78 (m, 1 H), 3.19 (t, J = 5.5 Hz, l H), 3.02 (d, J = 18.8 Hz, 1 H), 2.82 (dd, J = 5.9 and 18.2Hz, 1 H), 2.43 (s, 3H), 2.32 - 2.37 (m, 1 H), 2.04 (dt, J = 3.1 and 12.2 Hz, 1 H), 1 .85 (dt, J = 4.8 and 12.9 Hz, 1 H), 1 .74 (br., s, 1 H ), 1.51 (s, 3H), 1 .41 - 1.46 (m, 1 H); LC/MS, m/z = 248.3 [M + H]+ (Calc: 247.3).

NaH ( l mmol, 60% in mineral oil) was added to a solution of RA2 (0.28mmol) in 2mL DMF at 0 °C under nitrogen. The reaction mixture was stirred at 0 °C for l h, then a solution of ethyl 2-bromoacetate (60mg, in I mL DM F) was added. The reaction mixture was warmed to RT for 24h. After aqueous work-up, the crude product RA3, LC/MS, m/z = 334.4 [M + H]+ (Calc: 333.4) was treated with ammonia (~ 7N in MeOH, 4mL) at 0 °C. The reaction mixture was shaken at RT for 48h, then concentrated and purified by reverse-phase prep HPLC (C 18, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 3 (TFA-salt, white solid, 30mg, 36%). 'HNMR8h (400 MHz, CD3OD) 7.14 - 7.18 (m, 1H), 6.89-6.93 (m, 1H), 6.83-6.87 (m, 1 H), 4.88 - 4.90 (m, 1 H), 4.1 - 4.25 (m, 3H), 3.7 - 3.82 (m, 4H), 3.12 - 3.26 (m, 2H), 2.97 - 3.02 (m, 3H), 2.62 - 2.70 (m, 1 H), 1.9 - 2.2 (m, 1 H), 1.7 - 1.76 (m, 1 H), 1.54 - 1.64 (m, 3H); LC/MS, m/z = 305.2 [M + H]+ (Calc: 304.4).

EXAMPLE 4

2-(((67?,115 -8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-ll-yl)oxy)acetamide (Compound 4)

Figure imgf000151_0001

RA4 was prepared from RAl following the literature procedure (0.5g, 2.0mmol) (T. A. Montzka, and J. D. Matiskella US Patent No.3956336, May 11, 1976), and purified by column chromatography (Silica gel).

RA4: (CHCl3/MeOH 10/0.3, white solid, 0.4g): Ή NMR δΗ (400 MHz, CDC13) 7.02 (d, J = 8.6Hz, 1 H), 6.85 (d, J = 2.6 Hz, 1 H), 6.71 (dd, J = 2.6 and 8.5 Hz, 1 H), 3.79 (s, 3H), 3.57 - 3.59 (m, 1H), 3.4 - 3.5 (br, lH), 3.19 (d, J = 18.2 Hz, 1H), 3.11 -3.14(m, 1H), 2.77 (dd, J = 6.4 and 18.4Hz, lH), 2.37 (s, 3H), 2.31 - 2.36 (m, lH), 1.98-2.14 (m, 2H), 1.43 (s, 3 H), 1 .12 - 1 .16 (m, 1 H); LC/MS, m/z = 248.6 [M + H]+ (Calc: 247.3).

In a similar manner Compound 4 (TFA-salt, white solid, 25mg, 30%) was prepared from RA4 following the procedure for Compound 3.

Compound 4: Ή NMR δΗ (400 MHz, CD3OD) 7.03 (d, J = 8.5Hz, I H), 6.78 - 6.81 (m, 1 H), 6.3 (dd, J = 2.4 and 8.3Hz, 1 H), 4.74 - 4.75 (m, 1 H), 4.06 - 4.44 (m, 4H), 3.67 (s, 1 H), 3.34 - 3.46 (m, 4H), 2.97 - 3.02 (m, 3H), 3.02 - 3.12 (m, 1H), 2.74 - 2.84 (m, 1 H), 2.08 - 2.22 (m, 1 H), 1 .44 - 1 .54 (m, 4H); LC/MS, m/z = 305.2 [M + H]+ (Calc: 304.4).

EXAMPLE 5

8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i |azocin-l l-one 0-(2-(diethylamino)ethyl) oxime (Compound 5)

Figure imgf000152_0001

In a similar manner Compound 5 (TFA-salt, yellow oil, 57%) was prepared from RA l and 0-(2-diethylamino-ethyl) hydroxylamine (Hulu Technology) following the procedure for Compound 3.

Compound 5: Ή NMR δΗ (400 MHz, CD3OD) 7.07 (d, J = 8.3 Hz, lH), 6.83 (d, J = 2.4 Hz, 1 H), 6.79 (dd, J = 2.4 and 8.6 Hz, 1 H), 5.16 (d, J = 6.6 Hz, I H), 4.4 (t, J = 5.1 Hz, 2H), 3.69 (s, 3H), 3.4 - 3.48 (m, 3H), 3.24 - 3.3 1 (m, I H), 3.14 - 3.18 (m, 5H), 2.9 - 2.94 (m, I H), 2.89 (s, 3H), 2. 12 - 2.1 8 (m, I H), 1.79 - 1.83 (m, I H), 1.57 (s, 3H), 1 .2 (t, J = 7.1 Hz, 6H); LC/MS, m/z = 360.3 [M + H]+ (Calc: 359.5). EXAMPLE 6

8-methoxy-3,6-dimethyI-ll-propylidene-l,2,3,4,5,6-hexahyd

methanobenzo[</]azocine (Compound 6)

Figure imgf000153_0001

RA1 -ΒίιΟΚ (I M in THF) was added to a mixture of RA l (O. l g, 0.4mmo!) and propyltriphenylphosphonium bromide (0.8mmol) in 5mL THF at rt. After stirring at RT for I 2h, the reaction was quenched with water ( l OmL), extracted with EtOAc (40mL), concentrated and purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 6 as yellow oil (TFA-salt, 80mg, 50%).

Compound 6: Ή NMR δΗ (400 MHz, CD3OD) 7.02 (dd, J = 8.5 and 8.6 Hz, 1 H), 6.7 - 6.8 (m, 2H), 5.58 (dd, J = 7.2 and 7.4 Hz, l H), 3.86 - 3.96 (m, 1 H), 3.68 (s, 3H), 3.3 - 3.36 (m, I H), 3.06 - 3. 14 (m, 2H), 2.7 - 2.84 (m, 4H), 1.98 - 2.4 (m, 3H), 1 .74 - 1 .78 (m, 3H), 1 .36 - 1 .56 (m, 1 H); LC/MS, m/z = 272.2 [M + H]+ (Calc: 271 .4).

EXAMPLE 7

3-(cyclopropylmethyI)-8-methoxy-6-methyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< ]azocin-ll-one (RA11)

Figure imgf000154_0001

Figure imgf000154_0002

(Bromomethyl)cyclopiOpane (80g, 0.59mol, CombiJBlocks) was added dropwise to a suspension of compound R.A6 ( l . l mol, Aldrich) and K2CO3 (0.58mol) in CH3CN/water (400mL/ l mL) under nitrogen over 30 min at RT. The reaction mixture was heated at 50 °C for 24h. After cooling to RT, the reaction mixture was concentrated under vacuum (< 25 °C) to remove most of the solvent, then quenched with water (400mL), and extracted with EtOAc (2x300mL). The combined organic layer was washed with brine (l OOmL), concentrated and purified by column chromatography (silica gel, EtOAc/MeOH/NH4OH 10/ 1 .5/0.1 ) to give RA7 as a colorless oil (60g, 80%): Ή NMR 5H (400 MHz, CDCI3) 3.45 (t, J = 5.4 Hz, 2H), 3.19 (br., 1 H), 2.44 (t, J = 5.3 Hz, 2H), 2.22 (s, 3H), 2.2 (d, J = 6.6 Hz, 2H), 0.73 - 0.81 (m, 1 H), 0.38 - 0.43 (m, 2H), -0.08 - 0. 1 (m, 2H).

Thionyl chloride (0.68mol, 50mL in l OOmL CHCI3) was added to a solution of

RA7 (0.47mol, 60g in 400mL CHCI3) at 0 °C over 2h. The reaction mixture was warmed to RT, and stirred at RT for 16 h. The reaction mixture was concentrated under vacuum to give a yellow oil, which was washed with Et20 ( l OOmL), and toluene (l OOmL). The solid was collected under argon, washed with hexanes, and dried under vacuum to give RA8 (HCI-salt, yellow solid, 75g): Ή NMR δΗ (400 MHz, CD3OD) 4.02 (dd, J = 1 .1 and 6.1 Hz, 2H), 3.75 (dt, J = 6.3 and 13.8 Hz, 1 H), 3.56 (dt, J = 5.7 and 13.8 Hz), 3.22 (dd, J = 7.4 and 13.5 Hz, 1 H), 3.14 (dd, J = 7.3 and 13.4 Hz, 1 H), 3.01 (s, 3H), 1 . 15 - 1 .22 (m, l H), 0.78 - 0.82 (m, 2H), 0.46 - 0.52 (m, 2H). The HCl- salt (50g) was suspended in 200mL CHC13 under nitrogen, cooled with ice-water, and neutralized to pH ~ 9 with NH4OH ( 14% aqueous). The CHCI3 layer was separated, washed with brine and concentrated under vacuum (< 15°C) to give RA8 as a colorless oi l (40g, used immediately).

7-Methoxy- l -methyl-2-tetralone (0.16mol in l OOmL toluene) was added to a suspension of NaH (60%, 8g, 0.2mol) in 300mL toluene at 80 °C over 1 h. After 1 h at 80 °C, this reaction mixture was treated with RA8 (0. 1 8mol, 26g in 60mL of toluene), and continued at 80 °C for 5 h. The reaction mixture was cooled to RT, and poured over to ice-water (300g). The aqueous layer was extracted with toluene (2x200mL). The combined toluene layer was washed with brine, concentrated under vacuum to about 300mL, cooled to 0 °C with ice-water, and treated with 6N HC1 (60mL aqueous). The reaction mixture was stirred at RT for 30min. The aqueous layer was separated, cooled with ice-water, and neutralized with NH4OH ( 14% aqueous solution) to pH ~ 9. The toluene layer was separated, washed with brine, concentrated, and purified by column chromatography (silica gel, DCM/MeOH 1 0/0.8) to give RA9 as a colorless oil (30g, 62%): Ή NMR δΗ (400 MHz, CDC13) 7.10 (d, J = 8.3 Hz, 1 H), 6.84 (d, J = 2.6 Hz, l H), 6.76 (dd, J = 2.6 and 8.3 Hz, 1 H), 3.82 (s, 3H), 3.06 (dt, J = 7.3 and 15.5 Hz, l H), 2.96 (dt, J = 6.1 and 15.6 Hz, 1 H), 2.66 (dd, J = 6.1 and 7.6 Hz, 2H), 2.5 (dt, J = 8.3 and 13.8 Hz, 1H), 2.1 - 2.14 (m, 4H), 1 .98 - 2.05 (m, 3H), 1 .76 - 1 .82 (m, 1 H), 1 .42 (s, 3H), 0.64 - 0.72 (m, 1 H), 0.39 - 0.43 (m, 2H), -0.01 - 0.02 (m, 2H).

Bromine (O. l l mol, 17g in 20mL DCM and 8mL AcOH) was added to a solution of RA9 (Yao-012d) (O. l mol, 30g in 200mL DCM and l OmL AcOH) over 30min at 0 °C. The reaction mixture was warmed to RT over 4 h, and stirred at RT for 24 h. The reaction mixture was poured over ice-water (40g), and neutralized with NH4OH ( 14%) aqueous solution) to pH ~9. The organic layer was washed with brine, and concentrated under vacuum (<20 °C) to give a brown oil. Ether ( l OOmL) was added to the brown oil, and the mixture was stirred at RT under nitrogen for 4 h. The solid was collected under nitrogen, washed with Et20 and dried under vacuum to give RA10 as a yellow solid (15g, 40%): Ή NMR δΗ (400 MHz, CD3OD) 7.2 - 7.4 (m, 1H), 6.93-6.97 (m, 1 H), 6.89 - 6.91 (m, 1H),4.42 (dt, J = 1.3 and 5.9 Hz, 0.3H), 4.27 (dt, J = 1.3 and 5.9 Hz, 0.7H), 3.94 - 3.98 (m, IH), 3.78 - 3.81 (m, 1H), 3.45 - 3.65 (3H), 3.35 -3.42 (m, 1.7H), 3.27 (m, 2.3H), 2.53 - 2.63 (m, 1H), 2.02 - 2.14 (m, IH), 1.62 (s, 2.2H), 1.59 (s, 0.8H), 1.2 - 1.26 (m, 1 H), 0.82 - 0.94 (m, 2H), 0.51 - 0.64 (m, 2H).

1-Dodecanethiol (25mmol, 6mL, Aldrich) was added to a suspension of RA10 (32mmol, 12g in 30mL DMA) at 150 °C under nitrogen over 2 min. After 30 min, the reaction mixture was cooled to RT, diluted with 200mL EtOAc, and washed with water (150mL, and 2N NaOH 25mL). The organic layer was washed with brine (lOOmL), concentrated and purified by column chromatography (EtOAc/hexane 2/11) to yield RA11 (yellow solid, 4.1g, 40%). Ή NMR δΗ (400 MHz, CDC13) 6.91 (d, J = 8.3Hz, 1H), 6.63 (dd, J = 2.6 and 8.3 Hz, IH), 6.61 (d, J = 2.4 Hz, 1H), 3.66 (s, 3H), 3.53 (d, J -6.1 Hz, 1 H), 3.32 (d, J = 17.6Hz, IH), 2.98 (dd, J = 6.4 and 17.8 Hz, IH), 2.64 (ddd, J= 1.5, 5.2 and 12.9 Hz, IH), 2.35 (d, J = 6.6 Hz, 2H), 2.03 -2.11 (m, IH), 1.56 - 1.61 (m, IH), 1.34 (s, 3H), 0.68 - 0.74 (m, IH), 0.38 - 0.42 (m, 2H), -0.04 - 0.05 (m, 2H); LC/MS, m/z = 304.2 [M + H20 + H]+ (Calc: 285.4).

EXAMPLE 8

4-(ll,ll-dihydroxy-8-methoxy-6-methyl-l,2,5,6-tetrahydro-2,6- methanobenzo[i]azocin-3(4H)-yl)-N,V-dimethyl-2,2-diphenylbutanamide

(Compound 7); 4-((6R,llS)-ll-hydroxy-8-methoxy-6-methyl-l,2,5,6-tetrahydro- 2,6-methanobenzo[^azocin-3(4H)-yl)-7V,/Y-dimethyI-2,2-diphenylbutanamide (Compound 17); and 4-(ll-(hydroxyimino)-8-methoxy-6-methyI-l,2,5,6- tetrahydro-2,6-methanobenzo[i|azocin-3(4H)-yl)-/V,V-dimethyl-2,2- diphenylbutanamide (Compound 19)

Figure imgf000157_0001

MCPBA (2mmol, 85% pure, in 5mL of DCM) was added to a solution of RA 1 (0.25g, 2mmol) in 4mL DCM at -5 to 0 °C. After 30 min, a solution of FeCl2 (1 M aqueous, 0.2mL) was added. The reaction mixture was stirred at 0 °C for l h, and 2 h at RT. The reaction was quenched with NaOH (2N aqueous, 2m L). The organic layer was separated, and concentrated to yield crude RA 12 as yellow oil {LC/MS, m/z = 232 A [M + H20 + H]+ (Calc: 231.3)} .

Dihydro-N,N-dimethyl-3,3-diphenyl-2(3H)-furaniminium bromide

(0.2g,0.58mmol) was added to a solution of RA 12 (O. l g, 0.43mmol) and TEA ( 1 mmol) in CHC13 (2mL) at 0 °C. The reaction mixture was warmed to RT, and stirred at RT for 48 h. The reaction was quenched with NaOH (0.5N aqueous, 4m L). The organic layer was separated, concentrated and purified by HPLC to give Compound 7 ( TFA-salt, white solid, 20mg, 8% in two steps). Ή NMR δΗ (400 MHz, CD3CN) 10.2 (br, I H), 7.24 - 7.38 (m, l OH), 6.98 (d, J = 8.5 Hz, 0.2H), 6.83 (d, J = 8.5 Hz, 0.8H), 6.62 - 6.78 (m, 2H), 3.62 (s, 3H), 3.42 (d, J = 6.0Hz, I H), 2.18 - 3.05 (m, 15H), 1 .3 - 1.42 (m, 4H); LC/MS, m/z = 515.2 [M + H20 + H]+ (Calc: 496.6).

NaBH4 (O. l g, 33mmol) was added to a solution of Compound 7 (O. lg, 0.2mmol) in 4mL of EtOH at 0 °C. The reaction mixture was stirred at RT for l h, quenched with water, extracted with CHCI3, and purified by HPLC to yield Compound 17 (TFA-salt, white solid, 40mg). Ή NMR 6H (400 MHz, CD3OD) 7.28 - 7.46 (m, 10H), 6.9 - 6.94 (m, 1 H), 6.66 - 6.8 (m, 2H), 3.7 - 3.75 (m, l H), 3.64 - 3.66 (m, 3H), 3.44 - 3.48 (m, l H), 2.93 - 3.15 (m, 6H), 2.3 - 2.75 (m, 6H), 2.25 (s, 3H), 1.23 - 1.45 (m, 4H); LC/MS, m/z = 499.2 [M + H]+ (Calc: 498.7).

In a similar manner Compound 19 was prepared from Compound 7 (0.2mmol) and hydroxylamine hydrochloride (0.3mmol, Aldrich) following the procedure for Compound 1. Compound 19 was purified by reverse-phase prep HPLC (C 1 8, 0- 100% 0. 1 % TFA in water/0. 1 % TFA in ACN) (white solid, TFA-salt, 40mg). Ή NMR δΗ (400 MHz, CD3OD) 7.22 - 7.42 (m, 10H), 7.02 (d, J = 8.3 Hz, 0.6H), 6.88 (d, J = 8.3 Hz, 0.4H), 6.67 - 6.8 (m, 2H), 5.02 - 5.07 (m, 1 H), 3.64 (s, 3H), 3.22 - 3.25 (m, l H), 3.0 - 3.05 (m, 2H), 2.87 (s, 3H), 2.4 - 2.8 (m, 5H), 2.22 (s, 3H), 1 .56 - 1 .96 (m, 2H), 1 .52 (s, 1 .2H), 1 .42 (s, 1.8H); LC/MS, m/z = 5 12.3 [M + H]+ (Calc: 51 1.7).

EXAMPLE 9

(6R,115)-8-methoxy-/V,3,6-trimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-ll-amine (Compound 8); and (6if,llR)-8-methoxy-N,3,6- trjmethyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i ]azocin-ll-amine

(Compound 9)

Figure imgf000158_0001

A mixture of RA 1 (O. l g, 0.4mmol), MeNH2 (2N in THF, 0.5mL, l mmol), and 4A Molecular Sieve in CH3CN ( l mL) was shaken at RT. After 2 h, sodium triacetoxyborohydride (0.8mmol) was added, and the reaction mixture was shaken at RT for 16 h. The reaction was quenched with NaOH (IN aqueous, 2mL), extracted with EtOAc ( l OmL), concentrated and purified by HPLC to yield Compound 8 and Compound 9.

Compound 8 (white solid, TFA-salt, 15%, RT 0.865 min): Ή NMR 5H (400 MHz, CD3OD) 7.55 (d, J = 8.9Hz, l H), 6.95 - 6.99 (m, 2H), 4.38 (dd, J = 3.7 and 5.9 Hz, I H), 3.8 - 3.86 (m, 4H), 3.48 (d, J = 20.1 Hz, 1 H), 3.22 - 3.3 (m, 2H), 3.07 (s, 3H), 2.85 (s, 3H), 2.72 - 2.81 (m, 1 H), 2.1 8 - 2.22 (m, 1 H), 1 .8 - 1 .85 (m, 1 H), 1 .72 (m, 3H); LC/MS, m/z = 261 .3 [M + H]+ (Calc: 260.4).

Compound 9 (white sol id, TFA-salt, 40%, RT 1 .7 17 min): Ή NMR δΗ (400 MHz, CD3OD) 7.05 (d, J = 8.5Hz, 1 H), 6.86 (d, J - 2.2 Hz, 1 H), 6.76 (dd, J = 2.6 and 8.3 Hz, l H), 3.78 - 3.8 (m, l H), 3.68 (s, 3H), 3.28 - 3.38 (m, 2H), 3.04 (dd, J = 5.1 and 19.5 Hz, 1 H), 2.74 - 2.8 (m, 1 H), 2.72 (s, 3H), 2.63 (s, 3H), 2.32 - 2.4 (m, I H), 2.02 - 2.1 (m, l H), 1 .48 (m, 3H), 1.4 - 1.43 (m, 1 H); LC/MS, mJz = 261 .3 [M + H]+ (Calc:

260.4).

EXAMPLE 10

3-(cyclopropylmethyl)-8-methoxy-6-methyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-ll-one (9-methyl oxime (Compound 10)

Figure imgf000159_0001

In a similar manner Compound 10 was prepared from RA 1 1 (O. l g, 0.35mmol) and o-methylhydroxylamine hydrochloride (0.5mmol, Aldrich) fol lowing the same procedure for Compound 1. Compound 10 was purified by reverse-phase prep HPLC (C I 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) (TFA-salt, white solid, 80%). Ή NMR δΗ (400 MHz, CD3OD) 7.05 (d, J = 8.5Hz, 1 H), 6.83 (d, J = 2.6 Hz, 1 H), 6.78 (dd, J - 2.6 and 8.3 Hz, 1 H), 5.33 (s, 1 H), 3.86 (s, 3H), 3.68 (s, 3H), 3.0 - 3.38 (m, 5H), 2.6 - 2.8 (m, 1 H), 2.0 - 2. 1 8 (m, 1 H), 1 .7 - 1 .82 (m, 1 H), 1.56 (s, 3H), 1.0 - 1 .04 (m, 1 H), 0.66 - 0.71 (m, 2H), 0.36 - 0.41 (m, 2H); LC/MS, m/z = 3 15.1 [M + H]+ (Calc: 3 14.4).

EXAMPLE 11

((6S,1 l/?)-8-methoxy-3,6-dimethy 1-1 ,2,3,4,5,6-hexahydro-2,

methanobenzo[i/]azocin-l l-yl)methanol (Compound 11)

Figure imgf000160_0001

/-BuOk (1 in THF, 2.2mL, 2.2mmol) was added to a solution of RA 1 (0.3g,

1 .2mmol) and (methoxymethyl)triphenylphosphonium chloride (0.6g, 1 .7 mmol, Aldrich) in l OmL of THF at RT. The reaction mixture was stirred at RT for 16 h. After aqueous work-up, the resulting mixture was extracted with EtOAc, and purified by column (silica gel, CHCI3/MeOH 10/0.3) to yield RA 13 [yellow oil, 0.25g, LC/MS, m/z = 274.2 [M + H]+ (Calc: 273.4)].

A mixture of RA 13 (0.12g, 0.4mmol) and p- toluenesulfonic acid

monohydrate (0.15g, 0.8mmol) in 5mL 1 ,4-di-oxane was shaken at RT for 2 h, then 100 °C for 14 h. After cooling to 0 °C, the reaction mixture was diluted with EtOAc (15mL), and neutralized with saturated NaHC03. The organic layer was concentrated to yield the crude RA 14 [LC/MS, m/z = 260.4 [M + H]+ (Calc: 259.3)], which was dissolved in 2mL EtOH and treated with NaBH4 (50mg) at RT for 30min. The reaction was quenched with water, and purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 10 (TFA-salt, white solid, 60mg, 42%). Ή NMR 5H (400 MHz, CD3OD) 6.92 (d, J = 8.5Hz, 1 H), 6.65 (d, J = 2.6 Hz, 1H), 6.62 (dd, J = 2.6 and 8.5 Hz, 1 H), 3.65 (dd, J = 5.2 and 13.3 Hz, 1H), 3.62 (s, 3H), 3.2- 3.4 (m, 1H), 3.35 (dd, J = 10.5 and 11.8 Hz, 1H), 2.94 (d, J = 18.3 Hz, 1H), 2.64 (dd, J = 5.9 and 18.6 Hz, 1H), 2.34 - 2.39 (m, 1H), 2.32 (s, 3H), 2.0- 2.07 (m, l H), 1.89- 1.95 (m, 1H), 1.72- 1.78 (m, 1H), 1.29 (s,3H), 1.19- 1.24 (m, 1 H); LC/MS, m/z = 262.4 [M + H]+ (Calc: 261.4).

EXAMPLE 12

(Z)-ethyI 2-(8-methoxy-3,6-dimethyl-l,2,3,4,5>6-hexahydro-2,6- methanobenzo[i]azocin-ll-yIidene)acetate (Compound 12); (Z)-2-(8-methoxy-3,6- dimethyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i/]azocin-ll-ylidene)acetic acid (Compound 13); ethyl 2-((6S',112?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[</]azocin-ll-yl)acetate (Compound 14); and 2-((6S,llR)-8- methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i/|azocin-ll- yl)acetic acid (Compound 15)

Figure imgf000161_0001

RA1 (0.8 mmol, 0.2g, in 3mL THF) was added to a mixture of triethyl phosphanoacetate (1.3mmol, 0.3g in lOmL THF) and NaH (5 mmol, 0.2g, 60% in mineral oil) at RT under argon. The reaction mixture was stirred at RT for 16 h. After it was cooled to 0 °C, the reaction mixture was quenched with water (20mL), extracted with EtOAc (2x50mL). The combined organic layer was concentrated, and purified by reverse-phase prep HPLC (C I 8, 0- 100% 0. 1 % TFA in water/0. 1 % TFA in ACN) to yield Compound 12 (TFA-salt, white solid, 0.2g, 58%). Ή NMR δΗ (400 MHz, CD3OD) 7.12 (s, 1 H), 6.93 (d, J = 2.3 Hz, 1 H), 6.88 (dd, J = 2.6 and 8.5 Hz, 1 H), 6.24 (d, J = 42.2 Hz, 1 H), 5.9 1 (d, J = 4.8 Hz, 1 H), 4. 1 8 - 4.25 (m, 2H), 3.78 (s, 3H), 3.4 - 3.6 (m, 2H), 3.1 - 3.21 (m, 2H), 2.99 (s, 3H), 1 .8 - 2.3 (m, 2H), 1 .67(s, 3H), 1 .27 - 1 .31 (m, 3H); LC/MS, w/z = 316.2 [M + H]+ (Calc: 31 5.4).

NaOH ( 1 mmol, 2N in water, 0.5mL) was added to a solution of Compound 12 (0.05mmol, 20mg, TFA-salt) in 2mL MeOH at 0 °C. The reaction mixture was shaken at RT for 5 h. The solvent was evaporated under vacuum, the residue was dissolved in 4mL CHCI3, and neutralized to pH ~ 2 with IN HC1. The organic layer was separated, concentrated, and purified by reverse-phase prep HPLC (C I 8, 0-100%) 0.1 % TFA in water/0.1 % TFA in ACN) to give Compound 13 as TFA-salt (white solid, 15mg, 80%). Ή NMR δΗ (400 MHz, CD3OD) 7.04 (d, J = 8.1 Hz, 1 H), 6.84 (d, J = 2.4 Hz, 1 H), 6.78 (dd, J = 2.2 and 8.5 Hz, 1 H), 6.14 (d, J = 35.3 Hz, 1 H), 5.82 (d, J = 6.3 Hz, I H), 3.68 (s, 3H), 3.24 - 3.5 (m, 2H), 3.0 - 3.16 (m, 2H), 2.89 (s, 3H), 1.8 - 2.2 (m, 2H), 1 .58(s, 3H); LC/MS, m/z = 288.1 [M + H]+ (Calc: 287.4).

A mixture of Compound 12 (0.1 mmol, 50mg, TFA-salt) and Pd/C ( 1 0%, 0.2g) in EtOH/CHCb (2mL/6mL) was shaken under hydrogen ( l OPSI) for 12 h. The catalyst was filtered, and the product was purified by reverse-phase prep HPLC (C I 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to give Compound 14 (white solid, TFA-salt, 30mg).

' H NMR δΗ (400 MHz, CD3OD) 7.07 (d, J = 9.2 Hz, 1 H), 6.75 - 6.77 (m, 2H), 4.04 - 4.07 (m, 2H), 3.74 - 3.77 (m, 1 H), 3.69 (s, 3H), 3.03 - 3.15 (m, 3H), 2.86 (s, 3H), 2.59 - 2.66 (m, 1 H), 2.41 - 2.46 (m, 2H), 1 .89 - 2.07 (m, 2H), 1.58 - 1 .63 (m, I H), 1 .37(s, 3H), 1 .17 (t, J = 7.2 Hz, 3H); LC/MS, m/z = 3 1 8. 1 [M + H]+ (Calc: 3 17.4).

In a similar manner Compound 15 (TFA-salt, white solid )was prepared from Compound 14 (O.OSmmol) following the same procedure for Compound 13. Ή NMR δΗ (400 MHz, CD3OD) 7.07 (d, J = 8.2 Hz, 1 H), 6.74 - 6.78 (m, 2H), 3.77 - 3.8 (m, 1 H), 3.69 (s, 3H), 3.03 - 3. 15 (m, 3H), 2.85 (s, 3H), 2.58 - 2.64 (m, 1 H), 2.39 - 2.45 (m, 2H), 1 .88 - 2.02 (m, 2H), 1.56 - 1.63 (m, 1 H), 1 .38(s, 3H); LC/MS, m/z = 290.1 [M + H]+ (Calc: 289.4).

EXAMPLE 13

3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i ]azocine-8,l l,ll-triol (RA15); and ll,l l-dihydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- niethanobenzo[i |azocin-8-yl isobutyrate (RA16)

Figure imgf000163_0001

RA1 RA15 RA16

HBr (1 .5mL 48% aqueous) was added to RA 1 (0.8 mmol, 0.2g) at RT. The mixture was stirred under argon at 100 °C for 16 h. The reaction mixture was poured over ice-water, neutralized with NH4OH ( 14% aqueous) to pH ~ 9, and extracted with CHCI3. The organic layer was concentrated and purified by reverse-phase prep HPLC (C I 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield RA15 (TFA-salt, 120mg, white solid).

Ή NMR δΗ (400 MHz, CD3OD) 7.01 (d, J = 8.2 Hz, 0.6H), 6.92 (d, J = 8.3 Hz, 0.4H), 6.54 - 6.68 (m, 2H), 3.28 - 3.8 (m, 3H), 2.58 - 3.18 (m, 5H), 2. 16 - 2.24 (m, 1 H), 1 .28 - 1 .96 (m, 4H); LC/MS, m/z = 250.2 [M + H]+ (Calc: 249.3).

Isobutyryl chloride (0.55mmol, 60mg) was added to a solution of crude RA 15 (0.5mmol, 120mg) and triethylamine ( 1 mmol) in 3mL DCM at 0 °C. The reaction mixture was warmed to RT overnight. After aqueous work-up, the product was purified by flash column chromatography (silica gel, EtOAc/Hexanes 7/3) to yield l OOmg of RA16 as white solid (53%). Ή NMR δΗ (400 MHz, CDCI3) 7.15 (d, J = 8. 1 Hz, 1 H), 6.93 (dd, J = 2.3 and 8.3 Hz, 1 H), 6.91 (d, J = 2.2 Hz, 1 H), 3.56 (d, J = 18.2 Hz, 1 H), 3.39 (d, J = 6.2 Hz, 1 H), 3.14 (dd, J = 6.4 and 18.2 Hz, 1 H), 2.72 - 2.83 (m, 2H), 2.52 - 2.57 (m, 1 H), 2.47 (s, 3H), 2.2 - 2.28 (m, 1 H), 1 .71 - 1.76 (m, 1 H), 1.47 (s, 3H), 1 .33 (s, 3H), 1 .30 (s, 3H); LC/MS, m/z = 320.2 [ + H]+ (Calc: 319.4).

EXAMPLE 14

(£ -3-(furan-3-yl)-N-((6 ?,ll ?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6 methanobenzo[rf]azocin-ll-yl)-N-methyIacrylamide (Compound 16); and (£)-3- (furan-3-yl)-/V-((6R,115 -8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i |azocin-l l-yl)-7V-methylacrylamide (Compound 20)

Figure imgf000164_0001

1 ,3- Diisopropylcarbodiimide (DIC, 0.12mmol, Aldrich) was added to a solution of Compound 9 (0.1 mmol, 25mg), 3-(3-furyl)acrylic acid (0. 12mmol) and 1 -hydroxybenzotriazole (0.05mmol) in 4mL DCM at 0 °C. The reaction mixture was shaken at RT for 48 h. The solid was filtered, the filtrate was washed with NaOH (IN l mL), and purified by reverse-phase prep HPLC (C I 8, 0- 100% 0. 1 % TFA in water/0.1 % TFA in ACN) to yield 1 5mg of Compound 16 (TFA-salt, white solid). 'H MR δΗ (400 MHz, CD3OD) 7.75 (s, 1 H), 7.48 (d, J = 15.1 Hz, 1 H), 7.44 (s, 1 H), 7.1 1 (d, J = 8.6 Hz, 1 H), 6.86 (d, J = 2.4 Hz, 1 H), 6.8 (dd, J = 2.4 and 8.3 Hz, 1 H), 6.74 (s, I H), 6.69 - 6.71 (m, 2H), 3.66 - 3.74 (m, 4H), 3.24 - 3.32 (m, I H), 3.02 - 3.16 (m, 3H), 2.87 (s, 3H), 2.77 (s, 3H), 2.56 - 2.64 (m, 1 H), 1 .98 - 2.06 (m, 1 H), 1 .62 - 1.68 (m, 1 H), 1.45 (s, 3H); LC/MS, m/z = 38 1.5 [ + H]+ (Calc: 380.5).

In a similar manner Compound 20 was prepared from Compound 8

(0. l mmol) and 3-(3-furyl)acrylic acid (0.12mmol). The product was purified by reverse-phase prep HPLC (C 18, 0- 100% 0. 1 % TFA in water/0.1 % TFA in ACN) (TFA-salt, white solid, l Omg). ' H NMR δΗ (400 MHz, CD3OD) 7.8 (s, 1 H), 7.62 (d, J = 14.9 Hz, 1 H), 7.44 (s, l H), 7.05 (d, J = 8.3 Hz, 1 H), 6.76 - 6.84 (m, 4H), 4.01 (s, l H), 3.89 (s, 1H), 3.69 (s, 3H), 3.36 - 3.39 (m, 2H), 3.28 (s, 3H), 3.1 5 - 3. 1 9 (m, 1 H), 2.84 (s, 3H), 2.64 - 2.72 (m, 1 H), 2.08 - 2.36 (m, 1 H), 1 .48 (s, 3H), 1 .4 - 1 .46 (m, l H); LC/MS, m/z = 381.5 [M + H]+ (Calc: 380.5).

EXAMPLE 15

8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i/Jazocin-ll-one oxime (Compound 18)

Figure imgf000165_0001

RA15 (18)

In a similar manner Compound 18 was prepared from RA 15 (0.4 mmol) and hydroxylamine hydrochloride (0.6 mmol, Aldrich) following the procedure for

Compound 1. Compound 18 was purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to obtain a brown oil (TFA-salt, 40%). Ή NMR δΗ (400 MHz, CD3OD) 7.96 (d, J = 8.6 Hz, 1 H), 6.72 (d, J = 2.4 Hz, lH), 6.63 (dd, J = 2.4 and 8.3 Hz, 1 H), 5.24 (d, J = 5.9 Hz, 1 H), 3.24 - 3.28 (m, 1H), 3.04 - 3.1 8 (m, 3H), 2.88 (s, 3H), 1 .68 - 2.08 (m, 2H), 1 .52 (s, 3H); LC/MS, m/z = 247.2 [M + H]+ (Calc: 246.3). EXAMPLE 16

4-((6R,ll^)-8,ll-dihydroxy-6-methyl-l,2,5,6-tetrahydro-2,6- met anobenzo[d]azocin-3(4H)-yl)-N,N-dimethyl-2,2-diphenylbutanamide (Compound 21); and 4-((6JR,llS)-8,l l-dihydroxy-6-methyl-l,2,5,6-tetrahyd methanobenzo[^azocin-3(4H)-yl)-N,N-dimethyl-2,2-diphenylbutanamide (Compound 22)

Figure imgf000166_0001

(22) (21 ) RA19

Γη a similar manner compound RA 1 8 was prepared from RA 16 following the procedure for Compound 7. The crude product RA 18 {0.09mmol, 50mg, LC/MS m/z = 571 .3 [M + H20 + H]+ (Calc: 552.7)} was dissolved in MeOH/water ( 1 mL/l mL), and treated with HBr (48% aqueous, 0.1 mL) at 65 °C for 4h. After cooling to RT, the product was purified by reverse-phase prep HPLC (C 1 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield RA 19 {TFA-salt, 30mg, LC/MS m/z = 501.5 [M + H20 + H]+ (Calc: 482.6)} .

NaBH4 (40mg, I mmol) was added to a solution of RA 19 (0.05 mmol, 30mg) in CHCl3/EtOH (4mL/2mL) at 0 °C. The reaction mixture was stirred for 2 h at 0 °C ~ RT. After aqueous work-up, the product was purified by reverse-phase prep HPLC (CI 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 21 and Compound 22.

Compound 21 (white solid, 12mg, T 2.734min): Ή NMR δΗ (400 MHz, CD3OD) 7.22 - 7.42 (m, 1 OH), 6.89 (d, J = 8.3 Hz, 0.1 H), 6.81 (d, J = 8.3 Hz, 0.9H), 6.63 - 6.65 (m, 1H), 6.52 (dd, J = 2.3 and 8.1 Hz, 1 H), 3.7 (d, J = 3.7 Hz, 1 H), 3.48 (t, J = 5.2 Hz, l H), 3.0 - 3.08 (m, 2H), 2.95 (s, 3H), 2.62 - 2.72 (m, 3H), 2.32 - 2.48 (m, 2H), 2.24 (s, 3H), 1.8- 1.9 (m, 2H), 1.48 - 1.54 (m, 1H), 1.4 (s, 2.7 H), 1.33 (s, 0.3H); LC/MS, m/z = 485.2 [M + H]+ (Calc: 484.6).

Compound 22 (white solid, 8mg, RT 2.90 lmin): Ή NMR δΗ (400 MHz, CD3OD) 7.23 - 7.42 (m, 10H), 6.8 - 6.84 (m, 1H), 6.53 - 6.62 (m, 2H), 3.69 - 3.74 (m, 1H), 3.41 - 3.48 (m, 1 H), 2.88 - 3.08 (m, 6H), 2.52 - 2.72 (m, 3H), 2.3 - 2.42 (m, 2H), 2.24 (s, 3H), 1.5- 1.9 (m, 2H), 1.3-1.4 (m, 3H), 1.18- 1.25 (m, 1H); LC/MS, m/z = 485.2 [M + H]+ (Calc: 484.6).

EXAMPLE 17

(£)-3-(furan-3-yl)-/V-((2R,6if,115)-8-methoxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro 2,6-methanobenzo[<|azocin-ll-yl)acrylamide (Compound 23); and (£)-7V-ethyl-3 (furan-3-yl)-N-((2 f,6R,llS)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/|azocin-ll-yl)acrylamide (Compound 25)

Figure imgf000167_0001

RA20 RA21

Figure imgf000167_0002
A mixture of Compound 2 (0.2g, 0.7 mmol ) and Pt02 (25mg, 0.1 mmol) in AcOH ( l OmL) was shaken under H2 (30PSI) for 30 h. CHCi3 ( lOOmL) was added, and the catalyst was filtered. The filtrate was neutralized to pH ~ 9 with NH4OH (28% aqueous). The CHCI3 layer was concentrated under vacuum to yield crude product RA20, LC/MS, m/z = 247.5 [M + H]+ (Calc: 246.4); and RA21 , LC/MS, m/z = 215 A [M + H]+ (Calc: 274.4)].

1 ,3- Diisopropylcarbodiimide (DIC, 0.12mL, 0.8 mmol) was added to the above crude product, 3-(3-furyl)acrylic acid (0.1 l g, 0.8 mmol) and 1- hydroxybenzotriazole (0.07 mmol) in 4mL DCM at 0 °C. The reaction mixture was shaken at RT for 14 h. The solid was filtered, the filtrate was washed with NaOH (IN l mL), and purified by reverse-phase prep HPLC (C 18, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 23 and Compound 25.

Compound 23 (TFA-salt, white solid, 20mg): Ή NMR δΗ (400 MHz, CD3OD) 7.68 (s, 1 H), 7.36-7.41 (m, 2H), 7.1 1 (d, J = 8.3 Hz, I H), 6.84 (d, J = 2.4 Hz, 1 H), 6.81 (dd, J = 2.4 and 8.3 Hz, 1 H), 6.48 (d, J = 2.2 Hz, 1 H), 6.33 (d, J = 15.8 Hz, 1 H), 4.26 (d, J = 2.6 Hz, 1 H), 3.82 (s, 1 H), 3.65 (s, 3H), 3.04 - 3.18 (m, 3H), 2.84 (s, 3H), 2.56 - 2.62 (m, 1 H), 1 .96 - 2.03 (m, 1 H), 1 .64 - 1 .71 (m, 1 H), 1 .42 (s, 3H); LC/MS, m/z = 367.2 [M + H]+ (Calc: 366.4).

Compound 25 (TFA-salt, white solid, 30mg): ): Ή NMR δΗ (400 MHz, CD3OD) 7.76 (s, 1 H), 7.52 (d, J = 1 5.2 Hz, I H), 7.45 (s, 1 H), 7.13 (d, J = 8.6 Hz, IH), 6.8 - 6.91 (m, 2H), 6.68 (s, I H), 6.63 (d, J = 15.2 Hz, I H), 4.82 - 4.85 (m, I H), 3.82 (s, I H), 3.72 (s, 3H), 3.24 - 3.36- (m, 2H), 2.94 - 3.16 (m, 3H), 2.88 (s, 3H), 2.6 - 2.68 (m, IH), 1 .96 - 2.04 (m, 1 H), 1 .62 - 1 .68 (m, 1 H), 1 .44 (s, 3H), 0.92 (t, J = 7. lHz, 3H); LC/MS, m/z = 395.2 [M + H]+ (Calc: 394.5).

EXAMPLE 18

(E)-3-(furan-3-yl)-/V-((2R,6R,llS)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[</]azocin-ll-yl)-N-methylacrylamide (Compound 24)

Figure imgf000169_0001

1 ,3- Diisopropylcarbodiimide (DIC, O. l g, 0.8 mmol) was added to a solution of RA22 (0.25g, 0.8 mmol), 3-(3-furyl)acrylic acid (0.2g, 1 .4mmol) and 1 - hydroxybenzotriazole (0. 14 mmol) in 4mL DCM at 0 °C. The reaction mixture was shaken at RT for 14 h. The solid was filtered, the filtrate was washed with NaOH ( I N I mL), and concentrated under vacuum. The residue was dissolved in 4mL MeOH, and treated with 0.5mL NaOH (2N aqueous) at RT for 14 h. After being concentrated under vacuum, the residue was dissolved in CHC13 ( l OmL), and neutralized to pH ~ 3 with IN HCI. The organic layer was concentrated and purified by reverse-phase prep HPLC (C I 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 24 (TFA-salt, white solid, 60mg). Ή NMR δΗ (400 MHz, CD3OD) 7.76 (s, 0.1 H), 7.74 (s, 0.9H), 7.47 (d, J = 15.1 Hz, 1 H), 7.43 (s, 1 H), 6.99 (d, J = 8.5 Hz, 1 H), 6.68 - 6.76 (m, 3H), 6.64 (dd, J = 2.2 and 8.3 Hz, 1 H), 4.76 - 4.8 (m, 1 H), 3.68 - 3.72 (m, 1 H), 2.98 - 3.16 (m, 3H), 2.86 (s, 3H), 2.78 (s, 3H), 2.58 - 2.64 (m, 1 H), 1.98 - 2.05 (m, 1H), 1 .58 - 1.64 (m, 1 H), 1.41 (s, 3H); LC/MS, m/z = 367.2 [M + H]+ (Calc: 366.4).

EXAMPLE 19

4-fluoro-N'-((2S,6R)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i |azocin-ll-ylidene)benzohydrazide (Compound 26)

Figure imgf000170_0001

A mixture of RA l ( 120mg, 0.48 mmol) and 4-fluorobenzhydrazide (0.52 mmol, 80mg, Oakwood) in /'-PrOH/AcOH (2mL/0.2mL) was shaken at 60 °C for 3 h. The solvents were removed under vacuum, and the product was purified by reverse- phase prep HPLC (C I 8, 0-1 00% 0.1 % TFA in water/0.1 % TFA in ACN).

Compound 26 (TFA-salt, white solid, 30mg): Ή NMR δΗ (400 MHz, CD3OD) 7.8 (dd, J = 5.2 and 8.5 Hz, 2H), 7.14 (t, J = 7.2 Hz, 2H), 6.97 (d, J = 8.3 Hz, 1 H), 6.79 (d, J = 1.9 Hz, 1 H), 6.68 (dd, J = 2.6 and 8.3 Hz, lH), 4.2 (d, J = 5.9 Hz, l H), 3.68 (s, 3H), 3.24 - 3.3 (m, 1 H), 2.98 - 3.04 (m, 1 H), 2.44 - 2.48 (m, 2H), 2.36 (s, 3H), 2.0 - 2.08 (m, 1 H), 1 .58 (s, 3H), 1 .2 - 1.54 (m, 1 H); LC/MS, m/z = 382.2 [M + H]+ (Calc:

38 1.4). EXAMPLE 20

N-((2R,6R,llS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i |azocin-ll-yl)-N-methyl-2-(4-(methylsulfonyl)phenyl)acetamide (Compound 27)

Figure imgf000170_0002
In a similar manner, Compound 27 was prepared following the procedure for Compound 24 using 4-(methylsulfonyl)phenylacetic acid (Aldrich) instead of 3-(3- furyl)acrylic acid. Compound 27 was purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) (TFA-salt, 30mg, white solid). Ή NMR δΗ (400 MHz, CD3OD) 7.8 - 7.86 (m, 2H), 7.5 (d, J = 8.5 Hz, 0.5H), 7.41 (d, J = 8.5 Hz, I .5H), 6.96 - 7.01 (m, 1 H), 6.68 - 6.74 (m, 1 H), 6.6 - 6.65 (m, 1 H), 4.6 - 4.9 (m, 1 H), 3.64 - 3.96 (m, 3H), 3.24 - 3.32 (m, 1 H), 3.0 - 3.1 (m, 6H), 2.6 - 2.86 (m, 6H), 1 .94 - 2.2 (m, 1 H), 1 .58 - 1.62 (m, 1 H), 1 .38 - 1 .44 (m, 3H); LC/MS, m/z = 443. 1 [M + H]+ (Calc: 442.6).

EXAMPLE 21

4-(((2R,6R,llS)-8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-ll-yl)(methyl)amino)-4-oxobutanoic acid (Compound 28)

Figure imgf000171_0001

RA22 (28)

Succinic anhydride (50mg, 0.5 mmol) was added to a solution of RA22 (O. l g, 0.3 mmol) in CHC13 (2mL) at 0 °C. The reaction mixture was shaken at RT for 24 h. After aqueous work-up, the crude product was dissolved in 4mL of MeOH, and treated with 0.5mL NaOH (2N aqueous) at RT for 14 h. The solvent was removed under vacuum. The residue was dissolved in CHCI3 ( 1 Om L), and neutralized to pH ~ 3 with IN HC1. The organic layer was concentrated and purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 28 as TFA-salt (white solid, 30mg). Ή NMR δΗ (400 MHz, CD3OD) 6.98 (d, J = 8.3 Hz, l H), 6.73 (d, J = 2.4 Hz, 1 H), 6.63 (dd, J = 2.4 and 8.3 Hz, 1 H), 4.62 - 4.9 (m, I H), 3.58 - 3.82 (m, 1 H), 2.9 - 3.1 8 (m, 4H), 2.83 (s, 3H), 2.65 (s, 3H), 2.5 - 2.57 (m, 4H), 1 .92 - 2.02 (m, 1 H), 1 .57 - 1 .62 (m, 1 H), 1 .36 - 1 .45 (m, 3H); LC/MS, m/z = 347. 1 [M + H]+ (Calc: 346.4).

EXAMPLE 22

(2R,6R,llS)-3,6-dimethyl-ll-(methyl(phenethyl)amino)-l,2,3,4,5,6-hexa ydro- 2,6-methanobenzo[</|azocin-8-ol (Compound 29)

Figure imgf000172_0001

A mixture of RA22 (0. 15g, 0.47 mmol), phenylacetaldehyde (O. l g, 0.8 mmol), and 4A MS (0.2g) in l mL CH3CN was shaken at RT for 2 h. Then, NaB(OAc)3H (0.2g, 0.9 mmol) was added. The reaction mixture was shaken at RT for 16 h. The solid was filtered, and washed with CHC13 ( l OmL). The filtrate was washed with water, and concentrated. The residue was dissolved in MeOH (4mL)/HBr (48% aqueous, 0.4mL), and the mixture was heated at 60 °C for 14 h. The solvent was evaporated under vacuum and purified by reverse-phase prep HPLC (C I 8, 0-100% 0.1 % TFA in water/0. 1 % TFA in ACN) to yield Compound 29 as TFA-salt (32mg, white solid). Ή NMR δΗ (400 MHz, CD3OD) 7.12 - 7.17 (m, 2H), 7.04 - 7.09 (m, 1 H), 6.99 - 7.02 (m, 2H), 6.92 (d, J = 8.3 Hz, 1 H), 6.68 (d, J = 2.6 Hz, 1 H), 6.6 (dd, J = 2.6 and 8.3 Hz, 1 H), 3.86 (s, l H), 2.88 - 3.18 (m, 6H), 2.84 (s, 3H), 2.6 - 2.76 (m, 3H), 2.36 (s, 3H), 1 .84 - 1 .88 (m, 1 H), 1 .43 - 1 .46 (m, 1 H), 1.38 (s, 3H); LC/MS, m/z = 35 1. 1 [M + H]+ (Calc: 350.5).

EXAMPLE 23

-butyl 4-((((2R,6S,llif)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i |azocin-ll-yI)amino)methyl)piperidine-l-carboxyIate (Compound 30); and rt-butyl 4-((((2R,6S,l lR)-8-hydroxy-3,6-dimethyl- l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i |azocin-ll- yl)(methyl)amino)methyl)piperidine-l-carboxylate (Compound 31)

Figure imgf000173_0001

A mixture of RA 16 (0.2g, 0.6 mmol), 1 -Boc-4-(aminomethyl)piperidine (200mg, 0.9 mmol), and 4A MS in I mL CH3CN was shaken at RT for 2 h, then NaB(OAc)3H (0.3g, 1 .4 mmol) was added. The reaction mixture was shaken at RT for 16 h. The solid was filtered, and washed with CHCI3 ( l OmL). The filtrate was washed with water, concentrated and purified by reverse-phase prep HPLC (C I 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to give the desired product RA23 ( l OOmg, RT 0.907min, and 90mg of RA24, RT 1 .201 min) as TFA-salt.

A mixture of RA23 (20mg, 0.04 mmol in I mL of MeOH) and 2N NaOH aqueous (O. l mL) was shaken at RT for 24 h. After the reaction was quenched with TFA (2N in CH3CN O. l mL), the product was purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 30 as TFA-salt (white solid, l Omg). Ή NMR 6H (400 MHz, CD3OD) 7.03 (d, J = 8.3 Hz, 1 H), 6.73 (d, J = 2.4 Hz, 1 H), 6.69 (dd, J = 2.4 and 8.3 Hz, 1 H), 4. 12 (s, 1 H), 3.99 (d, J = 1 3.4 Hz, 2H), 3.58 (s, 1H), 3.24 - 3.3 (m, 1 H), 3.1 - 3.1 8 (m, 2H), 2.94 (s, 3H), 2.9 (d, J = 5.3 Hz, I H), 2.79 (dd, J = 8.6 and 12.5 Hz, 1 H), 2.62 - 2.72 (m, 3H), 2.06 - 2. 13 (m, 1 H), 1 .82 - 1 .88 (m, 1 H), 1 .62 - 1 .68 (m, 3H), 1 .56 (s, 3H), 1 .34 (s, 9H), 0.99 - 1.09 (m, 2H); LC/MS, m/z = 430.2 [M + H]+ (Calc: 429.6).

NaB(OAc)3H (80mg, 0.37 mmol) was added to a solution of RA23 (20mg, 0.04 mmol) and formaldehyde (36% aqueous, 0.05mL, 0.6 mmol) in 0.4mL CH3CN at RT. The reaction mixture was shaken at RT for 12 h. The reaction was quenched with MeOH (2mL) and NaOH (2N aqueous, 0.4mL). The resulting mixture was shaken at RT for 24 h. After the solvents were evaporated under vacuum, the residue was dissolved in CHC13 (6mL), and neutralized to pH ~ 2 with TFA (2N in CH3CN). The organic layer was concentrated and purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 31 as TFA-salt (white sol id, 6mg). Ή NMR δΗ (400 MHz, CD3OD) 6.92 (d, J = 8.6 Hz, 1 H), 6.69 (d, J = 2.4 Hz, 1 H), 6.54 (dd, J = 2.4 and 8.3 Hz, I H), 3.92 (d, J = 12,9 Hz, 2H), 3.82 (s, 1 H), 3.02 - 3. 18 (m, 4H), 2.86 (s, 3H), 2.56 - 2.68 (m, 3H), 2.36 - 2.42 (m, 2H), 2.05 (s, 3H), 1 .82 - 1 .86 (m, I H), 1 .56 - 1 .65 (m, 3H), 1 .46 - 1.52 (m, I H), 1 .44 (s, 3H), 1 .34 (s, 9H), 0.76 - 0.88 (m, 2H); LC/MS, m/z = 444.3 [M + H]+ (Calc: 443.6).

EXAMPLE 24

^-^^l l^-S-hydroxy-S^-dimethyl-l^^^^^-hexahydro^^- methanobenzo[i ]azocin-ll-yl)acetamido)benzoic acid (Compound 32);

((65,l lR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< ]azocin-ll-yl)acetamido)benzoic acid (Compound 35)

Figure imgf000175_0001

To an ice-cooled solution of triethyl phosphonoacetate (1 12 mg, 1 .2 eq, 0.54 mmol) in anhydrous THF (2 mL), sodium bis(trimethylsilyl)amide ( 1.0 M in THF, 0.68 mL, 1.5 eq, 0.68 mmol) was added dropwise. After stirring for 15 min, compound RA 1 (104 mg, 0.42 mmol) in THF ( 1 mL) was slowly added. The resulting mixture was stirred at RT overnight, quenched with water (2 mL) and extracted with EtOAc (50 mL x 2). The combined organic extracts were dried over Na2SC>4, filtered and concentrated. The crude material was purified by flash column chromatography (silica gel, 0-50% EtOAc/hexanes) to give 89 mg of RA25 as an oil.

' H NMR δΗ (400 MHz, CDC13) 7.05 (d, J = 8.55 Hz, I H), 6.85 (d, J = 2.85 Hz, l H), 6.77 (dd, J = 2.85 and 8.55 Hz, 1 H), 5.93 (s, 1 H), 5.23 (d, J = 5.92 Hz, 1H), 4.18 (m, 3H), 3.78 (s, 3H), 3.38 (m, 1 H), 2.94 (dd, J = 6.36 and 1 8.20 Hz, 1 H), 2.51 (m, 2H), 2.45 (s, 3H), 2.00 (m, 1 H), 1 .57 (m, 1 H), 1 .29 (t, J = 7.02 Hz, 3H).

LC/MS, m/z = 316 [M + H]+ (Calc: 3 15). To a solution of compound RA25 (320 mg, 1 mmol) in MeOH/THF (2 mL, 1 : 1 ) was added KOH (2 mL, 2N in water). The resulting mixture was stirred at RT for 3 h and the MeOH evaporated. After cooling to 0°C, the solution was neutralized to pH = 4 by using I N HC1. The precipitate was filtered, washed with Et20, and dried to give 244 mg of RA26 as a white solid.

' H M R 8H (400 MHz, DMSO-c/6) 12.90 (br s, 1 H), 7.1 1 (d, J = 8.55 Hz, 1 H), 6.90 (d, J = 2.63 Hz, 1 H), 6.86 (dd, J = 8.55 Hz, 1 H), 6.07 (br s, l H), 5.59 (d, J = 6.36 Hz, 1 H), 3.75 (s, 3 H), 3.60 (m, 1 H), 3.20-3.40 (m, 3H), 2. 1 5 (m, 1 H), 1 .71 (m, 1 H), 1.58 (s, 3H).

LC/MS, m/z = 288 [M + H]+ (Calc: 287).

To a round-bottomed flask were added RA26 (200 mg, 0.70 mmol), oxalyl chloride (2 mL) and 1 -2 drops of DMF. The resulting mixture was heated to reflux for 30 min, then the oxalyl chloride was removed in vacuo. The residue was dissolved in anhydrous DCM (4 mL) and methyl 4-aminobenzoate (88 mg, 1 .2 eq, 0.84 mmol) and diisopropylethylamine (DIEA, 1 mL) were added. The mixture was stirred at RT overnight and then concentrated. The crude material was purified by flash column chromatography (silica gel, 0-5% MeOH/DCM) to give 222 mg of RA27 as a brown foam.

LC/MS, m/z = 421 [M + H]+ (Calc: 420).

To a solution of RA27 (200 mg, 0.48 mmol) in MeOH (5 mL) was added 10% Pd in charcoal (50 mg). The reaction bottle was sealed, de-gassed, and then subjected to a ¾ balloon. After stirring at RT overnight, the solution was filtered and concentrated to give RA28. The crude material was used directly in the next step without further purification.

Ή NMR δΗ (400 MHz, DMSO-d6) 10.41 (br s, 1 H), 7.91 (d, J = 8.77 Hz, 2H), 7.27 (d, J = 8.77 Hz, 2H), 7.16 (d, J = 8.1 1 Hz, 1 H), 6.88 (m, 2H), 3.82 (s, 3H), 3.75 (s, 3H), 3.70 (m, 1 H), 2.93-3.25 (m, 4H), 2.81 (s, 3H), 2.71 (m, I H), 2.39-2.57 (m, 2H), 2. 13 (m, 1 H), 1 .99 (m, 1 H), 1.56 (d, J = 14.25 Hz, 1 H), .40 (s, 3H). LC/MS, m/z = 423 [M + H]+ (Calc: 422).

To a dry ice-cooled solution (-78°C) of RA28 (200 mg, 0.47 mmol) in DCM (4 mL) was added BBr3 (0.5 mL in DCM). The reaction mixture was slowly warmed to room temperature over 3 h, and then quenched with sat. NH4C1 ( 1 mL). After evaporation of the DCM, the residue was dissolved in eOH (2 mL) and purified by reverse phase column chromatography (C I 8, ACN/water with 0. 1 % TFA, 0-95%) to give 79 mg of Compound 32 TFA salt as a white powder.

Ή NMR δΗ (400 MHz, MeOD) 10.02 (s, I H), 7.87 (m, 2H), 7.57 (m, 2H), 7.00 (d, J = 8.33 Hz, 1 H), 6.71 (d, J = 2.41 Hz, 1 H), 6.63 (dd, J = 2.41 and 8.33 Hz, 1 H), 3.78 (m, l H), 3.03-3.16 (m, 3H), 2.86 (s, 3H), 2. 1 6 (m, 1 H), 1 .95 (dt, J = 4.82 and 14.25 Hz, 1 H), 1 .61 (m, 1 H), 1 .40 (s, 3H).

LC/MS, m/z = 395 [M + H]+ (Calc: 394). In a similar manner 2-(2-((65,llR)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i/]azocin-ll-yl)acetamido)benzoic acid (Compound 35) was prepared from RA26 using methyl 2-aminobenzoate rather than methyl 4- aminobenzoate. Purification by reverse phase column chromatography (C I 8,

ACN/water with 0.1% TFA, 0-95%) gave Compound 35 TFA salt as a white powder. ' H NMR 6H (400 MHz, MeOD) 8.37 (d, J = 8.33 Hz, 1 H), 7.96 (dd, J = 1 .53 and 8.1 1 Hz, 1H), 7.46 (dt, J = 1 .53 and 7.23 Hz, 1 H), 7.07 (dt, J = 1 .10 and 7.23 Hz, 1 H), 6.99 (d, J = 8.1 1 Hz, 1H), 6.69 (d, J = 2.63 Hz, 1 H), 6.63 (dd, J = 2.63 and 8.33 Hz, 1 H), 3.78 (m, 1 H), 3.06-3.18 (m, 3H), 2.84 (s, 3H), 2.49-2.70 (m, 3H), 2.12 (m, l H), 1 .93 (m, l H), 1 .59 (d, J = 13.81 Hz, 1 H), 1 .40 (s, 3H).

LC/MS, m/z = 395 [M + H]+ (Calc: 394).

EXAMPLE 25

5-(((2R,6S,l lS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-ll-yl)methoxy)nicotinic acid (Compound 33); 3- (((2R,6S,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i |azocin-ll-yl)methoxy)benzoic acid (Compound 41)

Figure imgf000178_0001

Figure imgf000178_0002

(33)

To a mixture of Ph3P (0.262 g, 1.00 mmol, 1 .5 eq) in THF (5 mL) was added diethyl azodicarboxylate (DEAD) (40% in toluene, 0.45 mL, 0.99 mmol, 1 .5 eq). This was stirred for 2 min then methyl 5-hydroxynicotinate (0.106 g, 0.692 mmol, 1 .05 eq) was added. After 2 more min a solution of compound RA29 (0. 172 g, 0.658 mmol, 1 eq) in THF (5 mL) was added. After stirring overnight the reaction mixture was chromatographed over silica gel with 0-25% EtOAc in hexanes. The product fractions were evaporated in vacuo to give the product RA30 as a tan solid (0.141 g). LC/MS, m/z = 397 [M + H]+ (Calc: 396).

Compound RA30 (0.141 g, 0.356 mmol) was suspended in DCM (5 mL) and cooled on an ice-salt bath. BBr3 (0.32 mL, 3.3 mmol, 9 eq) was added. The ice-salt bath was removed after 10 min and the reaction stirred for 3 days. The reaction mixture was di luted with an additional 10 mL DCM and quenched with 5 mL 5N NaOH. The layers were separated and the aqueous portion washed once more with 10 mL DCM. The combined organics were back extracted once with 5 mL water and the second aqueous portion combined with the first aqueous portion. The aqueous portion was adjusted to pH ~7 with 5N HCl then evaporated in vacuo. The residue was triturated with 15 mL ACN, filtered and washed successively with 1 0 mL ACN then twice with 10 mL MeOH. The filtrates were evaporated in vacuo to a residue, acidified with TFA and purified via reverse-phase chromatography (CI 8, ACN /water with 0. 1 % TFA, 0- 50%). The product fractions were frozen and lyophilized to give the product Compound 33 TFA salt as a cream-colored powder (0.046 g).

Ή NMR δΗ (400 MHz, DMSO- 6) 13.57 (br s, IH), 9.32 (br s, 1H), 9.17 (br s, 1H), 8.72 (d, J = 1.5 Hz, 1H), 8.61 (d, J = 2.9 Hz, 1H), 7.95 (dd, J = 2.9, 1.8 Hz, 1H), 7.02 (d, J = 8.3 Hz, lH), 6.80 (d, J = 2.4 Hz, 1H), 6.68 (dd, J = 8.3, 2.4 Hz, IH), 4.52-4.43 (m, 2H), 4.14 (br d, J = 5.0 Hz, IH), 3.37-3.29 (m, 1H), 3.22-3.14 (m, 1H), 3.14-3.06 (m, 1H), 2.86 (d, J = 4.4 Hz, 3H), 2.57-2.43 (m, 2H), 2.11 (dt, J = 14.0, 3.9 Hz, 1H), 1.46-1.38 (m,4H).

LC/MS, m/z = 369 [M + H]+ (Calc: 368).

In a similar manner 3-(((2/?,65,llS)-8- ydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i/]azocin-ll-yl)methoxy)benzoic acid (Compound 41) was prepared from RA29 using methyl 3-hydroxybenzoate rather than methyl 5- hydroxynicotinate. Purification by reverse-phase chromatography (CI 8, ACN /water with 0.1% TFA, 0-60%) gave Compound 41 TFA salt as a white powder.

'HNMR8H (400 MHz, DMSO-i6) 13.08 (br s, 1H), 9.31 (s, IH), 9.10 (br s, 1H), 7.62- 7.60 (m, IH), 7.60-7.57 (m, 1 H), 7.46 (t, 1 H), 7.33-7.29 (m, 1 H), 7.02 (d, J = 8.3 Hz, IH), 6.80 (d, J = 2.4 Hz, 1 H), 6.67 (dd, J = 8.1 , 2.4 Hz, 1 H), 4.43-4.34 (m, 2H), 4.13 (brd,J = 4.6 Hz, IH), 3.36-3.28 (m, IH), 3.23-3.14 (m, IH), 3.12-3.05 (m, IH), 2.87 (d, J = 4.6 Hz, 3H), 2.53-2.43 (m, 2H), 2.09 (dt, J = 13.8, 4.6 Hz, IH), 1.46-1.37 (m, 4H).

LC/MS, m/z = 368 [M + H]+ (Calc: 367).

EXAMPLE 26

5-(((6S,llR)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-ll-yl)methoxy)nicotinic acid (Compound 34)

Figure imgf000180_0001

(34)

To a solution of compound RA 1 , (5.00 g, 20.41 mmol, 1 eq) and

(methoxymethyl)triphenylphosphonium chloride (9.79 g, 28.57 mmol, 1 .4 eq) in THF ( 148 mL) cooled in an ice bath was added potassium t-butoxide (36.7 mL of a l M solution in THF, 36.7 mmol). The ice bath was removed and the mixture was stirred at room temperature for 5 h.

The reaction mixture was poured onto cold H20 and extracted twice with EtOAc, washed with brine, concentrated and purified by flash chromatography (silica gel, 50- 100% EtOAc in hexane followed by 10-30% MeOH in DCM) to afford 4.08 g of RA 1 3 as a syrup.

LC/MS, m/z = 274 [M + H]+ (Calc: 273).

To a solution of RA 13 (2.78 g, 10.1 8 mmol, 1 .0 eq) in THF (25 ml) was added 3N HCI (34 mL, 101 .8 mmol, 10.0 eq). The mixture was stirred for 6 h at 50 °C and then it was poured onto cold H20 (50 mL) and 2M NaOH (50 mL) was added to adjust the pH to 8. The mixture was extracted twice with DCM, dried over Na2S04 and concentrated to afford 2.1 g of RA 14 as a mixture of isomers. LC/MS, m/z = 260 [M + H]+ (Calc: 259). To a solution of RA M (3.34 g, 12.85 mmol, 1 .0 eq) in EtOH (36 mL) at 0 °C was added NaBH4 (0.53 g, 14.13 mmol, 1 .1 eq). The mixture was stirred for 1 0 min , H20 ( 10 mL) was added, the EtOH was removed under reduced pressure and the organic portion was extracted with DCM, dried over Na2S04 and concentrated to 2.6 g of a light yellow solid as a mixture of diastereomers which was purified by flash column chromatography (silica gel, 5-25% MeOH ( IN NH3)/ DCM) to afford 1 .48 gm of RA32 as the more polar isomer.

Ή NMR δΗ (300 MHz, DMSO-d6) 7.00 (d, J = 7.9 Hz, I H), 6.69-6.65 (m, 2H), 4.39 (t, J = 4.82Hz, 1 H), 3.69 (s, 3H), 3.56-3.50 (m, 1 H), 3. 1 0 (m, I H), 2.98-2.92 (m, 1 H), 2.88 (d, J = 19.1 Hz, 1 H), 2.55-2.48 (m, l H), 2.30(m, I H), 2.27 (s, 3H), 1 .94- 1 .81 (m, 2H), 1 .70 (td, J = 4.4, 12.3 Hz, I H), 1 .30 (s, 3H), 1 . 1 8 (d, J = 1 3.4 Hz, I H), LC/MS, m/z = 262 [M + H]+ (Calc: 261 ). To a mixture of RA32 (0.3 19 g, 1 .22 mmol, 1 .0 eq), methyl-5-hydroxy-3-pyridine carboxylate (0.46 g, 3.63 mmol, 3.0 eq), and triphenylphosphine (0.80 g, 3.63 mmol, 3.0 eq) in THF (6.4 mL) at 0 °C was added DEAD ( 1 .58 g, 3.63 mmol, 3.0 eq). The ice bath was removed and the mixture was stirred for 16 h. H20 was added and the organic portion was extracted twice with EtOAc, dried over Na2S04 and concentrated to 2.2 g of a crude mixture which was purified by flash column chromatography (silica gel, 5-25% MeOH (IN NH3) in DCM) to afford 0.090 g of RA33. LC/MS, m/z = 397 [M + H]+ (Calc: 396).

A solution of RA33 (0.042 g, 0.106 mmol, 1.0 eq), in DCM (0.4 mL) at 0°C was added a solution of boron tribromide (0.041 mL) in DCM (0. 15 mL). After 5 h additional boron tribromide (0.020 mL) was diluted with DCM (0. 10 mL) and added to the reaction. It was stirred for 16 h at room temperature, cooled in an ice bath and slowly neutralized with saturated NaHC03. The organic portion was separated, concentrated and purified on silica gel with 5-25% MeOH (IN NH3) in DCM to afford 8.0 mg of Compound 34. Ή NMR δΗ (300 MHz, CD30D) 8.66 (s, I H), 8.23 (d, J = 2.8 Hz, I H), 7.82 (m, I H), 7.03 (d, J = 8.3 Hz, 1 H), 6.79 (d, J = 2.4 Hz, I H), 6.68 (dd, J = 2.6 and 8.3 Hz, 1 H), 4.93 (s, 2H), 4.36-4.32 (m, 1 H), 3.92-3.88 (m, I H), 3.82(t, J = 10. 1 Hz, I H), 3.20 (d, J = 19.3 Hz, I H), 3.05-2.95 (m, 2H), 2.83 (s, 3H), 2.65-2.54 (m, 2H), 2.10-2.00 (td, J = 4.6 and 1 5.6 Hz, I H), 1 .59-1 .56 (m, I H), 1 .56 (s, 3H), LC/MS, m/z = 369 [M + H]+ (Calc: 368).

EXAMPLE 27

3-((67?,11 )-ll-hydroxy-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-ll-yl)benzonitrile (Compound 37); 3-((6/f,lli?)-ll- hydroxy-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< Jazocin-ll-yl)benzonitrile (Compound 60); 3-((65,l lR)-8- methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[</]azocin-l l- yl)benzonitrile (Compound 36); and (65,llR)-ll-(3-(benzyloxy)phenyl)-8- methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i ]azocine (Compound 61)

Figure imgf000182_0001

n-BuLi (2.5 in hexanes, 4.2 mL, 10.5 mmol, 1 .05 eq) was added slowly to 3- bromobenzonitrile (1 .82g, 10 mmol, 1 eq) in 24 mL THF at -78 °C and the solution stirred at -78 °C for 1 0 m in. A solution of RA 1 (1.23g, 5 mmol, 0.5 eq) in 5 mL THF was added and the solution was allowed to warm from -78 °C to RT. After 90 min, EtOAc was added and the solution washed with sat. NaHC03, dried with Na2S04, and concentrated. The resulting material was purified by Medium Pressure Liquid Chromatography (MPLC) (0-50% EtOAc/hexanes, 40g) to give Compound 60, 550 mg and Compound 37, 1.18 g as yellow oils.

Compound 60: Ή NMR δΗ (400 MHz, DMSO-d6) 8.77 (s, 1 H), 8.64 (d, J= 8.1 Hz, 1 H), 8.26 (bs, 2H), 8.22 (s, 1 H), 7.89 (d, J = 7.0 Hz, 1 H), 7.74 (d, J = 7.0 Hz, 1 H), 7.66 (t,J = 7.2 Hz, 1H), 7.55 (t,J= 7.2 Hz, 1H), 7.11 (d,J=7.4 Hz, 1 H), 7.02 (d, J = 7.4 Hz, 1H), 6.91 (s, lH), 6.86-6.75 (m, 2H), 6.69 (d,J= 7.4 Hz, lH), 6.21 (s, 1H), 5.32 (bs, lH),4.0(s, 1H), 3.75 (s, 3H), 3.71 (s, 3H), 3.34 (ABq, J= 65.8, 18.4 Hz,

2H), 3.18-2.87 (m, 4H), 2.83 (s, 3H), 2.63-2.53 (m, 1H), 2.40 (s, 3H), 2.08 (t,J= 10.8 Hz, IH), 1.61 (s, 3H), 1.09 (s, 3 H).

LC/MS, m/z = 349 [M + H]+ (Calc: 348). Compound 37: 'HNMR δΗ (400 MHz, DMSO-d6) 9.36 (bs, 1H), 7.80-7.74 (m, 2H), 7.45-7.34 (m, 2H), 7.05 (d, J= 8.6 Hz, 1 H), 7.02 (d, J= 2.5 Hz, 1H), 6.96 (s, 1H), 6.88 (dd,J=8.6,2.5 Hz, 1 H), 3.88 (d, J= 5.5 Hz, 1H), 3.80 (s, 3H), 3.26 (d,J= 19.7 Hz, 1H),3.03 (d,J= 11.0 Hz, 1H),2.84 (d,J=4.6 Hz, 3 H), 2.46-2.27 (m, 3H), 1.49 (s, 3H), 1.33 (d,J= 12.0 Hz, 1H).

LC/MS, m/z = 349 [M + H]+ (Calc: 348).

Thionyl chloride (35 mL, excess) was added to a mixture of Compound 37 and

Compound 60 (2.24 g, 1 eq) and the solution heated at 70 °C for 90 min. The solution was concentrated and EtOAc was added. The solution was washed with sat. NaHCC , dried with Na2S04, concentrated, and purified by MPLC (0-50% EtOAc/hexanes, 40g) to give RA34 as a yellow oil, 1.0 g. EtOAc (50 mL) was added and the solution run with the Pd/C cartridge on the H-Cube [ThalesNano, model HC-2.SS] at 10 bar in a recirculating fashion at 1 mL/min. After 45 min. the pressure was increased to 30 bar and after 3.5 h the pressure increased to 60 bar and the flow rate dropped to 0.5 mL/min. The reaction was stopped after 6 h with very little conversion to product seen. The recovered RA34 (700 mg, 1 eq) was dissolved in 8 mL THF and a pre- mixed solution of NaBH3CN (1 Min THF, 1 eq) and ZnC12 (1 in Et20, 0.5 eq) was added. The solution was stirred at RT, and after 3 days 8 mL Et20 was added, followed by a pre-mixed solution of NaBH3CN (1 Min THF, 1 eq) and ZnCI2 (1 Min Et20, 0.5 eq). After 8 days EtOAc was added and the solution washed with sat.

NaHC03, dried with a2S04, and concentrated. The resulting material is purified by MPLC (0-40% EtOAc/hexanes, 12g) to yield Compound 36 as a pale yellow solid, 235 mg.

1 H N R δΗ (400 MHz, DMSO-d6) 9.39 (bs, 1 H), 8.56 (bs, 1 H), 7.99 (s, 1 H), 7.92 (d, J=8.3Hz, 1H), 7.84 (d,J=7.7 Hz, 1H), 7.74 (s, lH), 7.72-7.68 (m, 1H), 7.65 (t,J = 7.7 Hz, IH), 7.48-7.39 (m,2H), 7.36 (d,J= 8.3 Hz, 1H), 7.25 (d, J- 8.3 Hz, 1H), 6.93 (d, J= 2.0 Hz, 1 H), 6.83 (td, J= 7.0, 2.4 Hz, 3H), 6.61 (d, J= 2.4 Hz, I H), 4.00 (t,J = 10.3 Hz, IH), 3.77 (s, 3H), 3.70 (s, 3H), 3.63 (d,J= 17.3 Hz, 2H), 3.49-3.30 (m, 6H), 3.29-3.09 (m, 4H), 2.93 (d, J= 4.4 Hz, 3H), 2.83-2.67 (m, 3H), 2.66 (d, J= 4.4 Hz, 6H), 2.62-2.38 (m, 2H), 1.91 (d, J =16.6 Hz, 1H), 1.83-1.68 (m, 1H), 1.06 (s,3H), 0.97 (s,3H).

LC/MS, m/z = 333 [M + H]+ (Calc: 332).

In a similar manner Compound 61 was synthesized from RA1 using 3- benzyloxybromobenzene rather than 3-bromobenzonitrile. The material was purified by preparative HPLC [0-60% MeCN/H20 (0.01% TFA)] to yield Compound 61 TFA salt.

Ή NMR δΗ (400 MHz, DMSO-d6) 9.21 (bs, 1H), 8.38 (bs, 1H), 7.48 (d, J= 7.4 Hz, 2H), 7.42 (t, J= 7.4 Hz, 3H), 7.39-7.33 (m, 6H), 7.31 (d, J= 7.9 Hz, 2H), 7.24 (d, J = 7.9 Hz, I H), 7.16 (d,J= 7.2 Hz, 1H), 7.13-7.08 (m, 2H), 7.03 (dd,J= 8.1, 2.0 Hz, IH), 6.91-6.76 (m, 5H), 6.74 (d, J= 8.3 Hz, IH), 6.60 (d,J= 2.2 Hz, IH), 5.17 (s,

2H), 4.95 (s, 2H), 3.93 (dd, J= 13.8, 10.5 Hz, 2H), 3.73 (d, J= 23.9 Hz, 6H), 3.59 (d, J= 16.0 Hz, 3H), 3.45-3.19 (m, 6H), 3.08 (d, J= 16.2 Hz, 2H), 2.93 (d, J= 4.6 Hz, 3H), 2.81-2.67 (m, 2H), 2.65 (d, J= 4.6 Hz, 5H), 1.8 (d, J= 14.8 Hz, 2H), 1.76-1.65 (m, 2H), 0.99 (d, J= 55.4 Hz, 6H).

LC/MS, m/z = 414 [M + H]+ (Calc: 413). EXAMPLE 28

3-((6S,llR)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-ll-yI)benzamide (Compound 54); 3-((6R,llS)-H- hydroxy-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[* ]azocin-ll-yl)benzamide (Compound 63); and 3-((6i?,llR)-ll- hydroxy-8-methoxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-ll-yl)benzamide (Compound 67).

Figure imgf000185_0001

A 4: 1 mixture of EtOH:H20 was added to Compound 36 (100 mg, 0.3 mmol, 1 eq) and hydrido(dimethylphosphinous acid-kP)[hydrogen bis(dimethyIphosphinito- kP)]platinum(II) [Strem] (13 mg, 0.03 mmol, 1 0 mol%). The solution was heated at 80 °C for 16 h, then concentrated. Purification by MPLC (0-100% EtOAc/hexanes) yielded Compound 54 as a white foam. A small portion was further purified by preparative HPLC [0-60% MeCN/H20 (0.01% TFA)] to yield Compound 54 TFA salt.

' H NMR 5h (400 MHz, DMSO-d6) 9.26 (bs, 1 H), 8.49 (bs, 1 H), 8.07 (s, lH), 7.98 (s, 1 H), 7.90 (s, 1 H), 7.87-7.79 (m, 2H), 7.74 (d, J = 8.3 Hz, 1 H), 7.67 (t, J = 4.0 Hz, 1 H), 7.52 (t, J = 7.9 Hz, 1 H), 7.49 (s, H), 7.41 (s, 1 H), 7.34 (d, J = 7.9 Hz, 1 H), 7.30-7.22 (m, 3H), 6.94 (d, J= 2.4 Hz, 1H), 6.81 (ddd, J= 15.4, 8.3, 2.4 Hz, 2H), 6.59 (d, J = 2,4 Hz, 1H), 4.00 (t, J= 13.4 Hz, 2H), 3.73 (d, J = 29.8 Hz, 6 H), 3.67-3.57 (m, 2H), 3.48- 3.26 (m, 6H), 3.16 (dd, J= 16.7, 5.0 Hz, 2H), 2.96 (d, J = 4.6 Hz, 3H), 2.84-2.66 (m, 3H), 2.65-2.57 (m, 6H), 1.89 (d,J= 15.1 Hz, 1H), 1.03 (d, J =32.2 Hz, 6H).

LC/MS, m/z = 351 [M + H]+ (Calc: 350).

In a similar manner Compound 63 and Compound 67 were prepared from

Compound 37 and Compound 60, respectively.

Compound 63 : 1 H NMR δΗ (400 MHz, DMSO-d6) 9.32 (bs, 1 H), 8.1 I (s, I H), 7.92 (s, lH), 7.72 (d,J= 8.1 Hz, 1H), 7.39 (s, 1 H), 7.20 (t, J= 7.7 Hz, 1 H), 7.09 (d, J= 8.1 Hz, 1H), 7.03 (d,J=5.9Hz, lH), 7.01 (s, 1H), 6.85 (dd, J= 8.1 , 2.6 Hz, 1H), 6.83 (s, 1 H), 3.83-3.77 (m, 2H), 3.80 (s, 3H), 3.24 (d, J= 18.9 Hz, 2H), 3.03 (d, J = 8.8 Hz, 1H), 2.85 (d,J=5.3 Hz, 3H), 2.48-2.43 (m, 6H), 1.75 (s, 1H), 1.51 (s, 3H), 1.31 (d,J = 11.4 Hz, 1H).

LC/MS, m/z = 367 [M + H]+ (Calc: 366).

Compound 67: 1 H NMR δΗ (400 MHz, DMSO-d6) 8.64-8.58 (m, 1 H), 8.28 (s, 1 H), 8.13 (bs, 1H), 8.02 (s, lH), 7.94 (d, J = 7.5 Hz, 1H),7.84 (d, J =7.5 Hz, lH),7.49(d, J=7.7 Hz, 1H), 7.45 (d,J=3.9Hz, 1H), 7.36-7.14 (m, 1H), 7.05 (d,J=8.1 Hz, 1H), 6.86(d,J=2.2Hz, lH), 6.75 (dd,J= 8.1, 2.2 Hz, 1 H), 6.67-6.59 (m, 1H), 6.00 (s, IH), 3.97 (d, J= 4.4 Hz, lH), 2.67 (s, 3H), 3.64 (s, lH), 3.39 (dd, J= 19.3, 5.3 Hz, 1H), 3.20 (d, J= 18.9 Hz, 1H), 3.10-2.95 (m, 1H), 2.74 (d, J= 4.6 Hz, 3H), 2.66-2.46 (m, 1H), 1.69 (s, 2H), 1.61 (s, 3H).

LC/MS, m/z = 367 [M + H]+ (Calc: 366).

EXAMPLE 29

3-((65,llR)-8-niethoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[</]azocin-ll-yl)benzoic acid (Compound 38); and 3-((6R,llS)-ll- hydroxy-8-methoxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[d]azocin-ll-yl)benzoic acid

(Compound 71)

Figure imgf000187_0001

Figure imgf000187_0002

Compound 54 (50 mg, 0.14 mmol) was heated at 70 °C in 1.5 mL 6 MHC\ for 21 h. Concentration followed by preparative HPLC purification [0-60% MeCN/H20 (0.01% TF A)] gave Compound 38 TFA salt.

'H R5h(400MHZ, DMSO-d6) 13.13 (bs, 1H), 13.03 (bs, lH),9.30(bs, 1H), 8.55 (bs, 1H),8.11 (s, 1H),7.92 (d,J=7.8Hz, 1H), 7.89 (s, 1H), 7.84 (d,J=8.5Hz, 1H), 7.76 (d, J= 7.8 Hz, 1 H), 7.57 (t, J= 7.8 Hz, 1 H), 7.43-7.29 (m, 3H), 7.27 (d, J= 8.5 Hz, lH), 6.94 (d,J= 2.2 Hz, 1 H), 6.82 (dd, J= 11.8, 2.2 Hz, 2H), 6.60 (d, J= 2.4 Hz, 1H), 4.02 (t, J= 11.6 Hz, 1 H), 3.73 (d, J= 28.9 Hz, 6 H), 3.67 (dd, J= 15.0, 12.2 Hz, 2H), 3.44-3.27 (m, 6H), 3.25-3.08 (m, 2H), 2.96 (d, J= 4.4 Hz, 3H), 2.84-2.63 (m, 4H), 1.89 (d,J= 15.0 Hz, 1H), 1.80-1.67 (m, lH), 1.0 (d, J= 28.7 Hz, 6H).

LC/MS, m/z = 352 [M + H]+ (Calc: 351 ).

In a similar manner Compound 71 was prepared from Compound 63. Purification by MPLC (0-20% (10%NH4OH/MeOH)/DC , 12g) gave Compound 71 as its ammonium carboxylate salt as a clear oil.

1 H NMR δΗ (400 MHz, DMSO-d6) 8.11 (s, 1 H), 7.74 (d, .7=7.5 Hz, 1 H), 7.38-7.08 (m, 5H), 7.00 (d, J= 8.7 Hz, 1H), 6.93 (d, J= 2.2 Hz, 1 H), 6.79 (dd, J= 8.3, 2.2 Hz, 1H), 3.77 (s, 3H), 3.34 (s, 2H), 3.10 (d,J= 17.3 Hz, 1H), 2.39-2.08 (m, 4H), 1.38 (s, 3H), 1.23-1.07 (m, IH).

LC/MS, m/z = 368 [M + H]+ (Calc: 367). EXAMPLE 30

N-((2R,6R,llR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[</]azocin-ll-yl)-N-methylbenzamide (Compound 39); 3- (((2R,6R,l lS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i |azocin-ll-yl)(methyl)carbamoyl)benzoic acid (Compound 47); 3-(((2R,6^,ll^)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[</Jazocin-ll-yl)(methyl)carbamoyl)benzoic acid (Compound 48); and 4-(((2R,6R,ll/?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i |azocin-ll-yl)(methyl)carbamoyl)benzoic acid (Compound 59)

Figure imgf000188_0001

A mixture of RA 1 7 (500 mg, 1.66 mmol), MeNH2 (2M in THF, 1 mL, 2 mmol) and 0.1 g 4A molecular sieves in anhydrous ACN (5 mL) was stirred at RT for 2 h.

Na(OAc)3BH [704 mg, 2.32 mmol] was added and the resulting mixture stirred at RT overnight. The reaction mixture was basified using sat. NaHC03 and extracted with EtOAc. The EtOAc solution was dried over MgS04 and the solvent evaporated under reduced pressure. The crude compound RA35 was used in the next step without further purification.

Crude RA35 (36 mg, 0.1 1 mmol) was dissolved in DCM (5 mL) and TEA (0.2 mL, 1.43 mmol) was added. The mixture was cooled to 0 °C with an ice bath and then benzoyl chloride (0.038 mL, 0.12 mmol) was added dropwise via a syringe. After the addition was complete the reaction mixture was slowly warmed to RT over 2 h. The reaction mixture was loaded onto a silica gel column using hexanes/acetone (5: 1 ) as eluent to give the ester intermediate, which was stirred in a mixture of 2N

NaOH/MeOH (2 mL/2 mL) at 50 °C for 1 h. The resulting mixture was cooled with an ice bath and the pH adjusted to 7 using IN HCI, and then extracted with EtOAc. The EtOAc solution was dried over MgS04 and the solvent evaporated under reduced pressure. The crude material was subjected to flash column using DCM/MeOH (95 : 5) as eluent to give 20 mg of Compound 39 as a white solid.

Ή NMR 5H (400 MHz, CD3OD) 7.30-7.60 (m, 5H), 7.10 (m, 1 H), 6.80 (s, 1 H), 6.70 (m, 1 H), 5.05 (s, l H), 4.05 (s, 1 H), 2.50-3.50 (m, 10H), 1 .70-2. 10 (m, 2H), 1 .55 (s, 3H).

LC/MS, m/z = 35 1 [M + H]+ (Calc: 350).

In a similar manner Compound 47 was prepared from RA35 using methyl 3- (chlorocarbonyl)benzoate rather than benzoyl chloride. Purification by reverse phase column chromatography (C 1 8, ACN/water with 0. 1 % TFA, 0-95%) gave Compound 47 TFA salt as a white solid.

' H NMR δΗ (400 MHz, CD3OD) 8. 10 (m, 2H), 7.70 (m, l H), 7.50 (m, 1 H), 7.05 (m, 1 H), 6.80 (s, 1 H), 6.65 (m, 1 H), 4.1 5 (s, I H), 3.95 (s, 1 H), 3.40 (s, 2H), 2.30-3.30 (m, 8H), 1 .60 (s, 3H), 1.40 (m, 1 H).

LC/MS, m/z = 395 [M + H]+ (Calc: 394).

In a similar manner Compound 48 was prepared from RA35 using methyl 3- (chlorocarbonyl)benzoate rather than benzoyl chloride. Purification by reverse phase column chromatography (C I 8, ACN/water with 0. 1 % TFA, 0-95%) gave Compound 48 TFA salt as a white solid.

Ή NMR δΗ (400 MHz, CD3OD) 7.90-8.00 (m, 2H), 7.40-7.60 (m, 2H), 6.90 (m, 1 H), 6.70 (m, l H), 6.50 (m, l H), 4.90 (s, 1 H), 3.95 (s, l H), 2.30-3.30 (m, 9H), 2.10 (m, 1 H), 1 .65 (m, 1H), 1.50 (s, 3H).

LC/MS, m/z = 395 [M + H]+ (Calc: 394). In a similar manner Compound 59 was prepared from RA35 using methyl 4- (chlorocarbonyl)benzoate rather than benzoyl chloride. Purification by reverse phase column chromatography (C I 8, ACN/water with 0. 1 % TFA, 0-95%) gave Compound 59 TFA salt as a white solid.

Ή NMR δΗ (400 MHz, CD3OD) 7.95 (m, 2H), 7.40 (m, 2H), 6.90 (m, l H), 6.65 (m, 1 H), 6.50 (m, 1 H), 4.90 (s, 1 H), 3.95 (s, 1 H), 2.30-3.30 (m, 9H), 2. 10 (m, 1 H), 1 .65 (m, 1 H), 1 .50 (s, 3H).

LC/MS, m/z = 395 [M + H]+ (Calc: 394).

EXAMPLE 31

S-iiie^l l f^S-hydrox -S^-dimethyl-l^^^^^-he ahydro- ^- methanobenzo[rf]azocin-l l-yl)methoxy)benzoic acid (Compound 40)

Figure imgf000190_0001

To a mixture of RA32 (0.316 g, 1.21 mmol, 1 .0 eq), ethyl-3-hydroxybenzoate (0.50 g, 3.02 mmol, 2.5 eq), and triphenylphosphine (0.79 g, 3.02 mmol, 2.5 eq) in THF (5.1 raL) at 0 °C was added DEAD ( 1 .40 mL, 3.02 mmol, 2.5 eq). The ice bath was removed and the mixture was stirred for 16 h. H20 was added and the organic portion was extracted twice with EtOAc, dried over Na2S04 and concentrated. The crude product was purified by flash column chromatography (silica gel, 0-90% EtOAc in hexanes and 0- 15% MeOH in DCM) to afford 46 mg of RA36. LC/MS, m/z = 410 [M + H]+ (Calc: 409). To a solution of RA36 (0.046 g, 0. 1 12 mmol, 1 .0 eq), in DCM (0.5 mL) at 0°C was added a solution of boron tribromide (0.043 mL) in DCM (0.10 mL). The ice bath was removed and the mixture was stirred for 16 h at room temperature. It was cooled in an ice bath, slowly neutralized with saturated NaHC03, concentrated to dryness to afford crude R.A37 which was reacted "as is" in the next step. LC/MS, m/z = 396 [M + H]+ (Calc: 395).

To a mixture of crude RA37 from the previous step in THF (0.5 mL) was added a solution of NaOH (0.18 g, 0.448 mmol, 4.0 eq) in H20 (0.5 mL). MeOH (0.5 mL) was added and the mixture was stirred for 16 h at room temperature. Additional NaOH (0.1 8 g, 0.448 mmol, 4.0 eq) was added and the mixture was stirred for 6 h at room temperature. It was neutralized with dilute hydrochloric acid and concentrated to dryness on silica gel and purified by flash chromatography with 0-20% MeOH( lN NH3) in DCM to afford a solid which was triturated with MeOH and dried to afford 14.7 mg of Compound 40 ammonium salt as a white solid.

Ή NMR δΗ (300 MHz, D20) 7.32-7.30 (d, J = 7.7 Hz, 1 H), 7.23-7. 1 7 (m, 2H), 6.94 (d, J = 8.3 Hz, 1 H), 6.84 (d, J = 8.3 Hz, 1 H), 6.72 (s, 1 H), 6.64 (d, 8.3 Hz, 1 H), 4.20- 4.15 (m, 1 H), 3.95-3.9 l (m, 1 H), 3.59-3.52 (t, 10. 1 Hz, 1 H), 3.04-2.95(m, 3H), 2.78(s, 3H), 2.68-2.58 (m, 1 H), 2.46-2.39(m, 1 H), 1.91 (t, J = 16.9 Hz, 1 H), 1 .50 (d, J = 15.6 Hz, 1 H), 1 .37 (s, 3H), LC/MS, m/z = 368 [M + H]+ (Calc: 367).

EXAMPLE 32

(65, 1 \ R)- \ l -(3-( lH-tetrazol-5-yl)phenyl)-8-methoxy-3,6-dimethyl- l ,2,3,4,5,6- hexahydro-2,6-methanobenzohJJazocine (Compound 42); (6R, \ 17?)- ] l -(3-(lH- tetrazol-5-yl)phenyl)-8-methoxy-3,6-dimethyl- 1 ,2, 3,4,5, 6-hexahydro-2,6- methanobenzo[i ]azocin- l l -ol (Compound 65); and (6R, \ 15)- 1 l -(3-(lH-tetrazoI-5- yl)phenyl)-8-methoxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo( /]azocin-l l -ol (Compound 66)

Figure imgf000192_0001

Figure imgf000192_0002

11S: (66)

11R: (65)

A solution of Compound 36 (33 mg, O.l mmol, 1 eq), Na"N3 (10 mg, 0.15 mmol, 1.5 eq), and ZnCl2 (20 mg, 0.15 mmol, 1.5 eq) in 0.4 mL DMF was heated at 140 °C for 18 h. The solution was cooled to RT and 2 mL of water was added. The resulting solid was filtered, washed with hexanes and dried under vacuum to yield Compound 42 as a white solid.

Ή NMR δΗ (400 MHz, ACN-d3) 8.20 (s, 1H), 8.11 (d,J=7.5Hz, 1 H), 7.73 (d, J = 8.1 Hz, IH), 7.66 (t, J =7.9 Hz, 1H), 7.28 (d,J=8.1 Hz, 1H), 6.86 (d,J = 8.1 Hz, 1H), 6.82 (s, IH), 3.80 (s, 3H), 3.79-3.71 (m, lH), 3.67 (d, J= 15.6 Hz, IH), 3.41 (d, J = 14.7 Hz, IH), 3.06 (d,J= 15.3 Hz, 1H),2.89 (d,J= 13.4 Hz, 1H), 2.82-2.73 (m, 1H), 2.71 (s, 3H), 2.62 (td,J= 14.5, 3.8 Hz, IH), 2.57-2.49 (m, IH), 0.99 (s,3H). LC/MS, m/z = 376 [M + H]+ (Calc: 375). In a similar manner Compound 66 and Compound 65 were prepared from

Compound 37 and Compound 60, respectively.

Compound 66

Ή NMR δΗ (400 MHz, ACN-d3) 8.45 (s, IH), 7.98-7.67 (m, 2H), 7.28 (t, J= 8.1 Hz, IH), 7.17 (d,J= 8.1 Hz, IH), 7.08-6.99 (m, 2H), 6.88 (dd,J= 8.6, 2.6 Hz, IH), 3.90- 3.83 (m, 1 H), 3.85 (s, 3H), 3.19 (d, J= 19.5 Hz, IH), 3.12 (d, J= 11.0 Hz, IH), 2.87 (s, 3H), 2.79-2.49 (m, 3H), 1.55 (s, 3H), 1.40 (d, J = 11.0 Hz, IH).

LC/MS, m/z = 392 [M + H]+ (Calc: 391). Compound 65

'H NMR5H (400 MHZ, ACN-d3) 8.53 (s, 1 H), 8.12 (d, J = 8.3 Hz, 1H), 7.67 (t, J = 2.9 Hz, lH), 7.16 (d, J =8.3 Hz, 1 H), 6.97 (d, J= 2.6 Hz, 1H), 6.85 (dd, J = 8.3,2.6 Hz, 1H), 3.95 (bs, 1H), 3.79 (s, 3H), 3.80-3.77 (m, 1H), 3.58 (dd,J= 21.0, 6.8 Hz, 1H),3.25 (d,J= 18.9 Hz, 2H), 2.81 (s, 3H), 2.78-2.67 (m, 2H), 1.80-1.69 (m, 2H), 1.68 (s, 3H).

LC/MS, m/z = 392 [M + H]+ (Calc: 391 ).

EXAMPLE 33

(l1S)-l-(5-ch]oro-6-(((6^,ll ?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[</]azocin-ll-yl)methoxy)pyridin-3-yl)ethane-l,2-dioI (Compound 43)

Figure imgf000193_0001

RA38a RA38

Into a flask containing a mixture of RA38a ( (1.00 gm, 4.81 mmol) in 2,2- dimethoxypropane (9.8 ml) at room temperature was added paratoluenesulfonic acid mono hydrate (0.09 gm, 0.481 mmol). The solution was stirred for 16 hours at room temperature then cooled down with an ice bath and quenched with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The organic layer was separated , washed with brine, dried over sodium sulfate and concentrated to afford RA38) (99% yield, 1.18 gm) as an oil.

Figure imgf000194_0001

(43)

To a solution of RA32 (0.05 g, 0.192 mmol, 1 .0 eq), in DMF (0.4 mL) at room temperature was added 60% sodium hydride in mineral oil (0.01 1 g, 0.287 mmol, 1 .5 eq). The mixture was stirred for 45 min at room temperature and then it was cooled with an ice bath and a solution of RA38 (0.095 g, 0.384 mmol, 2.0 eq) in DMF (0.5 mL) was added and the mixture stirred for 16 h at room temperature. H2O was added and the organic portion was extracted twice with EtOAc, dried over Na2S04 and concentrated. The crude product was purified by flash chromatography (silica gel, 0- 7% MeOH in DCM) to afford 70 mg of RA39. LC/MS, m/z = 473 [M + H]+ (Calc: 472).

To a solution of RA39 (0.025 g, 0.0529 mmol, 1 .0 eq) in DCM (0. 12 mL) and MeOH (0.02 mL) was added 4N HCI in dioxane (0.07 mL, 0.265 mmol, 5.0 eq). The solution was stirred for 16 h at room temperature and then concentrated to dryness to afford RA40 which was used "as is" in the next step. LC/MS, m/z = 433 [M + H]+ (Calc: 432).

A solution of RA40 (0.023 gm, .045 mmol, 1.0 eq) was dissolved in DCM (0.2 mL), cooled with an ice bath and treated with boron tribromide (0.018 mL, 0.1 82 mmol, 4.0 eq). The ice bath was removed and the mixture was stirred for 16 h at room temperature. It was quenched with H20 and neutralized with solid NaHC03, concentrated to dryness and purified by flash chromatography (silica gel, 0- 10% MeOH (IN NH3) in DCM) to afford 4.3 mg of Compound 43: 'H NMR δΗ (300 MHz, CD3OD) 7.88 (s, 1 H), 7.68 (s, 1 H), 6.85 (d, J = 8.3 Hz, 1 H), 6.62 (s, 1 H), 6.50 (dd, J = 2.6, 8.3 Hz, 1 H), 4.52 (t, J = 5.9 Hz, 1 H), 4.49-4.44 (m, 1 H), 3.92(t, J= 10.7 Hz, I H), 3.55-3.46 (m, 2H), 3.30-3.27(m, 1 H), 3.25(s, 1 H), 2.97 (d, J = 1 8.6 Hz, 1 H), 2.59(dd, ί = 5.9, 18.4 Hz, I H), 2.39 (dd, S = 5.3, ( 2. 1 Hz, 1 H), 2.33(s, 3H), 2.3 1 (m, 1 H), 2.09 (td, J = 3. 1 , 12.5 Hz, 1 H), 1 .80 (td, J = 4.6, 12.7 Hz, 1 H), 1 .38 (s, 3H), 1 .27 (d, 14.2 Hz, 1 H) LC/MS, m/z = 419 [M + H]+ (Calc: 418).

EXAMPLE 34

4-(((65,l lS)-8-hydroxy-3,6-dimet yl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-ll-yl)methoxy)benzamide (Compound 44)

Figure imgf000195_0001

To a solution of RA M (3.34 g, 12.85 mmol, 1 .0 eq) in EtOH (36 mL) at 0 °C was added NaBH4 (0.53 g, 14. 13 mmol, 1.1 eq). The mixture was stirred for 10 min , H20 ( 10 mL) was added, the EtOH was removed under reduced pressure and the organic portion was extracted with DCM, dried over Na2S04 and concentrated to 2.6 g of a light yellow solid as a mixture of diastereomers which was purified by flash column chromatography (silica gel, 5-25% MeOH (IN NH3)/ DCM) to afford 0.8 g of RA29 as the less polar isomer.

1 H NMR δΗ (300 MHz, (CD3)2SO) 7.02 (d, J = 8.3 Hz, 1 H), 6.82 (d, J = 2.6 Hz, 1 H), 6.70 (dd, J = 2.6, 8.3 Hz, 1H), 4.63 (brs, 1H), 3.87-3.82 (m, 1 H), 3.74 (d, J = 4.6 Hz, l H), 3.70 (s, 3H), 3.22-3. 16 (m, lH), 3.09 (d, J = 18.0 Hz, 1 H), 2.57-2.49(m, 1 H), 2.32-2.26 (m, 1 H), 2.25 (s, 3H), 1 .92- 1.77 (m, 1 H), 1 .62- 1 .56 (m, I H), 1 .33 (s, 3H), 1 .08 (d, J = 1 1 .2 Hz, 1 H), LC/MS, m/z = 262 [M + H]+ (Calc: 261 ).

To a mixture of RA29 (0. 100 g, 0.383 mmol, 1 .0 eq), 4-cyanophenol (0. 1 14 g, 0.958 mmol, 2.5 eq), and triphenylphosphine (0.251 g, 0.958 mmol, 2.5 eq) in THF ( 1 .3 mL) at 0 °C was added DEAD (0. 17 g, 0.958 mmol, 2.5 eq). The ice bath was removed and the mixture was stirred for 16 h. H20 was added and the organic portion was extracted twice with EtOAc, dried over Na2S04 and concentrated to 0.72 g of a crude mixture which was purified by flash column chromatography (silica gel, 5-60% EtOAc in hexanes) to afford 0.038 g of RA41 .

LC/MS, m/z = 363 [M + H]+ (Calc: 362).

To a suspension of RA41 (0.015 g, .0414 mmol, 1 .0 eq) in ethanol (0.4 mL) was added RA42 0.002 g, 0.0041 mmol, 0.10 eq) and H20 (0.1 mL). The mixture was stirred for 1 h at 80 °C and concentrated to dryness to afford RA43. LC/MS, m/z = 381 [M + H]+ (Calc: 380).

A solution of RA43 (0.015 g, 0.039 mmol, 1.0 eq) in DCM (0. 1 6 mL), cooled with an ice bath was treated with boron tribromide (0.015 mL, 0.1 56 mmol, 4.0 eq). The ice bath was removed and the mixture was stirred for 16 h at room temperature. It was quenched with H20, neutralized with solid NaHC03, concentrated to dryness and purified by flash chromatography (silica gel, 0- 10% MeOH ( IN ΝΉ3) in DCM) to afford 4.0 mg of Compound 44. Ή NMR δΗ (300 MHz, CD30D) 7.76 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 6.86 (d, J = 8.3 Hz, 1 H), 6.71 (d, J = 2.6 Hz, 1 H), 6.5 1 (dd, J = 2.6, 8.3 Hz, ΓΗ), 4.38-4.28 (m, 2H), 3.38 (m, 1 H), 3.14 (d, J= 17.8 Hz, 1 H), 2.68 (dd, J= 6.1 , 18.8 Hz, l H), 2.40(m, 1H), 2.32 (s, 3H), 2.15 (m, l H), 2.1 8 (m, 1 H), 1.91 (td, J = 4.6, 13.2 Hz, 1 H), 1.33 (s, 3H), 1 .18(d, J = 12.1 Hz, I H), LC/MS, m/z = 367 [M + H]+ (Calc: 366).

EXAMPLE 35

4-(3-((2R,6R,l lS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-ll-yl)-3-methylureido)benzoic acid (Compound 45); 4-(3- ((27?,6R,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i )azocin-ll-yl)-3-methylureido)benzoic acid (Compound 46); and 3-(3-((2R,6 ?,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-ll-yl)-3-methylureido)propanoic acid (Compound 68)

2N MeNH2 THF

acetonitrile

Figure imgf000197_0001
1 1 , 1 l -dihydroxy-3,6-dimethyl- l ,2,3,4,5,6-hexahydro-2,6-methanobenzo[i |azocin-8-yl isobutyrate (RA 16) (0.300 g, 0.940 mmol, 1 eq) was dissolved in dry ACN (3 mL) and 2N methylamine in THF ( 1.41 mL, 2.82 mmol, 3 eq) was added dropwise to the solution at room temperature. The mixture was shaken with 3A molecular sieves for 2 h at room temperature. Then, solid sodium tnacetoxyborohydride (0.837 g, 3.95 mmol) was added in one portion. The mixture was shaken for 16 h at room temperature. The reaction mixture was quenched with 1 mL water and extracted with 2 6 mL DC . The organic layers were combined, dried over Na2SC>4, and concentrated under reduced pressure to provide 270 mg of crude RA22a as a dark gum.

LC/MS. w/z = 317 [M + H]+ (Calc: 31 6).

RA22a (50 mg, 0.1 57 mmol) was dissolved in DCM (3 mL) and cooled in a brine/ice bath. Ethyl 4-isocyanatobenzoate (30 mg, 0. 157 mmol) was dissolved in DCM ( 1 mL) and added dropwise to the cooled solution. The bath was removed and the reaction mixture stirred for 1 h. The mixture was quenched with water ( 1 mL) and extracted with DCM (3 mL). The organic layer was dried over Na2S04 and concentrated to give 52 mg of RA44. The crude residue was chromatographed by prep HPLC to give RA45 and R46. RA45 and RA46 were each dissolved in MeOH (3 mL) and hydrolyzed by adding 2N aq NaOH (0.5 mL) to the solutions and stirring for 16 h at room

temperature. The reaction mixtures were concentrated to dryness and redissolved in 2 mL water. The solutions were cooled in an ice bath and acidified with TFA (2 mL) added dropwise. The acid solutions were chromatographed by prep HPLC to give

Compound 45 TFA salt and Compound 46 TFA salt as brown oils. Compound 45 TFA salt

Ή NMR δΗ (400 MHz, CD3OD) 7.98-7.90 (m, 2H), 7.61 -7.52 (m, 2H), 7.14-7.07 (m, 1 H), 6.89-6.81 (m, 1 H), 6.78-6.70 (m, 1 H), 4.69-4.61 (m, I H), 3.88-3.80 (m, I H), 3.39-3.34 (m, 1 H), 3.27-3.15 (m, 1 H), 2.97 (s, 3H), 2.79 (s, 3H), 2.77-2.66 (m, 1 H), 2.18-2.00 (m, I H), 1 .77- 1 .68 (m, 1H), 1 .56 (s, 3H).

LC/MS, m/z = 410 [M + H]+ (Calc: 409); Compound 46 TFA salt

Ή NMR δΗ (400 MHz, CD3OD) 8.01 -7.93 (m, 2Η), 7.64-7.55 (m, 2Η), 7.12-7.04 (m, I H), 6.84-6.78 (m, I H), 6.74-6.69 (m, I H), 4.1 5-4.1 1 (m, I H), 3.95-3.90 (m, I H), 3.50-3.40 (m, 2H), 3.38-3.20 (m, 4H), 2.95 (s, 3H),.2.83-2.73 (m, I H), 2.51 -2.39 (m, 1 H), 1 .57 (s, 3H), 1.55- 1.46 (m, 1 H).

LC/MS, m/z = 410 [M + H]+ (Calc: 409).

3-(3-((2/?,6R,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[^azocin-l l-yJ)-3-methylureido)propanoic acid (Compound 68)

Figure imgf000199_0001

(68)

In a similar manner, 3-(3-((2^,6^,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i ]azocin-ll-yl)-3-methyIureido)propanoic acid (Compound 68) was prepared from RA22a (86 mg, 0.272 mmol) using ethyl 3- isocyanatopropionate (39 mg, 0.272 mmol) rather than ethyl 4-isocyanatobenzoate.

Purification by preparatory HPLC gave Compound 68 TFA salt as a brown oil.

' H NMR δΗ (400 MHz, CD3OD) 7.12-7.03 (m, 1 H), 6.84-6.78 (m, 1 H), 6.76-6.68 (m,

I H), 4.61 -4.52 (m, I H), 3.76-3.65 (m, I H), 3.52-3.37 (m, 2H), 3.29-2.99 (m, 4H), 2.98-2.89 (m, 2H), 2.75-2.61 (m, I H), 2.59-2.48 (m, 5H), 2.13-1.99 (m, I H), 1.73-1 .60

(m, I H), 1.46 (s, 3H)

LC/MS, m/z = 362 [M + H]+ (Calc: 361 ).

2-(3-((2R,65,115)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-l l-yl)-3-met ylureido)-4-methylpentanoic acid

(Compound 76)

Figure imgf000200_0001

(76)

In a similar manner, Compound 76 was prepared from RA22a (396 mgs, 1.25 mmoi) using ethyl 2-isocyanato-4-methylva)erate (278 mgs, 1.5 mmol) rather than ethyl 4- isocyanato-benzoate. Purification by preparatory HPLC gave Compound 76 TFA salt as a brown oil.

Ή NMR δΗ (400 MHz, CD30D) 7.04-6.95 (m, IH), 6.76-6.69 (m, IH), 6.67-6.60 (m, IH), 4.53-4.44 (m, IH), 4.32-4.23 (m, IH), 3.64-3.57 (m, IH), 3.23-3.19 (m, 2H), 3.11-2.98 (m, 3H), 2.86-2.81 (m, 3H), 2.59-2.49 (m, 4H), 1.71-1.50 (m, 1 H), 1.43-1.34 (m,3H), 0.92-0.81 (m,6H).

LC/MS, m/z = 404 [M + H]+ (Calc: 403).

EXAMPLE 36

2-(((2R,6R,115 -8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-ll-yl)(methyI)carbamoyl)benzoic acid (Compound 49)

Figure imgf000200_0002

RA22 (49)

In a similar manner, Compound 49 was prepared following the procedure for Compound 24 using phthalic anhydride (Aldrich) instead of succinic anhydride.

Compound 49 was purified by reverse-phase prep HPLC (CI 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) as TFA-salt (20mg, white solid). JH NMR δΗ (400 MHz, CD3OD) 7.99 (d, J = 7.9 Hz, 1 H), 7.59 (dt, J = 1 .3 and 7.9 Hz, 1 H), 7.45 (dt, J = 1.3 and 7.9 Hz, 1 H), 7.22 (d, J = 7.7 Hz, 1 H), 6.97 (d, J = 8. 1 Hz, 1 H), 6.73 (d, J = 2.4 Hz, 1 H), 6.61 (dd, J = 2.4 and 8.3 Hz, 1 H), 3.96 - 4.0 1 (m, 1 H), 3.23 - 3.31 (m, 1 H), 2.98 - 3.18 (m, 3H), 2.91 (s, 3H), 2.64 - 2.72 (m, 1 H), 2.36 (s, 3H), 2.02 - 2.08 (m, 1 H), 1 .64 - 1 .68 (m, 1 H), 1 .52 (s, 3H); LC/MS, m/z = 395.2 [M + H]+ (Calc: 394.5).

EXAMPLE 37

2-(4-(((2R,6/?,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- niethanobenzo[i ]azocin-ll-yl)amino)phenyl)ethanesulfonamide (Compound 58); 2-(4-(((2^,6i?,llS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< ]azocin-ll-yl)amino)phenyI)ethanesulfonamide (Compound 50); and 2-(4-(((2R,6R,llS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[</|azocin-ll-yl)(methyl)amino)phenyl)ethanesulfonamide

(Compound 51)

Figure imgf000201_0001
In a similar manner Compound 58 and Compound 50 were prepared following the procedure for Compound 30 sing 4-(2-aminoethyl)benzenesulfonamide (0.9 mmol, Aldrich) instead of l-Boc-4-(aminomethyl)piperidine.

Compound 58 (white solid, 15mg, RT 0.845min): Ή NMR δΗ (400 MHz, CD3OD) 7.76 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.02 (d, J = 8.6 Hz, 1H), 6.74 (d, J = 2.4 Hz, IH), 6.7 (dd, J = 2.4 and 8.3 Hz, IH), 4.16 (s, 1H), 3.64 (s, IH), 3.22 - 3.28 (m, 3H), 3.0 -3.16 (m, 3H), 2.92 (s, 3H), 2.64 - 2.72 (m, 1 H), 2.02 - 2.08 (m, IH), 1.65 (d, J= 12.5 Hz, IH), 1.56 (s, 3H); LC/MS, m/z = 416.2 [M + H]+ (Calc: 415.6).

Compound 50 (white solid, 12mg, RT 2.081 min): Ή NMR δΗ (400 MHz,

CD3OD) 7.77 (d, j = 8.6 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 6.94 (d, J = 8.6 Hz, IH), 6.73 (d, J = 2.4 Hz, 1 H), 6.58 (dd, J = 2.4 and 8.3 Hz, 1 H), 3.68 (s, 1 H), 3.24-3.28 (m, IH), 2.88-3.16 (m, 7H), 2.69 (s, 3H), 2.52 -2.56 (m, IH), 2.08 -2.36 (m, IH), 1.34 (s, 3H), 1.29 (d, J = 13.5 Hz, IH); LC/MS, m/z = 416.2 [M + H]+ (Calc: 415.6).

In a similar manner Compound 51 was prepared following the procedure for

Compound 31. Compound 51 was purified by reverse-phase prep HPLC (CI 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN), and obtained as a TFA-salt, white solid, lOmg.

Compound 51: 'HNMR5H (400 MHz, CD3OD) 7.68 (d, J = 8.5 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 6.89 (d, J = 8.6 Hz, 1 H), 6.65 (d, J = 2.4 Hz, 1 H), 6.58 (dd, J = 2.4 and 8.3 Hz, 1 H), 3.68 (s, 1 H), 3.24 - 3.28 (m, 1 H), 2.88 - 3.16 (m, 7H), 2.69 (s, 3H), 2.52 -2.56(m, IH), 2.08 -2.36 (m, IH), 1.34 (s, 3H), 1.29 (d, J = 13.5 Hz, IH); LC/MS, m/z = 430.2 [M + H]+ (Calc: 429.6).

EXAMPLE 38

4-((65,llR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocine-ll-carboxamido)benzoic acid (Compound 52)

Figure imgf000203_0001

Figure imgf000203_0002

Compound RA 14 ((600 mg, 2.32 mmol) was dissolved in MeOH (10 mL) and a solution of KOH (2.6 eq, 336 mg, 6.0 mmol) and iodine ( 1.3 eq, 766 mg, 3.0 mmol) in MeOH (each 2 mL) was successively added at RT. After 2 h, the solution was neutralized to pH = 7 using AcOH. The mixture was diluted with DCM (50 mL), washed with 10% Na2S2O3 (20 mL) and brine, dried over Na2S04, and concentrated. The reside was purified by flash column chromatography (silica gel, 0-50%

EtOAc/hexanes) to give 536 mg of RA49 as an oil.

Ή NMR δΗ (400 MHz, MeOD) 7.04 (d, J = 8.33 Hz, 1H), 6.84 (d, J = 2.63 Hz, 1 H), 6.76 (dd, J = 2.63 and 8.33 Hz, l H), 3.78 (s, 3H), 3.73 (m, l H), 3.62 (s, 3H), 3.13 (m, l H), 3.01 (m, 1 H), 2.79 (dd, J = 3.73 and 12.28 Hz, 1 H), 2.44 (dt, J = 3.5 1 and 12.93 Hz, 1 H), 1 .88-1 .98 (m, 2H), 1.57 (s, 3H), 1 .47 (m, 1 H).

LC/MS, m/z = 290 [M + H]+ (Calc: 289).

Compound RA49 (200 mg, 0.69 mmol) was dissolved in MeOH (4 mL) and then aq. KOH (2 N, 2 mL) was added. The resulting mixture was stirred at RT for 2 h, neutralized with aq HC1 ( IN) to pH = 3, and diluted with DCM (50 mL). The organic layer was washed with brine, dried over Na2S04, and concentrated to give RA50. The residue was used directly in the next step.

LC/MS, m/z = 276 [M + H]+ (Calc: 275). In a similar manner to Compound 32, Compound 52 was prepared using RA50 rather than RA26. Purification by reverse phase column chromatography (C I 8, ACN/water with 0.1 % TFA, 0-95%) gave Compound 52 TFA salt as a white powder.

Ή NMR δΗ (400 MHz, MeOD) 7.85 (m, 2H), 7.5 1 (m, 2H), 6.93 (m, 2H), 6.69 (d, J = 2.41 Hz, 1 H), 6.58 (dd, J = 2.41 and 8.55 Hz, 2H), 4.02 (m, 1 H), 2.91 -3. 1 7 (m, 4H), 2.89 (s, 3H), 2.72 (m, 1 H), 1 .92 (m, 1 H), 1.57 (d, J = 14.25 Hz, 1 H), 1 .48 (s, 3H). LC/MS, m = 38 1 [M + H]+ (Calc: 380).

EXAMPLE 39

2-(((65,l lR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-ll-yl)methoxy)isonicotinamide (Comp(

Figure imgf000204_0001

To a solution of RA32 (0.05 g, 0.192 mmol, 1.0 eq), in DMF (0.4 mL) at room temperature was added 60% sodium hydride in mineral oil (0.01 1 g, 0.287 mmol, 1 .5 eq). The mixture was stirred for 45 min at room temperature and then it was cooled with an ice bath and a solution of 2-chloroisonicotinonitrile (0.053 g, 0.384 mmol, 2.0 eq) in DMF (0.4 mL) was added and the mixture was stirred for 1 h at room temperature. H20 was added and the organic portion was extracted twice with EtOAc, dried over Na2S04 and concentrated. The crude product was purified by flash chromatography (silica gel, 0-10% eOH in DCM) to afford 58 mg of RA52. LC/MS, m/z = 364 [M + H]+ (Calc: 363).

To a suspension of RA52 (0.042 g, 0. 1 1 6 mmol, 1 .0 eq) in ethanol ( 1 . 1 mL) was added RA42 (0.005 g, .012 mmol, 0. 10 eq) and H20 (0.3 mL). The mixture was stirred for

1.5 h at 80 °C and concentrated to dryness to afford RA53. LC/MS, m/z = 382 [M + H]+ (Calc: 38 1 ).

A solution of RA53 (0.044 g, 0.1 1 5 mmol, 1 .0 eq) in DCM (0.80 mL), cooled with an ice bath was treated with boron tribromide (0.045 mL, 0.461 mmol, 4.0 eq). The ice bath was removed and the mixture stirred for 16 h at room temperature. It was quenched with H20, neutralized with solid NaHC03, concentrated to dryness and purified by flash chromatography (si lica gel, 0- 10% MeOH (IN NH3) in DCM) to afford 15 mg of Compound 53. Ή NMR δΗ (300 MHz, CD3OD) 8.08 (d, J = 5.3 Hz, 1 H), 7.19 (dd, J = 1 .3, 5.3 Hz, 1 H), 7.08 (s, 1 H), 6.84 (d, J = 8.3 Hz, 1 H), 6.62 (d, J =

2.6 Hz, l H), 6.50 (dd, J = 2.6, 1 .5 Hz 1 H), 4.45-4.40 (m, 1 H), 3.89 (t, J = 10.1 Hz, 1 H), 3.26 (m, 1 H), 2.96(d, J = 1 8.6 Hz, l H), 2.59 (dd, J = 5.9, 18.6 Hz, 1 H), 2.39 (dd, J = 3.3, 12.3 Hz, 1 H), 2.33 (s, 3H), 2.32-2.27 (m,l H), 2.09 (td, J = 3.1 , 12.5 Hz, 1H), 1 .79 (td, J = 5.9, 14.0 Hz, 1 H), 1 .38(s, 3H), 1.27(d, J = 1 1.8 Hz, I H), LC/MS, m/z = 368 [M + H]+ (Calc: 367).

EXAMPLE 40

(25)-l-(2-((6^,ll^)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-ll-yl)acetyl)pyrrolidine-2-carboxylic acid (Compound 55); and l-(2-((65,llii)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< ]azocin-ll-yI)acetyl)piperidine-4-carboxyIic acid (Compound 72)

Figure imgf000206_0001

To a solution of RA26 (200 mg, 0.70 mmol) in DMF (4 mL) were added benzotriazol- l -yloxy-tri(dimethylamino)phosphonium hexafluorophosphate (BOP, 354 mg, 1 .2 eq, 0.84 mmol), D1EA (1 mL) and (S)-methyl pyrrolidine-2-carboxylate hydrochloride (1 16 mg, 0.7 mmol). The resulting mixture was stirred at room temperature overnight and then diluted with EtOAc (50 mL). The organic layer was washed with water (20 mL x 2), brine (20 mL), dried over Na2S04, and concentrated. The crude material was purified by flash column chromatography (silica gel, 0-5% MeOH/DCM) to give 167 mg of RA54 as a pale yellow foam which was used directly in the next step.

LC/MS, m/z = 399 [M + H]+ (Calc: 398).

To a solution of RA54 (150 mg, 0.38 mmol) in MeOH (5 mL) was added 10% Pd in charcoal (50 mg). The reaction bottle was sealed, de-gassed, and then subjected to a H2 balloon. After stirring at RT overnight, the solution was filtered and concentrated to give RA55. The crude material RA55 was used directly in the next step without further purification. To an dry ice-cooled solution (-78°C) of RA55 ( 1 50 mg, 0.37 mmol) in DCM (4 mL) was added BBr3 (0.5 mL in DCM). The reaction mixture was slowly warmed to room temperature over 3 h, and then quenched with sat. NH4C1 (1 mL). After evaporation of the DCM, the residue was dissolved in MeOH (2 mL) and purified by reverse phase column chromatography (C 18, ACN/water with 0. 1 % TFA, 0-95%) to give 21 mg of Compound 55 TFA salt as a white powder.

1 H NMR 6H (400 MHz, MeOD) 6.97 (t, J = 8.55 Hz, 1 H), 6.67 (d, J = 2.19 Hz, 1 H), 6.61 (m, l H), 4.33 (m, 1 H), 3.76 (m, I H), 3.29-3.44 (m, 2H), 2.98-3. 12 (m, 3H), 2.82 (s, 3H), 2.40-2.71 (m, 3H), 1 .77-2.2 1 (m, 6H), 1 .57 (m, 1 H), 1.35 (d, J = 8.77 Hz, 3H). LC/MS, m/z = 373 [M + H]+ (Calc: 372). In a similar manner, l-(2-((65,l l/f)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[rfJazocin-l l-yl)acetyl)piperidine-4-carboxyIic acid (Compound

72) was prepared from R.A26 using ethyl piperidine-4-carboxylate rather than (S)- methyl pyrrolidine-2-cafboxylate hydrochloride. Purification by reverse phase column chromatography (C I 8, ACN/water with 0.1 % TFA, 0-95%) gave Compound 72 TFA salt as a white powder.

Ή NMR δΗ (400 MHz, MeOD) 6.97 (dd, J = 3.5 1 and 8.33 Hz, 1 H), 6.67 (t, J = 2.41 Hz, IH), 6.60 (dd, J = 2.41 and 8.33 Hz, 1 H), 4.26 (m, I H), 3.73 (m, IH), 3.62 (m, I H), 2.91 -3. 1 1 (m, 2H), 2.83 (s, 3H), 2.41 -2.78 (m, 5H), 1.75-2.08 (m, 4H), 1 .38- 1.60 (m, 3H), 1.35 (d, J = 9.43 Hz, I H).

LC/MS, m/z = 387 [M + H]+ (Calc: 386).

EXAMPLE 41

(2R,6 i,llS)-3-(cyclopropylmethyl)-8-methoxy-iV,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[rf]azocin-ll-amine (Compound 56)

Figure imgf000208_0001

RA11 RA56 (56)

A mixture of RA11 (O.lg, 0.4 mmol), MelMH2 (2N in THF, 2mL, 4mmol) and 4A MS was shaken at RT for 24 h. The solvent was evaporated under vacuum, then CH3CN (ImL) and NaB(OAc)3H (0.2g, 0.9 mmol) were added. The reaction mixture was shaken at RT for 24 h. The solid was filtered and washed with CHCI3 (6mL). The filtrate was washed with 0.2 N of NaOH aqueous (ImL), concentrated and purified by reverse-phase prep HPLC (CI 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield RA56 and Compound 56.

RA56 (TFA-salt, 20mg, 10%, RT l.lOlmin): Ή NMR δΗ (400 MHz, DMSO-d6) 10.5 (br., IH), 9.0 (br., IH), 8.6 (br., IH), 6.96 - 7.0 (m, IH), 688 - 6.96 (m, 2H), 4.42 (s, 1H), 3.77 (s, 3H), 3.72 - 3.75 (m, IH), 3.2 - 3.2 (m, 5H), 2.7 (s, 3H), 2.38 - 2.46 (m, IH), 1.98-2.08 (m, IH), 1.7 (d, J = 13.8 Hz, IH), 1.62 (s, 3H), 1.06- 1.12 (m, IH), 0.632 - 0.68 (m, 2H), 0.36 - 0.42 (m, 2H); LC/MS, m/z = 301.4 [M + H]+ (Calc: 300.4).

Compound 56 (TFA-salt, 70mg, 40%, 1.363min): Ή NMR δΗ (400 MHz, CD3CN,) 7.05 (d, J = 8.5 Hz, IH), 6.85 (d, J = 2.6 Hz, IH), 6.78 (dd, J = 2.6 and 8.5 Hz, IH), 4.2 (s, IH), 3.69 (s, 3H), 3.42 (s, IH), 3.0 - 3.22 (m, 4H), 2.69 - 2.72 (m, IH), 2.67 (s, 3H), 2.36-2.43 (m, IH), 2.16-2.24 (m, IH), 1.48 (s, 3H), 1.44 (d, J = 14.2 Hz, IH), 0.98 - 1.03 (m, IH), 0.54 - 0.66 (m, 2H), 0.28 - 0.34 (m, 2H); LC/MS, m/z = 301.4 [M + H]+ (Calc: 300.4). EXAMPLE 42

(E)-N-((2 ?,6R,l lS)-3-(cyclopropylmet yl)-8-methoxy-6-methyI-l,2 ,3,4,5,6- hexahydro-2,6-methanobenzo[i ]azocin-ll-yl)-3-(furan-3-yl)-yV-methyIacrylamide (Compound 57)

Figure imgf000209_0001

In a similar manner Compound 57 was prepared following the procedure for

Compound 16. The product was purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN), to obtain Compound 57 as a TFA-salt, white solid. Ή NMR δΗ (400 MHz, CD3OD) 7.74 (s, 1H), 7.48 (d, J = 14.1 Hz, 1 H), 7.44 (s, 1 H), 7.09 (d, J = 8.6 Hz, 1 H), 6.86 (d, J = 2.4 Hz, 1 H), 6.8 (dd, J = 2.4 and 8.3 Hz, 1 H), 6.74 (s, 1 H), 6.68 - 6.74 (m, 2H), 4.96 (s, 0.2H), 4.84 (s, 0.8H), 3.96 (s, 1 H), 7.72 (s, 3H), 3.2 - 3.34 (m, 3H), 2.94 - 3.12 (m, 2H), 2.77 (s, 3H), 2.52 - 2.6 (m, lH), 2.02 - 2.12 (m, 1 H), 1 .64 - 1 .68 (m, 1 H), 1.45 (s, 3H), 1.0 - 1.08 (m, l H), 0.67 - 0.72 (m, 2H), 0.36 - 0.4 (m, 2H); LC/MS, m/z = 421 .2 [M + H]+ (Calc: 420.5).

In a similar manner, (£)-N-((2/f,6/f,115)-3-(cyclopropylmethyI)-8-methoxy-6- methyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[< ]azocin-ll-yI)-3-(furan-3-yl)-7V- methylacrylamide (Compound 85) was prepared.

Ή NMR δΗ (400 MHz, CD3OD) 7.87 (s, 1 H), 7.64 (d, J = 16.8 Hz, 1 H), 7.49 (s, 1 H), 7.08 (d, J = 8.4 Hz, 1 H), 6.75 - 6.84 (m, 4H), 4.21 (s, 1 H), 3.88 (s, 1 H), 3.69 (s, 3H), 3.32 - 3.66 (m, 3H), 3.25 (s, 3H), 2.98 - 3.12 (m, 2H), 2.61 - 2.68 (m, 1 H), 2.28 - 2.37 (m, 1 H), 1 .49 (s, 3H), 1.45 (d, J = 1 5.2 Hz, 1 H), 1.01 - 1.13 (m, 1 H), 0.62 - 0.73 (m, 2H), 0.35 - 0.45 (m, 2H).

LC/MS, m/z = 421.2 [M + H]+ (Calc: 420.5). EXAMPLE 43

methyl 3-((6R,llS)-ll-hydroxy-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i/]azocin-ll-yl)benzoate (Compound 64); and methyl 3- ((6R,llR)-ll-hydroxy-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-ll-yl)benzoate (Compound 62)

Figure imgf000210_0001

To Compound 63 (70 mg, 0.19 mmol) was added 1 mL of 6 HCl and the resulting suspension stirred at 80 °C. After 90 min, a few drops of MeOH were added to help solubilize Compound 63. After 3 h, 1 mL H20 was added. After 6 h the solution was cooled to RT and concentrated. To the resulting residue was added 0.5 mL MeOH and 0.5 mL 1 MNaOH (0.5 mmol, 2.5 equiv.). The solution was stirred at RT for 16 h and at reflux for 3 h. Excess HCl/Et20 was added and the solution concentrated-. The resulting material was purified by preparative HPLC [0-60% MeCN/H20 (0.01% TFA)] to yield Compound 64 TFA salt.

Ή NMR 5H (400 MHz, ACN-d3) 8.38 (bs, 1H), 8.04 (s, IH), 7.82 (d,J= 6.6 Hz, IH), 7.46 (d,J=8.1 Hz, IH), 7.30 (t,J= 8.1 Hz, IH), 7.05 (t,J=2.6 Hz, IH), 7.02 (s, IH), 6.87 (dd, J= 8.1, 2.6 Hz, IH), 3.84 (s, 3H), 3.80 (s, 3H), 3.76 (d, J= 5.3 Hz, I H), 3.22-3.09 (m, 2H), 2.85 (s, 3H), 2.72-2.47 (m, 4H), 1.84 (s, IH), 1.51 (s, 3H), 1.40 (dd, J= 15.1, 3.0 Hz, IH).

LC/MS, m/z = 382 [M + H]+ (Calc: 381).

In a similar manner Compound 62 TFA salt was synthesized analogously from

Compound 67.

Ή NMR 5H (400 MHz, DMSO-d6) 8.91 (s, IH), 8.74 (d,J= 8.1 Hz, IH), 8.45 (s, IH), 8.23-8.12 (m, 2H), 8.00 (d,J= 8.3 Hz, IH), 7.85 (d, J= 8.1 Hz, IH), 7.63 (t,J = 8.1 Hz, 1H), 7.45 (t,J=7.6Hz, 1H), 7.12 (d, J- 8.6 Hz, 1H), 7.01 (d,J=8.6 Hz, IH), 6.92 (s, 1H), 6.79 (d,J=2.2 Hz, 1 H), 6.68 (d, J= 8.1 Hz, lH),6.15(s, 1H), 3.99 (d,J=6.6 Hz, IH), 3.90 (s, 1.5 H), 3.85 (s, 1.5H), 3.75 (s, 1.5H), 3.70 (s, 1.5H), 3.45 (dd, J= 20.2, 6.6 Hz, 2H), 3.26 (d, J- 19.3 Hz, 2H), 3.14 (d, J= 5.9 Hz, IH), 3.10 (d, J= 9.9 Hz, IH), 3.04-2.89 (m, 2H), 2.81 (d, J= 4.2 Hz, 3H), 2.10 (td, J= 12.4, 3.9 Hz, 2H), 1.71 (d,J= 13.2 Hz, 2H), 1.66 (s,3H), 1.09 (s, 3H), 1.08-1.01 (m, IH).

LC/ S, m/z = 382 [M + H]+ (Calc: 381).

EXAMPLE 44

(67?)-8-methoxy-3,6-dimethyl-ll-(pyrrolidin-l-yl)-l,2,3,4,5,6-hexahydro-2,6- methanobenzofi/jazocine (Compound 69)

Figure imgf000211_0001

RA58 (69)

NaBH4 (83 mg, 2.2 mmol, 1.2 eq) was added to RAl (450 mg, 1.8 mmol, 1 eq) in 10 mL of MeOH and the solution stirred at RT for 90 min. EtOAc was added, the solution washed with sat. NaHC03, dried with Na2S04, and concentrated to yield RA57 as a clear oil.

To RA57 (630 mg, 2.6 mmol, I eq) and Et3N (1.1 mL, 7.9 mmol, 3 eq) in 12 mL DCM was added MsCl (0.24 mL, 3.1 mmol, 1.2 eq) and the solution stirred at RT. After 90 min. additional MsCl (0.24 mL, 3.1 mmol, 1.2 eq) was added. After 3 h additional MsCl (0.24 mL, 3.1 mmol, 1.2 eq) was added. After 19 h DCM was added and the solution washed with sat. NaHC03, dried with Na2S04, and concentrated. The resulting residue was purified by MPLC (0-20% MeOH/DCM, 12g) to yield RA58 as a yel low oil, 260 mg.

Pyrrolidine (13 uL, 0. 16 mmol, 1 .2 eq) was added to RA58 (35 mg, 0. 13 mmol, 1 eq) and DIEA (69 uL, 0.39 mmol, 3 eq) in 0.5 mL DMF and the solution heated at 60 °C for 2 h. The temperature was increased to 120 °C for 1 h, then lowered again to 60 °C. After 46 h the reaction was concentrated and purified by MPLC (0-20% MeOH/DCM, 12g) and further purified by preparative HPLC [0-60% MeCN/H20 (0.01 % TFA)] to yield Compound 69 TFA salt.

Ή NMR δΗ (400 MHz, MeOH-d4) 7. 13 (d, J = 8.6 Hz, I H), 6.92 (d, J = 2.4 Hz, l H), 6.78 (dd, J = 8.6, 2.4 Hz, 1 H), 3.88-3.77 (m, 1 H), 3.71 (s, 3H), 3.66-3.61 (m, 1 H). 3.60-3.52 (m, 1 H), 3.35-3.23 (m, 5H), 3. 1 1 -3.05 (m, 2H), 3.01 (s, 3H), 2.32-2.24 (m, 1 H), 2.1 7-2.06 (m, 1 H), 2.01 - 1 .90 (m, 4H), 1 .57 (s, 3H).

LC/MS, m/z = 301 [M + H]+ (Calc: 300).

EXAMPLE 45

l-((6R)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,

methanobenzo[i/]azocin-ll-yI)piperidin-4-amine (Compou

Figure imgf000212_0001

4-Boc-aminopiperidine (45 mg, 0.1 8 mmol, 1.2 eq) was added to RA58 (40 mg, 0.15 mmol, 1 eq) and DIEA (79 uL, 0.45 mmol, 3 eq) in 0.5 mL DMF and the solution heated at 60 °C for 40 h. The reaction was concentrated and purified by MPLC (0- 20% MeOH/DCM, 12g). To the purified residue was added 0.5 mL of 1 : 1 TFA:DCM. The reaction was stirred at RT for 1 h and concentrated. The resulting material was purified by preparative HPLC [0-60% MeCN/H20 (0.01% TFA)] to yield Compound 70 TFA salt. Ή NMR δΗ (400 MHz, MeOH-d4) 6.96 (d, J= 8.3 Hz, 1 H), 6.70 (d, J= 2.4 Hz, 1 H), 6.66 (dd,J= 8.3, 2.4 Hz, 1H), 3.73-3.67 (m, 1H), 3.67 (s, 3H), 3.46 (d,J= 11.4 Hz, lH), 3.33 (td,J= 13.5, 5.7 Hz, 1H), 3.13-3.02 (m, 5H), 2.82-2.67 (m, 4H), 2.56-2.42 (m, 2H), 2.27 (t,J= 10.8 Hz, 1H), 2.09 (td,J= 13.6, 7.0 Hz, 1H), 2.04-1.90 (m, 2H), 1.65(qd,J= 11.6, 4.8 Hz, 1H), 1.49 (qd, J= 12.0, 4.0 Hz, lH), 1.42 (s,3H).

LC/MS, m/z = 330 [M + H]+ (Calc: 329).

EXAMPLE 46

2-(((2R,6?,115)-3-(cycIopropylmethyl)-8-methoxy-6-methyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-ll-yl)(methyl)amino)acetic acid

(Compound 73)

Figure imgf000213_0001

A mixture of Compound 56 (TFA-Salt, 50mg, 0.12 mmol), glyoxylic acid ethyl ester (O.lg, 1 mmol), TEA (0.05mL, 0.4 mmol) and 4A MS in CH3CN (0.5mL) was shaken for 2 h, then NaB(OAc)3H (0.3g, 1.4 mmol) was added. The reaction mixture was shaken at RT for 16 h. The solid was filtered, and washed with CHC13 (I OmL). The filtrate was washed with water, and concentrated. The residue was dissolved in ImL MeOH and treated with 0.2mL NaOH (2N aqueous) at RT for 24 h. After aqueous work-up, the product was purified by reverse-phase prep HPLC (CI 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 73 as TFA-salt (15mg, white solid). Ή NMR δΗ (400 MHz, CD3OD) 7.15 (d, J = 8.5 Hz, 1H), 6.95 (d, J = 2.6 Hz, 1H), 6.85 (dd, J = 2.6 and 8.3 Hz, 1 H), 4.53 (d, J = 5.3 Hz, 1 H), 3.94 (d, J = 18.9 Hz, 1 H), 3.79 (s, 3H), 3.72 (d, J = 18.2 Hz, 1 H), 3.32 - 3.45 (m, 4H), 3.19- 3.24 (m, 1 H), 2.97 (dd, J = 7.8 and 13.4 Hz, 1H), 2.83 (s, 3H), 2.66 (dt, J = 3.5 and 13.2 Hz, 1H), 2.4 (dt, J = 4.6 and 14.5 Hz, 1H), 1.64 (s, 3H), 1.54 (d, J = 14.7 Hz), 1.16-1.23 (m, lH), 0.75 - 0.84 (m, 2H), 0.49 - 0.53 (m, 2H); LC/MS, m/z = 359.2 [ + H]+ (Calc: 358.5).

EXAMPLE 47

l-((6i?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[ijazocin-ll-yl)piperidine-3-carboxylic acid (Compound 74)

Figure imgf000214_0001

Ethyl nipecolate (35 uL, 0.18 mmol, 1.2 eq) was added to RA58 (40 mg, 0.15 mmol, 1 eq) and DIEA (79 uL, 0.45 mmol, 3 eq) in 0.5 mL DMF and the solution heated at 60 °C for 40 h. The reaction was concentrated and purified by MPLC (0-20%

MeOH/DCM, 12g). To the purified residue was added 0.4 mL MeOH and 0.2 mL 10 % NaOH. The reaction was stirred at 80 °C for 1 h and concentrated. The resulting material was purified by preparative HPLC [0-60% MeCN/H20 (0.01% TFA)] to yield Compound 74 TFA salt.

Ή NMR δΗ (400 MHz, MeOH-d4) 6.97 (d, J= 8.3 Hz, 1 H), 6.70 (d, J= 2.4 Hz, 1 H), 6.66 (dd,J= 8.3, 2.4 Hz, IH), 3.70-3.63 (m, IH), 3.67 (s, 3H), 3.47 (d,J= 11.4 Hz, 1H), 3.37-3.27 (m, 1H), 3.09 (s, 3H), 3.01 (dt, J= 11.6, 3.2 Hz, 1 H), 2.79 (dd , J = 14.5,2.9 Hz, 1H),2.70 (dd, J= 11.1,3.0, 2H), 2.66-2.59 (m, IH), 2.53 (d,J= 13.8 Hz, 1H), 2.46(dd,J= 13.4, 5.5 Hz, 1H), 2.35-2.18 (m, 2H), 2.07 (td, J= 13.6, 7.0 Hz, IH), 1.97-01.82 (m, 2H), 1.77-1.65 (m, IH), 1.56 (q,J= 11.0 Hz, 1H), 1.42 (s,3H). LC/MS, m/z = 359 [M + H]+ (Calc: 358). EXAMPLE 48

2-(3,4-dichlorophenyl)-7V-(((6S,llS)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[^azocin-ll-yl)methyl)acetamide (Compoun

Figure imgf000215_0001

To a solution of RA25 (3.0 g, 9.5 1 mmol, 1.0 eq), in MeOH (30 mL) was added wet 10% palladium on carbon (0.50 g). The mixture was stirred for 16 h at room temperature under a balloon of hydrogen, filtered through Celite and concentrated to dryness to afford Compound 14. LC/MS, m/z = 31 8 [M + H]+ (Calc: 317).

To a solution of Compound 14 in THF (30 mL) at room temperature was added a solution of sodium hydroxide ( 1 .06 g, 26.5 mmol, 3.0 eq) in H20 (20 mL) followed by MeOH ( 13 mL). The solution was stirred for 2 h, the THF and MeOH were removed under reduced pressure, the pH was adjusted to 7.0 and the aqueous solution was concentrated to dryness. The solid residue was stirred with MeOH and the solid was removed by filtration and discarded. The filtrate was concentrated to afford

Compound 15. LC/MS, m/z = 290 [M + H]+ (Calc: 289). To a solution of Compound 15 (0.25 g, 0.865 mmol, 1.0 eq) in toluene (1 0 mL) was added triethylamine (0.12 mL, 0.865 mmol, 1 .0 eq) and diphenylphosphoryl azide (0.186 mL, 0.865 mmol, 1 .0 eq). The mixture was heated to reflux for 2 h, cooled with an ice bath and 1 .0 M sodium trimethylsilanolate in THF ( 1 .75 mL, 1 .73 mmol, 2.0 eq) was added. The mixture was stirred at room temperature for 30 min, cooled with an ice bath, quenched with 10% citric acid, neutralized with NaHC03 and extracted with EtOAc and DCM. The combined organic layers were dried over sodium sulfate and concentrated to dryness and purified by flash chromatography (silica gel, EtOAc then 0-25% MeOH (IN NH3) in DCM) to afford 0.042 g of RA6J. 'HNMR δΗ (300 MHz, CDCI3) 6.94 (d, J = 8.3 Hz 1H), 6.68 (d, J = 2.6 Hz, IH), 6.62 (dd, J = 2.6, 8.3 Hz, 1H), 3.71 (s, 3H), 3.23 (m, 1 H), 2.95 (d, J = 18.4 Hz, IH), 2.88 (dd, J = 4.4, 12.9 Hz, 1 H), 2.55 (dd, J = 5.9, 18.2 Hz, 1 H ), 2.40 (m, 1 H), 2.37 (s, 3H), 2.25-2.I7(t, J= 12.7, I H), 2.06-1.98 (td, J = 3.3, 12.5 Hz, IH), ), 1.84-1.76 (td, J = 4.8, 12.7 Hz, IH), 1.76-1.70 (m, IH), 1.33 (s, 3H), 1.28(m, IH), 1.24(m, IH), LC/MS, m/z =261 [M + H]+ (Calc: 260).

To a solution of RA61 (0.42 g, 0.162 mmol, 1.0 eq) in DMF (0.9 mL) was added diisopropylethylamine (0.063 g, 0.485 mmol, 3.0 eq), 3,4-dichlorophenylacetic acid (0.040 g, 0.194 mmol, 1.2 eq), and benzotriazole-l-yl-oxy-tris-(dimethylamino)- phosphonium hexafluorophosphate (0.086 g, 0.194 mmol, 1.2 eq). The mixture was stirred for 16 h at room temperature, brine was added and the mixture extracted with DCM. The organic layers were concentrated and purified by flash chromatography (silica gel, 0-25% MeOH in DCM) to afford 0.018 g of Compound 75. Ή NMR δΗ (300 MHz, CD3OD) 7.40-7.36 (m, 2H), 7.13 (dd, J = 2.0, 8.1 Hz, IH),

7.02 (d, J - 8.5 Hz, IH), 6.75-6.71 (m, 2H), 3.67 (s, 3H), 3.41 (m, 3H), 3.29 (dd, J = 4.8, 14.0 Hz IH), 3.19-3.10 (m, IH), 3.07-3.00 (m, IH), 2.95-2.88 (m, IH), 2.85- 2.78(dd, J = 10.1, 14.0 Hz, IH), 2.73 (s, 2H), 2.54 (d, J = 9.4, 3H), 2.09 (m, IH), 1.89- 1.79 (td, J = 5.0, 13.8 Hz, IH), 1.46 (d, J = 13.6 Hz, IH), 1.41 (s, 3H), LC/MS, m/z = 447 [M + H]+ (Calc: 446).

EXAMPLE 49

(E)-V-((2R,6R,llS)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i|azocin-ll-yI)-3-(furan-3-yI)-N-methyIacryIamide (Compound 77)

Figure imgf000217_0001

In a similar manner compound RA62 was prepared following the procedure for RA 16. The product was purified by column (silica gel, EtOAc/Hexane 2/1); to yield RA62 as a colorless oil, 150mg, 40%: Ή NMR 6H (400 MHz, CDC13) 7.0 (d, J = 8.5Hz, l H), 6.8 (d, J = 2.4 Hz, 1 H), 6.77 (dd, J = 2.6 and 5.4 Hz, l H), 3.56 (d, J = 6.1 Hz, I H), 3.37 (d, J = 18.4 Hz, 1 H), 3.04 (dd, J = 7.0 and 1 8.8 Hz), 2.58 - 2.68 (m, 3H), 2.36 (d, J = 6.4 Hz, 2H), 2.04 - 2. 12 (m, I H), 1.56 - 1.62 (m, 1 H), 1 .33 (s, 3H), 1 .18 (d, J = 6.9Hz, 6H), 0.68 - 0.73 (m, 1 H), 0.39 - 0.42 (m, 2H), -0.08 - 0.02 (m, 2H).

A mixture of RA62 (0.15g, 0.44 mmol), methylamine (2N in THF, 2mL, 4 mmol) and 4A MS in CH3CN was shaken for 12 h, then NaB(OAc)3H (0.4g, 1 .8 mmol) was added. The reaction mixture was shaken at RT for 24 h. The solid was filtered, and washed with CHC13 (l OmL). The filtrate was washed with 2N NaOH (2mL aqueous). The organic layer was concentrated to yield 0.2g of crude RA63 {(LC/MS, m/z = 357.5 [M + H]+ (Calc: 356.5)} .

0-(7-Azabenzotriazol- l -yl)-N,N,N',N'-tetramethyluronium

hexafluorophosphate (HATU, Applied Bio, 0.22g, 0.6 mmol) was added to a solution of RA63 (0.2g, 0.56 mmol), 3-(3-furyl)acrylic acid (l OOmg, 0.7 mmol) and TEA (0.1 mL, 0.8 mmol) in DMF (l mL) at RT. The reaction mixture was shaken at RT for 24 h. After aqueous work-up, the product was dissolved in l mL MeOH and treated with 0.2mL NaOH (2M aqueous) at RT for 24 h. After aqueous work-up, the product was purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0. 1 % TFA in ACN) to yield Compound 77 (the major isomer) as TFA-salt (30mg, yellow solid): Ή NMR δΗ (400 MHz, CD3OD) 7.8 (s, IH), 7.62 (d, J = 15.1 Hz, IH), 7.48 (s, IH), 6.98 (d, J = 8.3 Hz, IH), 6.84 (s, 1 H), 6.79 (d, J = 2.8 Hz, IH), 6.71 (d, J = 2.4 Hz, IH), 6.62 (dd, J = 2.6 and 8.3 Hz, IH), 4.2 (d, J = 3.9 Hz, IH), 3.87 (s, IH), 3.3 - 3.36 (m, 3H), 3.28 (s, 3H), 2.98 - 3.08 (m, 2H), 2.62 - 2.7 (m, 1 H), 2.28 - 2.36 (m, IH), 1.46 (s,3H), 1.41 - 1.43 (m, IH), 1.04- 1.12 (m, 1 H), 0.65 - 0.7 (m, 2H), 0.38 - 0.42 (m, 2H); LC/MS, m/z = 407.3 [M + H]+ (Calc: 406.5).

In a similar manner, (E)-N-((6i?,ll/i)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- l^jS^^^-hexahydro^^-methanobenzoIilazocin-ll-y^-S-ifuran-S-yl)-^- methylacrylamide (Compound 83) was prepared.

Ή NMR δΗ (400 MHz, CD3OD) 7.74 (s, IH) 7.48 (d, J = 15.2 Hz, IH), 7.44 (s, IH), 6.98 (d, J = 8.8 Hz, IH), 6.62 - 6.74 (m, 4H), 4.82 - 4.93 (m, IH), 3.85 - 3.97 (m, IH), 3.16-3.23 (m, IH), 2.91-3.12 (m, 3H), 2.79 (s, 3H), 2.53 -2.63 (m, IH), 2.02 -2.31 (m, IH), 1.64 (d, J = 14.8 Hz, IH), 1.44 (s, 3H), 0.96 - 1.13 (m, IH), 0.68 (d, J = 7.6 Hz, 2H), 0.38 - 0.51 (m, 2H).

LC/MS, m/z = 406.5 [M + H]+ (Calc: 407.3).

EXAMPLE 50

3-(4-cyanophenyl)-l-((2R,6R,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahyd 2,6-methanobenzo[</]azocin-ll-yl)-l-methylurea (Compound 78); and 3-(4- cyanophenyl)-l-((2R,6R,llS)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2, methanobenzo[i]azocin-ll-yl)-l-methylurea (Compound 79)

Figure imgf000219_0001

Figure imgf000219_0002

A mixture of RA 16 (0.85g, 2.7 mmol), MeNH2 (33% in EtOH, l mL, Aldrich, 10 mmol) and 4A MS (0.4g) in 1 mL CH3CN was shaken at RT for 4 h. The solvent was removed under vacuum. The residue was treated with CH3CN (3mL) and

NaB(OAc)3H (3.4 mmol). The reaction mixture was stirred at RT for 14 h. The solid was filtered. The filtrate was quenched with water (2mL and 2N NaOH 2mL), extracted with EtOAc and concentrated to yield 0.5g of crude RA22 /RA35 {m/z = 317.4 [M + H]+ (Calc: 3 16.4)}.

4-Isocyanatobenzonitrile ( 1 .4 mmol, 0.2g, Aldrich) was added to a solution of RA22/RA35 (0.5g, 1 .6mmol) in 4mL CHC13 at 0 °C. The reaction mixture was warmed to RT over 4 h, and shaken at RT for two days. The reaction mixture was quenched with water (l mL), and the solvent was evaporated under vacuum. The residue was dissolved in MeOH (6mL), and treated with NaOH (2N in water, 0.5mL). The reaction mixture was shaken at RT for 14 h. After being concentrated under vacuum, the residue was dissolved in CHCI3 (l OmL), and neutralized to pH ~ 3 with IN HCI. The organic layer was concentrated and purified by column (CHC /MeOH 10/1) to yield compounds Compound 78 and Compound 79.

Compound 78 (white solid, 1 l Omg, 22%, RT 1 .650min): Ή NMR δΗ (400 MHz, CDCI3) 7.68 (d, J = 8.7 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.3 Hz, I H), 6.77 (d, J = 2.6 Hz, 1 H), 6.68 (dd, J = 2.4 and 8.1 Hz, 1 H), 3.8 - 4.1 (m, l H), 3.08 - 3. 1 7 (m, 2H), 2.64 - 2.72 (m, 4H), 2.5 - 2.56 (m, 1 H), 2.46 (s, 3H), 2.04 - 2.22 (m, 1 H), 1.94 - 2.02 (m, 1 H), 1.48 - 1 .52 (m, 1 H), 1 .47 (s, 3H); LC/MS, m/z = 391 .2 [M + H]+ (Calc: 390.5). Compound 79 (white solid, 80mg, 16%, RT i .805min): Ή NMR δΗ (400 MHz,

CDC13) 7.57 (dd, J = 1 .9 and 8.7 Hz, 2H), 7.5 1 (d, J = 8.7 Hz, 2H), 7.0 (d, J = 7.9 Hz, 1 H), 6.76 (d, J = 2.6 Hz, 1H), 6.69 (dd, J = 2.4 and 8. 1 Hz, 1 H), 3.64 - 3.69 (m, 1 H), 3.52 - 3.56 (m, 1 H), 3.24 - 3.26 (m, 1 H), 3. 14 (s, 3H), 2.96 - 3.04 (m, 1 H), 2.6 - 2.66 (m, 1 H), 2.55 (s, 3H), 2.36 - 2.44 (m, 1 H), 2. 1 6 - 2.22 (m, 1 H), 1 .47 (s, 3H), 1 .24 - 1 .32 (m, 1 H); LC/MS, m/z = 391.2 [M + H]+ (Calc: 390.5).

In a similar manner the following compounds were prepared.

3-(4-cyanophenyl)-l-((6R,llS)-3-(cycIopropylmethyl)-8-hydroxy-6-methyl- l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i ]azocin-l l-yl)-l-methylurea

(Compound 81)

Ή NMR δΗ (400 MHz, CD3OD) 7.58 (s, 4H) 6.98 (d, J = 8.8 Hz, 1 H), 6.71 (d, J = 2.8 Hz, 1 H), 6.62 (dd, J = 2.8 and 7.6 Hz, 1 H), 4.24 (d, J = 5.6 Hz, 1 H), 3.27 - 3.40 (m, 1 H), 3.23 (s, 3H), 3.00 - 3.1 1 (m, 1 H), 2.62 - 2.70 (m, 1 H), 2.28 - 2.37 (m, 1 H), 1.47 (s, 3H), 1 .44 (d, J = 14.8 Hz, 1 H), 1.04 - 1 .13 (m, 1 H), 0.66 - 0.71 (m, 2H), 0.38 - 0.44 (m, 2H).

LC/MS, m/z = 431.3 [M + H]+ (Calc: 430.5).

3-(4-cyanophenyl)-l-((6 ?,llR)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i ]azocin-ll-yl)-l-methylurea

(Compound 80)

Ή NMR δΗ (400 MHz, CD3OD) 7.52 - 7.59 (m, 4H), 6.99 (d, J = 8.8 Hz, 1 H), 6.75 (s, l H), 6.63 - 6.67 (m, 1 H), 6.42 (s, 1 H), 3.91 - 3.98 (m, 1 H), 2.94 - 3.13 (m, 3H), 2.69 (s, 3H), 2.52 - 2.66 (m, 1 H), 2.02 - 2.29 (m, 1 H), 1 .62 (d, J = 14.0 Hz), 1 .45 (s, 3H), 0.97 - 1.23 (m, 1 H), 0.68 (d, J = 1 5.6 Hz, 2H), 0.37 - 0.44 (m, 2H).

LC/MS, m/z = 431 .3 [M + H]+ (Calc: 430.5). EXAMPLE 51

The following Tables provide the compound structures, and the results on the efficacy of binding and activity response of exemplified Compounds of the Invention at the ORL1, μ-, and κ-opioid receptors.

In TABLE 1, binding affinity of certain Compounds of the Invention to the ORL-1, μ-, and κ-opioid receptors was determined as described above in HEK-293 or CHO cells.

In TABLE 2, activity response of certain Compounds of the Invention to the μ- and K-opioid receptors was determined as described above for functional assays using HEK-293 cells.

In TABLE 2A, activity response of certain Compounds of the Invention to the μ- and κ-opioid receptors was determined as described above for functional assays using U-2 OS cells.

In TABLE 3, the structure of the exemplified compounds is shown.

TABLE 1: Binding Affinity of Benzomorphan Analog Compounds

Figure imgf000221_0001
Ki (nM)

Ref. No. Opioid Receptor

ORL-1

μ K

12 > 20 μΜ

13 >20 μΜ

14 14295.63

15 > 20 μΜ

16 186.49 ±33.99

17 89.91 ± 14.68

18 5576.32 ± 1014.93

19 8 16.26 ±604.62

20 1946.74 ± 537.74

21 1220.02 ±331.89

22 25.71 ±8.74

23 13246.68

24 1.17 ±0.09

25 147.19 ± 18.37

26 > 20 μΜ

27 35.22 ±9.38

28 18223.59

29 30.07 ± 11.75

30 7.66 ± 1.96

31 0.34 ±0.09

32 12741.18 ± 2092.19

33 2835.01 ±341.97

34 5985.04 ±603.94

35 >20 μΜ

36 4187.46 ± 1054.00

37 > 20 μΜ

38 17400.63 ± 5983.60

39 81.98 ± 10.36

40 3121.28 ±482.94

41 1884.11 ±279.98 Ki (nM)

Ref. No. Opioid Receptor

ORL-1

μ K

42 > 20 μΜ

43 515.84 ± 126.06

44 166.02 ±62.34

45 > 20 μΜ

46 >20 μ

47 19990.58

48 > 20 μΜ

49 > 20 μ

50 58.34 ± 10.09

51 7.83 ±0.95

52 >20 μΜ

53 700.52 ± 57.96

54 258.53 ±33.55

55 > 20 μΜ

56 169.98 ±51.94

57 235.73 ±70.22 4.61 ± 1.43

58 336.27 ±87.49

59 > 20 μΜ

60 > 20 μ

61 2774.49 ±850.38

62 >20 μΜ

63 340.14 ±90.93

64 12412.96

65 >20 μΜ

66 >20 μΜ

67 >20 μΜ

68 799.12 ±98.16

69 19844.43

70 4716.93 ±29.55

71 >20 μΜ Ki (nM)

Ref. No. Opioid Receptor

ORL-1

μ K

72 14756.49

73 >20 μΜ

74 229.98 ±43.79 24.14 ±5.93

75 184.78 ±51.34

76 106.69 ± 1.33

77 4.30 ±0.91

78 17.88 ±4.33

79 3138.90 ±804.72

80 1.19 ±0.32

81 36.57 ±4.94

82 10157.61

83 1.78 ±0.38 0.15 ±0.02

84 269.27 ± 27.74

85 701.28 ±94.11

86 978.95 ±146.23

87 1.21 ±0.24

88 4.74 ± 1.55

89 9.20 ±0.90

90 1.74 ±0.45

91 174.45 ±25.67

92 > 20 μΜ 54.50 ± 17.3 163.50 ±3.83

93 >20 μΜ 3702.00 ±91.40 5353.00 ±540.70

94 >20 μΜ 36.80 ± 12.10 16.80 ±2.51

95 >20 μΜ 1759.00 ±324.20 4602.00 ± 764.20 TABLE 2: Activity Response of Benzomorphan Analog Compounds in HEK-293 or CHO Cells

Figure imgf000225_0001
GTPyS (EC50: nM, E„: %)

Ref. No.

μ K

ECS0 EC50

43 3389.03 ±63.44 24.67 ±3.28 > 20 μΜ

44 718.03 ±249.07 65.00 ±2.52 393.84 ±88.38 17.67 ± 1.20

3845.14 ±

45 17.00 ±3.06

838.61

13356.09 ±

46 36.67 ±3.18

2991.11

8893.34 ±

47 58.67 ±5.24

654.64

5187.29 ±

48 26.00 ±4.16

549.08

49 >20μΜ 31.33 ±5.36

50 189.38 ± 13.68 93.75 ±2.17 > 20 μΜ

51 1.44 ± 0.44 100.40 ±7.22 >20 μΜ

52 1029.16 ±73.07 72.33 ±3.48

1109.86 ±

53 82.67 ± 1.20

209.60

54 > 20 μΜ >20 μΜ

5911.18 ±

55 71.00 ±8.08

422.16

3811.28 ± 2583.28 ±

56 36.67 ±7.22 25.67 ± 1.67

725.51 721.00

57 314.67 ±47.88 111.67 ±7.22 351.43 ± 115.38 85.67 ±3.93

58 750.70 ±43.35 110.00 ±7.55

3443.33 ±

59 76.33 ± 10.17

183.49

6093.08 ±

60 38.33 ±0.88

528.96

5758.65 ±

61 26.67 ± 0.88

1554.16

Figure imgf000227_0001
GTPyS (ECso: nM, Emax: %)

Ref. No.

μ K

EC5o ECSo

88 7.58 ± 1.06 74.67 ± 1.86 24.67 ±5.35 18.50 ±2.84

89 >20 μΜ >20 μΜ

90 5.92 ± 1.82 32.67 ±5.78 >20 μΜ 1.00 ±0.00

2811.03 ±

91 408.78 ± 19.46 89.67 ±5.90 34.67 ±5.93

128.63

92 68.90 ± 16.00 100.50 ±3.12 > 20 μΜ 3.50 ±1.71

3137.00 ±

93 92.00 ±4.30

790.20

94 40.80 ±2.76 85.30 ±4.98 >20μΜ 4.60 ±0.40

2120.00 ±

95 78.00 ±3.06

204.30

128 7.67 ±0.79 53.50 ±3.52 0.35 ±0.15 40.30 ±2.19

TABLE 2Α: Activity Response of Benzomorphan Analog Compounds in U-2 OS

Cells

Figure imgf000228_0001
GTPyS (EC50: nM, Emas: %)

Ref. No.

μ K

EC50 ^max EC5o

39 18.30 ± 1.22 100.70 ±3.76

50 42.00 ± 10.90 86.50 ±4.14 >20 μΜ 9.78 ±2.97

51 0.21 ±0.021 113.00 ±2.65

75 12.70 ± 1.52 103.70 ±2.67

77 29.00 ± 0.86 77.70 ±0.88

78 6.09 ± 0.45 109.30 ±3.28

2198.00 ±

79 49.00 ±3.46

668.50

80 0.20 ±0.013 112.70 ±3.53

82 > 20 μΜ 31.70 ± 5.36

84 83.90 ± 13.30 90.70 ± 1.86

3238.00 ±

85 19.30 ±2.33

770.50

2152.00 ±

86 14.70 ±0.88

210.50

87 2.08 ±0.12 99.30 ±2.03

88 1.67 ± 0.16 85.70 ±2.33

89 >20μΜ 1.17± 1.01

90 7.02 ± 1.89 14.00 ± 1.00

91 377.80 ±61.90 71.30 ± 3.53

92 149.30 ±25.50 97.30 ±3.53 > 20 μΜ 1.00 ±0.00

4559.00 ±

93 80.70 ±4.48 > 20 μΜ 2.00 ±0.00

743.20

94 27.40 ±4.20 85.30 ±5.93 >20 μΜ 0.00

95 1437.00 ±44.70 79.70 ±8.41 >20 μΜ -1.00

96 6.01 ±0.51 32.30 ±0.88 6.41 ± 1.67

97 >20 μΜ 2.50 ±0.00 > 20 μΜ 0.00

98 0.30 ±0.027 103.70 ±3.76 28.60 ±3.21 95.30 ±3.84

99 0.13 ±0.01 71.00 ±2.00 1.44 ±0.053 72.30 ±4.67 GTPyS (EC50: nM, Em„: %)

Ref. No.

μ

ECso EC5o E

1757.00 ±

100 40.00 ±3.25 102.30 ± 1.45 45.00 ±2.08

364.50

1083.00 ±

101 3.73 ±0.21 104.00 ±2.08 66.70 ± 1.20

112.90

102 > 20 μΜ 2.50 ±0.00 > 20 μΜ -1.00

103 116.80 ±2.82 77.50 ± 1.26 287.10 ±62.00 83.00 ±8.02

1260.00 ±

104 51.30 ± 5.26 105.30 ±0.88 79.70 ±5.90

229.00

105 0.22 ±0.052 32.70 ± 1.76 >20 μΜ 1.00

106 >20 μΜ 2.50 >20μ 1.00

107 46.20 ±0.35 58.30 ±0.33 > 20 μΜ 1.00

108 0.39 ±0.11 80.80 ±2.50 3.27 ±0.69 18.80 ± 1.25

109 29.00 ± 1.36 100.30 ± 3.18 191.50 ±41.60 36.70 ±0.67

110 11.60 ± 1.55 92.30 ±2.03 25.40 ±3.38 37.70 ±2.03

111 2.23 ±0.12 64.00 ± 4.00 42.60 ± 7.64 22.70 ±2.33

112 7.56 ±0.45 83.70 ± 1.45 23.40 ±7.81 26.30 ±0.88

113 0.45 ±0.036 68.70 ±3.71 0.052 ±0.013 99.20 ± 1.65

114 152.10 ± 16.80 20.70 ±0.67 18.90 ±2.01 107.00 ±4.36

115 159.30 ± 15.40 37.70 ± 1.67 53.40 ±7.28 76.00 ±6.66

116 3.12 ±0.15 104.30 ±2.96 69.40 ±5.37 56.30 ±3.93

3394.00 ±

117 822.40 ± 93.90 93.70 ±5.36 79.70 ±5.46

439.20

118 1.32 ±0.04 101.00 ± 2.52 90.80 ±7.63 75.20 ±4.33

119 32.20 ±3.26 100.30 ±2.73 382.80 ±21.90 96.70 ±5.36

2938.00 ± 2865.00 ±

120 76.30 ±3.48 62.30 ±4.91

481.00 231.10

121 126.00 ± 15.40 91.70 ±4.18 604.50 ±68.10 18.30 ±0.88

122 0.36 ±0.01 101.70 ± 1.20 15.20 ±2.63 94.50 ±0.65

123 1.85.00 ±0.16 104.00 ±3.06 112.50 ±5.80 74.00 ±3.06

124 14.10 ±0.48 98.00 ±3.06 679.70 ±67.70 77.30 ±4.63 GTPyS (EC50: nM, Emax: %)

Ref. No.

μ K

EC50 E ECso

2620.00 ±

125 70.70 ±2.33 443.40 ±73.20 102.00 ±5.69

396.50

126 146.90 ±9.47 103.30 ±2.40 1465.00 ±91.30 63.70 ±3.93

127 >20 μ 3.67 ± 1.20 947.10 ±68.00 93.00 ±3.51

128 0.18 ±0.069 47.80 ± 1.25 0.74 ±0.13 90.70 ± 1.45

129 9.14 ± 1.19 20.00 ± 1.15 0.78 ±0.070 97.30 ± 1.86

130 373.00 ± 104.60 29.00 ±2.00 22.80 ±3.38 71.00 ±3.11

131 290.00 ±5.32 69.00 ± 1.00 >20 μΜ 0.00

132 3.03 ±0.17 95.30 ±2.60 11.40 ± 1.58 89.00 ±5.69

133 3.90 ±0.74 22.30 ± 1.20 21.70 ± 3.16 42.00 ±4.02

134 1.47 ±0.58 16.00 ±0.71 >20 μΜ 90.00

1700.00 ± 2810.00 ±

135 92.00 ±2.65 22.00 ±2.52

112.20 397.20

2332.00 ± 3835.00 ±

136 62.30 ±3.84 22.30 ±3.71

236.30 540.80

1322.00 ± 3373.00 ± ,

137 50.30 ± 1.76 30.00 ±2.31

177.50 753.00

138 >20 μΜ 45.30 ±2.33 >20 μΜ 35.50 ±2.06

139 12.50 ±2.18 87.00 ±3.08 91.80 ±4.88 48.00 ±5.13

140 0.10 ±0.01 82.00 ±0.91 4.68 ± 0.40 107.20 ±4.40

TABLE 3: Structure of Exemplified Compounds

Figure imgf000232_0001

Figure imgf000233_0001

231

Figure imgf000234_0001

232

Figure imgf000235_0001

Figure imgf000236_0001
Figure imgf000237_0001
Figure imgf000238_0001
Ref. No. Compound

38

39

40

41

42

43

1

Figure imgf000240_0001
Figure imgf000241_0001
Figure imgf000242_0001
Figure imgf000243_0001
Figure imgf000244_0001

Figure imgf000245_0001

Figure imgf000246_0001

IJ44

Figure imgf000247_0001
Figure imgf000248_0001
Figure imgf000249_0001

Figure imgf000250_0001



Figure imgf000251_0001

Figure imgf000252_0001

250

Figure imgf000253_0001

251

Figure imgf000254_0001

252

Figure imgf000255_0001
Figure imgf000256_0001

Figure imgf000257_0001
Ref. No. Compound

Figure imgf000259_0001



Figure imgf000260_0001



Figure imgf000261_0001

Figure imgf000262_0001

260

Figure imgf000263_0001

261

Figure imgf000264_0001

262

Figure imgf000265_0001

The in vitro test results of Tables 1 , 2, and 2A show that representative Compounds of the Invention generally have high binding affinity for opioid receptors, and that these compounds activate these receptors as partial to full agonists.

Compounds of the Invention are therefore expected to be useful to treat Conditions, particularly pain, that are responsive to the activation of one or more opioid receptors.

EXAMPLE 52

4-(3-((6R,115)-3-(cycIopropyImet yl)-8-methoxy-6-methyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[</]azocin-l l-yI)-3-methyIureido)benzamide (Compound 82)

Figure imgf000266_0001

4-isocyanatobenzonitrile (0.4 g, 1 .67 mmol, Aldrich) was added to a solution of Compound 56 (0.5 g, 1 .67 mmol) in CHCI3 (4 mL) at 0 °C. The reaction mixture was warmed to RT, and stirred at RT for 24 h. The reaction was quenched with 2 mL of water and 0.2 mL of cone. NH4OH, and extracted with CHC13. The CHCI3 layer was separated, concentrated, and purified by flash chromatography (Si02, 10% CHCl3/hexanes) to give Compound Yao-82 as a colorless oil (0.6 g, 81 %).

LC/MS, m/z = 445.4 [M + H]+ (Calc: 444.6). A mixture of Compound Yao-82 (50 mg, 0.09 mmol) and bis(dimethyloxidophosphoranyl) (hydroxydimethylphosphoranyl)platinum(Vl) hydride (5 mg, STRE CHEM. Inc.) in 1 mL of EtOH/water (3/1) was shaken at 85 °C for 3 h. The reaction was quenched with water, and extracted with CHC13. The CHC13 layer was separated, concentrated, and purified by reverse-phase prep HPLC (C I 8, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 82 as a TFA-salt (white solid, 15 mg, 36%).

Ή NMR δΗ (400 MHz, CD3OD) 7.87 (d, J = 8.0 Hz, 2H) 6.98 (d, J = 8.8 Hz, l H), 6.71 (d, J = 2.8 Hz, 1 H), 6.62 (dd, J = 2.8 and 7.6 Hz, 1 H), 4.24 (d, J = 5.6 Hz, 1 H), 3.27 - 3.40 (m, 1 H), 3.23 (s, 3H), 3.00 - 3.1 1 (m, 1 H), 2.62 - 2.70 (m, l H), 2.28 - 2.37 (m, 1 H), 1 .47 (s, 3H), 1 .44 (d, J = 14.8 Hz, 1 H), 1.04 - 1.1 3 (m, 1 H), 0.66 - 0.71 (m, 2H), 0.38 - 0.44 (m, 2H).

LC/MS, m/z = 43 1 .3 [M + H]+ (Calc: 430.5). EXAMPLE 53

4-((2R,6R,llS)-ll-(3-(4-cyanophenyl)-l-methylureido)-8-hydroxy-6-methyl- l,2,5,6-tetrahydro-2,6-methanobenzo[i/jazocin-3(4H)-yl)-iV,iV-dimethyl-2,2- diphenylbutanamide (Compound 84)

Figure imgf000267_0001

(84)

4-isocyanatobenzonitrile (0.40 g, 2.8 mmol) was added to a solution of Compound RA22 (0.8 g, 2.53 mmol) in CHC13 (4 mL) at 0 °C. The reaction mixture was warmed to RT, and stirred at RT for 24 h. The reaction was quenched with 2 mL of water and 0.2 mL of cone. NH4OH, and extracted with CHC13. The CHCI3 layer was separated, concentrated, and purified by flash chromatography (Si02, 10% CHCI3/hexanes) to give Compound Yao-84 as an orange solid (0.85 g, 73%).

LC/MS, m/z = 461 .3 [M + H]+ (Calc: 460.5). mCPBA (80 mg, 85%) was added to a solution of Compound Yao-084 (0.20 g, 0.43 mmol) in CHC13 (4 mL) at 0 °C. After 10 min, 30 μΐ of HC1 (5N) and 100 mg of iron powder were added. The reaction mixture was warmed to RT, and stirred at RT for 16 h. The reaction was filtered through a layer of Na2S04, then quenched with water and extracted with CHCI3. The CHCI3 layer was washed with saturated aq. sodium sulfite ( 1 mL), and concentrated to give the crude product Compound Yao-85 (0.20 g).

LC/MS, m/z = 447.2 [M + H]+ (Calc: 446.5). Dihydro-N,N-dimethyl-3,3-diphenyl-2(3H)-furaniminium bromide (60 mg, 0. 1 7 mmol) was added to a solution of Compound Yao-085 (0. 1 5 g, 0.34 mmol) in DCM ( 15 mL) and TEA (30 μί) at 0 °C. The reaction mixture was warmed to 36 °C, and shaken at 36 °C for 2 h. The reaction was quenched with 1 mL of water and 1 mL of saturated NaHC03. The organic layer was separated, and concentrated under vacuum. The residue was re-dissolved in 2 mL of MeOH, then 0.1 mL of NaOH (2N) was added. The mixture was shaken at 36 °C for 2 h. The reaction mixture was concentrated under vacuum, and purified by reverse-phase prep HPLC (C I 8, 0- 100% 0. 1 % TFA in water/0. 1 % TFA in ACN) to yield Compound 84 as a TFA-salt (white solid, 1 5 mg).

1 H NMR δΗ (400 MHz, CD3OD) 7.52 - 7.60 (m, 4H), 7.28 - 7.42 (m, 1 OH), 6.88 (d, J = 8.8 Hz, 1 H), 6.71 (s, 1 H), 6.59. (d, J = 7.6 Hz, 1 H), 4.52 (s, 0.8H), 4.34 (s, 0.2H, diasteroisomers of TFA-salt), 3.49 (br, 1 H), 2.90 - 3.10 (m, 6H), 2.82 - 2.84 (m, 2H), 2.58 - 2.71 (m, 4H), 2.35 - 2.48 (m, 2H), 2.25 (s, 3H), 2.00 - 2.08 (m, 1 H), 1 .58 (d, J = 1 5.6 Hz), 1 .41 (s, 2.4H), 1 .36 (3, 0.6H).

LC/MS, m/z = 642.3 [M + H]+ (Calc: 641 .8).

In a similar manner the following compounds were prepared.

3-(4-cyanophenyl)-l-((2R,6R,llS)-8-hydroxy-6-methyl-3-phenethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i^azocin-ll-yl)-l-methylurea (Compound 87)

Ή NMR δΗ (400 MHz, CD3OD) 7.55 - 7.60 (m, 4H), 7.1 8 - 7.28 (m, 5H), 7.02 (d, J = 8.8 Hz, 1 H), 6.7 1 (s, 1 H), 6.64 (d, J = 7.6 Hz, l H), 4.75 (s, 0.2H), 4.59 (s, 0.8H, diasteroisomers of TFA-salt), 3.94 (s, 1 H), 3.23 - 3.59 (m, 3H), 2.92 - 3.14 (m, 4H), 2.62 - 2.73 (m, 4H), 1 .91 - 2.08 (m, 1 H), 1 .64 (d, J = 12.4 Hz, 1 H), 1.46 (s, 3H).

LC/MS, m/z = 48 1 .2 [M + H]+ (Calc: 480.6). 3-(4-cyanophenyl)-l-((6R,llJR)-3-(cyclobutylmethyl)-8-hydroxy-6-methyl- l,2,3,4,5,6-hexahydro-2,6-methanobenzo[rf]azocin-l l-yl)-l-methylurea

(Compound 88)

Ή NMR δΗ (400 MHz, CD3OD) 7.52 - 7.60 (m, 4H), 6.95 - 7.02 (m, 2H), 6.74 (d, J = 2.8 Hz, 1 H), 6.64 (dd, J = 2.8 and 8.8 Hz, 1 H), 4.54 (s, 1 H), 3.74 (s, 1 H), 3.56 - 3.58 (m, 1 H), 3.44 - 3.47 (m, 1H), 3.22 - 3.28 (m, 1 H). 3.05 - 3. 13 (m, 1 H), 2.92 - 3.04 (m, 2H), 2.58 - 2.73 (m, 5H), 1 .73 - 2.18 (m, 7H), 1 .43 - 1.61 (m, 4H).

LC/MS, m/z = 445.2 [M + H]+ (Caic: 444.6). 3-(4-cyanophenyl)-l-((6R,llR)-3-(2,3-difluorobenzyI)-8-hydroxy-6-methyl- l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i/]azocin-l l-yl)-l-niethylurea

(Compound 89)

Ή NMR δΗ (400 MHz, CD3OD) 7.50 - 7.57 (m, 4H), 7.30 - 7.39 (m, 2H), 7.16 - 7.24 (m, 1 H), 7.00 - 7.08 (m, l H), 6.77 (d, J = 3.2 Hz, 1 H), 6.64 (dd, J = 2.4 and 8.8 Hz, I H), 4.50 - 4.56 (m, 2H), 3.84 - 3.91 (m, 1 H), 3.56 - 3.58 (m, 1 H), 3.44 - 3.47 (m, I H), 3.05 - 3.19 (m, 2H), 2.76 - 2.85 (m, 1 H), 2.68 (s, 3H), 1 .98 - 2.1 1 (m, 1 H), 1.62 (d, J = 12.4 Hz, 1 H), 1 .44 (s, 3H).

LC/MS, m/z = 503.3 [M + H]+ (Calc: 502.6). 3-(4-cyanophenyl)-l-((27i,67f,llS)-3-(furan-3-ylmethyl)-8-hydroxy-6-methyl- l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i Jazocin-ll-yl)-l-methyIurea

(Compound 90)

Ή NMR δΗ (400 MHz, CD3OD) 7.67 - 7.73 (m, 4H), 7.58 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 9.2 Hz, 1 H), 6.73 (d, J = 2.4 Hz, 1 H), 6.63 (dd, J = 2.8 and 8.4 Hz, 1 H), 6. 1 (s, 1 H), 4.23 (br, 1 H), 3.46 - 3.56 (m, 3H), 3.05 - 3. 12 (m, 2H), 2.67 (s, 3H), 2.46 - 2.52 (m, 1 H), 1 .85 - 2.05 (m, 2H), 1 .38 (s, 3H), 1 .3 1 (d, J = 12.4 Hz, 1 H).

LC/MS, m/z = 457.2 [M + H]+ (Calc: 456.5). EXAMPLE 54

S-^^l lSi-S-hydroxy-S^-dimethyl-l^^^^^-hexahydro^^- methanobenzo[rf]azocin-ll-yl)-3,4-dihydroquinazolin-2(lH)-one (Compound 91)

Figure imgf000270_0001

Figure imgf000270_0002

<91>

A mixture of Compound RA1 (0.36 g, 1 .47 mmol), (2-nitrophenyl)methanamine, HCl

(Compound Yao-96, 0.48 g, 2.5 mmol), TEA (0.4 g, 4 mmol) and Na2S04 (0.5 g) in 4 mL of ACN was shaken at 40 °C for 16 h, then added NaBH(OAc)3 (0.6 g, 2.9 mmol).

The reaction mixture was shaken at RT for 2 h. The reaction was quenched with water (3 mL), and extracted with 20 mL of CHC13. The organic layer was washed with IN NaOH (6 mL), and concentrated to give an oil, which was dissolved in MeOH (50 mL) and AcOH (2 mL). The MeOH/AcOH solution was passed through H-cube (5 atm, 7.5mL/min, Pd/C 10%) at RT for 1 h. The solvent was removed under vacuum. The residue was dissolved in CHC13 (50 mL), cooled with ice-water, and nutralized to pH ~ 9 with 2N NaOH. The CHC13 layer was dried over Na2S04, and filtered to afford crude Compound Yao-97 in chloroform (~ 50 mL).

LC/MS, m z = 352.4 [M + H]+ (Calc: 35 1.5). Triphosgene (0.75 g in 5 mL of CHC13) was added to a solution of the crude Compound Yao-97 (in 50 mL of CHCI3 and 0.5 mL of TEA at 0 °C. The reaction mixture was warmed to T over 2 h. The reaction was quenched with with water at 0 °C, and nutralized with ITS NaOH. The organic layer was concentrated and purified by flash chromatography (Si02, 5% MeOH/DCM) to give Compound Yao-98 (120 mg) and Compound Yao-99 (55 mg). The structures of Compound Yao-98 and Compound Yao-99 were confirmed by 2D NMR.

Compound Yao-098:

1 H NMR δΗ (400 MHz, CD3OD) 7. 14 (d, J = 8.4 Hz, 1 H), 7.04 (dd, J = 7.0 and 8.4 Hz, 1 H), 6.88 (d, J = 2.8 Hz, 1 H), 6.85 (dd, J = 2.8 and 8.8 Hz, l H), 6.74 - 6.78 (m, 1 H), 6.71 (d, J = 8.0 Hz, 1 H), 6.53 (d, J = 6.8 Hz, l H), 4.56 (s, 1 H), 3.86 - 3.98 (m, 3H), 3.75 (s, 3H), 3.44 - 3.58 (m, 1 H), 3.30 (d, J = 19.8 Hz, 1 H), 3.10 - 3.1 5 (m, 3H), 2.87 (s, 3H), 2.60 - 2.66 (m, 1 H), 1 .97 - 2.06 (m, 1 H), 1 .66 (d, j = 14.8 Hz, 1 H), 1.42 (s, 3H).

BBr3 (1 M in DCM, 2 mL, 2 mmol) was added to a solution of Compound Yao-098 (0.10 g, 0.26 mmol) in DCM (4 mL) at -78 °C. After 2 h at -78 °C, the reaction mixture was warmed to 0 °C for 30 min. The reaction was quenched with water (2 mL), nutralized with saturated aq. NaHC03. The organic layer was separated, and purified by reverse-phase prep HPLC (C 18, 0- 100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 91 as a TFA-salt (white solid, 25 mg).

Ή NMR 5H (400 MHz, CD3OD) 7.03 - 7.07 (m, 2H), 6.75 - 6.79 (m, 2H), 6.71 (d, J = 8.0 Hz, 2H), 6.55 (d, J = 7.6 Hz, l H), 4.53 (s, 1 H), 3.82 - 4.00 (m, 4H), 3.04 - 3.14 (m, 2H), 2.55 (s, 3H), 2.60 - 2.66 (m, l H), 1.97 - 2.03 (m, 1 H), 1 .63 (d, J = 14.8 Hz, 1 H), 1.38 (s, 3H).

LC/MS, m/z = 364.2 [M + H]+ (Calc: 363.4). EXAMPLE 55

(Z)-7V-((2i?,6R,ll-S -3-(cyclopropylmethyl)-8-methoxy-6-methyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/Jazocin-ll-yl)-3-(furan-3-yl)-N-methyIacrylaniide

(Compound 86)

Figure imgf000272_0001

A solution of Compound 85 (50 mg, 0.12 mmol) in 16 mL of MeOH/water (7/1) was stirred under ambient fluorescent light in a Quartz flask at RT for 24 h. After the solvent was removed under vacuum, the residue was purified by reverse-phase prep HPLC (CI 8, 0-100% 0.1 % TFA in water/0.1 % TFA in ACN) to yield Compound 86 as a TFA-salt (white solid, 25 mg).

Ή NMR δΗ (400 MHz, CD3OD) 7.79 (s, 1H), 7.44 (s, 1H), 7.08 (d, J = 7.8 Hz, IH), 6.82 (d, J = 3.6 Hz, IH), 6.79 (dd, J = 3.2 and 9.2 Hz, 1H), 6.65 (d, 1H, J = 12.4 Hz, IH), 6.61 (s, IH), 6.15 (d, J = 12.4 Hz, IH), 4.31 (s, IH), 3.90 (s, IH), 3.38 (s, 3H), 3.07 - 3.18 (m, 5H), 2.61 - 2.68 (m, 1 H), 2.28 - 2.37 (m, 1 H), 1.54 (d, J = 15.2 Hz, IH), 1.49 (s, 3H), 1.01 -1.13 (m, IH), 0.62-0.73 (m, 2H), 0.35-0.41 (m, 2H).

LC/MS, m/z = 421.2 [M + H]+ (Calc: 420.5).

EXAMPLE 56

Resolution of racemic intermediates by chiral column chromatography.

Figure imgf000272_0002
Chiral chromatography was performed on racemic Compound RA11 using a RegisPack 5 column (250 mm x 50 mm x 5 μνη) eluting with 20:80 EtOH/C02 to afford optically pure Compound RG-1 and Compound RG-2. In a similar manner the following compounds were isolated by chiral column chromatography.

Figure imgf000273_0001
(2R,65)-8-methoxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i Jazocin-ll-one (Compound RG-3)

LC/MS, w/z = 246.1 [M + H]+ (Calc: 245.3).

(2S,6R)-8-methoxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i ]azocin-ll-one (Compound RG-4)

LC/MS, w/z = 246.1 [M + H]+ (Calc: 245.3).

4-(2-(((2JR,65,l lJR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i Jazocin-ll-yl)amino)ethyl)benzenesulfonamide (Compound 92) Ή NMR δΗ (400 MHz, DMSO-d6) 8.85 (s, I H, -OH), 7.62 (d, J=8.4 Hz, 2H), 7.30 (d, J=8.4 Hz, 2H), 7.19 (s, 2H, -NH2), 6.76 (d, J=8.4 Hz, I H), 6.50 (d, J=2.4 Hz, IH), 6.41 (dd, J=8. 1 , 2.4 Hz, I H), 2.94-3.04 (m, I H), 2.77-2.91 (m, I H), 2.56-2.76 (m, 4H), 2.44-2.54 (m, 2H), 2.09-2.32 (m, 4H), 1.82 (td, J=11.9, 2.8 Hz, IH), 1.64 (td, J=12.5, 4.7 Hz, IH), 1.23 (s,3H), 1.12 (d, J=12.1 Hz, 1 H), 0.99 (br. s., 1 H).

LC/MS, m/z = 416.1 [M + H]+(Calc: 415.6). 4-(2-(((25,6/f,ll^)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i)azocin-U-yl)amino)ethyI)benzenesulfonamide (Compound 93)

'H MR δΗ (400 MHz, DMSO-d6) 8.86 (s, IH), 7.62 (d, J=8.4 Hz, 2H), 7.30 (d, J=8.1 Hz, 2H), 7.19 (s, 2H), 6.76 (d, J=8.1 Hz, IH), 6.50 (d, .1=2.4 Hz, IH), 6.42 (dd, J=8.1, 2.4 Hz, IH), 3.00 (br., I H), 2.76-2.90 (m, IH), 2.46-2.75 (m, 6H), 2.21 (br. s., 4H), 1.83 (t, J=10.8 Hz, IH), 1.64 (td, J=12.5, 4.4 Hz, IH), 1.24 (s,3H), 1.13 (d, J=11.9Hz, IH), 0.99 (br. s., IH).

LC/MS, m/z = 416.2 [M + H]+(Calc: 415.6).

4-(2-(((2f,6S,115 -8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[iJazocin-ll-yl)amino)ethyl)benzenesulfonamide (Compound 94)

Ή NMR δΗ (400 MHz, DMSO-d6) 8.88 (s, IH), 7.66 (d, J=8.4 Hz, 2H), 7.37 (d, J=8.4 Hz, 2H), 7.20 (s, 2H), 6.79 (d, J=8.1 Hz, IH), 6.59 (d, J=2.4 Hz, IH), 6.38-6.50 (m, IH), 2.86-3.16 (m, 3H), 2.73 (d, J=7.3 Hz, 3H), 2.45-2.58 (m, IH), 2.31 (br. s., IH), 2.09-2.20 (m,4H), 1.61-1.98 (m, 3H), 1.22 (s, 3H), 0.84 (d,J=11.7 Hz, IH).

LC/MS, m/z = 416.2 [M + H]+ (Calc: 415.6).

4-(2-(((2S,6i?,llR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i|azocin-ll-yl)amino)ethyl)benzenesulfonamide (Compound 95)

Ή NMR δΗ (400 MHz, DMSO-d6) 8.96 (s, 1 H), 7.73 (d, J=8.4 Hz, 2H), 7.44 (d, J=8.4 Hz, 2H), 7.27 (s, 2H), 6.86 (d, J=8.4 Hz, IH), 6.66 (d, J=2.4 Hz, IH), 6.51 (dd, J=8.1, 2.4 Hz, IH), 2.95-3.21 (m, 3H), 2.66-2.89 (m, 3H), 2.58 (dd, J=17.8, 5.7 Hz, IH), 2.38 (br. s., IH), 2.11-2.27 (m, 4H), 1.69-2.01 (m, 3H), 1.29 (s, 3H), 0.92 (d, J=ll.9 Hz, IH).

LC/MS, m/z = 416.2 [M + H]+ (Calc: 415.6). EXAMPLE 57

(2R,6S,llS)-3-(cyclopropylmethyl)-8-methoxy-6-methyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[< ]azocin-l l-amine (Compound RG-5) and (2R,6S,115)-3- (cyclopropylmethyl)-8-methoxy-6-methyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i /azocin-ll-amine (Compound RG-6)

Figure imgf000275_0001

RG-1 RG-5 RG-6 A mixture of Compound RG-1 (0.942 g, 3.30 mmol), sodium acetate (0.54 g, 6.59 mmol) and hydroxylamine hydrochloride (0.46 g, 6.59 mmol) in EtOH ( 10 mL) was heated at 45 °C for 16 h. The mixture was concentrated and then quenched by the addition of water (15 mL). The mixture was extracted with EtOAc (40 mL) and the organic extracts concentrated to give the crude oxime as a sticky solid, which was used directly in the next step.

The crude oxime was dissolved in MeOH (200 mL) and hydrogenated over Ra-Ni at 40 atm and 40 °C for 4 h. The mixture was filtered and the filtrate concentrated to give a residue that was purified by flash chromatography (Si02, 10% (10% NH4OH in MeOH) in DCM) to give Compound RG-5 as a colorless oil (0.30 g, 32%) and Compound RG-6 as a colorless oil (0.25 g, 27%).

(2 ?,65',l lS)-3-(cyclopropylmethyl)-8-methoxy-6-methyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i |azocin-ll-amine (Compound RG-5)

LC/MS, m/z = 287.4 [M + H]+ (Calc: 286.4). (2R,6S,llS)-3-(cyclopropylmethyl)-8-methoxy-6-methyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i /azocin-ll-amine(2R,6S,llS)-3-(cyclopropylmethyl)-8- methoxy-6-methyl-l,2,3,4,5,6-hexahydro-2,6-niethanobenzo[< /azocin-l l-aniine (Compound RG-6)

LC/MS, m/z = 287.4 [M + H]+ (Calc: 286.4). EXAMPLE 58

(2 ?,65',115)-3-(cyclopropyImethyl)-8-methoxy-iV,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[ /]azocin-ll-amine (Compound RG-7) and (2/?,65',115)-3-(cyclopropylmethyl)-8-methoxy-N,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[rf]azocin-ll-amine (Compound RG-8)

Figure imgf000276_0001

RG-1 RG-7 RG-8

Chiral ketone Compound RG-1 was converted to chiral amines Compound RG-7 and Compound RG-8 according to the same procedure described in Example 41 for racemic Compound RAI L

(2/f,6S,115)-3-(cyclopropylmethyl)-8-methoxy-A^,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i Jazocin-ll-amine (Compound RG-7)

LC/MS, m/z = 301 .4 [M + H]+ (Calc: 300.4).

(2i?,65,115)-3-(cyclopropylmethyl)-8-methoxy-N,6-dimethyl-l,2,3,4,5,6- hexa ydro-2,6-methanobenzo[i/]azocin-ll-amine (Compound RG-8)

LC/MS, m/z = 301.4 [M + H]+ (Calc: 300.4).

EXAMPLE 59 4-(2-(((2«',6S,ll/f)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i ]azocin-ll-yl)amino)ethyl)benzenesulfonamide (Compound 96) and 4-(2-(((2R,6S,llS)-3-(cyclopropylmethyI)-8-hydroxy-6- methyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i/jazocin-l l- yl)amino)ethyl)benzenesulfonamide (Compound 97)

Figure imgf000277_0001
NH2

A mixture of Compound RG-1 (0.50 g, 1 .65 mmol), Compound RG-9 (0.50 g, 2.47 mmol) and pTSA (0.03 g) in toluene (40 mL) was heated to reflux for 4 h and concentrated to give a brown oil. To this oil was added ACN (20 mL) followed by NaBH(OAc)3 (1 .05 g, 4.94 mmol). The reaction mixture was stirred at T for 24 h, MeOH ( 1 mL) was added and the mixture concentrated. Water (10 mL) and EtOAc (100 mL) were added and the pH adjusted to ca 9 with cone. NH4OH. The layers were separated and the organic layer was concentrated and purified by flash chromatography (Si02, 10% (10% NH4OH in MeOH) in DCM) to give the product as a mixture of isomers.

This material was dissolved in DCM (4 mL), cooled to -78 °C and 1 M BBr3 in DCM (2.0 mL, 2.0 mmol) was added. The mixture was stirred at -78 °C for 1 h allowed to warm to 0 °C and stirred an additional 30 min. The reaction was quenched by the addition of water (2 mL) and the pH adjusted to ca 8 with cone. NH4OH. The layers were separated, the organic layer was concentrated and purified by flash chromatography (Si02, 10% ( 10% NH4OH in MeOH) in DCM) to give Compound 96 as a white solid (0.020 g, 3%) and Compound 97 as a white solid (0.050 g, 7%). 4-(2-(((2R,65,llR)-3-(cycIopropylmethyl)-8-hydroxy-6-methyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[<|azocin-ll-yI)amino)ethyl)benzenesulfonamide (Compound 96)

Ή NMR δΗ (400 MHz, CD3OD) 7.77 (d, J = 8.36 Hz, 2H), 7.40 (d, J = 7.92 Hz, 2H), 7.01 (d, J = 7.92 Hz, IH), 6.70 - 6.76 (m, 2H), 3.18 - 3.52 (m, 6H), 2.84 - 3.04 (m, 4H), 1.98 -2.03 (m, IH), 1.60- 1.64 (m, IH), 1.53 (s, 3H), 1.04 - 1.12 (m, IH), 0.62 - 0.69 (m, 2H), 0.36 - 0.41 (m, 2H).

LC/MS, m/z = 456.1 [M + H]+ (Calc: 455.6). 4-(2-(((2JR,65,115)-3-(cyclopropyImethyl)-8-hydroxy-6-methyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-ll-yl)amino)ethyl)benzenesulfonamide (Compound 97)

Ή NMR δΗ (400 MHz, DMSO-d6) 8.90 (s, IH), 7.67 (d, J=8.1 Hz, 2H), 7.39 (d, J=8.4 Hz, 2H), 7.21 (s, 2H), 6.79 (d, J=8.4 Hz, IH), 6.61 (d, J=2.4 Hz, IH), 6.45 (dd, J=8.1, 2.4 Hz, IH), 2.88-3.08 (m, 2H), 2.62-2.84 (m, 3H), 2.53 (dd, J= 17.9, 5.8 Hz, IH), 2.29-2.40 (m, 2H), 2.21 (ddt, J=19.5, 12.8, 6.4 Hz, 2H), 1.91-2.05 (m, IH), 1.66-1.89 (m, 2H), 1.25 (s, 3H), 0.87 (d, J=l2.l Hz, IH), 0.52-0.69 (m, IH), 0.28-0.47 (m, 2H), - 0.15-0.10(m,2H).

LC/MS, m/z = 456.1 [M + H]+ (Calc: 455.6).

In a similar manner the following chiral compounds were prepared from appropriate chiral ketones.

Figure imgf000278_0001

Figure imgf000279_0001

(2R,65,llR)-ll-((3,4-dichlorophenethyl)amino)-3,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[<]azocin-8-ol (Compound 98)

Ή NMR δΗ (400 MHz, CD3OD) 7.22-7.33 (m, 2H), 7.01 (dd, J=8.1, 1.8 Hz, IH), 6.77 (d, J=8.1 Hz, IH), 6.56 (d, J=2.2 Hz, IH), 6.47 (dd, J=8.3, 2.3 Hz, IH), 3.11 (br. s., IH), 2.79-2.93 (m, 2H), 2.70-2.77 (m, IH), 2.62 (d, J=3.5 Hz, 4H), 2.32 (s, 3H), 2.23- 2.31 (m, IH), 1.96-2.08 (m, IH), 1.73 (td, J=12.9, 4.7 Hz, IH), 1.28 (s, 3H), 1.18-1.26 (m, IH).

LC/MS, w/z = 405.1/407.1 [M/M + 2]+ (Calc: 405.4). (2R,6 ,llS)-ll-((3,4-dichlorophenethyl)amino)-3,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocin-8-ol (Compound 99)

Ή NMR δΗ (400 MHz, CD3OD) 7.36 (s, 1 H), 7.31 (d, J=8.3 Hz, IH), 7.10 (dd, J=8.3, 1.9 Hz, H), 6.80 (d, J=8.4 Hz, IH), 6.64 (d, J=2.4 Hz, IH), 6.45 (dd, J=8.3, 2.5 Hz, IH), 3.03-3.18 (m, 2H), 2.90-3.00 (m, IH), 2.54-2.75 (m, 4H), 2.42 (br. s., IH), 2.19- 2.27 (m, 4H), 1.90-2.00 (m, IH), 1.81 (td, J=12.9, 4.6 Hz, IH), 1.25 (s, 3H), 0.97 (d, J=12.8 Hz, IH).

LC/MS, w/z = 405.1/407.1 [M/M + 2]+ (Calc: 405.4).

(2R,65,ll/f)-ll-((4-methoxyphenethyl)amino)-3,6-dimethyI-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-8-ol (Compound 100)

Ή NMR 5H (400 MHz, CD3OD) 6.96 (d, J=8.6 Hz, 2H), 6.76 (d, J=8.1 Hz, IH), 6.69 (d, .1=8.6 Hz, 2H), 6.54 (d, J=2.6 Hz, IH), 6.43-6.50 (m, IH), 3.65 (s, 3H), 2.99-3.16 (m, 1 H), 2.39-2.92 (m, 7H), 2.22 - 2.35 (m, 4H), 1.89-2.11 (m, 1 H), 1.72 (d, J=4.8 Hz, IH), 1.10-1.33 (m,4H).

LC/MS, m/z = 367.2 [M + H]+ (Calc: 366.5).

(2f,6S,llR)-ll-((4-fluorophenethyl)amino)-3,6-dimethyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[</]azocin-8-ol (Compound 101)

Ή NMR δΗ (400 MHz, CD3OD) 7.17 (dd, J=8.6, 5.5 Hz, 2H), 7.00 (d, J=8.4 Hz, IH), 6.94 (t, J=8.8 Hz, 2H), 6.72 (d, J=2.4 Hz, IH), 6.67 (dd, J=8.4, 2.4 Hz, IH), 4.07 (br. s., IH), 3.47 (br. s., IH), 3.05-3.20 (m, 5H), 2.85-2.97 (m, 4H), 2.65 - 2.8 (m, 2H), 1.94-2.11 (m, IH), 1.58-1.70 (m, IH), 1.52 (s, 3H).

LC/MS, m/z = 355.2 [M + H]+ (Calc: 354.5).

(2if,65',ll^-3-(cyclopropylmethyl)-6-methyl-ll-((piperidin-4-ylmethyl)amino)- l,2,3,4,5,6-hexahydro-2,6-methanobenzoli/]azocin-8-ol (Compound 102)

Ή NMR 8H (400 MHz, CD3OD) 7.04 (d, J=8.4 Hz, IH), 6.85 (d, J=2.4 Hz, IH), 6.69 (dd, J=8.4, 2.4 Hz, IH), 4.20 (br. s., IH), 3.32-3.51 (m, 3H), 3.27 (br. s., IH), 2.93- 3.11 (m,4H), 2.85 (dd, J=13.4, 8.1 Hz, IH), 2.75 (d, J=5.3 Hz, IH), 2.56-2.71 (m, 2H), 2.24 (br., 2H), 1.97-2.09 (m, IH), 1.79-1.95 (m, IH), 1.49-1.57 (m, 3H), 1.34-1.48 (m, 3H), 1.05-1.19 (m, IH), 0.81 (d, J-4.2 Hz, IH), 0.72 (br. s., IH), 0.40-0.58 (m, 2H). LC/MS, m/z = 370.4 [M + H]+ (Calc: 369.5). (2R,6S,115)-3,6-dimethyl-ll-((2-(pyridin-4-yl)ethyl)amino)-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i]azocin-8-ol (Compound 103)

Ή NMR 5H (400 MHz, CD3OD) 8.78 (d, J=5.7 Hz, 2H), 8.03 (d, J=6.4 Hz, 2H), 7.08 (d, J=8.4 Hz, IH), 6.87 (d, J=2.4 Hz, IH), 6.72 (dd, J=8.3, 2.3 Hz, IH), 3.87-3.96 (m, IH), 3.35 - 3.41 (m, IH), 3.20 - 3.25 (m, 4H), 3.07-3.16 (m, 3H), 2.91 (s, 3H), 2.65- 2.76 (m, I H), 2.23-2.39 (m, l'H), 1.50 (s,3H), 1.44 (d, J=I2.8 Hz, IH).

LC/MS, m/z = 338.3 [M + H]+ (Calc: 337.5).

(2if,6S,lli?)-3,6-dimethyl-ll-((2-(thiophen-2-yl)ethyl)amino)-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[rf]azocin-8-ol (Compound 104)

Ή NMR δΗ (400 MHz, CD3OD) 7.15 (d, J=5.2 Hz, IH), 6.98 (d, J=8.4 Hz, IH), 6.84 (d, J=8.5 Hz, IH), 6.80 (s, IH), 6.70 (s, IH), 6.65 (d, J=8.5 Hz, IH), 4.02 (d, J=2.9 Hz, IH), 3.35 (br. s., IH), 2.98-3.17 (m, 7H), 2.90 (s, 3H), 2.64 (br. s., IH), 1.89-2.10 (m, IH), 1.61 (d,J=13.4 Hz, IH), 1.49 (s, 3H).

LC/MS, m/z = 343.2 [M + H]+ (Calc: 342.5).

(2R,6S,llS)-ll-((4-(½rt-butyl)phenethyl)amino)-3,6-dimethyl-l,2 ,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocin-8-ol (Compound 105)

Ή NMR δΗ (400 MHz, CD3OD) 7.20-7.24 (m, J=8.1 Hz, 2H), 7.05-7.09 (m, J=8.1 Hz, 2H), 6.79 (d, J=8.4 Hz, 1 H), 6.64 (d, J=2.4 Hz, 1 H), 6.46 (dd, J=8.4, 2.4 Hz, 1 H), 3.07 (d, J=18.0 Hz, IH), 2.99 (br. s., IH), 2.86-2.95 (m, IH), 2.63-2.77 (m, 3H), 2.56 (dd, J=17.9, 5.4 Hz, IH), 2.43 (br. s., IH), 2.15-2.26 (m, 4H), 1.79-2.01 (m, 2H), 1.26 (s, 3H), 1.20 (s, 9H), 0.97 (d, J=12.5 Hz, IH).

LC/MS, m/z = 393.3 [M + H]+ (Calc: 392.6). tert-butyl 4-((((2if,65,115)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[iIazocin-ll-yl)amino)methyl)piperidine-l-carboxyIate

(Compound 106)

Ή NMR δΗ (400 MHz, CD3OD) 6.94 (d, J=8.4 Hz, IH), 6.74 (d, J=2.4 Hz, IH), 6.59 (dd, J=8.3, 2.5 Hz, IH), 4.01 (d, J=13.4 Hz, 2H), 3.66 (d, J=4.6 Hz, IH), 3.26 (s, IH), 3.13 (d, J=6.2 Hz, IH), 2.85-2.95 (m, 2H), 2.74 (s, 3H), 2.49-2.71 (m, 5H), 2.14 (td, J=13.9, 5.1 Hz, IH), 1.60-1.88 (m, 3H), 1.41 (s, 3H), 1.35 (s, 9H), 1.31 (d, J= 13.0 Hz,

I H), 0.96- 1.13 (m,2H).

LC/MS, m/z = 430.2 [M + H]+ (Calc: 429.6). ier/-butyI4-((((2R,6S,llR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<Jazocin-ll-yl)amino)methyI)piperidine-l-carboxylate

(Compound 107)

Ή NMR δΗ (400 MHz, CD3OD) 7.00 (d, J=8.6 Hz, IH), 6.71 (d, J=2.4 Hz, IH), 6.66 (dd, J=8.4, 2.4 Hz, IH), 3.91-4.07 (m, 3H), 3.34 (br. s., IH), 3.18 (br. s., IH), 3.10 (d, J=10.1 Hz, IH), 2.91 (s, 3H), 2.58-2.84 (m, 5H), 1.95-2.11 (m, 1 H), 1.58-1.79 (m, 4H), 1.53 (s, 3H), 1.3-1.36 (m, 1 OH), 0.92-1.10 (m, 2H).

LC/MS, m/z = 430.4 [M + H]+ (Calc: 429.6). tert-but l 4-((((2R,65,llR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-ll-yl)(methyl)amino)methyl)piperidine-l-carboxylate (Compound 108)

Ή NMR δΗ (400 MHz, CDC13) 6.82 (d, J=8.4 Hz, IH), 6.65 (d, J=2.4 Hz, IH), 6.51 (dd, J=8.1, 2.4 Hz, IH), 3.95 (br. s., 2H), 3.08 (dd, J=5.4, 2.3 Hz, IH), 3.00 (d, J=18.5 Hz, IH), 2.69-2.75 (m, IH), 2.45-2.64 (m, 3H), 2.24 -2.37 (m, 6H), 1.90-2.06 (m, 4H), 1.79 (td, J=12.7, 5.1 Hz, 2H), 1.44 - 1.67 (m, IH), 1.34-1.39 (m, 12H), 1.06-1.29 (m, 2H), 0.75-0.94 (m, 2H).

LC/MS, m/z = 444.3 [M + H]+ (Calc: 443.6).

4-(2-(((2^,6S,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-ll-yl)(methyl)amino)ethyl)benzenesulfonamide

(Compound 109)

Ή NMR δΗ (400 MHz, CD3OD) 7.75-7.79 (m, J=8.4 Hz, 2H), 7.36-7.40 (m, J=8.4 Hz, 2H), 6.90 (d, J=8.4 Hz, IH), 6.70 (d, J=2.4 Hz, IH), 6.57 (dd, J=8.4, 2.4 Hz, IH), 3.65 (d, J=5.1 Hz, IH), 3.23-3.44 (m, 4H), 3.03-3.11 (m, 5H), 2.86 (dd, J=18.4, 5.8 Hz, IH), 2.60 (dd, J=11.7, 3.5 Hz, IH), 2.45 (s, 3H), 2.11-2.32 (m, 2H), 1.48 (s, 3H), 1.32 (d, J=13.9 Hz, IH). LC/MS, m/z = 430.2 [M + H]+ (Calc: 429.6).

(2R,6S,llS)-ll-((2-(lH-indoI-3-yl)ethyl)amino)-3,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-8-ol (Compound 110)

Ή NMR δΗ (400 MHz, CD3OD) 7.54 (d, J=7.9 Hz, IH), 7.28 (d, J=8.1 Hz, IH), 6.86- 7.10 (m, 4H), 6.68 (d, J=2.4 Hz, IH), 6.56 (dd, J=8.4, 2.4 Hz, IH), 3.40 (br. s., IH),

3.12- 3.20 (m, 2H), 3.03-3.10 (m, 4H), 2.85-2.93 (m, IH), 2.62 (d, J=8.4 Hz, IH), 2.26- 2.36 (m, 4H), 1.95-2.05 (m, 1 H), 1.21 - 1.32 (m, 4H).

LC/MS, m/z = 376.2 [M + H]+ (Calc: 375.5). rf-butyl (3-(((2R,6S,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-ll-yl)amino)propyI)carbamate (Compound 111)

Ή NMR δΗ (400 MHz, CD3OD) 7.06 (d, J=8.4 Hz, IH), 6.86 (d, J=2.4 Hz, IH), 6.71 (dd, J=8.4, 2.4 Hz, IH), 3.81 (br. s., IH), 3.39 (s, IH), 3.12-3.29 (m, 4H), 2.87-3.05 (m, 3H), 2.81 (s, 3H), 2.58 (td, J=12.7, 3.4 Hz, IH), 2.21-2.30 (m, IH), 1.82 (quin, J=6.6Hz, 2H), 1.52-1.59 (m, 3H), 1.46 (s,9H), 1.42-1.45 (m, IH).

LC/MS, m/z = 390.3 [M + H]+ (Calc: 389.5).

/^-butyl(2-(((2R,6S,115 -8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-ll-yl)amino)ethyl)carbamate (Compound 112)

Ή NMR δΗ (400 MHz, CD3OD) 7.06 (d, J=8.4 Hz, IH), 6.86 (d, J=2.4 Hz, IH), 6.71 (dd, J=8.3, 2.5 Hz, IH), 3.77-3.82 (m, IH), 3.32 - 3.38 (m, IH), 3.27-3.31 (m, IH),

3.13- 3.26 (m, 2H), 2.98-3.07 (m, 2H), 2.87-2.92 (m, 2H), 2.86 (s, 3H), 2.61-2.71 (m, IH), 2.21-2.31 (m, IH), 1.50 (s,3H), 1.48 (s, 9H), 1.41 (d,J=14.3 Hz, IH).

LC/MS, m/z = 376.2 [M + H]+ (Calc: 375.5).

EXAMPLE 60

7V-((2 ?,6S,115)-3-(cycIopropyImethyl)-8-hydroxy-6-methyI-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i|azocin-ll-yl)thiophene-3-carboxamide (Compound 113)

Figure imgf000284_0001

RG-6 113

To a mixture of Compound RG-6 (0.10 g, 0.35 mmol), Compound RG-10 (0.054 g, 0.42 mmol) and DIPEA (0.045 g, 0.35 mmol) in NMP ( 1 mL) was added HATU (0. 16 g, 0.42 mmol) at RT. The reaction mixture was stirred at RT for 1 6 h, quenched by the addition of water and the mixture extracted with EtOAc. The organic layer was concentrated and purified by flash chromatography (Si02, 10% ( 10% NH4OH in eOH) in DCM) to give the desired product.

This material was dissolved in DCM (8 mL), cooled to -78 °C and 1 M BBr3 in DCM (2.0 mL, 2.0 mmol) was added. The mixture was stirred at -78 °C for 2 h allowed to warm to 0 °C and stirred an additional 30 min. The reaction was quenched by the addition of water (2 mL) and the pH adjusted to ca 8 with cone. TMH4OH. The layers were separated, the organic layer was concentrated and purified by flash chromatography (Si02, 1 0% (7% NH4OH in MeOH) in DCM) to give Compound 113 as a white solid (0.040 g, 29%).

Ή NMR δΗ (400 MHz, DMSO-d6) 8.95 (s, IH), 8.13 (dd, J=2.6, 1 . 1 Hz, I H), 7.47- 7.57 (m, 2H), 7.38 (d, J=5.1 Hz, I H), 6.81 (d, J=8.4 Hz, I H), 6.59 (d, J=2.4 Hz, I H), 6.46 (dd, J=8.3, 2.3 Hz, I H), 4.00 (d, J=7.3 Hz, I H), 3.14-3.20 (m, I H), 2.91 (d, J=1 8.0 Hz, I H), 2.62 (dd, J=18.0, 6.2 Hz, I H), 2.47 (d, J=7.0 Hz, I H), 2. 1 5-2.34 (m, 2H), 1 .86-2.01 (m, 2H), 1 .10 (s, 3H), 0.99 (d, J= 10.1 Hz, I H), 0.73 (t, J=6.2 Hz, I H), 0.27-0.39 (m, 2H), 0.01 (d, J=4.6 Hz, 2H).

LC/MS, m/z = 383.1 [M + H]+ (Calc: 382.5).

In a similar manner the following chiral compounds were prepared from the appropriate chiral amines.

Figure imgf000285_0001

Figure imgf000285_0002

7V-((2R,6S,llS)-3-(cycIopropylmethyl)-8-hydroxy-6-methyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i ]azocin-ll-yl)-N-methylthiophene-3-carboxamide

(Compound 114)

Ή NMR δΗ (400 MHz, CD3OD) 6.90 - 7.70 (m, 3H), 6.37 - 6.82 (m, 3 H), 4.88 (s, 0.6H), 3.99 (s, 0.4H), 3.58 - 3.60 (m, 3H), 3.41 - 3.52 (m, 1 H), 2.95 - 3.1 (m, l H), 2.34 - 2.72 (m, 3H), 2.08 - 2.22 (m, 3H), 1 .09 - 1 .29 (m, 4H), 0.72 - 0.82 (m, 1H), 0.35 - 0.42 (m, 2H), -0.04 - 0.04 (m, 2H).

LC/MS, m/z = 397.2 [M + H]+ (Calc: 396.6). N-((2R,6S,llS)-3-(cyclopropylmethyI)-8-hydroxy-6-methyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[rf]azocin-ll-yl)-N-niethylbenzamide (Compound 115)

Ή NMR δΗ (400 MHz, CD3OD) 7.16 - 7.35 (m, 5H), 6.82 (d, J = 8.1 Hz, 0.6H), 6.63 - 6.65 (m, IH), 6.33 - 6.49 (m, 1.4H), 4.9 (s, 0.6H), 3.85 (s, 0.4H), 3.45 - 3.65 (m, 4H), 2.92-3.1 (m, IH), 2.63 -2.74 (m, 1.6H), 2.34-2.42 (m, 1.4H), 2.0-2.22 (m, 3H), 1.08 - 1.34 (m, 4H), 0.65 - 0.8 (m, IH), 0.35 - 0.43 (m, 2H), -0.04 - 0.04 (m, 2H).

LC/MS, m/z = 391.2 [M + H]+ (Calc: 390.5).

7V-((2R,65,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-ll-yl)-7V,4-dimethylpentanamide (Compound 116)

Ή NMR δΗ (400 MHz, CD3OD) 6.86 (d, J=7.7 Hz, IH), 6.64 (d, J=2.4 Hz, IH), 6.50- 6.54 (m, IH), 4.65 (d, J = 2.6 Hz, 0.6H), 3.85 (d, J = 2.6Hz, 0.4H), 2.93-3.11 (m, 2H), 2.39-2.64 (m, 4H), 2.23-2.40 (m, 6H), 1.99-2.13 (m, IH), 1.81-1.91 (m, IH), 1.34-1.56 (m, 3H), 1.24-1.32 (m, 4H), 0.79-0.89 (m, 6H).

LC/MS, m/z = 345.3 [M + H]+ (Calc: 344.5).

/V-((2R,6S,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i|azocin-ll-yl)-N-methyl-2-phenylacetamide (Compound 117)

Ή NMR δΗ (400 MHz, DMSO-d6) 8.97 (s, IH), 6.92-7.32 (m, 5H), 6.83 (d, J=8.4 Hz, IH), 6.40-6.62 (m, 2H), 4.66 (s, IH), 3.70 (d, J=2.9 Hz, 2H), 3.51 (s, 3H), 2.69-3.10 (m, 2H), 2.51-2.64 (m, IH), 2.30-2.40 (m, IH), 2.10-2.23 (m, 3H), 1.82-2.07 (m, 2H), 0.92-1.16 (m, 4H).

LC/MS, m/z = 365.2 [M + H]+ (Calc: 364.5).

7V-((2R,6S,llR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<]azocin-ll-yl)-N-methyl-2-phenylacetamide (Compound 118)

Ή NMR δΗ (400 MHz, DMSO-d6) 9.04 (d, J=2.4 Hz, IH), 7.00-7.39 (m, 5H), 6.76- 6.90 (m, IH), 6.36-6.63 (m, 2H), 4.52 (d, J=2.6 Hz, 0.6H), 3.86 (d, J =2.6Hz, 0.4H), 3.57-3.74 (m, 2H), 2.87 -2.92 (m, IH), 2.76 -2.78 (m, IH), 2.52 (s, 1.8H), 2.38 (s, 1.2H), 2.30 -2.35 (m, IH), 2.20-2.26 (m, IH), 2.18 (s, 3H), 1.55-1.91 (m, 2H), 1.18 (s, 1.8H), 1.03-1.15 (m, IH), 0.94 (s, 1.2H).

LC/MS, m/z = 365.2 [M + H]+ (Calc: 364.5). yV-^^ll^-S-hydroxy-S^-dimeth l-l^^^^^-hexahydro-^d- methanobenzo[r/]azocin-ll-yl)-N-methylbenzamide (Compound 119)

Ή NMR δΗ (400 MHz, DMSO-d6) 8.94-9.19 (m, IH), 7.15-7.54 (m, 5H), 6.86 (t, J=8.0 Hz, IH), 6.55-6.69 (m, IH), 6.36-6.53 (m, IH), 4.70 (br.0.5H), 3.68 (br., 0.5H), 2.88-3.09 (m, 2H), 2.59-2.66 (m, IH), 2.55 (s, 1.5H), 2.39 (s, 1.5H), 2.24 (br., 2H), 2.05 (br.,2H), 1.80- 1.87 (m, 1.5H), 1.06-1.43 (m, 4.5H).

LC/MS, m/z - 351.1 [M + H]+ (Calc: 350.5).

N-((2R,6S,llS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-ll-yl)-/V-methylcyclohexanecarboxamide (Compound 120)

Ή NMR δΗ (400 MHz, DMSO-d6) 8.96 (s, IH), 6.83 (d, J=8.4 Hz, IH), 6.55 (d, J=2.4 Hz, IH), 6.47 (dd, J=8.4, 2.4 Hz, IH), 4.67 (s, IH), 3.52 (s, 3H), 3.05 (d, J=17.4 Hz, IH), 2.96 (d, J=5.3 Hz, IH), 2.50-2.69 (m, 2H), 2.33-2.41 (m, IH), 2.15-2.28 (m, 3H), 1.90-2.05 (m, 2H), 1.55 -1.85 (m, 5H), 1.06-1.36 (m, 6H), 1.03 (s, 3H).

LC/MS, m/z = 357.1 [M + H]+ (Calc: 356.5).

N-((2R,6S,llR)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-ll-yl)-N-methylcyclohexanecarboxamide (Compound 121)

Ή NMR δΗ (400 MHz, CD3OD) 6.87-7.08 (m, IH), 6.72 (d, J=2.2 Hz, IH), 6.63 (dd, J=8.3, 2.3 Hz, IH), 4.87 (br. s., 0.3H), 4.66 (br., 0.7H), 3.58 (br. s., IH), 2.90-3.14 (m, 3H), 2.84 (s, 3H), 2.43-2.74 (m, 5H), 1.90 - 2.00 (m, IH), 1.49-1.79 (m, 6H), 1.06- 1.45 (m, 8H).

LC/MS, m/z = 357.3 [M + H]+ (Calc: 356.5). (E)-N-((2R,65,llR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/jazocin-ll-yl)-N-methyl-3-(pyridin-3-yl)acrylaniide (Compound 122)

Ή NMR δΗ (400 MHz, DMSO-d6) 8.94-9.31 (m, IH), 8.69-8.87 (m, IH), 8.47 (dd, J=4.7, 1.4 Hz, IH), 8.05 (d, J=7.9 Hz, IH), 7.10-7.55 (m, 3H), 6.87 (d, J=8.4 Hz, IH), 6.60 (d, J=2.4 Hz, IH), 6.49 (dd, J=8.1, 2.4 Hz, IH), 4.63 (d, J=2.6 Hz, 0.7H), 4.11 (d, J = 2.4 Hz, 0.3H), 2.79-3.11 (m, 2H), 2.72 (s, 2H), 2.50 (s, IH), 2.18-2.30 (m, 4H), 1.72-1.95 (m, 2H), 1.23- 1.35 (m, 3H), 1.19 (d, J= 11.7 Hz, 1 H).

LC/MS, m/z = 378.1 [M + H]+(CaIc: 377.5). yV-((2R,65,llR)-8-hydroxy-3,6-dimethyI-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[rfJazocin-ll-yl)-V-methyl-2-(thiophen-3-yl)acetamide (Compound 123)

Ή NMR 5H (400 MHz, DMSO-d6) 9.05 (s, IH), 7.39 (dd, J-5.0, 3.0 Hz, IH), 7.12 (d, J=1.8 Hz, IH), 6.87-6.98 (m, IH), 6.83 (d, J=7.9 Hz, IH), 6.56 (d, J=2.0 Hz, IH), 6.46 (dd, J=8.3, 1.9 Hz, IH), 4.51 (br. s., 0.6H), 3.88 (br. s., 0.4H), 3.62-3.81 (m, IH), 3.61 (s, IH), 2.89 - 2.95 (m, IH), 2.72-2.84 (m, IH), 2.53 (s, 2H), 2.38 (s, 2H), 2.15-2.29 (m, 4H), 1.63- 1.93 (m, 2H), 0.94- 1.26 (m, 4H).

LC/MS, m/z = 371.1 [M + H]+ (Calc: 370.5).

/V-((2 ?,6S,llR)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-ll-yl)-N-methylthiophene-3-carboxamide (Compound 124)

Ή NMR δΗ (400 MHz, DMSO-d6) 9.07 (s, IH), 7.41-7.80 (m, 2H), 7.13 (dd, J=5.0, 1.0 Hz, 1 H), 6.87 (t, J=7.6 Hz, 1 H), 6.36-6.68 (m, 2H), 4.66 (br. s., 0.5H), 3.84 (br. s., 0.5H), 2.90 - 2.95 (m, 2H), 2.562.6 (m, IH), 2.53 (s, 3H), 2.05-2.35 (m, 4H), 1.69- 1.96 (m, 1.5H), 1.34-1.48 (m, 0.5H), 1.03-1.33 (m, 4H).

LC/MS, m/z = 357.1 [M + H]+ (Calc: 356.5). 7Y-((2R,6S,lllS -8-hydroxy-3,6-dimethy]-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<|azocin-ll-yl)-N-methylthiophene-3-carboxamide (Compound 125)

Ή NMR δΗ (400 MHz, CD3OD) 7.78-7.93 (m, IH), 7.48 (dd, J=5.1, 2.9 Hz, IH), 7.29 (dd, J=5.1, 1.1 Hz, IH), 7.00 (d, J=8.4 Hz, IH), 6.73 (d, J=2.4 Hz, IH), 6.64 (dd, J=8.4, 2.4 Hz, IH), 4.07-4.27 (m, IH), 3.92 (br. s., IH), 3.38 (d, J=3.5 Hz, 2H), 3.21- 3.21 (m, 4H), 2.89 (s, 3H), 2.74 (td, J=13.0, 3.4 Hz, IH), 2.38 (td, J=13.9, 4.7 Hz, IH), 1.57 (s, 3H), 1.47 (d, J=14.3 Hz, IH).

LC/MS, w/z = 357.1 [M + H]+ (Calc: 356.5).

7V-((2 ?,6S,llS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i^azocin-ll-yl)-V-methyl-5-(trifluorornethyl)picolinamide

(Compound 126)

Ή NMR δΗ (400 MHz, CD3OD) 8.92 (s, I H), 8.25 (dd, J=8.3, 1.9 Hz, IH), 7.82 (d, J=8.4 Hz, IH), 7.01 (d, J=8.4 Hz, IH), 6.75 (d, J=2.4 Hz, IH), 6.65 (dd, J=8.1, 2.4 Hz, IH), 4.21 (br. s., IH), 4.00 (br. s., IH), 3.41 (d, J-3.5 Hz, 2H), 3.24-3.30 (m, IH), 3.07 (s, 3H), 2.93 (s, 3H), 2.76 (td, J=13.0, 3.5 Hz, IH), 2.40 (td, J=13.9, 4.6 Hz, IH), 1.62 (s,3H), 1.51 (d, J=14.5 Hz, IH).

LC/MS, m/z = 420.1 [M + H]+ (Calc: 419.4).

N-((2R,65',llR)-3-(cyclopropylmethyI)-8-hydroxy-6-methyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i/|azocin-ll-yl)thiophene-3-carboxamide (Compound 127)

Ή NMR δΗ (400 MHz, CD3OD) 7.96 (t, J=2.0 Hz, IH), 7.33 (d, J=2.0 Hz, 2H), 7.01 (d, J=8.4 Hz, IH), 6.77 (d, J=2.4 Hz, IH), 6.67 (dd, J=8.4, 2.4 Hz, IH), 4.49 (d, J=3.3 Hz, IH), 4.12 (br. s., IH), 3.25-3.70 (m, 2H), 3.07-3.21 (m, 2H), 2.81-3.06 (m, IH), 2.60 (td, J=13.3, 3.4 Hz, IH), 2.07 (td, J=13.9, 4.5 Hz, IH), 1.70 (dd, J=14.5, 1.5 Hz, IH), 1.47 (s, 3H), 0.96-1.26 (m, IH), 0.64-0.78 (m, 2H), 0.28-0.62 (m, 2H).

LC/MS, m/z = 383.3 [M + H]+ (Calc: 382.5). EXAMPLE 61

^-(( R^^ll^-S-ic clo ropylmethy -S-hydro y^-inethyl-l^^^^^-hexahydro- 2,6-methanobenzo[i ]azocin-ll-yl)-3-(trifluoromethyl)benzenesulfonamide (Compound 128)

Figure imgf000290_0001

RG-6 128

To a mixture of Compound RG-6 (0.10 g, 0.35 mmol) and TEA (0.035 g, 0.35 mmol) in DCM (2 mL) was added Compound RG-11 (0.102 g, 0.42 mmol) at 0 °C. The reaction mixture was stirred at RT for 16 h, quenched by the addition of water and the mixture extracted with CHC13. The organic layer was concentrated to give the crude product which was used directly in the next step.

This material was dissolved in DCM (8 mL), cooled to -78 °C and 1 BBr3 in DCM (2.0 mL, 2.0 mmol) was added. The mixture was stirred at -78 °C for 2 h allowed to warm to 0 °C and stirred an additional 30 min. The reaction was quenched by the addition of water (2 mL) and the pH adjusted to ca 8 with cone. NH4OH. The layers were separated and the organic layer was concentrated and purified by flash chromatography (Si02, 10% (10% NH4OH in MeOH) in DCM) to give Compound 128 as a white solid (0.100 g, 60%).

Ή NMR δΗ (400 MHz, DMSO-d6) 9.12 (br. s., I H), 8.30 (s, I H), 8.25 (d, J=7.9 Hz, I H), 8.09 (d, J=7.7 Hz, I H), 7.79-7.95 (m, I H), 7.56-7.80 (m, I H), 6.89 (d, J=8.4 Hz, I H), 6.72 (d, J=2.2 Hz, I H), 6.59 (dd, J=8. 1 , 2.4 Hz, I H), 3.46 (br. s., I H), 2.87 (d, J= 1 7.8 Hz, I H), 2.77 (dd, J=5.5, 2.9 Hz, I H), 2.45 (td, J=17.0, 5.4 Hz, 3H), 1 .86-2.03 (m, 3H), 1 .27 (s, 3H), 1.09 (d, J=9.7 Hz, I H), 0.44-0.63 (m, I H), 0.25-0.39 (m, I H), - 0.1 5-0.1 6 (m, 3H).

LC/ S, m/z = 481 .2 [M + H]+ (Calc: 480.5). In a similar manner the following chiral compounds were prepared from the appropriate chiral amines.

Figure imgf000291_0001

N-^R^llRi-S-icyclopropylmethy -S-hydroxy-d-methyl-l^^^^^-he ah dro- 2,6-methanobenzo[i]azocin-ll-yl)-3-(trifIuoromethyl)benzenesulfonamide (Compound 129)

Ή NMR δΗ (400 MHz, CD3OD) 8.25 (s, IH), 8.21 (d, J=7.9 Hz, IH), 8.02 (d, J=7.7 Hz, IH), 7.75-7.93 (m, IH), 7.01-7.21 (m, IH), 6.65-6.87 (m, 2H), 3.88-4.18 (m, IH), 3.54-3.85 (m, 2H), 3.38 (d, J=6.8 Hz, IH), 2.99-3.31 (m, 3H), 2.36-2.73 (m, IH), 1.93 (td, J=14.0, 4.6 Hz, IH), 1.43-1.73 (m, IH), 0.93-1.26 (m, 5H), 0.67-0.87 (m, 2H), 0.34-0.62 (m, 2H).

LC/MS, m/z = 481.2 [M + H]+ (Calc: 480.5).

N-((2R,65',llS)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[i]azocin-ll-yl)-iV-methyl-3- (trifluoromethyl)benzenesulfonamide (Compound 130)

Ή NMR δΗ (400 MHz, CD3OD) 8.18 (d, J=7.9 Hz, IH), 8.13 (s, IH), 8.07 (d, J=7.7 Hz, IH), 7.86-7.96 (m, IH), 6.97 (d, J=8.4 Hz, IH), 6.82 (d, J=2.4 Hz, IH), 6.67 (dd, J=8.1, 2.4 Hz, IH), 4.17 (s, IH), 3.51 (s, 3H), 3.09 (d, J=\7.6 Hz, IH), 2.99 (br. s., IH), 2.53-2.70 (m, 2H), 2.08-2.41 (m, 4H), 1.53 (s, 3H), 1.27-1.41 (m, IH), 0.58 (br. s., 1 H), 0.18-0.42 (m, 2H), -0.10 - 0.10 (m, 2H).

LC/MS, m/z = 495.1 [M + H]+ (Calc: 494.6). N-^i^^ll^-S-h drox -S^-dimeth l-l^^^^^-he ah dro^^- methanobenzotiJazocin-ll-y -A^-methyl-S-itrifluoromethy benzenesulfonamide (Compound 131)

Ή NMR δΗ (400 MHz, CD3OD) 7.93-8.11 (m, 2H), 7.82-7.91 (m, IH), 7.72 (t, J=7.7 Hz, IH), 7.32-7.55 (m, IH), 6.90 (d, J=8.1 Hz, IH), 6.75 (br. s., IH), 6.62 (dd, J=8.4, 2.4 Hz, IH), 4.10 (s, IH), 3.36 (s, 3H), 3.09 (d, J=15.6 Hz, IH), 2.46-2.71 (m, 2H), 2.39 (d, J=9.9 Hz, IH), 1.97-2.24 (m, 5H), 1.43 (s, 3H), 1.25 (d, J=10.6Hz, IH).

LC/MS, m/z = 455.1 [M + H]+ (Calc: 454.5).

N-((2^,6S,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<]azocin-ll-yI)-N-methyl-3-(trifluoromethyl)benzenesulfonamide (Compound 132)

Ή NMR δΗ (400 MHz, CD3OD) 7.99-8.16 (m, 2H), 7.90 (d, J=7.9 Hz, IH), 7.64-7.80 (m, IH), 6.84 (d, J=8.1 Hz, IH), 6.34-6.59 (m, 2H), 3.90 (d, J=2.6 Hz, IH), 2.86-3.08 (m, 2H), 2.57 (dd, J=18.9, 5.9 Hz, IH), 2.51 (s, 3H), 2.19-2.38 (m, 4H), 1.97 (td, J=12.5, 3.4 Hz, IH), 1.70 (td, J=12.8, 4.7 Hz, IH), 1.20 (d, J=l 1.7 Hz, IH), 0.87 (s, 3H).

LC/MS, m/z = 455.1 [M + H]+(Calc: 454.5).

EXAMPLE 62

Using methods similar to those described in the previous examples, the following compounds were also made:

3-(4-(/^t-butyl)phenyl)-l-((2?,6S,llS)-3-(cyclopropylmethyI)-8-hydroxy-6- methyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i]azocin-ll-yl)-l-methylurea (Compound 133);

Ή NMR (400MHz, DMSO-d6) δ: 8.93 (br. s., IH), 8.01 (br. s., IH), 7.26 (d, J=8.8 Hz, 2H), 7.12 (d, J=8.8 Hz, 2H), 6.80 (d, J=8.1 Hz, IH), 6.54 (d, J=2.4 Hz, IH), 6.44 (dd, J=8.1, 1.8 Hz, 1H),4.44 (br. s., IH), 3.57 (br. s., 3H), 3.34 (br. s., IH), 2.97 (d, J=17.4 Hz, 1 H), 2.53 - 2.59 (m, 2H), 2.33 (dd, J= 12.2, 6.5 Hz, 1 H), 2.13 - 2.25 (m, 1 H), 1.94 -2.07 (m, 2H), 1.00-1.22 (m, 13H), 0.64-0.87 (m, IH), 0.26-0.49 (m, 2H), -0.09-0.11 (m, 2H).

LC/MS, m/z = 462.3 [M + H]+ (Calc: 461.64) l-((2R,65',115)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[d]azocin-ll-yl)-3-(5-fluorobenzo[6nthiazol-2-yl)-l-methylurea (Compound 134);

Ή NMR (400MHz, METHANOLS) δ: 7.73 (dd, J=8.6, 5.5 Hz, IH), 7.27 (dd, J=10.1, 2.4 Hz, IH), 6.90-7.07 (m, 2H), 6.77 (d, J=2.4 Hz, IH), 6.66 (dd, J=8.4, 2.4 Hz, IH),4.10(d, J=5.5 Hz, IH), 3.84 (s, IH), 3.21 (s, 3H), 3.02-3.14 (m, 2H), 2.77 (d, J=6.8 Hz, 2H), 2.28-2.52 (m, 2H), 1.47 (s,3H), 1.3 - 1.35 (m, 2H), 1.17-1.29 (m, IH), 0.42-0.71 (m, 2H), 0.11-0.33 (m, 2H).

LC/MS, m/z = 481.2 [M + H]+ (Calc: 480.6) l-((6R,ll^)-6-allyl-8-methoxy-3-methyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[rfJazocin-ll-y])-3-(4-cyanophenyl)-l-methylurea (Compound 135);

Ή NMR (400MHz, METHANOL-d4, TFA-salt) δ: 7.45-7.65 (m, 4H), 7.13 (d, J=8.4 Hz, IH), 6.90 (d, J=2.2 Hz, IH), 6.82 (dd, J=8.4, 2.4 Hz, IH), 5.74-5.94 (m, IH), 5.20 (d, .1=17.2 Hz, IH), 5.15 (d, J=10.1 Hz, IH), 4.56 (br. s., IH), 3.67-3.81 (m, 4H), 3.24- 3.35 (m, IH), 3.03-3.16 (m, 2H), 2.81-2.94 (m, 4H), 2.72 (s, 3H), 2.47-2.66 (m, 2H), 2.27 (td, J=13.9,4.6 Hz, IH), 1.50 (d, J=14.3 Hz, IH).

LC/MS, m/z = 431.3 [M + H]+ (Calc: 430.54) 3-(4-cyanophenyl)-l-((6?,ll/?)-8-methoxy-3-methyl-6-propyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-ll-yl)-l-methylurea (Compound 136);

Ή "NMR (400MHz, METHANOL-d4i TFA-salt) δ: 7.44-7.65 (m, 4H), 7.11 (d, J=8.6 Hz, IH), 6.89 (d, J=2.2 Hz, IH), 6.81 (dd, J=8.4, 2.4 Hz, IH), 4.63 (d, J=2.0 Hz, IH), 3.65-3.81 (m, 4H), 3.24-3.33 (m, 1 H), 3.03-3.16 (m, 2H), 2.86 (s, 3H), 2.69 (s, 3H), 2.60 (td, J=13.2, 3.5 Hz, 1 H), 2.28 (td, J=l 3.8, 4.6 Hz, IH), 2.08 (td, J= 13.1, 3.9 Hz, IH), 1.75 (td, J=13.3,4.4 Hz, IH), 1.35-1.56 (m, 2Η), 1.17-1.33 (m, IH), 0.92-1.03 (m, 3H).

LC/MS, m/z = 433.2 [M + H]+ (Calc: 432.56) 3-(4-cyanophenyI)-l-((6R,llS)-8-hydroxy-3-methyl-6-propyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[d]azocin-ll-yl)-l-methyIurea (Compound 137);

Ή NMR (400MHz, METHANOL-d4> TFA-salt) δ: 7.47-7.68 (m, 4H), 6.98 (d, J=8.4 Hz, 1 H), 6.52-6.70 (m, 2H), 4.05 (d, J=5.1 Hz, 1 H), 3.92 (s, 1 H), 3.29-3.45 (m, 2H), 3.26 (s, 3H), 3.13 (dd, J=12.3, 4.0 Hz, IH), 2.85 (s, 3H), 2.63 (td, J=12.9, 3.7 Hz, 1 H), 2.40 (td, J=] 3.8, 4.8 Hz, IH), 1.85-2.01 (m, IH), 1.58-1.73 (m, IH), 1.12-1.49 (m, 3H), 0.95 (t, J=7.3 Hz, 3H).

LC/MS, m/z = 419.2 [M + H]+ (Calc: 418.53)

3-(4-(aminomethyl)phenyl)-l-((6R,115)-8-methoxy-3-methyI-6-propyI-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i]azocin-ll-yl)-l-methylurea (Compound 138);

Ή NMR (400MHz, METHANOL-^, TFA-salt) δ: 7.48 (d, J=8.6 Hz, 2H), 7.32 (d, J=8.6 Hz, 2H), 7.09 (d, J=8.6 Hz, IH), 6.77 (dd, J=8.5, 2.3 Hz, IH), 6.69 (d, J=2.2 Hz, IH), 4.04 (d, J=5.1 Hz, IH), 3.99 (s, 2H), 3.93 (s, IH), 3.69 (s, 3H), 3.28-3.45 (m, 2H), 3.25 (s, 3H), 3.11 (dd, J=12.4, 4.3 Hz, IH), 2.84 (s, 3H), 2.60 (td, J=12.9, 3.5 Hz, IH), 2.40(td,J=l 3.6, 4.7 Hz, IH), 1.89-2.10 (m, IH), 1.55-1.75 (m, IH), 1.31-1.48 (m, 2H), 1.15-1.29 (m, IH), 0.96 (t, J=7.3 Hz, 3H).

LC/MS, m/z = 437.2 [M + H]+ (Calc: 436.59) l-iS-fluorobenzo^thiazol^-y -S-^R^llR^S-hydroxy-S^-dimethyl- l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i/]azocin-ll-yl)urea (Compound 139);

Ή NMR (400MHz, METHANOL-d4, TFA-salt) δ: 7.66 (dd, J=8.6, 5.3 Hz, IH), 7.24 (dd, J=9.8, 2.3 Hz, IH), 6.92 (td, J=9.0, 2.5 Hz, IH), 6.86 (d, J=8.4 Hz, IH), 6.68 (d, J=2.4 Hz, IH), 6.51 (dd, J=8.1, 2.4 Hz, IH), 3.88 (s, IH), 3.12 (d, J=18.0 Hz, IH), 2.99 (br. s., IH), 2.70 (dd, J=17.9, 5.8 Hz, IH), 2.33-2.41 (m, IH), 2.31 (s, 3H), 2.06 (td, J=12.1, 3.1 Hz, IH), 1.86 (td, J=12.9, 4.8 Hz, IH), 1.23 (s, 3H), 1.13 (d, J=13.2 Hz, IH). LC/MS, m/z = 427.2 [M + H]+ (Calc: 426.51 )

3-(5-fluorobenzo[i/Jthiazol-2-yl)-l-((2/f,6S,llR)-8-hydroxy-3,6-dimethyl- l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i ]azocin-ll-yl)-l-niethylurea

(Compound 140)

' HNMR (CD3OD) 5 : 7.60 (m, 1 H), 7.1 6 (d, J=8.0 Hz, - 1 H), 6.89 (m, 2H), 6.66 (m, l H), 6.53 (m, 1 H), 4.47 (br, 1 H), 3.07 (m, 2H), 2.73-2.56 (m, 4H), 2.43-2.33 (m, 4H), 2. 10 (m, l H), 1 .91 (m, 1 H), 1 .39- 1 .28 (m, 4H) ppm

LC/MS, m/z = 441 .1 [M + H]+ (Calc: 440.53)

Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

All patents and publications cited herein are fully incorporated by reference in their entirety.

Claims

What is claimed is:
1 . A compound of Formula P ' :
Figure imgf000296_0001
wherein
R1 is selected from the group consisting of-(C i-Cio)alkyl, -(C2-C io)alkenyl, -(C2- Ci0)alkynyl, -(C3-C i2)cycloalkyl, (C3-Ci2)cycloalkyl-(C| -C6)alkyl-, -(C3- Ci2)cycloalkenyl, (C3-Ci2)cycloalkenyl-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(C1-C6)alkyl-, diphenyl(C,-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12 membered)heterocycle)-(Ci-C6)alkyl-, - (OCH2CH2)s-0-(Ci-C6)alkyl, -(CH2CH20)s-(C, -C6)alkyl, (C, -Ci0)alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(O)O-(C,-Ci0)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;
R2a is hydrogen, OH, orabsent;
R2b is
a) ((6- to 14-membered)aryl), -((5- to 12-membered)heteroaryl), or ((3- to 12- membered)heterocycle), each of which is optionally substituted with one, two, or three independently selected R groups; or b) -Z-G-R10, provided that -Z-G-R10 is other than hydrogen;
or R2a and R2b together form =0;
Z is absent or -(CH2)m-, optionally substituted with 1 or 2 -(Ci -C6)alkyl; G is selected from the group consisting of:
a) a bond, -(C |-C6)alkylene, -(C2-C6)alkenylene;
b) O, -OCO-, -C(=0), =CH;
c) NR8, =N-0, =N-NH;
d) S, SO, S02; and
e) -NH-S02; and when Z is absent and G is =CH, =N-0, or =N-NH, then R2a is absent;
R10 is selected from the group consisting of hydrogen, -(Ci-Cio)alkyl, -(C2-Ci2)alkenyl, -C(=0), -C(=0)-(C ,-C6)alkyl, -C(=0)-(C2-C6)alkenyl, -C(=0)-(6- to 14- membered)aryl, -C(=0)-(C i-C6)alkyl-(6- to 14-membered)aryl, -(C2-Ci2)alkynyl, -(C i - C,o)alkoxy, -(OCH2CH2)s-0(C , -C6)alkyl, -(CH2CH20)s-(C, -C6)alkyl, -NH2, - NH(Ci-C6)alkyl, CN, N 5R6, -(CrC6)alkyl-NR5R6, -CONR5R6, -(C | -C6)alkyl-CO- NR5R6, -COOR7, -(C, -C6)alkyl-CO-OR7, -(C, -C6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -CO-(CH2), CO-NR5R6, -(C3-C 12)cycloalkyl, ((C3-C12)cycloalkyl)-(C r C6)alkyl-, -(C4-C 12)cycloalkenyl, ((C4-Ci2)cycloalkenyl)-(C,-C6)alkyl-, -(C6- C |4)bicycloalkyl, ((C6-C|4)bicycloalkyl)-(C, -C6)alkyl-, -(C8.C20)tricycloalkyl, ((C8- C2o)tricycloalkyl)-(C i -C6)alkyl-, -(C7-C i4)bicycloalkenyl, ((C7-Ci )bicycloalkenyl)- (C i-C6)alkyl-, -(C8-C2o)tricycloalkenyl, ((C8-C2o)tricycloalkenyl)-(Ci -C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(C ,-C6)alkyl-, -S02-(Ci-C6)alkyl, - S02-((C3-C12)cycloalkyl), -S02-((C3-C12)cycloalkyl)-(C,-C6)alkyl, -S02-((5- to 12- membered)heteroaryl), -S02-((5- to 12-membered)heteroaryl)-(C |-C6)alkyl, -C(=0)- NH-((5- to 12-membered)heteroaryl), -C(=0)-NH-((5- to 12-membered)heteroaryl)- (C ,-C6)alkyl, -C(=0)-NH-((3- to 12-membered)heterocycle), -C(=0)-NH-((3- to 12- membered)heterocycle)-(C i-C6)alkyl, S02-((6- to 14-membered)aryl), S02-((6- to 14 membered)aryl)-(Ci -C6)alkyl, -(7- to 12-membered)bicyclic ring system, ((7- to 12- membered)bicyclic ring system)-(Ci-C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(C i-C6)alkyl-, -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C i-C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(Ci-C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12-membered)bicycloheterocycle)-(Ci-C6)alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo)2,
-CH2(halo), -(C, -C6)alkyl, halo(C,-C6)alkyl-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(C |-C6)alkyl-, dihydroxy(C i-C6)alkyl-, -(C | -C6)alkoxy, ((C j - C6)alkoxy)CO(C1-C6)alkoxy-, phenyl, benzyl, - H2, -NH(C,-C6)alkyl,
-(Ci-C6)alkyl-NH(Ci-C6)alkyl-R14, -CN, -SH, -OR1 1 , -CONR5R6, -(C i-C6alkyl)-CO- NR5R6, -COOR7, -(C,-C6)alkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -(0CH2CH2)s- 0(C,-C6)alkyl, -(CH2CH20)s-(C1-C6)alkyl, -S02-NR5aR6a, (C, -C6)alkyl)sulfonyl, ((C,- C6)alkyl)suIfonyl(C1-C6)alkyl-, -NH-S02(C|-C6)alkyl, NH2-S02(C,-C6)alkyl-, - N(S02(C,-C6)alkyl)2, -C(=NH)NH2, -NH-CO-(C, -C6)alkyl, -NH-CO-NH2, -ΝΉ- C(=0>-NH-(C,-C6)alkyl, -NH-C(=0)-(6- to 14- membered)aryl, -NH-C(=0)-(C,- C6)alkyl-(6- to 14- membered)aryl, -NH-(C,-C6)alkyl-CO-OR7, -NH-C(=0)-(C,- C6)alkyl-CO-OR7, -NH-C(=0)-CH(NH2)-(C,-C6)alkyl-CO-OR7, -(C3-Cl 2)cycloalkyl, ((C3-Ci2)cycloalkyl)-(C,-C6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(C, -C6)alkoxy-C(0)NR5R6, -NH-(C , -C6)alkyl-C(0)-NR5R6, - C(0)NH-(C,-C6)alkyl-C00R7, ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C| -C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(C i-C6)alkyl-, -(7- to 12- membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(Ci - C6)alkyl-;
R3 is selected from:
a) -H; or
b) -(C,-C6)alkyl, -(C2-C6)alkenyl, or -(C2-C6)alkynyl;
R4 is selected from a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), COOH, or CONH2; or b) -(C ,_C5)alkyl, -(C2.C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, or -(C,_ C5)aIkoxy, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; and R6 are each independently selected from
a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);
b) -(C , -C6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(C,- C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci.Cio)alkyl, -(C2.Cio)alkenyl, -(C2_ C |0)alkynyl, -(C,_C10)alkoxy, -(C3_C|2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a;
c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(C,-C6)alkyl-, -COOR7, -(C,-C6)alkyl- COOR7, -CONH2, or (C |.C6)aIkyl-CONH-;
d) ((6- to 14-membered)aryl) optionally substituted with 1 , 2, or 3 independently selected R groups;
e) -((5- to 12-membered)heteroaryl) optionally substituted with 1 , 2, or 3
independently selected R30 groups; or
f) R5 and R6 together with the nitrogen atom to which they are attached form a (3- to 12-membered)heterocycle optionally substituted with 1 , 2, or 3
independently selected R30 groups; and R6a are each independently selected from the group consisting of:
a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, and -CH2(halo);
b) -(C,-C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(CH2)n-0-(CH2)n-CH3, and - (Ci-C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(C |.C io)alkyl, -(C2.
C12)alkenyl, -(C2.C,2)alkynyl, -(C]_C,0)alkoxy, -(C3.C12)cycloalkyl , -CHO, - COOH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, and phenyl; c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(C ,-C6)alkyl-, -COOR7, -(C, -C6)alkyl- COOR7, -CONH2, and (C i.C6)alkyl-CONH-; d) -(6- to 14-membered)aryl optionally substituted with 1 , 2, or 3 independently selected R groups;
e) -((5- to 12-membered)heteroaryl) optionally substituted with I , 2, or 3
30
independently selected R groups; or
f) R5a and R6a together with the nitrogen atom to which they are attached form a
(3- to 12-membered)heterocycle optionally substituted with 1 , 2, or 3
30
independently selected R groups; each R7 is independently selected from the group consisting of hydrogen, -(Cj - C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3_C |2)cycloalkyl, -(C4-C|2)cycloalkenyl, ((C3-Ci2)cycloalkyl)-(C i-C6)alkyl-, and ((C4-C |2)cycloalkenyl)-(Ci-C6)alkyl- ; each R8 is independently selected from H, -(Ci-C6)alkyl, -(C2-C6)alkenyl, -(C2- C6)alkynyl, -(Ci-Cio)alkoxy, -(C3-Ci2)cycloalkyl, -(C3-Ci2)cycloalkenyl, ((C3- C,2)cycloalkyl)-(C ,-C6)alkyl-, ((C3-C12)cycloalkenyl)-(CrC6)alkyl-, -C(=0)(C,- C6)alkyl or S02(Ci-C6)alkyl; each R9 is independently selected from -OH, halo, -(Ci.C io)alkyl, -(C2.Cio)alkenyl, - (C2.C io)alkynyl, -(Ci_C,0)alkoxy, -(C3-Ci2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a; each R1 1 is independently selected from -C(halo)3, -CH(halo)2, -CH2(halo), -(C2.
C5)alkenyl, -(C2.C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, (6- to 14-membered)aryl, ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, or (5- to 12-membered)heteroaryl, ((5- to 12- membered)heteroaryl)-(Ci-C6)alkyI-, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(C,-C6)alkyl-COOR7, -C(=0)-(C,- C6)alkyl-COOR7, -(C,-C6)alkyl-C(=0)-(C l-C6)alkyl-C00R7, CONH2, or -(C, - C6)alkyl-CONH; each R30 is independently selected from COOR7, CONR5aR6a, -(C,-C6)alkyl, -C(=0), CN, -(3- to 12-membered)heteroaryl, ((3- to 12-membered)heteroaryl)-(C] -C6)alkyl-, NH2, halo, and ((6- to 14-membered)aryl)-(C C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or 6;
n is an integer 0, 1 , 2, 3, 4, 5, or 6;
s in an integer 1 , 2, 3, 4, 5, or 6;
provided that when R4 is -(C i-C5)alkoxy then:
a) R2a and R2b cannot be taken together to form =0; or
b) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is either:
a. OH; or
b. -(C,-C6)alkyl;
c. 2-propenyl;
d. 2-propynyl; or
c) R2a cannot be H when the combination -Z-G-R10 is either:
a. OH;
b. -0-C(=0)-(C ,-C6)alkyl; or
c. -0-C(=0)-(C2-C6)alkenyl; and provided that when R4 is OH then:
a) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is:
a. methyl;
b. ethyl;
c. 2-propenyl; or
d. 2-propynyl;
b) R2a cannot be H when R2b is -Z-G-R10, and -Z-G-R10 is either:
a. OH;
b. -0-C(=0)-(C,-C6)alkyl; or
c. -0-C(=0)-(C2-C6)alkenyl; and provided that when R3 is (CrC6)alkyl or (C2-C6)alkenyl, and R4 is H, OH, or (d- C5)alkoxy, then R2b is not:
a) optionally substituted (5- to l2-membered)heteroaryl;
b) optionally substituted (3- to 12-membered)heterocycle; or
c) unsubstituted phenyl or phenyl substituted with F or CI, methyl, CF3, hydroxy, methoxy, (3- to 12-membered)heterocycle, or NH2; and provided that when R4 is OH and R1 is (C i-Cio)alkyl, then R2a and R2b cannot be together selected =0; and provided that when R4 is hydrogen and when R1 and R3 are both methyl, then: a) R2a and R2b cannot together form =0 or =N-OH; or
b) R b may not be NH2 or NHC(0)CH3 if R2a is hydrogen; and provided that when R2a is H, then R2b may not be -Z-G-R10, wherein -Z-G-R10 is a) -CH2-CHR20-C(=O)R21, wherein
R20 is H, or -(Ci-C6)alkyl, and
R2' is selected from the group consisting of H, -(C i -C io)alkyl,
-(C3-C12)cycloaIkyl, ((C3-Ci2)cycloalkyl)-(Ci-C6)aIkyl-, phenyl, and phenyl-(Ci-C6)alkyl; or
b) -CH2-CHR20-CR 2R23OH, wherein
R20 is defined as above, and
R22 and R23 are each independently selected from the group consisting of H, -(Ci-Cio)alkyl, ((C3-Ci2)cycloalkyl)-(Ci -C6)alkyl-, phenyl, and
phenyl-(Ci-C6)alkyl; or
c) -CH2-CR20=CR23R24, wherein
R20 and R23 are defined as above, and
R24 is selected from the group consisting of H, and -(CrC6)alkyl; and the pharmaceutically acceptable salts and solvates thereof.
2. A compound of claim 1 having Formula IA'
Figure imgf000303_0001
lA" ,
wherein R1 , R2a, R2b, R3, and R4 are defined as in claim 1. or a pharmaceutically acceptable salt or solvate thereof. 3. A compound of claim 1 having Formula IB'
Figure imgf000303_0002
IB", wherein R1 , R2a, R2b, R3, and R4 are defined as in claim 1 , or a pharmaceutically acceptable salt, prodrug, or solvate thereof.
4. A compound of claim having Formula IC" :
Figure imgf000304_0001
IC",
wherein R1 , R2a, R2b, R3, and R4 are defined as in claim 1 .
or a pharmaceutically acceptable salt or solvate thereof.
5. A compound of claim 1 having Formula ID'
Figure imgf000304_0002
ID",
502 wherein R1 , R2a, R2b, R3, and R4 are defined as in claim 1 , or a pharmaceutically acceptable saltor solvate thereof. 6. A compound of any one of the preceding claims, wherein R a is hydrogen or OH, or wherein R a is absent or OH.
7. A compound of any one of claims 1 to 5, wherein R a is hydrogen. 8. A compound of any one of claims 1 to 5, wherein R a is OH
9. A compound of any one of claims 1 to 5, wherein R2a and R2b together form =0.
10. A compound of any one of claims 1 to 8, wherein R is ((6- to 14-membered)aryl) or ((3- to 12-membered)heterocycle), each of which is optionally substituted with one or more R30.
1 1 . A compound of any one of the preceding claims, wherein R b is -Z-G-R1 provided that -Z-G-R10 is other than hydrogen.
12. A compound of any one of the preceding claims, wherein Z is absent.
13. A compound of any one of claims 1 to 1 1 , wherein Z is CH2. 14. A compound of any one of the preceding claims, wherein G is NR .
15. A compound of any one of the preceding claims, wherein G is NR , wherein R is hydrogen. 16. A compound of any one of claims 1 to 14, wherein G is NR8, wherein R8 is (C |- C6)alkyl.
17. A compound of any one of claims 1 to 14 or 16, wherein G is NR , wherein R is methyl or ethyl. 18. A compound of any one of claims 1 to 1 3, wherein G is a bond.
19. A compound of any one of claims 1 to 13, wherein G is O.
20. A compound of any one of claims 1 to 1 3, wherein G is -OCO-.
21 . A compound of any one of claims 1 to 1 3, wherein G is -C(=0).
22. A compound of any one of claims 1 to 13, wherein G is =CH. 23. A compound of any one of claims 1 to 13, wherein G is =N-0.
24. A compound of any one of claims 1 to 13, wherein G is S.
25. A compound of any one of claims 1 to 13, wherein G is SO.
26. A compound of any one of claims 1 to 1 3, wherein G is S02.
27. A compound of any one of claims 1 to 13, wherein G is -NH-S02. 28. A compound of any one of the preceding claims, wherein R10 is a -(6 to 14- membered)aryl or ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, optionally substituted with one, two, or three substituents independently selected from the group consisting of - (Ci-C6)alkyl, halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(Ci-C6)alkyl-CO-NR5R6, MH2- S02(C!-C6)alkyl-, or -S02-NR5aR6a, preferably substituted with -(C ,-C6)alkyl.
29. A compound of claim 28, wherein R10 is substituted with -S02-NR5aR6a.
30. A compound of claim 29, wherein at least one of R3a or R6a is hydrogen.
31. A compound of claim 30, wherein both R5a and R6a are hydrogen.
32. A compound of any one of the preceding claims, wherein R10 is optionally substituted phenyl or benzyl.
33. A compound of any one of claims 1 to 27, wherein R10 is -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl-(Ci-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(C i-C6)alkyI-, (7- to 12- membered)bicycloheterocycle, or ((7-to 12-membered)bicycloheterocycle)-(C| - C6)alkyl-, each of which is optionally substituted. 34. A compound of claim 33, wherein R10 is optionally substituted with one, two or three substituents independently selected from the group consisting of-(Ci-C6)alkyl, - (C3-i2)cycloalkyl, -(6-to 14-membered)aryl, and -(5- to 12-membered)heteroaryl.
35. A compound of any one of claims 33 to 34, wherein R10 is substituted with
COOR7.
36. A compound of claim 35, wherein R7 is -(Ci-C6)alkyl.
37. A compound of any one of claims 1 to 27 and 33 to 35, wherein R10 is piperidinyl optionally substituted with COOR7 or NH2.
38. A compound of any one of claims 1 to 27 and 33 to 35, wherein R10 is pyrrolidinyl.
39. A compound of any one of claims 1 to 27 and 33 to 35, wherein R10 is -(5- to 12- membered)heteroary 1.
40. A compound of any one of claims 1 to 27 and 33, wherein R10 is optionally substituted pyridinyl. 41 . A compound of any one of claims 1 to 27 and 33, wherein R10 is furanyl.
42. A compound of any one of the preceeding claims, wherein R10 is optionally substituted -C(=0)-((6- to 14-membered)aryl) or optionally substituted -C(=0)-NH- (4- to 12-membered)heteroaryl.
43. A compound of any one of claims 1 to 27, wherein R10 is -C(=0) or -C(=0)-(C2- C6)alkenyl, optionally substituted with -(C3-Ci2)cycloalkyl, -(6- to 14-membered)aryl or -(5- to 12-membered)heteroaryl. 44. A compound of claim 43, wherein R10 is substituted with -(C3-Ci2)cycloalkyl.
45. A compound of any one of claims 1 to 27, wherein R10 is -C(=0)-(C| -C6)alkyl-(6- to 14-membered)aryl, optionally substituted with halo. 46. A compound of any one of claims 1 to 27, wherein R10 is NR5R6 or -(Ci -C6)alkyl- NR5NR6, each of which is optionally substituted.
47. A compound of claim 46, wherein at least one of R5 or R6 is hydrogen. 48. A compound of claim 46 or 47, wherein at least one of R5 or R6 is -(Ci -C6)alkyl.
49. A compound of claim 46 or 47, wherein at least one of R5 or R6 is -(6- to 14- membered)aryl. 50. A compound of claim 46 or 47, wherein at least one at least one of R5 or R6 is -(5- to 12-membered)heteroaryl.
51 . A compound of claim 46 or 47, wherein at least one of R5 or R6 is hydrogen, and the other is -(C rC6)alkyl-COOR7.
A compound of claim 51 , wherein R7 is hydrogen or -(C| -C6)alkyl
53. A compound of any one of claims 1 to 27, wherein R10 is CONR5R6.
54. A compound of claim 53, wherein at least one of R5 or R6 is optionally substituted -(C , -C6)alkyl.
55. A compound of claim 53 or 54, wherein at least one of R5 or R6 is substituted with phenyl. 56. A compound of claim 53, wherein at least one of R5 or R6 is -(6- to 14- membered)aryl optionally substituted with one, two or three independently selected R30 groups.
57. A compound of claim 53, wherein at least one of R5 or R6 is -(6- to 14- membered)aryl substituted with one R30 group.
58. A compound of claim 57, wherein R30 is -(Ci-C6)alkyl.
59. A compound of claim 57, wherein R30 is COOR7.
60. A compound of claim 59, wherein R7 is hydrogen.
61 . A compound of claim 53, wherein at least one of R5 or R6 is -(5- to 12- membered)heteroaryl or -(3- to 12-membered)heterocycle.
62. A compound of claim 53, wherein R5 and R6 together with the nitrogen to which they are attached, form an optionally substituted -(3- to 12-membered)heterocycle.
63. A compound of claim 62, wherein the -(3- to 12-membered) heterocycle is substituted with one, two or three independently selected halo, C(halo)3, CH(halo)2, or CH2(halo).
64. A compound of any one of the preceeding claims, wherein R10 is optionally substituted -S02-(Ci -C6)alkyl.
65. A compound of any one of the preceeding claims, wherein R10 is optionally substituted -S02-(C3-C |2)cycloalkyl.
66. A compound of any one of the preceeding claims, wherein R10 is optionally substituted -S02-(5- to 12-membred)heteroaryl.
67. A compound of any one of the preceeding claims, wherein R10 is optionally substituted -S02-((6- to 14-membered)aryl) or optionally substituted -S02-((6- to 14- membered)aryl)-(C i -C6)alkyl.
68. A compound of claim 65, wherein R10 is substituted with one, two or three independently selected halo, C(halo)3, CH(halo)2, or CH2(halo).
69. A compound of any one of the preceeding claims, wherein R10 is optionally substituted -(C,-C6)alkyl-NR5R6.
70. A compound of claim 69, wherein at least one of R5 and R6 is hydrogen.
71 . A compound of claim 69 or 70, wherein at least one of R5 and R6 is COOR7.
72. A compound of claim 71 , wherein R7 is -(Ci-C6)alkyl.
73. A compound of any one of the preceding claims, wherein R1 is -(C i -C i o)alkyl, preferably methyl. 74. A compound of any one of claims 1 to 72, wherein R1 is (C3-Ci2)cycloalkyl-(C i - C(,)alkyl-, preferably cyclopropylmethyl or cyclobutylmethyl, preferably
cyclopropylmethyl.
75. A compound of any one of claims 1 to 72, wherein R1 is ((6- to 14- membered)aryl)-(C i -C6)alkyl-, preferably difluoro-benzyl or phenylethyl, or ((3- to 12 membered)heterocycle)-(C | -C6)alkyl-, preferably furanylmethyl.
76. A compound of any one of claims 1 to 72, wherein R1 is
Figure imgf000311_0001
77. A compound of any one of the preceding claims, wherein RJ is -(C i -C6)alkyl, preferably methyl or propenyl, further preferably methyl. 78. A compound of any one of claims 1 to 76, wherein R3 is -(C2-C6)alkenyl, preferably 2-propenyl.
79. A compound of any one of the preceding claims, wherein R4 is -(C i -Cs)alkoxy, preferably methoxy.
80. A compound of any one of claims 1 to 48, wherein R4 is OH.
81 . A compound of any one of the claims 1 to 6 or 73 to 80, wherein R a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 where R8 is hydrogen, and R10 is - C(=0)-(C2-C6)alkenyl substituted with a -(5- to 12-membered)heteroaryl. 82. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 where R8 is (C | -C6)alkyl, and R10 is ((6- to 14-membered)ary l)-(C i -C6)alkyl-.
83. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is CH2, G is a bond, and R10 is CONR5R6, wherein one of
R5 or R6 is hydrogen and the other is (6- to 14-membered)aryl substituted with one R30 wherein R30 is COOR7 wherein R7 is hydrogen.
84. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (C , -C6)alkyl, and R10 is -
C(=0) substituted with a (6- to 14-membered)aryl.
85. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is CH2, G is O, and R10 is (6- 14-membered)aryl substituted with a -(Ci-C6)alkyl-CO-NR5R6, wherein R5 and R6 are both hydrogen.
86. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is hydrogen, and R10 is (6- 14-membered)ary] substituted with NH2-S02(Ci -C6)alkyl-.
87. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (C , -C6)alkyl, and R10 is - (6- to 14-membered)aryl substituted with NH2-S02(C C6)alkyl-. 88. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (C,-C6)alkyl, and R10 is - C(=0)-(C2-C6)alkenyl substituted with -(5- to 12-membered)heteroaryl or -(3- to- 12- membered)heterocycle.
89. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is hydrogen, and R10 is -(6- to 14-membered)aryl substituted with NH2-S02(Ci-C6)alkyl-.
90. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2h is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (C ,-C6)alkyl, and Ri 0 is CONR5R6 wherein one of R5 or R6 is hydrogen and the other is -(C,-C6)alkyl-COOR7.
91 . A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is a bond, and R10 is -(3- to 12- membered)heterocycle substituted with -COOR7 wherein R7 is hydrogen.
92. A compound of any one of claims 1 to 6 or 73 to 80, wherein R a is hydrogen, and R2b is -Z-G-R10, wherein Z is CH2, G is NR8 wherein R8 is hydrogen, and R10 is -
Figure imgf000313_0001
to 14-membered)aryl substituted with two halo. 93. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (Ci -C6)alkyl, and R10 is CONR5R6 wherein one of R5 or R6 is hydrogen and the other is -(C,-C6)alkyl-COOR7.
94. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is (C,-C6)alkyl, and R10 is -
C(=0)-(C2-C6)alkenyl substituted with -(3- to 12-membered)heterocycle.
95. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 wherein R8 is -(C,-C6)alkyl, and R10 is ((3- to 12-membered)heterocycle)-(Ci-C6)alkyl- substituted with COOR7.
96. A compound of claim 95, wherein R7 is -(Ci-C6)alkyl.
97. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 where R8 is hydrogen, and R10 is optionally substituted -S02-((6- to 14-membered)aryl).
98. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is -N-S02, and R10 is -(6- to 14-membred)aryl or ((6- to 14-membered)aryl)-(C i -C6)alkyl-, each of which is optionally substituted.
99. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 where R8 is -(C ,-C6)alkyl, and R10 is - (6- to 14-membered)aryl substituted with -S02-NR5aR6a. 100. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is abent, G is TMR8 where R8 is hydrogen, and R10 is - (C,-C6)alkyl-NR5R6.
101. A compound of claim 100, wherein at least one of R3 and R6 is hydrogen.
102. A compound of claim 100 or 101 , wherein at least one of R5 and R6 is -COOR7.
103. A compound of claim 102, wherein R7 is -(C|-C6)alkyl. 104. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8 where R8 is -(C| -C6)alkyl, and R10 is CONR5R6.
105. A compound of claim 104, wherein Rs and R6 taken together with the nitrogen atom to which they are attached form an optionally substituted -(3- to 12- membered)heterocycle.
106. A compound of claim 105, wherein the -(3- to 12-membered) heterocycle is substituted with one R30 group. 107. A compound of claim 106, wherein R30 is selected from the group consisting of halo, C(halo)3, CH(halo)2, and CH2(halo).
108. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen,
2b 10 8 8 10 and R is -Z-G-R , wherein Z is absent, G is NR where R is hydrogen, and R is optionally substituted -S02-((6- to 14-membered)aryl).
109. A compound of claim 108, wherein R10 is substituted with one, two or three substituents independently selected from the group consisting of halo, C(halo)3, CH(haIo)2, and CH2(halo).
1 10. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is -N-S02, and R10 is optionally substituted -(6- to 14-membered)aryl. 1 1 1. A compound of claim 1 10, wherein R10 is optionally substituted with one, two or three substituents independently selected from the group consisting of halo, C(halo)3, CH(halo)2, and CH2(halo).
1 12. A compound of any one of claims 1 to 6 or 73 to 80, wherei n R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is -CONR5R6.
Q
1 13. A compound of claim 1 12, wherein R is -(C|-C6)alkyl.
1 14. A compound of claim 1 12 or 1 13, wherein at least one of R5 and R6 is hydrogen.
1 15. A compound of claim any one of claims 1 12 to 1 14, wherein at least one of R and R6 is optionally substituted -(6- to 14-membered)aryl.
1 16. A compound of claim 1 15, wherein the -(6 to 14-membered)aryl is substituted with one Rj0 group.
1 17. A compound of claim 1 1 6, wherein Rj0 is -(C | -C6)alkyl.
1 1 8. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted
((6- to 14-membered)aryl)-(C| -C6)alkyI-.
1 19. A compound of claim 1 1 8, wherein R8 is hydrogen. 120. A compound of claim 1 18 or 1 19, wherein R10 is substituted with -(C i-C6)alkyl.
121 . A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(Ci-C6)alkyl-, (7- to 12- membered)bicycloheterocycle , or ((7- to 12-membered)bicycloheterocycle)-(Ci- C6)alkyl-, each of which is optionally substituted.
122. A compound of claim 121 , wherein R8 is hydrogen. 123. A compound of claim 121 or 122, wherein R10 is substituted with -COOR7.
124. A compound of claim 123, wherein R7 is -(Ci-C6)alkyl.
125. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted -
C(=0)-NH-((3- to 12-membered)heterocycle).
126. A compound of claim 125, wherein R is -(Ci-C6)alkyl.
127. A compound of claim 125 or 126, wherein R10 is substituted with one, two or three independently selected halo, C(halo)3, CH(halo)2, and CH2(halo).
128. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2 is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted ((6- to 14-membered)aryl)-(C| -C6)alkyl-.
Q
129. A compound of claim 128, wherein R is hydrogen.
130. A compound of claim 128 or 129, wherein R10 is substituted with -S02-NR5aR6a. 13 1 . A compound of claim 130, wherein at least one of R5a and R6a is hydrogen.
1 32. A compound of claim 130, wherein both R5 and R6a are hydrogen.
133. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted -
C(=0).
134. A compound of claim 133, wherein R8 is -(Ci-C6)alkyl. 135. A compound of claim 133 or 134, wherein R10 is substituted with -(6- to 14- membered)aryl.
136. A compound of claim 135, wherein R10 is substituted with phenyl or benzyl. 137. A compound of claim 133 or 134, wherein R 10 is substituted with -(3- to 12- membered)heterocycle or (5- to 12-membered)heteraryl.
138. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is (6- to 14-membered)aryl or ((6- to 14-membered)aryl)-(Ci-C6)alkyl-, each of which is optionally substituted.
139. A compound of claim 138, wherein R8 is hydrogen.
140. A compound of claim 138 or 1 39, wherein R10 is substituted by one, two or three independently selected halo, C(haIo)3, CH(halo)2, or CH2(halo).
141 . A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R 10 is optionally substituted - C(=0)-(C 1 -C6)alkyl. 142. A compound of any one of claims 1 to 6 or 73 to 80, wherein R a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is NR5R6.
143. A compound of claim 142, wherein R8 is hydrogen. 144. A compound of claim 142 or 143, wherein at least one of R5 or R6 is hydrogen.
145. A compound of any one of claims 142 to 144, wherein at least one of R5 or R6 is -COOR7. 146. A compound of claim 145, wherein R7 is -(C| -C6)alkyl.
147. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted - S02-((6- to 14-membered)aryl).
148. A compound of claim 147, wherein R8 is hydrogen.
149. A compound of claim 147 or 148, wherein R10 is substituted with one, two or three independently selected halo, C(halo)3, CH(haIo)2, or CH2(halo). 150. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted ((6- to 14-membered)aryl)-(Ci-C6)alkyl.
15 1 . A compound of claim 150, wherein R is -(C i -C6)alkyl.
152. A compound of claim 150 or 15 1 , wherein R10 is substituted with -S02-NR5aR6a.
153. A compound of claim 152, wherein at least one of R5a and R6a is hydrogen. 154. A compound of claim 152, wherein both R5a and R6a are hydrogen.
155. A compound of any one of claims 1 to 6 or 73 to 80, wherein R2a is hydrogen, and R2b is -Z-G-R10, wherein Z is absent, G is NR8, and R10 is optionally substituted - (C,-C6)alkyl-NR5R6.
156. A compound of claim 155, wherein at least one of R5 and R6 is hydrogen.
157. A compound of claim 155 or 156, wherein at least one of R5 and R6 is -COOR7. 158. A compound of claim 157, wherein R7 is -(d-C6)alkyl.
159. A compound of any one of the preceding claims, wherein
R1 is selected from the group consisting of-(Ci -Cio)alkyl, -(C2-C io)alkenyl, -(C2- C |0)alkynyl, -(C3-C,2)cycloalkyl, (C3-C,2)cycloalkyl-(Ci-C6)alkyl-, -(C3-
Ci2)cycloalkenyl, (C3-Ci2)cycloalkenyl-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l4-membered)aryl)-(Ci-C6)alkyl-, diphenyl(Ci -C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12 membered)heterocycle)-(C i-C6)alkyl-, - (OCH2CH2)s-0-(C ,-C6)alkyl, -(CH2CH20)s-(C, -C6)alkyl, (C1-C ,0)alkoxy, C(halo)3, CH(halo)2, CH2(halo), C(0)R5, -C(O)O-(Ci-C10)alkyl, and -(CH2)n-N(R6)2, each of which is optionally substituted by 1 , 2 or 3 independently selected R9 groups;
R a is hydrogen, OH, or absent;
R2b is
a) ((6- to 14-membered)aryl), -((5- to 12-membered)heteroaryl), or ((3- to 12- membered)heterocycle), each of which is optionally substituted with one, two, or three independently selected R30 groups; or
b) -Z-G-R 10, provided that -Z-G-R10 is other than hydrogen;
or R2a and R2b together form =0; Z is absent or -(CH2)m- optionally substituted with 1 or 2 -(C )-C6)alkyl;
G is selected from the group consisting of:
a) a bond, -(C i-C6)alkylene, -(C2-C6)alkenylene;
b) O, -OCO-, -C(=0), =CH;
c) NR8, =N-0, =N-NH;
d) S, SO, S02; and
e) -NH-S02; and when Z is absent and G is =CH, =N-0, or =N-NH, then R a is absent; selected from the group consisting of hydrogen, -(Ci-Cio)alkyl, -(C2-C i2)alkenyl,
-C(=0), -C(=0)-(C ,-C6)alkyl, -C(=0)-(C2-C6)alkenyl, -C(=0)-(6- to 14- membered)aryl, -C(=0)-(C i-C6)alkyl-(6- to 14-membered)aryl, -(C2-Ci2)alkynyl, -(Cp C,0)alkoxy, -(0CH2CH2)s-0(C i-C6)alkyl, -(CH2CH20)S-(C,-C6)alkyl, -NH2, - NH(C,-C6)alkyl, CN, NR5R6, -(C ,-C6)alkyl-NR5R6, -CONR5R6, -(CrC6)a]kyl-CO- NR5R6, -COOR7, -(Ci-C6)alkyl-CO-OR7, -(C, -C6)alkoxy-COOR7, -CO-(CH2)n- COOR7, -CO-(CH2)n-CO-NR5R6, -(C3-C12)cycloalkyl, ((C3-Ci2)cycloaIkyl)-(C t- C6)alkyl-, -(C4-C|2)cycloaikenyl, ((C4-Ci2)cycloalkenyl)-(Ci-C6)alkyl-, -(C6- C,4)bicycloalkyl, ((C6-C |4)bicycloalkyl)-(C ,-C6)alkyl-, -(C8_C20)tricycloalkyl, ((C8- C20)tricycloalkyl)-(Ci-C6)alkyl-, -(C7-Ci4)bicycloalkenyl, ((C7-Ci4)bicycloalkenyl)- (C, -C6)alkyl-, -(C8-C20)tricycloalkenyl, ((C8-C20)tricycloalkenyl)-(C| -C6)alkyl-, -(6- to 14-membered)aryl, ((6- to l 4-membered)aryl)-(Ci-C6)alkyl-, -S02-(C,-C6)alkyl, - S02-((C3-C|2)cycloalkyl), -S02-((C3-C12)cycloalkyl)-(Ci-C6)alkyl, -S02-((5- to 12- membered)heteroaryl), -S02-((5- to 12-membered)heteroaryl)-(C|-C6)alkyl, -C(=0)- NH-((5- to 12-membered)heteroaryl), -C(=0)-NH-((5- to 12-membered)hetet aryl)- (C,-C6)alkyl, -C(=0)-NH-((3- to 12-membered)heterocycle), -C(=0)-NH-((3- to 12- membered)heterocycle)-(C i-C6)alkyl, S02-((6- to 14-membered)aryl), S02-((6- to 14 membered)aryl)-(C i -C6)alkyl, -(7- to 12-membered)bicyclic ring system, ((7- to 1 2- membered)bicyclic ring system)-(Ci-C6)alkyl-, -(7- to 12-membered)bicyclic aryl, ((7- to 12-membered)bicyclic aryl)-(Ci-C )alkyl-, -(5- to 12-membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C|-C6)alkyl-, -(3- to 12-membered)heterocycle, ((3- to 12 membered)heterocycle)-(Ci-C6)alkyl-, -(7- to 12-membered)bicycloheterocycle, ((7- to 12-membered)bicycloheterocycle)-(C|-C6)alkyl-, phenyl, benzyl and naphthyl; each of which is optionally substituted with one, two, or three substituents independently selected from the group consisting of -OH, (=0), halo, -C(halo)3, -CH(halo)2, -CH2(halo), -(C, -C6)alkyl, halo(C,-C6)alkyl-, -(C2-C6)alkenyl, -(C2-C6)alkynyl, hydroxy(Ci-C6)alkyI-, dihydroxy(Ci-C6)alkyl-, -(C, -C6)alkoxy, ((C ,- C6)alkoxy)CO(C]-C6)alkoxy-, phenyl, benzyl, -NH2, -NH(Ci-C6)alkyl,
-(C, -C6)alkyl-NH(C,-C6)alkyl-R14, -CN, -SH, -OR1 1, -CONR5R6, -(C , -C6alkyl)-CO- NR5R6, -COOR7, -(C, -C6)alkyl-CO-OR7, -(C,-C6)alkoxy-COOR7, -(OCH2CH2)s- 0(C,-C6)alkyl, -(CH2CH20)s-(Ci-C6)alkyl, -S02-NR5aR6a, (Ci-C6)alkyl)sulfonyl,
((C| -C6)alkyl)sulfonyl(Cl-C6)alkyl-, -NH-S02(C i-C6)alkyl, NH2-S02(Cl-C6)alkyl-, - N(S02(C,-C6)alkyl)2, -C(=NH)NH2, -NH-CO-(Ci-C6)alkyl, -NH-CO-NH2, -NH- C(=0)-NH-(C,-C6)alkyl, -NH-C(=0)-(6- to 14- membered)aryl, -NH-C(=0)-(C,- C6)alkyl-(6- to 14- membered)aryl, -NH-(C,-C6)alkyl-CO-OR7, -NH-C(=0)-(C, - C6)alkyl-CO-OR7, -NH-C(=0)-CH(NH2)-(C, -C6)alkyl-CO-OR7, -(C3-C,2)cycloalkyl, ((C3-C12)cycIoalkyl)-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, -(6- to 14- membered)aryloxy, -(C, -C6)alkoxy-C(0)NR5R6, -NH-(C,-C6)alkyl-C(0)-NR5R6, - C(0)NH-(C,-C6)alkyl-COOR7, ((6- to 14-membered)aryi)-(Ci-C6)alkyl-, -(5- to 12- membered)heteroaryl, ((5- to 12-membered)heteroaryl)-(C i-C6)alkyl-, -(3- to 12- membered)heterocycle, ((3- to 12-membered)heterocycle)-(Ci -C6)alkyl-, -(7- to 12- membered)bicycloheterocycle, and ((7- to 12-membered)bicycloheterocycle)-(C| - C6)alkyl-;
R is selected from:
a) -H; or
b) -(Ci-C6)alkyl, -(C2-C6)alkenyl, or -(C2-C6)alkynyl; is selected from
a) -H, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo), COOH, or CONH2; or b) -(d.C5)alkyl, -(C2.C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, or -(C,.
C5)alkoxy, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups;
R5 and R6 are each independently selected from
a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, -CH2(halo);
b) -(CrC6)alkyl, -(C2-C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, -(C, - C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(C].Ci0)alkyl, -(C2_Ci0)alkenyl, -(C2_ CI0)alkynyl, -(C,_Cl0)alkoxy, -(C .Cl 2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a;
c) -(C3-C8)cycloalkyl, ((C3_C8)cycloalkyl)-(C,-C6)alkyl-, -COOR7, -(C,-C6)alkyl- COOR7, -CONH2, or (Ci_C6)alkyl-CONH-;
d) ((6- to 14-membered)aryl) optionally substituted with 1 , 2, or 3 independently selected R30 groups;
e) -((5- to 12-membered)heteroaryI) optionally substituted with 1 , 2, or 3
independently selected Rj0 groups; or f) R5 and R6 together with the nitrogen atom to which they are attached form a (3 to 12-membered)heterocycle optionally substituted with 1 , 2, or 3
independently selected R30 groups; and R6a are each independently selected from the group consisting of:
a) hydrogen, -OH, halo, -C(halo)3, -CH(halo)2, and -CH2(halo);
b) -(C ,-C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(CH2)n-0-(CH2)n-CH3, and - (Ci-C6)alkoxy, each of which is optionally substituted with 1 , 2, or 3 substituents independently selected from -OH, halo, -(Ci.C io)alkyl, -(C2.
Ci2)alkenyl, -(C2-Ci2)alkynyl, -(Ci.Cio)alkoxy, -(C3_Ci2)cycloalkyl , -CHO, - COOH, -C(halo)3, -CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, and phenyl; c) -(C3-C8)cycloalkyl, ((C3.C8)cycloalkyl)-(C,-C6)alkyl-, -COOR7, -(C ,-C6)alkyl- COOR7, -CONH2, and (d_C6)alkyI-CONH-;
d) -(6- to 14-membered)aryl optionally substituted with 1 , 2, or 3 independently selected R groups;
e) -((5- to 12-membered)heteroaryl) optionally substituted with 1 , 2, or 3
independently selected R groups; or
f) R5a and R6a together with the nitrogen atom to which they are attached form a (3- to 12-membered)heterocycle optionally substituted with 1 , 2, or 3 independently selected R30 groups; each R7 is independently selected from the group consisting of hydrogen, -(C |- C6)alkyl, -(C2-C6)alkenyl, -(C2-C6)alkynyl, -(C3.C]2)cycloalkyl, -(C4-C|2)cycloalkenyl, ((C3-Ci2)cycloalkyl)-(Ci-C6)alkyI-, and ((C4-C|2)cycloalkenyl)-(C i-C6)alkyl- ; each R8 is independently selected from H, -(C | -C6)alkyl, -(C2-C6)alkenyl, -(C2- C6)alkynyl, -(C]-C io)alkoxy, -(C3-Ci2)cycloalkyl, -(C3-Ci2)cycloalkenyl, ((C3- C ,2)cycloalkyl)-(C , -C6)alky 1-, ((C3-C ,2)cycloalkeny 1)-(C , -C6)alkyl-, -C(=0)(C , - C6)alkyl or S02(C,-C6)alkyl; each R9 is independently selected from -OH, halo, -(Ci_C|0)alkyl, -(C2-Ci0)alkenyl, - (C2-C |0)alkynyl, -(C ,.C,0)alkoxy, -(C3-C|2)cycloalkyl , -CHO, -C(0)OH, -C(halo)3, - CH(halo)2, CH2(halo), -(CH2)n-0-(CH2)n-CH3, phenyl, or CONR5aR6a; each R1 1 is independently selected from -C(halo)3, -CH(halo)2, -CH2(halo), -(C2.
C5)alkenyl, -(C2-C5)alkynyl, -(CH2)n-0-(CH2)n-CH3, (6- to 14-membered)aryl, ((6- to 14-membered)aryl)-(C i-C6)alkyl-, or (5- to 12-membered)heteroaryl, ((5- to 12- membered)heteroaryl)-(C| -C6)alkyl-, each of which is optionally substituted with 1 , 2, or 3 independently selected R9 groups; each R14 is independently selected from -COOR7, -(C , -C6)alkyl-COOR7, -C(=0)-(C ,- C6)alkyl-COOR7, -(C rC6)alkyl-C(=0)-(C |-C6)alkyl-COOR7, CONH2, or -(C
C6)alkyl-CONH; each R30 is independently selected from COOR7, CONR5aR6a, -(C, -C6)alkyl, -C(=0), CM, -(3- to 12-membered)heteroaryl, ((3- to 12-membered)heteroaryl)-(C]-C6)alkyl-, NH2, halo, and ((6- to 14-membered)aryl)-(Ci -C6)alkoxy-; m is an integer 1 , 2, 3, 4, 5, or 6;
n is an integer 0, 1 , 2, 3, 4, 5, or 6;
s in an integer 1 , 2, 3, 4, 5, or 6; provided that when R4 is -(C|-C5)alkoxy then:
a) R2a and R2b cannot be taken together to form =0; or
b) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is either:
a. OH;
b. -(C, -C6)alkyl;
c. -(C2-C6)alkenyl; or
d. -(C2-C6)alkynyl; or
c) R2a cannot be H when the combination -Z-G-R10 is either:
a. OH; b. -0-C(=0)-(C]-C6)alkyl; or
c. -0-C(=0)-(C2-C6)alkenyl;
and provided that when R4 is OH then:
a) R2a cannot be OH when R2b is -Z-G-R10, and -Z-G-R10 is:
a. -(d-C6)alkyl;
b. -(C2-C6)alkenyl;
c. or -(C2-C6)alkyny[;
b) R2a cannot be H when R2b is -Z-G-R10, and -Z-G-R10 is:
a. OH
b. -0-C(-0)-(C,-C6)alkyl; or
c. -0-C(=0)-(C2-C6)alkenyl; and provided that when R3 is (Ci -C6)alkyl or (C2-C6)alkenyl, and R4 is H, OH, or (Cr C5)alkoxy, then R2b is not
a) optionally substituted (5- to 12-membered)heteroaryl,
b) optionally substituted (3- to 12-membered)heterocycle, or
c) unsubstituted phenyl or phenyl substituted with halo, (C| -C6)alkyl, C(halo)3, hydroxy, (C i-C6)alkoxy, (3- to 12-membered)heterocycle, or NH2 and provided that when R4 is OH and R1 is (Ci-Cio)alkyl, then R2a and R2b cannot be together selected =0. and provided that when R4 is hydrogen and when R1 and R3 are both methyl, then a) R2a and R2b cannot together form =0 or =N-OH; or
b) R2b may not be NH2 or NHC(0)CH3 if R2a is hydrogen. and provided that when R2a is H, then R2b may not be -Z-G-R10, wherein -Z-G-R10 is: a) -CH2-CHR20-C(=O)R21, wherein
R20 is H, or -(C, -C6)alkyl, and
R21 is selected from the group consisting of H, -(C i-Cio)alkyl, -(C3-Cl 2)cycloalkyl, ((C3-C i2)cycloalkyl)-(C,-C6)alkyl-, -(6- to 14- membered)aryl, and ((6- to 14-membered)aryl)-(C | -C6)alkyl-; or
b) -CH -CHR20-CR22R23OH, wherein
R20 is defined as above, and
R22 and R23 are each independently selected from the group consisting of H, -(C|-Cl 0)alkyl, ((C3-C i 2)cycloalkyl)-(Ci-C6)alkyl-, -(6- to 14-membered)aryl, and ((6- to 14-membered)aryl)-(Ci -C6)alkyl-; or
c) -CH2-CR20=CR2 R24, wherein
R20 and R23 are defined as above, and
R24 is selected from the group consisting of H, and -(Ci-C6)alkyl. and the pharmaceutically acceptable salts and solvates thereof.
160. A compound selected from the group consisting of:
2-(((8-methoxy-3,6-dimethyl-l , 2,3,4,5, 6-hexahydro-2,6- methanobenzo[i/]azocin-l l -ylidene)amino)oxy)acetic acid;
8-methoxy-3,6-dimethyl- 1 ,2, 3,4,5, 6-hexahydro-2,6-methanobenzo[ti ]azocin-
1 1 -one oxime;
2-(((6i?, l l i?)-8-methoxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[( Jazocin- l l -yl)oxy)acetamide;
2-(((6R, 1 15 8-methoxy-3,6-dimethyi- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[cT|azocin- 1 1 -yl)oxy)acetamide;
8-methoxy-3,6-dimethyl- 1 ,2, 3,4,5, 6-hexahydro-2,6-methanobenzo[i ]azocin- 1 l-one-0-(2-(diethylamino)ethyl) oxime;
8-methoxy-3,6-dimethyl- l 1 -propylidene- 1 ,2,3,4,5, 6-hexahydro-2, 6- methanobenzo[ii]azocine;
4-( 1 1 , 1 1 -dihydroxy-8-methoxy-6-methy 1- 1 ,2,5,6-tetrahydro-2,6- methanobenzo[i ]azocin-3(4H)-yl)-N,7V-dimethyl-2,2-diphenylbutanamide;
(6i?,1 15)-8-methoxy-N,3,6-trimethyl- l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[(5i]azocin- l 1 -amine; (6R,\ l^)-8-methoxy-N,3,6-trimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l 1 -amine;
3- (cyclopropylmethyl)-8-methoxy-6-methyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<5T|azocin-l 1-one O-methyl oxime;
((6S,) l#)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[c]azocin-l l-yl)methanol;
(Z)-ethyI 2-(8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[a]azocin- 11 -ylidene)acetate;
(Z)-2-(8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-ylidene)acetic acid;
ethyl 2-((6S',l l ?)-8-methoxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[<i]azocin- 11 -yl)acetate;
2-((65", 1 li?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)acetic acid;
(£)-3-(furan-3-yl)-N-((6i?,l l ?)-8-methoxy-3,6-dimethyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin- 11 -yl)-N-methylacrylamide;
4- ((67?, 115)-11 -hydroxy-8-methoxy-6-methyl-l ,2,5,6-tetrahydro-2,6- methanobenzo[ |azocin-3(4H)-yl)-N,N-dirnethyl-2,2-diphenylbutanamide;
8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6-methanobenzo[i]azocin- 11 -one oxime;
4-(l l-(hydroxyimino)-8-methoxy-6-methyl-l,2,5,6-tetrahydro-2,6- methanobenzo[i]azocin-3(4H)-yl)-N,N-dimethyl-2,2-diphenylbutanamide;
(£)-3-(furan-3-yl)-N-((6i?,115)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin- 11 -yl)-N-methylacrylamide;
4-((6R,] \R)-&,\ l-dihydroxy-6-methyl-l,2,5,6-tetrahydro-2,6- methanobenzo[d]azocin-3(4H)-yl)-N,N-dimethyl-2,2-diphenylbutanamide;
4-((6R,\ 15)-8,1 l-dihydroxy-6-methyI-l,2,5,6-tetrahydro-2,6- methanobenzo[i]azocin-3(4H)-yl)-N,N-dimethyl-2,2-diphenylbutanamide;
( )-3-(furan-3-yl)-N-((2?,6?,l l^-8-methoxy-3,6-dimethyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[(Jazocin-l l-yl)acrylamide; (E)-3-(furan-3-y\)-N-((2R,6R, 1 l,S)-8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6- hexahydro-2,6-methanobenzo[</]azocin- 11 -yl)-N-methylacry lamide;
(£)-N-ethyl-3-(furan-3-yl)-N-((2?,6J/?,115)-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6-methanobenzo[i/]azocin- 11 -yl)acrylamide;
4-fluoro-N'-((25',6i(?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[< lazocin- 1 l-ylidene)benzohydrazide;
N-((2^,6?,115 -8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[(i]azocin- 11 -yl)-N-methyl-2-(4-(methylsulfonyl)phenyl)acetamide);
4-(((2R,6R,l 15 -8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexa ydro-2,6- methanobenzo[c]azocin- 11 -yl)(methyl)amino)-4-oxobutanoic acid;
(2R,6R,\ IS)-3,6-dimethyl-l l-(methyi(phenethyl)amino)-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[ifJazocin-8-ol;
Figure imgf000328_0001
1 ,2,3,4,5,6-hexahydro-2,6 methanobenzo[i/]azocin-l l-yl)amino)methyl)piperidine-l-carboxylate;
tert-buty\ 4-((((2R,6S,] li?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6 methanobenzo[t]azocin-l l-yl)(methyl)amino)methyl)piperidine-l-carboxylate;
4- (2-((6S, 11 i?)-8-hydroxy-3,6-dimethyl- 1 ,2,3 ,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)acetamido)benzoic acid;
5- (((2?,6S,llS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[ ]azocin-l l-yl)methoxy)nicotinic acid;
5-(((65, 11 ?)-8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[c]azocin-l l-yl)methoxy)nicotinic acid;
2- (2-((65,l 17?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[c]azocin-l l-yl)acetamido)benzoic acid;
3- ((6S, 11 i?)-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin- 11 -yl)benzonitrile;
3-((6i?,l \ S)- \ l -hydiOxy-8-methoxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[c/]azocin- 11 -yl)benzonitrile;
3-((65",l l/?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)benzoic acid; vV-((2^,6^,ll^)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)-N-methylbenzamide;
3- (((6S", 1 l^)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[</Jazocin-l l-yl)methoxy)benzoic acid;
3-(((2^,65,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<]azocin-l l-yl)methoxy)benzoic acid;
(65,1 \R)-U -(3-(lH-tetrazol-5-yl)phenyl)-8-raethoxy-3,6-dimethyI- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[<i]azocine;
(15)-l-(5-chloro-6-(((6S,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro- 2,6-methanobenzo[(Jazocin-l l-yI)methoxy)pyridin-3-yl)ethane-l,2-dioI;
4- (((6S,l 15)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[6T|azocin-ll-yl)methoxy)benzamide;
4-(3-((2i?,6i?,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[fiQazocin-l l-yl)-3-methylureido)benzoic acid;
4-(3-((2i?,6i?,l lJ?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<sT]azocin-l l-yl)-3-methylureido)benzoic acid;
3-(((2i?,6?,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<Jazocin-l l -yl)(methyl)carbamoyl)benzoic acid;
3- (((2i?,6i?,ll ?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)(methyl)carbamoyl)benzoic acid;
2-(((2i?,6i?,llS)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i |azocin-l l-yl)(methyl)carbamoyl)benzoic acid;
2-(4-(((2i?,6i?,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[ ]azocin-l l-yl)amino)phenyl)ethanesulfonamide;
2-(4-(((2i?,6^,115)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[ii]azociri-l l-yl)(methyl)amino)phenyl)ethanesulfonamide;
4- ((61S,lli?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocine-l l-carboxamido)benzoic acid;
2-(((65',l lJ?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)methoxy)isonicotinamide; 3- ((6S,lli?)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo( ]azocin- 11 -yl)benzamide;
(25)-l-(2-((6l ,ll ?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[ifJazocin-l l-yl)acetyl)pyrrolidine-2-carboxylic acid;
(2R,6R,\ 15)-3-(cyclopropylmethyl)-8-methoxy-N,6-dimethyl-l, 2,3,4,5,6- hexahydro-2,6-methanobenzo[£/]azocin-l I -amine;
(E)-N-((2R,6R 15)-3-(cyclopropylmethyl)-8-methoxy-6-methyl-l, 2,3,4,5,6- hexahydro-2,6-methanobenzo[<]azocin- 11 -yl)-3-(furan-3-yi)-N-methylacrylamide;
2- (4-(((2R,6R, 1 lS)-8-hydroxy-3,6-dimethyl- 1 ,2,,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)amino)phenyl)ethanesulfonamide;
4- (((2R,6R, 1 li?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[ ]azocin-l l-yl)(methyl)carbamoyl)benzoic acid;
3- ((6R, \\R)-\\ -hydroxy-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[< ]azocin- 1 l-yl)benzonitrile;
(65,1 li?)-ri-(3-(benzyloxy)phenyl)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[c]azocine;
methyl 3-((6i?,l 1 R)- 1 l-hydroxy-8-methoxy-3,6-dimethyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[ijazocin- 11 -y l)benzoate;
3-((6R,\ 15)-ll-hydroxy-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[<i]azocin-l l-yl)benzamide;
methyl 3-((6R,\ \S)-\ l-hydroxy-8-methoxy-3,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-l l-yl)benzoate;
(6R, 11 R)- 11 -(3-( 1 H-tetrazol-5-yl)phenyl)-8-methoxy-3,6-dimethyl-l ,2,3,4,5,6- hexahydro-2,6-methanobenzo[tiT]azocin- 11 -ol;
(6R,\ \S)-\ l-(3-(lH-tetrazol-5-yl)phenyl)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6- hexahydro-2,6-methanobenzo[</]azocin-l 1 -ol;
3-((6R, 1 IR)- 11 -hydroxy-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[<Jazocin- 11 -yl)benzamide;
5- CS-^^ll^-S-hydroxy-S^-dimethyl-l^^^^^-hexahydro^^- methanobenzo[i]azocin-l l-yl)-3-methylureido)propanoic acid; (6^)-8-methoxy-3,6-dimethyl-ll-(pyrrolidin-l-yl)-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocine;
l-((6^)-8-methoxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[c/]azocin-l l-yl)piperidin-4-amine;
3-((6R, 11 S)- 11 -hydroxy-8-methoxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[d]azocin-l l-yl)benzoic acid;
1- (2-((6S,l li?)-8-hydroxy-3,6-dimethyl-l,2,3,4,5,6-hexahydro-2,6- methanobenzo[i]azocin-l l-yl)acetyl)piperidine-4-carboxylic acid;
2- {{{2R,6R, 11 S)-3-(cyclopropylmethy l)-8-methoxy-6-methyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-l l-yl)(methyl)amino)acetic acid;
1- ((6?)-8-methoxy-3,6-dimethyl- 1,2,3,4, 5, 6-hexahydro-2,6- methanobenzo[< ]azocin-l 1 -yl)piperidine-3-carboxylic acid;
2- (3,4-dichlorophenyl)-N-(((65,l 15)-8-methoxy-3,6-dimethyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-l l-yl)methyl)acetamide;
2-(3-((2i?,65", 1 lS)-8-hydroxy-3,6-dimethyl-l ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin-l l-yl)-3-methylureido)-4-methylpentanoic acid;
(JE)-N-((2R,6R,llS)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l, 2,3,4,5,6- hexahydro-2,6-methanobenzo[<i]azocin- 11 -yl)-3-(furan-3-yl)-N-methylacry lamide;
3- (4-cyanophenyl)-l-((2i?,6?,l 15)-8-hydroxy-3,6-dimethyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[d]azocin-l l-yl)-l -methylurea;
3-(4-cyanophenyl)- 1 -((2R,6R, 11 S 8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-l l-yl)-l -methylurea; and
the pharmaceutically acceptable salts and solvates thereof. 161. A compound selected from the group consisting of:
3-(4-cyanophenyl)-l-((67?,l l^)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1 ,2,3,4,5,6-hexahydro-2,6-methanobenzo[(i]azocin- 11 -yl)- 1 -methylurea;
3-(4-cyanophenyl)-l-((6?,l 15)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl- 1, 2,3,4,5, 6-hexahydro-2,6-methanobenzo[i]azocin-l l-yl)-l -methylurea;
4-(3-((6i?,l 15)-3-(cyclopropylmethyl)-8-methoxy-6-methyl- 1,2,3,4,5,6- hexahydro-2,6-methanobenzo[t/]azocin- 11 -yl)-3-methylureido)benzamide; (£)-N-((6i?,l lJ?)-3-(cyclopropylmethyl)-8-hydroxy-6-methyl-l ,2,3,4,5,6- hexahydiO-2,6-methanobenzo[i ]azocin- 1 1 -yl)-3-(fLiran-3-yl)-N-methylacrylamide;
4-((2R,6R, 1 15)- 1 1 -(3-(4-cyanophenyl)- 1 -methylureido)-8-hydroxy-6-methyl- l ,2,5,6-tetrahydro-2,6-methanobenzo[£ ]azocin-3(4H)-yl)-iV,N-dirnethyl-2,2- diphenylbutanamide;
{E)-N-{{2R,6R, \ l S>3-(cyclopropylmethyl)-8-methoxy-6-methyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[i/]azocin-l l -yl)-3-(furan-3-y!)-N-methylacrylamtde;
(Z)-N-((2R,6RA l S 3-(cyclopropylmethyl)-8-methoxy-6-methyl- 1 ,2,3,4,5,6- hexahydro-2,6-methanobenzo[c ]azocin- l l -yI)-3-(furan-3-yl)-N-methylacrylamide;
3-(4-cyanophenyl)- l -((2i?,6i?, l l S)-8-hydroxy-6-methyl-3-phenethyl- 1 ,2,3,4,5, 6-hexahydro-2,6-methanobenzo[< ]azocin- 1 1 -yl)- 1 -methylurea;
3-(4-cyanophenyl)- 1 -((6i?, 1 17?)-3-(cyclobutylmethyl)-8-hydroxy-6-methyl- 1 ,2,3,4,5, 6-hexahydro-2,6-methanobenzo[d]azocin- 1 1 -yl)-l -methylurea'
3-(4-cyanophenyl)- l -((6i?, l 17?)-3-(2,3-difluorobenzyI)-8-hydroxy-6-methyl- 1 ,2,3,4,5, 6-hexahydro-2,6-methanobenzo[i/]azocin- 1 1 -yl)- 1 -methylurea;
3-(4-cyanophenyl)- l -((2i?,6i?, l 15)-3-(furan-3-ylmethyl)-8-hydroxy-6-methyl- l ,2,3,4,5,6-hexahydro-2,6-methanobenzo[£/]azocin- l 1 -yl)- 1 -methylurea;
3-((2R,6R, 1 1 S)-8-hydroxy-3,6-dimethyl- 1 ,2,3,4,5,6-hexahydro-2,6- methanobenzo[i/]azocin- 1 l -yl)-3,4-dihydroquinazolin-2(lH)-one; and
the pharmaceutically acceptable salts and solvates thereof.
162. A pharmaceutical composition comprising an effective amount of a compound of any one of claims 1 to 161 , or a pharmaceutically salt, prodrug, or solvate thereof, and a pharmaceutically acceptable carrier or excipient.
163. A method for modulating opioid receptor function in a cell, comprising contacting a cell capable of expressing an opioid receptor with an effective amount of a compound of any one of claims 1 to 161 , or a pharmaceutically acceptable salt, prodrug or solvate thereof.
164. The method of claim 163, wherein the compound modulates μ-opioid receptor function.
165. The method of claim 163 or 164, wherein the compound acts as an agonist at the μ-opioid receptor.
166. The method of claim 163 or 164, wherein the compound acts as an antagonist at the μ-opioid receptor.
167. The method of claim 163, wherein the compound acts as an agonist at the κ- opioid receptor.
168. The method of claim 163, wherein the compound modulates OR.L-1 receptor function.
169. The method of claim 163 or 168, wherein the compound acts as an antagonist at the ORL- 1 receptor.
170. A method of treating a Condition in a mammal, comprising administering to such mammal in need thereof an effective amount of a compound of any one of claims 1 to 161 , or a pharmaceutically acceptable salt, prodrug or solvate thereof.
171 . The method of claim 170, wherein the Condition is pain.
172. The method of claim 170, wherein the Condition is constipation.
1 73. A method for preparing a composition, comprising the step of admixing a compound according to any one of claims 1 to 161 , or a pharmaceutically acceptable salt, prodrug or solvate thereof, with a pharmaceutically acceptable carrier or excipient.
174. A compound of any one of claims 1 to 161 or a pharmaceutically acceptable salt, prodrug or solvate thereof, for use in the treatment, prevention, or amelioration of a Condition. 175. The compound for use of claim 174, wherein the Condition is pain.
176. The compound for use of claim 174, wherein the Condition is constipation.
177. Use of a compound according to any one of claims 1 to 161 or a
pharmaceutically acceptable salt, prodrug or solvate thereof in the manufacture of a medicament useful for treating or preventing a Condition.
178. The use of claim 177, wherein the Condition is pain. 179. The use of claim 177, wherein the Condition is constipation.
PCT/IB2013/002511 2012-11-09 2013-11-08 Benzomorphan analogs and the use thereof WO2014072809A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US201261724786P true 2012-11-09 2012-11-09
US61/724,786 2012-11-09
US201361788618P true 2013-03-15 2013-03-15
US61/788,618 2013-03-15
US201361899002P true 2013-11-01 2013-11-01
US61/899,002 2013-11-01

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP17209054.0A EP3333156A3 (en) 2012-11-09 2013-11-08 Benzomorphan analogs and the use thereof
CA2890655A CA2890655A1 (en) 2012-11-09 2013-11-08 Benzomorphan analogs and the use thereof
EP13818371.0A EP2917182B1 (en) 2012-11-09 2013-11-08 Benzomorphan analogs and the use thereof
JP2015541249A JP6400592B2 (en) 2012-11-09 2013-11-08 Benzomorphan analogues and use thereof
IL238611A IL238611D0 (en) 2012-11-09 2015-05-04 Benzomorphan analogs and the use thereof

Publications (2)

Publication Number Publication Date
WO2014072809A2 true WO2014072809A2 (en) 2014-05-15
WO2014072809A3 WO2014072809A3 (en) 2014-10-30

Family

ID=49920361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/002511 WO2014072809A2 (en) 2012-11-09 2013-11-08 Benzomorphan analogs and the use thereof

Country Status (7)

Country Link
US (1) US10138207B2 (en)
EP (2) EP2917182B1 (en)
JP (1) JP6400592B2 (en)
CA (1) CA2890655A1 (en)
IL (1) IL238611D0 (en)
TW (1) TW201431842A (en)
WO (1) WO2014072809A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012038813A1 (en) 2010-09-21 2012-03-29 Purdue Pharma L.P. Buprenorphine analogs
US9096606B2 (en) 2011-12-08 2015-08-04 Purdue Pharma, L.P. Quarternized buprenorphine analogs
EP2931729B1 (en) 2012-12-07 2019-02-06 Purdue Pharma LP Buprenorphine analogs as opiod receptor modulators
CA2894963A1 (en) 2012-12-14 2014-06-19 Purdue Pharma L.P. Pyridonemorphinan analogs and biological activity on opioid receptors
US8987287B2 (en) 2012-12-14 2015-03-24 Purdue Pharma L.P. Spirocyclic morphinans and their use
WO2014118618A1 (en) 2013-01-31 2014-08-07 Purdue Pharma L.P. Benzomorphan analogs and the use thereof
US8969358B2 (en) 2013-03-15 2015-03-03 Purdue Pharma L.P. Buprenorphine analogs
US9988392B2 (en) 2013-12-26 2018-06-05 Purdue Pharma L.P. 7-beta-alkyl analogs of orvinols
EP3087079B1 (en) 2013-12-26 2019-04-03 Purdue Pharma LP Opioid receptor modulating oxabicyclo[2.2.2]octane morphinans
WO2015097546A1 (en) 2013-12-26 2015-07-02 Purdue Pharma L.P. Propellane-based compounds and their use as opioid receptor modulators
JP6353543B2 (en) 2013-12-26 2018-07-04 パーデュー、ファーマ、リミテッド、パートナーシップ Ring contraction morphinan and its use
US9994571B2 (en) 2013-12-26 2018-06-12 Purdue Pharma L.P. 10-substituted morphinan hydantoins
EP3139921A4 (en) * 2014-05-06 2018-02-14 Purdue Pharma L.P. Benzomorphan analogs and use thereof
JP2017521373A (en) 2014-05-27 2017-08-03 パーデュー、ファーマ、リミテッド、パートナーシップ Spiro ring morphinan and its use
US10202382B2 (en) 2014-06-13 2019-02-12 Purdue Pharma L.P. Azamorphinan derivatives and use thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536809A (en) 1969-02-17 1970-10-27 Alza Corp Medication method
US3598123A (en) 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US3956336A (en) 1974-04-18 1976-05-11 Bristol-Myers Company 9-Alkoxy-5-methyl-6,7-benzomorphans
US4008719A (en) 1976-02-02 1977-02-22 Alza Corporation Osmotic system having laminar arrangement for programming delivery of active agent
US4366325A (en) 1979-10-30 1982-12-28 Bayer Aktiengesellschaft Process for the preparation of 3-phenoxy-benzaldehydes
US4406904A (en) 1979-10-23 1983-09-27 Acf Chemiefarma Nv Method of inhibiting luteinizing hormone secretion with 6,7-benzomorphan derivatives
US5059595A (en) 1989-03-22 1991-10-22 Bioresearch, S.P.A. Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances
US5073543A (en) 1988-07-21 1991-12-17 G. D. Searle & Co. Controlled release formulations of trophic factors in ganglioside-lipsome vehicle
US5120548A (en) 1989-11-07 1992-06-09 Merck & Co., Inc. Swelling modulated polymeric drug delivery device
US5354556A (en) 1984-10-30 1994-10-11 Elan Corporation, Plc Controlled release powder and process for its preparation
US5591767A (en) 1993-01-25 1997-01-07 Pharmetrix Corporation Liquid reservoir transdermal patch for the administration of ketorolac
US5639476A (en) 1992-01-27 1997-06-17 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5674533A (en) 1994-07-07 1997-10-07 Recordati, S.A., Chemical And Pharmaceutical Company Pharmaceutical composition for the controlled release of moguisteine in a liquid suspension
US5698155A (en) 1991-05-31 1997-12-16 Gs Technologies, Inc. Method for the manufacture of pharmaceutical cellulose capsules
US5733566A (en) 1990-05-15 1998-03-31 Alkermes Controlled Therapeutics Inc. Ii Controlled release of antiparasitic agents in animals
WO1998054168A1 (en) 1997-05-30 1998-12-03 Banyu Pharmaceutical Co., Ltd. 2-oxoimidazole derivatives
WO1999048492A1 (en) 1998-03-26 1999-09-30 Japan Tobacco Inc. Amide derivatives and nociceptin antagonists
US6136839A (en) 1995-06-12 2000-10-24 G. D. Searle & Co. Treatment of inflammation and inflammation-related disorders with a combination of a cyclooxygenase-2 inhibitor and a 5-lipoxygenase inhibitor

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA7308049B (en) * 1972-10-26 1974-09-25 Bristol Myers Co Process for the preparation of narcotic agonists and antagonists
US3966747A (en) * 1972-10-26 1976-06-29 Bristol-Myers Company 9-Hydroxy-6,7-benzomorphans
US4100164A (en) * 1974-05-20 1978-07-11 Sterling Drug Inc. 2,6-Methano-3-benzazocines
US4016167A (en) * 1975-10-28 1977-04-05 Bristol-Myers Company N-Substituted-6,8-dioxamorphinans
GB1575009A (en) 1976-06-21 1980-09-17 Acf Chemiefarma Nv 6,7-benzomorphan derivatives
US4119628A (en) * 1976-09-22 1978-10-10 Sterling Drug Inc. Process for preparing hexahydro-11 (eq)-CH2 CH2 COR5 -2,6-methano-3-benzazocines
US4214085A (en) * 1979-05-04 1980-07-22 Sterling Drug Inc. 11-[3-Oxo-ω-(2- and 3-furyl)-lower-alkyl]hexahydro-2,6-methano-3-benzazocines
DE3839659A1 (en) * 1988-11-24 1990-05-31 Boehringer Ingelheim Kg Using benzomorphans for cytoprotection
DE19826365A1 (en) * 1998-06-12 1999-12-16 Gruenenthal Gmbh Using Benzomorphanderivaten as an analgesic
DE19957156A1 (en) * 1999-11-27 2001-05-31 Boehringer Ingelheim Pharma New amino and fluoro substituted 1,2,3,4,5,6-hexahydro-2,6-methano-3-benzazocine derivatives useful in treatment of e.g. arrythmias, spasms, ischaemia, pain and neurodegenerative disorders
EP1944292B9 (en) * 2000-10-31 2016-07-06 Rensselaer Polytechnic Institute 8-substituted-2,6-methano-3-benzazocines and 3-substituted morphinanes as opioid receptor binding agents
KR20030088445A (en) 2001-03-02 2003-11-19 유로-셀티큐 에스.에이. N-but-3-enyl norbuprenorphine and methods of use
US6740641B2 (en) 2001-07-27 2004-05-25 Euro-Celtique, S.A. Sugar derivatives of hydromorphone, dihydromorphine and dihydromorphine, compositions thereof and uses for treating or preventing pain
DE60313478T2 (en) 2002-09-25 2008-01-03 Euro-Celtique S.A. N-substituted hydromorphone and its application
WO2004039317A2 (en) 2002-10-25 2004-05-13 Euro-Celtique S.A. Analogs and prodrugs of buprenorphine
US7202259B2 (en) 2002-11-18 2007-04-10 Euro-Celtique S.A. Therapeutic agents useful for treating pain
US6958398B1 (en) 2002-12-30 2005-10-25 Euro-Celtique S.A. Methods for making thebaine or its acid salts
SI2079485T1 (en) 2006-11-01 2012-09-28 Purdue Pharma Lp Phenylpropionamide compounds and the use thereof
US8426594B2 (en) 2007-11-30 2013-04-23 Purdue Pharma L.P. Benzomorphan compounds
ME01665B (en) 2008-07-30 2014-09-20 Purdue Pharma Lp Buprenorphine analogs
EP2616441A2 (en) 2010-09-17 2013-07-24 Purdue Pharma LP Pyridine compounds and the uses thereof
WO2012038813A1 (en) 2010-09-21 2012-03-29 Purdue Pharma L.P. Buprenorphine analogs
AU2011311238A1 (en) 2010-10-05 2013-04-04 Purdue Pharma L.P. Quinazoline compounds as sodium channel blockers
AU2012300567B2 (en) 2011-09-02 2016-03-10 Purdue Pharma L.P. Pyrimidines as sodium channel blockers
WO2013064883A1 (en) 2011-10-31 2013-05-10 Purdue Pharma L.P. Heteroaryl compounds as sodium channel blockers
US9133131B2 (en) 2011-11-15 2015-09-15 Purdue Pharma L.P. Pyrimidine diol amides as sodium channel blockers
US9096606B2 (en) 2011-12-08 2015-08-04 Purdue Pharma, L.P. Quarternized buprenorphine analogs
EP2858976B1 (en) 2012-05-11 2018-03-14 Purdue Pharma LP Benzomorphan compounds as opioid receptors modulators
US9315514B2 (en) 2012-08-27 2016-04-19 Rhodes Technologies 1,3-dioxanomorphides and 1,3-dioxanocodides
EP2931729B1 (en) 2012-12-07 2019-02-06 Purdue Pharma LP Buprenorphine analogs as opiod receptor modulators
JP6163210B2 (en) 2012-12-14 2017-07-12 パーデュー、ファーマ、リミテッド、パートナーシップ Nitrogen-containing morphinan derivatives and their use
CA2894963A1 (en) 2012-12-14 2014-06-19 Purdue Pharma L.P. Pyridonemorphinan analogs and biological activity on opioid receptors
US8987287B2 (en) 2012-12-14 2015-03-24 Purdue Pharma L.P. Spirocyclic morphinans and their use
WO2014096941A1 (en) 2012-12-20 2014-06-26 Purdue Pharma L.P. Cyclic sulfonamides as sodium channel blockers
EP2941430B1 (en) 2012-12-28 2017-04-26 Purdue Pharma LP 7,8-cyclicmorphinan analogs
JP6159417B2 (en) 2012-12-28 2017-07-05 パーデュー、ファーマ、リミテッド、パートナーシップ Substituted morphinan and its use
WO2014118618A1 (en) 2013-01-31 2014-08-07 Purdue Pharma L.P. Benzomorphan analogs and the use thereof
ES2680246T3 (en) 2013-03-04 2018-09-05 Purdue Pharma Lp Pirimidincarboxamidas as sodium channel blockers
US9120786B2 (en) 2013-03-04 2015-09-01 Purdue Pharma, L.P. Triazine carboxamides as sodium channel blockers
AU2014235063B2 (en) 2013-03-15 2017-05-04 Purdue Pharma L.P. Carboxamide derivatives and use thereof
US8969358B2 (en) 2013-03-15 2015-03-03 Purdue Pharma L.P. Buprenorphine analogs
US9340504B2 (en) 2013-11-21 2016-05-17 Purdue Pharma L.P. Pyridine and piperidine derivatives as novel sodium channel blockers
WO2015094443A1 (en) 2013-12-20 2015-06-25 Purdue Pharma L.P. Pyrimidines and use thereof
EP3087059A4 (en) 2013-12-23 2017-06-21 Purdue Pharma L.P. Indazoles and use thereof
US9695144B2 (en) 2013-12-23 2017-07-04 Purdue Pharma L.P. Dibenzazepine derivatives and use thereof
US9994571B2 (en) 2013-12-26 2018-06-12 Purdue Pharma L.P. 10-substituted morphinan hydantoins
US20160333020A1 (en) 2013-12-26 2016-11-17 Purdue Pharma L.P. 7-beta analogs of orvinols
US9988392B2 (en) 2013-12-26 2018-06-05 Purdue Pharma L.P. 7-beta-alkyl analogs of orvinols
WO2015097546A1 (en) 2013-12-26 2015-07-02 Purdue Pharma L.P. Propellane-based compounds and their use as opioid receptor modulators
EP3087079B1 (en) 2013-12-26 2019-04-03 Purdue Pharma LP Opioid receptor modulating oxabicyclo[2.2.2]octane morphinans
EP3086790A4 (en) 2013-12-27 2017-07-19 Purdue Pharma LP 6-substituted and 7-substituted morphinan analogs and the use thereof
WO2015102682A1 (en) 2013-12-30 2015-07-09 Purdue Pharma L.P. Pyridone-sulfone morphinan analogs as opioid receptor ligands
WO2015112801A1 (en) 2014-01-24 2015-07-30 Purdue Pharma L.P. Pyridines and pyrimidines and use thereof
JP2017511794A (en) 2014-02-12 2017-04-27 パーデュー、ファーマ、リミテッド、パートナーシップ Isoquinoline derivatives and their use
US20150284383A1 (en) 2014-04-07 2015-10-08 Purdue Pharma L.P. Indole derivatives and use thereof
EP3139921A4 (en) * 2014-05-06 2018-02-14 Purdue Pharma L.P. Benzomorphan analogs and use thereof
JP2017521373A (en) 2014-05-27 2017-08-03 パーデュー、ファーマ、リミテッド、パートナーシップ Spiro ring morphinan and its use
US10202382B2 (en) 2014-06-13 2019-02-12 Purdue Pharma L.P. Azamorphinan derivatives and use thereof
EP3154971A4 (en) 2014-06-13 2017-11-01 Purdue Pharma L.P. Heterocyclic morphinan derivatives and use thereof
WO2016044546A1 (en) 2014-09-17 2016-03-24 Purdue Pharma L.P. Benzomorphan analogs and the use thereof

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536809A (en) 1969-02-17 1970-10-27 Alza Corp Medication method
US3598123A (en) 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US3956336A (en) 1974-04-18 1976-05-11 Bristol-Myers Company 9-Alkoxy-5-methyl-6,7-benzomorphans
US4008719A (en) 1976-02-02 1977-02-22 Alza Corporation Osmotic system having laminar arrangement for programming delivery of active agent
US4406904A (en) 1979-10-23 1983-09-27 Acf Chemiefarma Nv Method of inhibiting luteinizing hormone secretion with 6,7-benzomorphan derivatives
US4425353A (en) 1979-10-23 1984-01-10 Acf Chemiefarma Nv Analgesic 5-oxygenated-6,7-benzomorphan derivatives
US4366325A (en) 1979-10-30 1982-12-28 Bayer Aktiengesellschaft Process for the preparation of 3-phenoxy-benzaldehydes
US5354556A (en) 1984-10-30 1994-10-11 Elan Corporation, Plc Controlled release powder and process for its preparation
US5073543A (en) 1988-07-21 1991-12-17 G. D. Searle & Co. Controlled release formulations of trophic factors in ganglioside-lipsome vehicle
US5059595A (en) 1989-03-22 1991-10-22 Bioresearch, S.P.A. Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances
US5120548A (en) 1989-11-07 1992-06-09 Merck & Co., Inc. Swelling modulated polymeric drug delivery device
US5733566A (en) 1990-05-15 1998-03-31 Alkermes Controlled Therapeutics Inc. Ii Controlled release of antiparasitic agents in animals
US5698155A (en) 1991-05-31 1997-12-16 Gs Technologies, Inc. Method for the manufacture of pharmaceutical cellulose capsules
US5639476A (en) 1992-01-27 1997-06-17 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5591767A (en) 1993-01-25 1997-01-07 Pharmetrix Corporation Liquid reservoir transdermal patch for the administration of ketorolac
US5674533A (en) 1994-07-07 1997-10-07 Recordati, S.A., Chemical And Pharmaceutical Company Pharmaceutical composition for the controlled release of moguisteine in a liquid suspension
US6136839A (en) 1995-06-12 2000-10-24 G. D. Searle & Co. Treatment of inflammation and inflammation-related disorders with a combination of a cyclooxygenase-2 inhibitor and a 5-lipoxygenase inhibitor
WO1998054168A1 (en) 1997-05-30 1998-12-03 Banyu Pharmaceutical Co., Ltd. 2-oxoimidazole derivatives
WO1999048492A1 (en) 1998-03-26 1999-09-30 Japan Tobacco Inc. Amide derivatives and nociceptin antagonists

Non-Patent Citations (50)

* Cited by examiner, † Cited by third party
Title
"Controlled Drug Bioavailability, Drug Product Design and Performance", 1984
"Handbook of Pharmaceutical Excipients", 1986, AMERICAN PHARMACEUTICAL ASSOCIATION
"Medical Applications of Controlled Release", 1974
"Pharmaceutical Dosage Forms: Disperse Systems", MARCEL DEKKER, INC.
"Pharmaceutical Dosage Forms: Tablets", MARCEL DEKKER, INC.
"Remington's Pharmaceutical Sciences", 1980, MACK PUBLISHING, pages: 1553 - 1593
"Remington's Pharmaceutical Sciences", 1995, pages: 1447 - 1676
A.L. BINGHAM ET AL., CHEM. COMMUN., 2001, pages 603 - 604
BUCHWALD ET AL., SURGERY, vol. 88, 1980, pages 507
C. ALTIER ET AL.: "ORL-1 receptor-mediated internalization of N-type calcium channels", NATURE NEUROSCIENCE, vol. 9, 2005, pages 31
C. STEIN: "Unilateral Inflammation of the Hindpaw in Rats as a Model of Prolonged Noxious Stimulation: Alterations in Behavior and Nociceptive Thresholds", PHORMACOL. BIOCHEM. AND BEHAVIOR, vol. 31, 1988, pages 451 - 455
D. BARLOCCO ET AL.: "The opioid-receptor-like 1 (ORL-1) as a potential target for new analgesics", EUR. J MED. CHEM., vol. 35, 2000, pages 275, XP004341231, DOI: doi:10.1016/S0223-5234(00)00126-4
D. TORBATI ET AL., INTENSIVE CARE MED., 2000, pages 585 - 591
DURING ET AL., ANN. NEUROL., vol. 25, 1989, pages 351
E.C. VAN TONDER ET AL., AAPS PHARM. SCI. TECH., vol. 5, no. 1, 2004
F.E. D'AMOUR ET AL.: "A Method for Determining Loss of Pain Sensation", J. PHARMACOL. EXP. THER., vol. 72, 1941, pages 74 - 79
FILER: "Isotopes in the Physical and Biomedical Sciences", vol. 1, 1987
G. WOOLFE; A.D. MACDONALD, J PHARMACOL. EXP. THER., vol. 80, 1944, pages 300 - 307
GLEN R. HANSON: "Remington: The Science and Practice ofPharmacy", vol. IA, 1995, article "Analgesic, Antipyretic and Anti-Inflammatory Drugs", pages: 1196 - 1221
GOODSON: "Medical Applications of Controlled Release, Vol. 2, Applications and Evaluation", vol. 2, 1984, CRC PRESS, article "Dental Applications", pages: 1 15 - 138
GREENE, T.W.: "Protective Groups in Organic Synthesis", 1981, J. WILEY & SONS
GUTSTEIN, HOWARD B.; AKIL, HUDA: "Goodman & Gilman's The Pharmacological Basis of Therapeutics", article "Opioid Analgesics"
GUTSTEIN; HOWARD B.; AKIL, HUDA: "Goodman & Gilman's The Pharmacological Basis of Therapeutics", article "Chapter 21. Opioid Analgesics"
H. UEDA ET AL.: "Enhanced Spinal Nociceptin Receptor Expression Develops Morphine Tolerance and Dependence", J. NEUROSCI., vol. 20, 2000, pages 7640
HOWARD ET AL., J. NEUROSURG., vol. 71, 1989, pages 105
HUGHES, D.L, ORG. PREP., vol. 28, 1996, pages 127
J MED. CHEM., vol. 43, 2000, pages 4667 - 4677
J. AMER. CHEM. SOC., vol. 83, 1961, pages 1492
J. TIAN ET AL.: "Functional studies using antibodies against orphanin FQ/nociceptin", PEPTIDES, vol. 21, 2000, pages 1047
J. TIAN ET AL.: "Involvement of endogenous Orphanin FQ in electroacupuncture-induced analgesia", NEUROREPORT, vol. 8, 1997, pages 497
J.S. MOGIL ET AL.: "Orphanin FQ is a functional anti-opioid peptide", NEUROSCI., vol. 75, 1996, pages 333
K. HARGREAVES ET AL.: "A New and Sensitive Method for Measuring Thermal Nociception in Cutaneous Hyperalgesia", PAIN, vol. 32, no. 1, 1988, pages 77 - 88, XP024378083, DOI: doi:10.1016/0304-3959(88)90026-7
K. LUTFY ET AL.: "Tolerance develops to the inhibitory effect of orphanin FQ on morphine-induced antinociception in the rat", NEUROREPORT, vol. 10, 1999, pages 103
K.M. FOLEY: "Cecil Textbook of Medicine", 1996, article "Pain", pages: 100 - 107
KAWAMOTO ET AL.: "Discovery of the first potent and selective small molecule opioid receptor-like (ORL-1) antagonist: 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-1 13397", J MED. CHEM., vol. 42, 1999, pages 5061 - 6063
L. BARTHO ET AL.: "Involvement of Capsaicin-sensitive Neurones in Hyperalgesia and Enhanced Opioid Antinociception in Inflammation", NAUNYN-SCHMIEDEBERG'SARCHIVES OFPHARMACOL., vol. 342, 1990, pages 666 - 670
LANGER, SCIENCE, vol. 249, 1990, pages 1527 - 1533
LEVY ET AL., SCIENCE, vol. 228, 1985, pages 190
M. CAIRA ET AL., J. PHARMACEUT. SCI., vol. 93, no. 3, 2004, pages 601 - 61 1
M.M.. MORGAN ET AL.: "Antinociception mediated by the periaqueductal gray is attenuated by orphanin FQ", NEUROREPORT, vol. 8, 1997, pages 3431
MONKOVIC ET AL.: "Secondary Amines from the Iron(II) Ion-Catalyzed Reaction of Amine Oxides: A General Method for the Dealkylation of Tertiary Amines", SYNTHESIS, 1985, pages 770
PAUL A. FNSEL: "Goodman & Gilman's The Pharmacological Basis of Therapeutics", 1996, article "Analgesic-Antipyretic and Anti-inflammatory Agents and Drugs Employed in the Treatment of Gout", pages: 617 - 57
RANGER; PEPPAS, J MACROMOL. SCI. REV. MACROMOL. CHEM., vol. 23, 1983, pages 61
ROSS; KENAKIN: "Pharmacodynamics: Mechanisms of Drug Action and the Relationship Between Drug Concentration and Effect", 2001, pages: 31 - 32
S.H. KIM: "An Experimental Model for Peripheral Neuropathy Produced by Segmental Spinal Nerve Ligation in the Rat", PAIN, vol. 50, no. 3, 1992, pages 355 - 363, XP024378108, DOI: doi:10.1016/0304-3959(92)90041-9
SAUDEK ET AL., N. ENGL. J MED., vol. 321, 1989, pages 574
SEFTON, CRC CRIT. REF BIOMED. ENG., vol. 14, 1987, pages 201
TREAT ET AL., LIPOSOMES IN THE THERAPY OFLNFECTIOUS DISEASE AND CANCER, 1989, pages 317 - 327,353-365
WOOD; GALLIGAN: "Function of opioids in the enteric nervous system", NEUROGASTROENTEROLOGY & MOTILITY, vol. 16, no. 2, 2004, pages 17 - 28
Z. SELTZER ET AL.: "A Novel Behavioral Model of Neuropathic Pain Disorders Produced in Rats by Partial Sciatic Nerve Injury", PAIN, vol. 43, 1990, pages 205 - 218, XP024377631, DOI: doi:10.1016/0304-3959(90)91074-S

Also Published As

Publication number Publication date
CA2890655A1 (en) 2014-05-15
TW201431842A (en) 2014-08-16
US20140135351A1 (en) 2014-05-15
IL238611D0 (en) 2015-06-30
US10138207B2 (en) 2018-11-27
EP3333156A3 (en) 2018-09-26
JP2015536972A (en) 2015-12-24
WO2014072809A3 (en) 2014-10-30
EP3333156A2 (en) 2018-06-13
EP2917182B1 (en) 2018-01-03
EP2917182A2 (en) 2015-09-16
JP6400592B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
AU686203B2 (en) Morphinan derivative and medicinal use
AU2002326806B2 (en) Analgetic pyrroline derivatives
JP4516430B2 (en) 1- (amino) indane and (1,2-dihydro-3-amino) - benzofuran, benzothiophene and indole
AU2004299456B2 (en) (3,4-disubstituted)propanoic carboxylates as S1P (Edg) receptor agonists
JP5711115B2 (en) Alicyclic carboxylic acid derivative of benzomorphans and related skeleton, pharmaceutical and use thereof containing such compounds
JP4679055B2 (en) Hydromorphone, sugar derivatives dihydro morphine and dihydroisoquinoline morphine, used for these compositions and the pain treating or preventing
DK2753606T3 (en) Pyrimidines as sodium
JP4275945B2 (en) Kappa opioid receptor ligands
CN100560584C (en) Benzoazolypiperazine derivatives having MGLUR1- and MGLUR5-antagonistic activity
EP1018513A2 (en) Quinolinecarboxylic acid derivatives
WO2002036573A2 (en) 8- substituted-2, 6-methano-3-benzazocines and 3-substituted morphinanes as opioid receptor binding agents
JP2014513084A (en) Substituted benzene compound
EP1069124A1 (en) 2-Benzimidazolylamine compounds as ORL1-receptor agonists
JP2009531439A (en) Modulators of androgen receptor for the treatment of prostate cancer and androgen receptor related conditions
NL1031218C2 (en) Oxyindoolderivaten.
EP1556354B1 (en) Therapeutic piperazine derivates useful for treating pain
JP2016147886A (en) Aryl- or heteroaryl-substituted benzene compounds
PT1385514E (en) Spiroindene and spiroindane compounds
US20070027159A1 (en) Therapeutic agents useful for treating pain
JP4686456B2 (en) Useful therapeutic agents for the treatment of pain
RU2299883C2 (en) Spiropyrazole compounds, pharmaceutical composition containing thereof, method for modulation of opioid receptor and method for treatment using such compounds
JP5081870B2 (en) Nociceptin analogues
WO2012046132A1 (en) Quinazoline compounds as sodium channel blockers
WO2013064883A1 (en) Heteroaryl compounds as sodium channel blockers
CN101087775A (en) Azole derivatives with antimuscarinic activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818371

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 238611

Country of ref document: IL

ENP Entry into the national phase in:

Ref document number: 2890655

Country of ref document: CA

ENP Entry into the national phase in:

Ref document number: 2015541249

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013818371

Country of ref document: EP