WO2014071109A1 - Treatment of cancers using pi3 kinase isoform modulators - Google Patents
Treatment of cancers using pi3 kinase isoform modulators Download PDFInfo
- Publication number
- WO2014071109A1 WO2014071109A1 PCT/US2013/067929 US2013067929W WO2014071109A1 WO 2014071109 A1 WO2014071109 A1 WO 2014071109A1 US 2013067929 W US2013067929 W US 2013067929W WO 2014071109 A1 WO2014071109 A1 WO 2014071109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pi3k
- cancer
- biomarker
- substituted
- compound
- Prior art date
Links
- SJVQHLPISAIATJ-ZDUSSCGKSA-N C[C@@H](C(N1c2ccccc2)=Cc2cccc(Cl)c2C1=O)Nc1c2nc[nH]c2ncn1 Chemical compound C[C@@H](C(N1c2ccccc2)=Cc2cccc(Cl)c2C1=O)Nc1c2nc[nH]c2ncn1 SJVQHLPISAIATJ-ZDUSSCGKSA-N 0.000 description 1
- SYMHUEFSSMBHJA-UHFFFAOYSA-N Cc1ncnc2c1nc[nH]2 Chemical compound Cc1ncnc2c1nc[nH]2 SYMHUEFSSMBHJA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/26—Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
- C07D473/32—Nitrogen atom
- C07D473/34—Nitrogen atom attached in position 6, e.g. adenine
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5011—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57426—Specifically defined cancers leukemia
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/52—Assays involving cytokines
- G01N2333/521—Chemokines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/52—Assays involving cytokines
- G01N2333/525—Tumor necrosis factor [TNF]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/52—Assays involving cytokines
- G01N2333/53—Colony-stimulating factor [CSF]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/52—Assays involving cytokines
- G01N2333/54—Interleukins [IL]
- G01N2333/5434—IL-12
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/91—Transferases (2.)
- G01N2333/912—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- G01N2333/91205—Phosphotransferases in general
- G01N2333/9121—Phosphotransferases in general with an alcohol group as acceptor (2.7.1), e.g. general tyrosine, serine or threonine kinases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/90—Enzymes; Proenzymes
- G01N2333/914—Hydrolases (3)
- G01N2333/948—Hydrolases (3) acting on peptide bonds (3.4)
- G01N2333/95—Proteinases, i.e. endopeptidases (3.4.21-3.4.99)
- G01N2333/964—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue
- G01N2333/96425—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals
- G01N2333/96427—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general
- G01N2333/9643—Proteinases, i.e. endopeptidases (3.4.21-3.4.99) derived from animal tissue from mammals in general with EC number
- G01N2333/96486—Metalloendopeptidases (3.4.24)
- G01N2333/96491—Metalloendopeptidases (3.4.24) with definite EC number
- G01N2333/96494—Matrix metalloproteases, e. g. 3.4.24.7
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- the activity of cells can be regulated by external signals that stimulate or inhibit intracellular events.
- the process by which stimulatory or inhibitory signals are transmitted into and within a cell to elicit an intracellular response is referred to as signal transduction.
- cascades of signal transduction events have been elucidated and found to play a central role in a variety of biological responses. Defects in various components of signal transduction pathways have been found to account for a vast number of diseases, including numerous forms of cancer, inflammatory disorders, metabolic disorders, vascular and neuronal diseases (Gaestel et al. Current Medicinal Chemistry (2007) 14:2214-2234).
- Kinases represent a class of important signaling molecules. Kinases can generally be classified into protein kinases and lipid kinases, and certain kinases exhibit dual specificities. Protein kinases are enzymes that phosphorylate other proteins and/or themselves ⁇ i.e., autophosphorylation).
- Protein kinases can be generally classified into three major groups based upon their substrate utilization: tyrosine kinases which predominantly phosphorylate substrates on tyrosine residues (e.g., erb2, PDGF receptor, EGF receptor, VEGF receptor, src, abl), serine/threonine kinases which predominantly phosphorylate substrates on serine and/or threonine residues (e.g., mTorCl, mTorC2, ATM, ATR, DNA-PK, Akt), and dual- specificity kinases which phosphorylate substrates on tyrosine, serine and/or threonine residues.
- tyrosine kinases which predominantly phosphorylate substrates on tyrosine residues (e.g., erb2, PDGF receptor, EGF receptor, VEGF receptor, src, abl), serine/threonine kinases which predominantly phosphorylate substrates
- Lipid kinases are enzymes that catalyze the phosphorylation of lipids. These enzymes, and the resulting phosphorylated lipids and lipid-derived biologically active organic molecules play a role in many different physiological processes, including cell proliferation, migration, adhesion, and differentiation. Certain lipid kinases are membrane associated and they catalyze the phosphorylation of lipids contained in or associated with cell membranes. Examples of such enzymes include phosphoinositide(s) kinases (e.g., PI3-kinases, PI4-kinases), diacylglycerol kinases, and sphingosine kinases.
- phosphoinositide(s) kinases e.g., PI3-kinases, PI4-kinases
- diacylglycerol kinases e.g., sphingosine kinases.
- PI3Ks phosphoinositide 3-kinases
- the phosphoinositide 3-kinases (PI3Ks) signaling pathway is one of the most highly mutated systems in human cancers.
- PI3K signaling is also a key factor in many other diseases in humans.
- PI3K signaling is involved in many disease states including allergic contact dermatitis, rheumatoid arthritis, osteoarthritis, inflammatory bowel diseases, chronic obstructive pulmonary disorder, psoriasis, multiple sclerosis, asthma, disorders related to diabetic complications, and inflammatory complications of the cardiovascular system such as acute coronary syndrome.
- PI3Ks are members of a unique and conserved family of intracellular lipid kinases that phosphorylate the 3' -OH group on phosphatidylinositols or phosphoinositides.
- the PI3K family comprises 15 kinases with distinct substrate specificities, expression patterns, and modes of regulation.
- the class I PI3Ks (pi 10a, pi 10 ⁇ , pi 10 ⁇ , and pi 10 ⁇ ) are typically activated by tyrosine kinases or G-protein coupled receptors to generate PIP3, which engages downstream effectors such as those in the Akt/PDKl pathway, mTOR, the Tec family kinases, and the Rho family GTPases.
- the class II and III PI3Ks play a key role in intracellular trafficking through the synthesis of PI(3)P and PI(3,4)P2.
- the PI3Ks are protein kinases that control cell growth (mTORCl) or monitor genomic integrity (ATM, ATR, DNA-PK, and hSmg- 1).
- PI3Ks There are four mammalian isoforms of class I PI3Ks: ⁇ 3 ⁇ - ⁇ , ⁇ , ⁇ (class la PI3Ks) and ⁇ 3 ⁇ - ⁇ (a class lb PI3K). These enzymes catalyze the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), leading to activation of downstream effector pathways important for cellular survival, differentiation, and function.
- PIP3K-a and ⁇ 3 ⁇ - ⁇ are widely expressed and are important mediators of signaling from cell surface receptors.
- PI3K-a is the isoform most often found mutated in cancers and has a role in insulin signaling and glucose homeostasis (Knight et al.
- ⁇ 3 ⁇ - ⁇ is activated in cancers where phosphatase and tensin homolog (PTEN) is deleted. Both isoforms are targets of small molecule therapeutics in development for cancer.
- PTEN phosphatase and tensin homolog
- ⁇ 3 ⁇ - ⁇ and - ⁇ are preferentially expressed in leukocytes and are important in leukocyte function. These isoforms also contribute to the development and maintenance of inflammatory and autoimmune diseases, and hematologic malignancies (Vanhaesebroeck et al. Current Topic Microbiol. Immunol. (2010) 347: 1-19; Clayton et al. J Exp Med. (2002) 196(6):753-63; Fung-Leung Cell Signal. (201 1) 23(4):603-8; Okkenhaug et al. Science (2002) 297(5583): 1031-34).
- PI3K-8 is activated by cellular receptors (e.g., receptor tyrosine kinases) through interaction with the Sarc homology 2 (SH2) domains of the PI3K regulatory subunit (p85), or through direct interaction with RAS.
- cellular receptors e.g., receptor tyrosine kinases
- SH2 Sarc homology 2 domains of the PI3K regulatory subunit
- ⁇ 3 ⁇ - ⁇ is associated with G-protein coupled receptors (GPCRs), is responsible for the very rapid induction of PIP3 in response to GPCRs, and can also be activated by RAS downstream of other receptors.
- GPCRs G-protein coupled receptors
- PIP3 produced by PI3K activates effector pathways downstream through interaction with pleckstrin homology (PH) domain containing enzymes (e.g., PDK- 1 and AKT [PKB]).
- PH pleckstrin homology
- Both PI3K-8 and - ⁇ are believed to be important for the development and persistence of autoimmune disease and hematologic malignancies.
- PI3K PI3K-8 and/or ⁇ 3 ⁇ - ⁇
- the methods, compositions, and kits provided herein relate to administering an isoform-selective PI3K modulator (e.g., a compound provided herein, which selectively reduces or inhibits the activity of one or more PI3K isoform(s), e.g., PI3K-8 and/or ⁇ 3 ⁇ - ⁇ ), alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human, having a cancer or disease, such as a hematologic malignancy, which has a high expression level of the one or more PI3K isoform(s).
- an isoform-selective PI3K modulator e.g., a compound provided herein, which selectively reduces or inhibits the activity of one or more PI3K isoform(s), e.g., PI3K-8 and/or ⁇ 3 ⁇ - ⁇
- a subject
- provided herein are methods, compositions, and kits for treating or preventing a specific type of cancer or disease, such as, a specific type of hematologic malignancy, which has a high expression level of one or more isoform(s) of PI3K.
- methods, compositions, and kits for treating or preventing a specific sub-type of cancer or disease, such as, a specific sub-type of hematologic malignancy, which has a high expression level of one or more isoform(s) of PI3K are provided herein.
- the specific type or specific sub-type of cancer or hematologic malignancy has a high expression of PI3K isoform(s), including one or more of PI3K-8 or ⁇ 3 ⁇ - ⁇ , or a combination thereof. In one embodiment, the specific type or specific subtype of cancer or hematologic malignancy has a high expression of PI3K-8, or ⁇ 3 ⁇ - ⁇ , or both PI3K-8 and ⁇ 3 ⁇ - ⁇ .
- the methods, compositions, and kits comprise, or relate to, the step of selecting a specific type, or a specific sub-type, of cancer or disease, e.g., a specific type, or a specific sub-type, of hematologic malignancy, for treatment, using a biomarker provided herein (e.g., selecting a specific type or sub-type of cancer or hematologic malignancy that has a high expression level of one or more isoform(s) of PI3K as determined using a biomarker provided herein).
- a biomarker provided herein e.g., selecting a specific type or sub-type of cancer or hematologic malignancy that has a high expression level of one or more isoform(s) of PI3K as determined using a biomarker provided herein.
- the methods, compositions, and kits comprise, or relate to, the step of administering to a subject having a specific type, or a specific sub-type, of cancer or disease, e.g., a specific type, or a specific sub-type, of hematologic malignancy, which has a high expression level of one or more isoform(s) of PI3K, a PI3K modulator that selectively modulates (e.g., selectively inhibits) the PI3K isoform(s) that is highly expressed in the specific type or subtype of disease.
- a PI3K modulator that selectively modulates (e.g., selectively inhibits) the PI3K isoform(s) that is highly expressed in the specific type or subtype of disease.
- provided herein are methods, compositions, and kits for treating or preventing a specific type, or a specific sub-type, of cancer or disease, e.g., a specific type, or a specific sub-type, of hematologic malignancy, which has a high expression level of PI3K-8.
- provided herein are methods, compositions, and kits for treating or preventing a specific type, or a specific sub-type, of cancer or disease, e.g., a specific type, or a specific sub-type, of a hematologic malignancy, which has a high expression level of PI3K-8 and ⁇ 3 ⁇ - ⁇ .
- methods, compositions, and kits for treating or preventing a specific type, or a specific sub-type, of cancer or disease e.g. , a specific type, or a specific sub-type, of a hematologic malignancy, which has a high expression level of ⁇ 3 ⁇ - ⁇ and PI3K-a.
- provided herein are methods, compositions, and kits for treating or preventing a specific type, or a specific sub-type, of cancer or disease, e.g. , a specific type, or a specific sub-type, of a hematologic malignancy, which has a high expression level of ⁇ 3 ⁇ - ⁇ and ⁇ 3 ⁇ - ⁇ .
- provided herein are methods, compositions, and kits for treating or preventing a specific type, or a specific sub-type, of cancer or disease, e.g., a specific type, or a specific sub-type, of a hematologic malignancy, which has a high expression level of PI3K-8 and PI3K-a.
- provided herein are methods, compositions, and kits for treating or preventing a specific type, or a specific sub-type, of cancer or disease, e.g. , a specific type, or a specific sub-type, of a hematologic malignancy, which has a high expression level of PI3K-8 and ⁇ 3 ⁇ - ⁇ .
- methods, compositions, and kits for treating or preventing a specific type, or a specific sub-type, of cancer or disease e.g., a specific type, or a specific sub-type, of a hematologic malignancy, which has a high expression level of ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , and PI3K-a.
- provided herein are methods, compositions, and kits for treating or preventing a specific type, or a specific sub-type, of cancer or disease, e.g., a specific type, or a specific sub-type, of a hematologic malignancy, which has a high expression level of ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , and ⁇ 3 ⁇ - ⁇ .
- the PI3K isoform includes one or more of PI3K-8 or ⁇ 3 ⁇ - ⁇ , or a combination thereof.
- the specific patient or group of patients, having a cancer or a hematologic malignancy has(ve) a high expression of PI3K-8 or ⁇ 3 ⁇ - ⁇ , or both PI3K-8 and ⁇ 3 ⁇ - ⁇ .
- the methods, compositions, and kits comprise, or relate to, the step of selecting a patient or group of patients having a cancer or disease for treatment, using a biomarker provided herein (e.g., selecting a patient or group of patients that has(ve) a high expression level of one or more isoform(s) of PI3K as determined using a biomarker provided herein).
- the methods, compositions, and kits comprise, or relate to, the step of administering to the patient or group of patients having a high expression level of one or more isoform(s) of PI3K, a PI3K modulator that selectively modulates (e.g., selectively inhibits) the PI3K isoform(s) that is/are highly expressed in the patient(s).
- provided herein are methods, compositions, and kits for treating or preventing a specific patient or group of patients, having a cancer or disease, e.g. , a hematologic malignancy, that has a high expression level of PI3K-8.
- provided herein are methods, compositions, and kits for treating or preventing a specific patient or group of patients, having a cancer or disease, e.g., a hematologic malignancy, which has a high expression level of PI3K-8 and ⁇ 3 ⁇ - ⁇ .
- methods, compositions, and kits for treating or preventing a specific patient or group of patients, having a cancer or disease, e.g., a hematologic malignancy, which has a high expression level of ⁇ 3 ⁇ - ⁇ and PI3K- a provided herein are methods, compositions, and kits for treating or preventing a specific patient or group of patients, having a cancer or disease, e.g.
- a hematologic malignancy which has a high expression level of ⁇ 3 ⁇ - ⁇ and ⁇ 3 ⁇ - ⁇ .
- methods, compositions, and kits for treating or preventing a specific patient or group of patients, having a cancer or disease, e.g., a hematologic malignancy, which has a high expression level of PI3K-8 and PI3K-a are provided herein.
- provided herein are methods, compositions, and kits for treating or preventing a specific patient or group of patients, having a cancer or disease, e.g. , a hematologic malignancy, which has a high expression level ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , and PI3K-a.
- the expression level of one or more than one particular PI3K isoform in a cancer or a disease can be determined by detecting the expression level of protein of a particular PI3K isoform, or DNA of a particular PI3K isoform, or RNA of a particular PI3K isoform, for example, using a method provided herein or a method known in the art.
- the expression level of one or more than one particular PI3K isoform in a cancer or a disease can be determined by measuring a biomarker provided herein (e.g., a signaling pathway biomarker, a protein mutation biomarker, a protein expression biomarker, a gene mutation biomarker, a gene expression biomarker, a cytokine biomarker, a chemokine biomarker, or a biomarker for particular cancer cells, among others).
- a biomarker e.g., a signaling pathway biomarker, a protein mutation biomarker, a protein expression biomarker, a gene mutation biomarker, a gene expression biomarker, a cytokine biomarker, a chemokine biomarker, or a biomarker for particular cancer cells, among others.
- the expression level of one or more than one particular PI3K isoform in a cancer or a disease can be determined based on information known in the art or based on prior studies on the cancer or disease (e.g., a hematologic malignancy), or prior testing of the patient or group of patients.
- the methods, compositions and kits provided herein relate to administering a PI3K modulator (e.g., a compound that selectively reduces the activity of one or more PI3K isoform(s)), alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human.
- a PI3K modulator e.g., a compound that selectively reduces the activity of one or more PI3K isoform(s)
- a subject e.g., a mammalian subject, e.g., a human.
- the PI3K modulator is selective toward one or more isoform(s) of PI3K over the other isoform(s) of PI3K.
- the PI3K modulator (e.g., a compound provided herein) is selective toward PI3K-8; selective toward ⁇ 3 ⁇ - ⁇ ; selective toward PI3K-8 and ⁇ 3 ⁇ - ⁇ ; selective toward ⁇ 3 ⁇ - ⁇ and PI3K-a;
- the selectivity of the PI3K modulator (e.g., a compound provided herein) for one isoform of PI3K over another isoform of PI3K is about 2-fold, about 5-fold, about 10-fold, about 20-fold, about 30- fold, about 40-fold, about 50-fold, about 100-fold, about 200-fold, about 300-fold, about 400-fold, about 500-fold, about 1000-fold, about 2000-fold, about 5000-fold, about 10000-fold, or greater than about 10000-fold.
- the selectivity of a compound provided herein for one isoform of PI3K over another isoform of PI3K is greater than about 2-fold, greater than about 5-fold, greater than about 10-fold, greater than about 20-fold, greater than about 30-fold, greater than about 40-fold, greater than about 50-fold, greater than about 100-fold, greater than about 200-fold, greater than about 300-fold, greater than about 400-fold, greater than about 500-fold, greater than about 1000-fold, greater than about 2000-fold, greater than about 5000-fold, or greater than about 10000-fold.
- the selectivity of a PI3K modulator for one or more PI3K isoform(s) over other PI3K isoform(s) can be determined by measuring the activity of the PI3K modulator toward PI3K isoforms (e.g., ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , and/or ⁇ 3 ⁇ - ⁇ ), for example, using a method provided herein or a method known in the art.
- a method of treating or preventing a specific cancer or disease such as, a hematologic malignancy (e.g., a specific type, or a specific sub-type, of hematologic malignancy), which has a high expression level of one or more isoform(s) of PI3K
- the method comprises: (1) determining the expression level of one or more PI3K isoform(s) in the cancer or disease; (2) selecting a treatment agent (e.g., a PI3K modulator having a particular selectivity profile for one or more PI3K isoform(s)), based on the expression levels of PI3K isoforms in the cancer or disease to be treated; and (3) administering the treatment agent to a patient having the cancer or disease, alone or in combination with one or more other agents or therapeutic modalities.
- a treatment agent e.g., a PI3K modulator having a particular selectivity profile for one or more PI3K isoform(s)
- the expression level of one or more PI3K isoform(s) in the cancer or disease can be measured by determining the expression level of PI3K isoform protein, DNA, and/or RNA; or by measuring one or more biomarkers provided herein (e.g., a signaling pathway biomarker, a protein mutation biomarker, a protein expression biomarker, a gene mutation biomarker, a gene expression biomarker, a cytokine biomarker, a chemokine biomarker, or a biomarker for particular cancer cells, among others).
- the expression level of one or more PI3K isoform(s) in the cancer or disease can be determined based on information known in the art or information obtained in prior studies on the cancer or disease.
- Certain cancer or disorder e.g., a hematologic malignancy (e.g., a specific type, or a specific sub-type, of hematologic malignancy), can exhibit heterogeneity in PI3K isoform expression among patient populations.
- a hematologic malignancy e.g., a specific type, or a specific sub-type, of hematologic malignancy
- a method of treating or preventing a specific patient or group of patients, having a cancer or disease, such as, a hematologic malignancy comprises: (1) determining the expression levels of one or more PI3K isoform(s) in the patient or group of patients having the cancer or disease; (2) selecting a treatment agent (e.g., a PI3K modulator having a particular selectivity profile for one or more PI3K isoform(s)) based on the expression levels of PI3K isoforms in the patient(s) to be treated; and (3) administering the treatment agent to the patient(s), alone or in combination with one or more other agents or therapeutic modalities.
- a treatment agent e.g., a PI3K modulator having a particular selectivity profile for one or more PI3K isoform(s)
- the expression level of one or more PI3K isoform(s) in the patient or group of patients can be measured by determining the expression level of PI3K isoform protein, DNA, and/or R A in the patient or group of patients; or by measuring one or more biomarkers provided herein in the patient or group of patients (e.g., a signaling pathway biomarker, a protein mutation biomarker, a protein expression biomarker, a gene mutation biomarker, a gene expression biomarker, a cytokine biomarker, a chemokine biomarker, or a biomarker for particular cancer cells, among others).
- the expression level of one or more PI3K isoform(s) in the patient or group of patients can be determined based on information known in the art or information obtained in prior testing of the patient or group of patient(s).
- the methods, compositions and kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective toward PI3K-8 over the other isoforms of PI3K.
- the methods, compositions and kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective toward ⁇ 3 ⁇ - ⁇ over the other isoforms of PI3K.
- the methods, compositions and kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective toward PI3K-8 and ⁇ 3 ⁇ - ⁇ over the other isoforms of PI3K.
- the methods, compositions and kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective toward ⁇ 3 ⁇ - ⁇ and PI3K-a over the other isoforms of PI3K.
- the methods, compositions and kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective toward ⁇ 3 ⁇ - ⁇ and ⁇ 3 ⁇ - ⁇ over the other isoforms of PI3K.
- the methods, compositions and kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective toward PI3K-8 and PI3K-a over the other isoforms of PI3K.
- the methods, compositions and kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective toward PI3K-8 and ⁇ 3 ⁇ - ⁇ over the other isoforms of PI3K.
- the methods, compositions and kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective toward PI3K-8, PI3K- ⁇ , and ⁇ 3 ⁇ - ⁇ over other isoform of PI3K.
- the methods, compositions and kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective toward PI3K-8, ⁇ 3 ⁇ - ⁇ , and ⁇ 3 ⁇ - ⁇ over other isoform of PI3K.
- the methods, compositions, or kits provided herein relate to administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective for one or more PI3K isoform(s) over other isoforms of PI3K (e.g., PI3K-8 selective, ⁇ 3 ⁇ - ⁇ selective, or PI3K-8 and ⁇ 3 ⁇ - ⁇ selective); and the subject being treated has a high expression level of the particular PI3K isoform(s) (e.g., high expression of PI3K-8, high expression of ⁇ 3 ⁇ - ⁇ , or high expression of both PI3K-8 and ⁇ 3 ⁇ - ⁇ ).
- a subject e.g., a mammalian subject, e.g., a human
- the PI3K modulator is selective for one or more PI3
- the methods, compositions, or kits provided herein can provide reduced side effects and/or improved efficacy.
- a cancer or disease such as hematologic malignancy, or a specific type or sub-type of cancer or disease, such as a specific type or sub-type of hematologic malignancy, having a high expression level of one or more isoform(s) of PI3K, wherein the adverse effects associated with administration of PI3K inhibitors are reduced.
- a cancer or disease such as hematologic malignancy, or a specific type or sub-type of cancer or disease, such as a specific type or sub-type of hematologic malignancy, with a ⁇ 3 ⁇ - ⁇ selective inhibitor, wherein the adverse effects associated with
- PI3K-a or ⁇ 3 ⁇ - ⁇ isoform(s) of PI3K
- a cancer or disease such as hematologic malignancy, or a specific type or sub-type of cancer or disease, such as a specific type or sub-type of hematologic malignancy
- a ⁇ 3 ⁇ - ⁇ selective inhibitor at a lower (e.g., by about 10%, by about 20%, by about 30%, by about 40%, by about 50%, by about 60%, by about 70%, or by about 80%) dose as compared to treatment with a ⁇ 3 ⁇ - ⁇ non-selective or less selective inhibitor (e.g., a PI3K pan inhibitor (e.g., ⁇ 3 ⁇ - ⁇ , ⁇ , ⁇ , ⁇ )).
- the methods, compositions, or kits provided herein relate to administering a PI3K modulator, in combination with one or more second active agent(s), e.g., one or more cancer therapeutic agent(s).
- the second active agents that can be used in the methods, compositions, or kits provided herein include, but are not limited to, one or more of: an HDAC inhibitor, such as, e.g.
- mTOR inhibitor such as, e.g., everolimus (RAD 001); a proteasome inhibitor, such as, e.g., bortezomib or carfilzomib; a JAK inhibitor or a JAK/STAT inhibitor, such as, e.g., Tofacitinib, INCB 16562, or AZD 1480; a BCL-2 inhibitor, such as, e.g. , ABT-737, ABT-263, or Navitoclax; a MEK inhibitor, such as, e.g.
- an anti-folate such as, e.g. , pralatrexate
- a farnesyl transferase inhibitor such as, e.g., tipifarnib
- an antibody or a biologic agent such as, e.g., alemtuzumab, rituximab, ofatumumab, or brentuximab vedotin (SGN-035)
- an antibody-drug conjugate such as, e.g. , inotuzumab ozogamicin, or brentuximab vedotin
- a cytotoxic agent such as, e.g.
- oxalip latin cyclophosphamide
- vincristine vinblastine
- anthracycline e.g., daunorubicin or daunomycin, doxorubicin, or actinomycin or dactinomycin
- bleomycin e.g., daunorubicin or daunomycin, doxorubicin, or actinomycin or dactinomycin
- bleomycin clofarabine
- nelarabine cladribine
- asparaginase methotrexate
- pralatrexate e.g.
- the cancer or disease being treated or prevented has a high expression level of one or more PI3K isoform(s) (e.g. , ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , or ⁇ 3 ⁇ - ⁇ , or a combination thereof).
- PI3K isoform(s) e.g. , ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , or ⁇ 3 ⁇ - ⁇ , or a combination thereof.
- the cancer or disease that can be treated or prevented by methods, compositions, or kits provided herein includes a blood disorder or a hematologic malignancy, including, but not limited to, myeloid disorder, lymphoid disorder, leukemia, lymphoma, myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), mast cell disorder, and myeloma (e.g., multiple myeloma), among others.
- myeloid disorder including, but not limited to, myeloid disorder, lymphoid disorder, leukemia, lymphoma, myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), mast cell disorder, and myeloma (e.g., multiple myeloma), among others.
- the blood disorder or the hematologic malignancy includes, but is not limited to, acute lymphoblastic leukemia (ALL), T-cell ALL (T-ALL), B-cell ALL (B-ALL), acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), blast phase CML, small lymphocytic lymphoma (SLL), CLL/SLL, Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL), B-cell NHL, T-cell NHL, indolent NHL (iNHL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), aggressive B-cell NHL, B-cell lymphoma (BCL), Richter's syndrome (RS), T-cell lymphoma (TCL), peripheral T-cell lymphoma (PTCL), cutaneous T-cell lymphoma (CTCL), transformed mycosis fungoides,
- ALL
- the hematologic malignancy is relapsed. In one embodiment, the hematologic malignancy is refractory. In one embodiment, the cancer or disease is in a pediatric patient (including an infantile patient). In one embodiment, the cancer or disease is in an adult patient.
- the cancer or disease being treated or prevented has a high expression level of PI3K-8 and/or ⁇ 3 ⁇ - ⁇ , which includes, but is not limited to, CLL, CLL/SLL, blast phase CLL, CML, DLBCL, MCL, B-ALL, T-ALL, multiple myeloma, B-cell lymphoma, CTCL (e.g., mycosis fungoides or Sezary syndrome), AML, Burkitt lymphoma, follicular lymphoma (FL), Hodgkin lymphoma, ALCL, or MDS.
- CLL CLL/SLL
- blast phase CLL CML
- DLBCL DLBCL
- MCL MCL
- B-ALL B-ALL
- T-ALL multiple myeloma
- B-cell lymphoma e.g., mycosis fungoides or Sezary syndrome
- CTCL e.g., mycosis fungoides or Sezary syndrome
- AML Burkitt lymph
- a PI3K modulator as a single agent or in combination with one or more additional therapies, for use in a method, composition, or kit provided herein, to ameliorate cancer or hematologic disease, such as a hematologic malignancy (e.g. , by decreasing one or more symptoms associated with the cancer or hematologic disease) in a subject, e.g., a mammalian subject.
- cancer or hematologic disease such as a hematologic malignancy (e.g. , by decreasing one or more symptoms associated with the cancer or hematologic disease) in a subject, e.g., a mammalian subject.
- Symptoms of cancer or hematologic disease that can be ameliorated include any one or combination of symptoms of cancer or hematologic disease, as known the art and/or as disclosed herein.
- Experimental conditions for evaluating the effects of a PI3K modulator in ameliorating cancer or hematologic disease in animal models of cancer or hematologic disease are provided here
- a method of reducing a symptom associated with cancer or hematologic disease, such as a hematologic malignancy, in a biological sample comprising contacting the biological sample with a PI3K modulator, e.g., a compound provided herein (e.g., a compound of Formula I, e.g., Compound 292) or a pharmaceutically acceptable form thereof (e.g. , an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof), in an amount sufficient to reduce the symptom associated with cancer or hematologic disease.
- a PI3K modulator e.g., a compound provided herein (e.g., a compound of Formula I, e.g., Compound 292) or a pharmaceutically acceptable form thereof (e.g. , an enantiomer or a mixture of enantiomers thereof, or a pharmaceutical
- a method of treating or preventing cancer or hematologic disease comprising administering an effective amount of a PI3K modulator, e.g., a compound provided herein (e.g., a compound of Formula I, e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
- a PI3K modulator e.g., a compound provided herein (e.g., a compound of Formula I, e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
- the compound is a compound of Formula I, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof:
- W d is heterocycloalkyl, aryl or heteroaryl
- B is alkyl or a moiety of Formula II
- W c is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4;
- X is absent or -(CH(R 9 )) Z -, and z is an integer of 1 ;
- Y is absent, or -N(R 9 )-;
- R 1 is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, amido, alkoxycarbonyl, sulfonamido, halo, cyano, or nitro;
- R 2 is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, heteroarylalkyl, alkoxy, amino, halo, cyano, hydroxy, or nitro;
- R 3 is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, alkoxycarbonyl sulfonamido, halo, cyano, hydroxy, or nitro;
- R 5 , R 6 , R 7 , and R 8 are each independently hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, acyl, acyloxy, sulfonamido, halo, cyano, hydroxy, or nitro; and
- each instance of R 9 is independently hydrogen, alkyl, cycloalkyl, or heterocycloalkyl.
- Y is -NH-.
- -X- is -CH 2 -, -CH(CH 2 CH 3 )-, or -CH(CH 3 )-.
- -X-Y- is -CH 2 -N(CH 3 )-, -CH 2 -N(CH 2 CH 3 )-, -CH(CH 2 CH 3 )-NH-,
- W d is a pyrazolopyrimidine of Formula 111(a), or a purine of Formula 111(b), Formula III(c) or F
- W d is a pyrazolopyrimidine of Formula 111(a), wherein R 11 is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and R 12 is cyano, amino, carboxylic acid, or amido.
- R 11 is H, alkyl, halo, amino, amido, hydroxy, or alkoxy
- R 12 is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl.
- the compound of Formula I has the structure of Formula IV wherein R 11 is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and R 12 is cyano, amino, carboxylic acid, or amido.
- R 11 is amino.
- R 12 is alkyl, alkenyl, alkynyl, heteroaryl, aryl, or heterocycloalkyl.
- R 12 is cyano, amino, carboxylic acid, amido, monocyclic heteroaryl, or bicyclic heteroaryl.
- the compound has the structure of Formula V:
- -NR 9 - is -N(CH 2 CH 3 )CH 2 - or -N(CH 3 )CH 2 -.
- the compound has a structure of Formula VI:
- R 3 is -H, -CH 3 , -CI, or -F, and R 5 , R 6 , R 7 , and R 8 are independently hydrogen.
- B is a moiety of Formula II
- W c is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4.
- the PI3 kinase modulator is a compound, or a pharmaceutically acceptable salt thereof, having the structure of Formula 1- 1 :
- W c in B is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1, 2, 3, or 4;
- X is absent or -(CH(R 9 )) Z -, and z is an integer of 1 ;
- Y is absent, or -N(R 9 )-;
- W d when Y is absent, W d is: , or when Y is present, W d is:
- R 1 is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, amido, alkoxycarbonyl, sulfonamido, halo, cyano, or nitro
- R 2 is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, heteroarylalkyl, alkoxy, amino, halo, cyano, hydroxy, or nitro
- R is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, alkoxycarbonyl sulfonamido, halo, cyano, hydroxy, or nitro;
- each instance of R 9 is independently hydrogen, Ci-Cio alkyl, cycloalkyl, or heterocycloalkyl;
- R 12 is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl.
- a compound of Formula I or Formula 1- 1 has the structure of Formula IV-A:
- R 12 is substituted benzoxazole.
- a compound of Formula I or Formula 1- 1 has the structure of Formula V-A:
- a compound of Formula I or Formula 1- 1 has the structure of Formula IV-A or Formula V-A.
- a compound of Formula I or Formula 1- 1 has the structure of Formula V-B:
- a compound of Formula I or Formula I- 1 has the structure of Formula VI-A:
- a compound of Formula I or Formula 1- 1 is a compound wherein B is a moiety of Formula II:
- W c is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl; q is an integer of 0 or 1 ; R 1 is hydrogen, alkyl, or halo; R 2 is alkyl or halo; and R 3 is hydrogen, alkyl, or halo.
- R 3 is -H, -CH 3 , -CH 2 CH 3 , -CF 3 , -CI or -F.
- R 3 is methyl or chloro.
- X is -(CH(R 9 )) Z -, wherein R 9 is methyl and z is 1 ; and W d is
- the compound is predominately in an
- the compound has a structure of Formula V-A2:
- R is a monocyclic heteroaryl, bicyclic heteroaryl, or heterocycloalkyl.
- B is a moiety of Formula II:
- W c is aryl or cycloalkyl.
- the compound of Formula I is a polymorph Form C of Compound 292 as disclosed herein.
- the compound inhibits or reduces the activity of a class I PI3K.
- the class I PI3K is pi 10 a, pi 10 ⁇ , pi 10 ⁇ , or pi 10 ⁇ .
- the compound inhibits one or more class I PI3K isoforms selected from the group consisting of PI3 kinase-a, PI3 kinase- ⁇ , PI3 kinase- ⁇ , and PI3 kinase- ⁇ .
- the compound selectively inhibits a class I PI3 kinase- ⁇ isoform, as compared with other class I PI3 kinase isoforms. In some embodiments, the compound selectively inhibits a class I PI3 kinase- ⁇ isoform, as compared with other class I PI3 kinase isoforms. In some embodiments, the compound selectively inhibits a class I PI3 kinase- ⁇ and a PI3 kinase- ⁇ isoform, as compared with other class I PI3 kinase isoforms.
- a pharmaceutical composition comprising a pharmaceutically acceptable excipient and one or more compounds of any formulae provided herein, including but not limited to Formula 1, 1-1, and IV to XVIII (including IV-A, V, V-A, V-A2, V-B, VI, and VI- A, among others).
- the composition is a liquid, solid, semi-solid, gel, or an aerosol form.
- two or more PI3K modulators are administered in combination.
- the PI3K modulators are administered concurrently.
- the modulators are administered sequentially.
- a combination of e.g., Compound 292 and a second PI3K modulator can be administered concurrently or sequentially.
- the second PI3K modulator is administered first, followed, with or without a period of overlap, by administration of Compound 292.
- Compound 292 is administered first, followed, with or without a period of overlap, by administration of the second PI3K modulator.
- a PI3K modulator e.g., one or more PI3K modulators described herein
- the PI3K modulator and the second agent are administered concurrently.
- the PI3K modulator and the second agent are administered sequentially.
- a combination of e.g., Compound 292 and a second agent can be administered concurrently or sequentially.
- the second agent is administered first, followed, with or without a period of overlap, by administration of Compound 292.
- Compound 292 is administered first, followed, with or without a period of overlap, by administration of the second agent.
- the subject treated is a mammal, e.g., a primate, typically a human (e.g., a patient having, or at risk of having, cancer or hematologic disorder, such as hematologic malignancy, as described herein).
- the subject treated is in need of PI3 kinase inhibition (e.g., has been evaluated to show elevated PI3K levels or alterations in another component of the PI3K pathway).
- the subject previously received other treatment (e.g., a treatment for cancer or a treatment for hematologic disorder).
- the PI3K modulator is administered as a pharmaceutical composition comprising the PI3K modulator, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.
- the PI3K modulator is administered or is present in the composition, e.g., the pharmaceutical composition.
- the PI3K modulators described herein can be administered to the subject systemically (e.g., orally, parenterally, subcutaneously, intravenously, rectally, intramuscularly, intraperitoneally, intranasally, transdermally, or by inhalation or intracavitary installation). Typically, the PI3K modulators are administered orally.
- the PI3K modulator is Compound 292, as disclosed in Table 4, or a pharmaceutically acceptable salt thereof.
- Compound 292, or a pharmaceutically acceptable salt thereof can be administered orally. Other routes of administration are also provided herein.
- the methods and compositions provided herein can, optionally, be used in combination with other therapies (e.g., one or more agents, surgical procedures, or radiation procedures). Any combination of one or more PI3K modulator(s) and one or more other agents or therapies can be used.
- the PI3K modulator(s) and other therapies can be administered before treatment, concurrently with treatment, post-treatment, or during remission of the disease.
- a second agent is administered simultaneously or sequentially with the PI3K modulator.
- a biomarker e.g. , a diagnostic biomarker, a predictive biomarker, or a prognostic biomarker
- the biomarker provided herein include, but are not limited to: a target biomarker, a signaling pathway biomarker, a protein mutation biomarker, a protein expression biomarker, a gene mutation biomarker, a gene expression biomarker, a cytokine biomarker, a chemokine biomarker, or a biomarker for particular cancer cells.
- the biomarker can be used to evaluate a particular type of cancer or disease, or a particular patient or group of patients.
- the biomarker involves
- the biomarker involves the RNA (e.g., mPvNA) (e.g., in situ hybridization (ISH) of mRNA) of a particular protein target.
- the biomarker involves the DNA of a particular protein target, including genetic alteration such as somatic mutation, copy number alterations such as amplification or deletion, and chromosomal translocation as well as epigenetic alteration such as methylation and histone modification.
- the biomarker involves micro-RNA (miRNA) which regulates expression of a particular protein target.
- the biomarker involves measurement of a protein/protein modification.
- the biomarker involves measurement of a nonprotein marker, such as, e.g., metabolomics. In one embodiment, the biomarker is measured by ELISA, western blot, or mass spectroscopy. In one embodiment, the biomarker is a serum biomarker. In one embodiment, the biomarker is a blood biomarker. In one embodiment, the biomarker is a bone marrow biomarker. In one embodiment, the biomarker is a sputum biomarker. In one embodiment, the biomarker is a urine biomarker. In one embodiment, the biomarker involves bio-matrixes, including, but not limited to, serum, blood, bone marrow, sputum, or urine.
- a nonprotein marker such as, e.g., metabolomics. In one embodiment, the biomarker is measured by ELISA, western blot, or mass spectroscopy. In one embodiment, the biomarker is a serum biomarker. In one embodiment, the biomarker is a
- the biomarker provided herein is a target biomarker, such as, e.g. , a biomarker to determine the protein and/or RNA expression of one or more particular PI3K isoform; e.g., a biomarker for PI3K-a expression, for ⁇ 3 ⁇ - ⁇ expression, for PI3K-8 expression, or for ⁇ 3 ⁇ - ⁇ expression, or combinations thereof.
- the biomarker could be DNA alteration of one or more particular PI3K isoforms (e.g., mutation, copy number variation, or epigenetic modification).
- the biomarker provided herein is a signaling pathway biomarker, such as, e.g., a PTEN pathway biomarker and/or a biomarker of signaling pathway activation such as pAKT, pS6, and/or pPRAS40 (e.g., an IHC biomarker, a DNA alteration biomarker, a DNA deletion biomarker, or a DNA mutation biomarker).
- the biomarker provided herein is a mutation biomarker, such as, a protein mutation biomarker or a gene mutation biomarker, to assess the mutation of one or more targets, such as, e.g.
- the biomarker provided herein is an expression biomarker, such as, a protein expression biomarker, a gene expression biomarker, to assess the expression of one or more targets, or the upregulation or downregulation of a pathway, such as, e.g., pERK IHC biomarker or pERK expression biomarker, for example, to assess RAS or PI3K pathway activation.
- a protein expression biomarker such as, a protein expression biomarker, a gene expression biomarker
- a gene expression biomarker to assess the expression of one or more targets, or the upregulation or downregulation of a pathway, such as, e.g., pERK IHC biomarker or pERK expression biomarker, for example, to assess RAS or PI3K pathway activation.
- the biomarker provided herein is a cytokine biomarker (e.g., serum cytokine biomarkers or other cytokine biomarkers provided herein).
- the biomarker provided herein is a chemokine biomarker (e.g. , serum chemokine biomarkers or other chemokine biomarkers provided herein).
- the biomarker provided herein is a biomarker for cancer cells (e.g., a particular cancer cell line, a particular cancer cell type, a particular cell cycle profile).
- the biomarker provided herein relates to gene expression profiling of a patient or group of patients, e.g., as a predictive biomarker for PI3K8 and/or ⁇ 3 ⁇ pathway activation, or as a predictive biomarker for response to a treatment described herein.
- the biomarker provided herein relates to a gene expression classifier, e.g., as a predictive biomarker for PI3K8 and/or ⁇ expression or activation (e.g., differential expression or activation in the ABC, GCB, oxidative phosphorylation (Ox Phos), B-cell receptor/proliferation (BCR), or host response (HR) subtypes of DLBCL).
- a gene expression classifier e.g., as a predictive biomarker for PI3K8 and/or ⁇ expression or activation (e.g., differential expression or activation in the ABC, GCB, oxidative phosphorylation (Ox Phos), B-cell receptor/proliferation (B
- the methods provided herein can further include the step of evaluating a subject, e.g., for one or more signs or symptoms or biological concomitants of cancer or hematologic disorder, as disclosed herein, e.g., evaluate a biomarker described herein in the subject.
- a subject e.g., for one or more signs or symptoms or biological concomitants of cancer or hematologic disorder, as disclosed herein, e.g., evaluate a biomarker described herein in the subject.
- one or more of these biological concomitants or biomarkers correlate with improved likelihood of response of a subject to a particular therapy.
- one or more of these biological concomitants or biomarkers correlate with reduced side effect in a subject to a particular therapy.
- the methods provided herein can further include the step of monitoring the subject, e.g., for a change (e.g., an increase or decrease) in levels of one or more signs or symptoms or biological concomitants of cancer or hematologic disorder, as disclosed herein, e.g., a biomarker described herein.
- a change e.g., an increase or decrease
- one or more of these biological concomitants or biomarkers correlate with a decrease in one or more clinical symptoms associated with cancer or hematologic disorder.
- one or more of these biological concomitants or biomarkers correlate with improved likelihood of response in a subject to a particular therapy.
- one or more of these biological concomitants or biomarkers correlate with reduced side effect in a subject to a particular therapy.
- a normalization or change (e.g., a decrease in an elevated level or increase in a diminished level) of a biological concomitant or biomarker is indicative of treatment efficacy and/or is predictive of improvement in clinical symptoms.
- the subject is monitored for a change in a biological concomitant or biomarker (e.g. , a decrease or increase of a biological concomitant or biomarker, which can be indicative of treatment efficacy).
- the subject can be evaluated or monitored in one or more of the following periods: prior to beginning of treatment; during the treatment; or after one or more elements of the treatment have been administered. Evaluation and monitoring can be used to determine the need for further treatment with the same PI3K modulator, alone or in combination with, another agent, or for additional treatment with additional agents, or for adjusted dosing regimen of the same PI3K modulator.
- the methods provided herein can further include the step of analyzing a nucleic acid or protein from the subject, e.g., analyzing the genotype of the subject.
- a PI3K protein, or a nucleic acid encoding a PI3K protein, and/or an upstream or downstream component(s) of a PI3K signaling pathway is analyzed.
- the nucleic acid or protein can be detected in any biological sample (e.g. , blood, urine, circulating cells, a tissue biopsy or a bone marrow biopsy) using any method disclosed herein or known in the art.
- the PI3K protein can be detected by systemic administration of a labeled form of an antibody to PI3K followed by imaging.
- the analysis can be used, e.g. , to evaluate the suitability of, or to choose between alternative treatments, e.g., a particular dosage, mode of delivery, time of delivery, inclusion of adjunctive therapy, e.g., administration in combination with a second agent, or generally to determine the subject's probable drug response phenotype or genotype.
- the nucleic acid or protein can be analyzed at any stage of treatment.
- the nucleic acid or protein can be analyzed at least prior to administration of the PI3K modulator and/or agent, to thereby determine appropriate dosage(s) and treatment regimen(s) of the PI3K modulator (e.g., amount per treatment or frequency of treatments) for prophylactic or therapeutic treatment of the subject.
- the methods provided herein further include the step of detecting an altered PI3K level in a patient, prior to, or after, administering a PI3K modulator to the patient.
- the PI3K level can be assessed in any biological sample, e.g., blood, urine, circulating cells, or a tissue biopsy.
- the PI3K level is assessed by systemic administration of a labeled form of an antibody to PI3K followed by imaging.
- composition e.g., a pharmaceutical composition, that includes one or more PI3K modulators, e.g., a PI3K modulator as described herein, and one or more agents (e.g., a second active agent as disclosed herein).
- the composition can further include a pharmaceutically-acceptable carrier or excipient.
- composition for use, or the use, of a PI3K modulator alone or in combination with a second agent or a therapeutic modality described herein for the treatment of a cancer or disorder, such as a hematologic malignancy, as described herein.
- kits that include a PI3K modulator, alone or in combination with one or more additional agents, and instructions for use in the treatment of a cancer or disorder, such as a hematologic malignancy, as described herein.
- FIG. 1 depicts the PK/PD relationship of mean drug plasma concentration and mean % reduction from pre-dose for basophil activation over time, following single dose administration of Compound 292 in human.
- FIG. 2 depicts the PK/PD relationship of mean drug plasma concentration and mean % reduction from pre-dose for basophil activation over time, following multiple dose administration of Compound 292 in human.
- FIG. 3 depicts the pharmacodynamic response versus concentration of Compound 292 in human.
- FIG. 4 depicts the steady state (C2D1) plasma concentrations over time after administration of
- FIG. 5 depicts AKT phosphorylation in CLL/SLL cells of Compound 292.
- FIG. 6 depicts changes in tumor size after administration of Compound 292 in human.
- FIG. 7 depicts rapid onset of clinical activity of Compound 292 in CLL/SLL patients.
- FIG. 8 depicts clinical activity of Compound 292 in T-cell lymphoma patients.
- FIG. 9 depicts clinical activity of Compound 292 in a T-cell lymphoma patient.
- FIG. 10 depicts percent changes in measurable disease in patients with peripheral T-cell lymphoma
- PTCL cutaneous T-cell lymphoma
- FIG. 11 depicts percent changes in measurable disease in patients with aggressive NHL (aNHL), Hodgkin's lymphoma and mantle cell lymphoma (MCL).
- aNHL aggressive NHL
- MCL mantle cell lymphoma
- FIG. 12 depicts percent changes in measurable disease in patients with indolent NHL (iNHL).
- iNHL patients included patients with follicular lymphoma, Waldenstrom macroglobulinemia (lymphoplasmacytic lymphoma) and marginal zone lymphoma (MZL).
- MZL marginal zone lymphoma
- FIG. 13 depicts months on study by subject and diagnosis for patients treated with Compound 292.
- FIG. 14 depicts that Compound 292 inhibits TNF-a and IL-10 productions from diluted whole blood stimulated with LPS.
- FIG. 15 depicts the effects of Compound 292 treatment on serum concentration of CXCL13 in CLL/SLL and iNHL/MCL/FL patients.
- FIG. 16 depicts the effects of Compound 292 treatment on serum concentration of CCL4 in CLL/SLL and iNHL/MCL/FL patients.
- FIG. 17 depicts the effects of Compound 292 treatment on serum concentration of CCL17 in CLL/SLL and iNHL/MCL/FL patients.
- FIG. 18 depicts the effects of Compound 292 treatment on serum concentration of CCL22 in CLL/SLL and iNHL/MCL/FL patients.
- FIG. 19 depicts the effects of Compound 292 treatment on serum concentration of TNF-a in CLL/SLL and iNHL/MCL/FL patients.
- FIG. 20 depicts the effects of Compound 292 treatment on serum concentration of MMP9 in some non- CLL/iNHL patients.
- FIG. 21 depicts a possible mechanism of actions for certain chemokines in patients with hematologic malignancies.
- FIG. 22 depicts steady state plasma concentrations of Compound 292 on cycle 2, day 1 of 28 day cycles, 25 mg and 75 mg BID administration.
- FIG. 23 depicts decrease in levels of CLL biomarkers in serum at various time points following 28 day cycles, 25 mg BID administration of Compound 292.
- FIG. 24 depicts decrease in levels of CLL biomarkers in serum at various time points following 28 day cycles, 25 mg or 75 mg BID administration of Compound 292.
- FIG. 25 depicts median Absolute Lymphocyte Count (ALC) at various time points following 28 day cycles, 25 mg BID administration in patients with higher than 10 ⁇ 103/ ⁇ 1 baseline ALC (darker line) and lower than 10 ⁇ 103/ ⁇ 1 baseline ALC (lighter line).
- ALC Average Absolute Lymphocyte Count
- FIG. 26 depicts median ALC at various time points following 28 day cycles, 25 mg BID administration and changes in tumor measurement.
- FIG. 27A depicts decrease in levels of lymphoma biomarkers in serum at various time points following 28 day cycles, 25 mg BID administration of Compound 292.
- FIG. 27B depicts decrease in levels of iNHL biomarkers in serum at various time points following 28 day cycles, 25 mg BID administration of Compound 292.
- FIG. 28 depicts decrease in levels of T-cell lymphoma biomarkers in serum at various time points following 28 day cycles, 25 mg BID administration of Compound 292.
- FIG. 29 depicts decrease in levels of iNHL biomarkers in serum at various time points following 28 day cycles, 25 mg or 75 mg BID administration of Compound 292.
- FIG. 30A depicts number of Sezary cells per microliter of peripheral blood at various time points following 28 day cycles, 25 mg BID administration of Compound 292.
- FIG. 30B depicts CT response shown in terms of Sum of Product Diameters (SPD) at various time points following 28 day cycles, 25 mg BID administration of Compound 292.
- SPD Sum of Product Diameters
- FIG. 30C depicts mSWAT score at various time points following 28 day cycles, 25 mg BID
- FIG. 31 depicts correlation between growth inhibition and pharmacodynamic response in DLBCL cell lines DHL-6, DHL-4, Ri-1 and U2932, as assessed by western blot of various proteins.
- FIG. 32 depicts sensitivity of Loucy ALL cell line to different PI3K isoform inhibitors.
- FIG. 33 depicts decrease in level of pPRAS40 upon treatment by Compound 292, as compared to the administration of GS-1 101, and that the level of pERKl/2 is much lower in HH cells than MJ or HuT78 cells.
- FIG. 34 depicts increase of Ki-67/pAKT positive CLL cells at 30 minutes, 4 hours, 24 hours and 72 hours after the treatment by a cytokine cocktail consisting of CD40L, IL-2 and 11-10.
- FIG. 35 depicts reduction in Ki-67/pAKT positive CLL cells treated by cytokine cocktail upon treatment by 100 nM Compound 292.
- FIG. 36 depicts percent inhibition of CLL cell proliferation by Compound 292 in comparison with CAL- 101.
- FIG. 37A depicts absolute lymphocyte counts in CLL patients treated by 25 mg BID Compound 292.
- FIG. 37B depicts reduction in CD38 positive circulating CLL cells in CLL patients treated by 25 mg BID Compound 292.
- FIG. 37C depicts reduction in CD69 positive circulating CLL cells in CLL patients treated by 25 mg BID Compound 292.
- FIG. 37D depicts reduction in CD38/CD69 double positive circulating CLL cells in CLL patients treated by 25 mg BID Compound 292.
- FIG. 38 depicts the effects of Compound 292/ibrutinib combination on viability of DLBCL cells as compared with the monotherapy.
- the term “about” or “approximately” means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. In certain embodiments, the term “about” or “approximately” means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term “about” or “approximately” means within 50%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.05% of a given value or range.
- the term "patient” or “subject” refers to an animal, typically a human (e.g., a male or female of any age group, e.g., a pediatric patient (e.g., infant, child, adolescent) or adult patient (e.g., young adult, middle-aged adult or senior adult) or other mammal, such as a primate (e.g., cynomolgus monkey, rhesus monkey); other mammals such as rodents (mice, rats), cattle, pigs, horses, sheep, goats, cats, dogs; and/or birds, that will be or has been the object of treatment, observation, and/or experiment.
- a human e.g., a male or female of any age group, e.g., a pediatric patient (e.g., infant, child, adolescent) or adult patient (e.g., young adult, middle-aged adult or senior adult) or other mammal, such as a primate (e.
- a prophylactic effect includes delaying or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof.
- an effective amount refers to that amount of a compound or pharmaceutical composition described herein that is sufficient to effect the intended application including, but not limited to, disease treatment, as illustrated below.
- An effective amount can vary depending upon the intended application (in vitro or in vivo), or the subject and disease condition being treated, e.g., the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
- the term also applies to a dose that will induce a particular response in target cells. The specific dose will vary depending on, for example, the particular compounds chosen, the dosing regimen to be followed, whether it is administered in combination with other agents, timing of administration, the tissue to which it is administered, and the physical delivery system in which it is carried.
- therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated.
- a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the patient, notwithstanding that the patient can still be afflicted with the underlying disorder.
- the pharmaceutical compositions can be administered to a patient at risk of developing a particular disease, or to a patient reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.
- these terms also refer to partially or completely inhibiting or reducing the condition from which the subject is suffering. In one embodiment, these terms refer to an action that occurs while a patient is suffering from, or is diagnosed with, the condition, which reduces the severity of the condition, or retards or slows the progression of the condition. Treatment need not result in a complete cure of the condition; partial inhibition or reduction of the condition is encompassed by this term. Treatment is intended to encompass prevention or prophylaxis.
- Therapeutically effective amount refers to a minimal amount or concentration of a compound, such as aPBK modulator, that, when administered alone or in combination, is sufficient to provide a therapeutic benefit in the treatment of the condition, or to delay or minimize one or more symptoms associated with the condition.
- aPBK modulator a compound that, when administered alone or in combination, is sufficient to provide a therapeutic benefit in the treatment of the condition, or to delay or minimize one or more symptoms associated with the condition.
- therapeutically effective amount can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of the condition, or enhances the therapeutic efficacy of another therapeutic agent.
- the therapeutic amount need not result in a complete cure of the condition; partial inhibition or reduction of the condition is encompassed by this term.
- the therapeutically effective amount can also encompass a prophylactically effective amount.
- the terms “prevent,” “preventing” and “prevention” refers to an action that occurs before the subject begins to suffer from the condition, or relapse of the condition. The prevention need not result in a complete prevention of the condition; partial prevention or reduction of the condition or a symptom of the condition, or reduction of the risk of developing the condition, is encompassed by this term.
- a "prophylactically effective amount" of a compound such as a PI3K modulator, that, when administered alone or in combination, prevents or reduces the risk of developing the condition, or one or more symptoms associated with the condition, or prevents its recurrence.
- a compound such as a PI3K modulator
- prophylactically effective amount can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.
- the prophylactic amount need not result in a complete prevention of the condition; partial prevention or reduction of the condition is encompassed by this term.
- a condition or symptoms associated with the condition includes reducing the severity and/or frequency of symptoms of the condition, as well as preventing the condition and/or symptoms of the condition (e.g., by reducing the severity and/or frequency of flares of symptoms).
- the symptom is reduced by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% relative to a control level.
- the control level includes any appropriate control as known in the art.
- the control level can be the pre-treatment level in the sample or subject treated, or it can be the level in a control population (e.g., the level in subjects who do not have the condition or the level in samples derived from subjects who do not have the condition).
- the decrease is statistically significant, for example, as assessed using an appropriate parametric or non-parametric statistical comparison.
- agent or “biologically active agent” or “second active agent” refers to a biological, pharmaceutical, or chemical compound or other moiety.
- Non-limiting examples include simple or complex organic or inorganic molecules, a peptide, a protein, an oligonucleotide, an antibody, an antibody derivative, an antibody fragment, a vitamin, a vitamin derivative, a carbohydrate, a toxin, or a chemotherapeutic compound, and metabolites thereof.
- Various compounds can be synthesized, for example, small molecules and oligomers (e.g., oligopeptides and oligonucleotides), and synthetic organic compounds based on various core structures.
- various natural sources can provide compounds for screening, such as plant or animal extracts, and the like. A skilled artisan can readily recognize that there is no limit as to the structural nature of the agents of this disclosure.
- agonist refers to a compound or agent having the ability to initiate or enhance a biological function of a target protein or polypeptide, such as increasing the activity or expression of the target protein or polypeptide. Accordingly, the term “agonist” is defined in the context of the biological role of the target protein or polypeptide. While some agonists herein specifically interact with (e.g., bind to) the target, compounds and/or agents that initiate or enhance a biological activity of the target protein or polypeptide by interacting with other members of the signal transduction pathway of which the target polypeptide is a member are also specifically included within this definition.
- antagonists are used interchangeably, and they refer to a compound or agent having the ability to inhibit a biological function of a target protein or polypeptide, such as by inhibiting the activity or expression of the target protein or polypeptide. Accordingly, the terms “antagonist” and “inhibitor” are defined in the context of the biological role of the target protein or polypeptide. While some antagonists herein specifically interact with (e.g., bind to) the target, compounds that inhibit a biological activity of the target protein or polypeptide by interacting with other members of the signal transduction pathway of which the target protein or polypeptide are also specifically included within this definition.
- Non- limiting examples of biological activity inhibited by an antagonist include those associated with the development, growth, or spread of a tumor, or an undesired immune response as manifested in autoimmune disease.
- An "anti-cancer agent”, “anti-tumor agent” or “chemotherapeutic agent” refers to any agent useful in the treatment of a neoplastic condition.
- One class of anti-cancer agents comprises chemotherapeutic agents.
- “Chemotherapy” means the administration of one or more chemotherapeutic drugs and/or other agents to a cancer patient by various methods, including intravenous, oral, intramuscular, intraperitoneal, intravesical, subcutaneous, transdermal, or buccal administration, or inhalation, or in the form of a suppository.
- cell proliferation refers to a phenomenon by which the cell number has changed as a result of division. This term also encompasses cell growth by which the cell morphology has changed (e.g., increased in size) consistent with a proliferative signal.
- co-administration encompass administration of two or more agents to subject so that both agents and/or their metabolites are present in the subject at the same time.
- Co-administration includes simultaneous administration in separate compositions, administration at different times in separate compositions, or administration in a composition in which both agents are present.
- a "phosphoinositide 3-kinase (PI3K) modulator” or “PI3K modulator” refers to a modulator of a PI3K, including an inhibitor of PI3K.
- PI3Ks are members of a unique and conserved family of intracellular lipid kinases that phosphorylate the 3' -OH group on phosphatidylinositols or phosphoinositides.
- the PI3K family includes kinases with distinct substrate specificities, expression patterns, and modes of regulation (see, e.g., Katso et al., 2001, Annu. Rev. Cell Dev. Biol.
- the class I PI3Ks are typically activated by tyrosine kinases or G-protein coupled receptors to generate PIP3, which engages downstream mediators such as those in the Akt/PDKl pathway, mTOR, the Tec family kinases, and the Rho family GTPases.
- the class II PI3Ks e.g., PI3K-C2a, PI3K-C2 , PI3K-C2y
- III PI3Ks e.g., Vps34
- Vps34 PI3K modulators and inhibitors
- the class I PI3Ks comprise a pi 10 catalytic subunit and a regulatory adapter subunit. See, e.g., Cantrell, D.A. (2001) Journal of Cell Science 1 14: 1439-1445.
- Four isoforms of the pi 10 subunit including PI3K-a (alpha), ⁇ 3 ⁇ - ⁇ (beta), ⁇ 3 ⁇ - ⁇ (gamma), and PI3K-8 (delta) isoforms
- Class I PI3Ka is involved, for example, in insulin signaling, and has been found to be mutated in solid tumors.
- Class I ⁇ 3 ⁇ - ⁇ is involved, for example, in platelet activation and insulin signaling.
- Class I ⁇ 3 ⁇ - ⁇ plays a role in mast cell activation, innate immune function, and immune cell trafficking (chemokines).
- Class I PI3K-8 is involved, for example, in B-cell and T-cell activation and function and in Fc receptor signaling in mast cells.
- the PI3K modulator is a class I PI3K modulator (e.g., an inhibitor).
- the PI3K modulator inhibits or reduces the activity of a PI3K-a (alpha), a ⁇ 3 ⁇ - ⁇ (beta), a ⁇ 3 ⁇ - ⁇ (gamma), or a PI3K-8 (delta) isoform, or a combination thereof.
- Downstream mediators of PI3K signal transduction include Akt and mammalian target of rapamycin (mTOR).
- Akt possesses a pleckstrin homology (PH) domain that binds PIP3, leading to Akt kinase activation.
- PH pleckstrin homology
- Akt phosphorylates many substrates and is a central downstream effector of PI3K for diverse cellular responses.
- One function of Akt is to augment the activity of mTOR, through phosphorylation of TSC2 and other mechanisms.
- mTOR is a serine-threonine kinase related to the lipid kinases of the PI3K family.
- Signal transduction is a process during which stimulatory or inhibitory signals are transmitted into and within a cell to elicit an intracellular response.
- a “modulator” of a signal transduction pathway refers to a compound which modulates the activity of one or more cellular proteins mapped to the same specific signal transduction pathway. A modulator can augment (agonist) or suppress (antagonist) the activity of a signaling molecule.
- the term “selective inhibition” or “selectively inhibit” or “selective toward” as applied to a biologically active agent refers to the agent's ability to selectively reduce the target signaling activity as compared to off-target signaling activity, via direct or interact interaction with the target.
- a compound that selectively inhibits one isoform of PI3K over another isoform of PI3K has an activity of at least 2X against a first isoform relative to the compound's activity against the second isoform (e.g., at least about 3X, 5X, 10X, 20X, 50X, 100X, 200X, 500X, or 1000X).
- in vivo refers to an event that takes place in a subject's body.
- in vitro refers to an event that takes places outside of a subject's body.
- an in vitro assay encompasses any assay conducted outside of a subject.
- in vitro assays encompass cell-based assays in which cells, alive or dead, are employed.
- In vitro assays also encompass a cell-free assay in which no intact cells are employed
- Radionuclides e.g., actinium and thorium radionuclides
- LET low linear energy transfer
- beta emitters beta emitters
- conversion electron emitters e.g., strontium-89 and samarium- 153 -EDTMP
- high-energy radiation including without limitation x-rays, gamma rays, and neutrons.
- “Pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions as disclosed herein is contemplated. Supplementary active ingredients can also be incorporated into the pharmaceutical compositions.
- a "pharmaceutically acceptable form” of a disclosed compound includes, but is not limited to, pharmaceutically acceptable salts, hydrates, solvates, isomers, prodrugs, and isotopically labeled derivatives of disclosed compounds.
- a "pharmaceutically acceptable form” includes, but is not limited to, pharmaceutically acceptable salts, isomers, prodrugs and isotopically labeled derivatives of disclosed compounds.
- the pharmaceutically acceptable form is a pharmaceutically acceptable salt.
- pharmaceutically acceptable salt refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of subjects without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
- Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. describes pharmaceutically acceptable salts in detail in J.
- Pharmaceutically acceptable salts of the compounds provided herein include those derived from suitable inorganic and organic acids and bases.
- Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as
- hydrochloric acid hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
- organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
- Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, besylate, benzoate, bisulfate, borate, butyrate, camphorate,
- organic acids from which salts can be derived include, for example, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like.
- Pharmaceutically acceptable salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and salts.
- Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, iron, zinc, copper, manganese, aluminum, and the like.
- Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate, and aryl sulfonate.
- Organic bases from which salts can be derived include, for example, primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines, basic ion exchange resins, and the like, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.
- the pharmaceutically acceptable base addition salt is chosen from ammonium, potassium, sodium, calcium, and magnesium salts.
- the pharmaceutically acceptable form is a solvate ⁇ e.g., a hydrate).
- solvate refers to compounds that further include a stoichiometric or non-stoichiometric amount of solvent bound by non-covalent intermolecular forces.
- the solvate can be of a disclosed compound or a
- solvates and hydrates are complexes that, for example, can include 1 to about 100, or 1 to about 10, or one to about 2, about 3 or about 4, solvent or water molecules. It will be understood that the term "compound” as used herein encompasses the compound and solvates of the compound, as well as mixtures thereof.
- the pharmaceutically acceptable form is a prodrug.
- prodrug refers to compounds that are transformed in vivo to yield a disclosed compound or a pharmaceutically acceptable form of the compound.
- a prodrug can be inactive when administered to a subject, but is converted in vivo to an active compound, for example, by hydrolysis (e.g., hydrolysis in blood).
- a prodrug has improved physical and/or delivery properties over the parent compound.
- Prodrugs are typically designed to enhance pharmaceutically and/or pharmacokinetically based properties associated with the parent compound.
- the prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, e.g., Bundgard, H., Design of Prodrugs (1985), pp. 7 9, 21 24 (Elsevier, Amsterdam).
- a discussion of prodrugs is provided in Higuchi, T., et al., "Pro drugs as Novel Delivery Systems," A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated in full by reference herein.
- Exemplary advantages of a prodrug can include, but are not limited to, its physical properties, such as enhanced water solubility for parenteral administration at physiological pH compared to the parent compound, or it enhances absorption from the digestive tract, or it can enhance drug stability for long-term storage.
- prodrug is also meant to include any covalently bonded carriers, which release the active compound in vivo when such prodrug is administered to a subject.
- Prodrugs of an active compound, as described herein can be prepared by modifying functional groups present in the active compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent active compound.
- Prodrugs include compounds wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the active compound is administered to a subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively.
- prodrugs examples include, but are not limited to, acetate, formate and benzoate derivatives of an alcohol or acetamide, formamide and benzamide derivatives of an amine functional group in the active compound and the like.
- Other examples of prodrugs include compounds that comprise -NO, -NO 2 , -ONO, or - ONO 2 moieties.
- Prodrugs can typically be prepared using well-known methods, such as those described in Burger 's Medicinal Chemistry and Drug Discovery, 172-178, 949-982 (Manfred E. Wolff ed., 5th ed., 1995), and Design of Prodrugs (H. Bundgaard ed., Elsevier, New York, 1985).
- a prodrug can comprise a pharmaceutically acceptable ester formed by the replacement of the hydrogen atom of the acid group with a group such as (Ci-Cg)alkyl, (C 2 -Ci 2 )alkanoyloxymethyl, l-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1 -methyl- 1 -(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1 -(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1 -methyl- l-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-
- alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, l-(N-(alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, 4-crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N-(Ci-C 2 )alkylamino(C 2 - C3)alkyl (such as ⁇ -dimethylaminoethyl), carbamoyl-(Ci-C 2 )alkyl, N,N-di(Ci-C 2 )alkylcarbamoyl-(Ci-C 2 )alkyl and piperidino-, pyrrolidino- or morpholino(C 2 -C3)alkyl.
- a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as (Ci-C6)alkanoyloxymethyl, 1 -((Ci-C6)alkanoyloxy)ethyl, 1 -methyl- 1- ((Ci-C6)alkanoyloxy)ethyl (Ci-C6)alkoxycarbonyloxymethyl, N-(Ci-C6)alkoxycarbonylaminomethyl, succinoyl, (Ci-C6)alkanoyl, a-amino(Ci-C4)alkanoyl, arylacyl and a-aminoacyl, or ⁇ -aminoacyl-a-aminoacyl, where each a- aminoacyl group is independently selected from naturally occurring L-amino acids,
- a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as R-carbonyl, RO-carbonyl, NRR'-carbonyl where R and R' are each independently (Ci-Cio)alkyl, (C3- C 7 )cycloalkyl, benzyl, a natural a-aminoacyl or natural a-aminoacyl-natural a-aminoacyl, -C(OH)C(0)OY 1 wherein Y 1 is H, (C C 6 )alkyl or benzyl, -C(OY 2 )Y 3 wherein Y 2 is (C C 4 ) alkyl and Y 3 is (C C 6 )alkyl, carboxy(C C6)alkyl, amino(Ci-C4)alkyl or mono- N- or di-N,N-(Ci
- the pharmaceutically acceptable form is an isomer.
- “Isomers” are different compounds that have the same molecular formula.
- “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space.
- the term “isomer” includes any and all geometric isomers and stereoisomers.
- “isomers” include geometric double bond cis- and iraws-isomers, also termed E- and Z- isomers; R- and S-enantiomers; diastereomers, ( ⁇ f)-isomers and (/)-isomers, racemic mixtures thereof; and other mixtures thereof, as falling within the scope of this disclosure.
- Substituents around a carbon-carbon double bond alternatively can be referred to as “cis” or “trans " where "cis” represents substituents on the same side of the double bond and “trans” represents substituents on opposite sides of the double bond.
- the arrangement of substituents around a carbocyclic ring can also be designated as “cis” or “trans.”
- the term “cis” represents substituents on the same side of the plane of the ring, and the term “trans” represents substituents on opposite sides of the plane of the ring.
- Mixtures of compounds wherein the substituents are disposed on both the same and opposite sides of the plane of the ring are designated "cis/trans.”
- Enantiomers are a pair of stereoisomers that are non-superimposable mirror images of each other.
- a mixture of a pair of enantiomers in any proportion can be known as a “racemic” mixture.
- the term “( ⁇ )” is used to designate a racemic mixture where appropriate.
- “Diastereoisomers” are stereoisomers that have at least two asymmetric atoms, but which are not mirror-images of each other.
- the absolute stereochemistry can be specified according to the Cahn-Ingold-Prelog R-S system. When a compound is an enantiomer, the stereochemistry at each chiral carbon can be specified by either R or S.
- Resolved compounds whose absolute configuration is unknown can be designated (+) or (-) depending on the direction (dextro- or levorotatory) which they rotate plane polarized light at the wavelength of the sodium D line.
- Certain of the compounds described herein contain one or more asymmetric centers and can thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that can be defined, in terms of absolute stereochemistry at each asymmetric atom, as (R)- or (S)-.
- the present chemical entities, pharmaceutical compositions and methods are meant to include all such possible isomers, including racemic mixtures, optically substantially pure forms and intermediate mixtures.
- Optically active (R)- and (S)- isomers can be prepared, for example, using chiral synthons or chiral reagents, or resolved using conventional techniques.
- the "enantiomeric excess" or "% enantiomeric excess” of a composition can be calculated using the equation shown below.
- a composition contains 90% of one enantiomer, e.g., an S enantiomer, and 10% of the other enantiomer, e.g., a R enantiomer.
- compositions containing 90% of one enantiomer and 10% of the other enantiomer is said to have an enantiomeric excess of 80%.
- Some compositions described herein contain an enantiomeric excess of at least about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 75%, about 90%, about 95%, or about 99% of the S enantiomer.
- the compositions contain an enantiomeric excess of the S enantiomer over the R enantiomer.
- compositions described herein contain an enantiomeric excess of at least about 1%, about 5%, about 10%, about 20%, about 30%, about 40%, about 50%, about 75%, about 90%, about 95%, or about 99% of the R enantiomer.
- the compositions contain an enantiomeric excess of the R enantiomer over the S enantiomer.
- an isomer/enantiomer can, in some embodiments, be provided substantially free of the corresponding enantiomer, and can also be referred to as "optically enriched,” “enantiomerically enriched,” “enantiomerically pure” and “non-racemic,” as used interchangeably herein. These terms refer to compositions in which the amount of one enantiomer is greater than the amount of that one enantiomer in a control mixture of the racemic composition (e.g., greater than 1 : 1 by weight).
- an enantiomerically enriched preparation of the S enantiomer means a preparation of the compound having greater than about 50% by weight of the S enantiomer relative to the total weight of the preparation (e.g., total weight of S and R isormers), such as at least about 75% by weight, further such as at least about 80% by weight.
- the enrichment can be much greater than about 80% by weight, providing a "substantially enantiomerically enriched,” “substantially enantiomerically pure” or a “substantially non-racemic" preparation, which refers to preparations of compositions which have at least about 85% by weight of one enantiomer relative to the total weight of the preparation, such as at least about 90% by weight, and further such as at least about 95% by weight.
- the compound provided herein is made up of at least about 90% by weight of one enantiomer. In other embodiments, the compound is made up of at least about 95%, about 98%, or about 99% by weight of one enantiomer
- the compound is a racemic mixture of (S)- and (R)- isomers.
- the compound mixture has an (S)-enantiomeric excess of greater than about 10%, greater than about 20%, greater than about 30%, greater than about 40%, greater than about 50%, greater than about 55%, greater than about 60%, greater than about 65%, greater than about 70%, greater than about 75%, greater than about 80%, greater than about 85%, greater than about 90%, greater than about 95%, greater than about 96%, greater than about 97%, greater than about 98%, or greater than about 99%.
- the compound mixture has an (S)-enantiomeric excess of about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 99.5%, or more.
- the compound mixture has an (S)- enantiomeric excess of about 55% to about 99.5%, about 60% to about 99.5%, about 65% to about 99.5%, about 70% to about 99.5%, about 75% to about 99.5%, about 80% to about 99.5%, about 85% to about 99.5%, about 90% to about 99.5%, about 95% to about 99.5%, about 96% to about 99.5%, about 97% to about 99.5%, about 98% to about 99.5%, or about 99% to about 99.5%, or more than about 99.5%.
- the compound mixture has an (R)-enantiomeric excess of greater than about 10%, greater than about 20%, greater than about 30%, greater than about 40%, greater than about 50%, greater than about 55%, greater than about 60%, greater than about 65%, greater than about 70%, greater than about 75%, greater than about 80%, greater than about 85%, greater than about 90%, greater than about 95%, greater than about 96%, greater than about 97%, greater than about 98%, or greater than about 99%.
- the compound mixture has an (R)-enantiomeric excess of about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 99.5%, or more.
- the compound mixture has an (R)-enantiomeric excess of about 55% to about 99.5%, about 60% to about 99.5%, about 65% to about 99.5%, about 70% to about 99.5%, about 75% to about 99.5%, about 80% to about 99.5%, about 85% to about 99.5%, about 90% to about 99.5%, about 95% to about 99.5%, about 96% to about 99.5%, about 97% to about 99.5%, about 98% to about 99.5%, or about 99% to about 99.5%, or more than about 99.5%.
- the compound mixture contains identical chemical entities except for their stereochemical orientations, namely (S)- or (R)-isomers.
- the -CH(R)- is in an (S)- or (R)- stereochemical orientation for each of the identical chemical entities (i.e., (S)- or (R)-stereoisomers).
- the mixture of identical chemical entities i.e., mixture of stereoisomers
- the mixture of the identical chemical entities contains predominately (S)-isomer or predominately (R)-isomer.
- the (S)-isomer in the mixture of identical chemical entities i.e., mixture of stereoisomers
- the (S)- isomer in the mixture of identical chemical entities is present at an (S)-enantiomeric excess of about 10% to about 99.5%, about 20% to about 99.5%, about 30% to about 99.5%, about 40% to about 99.5%, about 50% to about 99.5%, about 55% to about 99.5%, about 60% to about 99.5%, about 65% to about 99.5%, about 70% to about 99.5%, about 75% to about 99.5%, about 80% to about 99.5%, about 85% to about 99.5%, about 90% to about 99.5%, about 95% to about 99.5%, about 96% to about 99.5%, about 97% to about 99.5%, about 98% to about 99.5%, or about 99% to about 99.5%, or more than about 99.5%.
- the (R)-isomer in the mixture of identical chemical entities is present at about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or about 99.5% by weight, or more, relative to the total weight of the mixture of (S)- and (R)-isomers.
- the (R)-isomers in the mixture of identical chemical entities is present at an (R)-enantiomeric excess of about 10% to about 99.5%, about 20% to about 99.5%, about 30% to about 99.5%, about 40% to about 99.5%, about 50% to about 99.5%, about 55% to about 99.5%, about 60% to about 99.5%, about 65% to about 99.5%, about 70% to about 99.5%, about 75% to about 99.5%, about 80% to about 99.5%, about 85% to about 99.5%, about 90% to about 99.5%, about 95% to about 99.5%, about 96% to about 99.5%, about 97% to about 99.5%, about 98% to about 99.5%, or about 99% to about 99.5%, or more than about 99.5%.
- Enantiomers can be isolated from racemic mixtures by any method known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC), the formation and crystallization of chiral salts, or prepared by asymmetric syntheses. See, for example, Enantiomers, Racemates and Resolutions (Jacques, Ed., Wiley Interscience, New York, 1981); Wilen et al., Tetrahedron 33:2725 (1977); Stereochemistry of Carbon Compounds (E.L. Eliel, Ed., McGraw-Hill, NY, 1962); and Tables of Resolving Agents and Optical Resolutions p. 268 (E.L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, IN 1972).
- HPLC high pressure liquid chromatography
- the pharmaceutically acceptable form is a tautomer.
- tautomer is a type of isomer that includes two or more interconvertable compounds resulting from at least one formal migration of a hydrogen atom and at least one change in valency (e.g., a single bond to a double bond, a triple bond to a double bond, or a triple bond to a single bond, or vice versa).
- “Tautomerization” includes prototropic or proton-shift tautomerization, which is considered a subset of acid-base chemistry.
- Prototropic tautomerization or “proton-shift tautomerization” involves the migration of a proton accompanied by changes in bond order. The exact ratio of the tautomers depends on several factors, including temperature, solvent, and pH. Where tautomerization is possible (e.g., in solution), a chemical equilibrium of tautomers can be reached.
- Tautomerizations can be catalyzed by acid or base, or can occur without the action or presence of an external agent.
- exemplary tautomerizations include, but are not limited to, keto-enol; amide-imide; lactam-lactim; enamine-imine; and enamine-(a different) enamine tautomerizations.
- keto-enol tautomerization is the interconversion of pentane-2,4-dione and 4-hydroxypent-3-en- 2-one tautomers.
- Another example of tautomerization is phenol-keto tautomerization.
- a specific example of phenol-keto tautomerization is the interconversion of pyridin-4-ol and pyridin-4(lH)-one tautomers.
- structures depicted herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms.
- compounds having the present structures except for the replacement or enrichment of a hydrogen by deuterium or tritium, or the replacement or enrichment of a carbon by 13 C or 14 C, are within the scope of this disclosure.
- the disclosure also embraces isotopically labeled compounds which are identical to those recited herein, except that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
- isotopes that can be incorporated into disclosed compounds include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, and chlorine, such as, e.g., 2 H, 3 H, 13 C, 14 C, 15 N, 18 0, 17 0, 31 P, 32 P, 35 S, 18 F, and 36 C1, respectively.
- Certain isotopically-labeled disclosed compounds are useful in compound and/or substrate tissue distribution assays. Tritiated (i.e., 3 H) and carbon-14 (i.e., 14 C) isotopes can allow for ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2 H) can afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage
- Isotopically labeled disclosed compounds can generally be prepared by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.
- an isotopically labeled reagent for a non-isotopically labeled reagent.
- provided herein are compounds that can also contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds. All isotopic variations of the compounds as disclosed herein, whether radioactive or not, are encompassed within the scope of the present disclosure.
- Ci_ 6 alkyl is intended to encompass, Q, C 2 , C 3 , C 4 , C 5 , C 6 , Ci_ 6 , Ci_ 5 , Q ⁇ , Ci_ 3 , Ci-2, C2-6, C2-5, C-2-4, C2-3, C3_6, C3_5, C ⁇ , C
- Definitions of specific functional groups and chemical terms are described in more detail below. The chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th ed., inside cover, and specific functional groups are generally defined as described therein.
- PI3K Phosphoinositide 3-kinase
- PI phosphatidylinositol
- PDK Phosphoinositide Dependent Kinase
- DNA-PK Deoxyribose Nucleic Acid
- PTEN Phosphatase and Tensin homolog deleted on chromosome Ten
- PIKK Phosphoinositide Kinase Like Kinase
- AIDS Acquired Immuno Deficiency Syndrome
- HIV Human
- Alkyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to ten carbon atoms ⁇ e.g., C 1 -C 10 alkyl).
- a numerical range such as “1 to 10” refers to each integer in the given range; e.g., "1 to 10 carbon atoms” means that the alkyl group can consist of 1 carbon atom, 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms, although the present definition also covers the occurrence of the term "alkyl" where no numerical range is designated.
- Typical alkyl groups include, but are in no way limited to, methyl, ethyl, propyl, isopropyl, n-butyl, iso-butyl, sec-butyl isobutyl, tertiary butyl, pentyl, isopentyl, neopentyl, hexyl, septyl, octyl, nonyl, decyl, and the like.
- the alkyl is attached to the rest of the molecule by a single bond, for example, methyl (Me), ethyl (Et), n-propyl, 1 -methylethyl (z ' so-propyl), n-butyl, n-pentyl, 1 , 1 -dimethylethyl (?-butyl), 3-methylhexyl, 2-methylhexyl, and the like.
- an alkyl group is optionally substituted by one or more of substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, -OR a , - SR a , -OC(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)OR a , -OC(0)N(R a ) 2 , -C(0)N(R a ) 2 , -N(R a )C(0)OR a , -N(R a )C(0)R a , -N(R a )C(0)OR a , -N(R a )C(0)
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- Alkylaryl refers to an -(alkyl)aryl radical where aryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for aryl and alkyl respectively.
- Alkylheteroaryl refers to an -(alkyl)heteroaryl radical where hetaryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroaryl and alkyl respectively.
- Alkylheterocycloalkyl refers to an -(alkyl)heterocycyl radical where alkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and alkyl respectively.
- alkene refers to a group consisting of at least two carbon atoms and at least one carbon- carbon double bond
- an "alkyne” moiety refers to a group consisting of at least two carbon atoms and at least one carbon-carbon triple bond.
- the alkyl moiety, whether saturated or unsaturated, can be branched, straight chain, or cyclic.
- alkenyl refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one double bond, and having from two to ten carbon atoms (ie. C 2 -C 10 alkenyl). Whenever it appears herein, a numerical range such as “2 to 10" refers to each integer in the given range; e.g., "2 to 10 carbon atoms” means that the alkenyl group can consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms.In certain embodiments, an alkenyl comprises two to eight carbon atoms.
- an alkenyl comprises two to five carbon atoms (e.g., C 2 -C 5 alkenyl).
- the alkenyl is attached to the rest of the molecule by a single bond, for example, ethenyl (i.e., vinyl), prop-l-enyl (i.e., allyl), but-l-enyl, pent-l-enyl, penta- 1 ,4-dienyl, and the like.
- an alkenyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, -OR a , -
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- alkenyl-cycloalkyl refers to an -(alkenyl)cycloalkyl radical where alkenyl and cyclo alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for alkenyl and cycloalkyl respectively.
- Alkynyl refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one triple bond, having from two to ten carbon atoms (ie. C 2 -Cio alkynyl).
- a numerical range such as “2 to 10” refers to each integer in the given range; e.g. , "2 to 10 carbon atoms” means that the alkynyl group can consist of 2 carbon atoms, 3 carbon atoms, etc., up to and including 10 carbon atoms.
- an alkynyl comprises two to eight carbon atoms.
- an alkynyl has two to five carbon atoms (e.g., C 2 -C 5 alkynyl).
- the alkynyl is attached to the rest of the molecule by a single bond, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like.
- an alkynyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro,
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- Alkynyl-cycloalkyl refers to an -(alkynyl)cycloalkyl radical where alkynyl and cyclo alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for alkynyl and cycloalkyl respectively.
- Cyano refers to a -CN radical.
- Cycloalkyl refers to a monocyclic or polycyclic radical that contains only carbon and hydrogen, and can be saturated, or partially unsaturated. Cycloalkyl groups include groups having from 3 to 10 ring atoms (ie. C 2 -Ci 0 cycloalkyl). Whenever it appears herein, a numerical range such as “3 to 10" refers to each integer in the given range; e.g., "3 to 10 carbon atoms” means that the cycloalkyl group can consist of 3 carbon atoms, etc., up to and including 10 carbon atoms. In some embodiments, it is a C 3 -C8 cycloalkyl radical.
- cycloalkyl groups include, but are not limited to the following moieties: cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl,cyclohexenyl, cycloseptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornyl, and the like.
- a cycloalkyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, -OR a , -
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- Cycloalkyl-alkenyl refers to a -(cycloalkyl) alkenyl radical where cycloalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and cycloalkyl respectively.
- Cycloalkyl-heterocycloalkyl refers to a -(cycloalkyl) heterocycyl radical where cycloalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and cycloalkyl respectively.
- Cycloalkyl-heteroaryl refers to a -(cycloalkyl) heteroaryl radical where cycloalkyl and heterocycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heterocycloalkyl and cycloalkyl respectively.
- alkoxy refers to the group -O-alkyl, including from 1 to 8 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen.
- “Lower alkoxy” refers to alkoxy groups containing one to six carbons.
- C 1 -C4 alkyl is an alkyl group which encompasses both straight and branched chain alkyls of from 1 to 4 carbon atoms.
- substituted alkoxy refers to alkoxy wherein the alkyl constituent is substituted
- alkyl moiety of an alkoxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano,
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- a Ci-Ce alkoxycarbonyl group is an alkoxy group having from 1 to 6 carbon atoms attached through its oxygen to a carbonyl linker.
- Lower alkoxycarbonyl refers to an alkoxycarbonyl group wherein the alkoxy group is a lower alkoxy group.
- C 1 -C4 alkoxy is an alkoxy group which encompasses both straight and branched chain alkoxy groups of from 1 to 4 carbon atoms.
- substituted alkoxycarbonyl refers to the group (substituted alkyl)-O-C(O)- wherein the group is attached to the parent structure through the carbonyl functionality.
- the alkyl moiety of an alkoxycarbonyl group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, -OR a , SR a , -OC(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)OR a , -OC(0)N(R a ) 2
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- Acyl refers to the groups (alkyl)-C(O)-, (aryl)-C(O)-, (heteroaryl)-C(O)-, (heteroalkyl)-C(O)-, and (heterocycloalkyl)-C(O)-, wherein the group is attached to the parent structure through the carbonyl functionality.
- acyl radical which refers to the total number of chain or ring atoms of the alkyl, aryl, heteroaryl or heterocycloalkyl portion of the acyloxy group plus the carbonyl carbon of acyl, i.e three other ring or chain atoms plus carbonyl. If the R radical is heteroaryl or heterocycloalkyl, the hetero ring or chain atoms contribute to the total number of chain or ring atoms.
- R of an acyloxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, -OR a ,
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- R radical is heteroaryl or heterocycloalkyl
- the hetero ring or chain atoms contribute to the total number of chain or ring atoms.
- the "R" of an acyloxy group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, -OR a , -
- Amino refers to a -N(R a ) 2 radical group, where each R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl, unless stated otherwise specifically in the specification.
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl, unless stated otherwise specifically in the specification.
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroaryl
- -N(R a ) 2 is meant to include, but not be limited to, 1-pyrrolidinyl and 4-morpholinyl.
- an amino group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, -OR a , - SR a , -OC(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)OR a , -OC(0)N(R a ) 2 , -C(0)N(R a ) 2 , -N(R a )C(0)OR a ,
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl and each of these moieties can be optionally substituted as defined herein.
- substituted amino also refers to N-oxides of the groups -NHR d , and NR d R d each as described above.
- N-oxides can be prepared by treatment of the corresponding amino group with, for example, hydrogen peroxide or m-chloroperoxybenzoic acid.
- the person skilled in the art is familiar with reaction conditions for carrying out the N- oxidation.
- Amide or “amido” refers to a chemical moiety with formula -C(0)N(R) 2 or -NRC(0)R, where R is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon), each of which moiety can itself be optionally substituted. In some embodiments it is a C 1 -C4 amido or amide radical, which includes the amide carbonyl in the total number of carbons in the radical.
- the R 2 of - N(R) 2 of the amide can optionally be taken together with the nitrogen to which it is attached to form a 4-, 5-, 6-, or 7-membered ring.
- an amido group is optionally substituted independently by one or more of the substituents as described herein for alkyl, cycloalkyl, aryl, heteroaryl, or heterocycloalkyl.
- An amide can be an amino acid or a peptide molecule attached to a compound of Formula (I), thereby forming a prodrug. Any amine, hydroxy, or carboxyl side chain on the compounds described herein can be amidified.
- Aromatic or “aryl” refers to an aromatic radical with six to up to fourteen ring atoms (e.g., C6-C 10 aromatic or C6-C 10 aryl) which has at least one ring having a conjugated pi electron system which is carbocyclic (e.g., phenyl, fluorenyl, and naphthyl).
- Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals.
- Bivalent radicals derived from univalent polycyclic hydrocarbon radicals whose names end in "-yl” by removal of one hydrogen atom from the carbon atom with the free valence are named by adding "-idene” to the name of the corresponding univalent radical, e.g., a naphthyl group with two points of attachment is termed naphthylidene.
- a numerical range such as “6 to 10” refers to each integer in the given range; e.g., "6 to 10 ring atoms” means that the aryl group can consist of 6 ring atoms, 7 ring atoms, etc., up to and including 10 ring atoms.
- an aryl moiety is optionally substituted by one or more substituents which are independently: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, -OR a , - SR a , -OC(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)OR a , -OC(0)N(R a ) 2 , -C(0)N(R a ) 2 , -N(R a )C(0)OR a ,
- alkyl refers to an (aryl)alkyl— radical where aryl and alkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for aryl and alkyl respectively.
- Ester refers to a chemical radical of formula -COOR, where R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon). Any amine, hydroxy, or carboxyl side chain on the compounds described herein can be esterified. The procedures and specific groups to make such esters are known to those of skill in the art and can readily be found in reference sources such as Greene and Wuts, Protective Groups in Organic Synthesis, 3.sup.rd Ed., John Wiley & Sons, New York, N.Y., 1999, which is incorporated herein by reference in its entirety.
- an ester group is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, trifluoromethyl, trifluoromethoxy, nitro, trimethylsilanyl, -OR a , - SR a , -OC(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)OR a , -OC(0)N(R a ) 2 , -C(0)N(R a ) 2 , -N(R a )C(0)OR a , -N(R a )C(0)R a , -N(R a )C(0)OR a , -N(R a )C(0)R
- R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- Fluoroalkyl refers to an alkyl radical, as defined above, that is substituted by one or more fluoro radicals, as defined above, for example, trifluoromethyl, difluoromethyl, 2,2,2-trifluoroethyl,
- alkyl part of the fluoroalkyl radical can be optionally substituted as defined above for an alkyl group.
- Halo means fluoro, chloro, bromo or iodo.
- haloalkyl means fluoro, chloro, bromo or iodo.
- haloalkenyl means fluoro, chloro, bromo or iodo.
- haloalkynyl means alkyl, alkenyl, alkynyl and alkoxy structures that are substituted with one or more halo groups or with combinations thereof.
- fluoroalkyl and fluoroalkoxy include haloalkyl and haloalkoxy groups, respectively, in which the halo is fluorine.
- Heteroalkyl “heteroalkenyl” and “heteroalkynyl” include optionally substituted alkyl, alkenyl and alkynyl radicals and which have one or more skeletal chain atoms selected from an atom other than carbon, e.g. , oxygen, nitrogen, sulfur, phosphorus or combinations thereof.
- a numerical range can be given, e.g. C1-C4 heteroalkyl which refers to the chain length in total, which in this example is 4 atoms long.
- a - CH 2 OCH 2 CH 3 radical is referred to as a "C 4 " heteroalkyl, which includes the heteroatom center in the atom chain length description.
- a heteroalkyl group can be substituted with one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, -OR a , - SR a , -OC(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)OR a , -C(0)N(R a ) 2 , -N(R a )C(0)OR a , -N(R a )C(0)OR a , -N(R a )C(0)OR a , -N(R a )C(0)OR a , -N(R a )C(0)R
- Heteroalkylaryl refers to an -(heteroalkyl)aryl radical where heteroalkyl and aryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and aryl respectively.
- Heteroalkylheteroaryl refers to an -(heteroalkyl)heteroaryl radical where heteroalkyl and heteroaryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and heteroaryl respectively.
- Heteroalkylheterocycloalkyl refers to an -(heteroalkyl)heterocycloalkyl radical where heteroalkyl and heteroaryl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and heterocycloalkyl respectively
- Heteroalkylcycloalkyl refers to an -(heteroalkyl) cycloalkyl radical where heteroalkyl and cycloalkyl are as disclosed herein and which are optionally substituted by one or more of the substituents described as suitable substituents for heteroalkyl and cycloalkyl respectively.
- Heteroaryl or, alternatively, “heteroaromatic” refers to a 5- to 18-membered aromatic radical (e.g., C 5 - Ci3 heteroaryl) that includes one or more ring heteroatoms selected from nitrogen, oxygen and sulfur, and which can be a monocyclic, bicyclic, tricyclic or tetracyclic ring system.
- a numerical range such as “5 to 18” refers to each integer in the given range; e.g. , "5 to 18 ring atoms” means that the heteroaryl group can consist of 5 ring atoms, 6 ring atoms, etc., up to and including 18 ring atoms.
- Bivalent radicals derived from univalent heteroaryl radicals whose names end in "-yl” by removal of one hydrogen atom from the atom with the free valence are named by adding "-idene” to the name of the corresponding univalent radical, e.g. , a pyridyl group with two points of attachment is a pyridylidene.
- An N-containing "heteroaromatic” or “heteroaryl” moiety refers to an aromatic group in which at least one of the skeletal atoms of the ring is a nitrogen atom.
- the polycyclic heteroaryl group can be fused or non- fused.
- the heteroatom(s) in the heteroaryl radical is optionally oxidized.
- heteroaryl is attached to the rest of the molecule through any atom of the ring(s).
- heteroaryls include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzindolyl, 1,3-benzodioxolyl, benzofuranyl, benzooxazolyl, benzo[d]thiazolyl,
- benzothiadiazolyl benzo[Z?][l,4]dioxepinyl, benzo[b][l,4]oxazinyl, 1 ,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzoxazolyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzofurazanyl, benzothiazolyl, benzothienyl (benzothiophenyl), benzothieno[3,2-d]pyrimidinyl, benzotriazolyl, benzo[4,6]imidazo[l,2-a]pyridinyl, carbazolyl, cinnolinyl, cyclopenta[d]pyrimidinyl,
- a heteraryl moiety is optionally substituted by one or more substituents which are independently: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, -OR a , -
- each R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl.
- Substituted heteroaryl also includes ring systems substituted with one or more oxide (-0-) substituents, such as pyridinyl N- oxides.
- Heteroarylalkyl refers to a moiety having an aryl moiety, as described herein, connected to an alkylene moiety, as described herein, wherein the connection to the remainder of the molecule is through the alkylene group.
- Heterocycloalkyl refers to a stable 3- to 18-membered non-aromatic ring radical that comprises two to twelve carbon atoms and from one to six heteroatoms selected from nitrogen, oxygen and sulfur. Whenever it appears herein, a numerical range such as “3 to 18" refers to each integer in the given range; e.g., "3 to 18 ring atoms” means that the heterocycloalkyl group can consist of 3 ring atoms, 4 ring atoms, etc., up to and including 18 ring atoms. In some embodiments, it is a C5-C 10 heterocycloalkyl. In some embodiments, it is a C4-C 10 heterocycloalkyl.
- the heterocycloalkyl radical is a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which can include fused or bridged ring systems.
- the heteroatoms in the heterocycloalkyl radical can be optionally oxidized.
- One or more nitrogen atoms, if present, are optionally quaternized.
- the heterocycloalkyl radical is partially or fully saturated.
- the heterocycloalkyl can be attached to the rest of the molecule through any atom of the ring(s).
- heterocycloalkyl radicals include, but are not limited to, dioxolanyl, thienyl[l,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1 -o
- a heterocycloalkyl moiety is optionally substituted by one or more substituents which independently are: alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, hydroxy, halo, cyano, nitro, oxo, thioxo, trimethylsilanyl, -OR a , - SR a , -OC(0)-R a , -N(R a ) 2 , -C(0)R a , -C(0)OR a , -C(0)N(R a ) 2 , -N(R a )C(0)OR a , -N(R a )C(0)OR a , -N(R a )C(0)R a , -N(R a )S(0) t R a (where t is 1 or
- Heterocycloalkyl also includes bicyclic ring systems wherein one non-aromatic ring, usually with 3 to 7 ring atoms, contains at least 2 carbon atoms in addition to 1-3 heteroatoms independently selected from oxygen, sulfur, and nitrogen, as well as combinations comprising at least one of the foregoing heteroatoms; and the other ring, usually with 3 to 7 ring atoms, optionally contains 1 -3 heteroatoms independently selected from oxygen, sulfur, and nitrogen and is not aromatic.
- Moiety refers to a specific segment or functional group of a molecule. Chemical moieties are often recognized chemical entities embedded in or appended to a molecule.
- Niro refers to the -N0 2 radical.
- Oxa refers to the -O- radical.
- a "leaving group or atom” is any group or atom that will, under the reaction conditions, leave from the starting material, thus promoting reaction at a specified site. Suitable examples of such groups unless otherwise specified are halogen atoms, mesyloxy, p-nitrobenzensulphonyloxy and tosyloxy groups.
- Protecting group has the meaning conventionally associated with it in organic synthesis, i.e. a group that selectively blocks one or more reactive sites in a multifunctional compound such that a chemical reaction can be carried out selectively on another unprotected reactive site and such that the group can readily be removed after the selective reaction is complete.
- a variety of protecting groups are disclosed, for example, in T.H. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, Third Edition, John Wiley & Sons, New York (1999).
- a hydroxy protected form is where at least one of the hydroxy groups present in a compound is protected with a hydroxy protecting group.
- amines and other reactive groups can similarly be protected.
- Solvate refers to a compound (e.g., a compound selected from Formula I or a pharmaceutically acceptable salt thereof) in physical association with one or more molecules of a pharmaceutically acceptable solvent. It will be understood that "a compound of Formula I” encompass the compound of Formula I and solvates of the compound, as well as mixtures thereof.
- Substituted means that the referenced group can be substituted with one or more additional group(s) individually and independently selected from acyl, alkyl, alkylaryl, cycloalkyl, aralkyl, aryl, carbohydrate, carbonate, heteroaryl, heterocycloalkyl, hydroxy, alkoxy, aryloxy, mercapto, alkylthio, arylthio, cyano, halo, carbonyl, ester, thiocarbonyl, isocyanato, thiocyanato, isothiocyanato, nitro, oxo, perhaloalkyl, perfluoroalkyl, phosphate, silyl, sulfinyl, sulfonyl, sulfonamidyl, sulfoxyl, sulfonate, urea, and amino, including mono- and di- substituted amino groups, and the protected derivatives thereof.
- Di-substituted amino groups encompass those which form a ring together with the nitrogen of the amino group, such as for instance, morpholino.
- the substituents themselves can be substituted, for example, a cycloakyl substituent can have a halide substituted at one or more ring carbons, and the like.
- the protecting groups that can form the protective derivatives of the above substituents are known to those of skill in the art and can be found in references such as Greene and Wuts, above.
- Sulfinyl refers to the groups: -S(0)-H, -S(0)-(optionally substituted alkyl), -S(0)-(optionally substituted amino), -S(0)-(optionally substituted aryl), -S(0)-(optionally substituted heteroaryl),
- Sulfonyl refers to the groups: -S(0 2 )-H, -S(0 2 )-(optionally substituted alkyl), -S(0 2 )-(optionally substituted amino), -S(0 2 )-(optionally substituted aryl), -S(0 2 )-(optionally substituted heteroaryl),
- it is a Ci-Cio sulfonamido, wherein each R in sulfonamido contains 1 carbon, 2 carbons, 3 carbons, or 4 carbons total.
- a sulfonamido group is optionally substituted by one or more of the substituents described for alkyl, cycloalkyl, aryl, heteroaryl respectively
- R is selected from the group consisting of alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon).
- a sulfonate group is optionally substituted on R by one or more of the substituents described for alkyl, cycloalkyl, aryl, heteroaryl respectively.
- substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents that would result from writing the structure from right to left, e.g., -CH 2 0- is equivalent to -OCH 2 -.
- Compounds that can be used as described herein also include crystalline and amorphous forms of compounds, including, for example, polymorphs, pseudopolymorphs, solvates, hydrates, unsolvated polymorphs (including anhydrates), conformational polymorphs, and amorphous forms of the compounds, as well as mixtures thereof
- polymorph can be used herein to describe a crystalline material, e.g. , a crystalline form.
- polymorph as used herein are also meant to include all crystalline and amorphous forms of a compound or a salt thereof, including, for example, crystalline forms, polymorphs, pseudopolymorphs, solvates, hydrates, co-crystals, unsolvated polymorphs (including anhydrates), conformational polymorphs, tautomeric forms, disordered crystalline forms, and amorphous forms, as well as mixtures thereof, unless a particular crystalline or amorphous form is referred to.
- Compounds of the present disclosure include crystalline and amorphous forms of those compounds, including, for example, crystalline forms, polymorphs, pseudopolymorphs, solvates, hydrates, co-crystals, unsolvated polymorphs (including anhydrates), conformational polymorphs, tautomeric forms, disordered crystalline forms, and amorphous forms of the compounds or a salt thereof, as well as mixtures thereof.
- Chemical entities include, but are not limited to, compounds of Formula 1, 1-1, IV, IV-A, V, V-A, V-A2, V-B, VI or VI- A, and all pharmaceutically acceptable forms thereof.
- Pharmaceutically acceptable forms of the compounds recited herein include pharmaceutically acceptable salts, chelates, non-covalent complexes, prodrugs, and mixtures thereof.
- the compounds described herein are in the form of pharmaceutically acceptable salts.
- the terms "chemical entity” and “chemical entities” also encompass pharmaceutically acceptable salts, chelates, non-covalent complexes, prodrugs, and mixtures.
- the free base can be obtained by basifying a solution of the acid salt.
- an addition salt particularly a pharmaceutically acceptable addition salt, can be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds.
- Those skilled in the art will recognize various synthetic methodologies that can be used to prepare non-toxic pharmaceutically acceptable addition salts.
- PI3K modulators that can be used in the pharmaceutical compositions, methods and kits disclosed herein.
- the PI3K modulat a I:
- W d is heterocycloalkyl, aryl or heteroaryl
- B is alkyl, amino, heteroalkyl, or a moiety of Formula II;
- W c is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl
- q is an integer of 0, 1, 2, 3, or 4;
- X is absent or is -(CH(R 9 )) z -and z is an integer of 1, 2, 3, or 4;
- R 1 is hydrogen, alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy, nitro, phosphate, urea, or carbonate;
- R 2 is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy, nitro, phosphate, urea, or carbonate;
- R 3 is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy, nitro, aryl, or heteroaryl;
- R 5 , R 6 , R 7 , and R 8 are independently hydrogen, Ci-C 4 alkyl, C 2 -C 5 alkenyl, C 2 -C 5 alkynyl, C3-C 5 cycloalkyl, Q- Cz t heteroalkyl, Ci-C 4 alkoxy, Ci-C 4 amido, amino, acyl, Ci-C 4 acyloxy, Ci-C 4 Sulfonamido, halo, cyano, hydroxy or nitro; and
- each instance of R 9 is independently hydrogen, Ci-Cioalkyl, C3-C 7 cycloalkyl, heterocycloalkyl, or C 2 - Cioheteroalkyl.
- B is unsubstituted or substituted alkyl, including but not limited to -(CH 2 ) 2 - NR a R a , wherein each R a is independently hydrogen, alkyl, fluoroalkyl, carbocyclyl, carbocyclylalkyl, aryl, aralkyl, heterocycloalkyl, heterocycloalkylalkyl, heteroaryl or heteroarylalkyl, or NR a R a are combined together to form a cyclic moiety, which includes but is not limited to piperidinyl, piperazinyl, and morpholinyl.
- B is unsubstituted or substituted amino.
- B is unsubstituted or substituted heteroalkyl.
- B is a moiety of Formula II and wherein W c is a member selected from the group consisting of unsubstituted or substituted aryl, substituted phenyl, unsubstituted or substituted heteroaryl including but not limited to pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-4-yl, pyrimidin-2-yl, pyrimidin-5-yl, or pyrazin-2-yl, unsubstituted or substituted monocyclic heteroaryl, unsubstituted or substituted bicyclic heteroaryl, a heteroaryl comprising two heteroatoms as ring atoms, unsubstituted or substituted heteroaryl comprising a nitrogen ring atom, heteroaryl comprising two nitrogen ring atoms, heteroaryl comprising a nitrogen and a sulfur as ring atoms, unsubstituted or substituted heterocycloalkyl
- B is substituted by one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, or sulfonamido, can itself be substituted.
- R 1 is a member selected from the group consisting of hydrogen, unsubstituted or substituted alkyl, unsubstituted or substituted heteroalkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted cycloalkyl, or unsubstituted or substituted heterocycloalkyl.
- R 1 is unsubstituted or substituted aryl, unsubstituted or substituted arylalkyl, unsubstituted or substituted heteroaryl, or unsubstituted or substituted heteroarylalkyl.
- R 1 is unsubstituted or substituted alkoxy, unsubstituted or substituted amido, unsubstituted or substituted amino. In some embodiments, R 1 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted alkoxycarbonyl, or unsubstituted or substituted sulfonamido. In some embodiments, R 1 is halo which includes -CI, -F, -I, and -Br. In some embodiments, R 1 is selected from the group consisting of cyano, hydroxy, nitro, unsubstituted or substituted phosphate, unsubstituted or substituted urea, and carbonate.
- R 1 when R 1 is alkyl, R 1 is methyl, ethyl, propyl, isopropyl, n- butyl, tert- butyl, sec- butyl, pentyl, hexyl or heptyl.
- R 1 when R 1 is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, or hydroxy, R 1 is substituted by phosphate, or unsubstituted urea, or substituted urea, or carbonic acid, or carbonate.
- R 1 when R 1 is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, or sulfonamido, R 1 is substituted by one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amido
- R 2 is a member selected from the group consisting of unsubstituted or substituted alkyl, unsubstituted or substituted heteroalkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted cycloalkyl, and unsubstituted or substituted heterocycloalkyl.
- R 2 is unsubstituted or substituted aryl, unsubstituted or substituted arylalkyl, unsubstituted or substituted heteroaryl, or unsubstituted or substituted heteroarylalkyl.
- R 2 is unsubstituted or substituted alkoxy, unsubstituted or substituted amido, unsubstituted or substituted amino.
- R 2 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted alkoxycarbonyl, or unsubstituted or substituted sulfonamido.
- R 2 is halo, which is -I, -F, -CI, or -Br.
- R 2 is selected from the group consisting of cyano, hydroxy, nitro, a carbonic acid, and a carbonate.
- R 2 is unsubstituted or substituted phosphate. In some embodiments, R 2 is unsubstituted or substituted urea. In some embodiments, when R 2 is alkyl, R 2 is methyl, ethyl, propyl, isopropyl, n- butyl, tert- butyl, sec-butyl, pentyl, hexyl or heptyl.
- R 2 is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, or hydroxy, it is substituted by phosphate, substituted by urea, or substituted by carbonate.
- R 2 is alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, or sulfonamido
- it is substituted by one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido
- q is an integer of 0. In some embodiments, q is an integer of 1. In some embodiments, q is an integer of 2. In some embodiments, q is an integer of 3. In some embodiments, q is an integer of 4.
- R 3 is a member selected from the group consisting of hydrogen, unsubstituted or substituted alkyl, unsubstituted or substituted alkenyl, and unsubstituted or substituted alkynyl.
- R 3 is unsubstituted or substituted aryl, unsubstituted or substituted heteroaryl, unsubstituted or substituted cycloalkyl, or unsubstituted or substituted heterocycloalkyl.
- R 3 is unsubstituted or substituted alkoxy, unsubstituted or substituted amido, unsubstituted or substituted amino.
- R 3 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted alkoxycarbonyl, or unsubstituted or substituted sulfonamido.
- R 3 is halo, which is is -I, -F, -CI, or -Br.
- R 3 is selected from the group consisting of cyano, hydroxy, and nitro. In some embodiments, when R 3 is alkyl, R 3 is methyl, ethyl, propyl, isopropyl, n- butyl, tert- butyl, sec-butyl, pentyl, hexyl or heptyl. In some embodiments, R 3 is -CF 3 .
- R 3 when R 3 is alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl,or sulfonamido, it is substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamido, halo, cyano, hydroxy or nitro, each of which alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy, alkoxycarbonyl, sulfonamid
- R 5 is hydrogen, unsubstituted or substituted alkyl (including but not limited to unsubstituted or substituted Ci-C 4 alkyl). In some embodiments, R 5 is unsubstituted or substituted alkenyl including but not limited to unsubstituted or substituted C 2 -C 5 alkenyl. In some embodiments, R 5 is unsubstituted or substituted alkynyl including but not limited to unsubstituted or substituted C 2 -C 5 alkynyl.
- R 5 is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C3-C 5 cycloalkyl. In some embodiments, R 5 is unsubstituted or substituted heterocycloalkyl. In some embodiments, R 5 is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted Ci-C 4 heteroalkyl. In some embodiments, R 5 is unsubstituted or substituted alkoxy including but not limited to unsubstituted or substituted Ci-C 4 alkoxy.
- R 5 is unsubstituted or substituted amido including but not limited to unsubstituted or substituted Ci-C 4 amido. In some embodiments, R 5 is unsubstituted or substituted amino. In some embodiments, R 5 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted Ci-C 4 acyloxy, unsubstituted or substituted alkoxycarbonyl, unsubstituted or substituted sulfonamido, or unsubstituted or substituted Ci-C 4 Sulfonamido.
- R 5 is halo, which is is -I, -F, -CI, or -Br. In some embodiments, R 5 is selected from the group consisting of cyano, hydroxy, and nitro. In some other embodiments, R 5 is -CH 3 , -CH 2 CH 3 , n-propyl, isopropyl, -OCH 3 , -OCH 2 CH 3 , or -CF 3 .
- R 5 when R 5 is alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, acyl, alkoxy, amido, amino, acyloxy, alkoxycarbonyl, or sulfonamido, R 5 is optionally substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy,
- R 6 is hydrogen, unsubstituted or substituted alkyl (including but not limited to unsubstituted or substituted Ci-C 4 alkyl). In some embodiments, R 6 is unsubstituted or substituted alkenyl including but not limited to unsubstituted or substituted C2-C 5 alkenyl. In some embodiments, R 6 is unsubstituted or substituted alkynyl including but not limited to unsubstituted or substituted C 2 -C 5 alkynyl.
- R 6 is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C 3 -C 5 cycloalkyl. In some embodiments, R 6 is unsubstituted or substituted heterocycloalkyl. In some embodiments, R 6 is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted Ci-C 4 heteroalkyl. In some embodiments, R 6 is unsubstituted or substituted alkoxy including but not limited to unsubstituted or substituted Ci-C 4 alkoxy.
- R 6 is unsubstituted or substituted amido including but not limited to unsubstituted or substituted Ci-C 4 amido. In some embodiments, R 6 is unsubstituted or substituted amino. In some embodiments, R 6 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted Ci-C 4 acyloxy, unsubstituted or substituted alkoxycarbonyl, unsubstituted or substituted sulfonamido, or unsubstituted or substituted Ci-C 4 Sulfonamido.
- R 6 is halo, which is is -I, -F, -CI, or -Br. In some embodiments, R 6 is selected from the group consisting of cyano, hydroxy, and nitro. In some other embodiments, R 6 is -CH 3 , -CH 2 CH 3 , n-propyl, isopropyl, -OCH 3 , -OCH 2 CH 3 , or -CF 3 .
- R 6 when R 6 is alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, acyl, alkoxy, amido, amino, acyloxy, alkoxycarbonyl, or sulfonamido, R 6 is optionally substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy,
- R 7 is hydrogen, unsubstituted or substituted alkyl (including but not limited to unsubstituted or substituted Ci-C 4 alkyl). In some embodiments, R 7 is unsubstituted or substituted alkenyl including but not limited to unsubstituted or substituted C 2 -C 5 alkenyl. In some embodiments, R 7 is unsubstituted or substituted alkynyl including but not limited to unsubstituted or substituted C 2 -C 5 alkynyl.
- R 7 is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C3-C 5 cycloalkyl. In some embodiments, R 7 is unsubstituted or substituted heterocycloalkyl. In some embodiments, R 7 is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted Ci-Cz t heteroalkyl. In some embodiments, R 7 is unsubstituted or substituted alkoxy including but not limited to unsubstituted or substituted Ci-C 4 alkoxy.
- R 7 is unsubstituted or substituted amido including but not limited to unsubstituted or substituted Ci-C 4 amido. In some embodiments, R 7 is unsubstituted or substituted amino. In some embodiments, R 7 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted Ci-C 4 acyloxy, unsubstituted or substituted alkoxycarbonyl, unsubstituted or substituted sulfonamido, or unsubstituted or substituted Ci-C 4 Sulfonamido.
- R 7 is halo, which is is -I, -F, -CI, or -Br. In some embodiments, R 7 is selected from the group consisting of cyano, hydroxy, and nitro. In some other embodiments, R 7 is -CH 3 , -CH 2 CH 3 , n-propyl, isopropyl, -OCH 3 , -OCH 2 CH 3 , or -CF 3 .
- R 7 when R 7 is alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, acyl, alkoxy, amido, amino, acyloxy, alkoxycarbonyl, or sulfonamido, R 7 is optionally substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy,
- R 8 is hydrogen, unsubstituted or substituted alkyl (including but not limited to unsubstituted or substituted Ci-C 4 alkyl). In some embodiments, R 8 is unsubstituted or substituted alkenyl including but not limited to unsubstituted or substituted C 2 -C 5 alkenyl. In some embodiments, R 8 is unsubstituted or substituted alkynyl including but not limited to unsubstituted or substituted C 2 -C 5 alkynyl.
- R 8 is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C3-C 5 cycloalkyl. In some embodiments, R 8 is unsubstituted or substituted heterocycloalkyl. In some embodiments, R 8 is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted Ci-C 4 heteroalkyl. In some embodiments, R 8 is unsubstituted or substituted alkoxy including but not limited to unsubstituted or substituted Ci-C 4 alkoxy.
- R 8 is unsubstituted or substituted amido including but not limited to unsubstituted or substituted Ci-C 4 amido. In some embodiments, R 8 is unsubstituted or substituted amino. In some embodiments, R 8 is unsubstituted or substituted acyl, unsubstituted or substituted acyloxy, unsubstituted or substituted Ci-C 4 acyloxy, unsubstituted or substituted alkoxycarbonyl, unsubstituted or substituted sulfonamido, or unsubstituted or substituted Ci-C 4 Sulfonamido.
- R 8 is halo, which is is -I, -F, -CI, or -Br. In some embodiments, R 8 is selected from the group consisting of cyano, hydroxy, and nitro. In some other embodiments, R 8 is -CH 3 , -CH 2 CH 3 , n-propyl, isopropyl, -OCH 3 , -OCH 2 CH 3 , or -CF 3 .
- R 8 when R 8 is alkyl, alkenyl, alkynyl, cycloalkyl, heteroalkyl, acyl, alkoxy, amido, amino, acyloxy, alkoxycarbonyl, or sulfonamido, R 8 is optionally substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy,
- R 5 , R 6 , R 7 , and R 8 are H and the compound has a structure of Formula I- 1 :
- X is absent.
- X is - (CH(R 9 )) Z
- z is an integer of 1, 2, 3 or 4.
- R 9 is unsubstituted or substituted alkyl including but not limited to unsubstituted or substituted Ci-Cioalkyl.
- R 9 is unsubstituted or substituted cycloalkyl including but not limited to unsubstituted or substituted C3-C 7 cycloalkyl.
- R 9 is ethyl, methyl or hydrogen.
- R 9 is unsubstituted or substituted heterocycloalkyl including but not limited to unsubstituted or substituted C2-Cioheteroalkyl.
- R 9 is unsubstituted or substituted heteroalkyl including but not limited to unsubstituted or substituted C2-Cioheteroalkyl.
- a compound of Formula I wherein R 9 is hydrogen, and X is -CH 2 -, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, -CH(CH 3 )-, or -CH(CH 2 CH 3 )-.
- X is -(CH(R 9 )) Z
- R 9 is not hydrogen
- z is an integer of 1.
- the compound can adopt either an (S)- or (R)- stereochemical configuration with respect to carbon X.
- the compound is a racemic mixture of (S)- and (R) isomers with respect to carbon X.
- a mixture of compounds of Formula I wherein individual compounds of the mixture exist predominately in an (S)- or (R)- isomeric configuration.
- the compound mixture has an (S)-enantiomeric purity of greater than about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5%, or more at the X carbon.
- the compound mixture has an (S)-enantiomeric purity of greater than about 55% to about 99.5%, greater than about about 60% to about 99.5%, greater than about 65% to about 99.5%, greater than about 70% to about 99.5%, greater than about 75% to about 99.5%, greater than about 80% to about 99.5%, greater than about 85% to about 99.5%, greater than about 90% to about 99.5%, greater than about 95% to about 99.5%, greater than about 96% to about 99.5%, greater than about 97% to about 99.5%, greater than about 98% to greater than about 99.5%, greater than about 99% to about 99.5%, or more.
- the compound mixture has an (R)-enantiomeric purity of greater than about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5%, or more at the X carbon.
- the compound mixture has an (R)-enantiomeric purity of greater than about 55% to about 99.5%, greater than about about 60% to about 99.5%, greater than about 65% to about 99.5%, greater than about 70% to about 99.5%, greater than about 75% to about 99.5%, greater than about 80% to about 99.5%, greater than about 85% to about 99.5%, greater than about 90% to about 99.5%, greater than about 95% to about 99.5%, greater than about 96% to about 99.5%, greater than about 97% to about 99.5%, greater than about 98% to greater than about 99.5%, greater than about 99% to about 99.5%, or more.
- the compound mixture contains identical chemical entities except for their stereochemical orientations, namely (S)- or (R)- isomers.
- the compounds of Formula I when X is - CH(R 9 )-, and R 9 is not hydrogen, then the -CH(R 9 )- is in an (S)- or (R)- sterochemical orientation for each of the identical chemical entities.
- the mixture of identical chemical entities of Formula I is a racemic mixture of (S)- and (R)- isomers at the carbon represented by X.
- the mixture of the identical chemical entities (except for their stereochemical orientations), contain predominately (S)-isomers or predominately (R)- isomers.
- the (S)- isomers in the mixture of identical chemical entities are present at about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5% ,or more, relative to the (R)- isomers.
- the (S)- isomers in the mixture of identical chemical entities are present at an (S)-enantiomeric purity of greater than about 55% to about 99.5%, greater than about about 60% to about 99.5%, greater than about 65% to about 99.5%, greater than about 70% to about 99.5%, greater than about 75% to about 99.5%, greater than about 80% to about 99.5%, greater than about 85% to about 99.5%, greater than about 90% to about 99.5%, greater than about 95% to about 99.5%, greater than about 96% to about 99.5%, greater than about 97% to about 99.5%, greater than about 98% to greater than about 99.5%, greater than about 99% to about 99.5%, or more.
- the (R)- isomers in the mixture of identical chemical entities are present at about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, about 99.5%, or more, relative to the (S)- isomers.
- the (R)- isomers in the mixture of identical chemical entities are present at a (R)- enantiomeric purity greater than about 55% to about 99.5%, greater than about about 60% to about 99.5%, greater than about 65% to about 99.5%, greater than about 70% to about 99.5%, greater than about 75% to about 99.5%, greater than about 80% to about 99.5%, greater than about 85% to about 99.5%, greater than about 90% to about 99.5%, greater than about 95% to about 99.5%, greater than about 96% to about 99.5%, greater than about 97% to about 99.5%, greater than about 98% to greater than about 99.5%, greater than about 99% to about 99.5%, or more.
- the compound of Formula I is -CH(R 9 )-, R 9 is methyl or ethyl, and the compound is the (S)- isomer.
- Y is absent.
- X and Y are present.
- -XY- is -CH 2 -, -CH 2 -N(CH 3 ), -CH 2 -N(CH 2 CH 3 ), -CH(CH 3 )-NH-, (S) -CH(CH 3 )-NH-, or
- X-Y is -N(CH 3 ).CH 2 -, N(CH 2 CH 3 ) CH 2 -, -N(CH(CH 3 ) 2 )CH 2 -, or - NHCH 2 -.
- X-Y is -(CH(R 9 )) Z N(R 9 )-, z is an integer of 1 , 2, 3 or 4, and -N(R 9 )- is not -NH-, then -XY- is not connected to purinyl.
- W d in a formula disclosed herein including but not limited to 1, 1-1, IV, IV-A, V,
- V-A, V-A2, V-B, VI and VI-A is a member selected from the group consisting of unsubstituted or substituted heterocycloalkyl, unsubstituted or substituted aryl, and unsubstituted or substituted heteroaryl.
- W d is unsubstituted or substituted monocyclic heteroaryl (including but not limited to pyrimidinyl, pyrrolyl, pyrazinyl, triazinyl, or pyridazinyl) or unsubstituted or substituted bicyclic heteroaryl.
- R a is hydrogen, halo, phosphate, urea, a carbonate, unsubstituted or substituted amino, unsubstituted or substituted alkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted heteroalkyl, or unsubstituted or substituted heterocycloalkyl; and R 12 is H, unsubstituted or substituted alkyl, unsubstituted or substituted cyano, unsubstituted or substituted alkynyl, unsubstituted or substituted alkenyl, halo, unsubstituted or substituted aryl, unsubstituted or substituted heteroaryl, unsubstituted or substituted heterocycloalkyl, unsubstituted or substituted cycloalkyl, unsubstituted or substitute
- W d in a formula disclosed herein is a bicyclic heteroaryl having at least one heteroatom, e.g., a bicyclic heteroaryl having at least one nitrogen ring atom.
- W d is a bicyclic heteroaryl having at least two heteroatoms, e.g. , a bicyclic heteroaryl having at least two nitrogen ring atoms.
- W d is a bicyclic heteroaryl having two heteroatoms in the ring which is connected to XY.
- W d is a bicyclic heteroaryl having two nitrogen ring atoms in the ring to which XY is connected. In some embodiments, W d is a bicyclic heteroaryl having four heteroatoms, e.g, a bicyclic heteroaryl having four nitrogen ring atoms. In some embodiments, W d is unsubstituted or substituted 4-amino- lH-pyrazolo[3,4-d]pyrimidin- l -yl, unsubstituted or substituted 7-amino-2-methyl-2H-pyrazolo[4,3-d]pyrimidin-3-yl. unsubstituted or substituted 6-methylenyl- 9H-purin-6-yl, or unsubstituted or substituted 6-amino-9H-purin-9-yl.
- R a is hydrogen, halo, phosphate, urea, a carbonate, unsubstituted or substituted amino, unsubstituted or substituted alkyl, unsubstituted or substituted alkenyl, unsubstituted or substituted alkynyl, unsubstituted or substituted cycloalkyl, unsubstituted or substituted heteroalkyl, or unsubstituted or substituted heterocycloalkyl;
- R 11 is hydrogen, unsubstituted or substituted alkyl, halo (which includes -I, -F, -CI, or -Br), unsubstituted or substituted amino, unsubstituted or substituted amido, hydroxy, or unsubstituted or substituted alkoxy, phosphate, unsubstituted or substituted urea, or carbonate; and R is H, unsubstituted or substituted alkyl, unsubstituted or substitute
- W d of the compounds of Formula I when R a is alkyl, alkynyl, cycloalkyl, heteroalkyl, or heterocycloalkyl, it is substituted by phosphate, urea, or carbonate.
- W d of the compounds of Formula I when R 11 is alkyl, amino, amido, hydroxy, or alkoxy, it is substituted by phosphate, urea, or carbonate.
- R is a member of the group consisting of hydrogen, cyano, halo, unsubstituted or substituted alkyl, unsubstituted or substituted alkynyl, and unsubstituted or substituted alkenyl.
- R 12 is unsubstituted or substituted aryl.
- R 12 is unsubstituted or substituted heteroaryl, which includes but is not limited to heteroaryl having a 5 membered ring, heteroaryl having a six membered ring, heteroaryl with at least one nitrogen ring atom, heteroaryl with two nitrogen ring atoms, monocylic heteroaryl, and bicylic heteroaryl.
- R 12 is unsubstituted or substituted heterocycloalkyl, which includes but is not limited to heterocycloalkyl with one nitrogen ring atom,
- R 12 is heterocycloalkyl with one sulfur ring atom, 5 membered heterocycloalkyl, 6 membered heterocycloalkyl, saturated heterocycloalkyl, unsaturated heterocycloalkyl, heterocycloalkyl having an unsaturated moiety connected to the heterocycloalkyl ring, heterocycloalkyl substituted by oxo, and heterocycloalkyl substituted by two oxo.
- R 12 is unsubstituted or substituted cycloalkyl, including but not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloalkyl substituted by one oxo, cycloalkyl having an unsaturated moiety connected to the cycloalkyl ring.
- R 12 is unsubstituted or substituted amido, carboxylic acid, unsubstituted or substituted acyloxy, unsubstituted or substituted alkoxycarbonyl, unsubstituted or substituted acyl, or unsubstituted or substituted sulfonamido.
- R 12 when R 12 is alkyl, alkynyl, alkenyl, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, it is substituted with phosphate. In some embodiments, when R 12 is alkyl, alkynyl, alkenyl, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, it is substituted with urea. In some embodiments, when R 12 is alkyl, alkynyl, alkenyl, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, it is substituted with carbonate.
- R 12 when R 12 is alkyl, alkynyl, alkenyl, aryl, heteroaryl, heterocycloalkyl, cycloalkyl, alkoxycarbonyl, amido, acyloxy, acyl, or sulfonamido, it is substituted with one or more of alkyl, heteroalkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, amido, amino, acyl, acyloxy,
- R 12 of W d is one of the following moieties:
- the compound d is a pyrazolopyrimidine of Formula III:
- R 11 is H, alkyl, halo, amino, amido, hydroxy, or alkoxy
- R 12 is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl.
- R 11 is amino and R 12 is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl.
- R 11 is amino and R 12 is alkyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl.
- R 11 is amino and R 12 is monocyclic heteroaryl. In some embodiments, R 11 is amino and R 12 is bicyclic heteroaryl. In some embodiments, R 11 is amino and and R 12 is cyano, amino, carboxylic acid, acyloxy, alkoxycarbonyl,or amido.
- the comp is a compound having a structure of Formula IV:
- R 11 is H, alkyl, halo, amino, amido, hydroxy, or alkoxy, and R is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl.
- R 11 is amino and R 12 is alkyl, alkenyl, heteroaryl, aryl, or heterocycloalkyl.
- R 1 is amino and and R 12 is cyano, amino, carboxylic acid, alkoxycarbonyl, or amido.
- the compound of Formula IV is a compound of Formula IV- A:
- R 3 is H, CH 3 , CF 3 , CI, or F; and B is a moiety of Formula II:
- W c is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl;
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate;
- R 2 is halo, hydroxy, cyano, or nitro;
- q is an integer of 0, 1, 2, 3, or 4;
- R 5 , R 6 , R 7 , and R 8 are H;
- X is absent or (CH 2 ) Z ;
- z is 1 ;
- Y is absent or -N(R 9 )-;
- R 9 is hydrogen, Ci-Cioalkyl, C3-C 7 cycloalkyl, or C 2 - Cioheteroalkyl; at least one of X and Y is present; and
- W d is pyrazolopyrimidine or purine. In some embodiments, when X
- R 3 is H, CH 3 , CF 3 , CI, or F
- B is a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate; R 2 is halo, hydroxy, cyano, or nitro; q is 0, 1 or 2; R 5 , R 6 , R 7 , and R 8 are H; X is absent or
- R 9 is hydrogen, methyl, or ethyl; at least one of X and Y is present; W d is:
- R 3 is H, CH 3 , CF 3 , CI, or F
- B is a moiety of Formula II, which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate
- 2 is halo, hydroxy, cyano, or nitro
- q is 0, 1 or 2
- X is (CH 2 ) Z ;
- z is 1
- R 5 , R 6 , R 7 , and R 8 are H
- Y is H, CH 3 , CF 3 , CI, or F
- B is a moiety of Formula II, which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl
- R 1 is H, -F, -CI, -CN, -CH 3 , is
- R 11 is amino
- R 12 is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, or cycloalkyl.
- R 3 is H, CH 3 , CF 3 , CI, or F;
- B is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl,
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate;
- R 2 is halo, hydroxy, cyano, or nitro; q is 0, 1 or 2;
- R 5 , 6 , R 7 , and R 8 are H;
- X is (CH 2 ) Z ;
- z is 1 ;
- X is (CH 2 ) Z ;
- z is 1 ;
- Y is-N(R 9 )-;
- R 9 is hydrogen, methyl, or ethyl; and
- W d is . in some embodiments, Y is -NH-.
- R 3 is aryl, heteroaryl, H, CH 3 , CF 3 , CI, or F;
- B is alkyl or a moiety of Formula II;
- W c is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl, and q is an integer of 0, 1 , 2, 3, or 4;
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate;
- R 2 is halo, hydroxy, cyano, nitro, or phosphate; q is 0, 1 or 2;
- R 5 , R 6 , R 7 , and R 8 are H;
- X is absent or (CH(R 9 )) Z ;
- z is an integer of 1 , 2, 3, or 4;
- Y is absent, -N(R 9 )-, or -N(R 9 ) CH(R 9 )-;
- R 9 is hydrogen, alkyl, cycloalkyl, or heteroalkyl; at least one of X and Y is present; and W
- R 3 is aryl, heteroaryl, H, CH 3 , CF 3 , CI, or F;
- B is alkyl or a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl,
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate;
- R 2 is halo, hydroxy, cyano, nitro, or phosphate;
- q is 0, 1 or 2;
- R 5 , R 6 , R 7 , and R 8 are H;
- X is absent or (CH(R 9 )) Z ;
- z is an integer of 1 , 2, 3, or 4;
- Y is absent, -N(R 9 )-, or -N(R 9 ) CH(R 9 )-;
- R 9 is hydrogen, methyl, or ethyl; at least one of X and Y is present; W d is: ; R 11 is amino; and R 12 is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, cycloalkyl, cyano, amino, carboxylic acid, aloxycarbonyl, or amido .
- Y when X is present, Y is -N(R 9 )-, and W d is purine, then Y is -NH-.
- R 3 is H, CH 3 , CF 3 , CI, or F;
- B is alkyl or a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl,
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , - OCH 3 , nitro, or phosphate;
- R 2 is halo, hydroxy, cyano, nitro, or phosphate;
- q is 0, 1 or 2;
- R 5 , R 6 , R 7 , and R 8 are H;
- R is (CH(R )) z ; z is an integer of 1 ; Y is absent-; R is hydrogen, methyl, or ethyl; W d is: ; R is amino; and R 12 is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, cycloalkyl, cyano, amino, carboxylic acid, alkoxycarbonyl, or amido.
- R 3 is aryl, heteroaryl, H, CH 3 , CF 3 , CI, or F;
- B is a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl,
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate;
- R 2 is halo, hydroxy, cyano, nitro, or phosphate;
- q is 0, 1 or 2;
- R 5 , R 6 , R 7 , and R 8 are H;
- X is absent or (CH(R 9 )) Z ;
- z is an integer of 1 ;
- Y is absent, -N(R 9 )-, or -N(R 9 ) CH(R 9 )-;
- R 9 is
- Y is -N(R 9 )-, and W d is purine, then Y is -NH-.
- R 3 is aryl, heteroaryl, H, CH 3 , CF 3 , CI, or F;
- B is a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl,
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate;
- R 2 is halo, hydroxy, cyano, nitro, or phosphate;
- q is 0, 1 or 2;
- R 5 is a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl,
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate;
- R 2 is halo, hydroxy, cyano
- R 7 , and R 8 are H; X is absent; Y is-N(R 9 ) CH(R 9 )-; R 9 is hydrogen, methyl, or ethyl; and W d
- R 3 is aryl, heteroaryl, H, CH 3 , CF 3 , CI, or F;
- B is alkyl or a moiety of Formula II which is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl,
- R 1 is H, -F, -CI, -CN, -CH 3 , isopropyl, -CF 3 , -OCH 3 , nitro, or phosphate;
- R 2 is halo, hydroxy, cyano, nitro, or phosphate;
- q is 0, 1 or 2;
- R 5 , R 6 , R 7 , and R 8 are H;
- X is absent or (CH(R 9 )) Z ;
- z is an integer of 1 , 2, 3, or 4;
- Y is absent, -N(R 9 )-, or -N(R 9 ) CH(R 9 )-;
- R is hydrogen, methyl, or ethyl; at least one of X and Y is present; W d is: H
- R a is hydrogen, halo, or amino
- R 12 is H, alkyl, alkynyl, alkenyl, halo, aryl, heteroaryl, heterocycloalkyl, cycloalkyl, cyano, amino, carboxylic acid, aloxycarbonyl, or amido .
- Y is -N(R 9 )-
- W d is purine
- Y is -NH-.
- Additional exemplary compounds have a sub-structure of Formula IV-A.
- Some illustrative compounds of the present disclosure having a structure of Formula IV-A include those in which R 3 is -H, -CI, -F, or -CH 3 in combination with any B moiety described in Table 1 , and any R 12 as described in Table 2.
- a compound of Formula IV-A includes any combination of R 3 , B, and R 12 . Additional exemplary compounds of Formula IV-A are illustrated in Table 4.
- Other illustrative compounds of the present disclosure have a structure of Formula V-A, V-Al, or V-A2, wherein B is a moiety described in Table 1, in combination with R 3 , which is -H, -CI, -F, or CH 3 ,and R 9 , which is - H, -CH 3 , or -CH 2 CH 3 f R 3 , B, and R 9 .
- Yet other illustrative compounds of the present disclosure have a structure of Formula V-B, wherein B is a moiety described in Table 1, in combination with R 3 , which is -H, -CI, -F, or CH 3 ,and R 9 , which is -H, -CH 3 , or - CH 2 CH 3 .
- a compound of Formula V-B includes any combination of R 3 , B, and R 9 .
- Some other illustrative compounds of the present disclosure have a structure of Formula VI- A, wherein B is a moiety described in Table 1, in combination with R 3 , which is -H, -CI, -F, or CH 3 ,and R 9 , which is -H, -CH 3 , or -CH 2 CH 3 .
- a compound of Formula VI-A includes any combination of R 3 , B, and R 9 .
- R a includes any combination of R a , R 3 , B, R 9 and R 12 .
- the PI3K modulator is a compound of Formula I- 1 :
- W c is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl
- q is an integer of 0, 1 , 2, 3, or 4;
- X is a bond or -(CH(R 9 )) Z -, and z is an integer of 1 ;
- R 1 is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, amido, alkoxycarbonyl, sulfonamido, halo, cyano, or nitro;
- R 2 is alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, heteroarylalkyl, alkoxy, amino, halo, cyano, hydroxy or nitro;
- R 3 is hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocycloalkyl, alkoxy, amido, amino, alkoxycarbonyl sulfonamido, halo, cyano, hydroxy or nitro;
- each instance of R 9 is independently hydrogen, alkyl, or heterocycloalkyl.
- the compound is predominately in an (S)- stereochemical configuration
- X is -(CH(R 9 )) Z -
- Y is -NH-.
- R 3 is -H, -CH 3 , -CH 2 CH 3 , -CF 3 , -CI or -F.
- B is a moiety of Formula II:
- W c is aryl, heteroaryl, heterocycloalkyl, or cycloalkyl
- q is an integer of 0 or 1 ;
- R 1 is hydrogen, alkyl, or halo
- R 2 is alkyl or halo
- R 3 is hydrogen, alkyl, or halo; and, optionally wherein the compound has one or more of the following features:
- R 3 is methyl or chloro.
- the compound has a structure of Formula V-A2:
- W c is aryl or cycloalkyl, and/or
- R 3 is methyl or chloro and further, optionally wherein one or more of the following also applies: (a) R 9 is methyl or ethyl, (b) B is substituted or unsubstituted phenyl, (c) B is substituted or unsubstituted cycloalkyl. In some embodiments where B is substituted phenyl, B is substituted with fluoro. In some embodiments, B is phenyl that is substituted with one fluoro in the ortho or meta position of the phenyl ring.
- the compound is the S-enantiomer having an enantiomeric purity selected from greater than about 55%, greater than about 80%, greater than about 90%, and greater than about 95%.
- the compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- the compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- the compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- the compound has the following structure:
- a polymorph of a compound disclosed herein is used.
- Exemplary polymorphs are disclosed in U.S. Patent Publication No. 2012-0184568 ("the '568 publication”), which is hereby incorporated by reference in its entirety.
- the compound is Form A of Compound 292, as described in the '568 publication.
- the compound is Form B of Compound 292, as described in the '568 publication.
- the compound is Form C of Compound 292, as described in the '568 publication.
- the compound is Form D of Compound 292, as described in the '568 publication.
- the compound is Form E of Compound 292, as described in the '568 publication.
- the compound is Form F of Compound 292, as described in the '568 publication.
- the compound is Form G of Compound 292, as described in the '568 publication.
- the compound is Form H of Compound 292, as described in the '568 publication. In yet another embodiment, the compound is Form I of Compound 292, as described in the '568 publication. In yet another embodiment, the compound is Form J of Compound 292, as described in the '568 publication.
- provided herein is a crystalline monohydrate of the free base of Compound 292, as described, for example, in the '568 application.
- a pharmaceutically acceptable form of Compound 292 which is a crystalline monohydrate of the free base of Compound 292, as described, for example, in the '568 application.
- any of the compounds (PI3K modulators) disclosed herein can be in the form of pharmaceutically acceptable salts, hydrates, solvates, chelates, non-covalent complexes, isomers, prodrugs, isotopically labeled derivatives, or mixtures thereof.
- compositions comprising a compound as disclosed herein, or an enantiomer, a mixture of enantiomers, or a mixture of two or more diastereomers thereof, or a pharmaceutically acceptable form thereof (e.g., pharmaceutically acceptable salts, hydrates, solvates, isomers, prodrugs, and isotopically labeled derivatives), and a pharmaceutically acceptable excipient, diluent, or carrier, including inert solid diluents and fillers, sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
- a pharmaceutical composition described herein includes a second active agent such as an additional therapeutic agent, (e.g., a chemotherapeutic agent).
- compositions can be specially formulated for administration in solid or liquid form, including those adapted for the following: oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets (e.g. , those targeted for buccal, sublingual, and systemic absorption), capsules, boluses, powders, granules, pastes for application to the tongue, and intraduodenal routes; parenteral administration, including intravenous, intraarterial, subcutaneous, intramuscular, intravascular, intraperitoneal or infusion as, for example, a sterile solution or suspension, or sustained-release formulation; topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin; intravaginally or intrarectally, for example, as a pessary, cream, stent or foam; sublingually; ocularly; pulmonarily; local delivery by catheter or stent; intrathecally, or nasally.
- oral administration for
- aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
- polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
- vegetable oils such as olive oil
- injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- compositions can also contain adjuvants such as preservatives, wetting agents, emulsifying agents, dispersing agents, lubricants, and/or antioxidants.
- adjuvants such as preservatives, wetting agents, emulsifying agents, dispersing agents, lubricants, and/or antioxidants.
- Prevention of the action of microorganisms upon the compounds described herein can be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like.
- isotonic agents such as sugars, sodium chloride, and the like into the compositions.
- prolonged absorption of the injectable pharmaceutical form can be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
- Methods of preparing these formulations or compositions include the step of bringing into association a compound described herein and/or the chemotherapeutic with the carrier and, optionally, one or more accessory ingredients.
- the formulations are prepared by uniformly and intimately bringing into association a compound as disclosed herein with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
- the concentration of one or more of the compounds provided in the disclosed pharmaceutical compositions is equal to or less than about 100%, about 90%, about 80%, about 70%, about 60%, about 50%, about 40%, about 30%, about 20%, about 19%, about 18%, about 17%, about 16%, about 15%, about 14%, about 13%, about 12%, about 1 1%, about 10%, about 9%, about 8%, about 7%, about 6%, about 5%, about 4%, about 3%, about 2%, about 1%, about 0.5%, about 0.4%, about 0.3%, about 0.2%, about 0.1%, about 0.09%, about 0.08%, about 0.07%, about 0.06%, about 0.05%, about 0.04%, about 0.03%, about 0.02%, about 0.01%, about 0.009%, about 0.008%, about 0.007%, about 0.006%, about 0.005%, about 0.004%, about 0.003%, about 0.002%, about 0.001%, about 0.0009%, about 0.0008%,
- the concentration of one or more of the compounds as disclosed herein is greater than about 90%, about 80%, about 70%, about 60%, about 50%, about 40%, about 30%, about 20%, about 19.75%, about 19.50%, about 19.25%, about 19%, about 18.75%, about 18.50%, about 18.25%, about 18%, about 17.75%, about 17.50%, about 17.25%, about 17%, about 16.75%, about 16.50%, about 16.25%, about 16%, about 15.75%, about 15.50%, about 15.25%, about 15%, about 14.75%, about 14.50%, about 14.25%, about 14%, about 13.75%, about 13.50%, about 13.25%, about 13%, about 12.75%, about 12.50%, about 12.25%, about 12%, about 1 1.75%, about 1 1.50%, about 1 1.25%, about 1 1%, about 10.75%, about 10.50%, about 10.25%, about 10%, about 9.75%, about 9.50%, about 9.2
- the concentration of one or more of the compounds as disclosed herein is in the range from approximately 0.0001% to approximately 50%, approximately 0.001% to approximately 40%, approximately 0.01% to approximately 30%, approximately 0.02% to approximately 29%, approximately 0.03% to approximately 28%, approximately 0.04% to approximately 27%, approximately 0.05% to approximately 26%, approximately 0.06% to approximately 25%, approximately 0.07% to approximately 24%, approximately 0.08% to approximately 23%, approximately 0.09% to approximately 22%, approximately 0.1% to approximately 21%, approximately 0.2% to approximately 20%, approximately 0.3% to approximately 19%, approximately 0.4% to approximately 18%, approximately 0.5% to approximately 17%, approximately 0.6% to approximately 16%, approximately 0.7% to approximately 15%, approximately 0.8% to approximately 14%, approximately 0.9% to approximately 12%, or approximately 1% to approximately 10%, w/w, w/v or v/v.
- the concentration of one or more of the compounds as disclosed herein is in the range from approximately 0.001% to approximately 10%, approximately 0.01% to approximately 5%,
- the amount of one or more of the compounds as disclosed herein is equal to or less than about 10 g, about 9.5 g, about 9.0 g, about 8.5 g, about 8.0 g, about 7.5 g, about 7.0 g, about 6.5 g, about 6.0 g, about 5.5 g, about 5.0 g, about 4.5 g, about 4.0 g, about 3.5 g, about 3.0 g, about 2.5 g, about 2.0 g, about 1.5 g, about 1.0 g, about 0.95 g, about 0.9 g, about 0.85 g, about 0.8 g, about 0.75 g, about 0.7 g, about 0.65 g, about 0.6 g, about 0.55 g, about 0.5 g, about 0.45 g, about 0.4 g, about 0.35 g, about 0.3 g, about 0.25 g, about 0.2 g, about 0.15 g, about 0.1 g, about 0.09 g, about 0.
- the amount of one or more of the compounds as disclosed herein is more than about 0.0001 g, about 0.0002 g, about 0.0003 g, about 0.0004 g, about 0.0005 g, about 0.0006 g, about 0.0007 g, about 0.0008 g, about 0.0009 g, about 0.001 g, about 0.0015 g, about 0.002 g, about 0.0025 g, about 0.003 g, about 0.0035 g, about 0.004 g, about 0.0045 g, about 0.005 g, about 0.0055 g, about 0.006 g, about 0.0065 g, about 0.007 g, about 0.0075 g, about 0.008 g, about 0.0085 g, about 0.009 g, about 0.0095 g, about 0.01 g, about 0.015 g, about 0.02 g, about 0.025 g, about 0.03 g, about 0.035 g, about
- the amount of one or more of the compounds as disclosed herein is in the range of about 0.0001 to about 10 g, about 0.0005 to about 5 g, about 0.001 to about 1 g, about 0.002 to about 0.5 g, 0.005 to about 0.5 g, about 0.01 to about 0.1 g, about 0.01 to about 0.05 g, or about 0.05 to about 0.1 g.
- compositions for oral administration containing a compound as disclosed herein, and a pharmaceutical excipient suitable for oral administration.
- pharmaceutical compositions for oral administration containing: (i) an effective amount of a disclosed compound; optionally (ii) an effective amount of one or more second agents; and (iii) one or more pharmaceutical excipients suitable for oral administration.
- the pharmaceutical compositions for oral administration containing: (i) an effective amount of a disclosed compound; optionally (ii) an effective amount of one or more second agents; and (iii) one or more pharmaceutical excipients suitable for oral administration.
- composition further contains: (iv) an effective amount of a third agent.
- the pharmaceutical composition can be a liquid pharmaceutical composition suitable for oral consumption.
- Pharmaceutical compositions suitable for oral administration can be presented as discrete dosage forms, such as capsules, cachets, or tablets, or liquids or aerosol sprays each containing a predetermined amount of an active ingredient as a powder or in granules, a solution, or a suspension in an aqueous or non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion.
- Such dosage forms can be prepared by any of the methods of pharmacy, but all methods include the step of bringing the active ingredient into association with the carrier, which constitutes one or more ingredients.
- the pharmaceutical compositions are prepared by uniformly and intimately admixing the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product into the desired presentation.
- a tablet can be prepared by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets can be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as powder or granules, optionally mixed with an excipient such as, but not limited to, a binder, a lubricant, an inert diluent, and/or a surface active or dispersing agent.
- Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the present disclosure further encompasses anhydrous pharmaceutical compositions and dosage forms comprising an active ingredient, since water can facilitate the degradation of some compounds.
- water can be added (e.g., about 5%) in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time.
- Anhydrous pharmaceutical compositions and dosage forms can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions.
- compositions and dosage forms which contain lactose can be made anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected.
- An anhydrous pharmaceutical composition can be prepared and stored such that its anhydrous nature is maintained.
- anhydrous pharmaceutical compositions can be packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits.
- suitable packaging include, but are not limited to, hermetically sealed foils, plastic or the like, unit dose containers, blister packs, and strip packs.
- An active ingredient can be combined in an intimate admixture with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
- the carrier can take a wide variety of forms depending on the form of preparation desired for administration.
- any of the usual pharmaceutical media can be employed as carriers, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents, and the like in the case of oral liquid preparations (such as suspensions, solutions, and elixirs) or aerosols; or carriers such as starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents can be used in the case of oral solid preparations, in some embodiments without employing the use of lactose.
- suitable carriers include powders, capsules, and tablets, with the solid oral preparations. In some embodiments, tablets can be coated by standard aqueous or nonaqueous techniques.
- Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, microcrystalline cellulose, and mixtures thereof.
- natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrol
- suitable fillers for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof.
- Disintegrants can be used in the pharmaceutical compositions as provided herein to provide tablets that disintegrate when exposed to an aqueous environment. Too much of a disintegrant can produce tablets which can disintegrate in the bottle. Too little can be insufficient for disintegration to occur and can thus alter the rate and extent of release of the active ingredient(s) from the dosage form. Thus, a sufficient amount of disintegrant that is neither too little nor too much to detrimentally alter the release of the active ingredient(s) can be used to form the dosage forms of the compounds disclosed herein. The amount of disintegrant used can vary based upon the type of formulation and mode of administration, and can be readily discernible to those of ordinary skill in the art.
- Disintegrants that can be used to form pharmaceutical compositions and dosage forms include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums or mixtures thereof.
- Lubricants which can be used to form pharmaceutical compositions and dosage forms include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethylaureate, agar, or mixtures thereof.
- calcium stearate e.g., magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc
- hydrogenated vegetable oil e.g., peanut oil, cottonseed oil, sunflower oil
- Additional lubricants include, for example, a syloid silica gel, a coagulated aerosol of synthetic silica, or mixtures thereof.
- a lubricant can optionally be added, in an amount of less than about 1 weight percent of the pharmaceutical composition.
- the active ingredient therein can be combined with various sweetening or flavoring agents, coloring matter or dyes and, for example, emulsifying and/or suspending agents, together with such diluents as water, ethanol, propylene glycol, glycerin and various combinations thereof.
- the tablets can be uncoated or coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period.
- a time delay material such as glyceryl monostearate or glyceryl distearate can be employed.
- Formulations for oral use can also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example, peanut oil, liquid paraffin or olive oil.
- Surfactant which can be used to form pharmaceutical compositions and dosage forms include, but are not limited to, hydrophilic surfactants, lipophilic surfactants, and mixtures thereof. That is, a mixture of hydrophilic surfactants can be employed, a mixture of lipophilic surfactants can be employed, or a mixture of at least one hydrophilic surfactant and at least one lipophilic surfactant can be employed.
- a suitable hydrophilic surfactant can generally have an HLB value of at least about 10, while suitable lipophilic surfactants can generally have an HLB value of or less than about 10.
- An empirical parameter used to characterize the relative hydrophilicity and hydrophobicity of non-ionic amphiphilic compounds is the hydrophilic - lipophilic balance ("HLB" value).
- HLB hydrophilic - lipophilic balance
- Hydrophilic surfactants are generally considered to be those compounds having an HLB value greater than about 10, as well as anionic, cationic, or zwitterionic compounds for which the HLB scale is not generally applicable.
- lipophilic (i.e., hydrophobic) surfactants are compounds having an HLB value equal to or less than about 10.
- HLB value of a surfactant is merely a rough guide generally used to enable formulation of industrial, pharmaceutical and cosmetic emulsions.
- Hydrophilic surfactants can be either ionic or non-ionic. Suitable ionic surfactants include, but are not limited to, alkylammonium salts; fusidic acid salts; fatty acid derivatives of amino acids, oligopeptides, and polypeptides; glyceride derivatives of amino acids, oligopeptides, and polypeptides; lecithins and hydrogenated lecithins; lysolecithins and hydrogenated lysolecithins; phospholipids and derivatives thereof; lysophospholipids and derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates; fatty acid salts; sodium docusate; acylactylates; mono- and di-acetylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di- glycerides; citric acid esters of mono- and di-glycer
- ionic surfactants include, by way of example: lecithins, lysolecithin, phospholipids, lysophospholipids and derivatives thereof; carnitine fatty acid ester salts; salts of alkylsulfates; fatty acid salts; sodium docusate; acylactylates; mono- and di-acetylated tartaric acid esters of mono- and di-glycerides; succinylated mono- and di-glycerides; citric acid esters of mono- and di-glycerides; and mixtures thereof.
- Ionic surfactants can be the ionized forms of lecithin, lysolecithin, phosphatidylcholine,
- phosphatidylethanolamine phosphatidylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidic acid, lysophosphatidylserine, PEG- phosphatidylethanolamine, PVP-phosphatidylethanolamine, lactylic esters of fatty acids, stearoyl-2-lactylate, stearoyl lactylate, succinylated monoglycerides, mono/diacetylated tartaric acid esters of mono/diglycerides, citric acid esters of mono/diglycerides, cholylsarcosine, caproate, caprylate, caprate, laurate, myristate, palmitate, oleate, ricinoleate, linoleate, lino
- Hydrophilic non-ionic surfactants can include, but are not limited to, alkylglucosides; alkylmaltosides; alkylthioglucosides; lauryl macrogolglycerides; polyoxyalkylene alkyl ethers such as polyethylene glycol alkyl ethers; polyoxyalkylene alkylphenols such as polyethylene glycol alkyl phenols; polyoxyalkylene alkyl phenol fatty acid esters such as polyethylene glycol fatty acids monoesters and polyethylene glycol fatty acids diesters;
- polyethylene glycol glycerol fatty acid esters polyethylene glycol glycerol fatty acid esters; polyglycerol fatty acid esters; polyoxyalkylene sorbitan fatty acid esters such as polyethylene glycol sorbitan fatty acid esters; hydrophilic transesterification products of a polyol with at least one member of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids, and sterols;
- polyoxyethylene sterols, derivatives, and analogues thereof polyoxyethylated vitamins and derivatives thereof; polyoxyethylene-polyoxypropylene block copolymers; and mixtures thereof; polyethylene glycol sorbitan fatty acid esters and hydrophilic transesterification products of a polyol with at least one member of triglycerides, vegetable oils, and hydrogenated vegetable oils.
- the polyol can be glycerol, ethylene glycol, polyethylene glycol, sorbitol, propylene glycol, pentaerythritol, or a saccharide.
- hydrophilic-non-ionic surfactants include, without limitation, PEG- 10 laurate, PEG- 12 laurate, PEG-20 laurate, PEG-32 laurate, PEG-32 dilaurate, PEG- 12 oleate, PEG- 15 oleate, PEG-20 oleate, PEG-20 dioleate, PEG-32 oleate, PEG-200 oleate, PEG-400 oleate, PEG- 15 stearate, PEG-32 distearate, PEG-40 stearate, PEG- 100 stearate, PEG-20 dilaurate, PEG-25 glyceryl trioleate, PEG-32 dioleate, PEG-20 glyceryl laurate, PEG-30 glyceryl laurate, PEG-20 glyceryl stearate, PEG-20 glyceryl oleate, PEG-30 glyceryl oleate, PEG-30 glyce
- Suitable lipophilic surfactants include, by way of example only: fatty alcohols; glycerol fatty acid esters; acetylated glycerol fatty acid esters; lower alcohol fatty acids esters; propylene glycol fatty acid esters; sorbitan fatty acid esters; polyethylene glycol sorbitan fatty acid esters; sterols and sterol derivatives; polyoxyethylated sterols and sterol derivatives; polyethylene glycol alkyl ethers; sugar esters; sugar ethers; lactic acid derivatives of mono- and di-glycerides; hydrophobic transesterification products of a polyol with at least one member of glycerides, vegetable oils, hydrogenated vegetable oils, fatty acids and sterols; oil-soluble vitamins/vitamin derivatives; and mixtures thereof.
- lipophilic surfactants include glycerol fatty acid esters, propylene glycol fatty acid
- transesterification products of a polyol with at least one member of vegetable oils, hydrogenated vegetable oils, and triglycerides.
- the pharmaceutical composition can include a solubilizer to ensure good
- solubilization and/or dissolution of a compound as provided herein and to minimize precipitation of the compound can be especially important for pharmaceutical compositions for non-oral use, e.g., pharmaceutical compositions for injection.
- a solubilizer can also be added to increase the solubility of the hydrophilic drug and/or other components, such as surfactants, or to maintain the pharmaceutical composition as a stable or homogeneous solution or dispersion.
- solubilizers include, but are not limited to, the following: alcohols and polyols, such as ethanol, isopropanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, butanediols and isomers thereof, glycerol, pentaerythritol, sorbitol, mannitol, transcutol, dimethyl isosorbide, polyethylene glycol, polypropylene glycol, polyvinylalcohol, hydroxypropyl methylcellulose and other cellulose derivatives, cyclodextrins and cyclodextrin derivatives; ethers of polyethylene glycols having an average molecular weight of about 200 to about 6000, such as tetrahydrofurfuryl alcohol PEG ether (glycofurol) or methoxy PEG; amides and other nitrogen- containing compounds such as 2-pyrrolidone, 2-piperidone,
- solubilizers can also be used. Examples include, but not limited to, triacetin, triethylcitrate, ethyl oleate, ethyl caprylate, dimethylacetamide, N-methylpyrrolidone, N-hydroxyethylpyrrolidone,
- solubilizers include sorbitol, glycerol, triacetin, ethyl alcohol, PEG-400, glycofurol and propylene glycol.
- the amount of solubilizer that can be included is not particularly limited.
- the amount of a given solubilizer can be limited to a bioacceptable amount, which can be readily determined by one of skill in the art.
- the solubilizer can be in a weight ratio of about 10%, 25%, 50%, 100%, or up to about 200% by weight, based on the combined weight of the drug, and other excipients.
- solubilizer can also be used, such as about 5%, 2%, 1% or even less.
- the solubilizer can be present in an amount of about 1% to about 100%, more typically about 5% to about 25% by weight.
- the pharmaceutical composition can further include one or more pharmaceutically acceptable additives and excipients.
- additives and excipients include, without limitation, detackifiers, anti-foaming agents, buffering agents, polymers, antioxidants, preservatives, chelating agents, viscomodulators, tonicifiers, flavorants, colorants, oils, odorants, opacifiers, suspending agents, binders, fillers, plasticizers, lubricants, and mixtures thereof.
- Exemplary preservatives can include antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and other preservatives.
- Exemplary antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and sodium sulfite.
- Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA), citric acid monohydrate, disodium edetate, dipotassium edetate, edetic acid, fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and trisodium edetate.
- EDTA ethylenediaminetetraacetic acid
- citric acid monohydrate disodium edetate
- dipotassium edetate dipotassium edetate
- edetic acid fumaric acid, malic acid
- phosphoric acid sodium edetate
- tartaric acid tartaric acid
- trisodium edetate trisodium edetate.
- antimicrobial preservatives include, but are not limited to, benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and thimerosal.
- Exemplary antifungal preservatives include, but are not limited to, butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and sorbic acid.
- Exemplary alcohol preservatives include, but are not limited to, ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and phenylethyl alcohol.
- Exemplary acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and phytic acid.
- Other preservatives include, but are not limited to, tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT),
- the preservative is an anti-oxidant. In other embodiments, the preservative is a chelating agent.
- oils include, but are not limited to, almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cubeba, macademia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana
- Exemplary oils also include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and combinations thereof.
- an acid or a base can be incorporated into the pharmaceutical composition to facilitate processing, to enhance stability, or for other reasons.
- pharmaceutically acceptable bases include amino acids, amino acid esters, ammonium hydroxide, potassium hydroxide, sodium hydroxide, sodium hydrogen carbonate, aluminum hydroxide, calcium carbonate, magnesium hydroxide, magnesium aluminum silicate, synthetic aluminum silicate, synthetic hydrocalcite, magnesium aluminum hydroxide, diisopropylethylamine, ethanolamine, ethylenediamine, triethanolamine, triethylamine, triisopropanolamine, trimethylamine, tris(hydroxymethyl)- aminomethane (TRIS) and the like.
- bases that are salts of a pharmaceutically acceptable acid, such as acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid, uric acid, and the like.
- a pharmaceutically acceptable acid such as acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acid, amino acids
- Salts of polyprotic acids such as sodium phosphate, disodium hydrogen phosphate, and sodium dihydrogen phosphate can also be used.
- the cation can be any convenient and pharmaceutically acceptable cation, such as ammonium, alkali metals, alkaline earth metals, and the like. Examples can include, but not limited to, sodium, potassium, lithium, magnesium, calcium and ammonium.
- Suitable acids are pharmaceutically acceptable organic or inorganic acids.
- suitable inorganic acids include hydrochloric acid, hydrobromic acid, hydriodic acid, sulfuric acid, nitric acid, boric acid, phosphoric acid, and the like.
- suitable organic acids include acetic acid, acrylic acid, adipic acid, alginic acid, alkanesulfonic acids, amino acids, ascorbic acid, benzoic acid, boric acid, butyric acid, carbonic acid, citric acid, fatty acids, formic acid, fumaric acid, gluconic acid, hydroquinosulfonic acid, isoascorbic acid, lactic acid, maleic acid, methanesulfonic acid, oxalic acid, para-bromophenylsulfonic acid, propionic acid, p-toluenesulfonic acid, salicylic acid, stearic acid, succinic acid, tannic acid, tartaric acid, thioglycolic acid, toluenesulfonic acid, uric acid and the like.
- compositions for parenteral administration containing a compound as disclosed herein, and a pharmaceutical excipient suitable for parenteral administration.
- pharmaceutical compositions for parenteral administration containing: (i) an effective amount of a disclosed compound; optionally (ii) an effective amount of one or more second agents; and (iii) one or more pharmaceutical excipients suitable for parenteral administration.
- the pharmaceutical composition further contains: (iv) an effective amount of a third agent.
- Aqueous solutions in saline are also conventionally used for injection.
- Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils can also be employed.
- Aqueous solutions in saline are also conventionally used for injection.
- Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils can also be employed.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, for the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- Sterile injectable solutions are prepared by incorporating a compound as disclosed herein in the required amount in the appropriate solvent with various other ingredients as enumerated above, as appropriate, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the appropriate other ingredients from those enumerated above.
- certain methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional ingredient from a previously sterile-filtered solution thereof.
- the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- Injectable compositions can contain from about 0.1 to about 5% w/w of a compound as disclosed herein.
- compositions for topical ⁇ e.g., transdermal) administration containing a compound as disclosed herein, and a pharmaceutical excipient suitable for topical administration.
- pharmaceutical compositions for topical administration containing: (i) an effective amount of a disclosed compound; optionally (ii) an effective amount of one or more second agents; and (iii) one or more pharmaceutical excipients suitable for topical administration.
- the pharmaceutical composition further contains: (iv) an effective amount of a third agent.
- compositions provided herein can be formulated into preparations in solid, semi-solid, or liquid forms suitable for local or topical administration, such as gels, water soluble jellies, creams, lotions, suspensions, foams, powders, slurries, ointments, solutions, oils, pastes, suppositories, sprays, emulsions, saline solutions, dimethylsulfoxide (DMSO)-based solutions.
- DMSO dimethylsulfoxide
- carriers with higher densities are capable of providing an area with a prolonged exposure to the active ingredients.
- a solution formulation can provide more immediate exposure of the active ingredient to the chosen area.
- compositions also can comprise suitable solid or gel phase carriers or excipients, which are compounds that allow increased penetration of, or assist in the delivery of, therapeutic molecules across the stratum corneum permeability barrier of the skin.
- suitable solid or gel phase carriers or excipients which are compounds that allow increased penetration of, or assist in the delivery of, therapeutic molecules across the stratum corneum permeability barrier of the skin.
- penetration-enhancing molecules known to those trained in the art of topical formulation.
- humectants e.g., urea
- glycols e.g., propylene glycol
- alcohols e.g., ethanol
- fatty acids e.g., oleic acid
- surfactants e.g., isopropyl myristate and sodium lauryl sulfate
- pyrrolidones e.g., isopropyl myristate and sodium lauryl sulfate
- pyrrolidones e.glycerol monolaurate, sulfoxides, terpenes (e.g., menthol)
- amines amides, alkanes, alkanols, water, calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.
- transdermal delivery devices patches
- Such transdermal patches can be used to provide continuous or discontinuous infusion of a compound as provided herein in controlled amounts, either with or without another agent.
- transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252, 4,992,445 and 5,001, 139. Such patches can be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents.
- Suitable devices for use in delivering intradermal pharmaceutically acceptable compositions described herein include short needle devices such as those described in U.S. Patents 4,886,499; 5, 190,521 ; 5,328,483;
- Intradermal compositions can be administered by devices which limit the effective penetration length of a needle into the skin, such as those described in PCT publication WO 99/34850 and functional equivalents thereof. Jet injection devices which deliver liquid vaccines to the dermis via a liquid jet injector and/or via a needle which pierces the stratum corneum and produces a jet which reaches the dermis are suitable. Jet injection devices are described, for example, in U.S. Patents 5,480,381 ;
- Ballistic powder/particle delivery devices which use compressed gas to accelerate vaccine in powder form through the outer layers of the skin to the dermis are suitable.
- conventional syringes can be used in the classical mantoux method of intradermal administration.
- Topically-administrable formulations can, for example, comprise from about 1% to about 10% (w/w) of a compound provided herein relative to the total weight of the formulation, although the concentration of the compound provided herein in the formulation can be as high as the solubility limit of the compound in the solvent.
- topically-administrable formulations can, for example, comprise from about 1% to about 9% (w/w) of a compound provided herein, such as from about 1% to about 8% (w/w), further such as from about 1% to about 7% (w/w), further such as from about 1% to about 6% (w/w), further such as from about 1% to about 5% (w/w), further such as from about 1% to about 4% (w/w), further such as from about 1% to about 3% (w/w), and further such as from about 1% to about 2% (w/w) of a compound provided herein.
- Formulations for topical administration can further comprise one or more of the additional pharmaceutically acceptable excipients described herein.
- compositions for inhalation administration containing a compound as disclosed herein, and a pharmaceutical excipient suitable for topical administration.
- pharmaceutical compositions for inhalation administration containing: (i) an effective amount of a disclosed compound; optionally (ii) an effective amount of one or more second agents; and (iii) one or more pharmaceutical excipients suitable for inhalation administration.
- the pharmaceutical composition further contains: (iv) an effective amount of a third agent.
- compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid pharmaceutical compositions can contain suitable pharmaceutically acceptable excipients as described herein.
- the pharmaceutical compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- Pharmaceutical compositions in pharmaceutically acceptable solvents can be nebulized by use of inert gases. Nebulized solutions can be inhaled directly from the nebulizing device or the nebulizing device can be attached to a face mask tent, or intermittent positive pressure breathing machine.
- Solution, suspension, or powder pharmaceutical compositions can be administered, e.g., orally or nasally, from devices that deliver the formulation in an appropriate manner.
- the disclosure provides a pharmaceutical composition for treating ophthalmic disorders.
- the pharmaceutical composition can contain an effective amount of a compound as disclosed herein and a pharmaceutical excipient suitable for ocular administration.
- Pharmaceutical compositions suitable for ocular administration can be presented as discrete dosage forms, such as drops or sprays each containing a predetermined amount of an active ingredient a solution, or a suspension in an aqueous or non-aqueous liquid, an oil-in-water emulsion, or a water-in-oil liquid emulsion.
- Other administration foms include intraocular injection, intravitreal injection, topically, or through the use of a drug eluting device, microcapsule, implant, or micro fluidic device.
- the compounds as disclosed herein are administered with a carrier or excipient that increases the intraocular penetrance of the compound such as an oil and water emulsion with colloid particles having an oily core surrounded by an interfacial film.
- a carrier or excipient that increases the intraocular penetrance of the compound such as an oil and water emulsion with colloid particles having an oily core surrounded by an interfacial film.
- all local routes to the eye can be used including topical, subconjunctival, periocular, retrobulbar, subtenon, intracameral, intravitreal, intraocular, subretinal, juxtascleral and suprachoroidal administration.
- Systemic or parenteral administration can be feasible including, but not limited to intravenous, subcutaneous, and oral delivery.
- An exemplary method of administration will be intravitreal or subtenon injection of solutions or suspensions, or intravitreal or subtenon placement of bioerodible or non- bioerodible devices, or by topical ocular administration of solutions or suspensions, or posterior juxtascleral administration of a gel or cream formulation.
- Eye drops can be prepared by dissolving the active ingredient in a sterile aqueous solution such as physiological saline, buffering solution, etc., or by combining powder compositions to be dissolved before use.
- Other vehicles can be chosen, as is known in the art, including, but not limited to: balance salt solution, saline solution, water soluble polyethers such as polyethyene glycol, polyvinyls, such as polyvinyl alcohol and povidone, cellulose derivatives such as methylcellulose and hydroxypropyl methylcellulose, petroleum derivatives such as mineral oil and white petrolatum, animal fats such as lanolin, polymers of acrylic acid such as
- carboxypolymethylene gel vegetable fats such as peanut oil and polysaccharides such as dextrans, and
- additives ordinarily used in the eye drops can be added.
- Such additives include isotonizing agents (e.g., sodium chloride, etc.), buffer agent (e.g., boric acid, sodium monohydrogen phosphate, sodium dihydrogen phosphate, etc.), preservatives (e.g., benzalkonium chloride, benzethonium chloride, chlorobutanol, etc.), thickeners (e.g., saccharide such as lactose, mannitol, maltose, etc.; e.g., hyaluronic acid or its salt such as sodium hyaluronate, potassium hyaluronate, etc.; e.g., mucopolysaccharide such as chondroitin sulfate, etc.; e.g., sodium polyacrylate, carboxyvinyl polymer, crosslinked polyacrylate
- isotonizing agents e.g., sodium chloride, etc.
- the colloid particles include at least one cationic agent and at least one non-ionic sufactant such as a poloxamer, tyloxapol, a polysorbate, a polyoxyethylene castor oil derivative, a sorbitan ester, or a polyoxyl stearate.
- the cationic agent is an alkylamine, a tertiary alkyl amine, a quarternary ammonium compound, a cationic lipid, an amino alcohol, a biguanidine salt, a cationic compound or a mixture thereof.
- the cationic agent is a biguanidine salt such as chlorhexidine, polyaminopropyl biguanidine, phenformin, alkylbiguanidine, or a mixture thereof.
- the quaternary ammonium compound is a benzalkonium halide, lauralkonium halide, cetrimide, hexadecyltrimethylammonium halide,
- cationic agent is a benzalkonium chloride, lauralkonium chloride, benzododecinium bromide, benzethenium chloride, hexadecyltrimethylammonium bromide,
- the oil phase is mineral oil and light mineral oil, medium chain triglycerides (MCT), coconut oil; hydrogenated oils comprising hydrogenated cottonseed oil, hydrogenated palm oil, hydrogenate castor oil or hydrogenated soybean oil; polyoxyethylene hydrogenated castor oil derivatives comprising poluoxyl-40 hydrogenated castor oil, polyoxyl-60 hydrogenated castor oil or polyoxyl- 100 hydrogenated castor oil.
- MCT medium chain triglycerides
- compositions for controlled release administration containing a compound as disclosed herein, and a pharmaceutical excipient suitable for controlled release administration.
- pharmaceutical compositions for controlled release administration containing: (i) an effective amount of a disclosed compound; optionally (ii) an effective amount of one or more second agents; and (iii) one or more pharmaceutical excipients suitable for controlled release administration.
- the pharmaceutical composition further contains: (iv) an effective amount of a third agent.
- Active agents such as the compounds provided herein can be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Patent Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598, 123; and 4,008,719; 5,674,533; 5,059,595; 5,591,767; 5,120,548; 5,073,543; 5,639,476; 5,354,556; 5,639,480; 5,733,566; 5,739, 108; 5,891,474; 5,922,356; 5,972,891 ; 5,980,945; 5,993,855; 6,045,830; 6,087,324; 6, 1 13,943; 6,197,350; 6,248,363; 6,264,970; 6,267,981 ; 6,376,461 ; 6,419,961 ; 6,589,548; 6,613,358; 6,
- Such dosage forms can be used to provide slow or controlled release of one or more active agents using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions.
- Suitable controlled release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the active agents provided herein.
- the pharmaceutical compositions provided encompass single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled release.
- controlled release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non controlled counterparts.
- the use of a controlled release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the disease, disorder, or condition in a minimum amount of time.
- Advantages of controlled release formulations include extended activity of the drug, reduced dosage frequency, and increased subject compliance.
- controlled release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side (e.g., adverse) effects.
- controlled release formulations are designed to initially release an amount of a compound as disclosed herein that promptly produces the desired therapeutic effect, and gradually and continually release other amounts of the compound to maintain this level of therapeutic or prophylactic effect over an extended period of time.
- the compound In order to maintain this constant level of the compound in the body, the compound should be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body.
- Controlled release of an active agent can be stimulated by various conditions including, but not limited to, pH, temperature, enzymes, water, or other physiological conditions or compounds.
- the pharmaceutical composition can be administered using intravenous infusion, an implantable osmotic pump, a transdermal patch, liposomes, or other modes of administration.
- a pump can be used (see, Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et ah, Surgery 88:507 (1980); Saudek et al, N. Engl. J. Med. 321 :574 (1989)).
- polymeric materials can be used.
- a controlled release system can be placed in a subject at an appropriate site determined by a practitioner of skill, e.g., thus requiring only a fraction of the systemic dose (see, e.g., Goodson, Medical Applications of Controlled Release, 1 15-138 (vol. 2, 1984). Other controlled release systems are discussed in the review by Langer, Science 249: 1527-1533 (1990).
- the one or more active agents can be dispersed in a solid inner matrix, e.g.
- epichlorohydrin rubbers ethylene/vinyl alcohol copolymer, ethylene/vinyl acetate/vinyl alcohol terpolymer, and ethylene/vinyloxyethanol copolymer, that is insoluble in body fluids.
- the one or more active agents then diffuse through the outer polymeric membrane in a release rate controlling step.
- the percentage of active agent in such parenteral compositions is highly dependent on the specific nature thereof, as well as the needs of the subject.
- a compound described herein can be delivered in the form of pharmaceutically acceptable compositions which comprise a therapeutically effective amount of one or more compounds described herein and/or one or more additional therapeutic agents such as a chemotherapeutic, formulated together with one or more pharmaceutically acceptable excipients.
- the compound described herein and the additional therapeutic agent are administered in separate pharmaceutical compositions and can (e.g., because of different physical and/or chemical characteristics) be administered by different routes (e.g. , one therapeutic is administered orally, while the other is administered intravenously).
- the compound described herein and the additional therapeutic agent can be administered separately, but via the same route (e.g., both orally or both intravenously).
- the compound described herein and the additional therapeutic agent can be administered in the same pharmaceutical composition.
- the selected dosage level will depend upon a variety of factors including, for example, the activity of the particular compound employed, the route of administration, the time of administration, the rate of excretion or metabolism of the particular compound being employed, the rate and extent of absorption, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.
- a suitable daily dose of a compound described herein and/or a chemotherapeutic will be that amount of the compound which, in some embodiments, can be the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described herein.
- doses of the compounds described herein for a patient when used for the indicated effects, can range from about 1 mg to about 1000 mg, about 0.01 mg to about 500 mg per day, about 0.1 mg to about 500 mg per day, about 1 mg to about 500 mg per day, about 5 mg to about 500 mg per day, about 0.01 mg to about 200 mg per day, about 0.1 mg to about 200 mg per day, about 1 mg to about 200 mg per day, about 5 mg to about 200 mg per day, about 0.01 mg to about 100 mg per day, about 0.1 mg to about 100 mg per day, about 1 mg to about 100 mg per day, about 5 mg to about 100 mg per day, about 0.01 mg to about 50 mg per day, about 0.1 mg to about 50 mg per day, about 1 mg to about 50 mg per day, about 5 mg to about 50 mg per day, about 5 mg to about 40 mg, about 5 mg to about 30 mg, about 5 mg to about 25 mg, or about 5 mg to about 20 mg per day.
- An exemplary dosage is about 0.1 to 100 mg per day.
- Actual dosage levels of the active ingredients in the pharmaceutical compositions described herein can be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
- dosage levels below the lower limit of the aforesaid range can be more than adequate, while in other cases still larger doses can be employed without causing any harmful side effect, e.g., by dividing such larger doses into several small doses for administration throughout the day.
- the compounds can be administered daily, every other day, three times a week, twice a week, weekly, or bi-weekly.
- the dosing schedule can include a "drug holiday," e.g. , the drug can be administered for two weeks on, one week off, or three weeks on, one week off, or four weeks on, one week off, etc., or continuously, without a drug holiday.
- the compounds can be administered orally, intravenously,
- intraperitoneally topically, transdermally, intramuscularly, subcutaneously, intranasally, sublingually, or by any other route.
- a compound as provided herein is administered in multiple doses. Dosing can be about once, twice, three times, four times, five times, six times, or more than six times per day. Dosing can be about once a month, about once every two weeks, about once a week, or about once every other day. In another embodiment, a compound as disclosed herein and another agent are administered together from about once per day to about 6 times per day. In another embodiment, the administration of a compound as provided herein and an agent continues for less than about 7 days. In yet another embodiment, the administration continues for more than about 6 days, about 10 days, about 14 days, about 28 days, about two months, about six months, or about one year. In some cases, continuous dosing is achieved and maintained as long as necessary.
- an agent as disclosed herein is administered for more than about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 14, about 21, or about 28 days. In some embodiments, an agent as disclosed herein is administered for less than about 28, about 21, about 14, about 7, about 6, about 5, about 4, about 3, about 2, or about 1 day. In some embodiments, an agent as disclosed herein is administered for about 1, about 2, about 3, about 4, about 5, about 6, about 7, about 14, about 21, or about 28 days. In some embodiments, an agent as disclosed herein is administered chronically on an ongoing basis, e.g., for the treatment of chronic effects.
- the doses of each agent or therapy can be lower than the corresponding dose for single-agent therapy.
- the dose for single-agent therapy can range from, for example, about 0.0001 to about 200 mg, or about 0.001 to about 100 mg, or about 0.01 to about 100 mg, or about 0.1 to about 100 mg, or about 1 to about 50 mg per day.
- a pharmaceutical composition e.g., a tablet or a capsule
- a PI3K modulator provided herein (e.g., Compound 292, or a pharmaceutically acceptable form thereof), wherein the PI3K modulator is in the amount of about 0.5 mg, about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 6 mg, about 7 mg, about 8 mg, about 9 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 60 mg, about 75 mg, about 80 mg, or about 100 mg.
- a pharmaceutical composition e.g., a tablet or a capsule
- a PI3K modulator e.g., Compound 292, or a pharmaceutically acceptable form thereof
- the PI3K modulator is in the amount of about 0.5 mg, about 1 mg, about 2 mg, about 3 mg, about 4 mg, about 5 mg, about 6 mg, about 7 mg, about 8 mg
- a pharmaceutical composition comprising a PI3K modulator provided herein (e.g., Compound 292, or a pharmaceutically acceptable form thereof) is administered once daily.
- a pharmaceutical composition e.g., a tablet or a capsule
- a pharmaceutical composition comprising a PI3K modulator provided herein (e.g., Compound 292, or a pharmaceutically acceptable form thereof) is administered twice daily.
- a pharmaceutical composition e.g. , a tablet or a capsule
- a PI3K modulator provided herein e.g., Compound 292, or a pharmaceutically acceptable form thereof
- a pharmaceutical composition e.g., a tablet or a capsule
- a PI3K modulator e.g., Compound 292, or a pharmaceutically acceptable form thereof
- a pharmaceutical composition e.g., a tablet or a capsule
- a PI3K modulator e.g., Compound 292, or a pharmaceutically acceptable form thereof
- a pharmaceutical composition e.g., a tablet or a capsule
- a PI3K modulator e.g., Compound 292, or a pharmaceutically acceptable form thereof
- a pharmaceutically acceptable excipient or carrier e.g., the pharmaceutically acceptable excipient or carrier in the composition is one or more of microcrystalline cellulose (e.g., silicified microcrystalline cellulose), crospovidone, and/or magnesium stearate.
- PI3Ks are regulators of signal transduction that mediate cell proliferation, differentiation, survival, and migration.
- PI3K-8 and ⁇ 3 ⁇ - ⁇ are expressed in hematopoietic cells and play roles in hematologic malignancies.
- PI3K-8 and ⁇ 3 ⁇ - ⁇ have roles in the establishment and maintenance of the tumor microenvironment.
- PI3K-8 and ⁇ 3 ⁇ - ⁇ are highly expressed in the heme compartment, and can be useful in treating hematologic cancers.
- Class I PI3Ks including PI3K-8 and ⁇ 3 ⁇ - ⁇ isoforms, are also associated with cancers (reviewed, e.g., in Vogt, PK et al. (2010) Curr Top Microbiol Immunol. 347:79-104; Fresno Vara, JA et al. (2004) Cancer Treat Rev. 30(2): 193-204; Zhao, L and Vogt, PK. (2008) Oncogene 27(41):5486-96). Inhibitors of PI3K, e.g., PI3K-8 and/or ⁇ 3 ⁇ - ⁇ , have been shown to have anti-cancer activity (e.g., Courtney, KD et al. (2010) J Clin Oncol.
- ⁇ - ⁇ and ⁇ 3 ⁇ - ⁇ are expressed in some solid tumors, including prostate, breast, and glioblastomas (Chen J.S. et al. (2008) Mol Cancer Ther. 7(4):841-50; Ikeda H. et al. (2010) Blood 1 16(9): 1460-8). Without being limited to a particular theory, inhibition of PI3K can have an effect on tumor inflammation and progression.
- a method for treating or preventing a specific type of cancer or disease such as, a specific type of hematologic malignancy, which has a high expression level of one or more isoform(s) of PI3K.
- the PI3K isoforms include one or more of ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , or ⁇ 3 ⁇ - ⁇ , or a combination thereof.
- the specific type of cancer or disease such as, a specific type of hematologic malignancy, has a high expression level of PI3K-8, or ⁇ 3 ⁇ - ⁇ , or both PI3K-8 and ⁇ 3 ⁇ - ⁇ .
- a method for treating or preventing a specific sub-type of cancer or disease such as, a specific sub-type of hematologic malignancy, which has a high expression level of one or more isoform(s) of PI3K.
- the PI3K isoforms include one or more of ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , or ⁇ 3 ⁇ - ⁇ , or a combination thereof.
- the specific sub-type of cancer or disease such as, a specific sub-type of hematologic malignancy, has a high expression level of PI3K-8, or ⁇ 3 ⁇ - ⁇ , or both PI3K-8 and ⁇ 3 ⁇ - ⁇ .
- a method for treating or preventing a specific patient or group of patients, having a cancer or disease, such as, a hematologic malignancy wherein the particular patient or group of patients has(ve) a high expression level of one or more isoform(s) of PI3K.
- the PI3K isoforms include one or more of ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , or ⁇ 3 ⁇ - ⁇ , or a combination thereof.
- the specific patient or group of patients has(v) a high expression level of PI3K-8, or ⁇ 3 ⁇ - ⁇ , or both PI3K-8 and ⁇ 3 ⁇ - ⁇ .
- the methods provided herein comprise administering a PI3K modulator (e.g., a compound that selectively reduces the activity of one or more PI3K isoform(s)), alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human.
- a PI3K modulator e.g., a compound that selectively reduces the activity of one or more PI3K isoform(s)
- the PI3K modulator is selective for one or more isoform(s) of PI3K over the other isoform(s) of PI3K (e.g., PI3K-8 selective, ⁇ 3 ⁇ - ⁇ selective, or PI3K-8 and ⁇ 3 ⁇ - ⁇ selective).
- Exemplary PI3K-a selective inhibitors include, but are not limited to, GDC-0032 (2-[4-[2-(2-Isopropyl-5- methyl- 1 ,2,4-triazol-3-yl)-5,6-dihydroimidazo [ 1 ,2- d] [ 1 ,4]benzoxazepin-9-yl]pyrazol- 1 -yl]-2-methylpropanamide), MLN- 1 1 17/ ⁇ 1 1 17 ((2R)- 1 -Phenoxy-2-butanyl hydrogen (S)-methylphosphonate; or Methyl(oxo) ⁇ [(2R)-l- phenoxy-2-butanyl]oxy ⁇ phosphonium), and BYL-719 ((2S)-N 1 - [4-Methyl-5-[2-(2,2,2-trifluoro- 1 , 1 -dimethylethyl)- 4-pyridinyl]-2-thiazolyl]
- Exemplary PI3K-a/m-TOR inhibitors include, but are not limited to, GSK2126458 (2,4-Difluoro-N- ⁇ 2- (methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl ⁇ benzenesulfonamide).
- Exemplary ⁇ 3 ⁇ - ⁇ selective inhibitors include, but are not limited to, TGX-221 (( ⁇ )-7-Methyl-2-
- Exemplary PI3K-8 selective inhibitors include, but are not limited to, TGR-1202/RP5264, GS-9820 ((S)- l-(4-((2-(2-aminopyrimidin-5-yl)-7-methyl-4-mo ⁇
- GS- 1 101 (5-fluoro-3-phenyl-2-([S)]- 1 -[9H-purin-6-ylamino]-propyl)-3H-quinazolin-4-one), AMG-319, GSK-2269557, SAR245409 (N-(4-(N-(3-((3,5-dimethoxyphenyl)amino)quinoxalin-2- yl)sulfamoyl)phenyl)-3-methoxy-4-methylbenzamide), and BAY80-6946 (2-amino-N-(7-methoxy-8-(3- mo ⁇ holinopropoxy)-2,3-dihydroimidazo[l,2-c]quinaz
- Exemplary ⁇ 3 ⁇ - ⁇ selective inhibitors include, but are not limited to, AS 252424 (5-[l-[5-(4-Fluoro-2- hydroxy-phenyl)-furan-2-yl]-meth-(Z)-ylidene]-thiazolidine-2,4-dione), and CZ 24832 (5-(2-amino-8-fluoro- [l,2,4]triazolo[l,5-a]pyridin-6-yl)-N-tert-butylpyridine-3-sulfonamide).
- pan-PI3K inhibitors include, but are not limited to, Buparlisib (5-[2,6-Di(4-morpholinyl)-4- pyrimidinyl]-4-(trifluoromethyl)-2-pyridinamine), SAR245409 (N-(4-(N-(3-((3,5- dimethoxyphenyl)amino)quinoxalin-2-yl)sulfamoyl)phenyl)-3-methoxy-4-methylbenzamide), and GDC-0941 (2- (lH-Indazol-4-yl)-6-[[4-(methylsulfonyl)-l-piperazinyl]methyl]-4-(4-mo ⁇ holinyl)thieno[3,2-d]pyrimidine).
- pan-PI3K/mTOR inhibitors include, but are not limited to, GDC-0980 ((S)- 1 -(4-((2-(2- aminopyrimidin-5-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-6-yl)methyl)piperazin-l-yl)-2- hydroxypropan- l-one (also known as RG7422)), SF1 126 ((8S,14S,17S)-14-(carboxymethyl)-8-(3- guanidinopropyl)- 17-(hydroxymethyl)-3,6,9, 12, 15-pentaoxo- 1 -(4-(4-oxo-8-phenyl-4H-chromen-2-yl)morpholino-4- ium)-2-oxa-7, 10, 13, 16-tetraazaoctadecan- 18-oate), PF-05212384 (N-[4-[[4-(Dimethyla)
- Exemplary beta-sparing ( ⁇ 3 ⁇ - ⁇ / ⁇ / ⁇ ) inhibitors include, but are not limited to, PX886
- high expression of a particular PI3K isoform can be an increased DNA copy number of the PI3K isoform or a receptor or target relating to the PI3K isoform, a high expression of RNA of the PI3K isoform or a receptor or target relating to the PI3K isoform, a high expression of the protein of the PI3K isoform or a receptor or target relating to the PI3K isoform, amplification of the PI3K isoform or a receptor or target relating to the PI3K isoform, deletion of a receptor or target relating to the PI3K isoform, downregulation of a receptor or target relating to the PI3K isoform, mutation of the PI3K isoform or a receptor or target relating to the PI3K isoform, and/or pathway activation of the PI3K iso
- biomarkers of pathway activation and methods of use thereof which are predictive of response to treatment described herein (e.g., a biomarker relating to pAKT, pS6, pPRAS40, or other proteins or transcriptionally regulated genes downstream of PI3K8 and/or ⁇ 3 ⁇ ).
- the expression level of one or more than one particular PI3K isoform in a cancer or a disease, or a patient or a group of patients can be determined by detecting the expression level of a particular PI3K isoform protein, or RNA of a particular PI3K isoform, or the increased DNA copy number of a particular PI3K isoform, for example, using a method provided herein or a method known in the art.
- the expression level of one or more than one particular PI3K isoform in a cancer or a disease, or a patient or a group of patients can be determined by measuring a biomarker provided herein (e.g.
- the expression level of one or more than one particular PI3K isoform in a cancer or a disease, or a patient or a group of patients can be determined based on information known in the art or based on prior studies on the cancer or disease, or prior testing of the patient or group of patients.
- the selectivity of a PI3K modulator (e.g., a compound provided herein) toward one or more PI3K isoform(s) over other PI3K isoform(s) can be determined by measuring the activity of the PI3K modulator toward PI3K isoforms (e.g., ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , ⁇ 3 ⁇ - ⁇ , and/or ⁇ 3 ⁇ - ⁇ ), for example, using a method provided herein or a method known in the art.
- ⁇ 3 ⁇ - ⁇ is a Class IB PI3K that associates with the plOl and p84 (p87PIKAP) adaptor proteins, and canonically signals through GPCRs. Non-cononical activation through tyrosine kinase receptors and RAS can occur. Activated ⁇ 3 ⁇ - ⁇ leads to production of PIP3, which serves as a docking site for downstream effector proteins including AKT and BTK, bringing these enzymes to the cell membrane where they may be activated. A scaffolding role for PBk- ⁇ has been proposed and may contribute to the activation of the RAS/MEK/ERK pathway.
- ⁇ 3 ⁇ - ⁇ is essential for function of a variety of immune cells and pathways.
- Production of chemokines that attract neutrophil or monocyte cell migration is mediated by PI3K- ⁇ upon inflammatory stimulants (including IL8, flVILP, and C5a) (HIRSCH et al., "Central Role for G Protein-Coupled Phosphoinositide 3-Kinase ⁇ in Inflammation," Science 287: 1049-1053 (2000); SASAKI et al., “Function of ⁇ 3 ⁇ in Thymocyte Development, T Cell Activation, and Neutrophil Migration," Science 287: 1040-1046 (2000); LI et al., “Roles of PLC- 2 and - 3 and ⁇ 3 ⁇ in Chemoattractant-Mediated Signal Transduction,” Science 287: 1046-1049 (2000)).
- mice fail to develop cellular inflammation and airway hyper-responsiveness in the ovalbumin induced asthma model (Takeda et al., J. Allergy Clin. Immunol, 2009; 123, 805-12).
- ⁇ 3 ⁇ - ⁇ deficient mice also have defects in T- helper cell function.
- T-cell cytokine production and proliferation in response to activation is reduced, and T helper dependent viral clearance is defective (Sasaki et al, Science, 2000, 287, 1040-46).
- T-cell dependent inflammatory disease models including EAE also do not develop in ⁇ 3 ⁇ - ⁇ deficient mice, and both the T-cell activation defect and cellular migration defects may contribute to efficacy in this model (Comerfold, PLOS One, 2012, 7, e45095).
- the imiquimod psoriasis model has also been used to demonstrate the importance of PI3K- ⁇ in the inflammatory response.
- PI3K-8 and ⁇ 3 ⁇ - ⁇ are both essential for the appropriate development of disease, as shown with genetic deletion of both genes (Subramaniam et al. Cancer Cell 21, 459-472, 2012).
- treatment with a small molecule inhibitor of both kinases leads to extended survival of these mice.
- CLL chemokine networks support a pseudo-follicular microenvironment that includes nurse-like cells, stromal cells and T-helper cells.
- BURGER "Inhibiting B-Cell Receptor Signaling Pathways in Chronic
- ⁇ 3 ⁇ - ⁇ inhibitors are therapeutically interesting for diseases of the immune system where cell trafficking and T-cell or myeloid cell function is important.
- solid tumors that are dependent on tumor inflammation, or tumors with high levels of ⁇ 3 ⁇ - ⁇ expression, may be targeted.
- PI3K-8 isoforms in T-ALL and potentially in CLL suggests there could be benefit from targeting these PI3Ks in these diseases.
- ⁇ 3 ⁇ - ⁇ pathway in promoting myeloid cell trafficking to tumors and the role of blockade of pi 10 ⁇ in suppression of tumor inflammation and growth in breast cancer, pancreatic cancer, and lung cancer are reported in Schmid et al. (201 1) Cancer Cell 19, 715-727, the entirety of which is incorporated herein by reference.
- a method of treating or preventing pancreatic cancer with a PI3K inhibitor in another embodiment, provided herein is a method of treating or preventing breast cancer with a PI3K inhibitor.
- a method of treating or preventing lung cancer with a PI3K inhibitor is provided herein.
- the PI3K inhibitor is a ⁇ 3 ⁇ - ⁇ inhibitor, selective or non-selective over one or more other PI3K isoform(s). In one embodiment, the PI3K inhibitor is a ⁇ 3 ⁇ - ⁇ selective inhibitor.
- PI3K-8 and ⁇ 3 ⁇ - ⁇ isoforms are preferentially expressed in leukocytes where they have distinct and non- overlapping roles in immune cell development and function. See, e.g., PURI and GOLD, "Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatory disease and B-cell malignancies," Front. Immunol.
- BUITENHUIS et al "The role of the PI3k-PKB signaling module in regulation of hematopoiesis," Cell Cycle 8(4):560-566 (2009); HOELLENRIEGEL and BURGER, "Phosphomositide 3'-kinase delta: turning off BCR signaling in Chronic Lymphocytic Leukemia," Oncotarget 2(10):737-738 (2011); HIRSCH et al, "Central Role for G Protein-Coupled Phosphomositide 3-Kinase ⁇ in Inflammation," Science 287: 1049-1053 (2000); LI et al, "Roles of PLC- 2 and - ⁇ 3 and ⁇ 3 ⁇ in
- PI3K-8 and ⁇ 3 ⁇ - ⁇ facilitate normal B-cell, T-cell and myeloid cell functions including differentiation, activation, and migration. See, e.g.
- ⁇ 3 ⁇ - ⁇ and ⁇ 3 ⁇ - ⁇ are central to the growth and survival of B- and T-cell malignancies and inhibition of these isoforms may effectively limit these diseases. See, e.g., SUBRAMANIAM et al, “Targeting Nonclassical Oncogenes for Therapy in T-ALL," Cancer Cell 21 :459-472 (2012); LAN UTTI et al, "CAL-101 a pi 10 ⁇ selective phosphatidylinositol-3 -kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability," Blood 1 17(2):591-594 (201 1).
- PI3K-8 and ⁇ 3 ⁇ - ⁇ support the growth and survival of certain B-cell malignancies by mediating intracellular BCR signaling and interactions between the tumor cells and their microenvironment. See, e.g., PURI and GOLD, "Selective inhibitors of phosphoinositide 3-kinase delta:
- HERISHANU et al. "The lymph node microenvironment promotes B-cell receptor signaling, NF- ⁇ activation, and tumor proliferation in chronic lymphocytic leukemia," Blood 117(2):563-574 (201 1); DAVIS et al, “Chronic active B -cell-receptor signaling in diffuse large B-cell lymphoma,” Nature 463:88-92 (2010); PIGHI et al., "Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling," Cell Oncol.
- HERISHANU et al "The lymph node microenvironment promotes B-cell receptor signaling, NF- ⁇ activation, and tumor proliferation in chronic lymphocytic leukemia," Blood 1 17(2):563-574 (201 1); KURTOVA et al, "Diverse marrow stromal cells protect CLL cells from spontaneous and drig-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance," Blood 114(20): 4441-4450 (2009); BURGER et al, "High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation," Blood 1 13(13) 3050-3058 (2009); QUIROGA et al, "B-cell antigen receptor signaling enhances chronic lymphocytic leuk
- PI3K-8 and ⁇ 3 ⁇ - ⁇ also play a direct role in the survival and proliferation of certain T-cell malignancies. See, e.g., SUBRAMANIAM et al, "Targeting Nonclassical Oncogenes for Therapy in T-ALL," Cancer Cell 21 :459-472 (2012). Aberrant PI3K-8 and ⁇ 3 ⁇ - ⁇ activity provides the signals necessary for the development and growth of certain T-cell malignancies. While BTK is expressed in B-cells, it is not expressed in T-cells, and therefore BTK is not a viable target for the treatment of T-cell malignancies. See, e.g., NISITANI et al,
- a method of treating cancer or hematologic malignancy comprising administering a PI3K ⁇ / ⁇ selective inhibitor.
- selectively inhibiting ⁇ / ⁇ isoform(s) can provide a treatment regimen where adverse effects associated with administration of a non-selective PI3K inhibitor are minimized or reduced.
- it is believed that the adverse effects can be reduced by avoiding the inhibition of other isoforms (e.g., a or ⁇ ) of PI3K.
- the adverse effect is hyperglycemia. In another embodiment, the adverse effect is rash. In another embodiment, the adverse effect is impaired male fertility that may result from inhibition of ⁇ isoform of PI3K (see, e.g., Ciraolo et al, Molecular Biology of the Cell, 21 : 704-71 1 (2010)). In another embodiment, the adverse effect is testicular toxicity that may result from inhibition of ⁇ 3 ⁇ - ⁇ (see, e.g., Wisler et al, Amgen SOT, Abstract ID # 2334 (2012)).
- the adverse effect is embryonic lethality (see, e.g., Bi et al, J Biol Chem, 274: 10963-10968 (1999)).
- the adverse effect is defective platelet aggregation (see, e.g., Kulkarni et al, Science, 287: 1049- 1053 (2000)).
- the adverse effect is functionally defective neutrophil (id.).
- a method of treating or preventing a specific cancer or disease such as, a hematologic malignancy, which has a high expression level of one or more isoform(s) of PI3K
- the method comprises: (1) determining the expression level of one or more PI3K isoform(s) in the cancer or disease; (2) selecting a treatment agent (e.g., a PI3K modulator having a particular selectivity profile for one or more PI3K isoform(s)) based on the expression levels of PI3K isoforms in the cancer or disease to be treated; and (3) administering the treatment agent to a patient having the cancer or disease, alone or in combination with one or more other agents or therapeutic modalities.
- a treatment agent e.g., a PI3K modulator having a particular selectivity profile for one or more PI3K isoform(s)
- the expression level of one or more PI3K isoform(s) in the cancer or disease can be measured by determining the expression level of PI3K isoform protein, R A; and/or DNA copy number, or by measuring one or more biomarkers provided herein (e.g., a signaling pathway biomarker, a protein mutation biomarker, a protein expression biomarker, a gene mutation biomarker, a gene expression biomarker, a cytokine biomarker, a chemokine biomarker, a matrix metalloproteinase biomarker, or a biomarker for particular cancer cells, among others).
- the expression level of one or more PI3K isoform(s) in the cancer or disease can be determined based on information known in the art or information obtained in prior studies on the cancer or disease.
- Certain cancer or disorder e.g. , a hematologic malignancy
- a method of treating or preventing a specific patient or group of patients, having a cancer or disease, such as, a hematologic malignancy comprises: (1) determining the expression levels of one or more PI3K isoform(s) in the patient or group of patients having the cancer or disease; (2) selecting a treatment agent (e.g., a PI3K modulator having a particular selectivity profile for one or more PI3K isoform(s)) based on the expression levels of PI3K isoforms in the patient(s) to be treated; and (3) administering the treatment agent to the patient(s), alone or in combination with one or more other agents or therapeutic modalities.
- a treatment agent e.g., a PI3K modulator having a particular selectivity profile for one or more PI3K isoform(s)
- the expression level of one or more PI3K isoform(s) in the patient or group of patients can be measured by determining the expression level of PI3K isoform protein, RNA, and/or DNA copy number in the patient or group of patients; or by measuring one or more biomarkers provided herein in the patient or group of patients (e.g., a signaling pathway biomarker, a protein mutation biomarker, a protein expression biomarker, a gene mutation biomarker, a gene expression biomarker, a cytokine biomarker, a chemokine biomarker, a matrix metalloproteinase biomarker, or a biomarker for particular cancer cells, among others).
- the expression level of one or more PI3K isoform(s) in the patient or group of patients can be determined based on information known in the art or information obtained in prior testing of the patient or group of patient(s).
- the methods provided herein comprise administering a PI3K modulator, alone or in combination with one or more other agents or therapeutic modalities, to a subject, e.g., a mammalian subject, e.g., a human; wherein the PI3K modulator is selective for one or more PI3K isoform(s) over the other isoforms of PI3K (e.g., selective for PI3K-8, selective for ⁇ 3 ⁇ - ⁇ , or selective for both PI3K-8 and ⁇ 3 ⁇ - ⁇ ); and the subject being treated has a high expression level of the particular PI3K isoform(s) (e.g., high expression of PI3K-8, high expression of ⁇ 3 ⁇ - ⁇ , or high expression of both PI3K-8 and ⁇ 3 ⁇ - ⁇ ).
- a subject e.g., a mammalian subject, e.g., a human
- the PI3K modulator is selective for one or more PI3K is
- a method of determining whether a subject having a cancer or hematologic malignancy is more or less likely to respond to a treatment with a PI3K modulator that selectively reduces the activity of one or more isoform(s) of PI3K over other isoforms of PI3K comprises (1) administering the PI3K modulator to the subject; and (2) determining the response of the subject to treatment after about 7, 14, 21, 28, 35, 42, 49, 56, 63, or 70 days, or about 1, 2, 3, 4, or 5 months after first treatment with the PI3K modulator.
- treating a specific cancer or hematologic malignancy, or a specific sub-type of cancer or hematologic malignancy, or a specific patient having a cancer or hematologic malignancy, that has a high expression of a particular PI3K isoform, with a PI3K inhibitor that selectively inhibits that particular PI3K isoform allows the use of a lower dose of the therapeutic agent and/or reduced off- target effect (e.g., effects on other PI3K isoforms), thereby minimizing the potential for adverse effects.
- the methods provided herein can provide reduced side effects and/or improved efficacy.
- provided herein is a method of treating or preventing a cancer or disease, such as a hematologic malignancy, having a high expression level of one or more isoform(s) of PI3K, wherein the adverse effects associated with administration of a PI3K inhibitor are reduced.
- a method of treating or preventing a cancer or disease, such as hematologic malignancy, or a specific type or subtype of cancer or disease, such as a specific type or sub-type of hematologic malignancy, with a ⁇ 3 ⁇ - ⁇ selective inhibitor wherein the adverse effects associated with administration of inhibitors for other isoform(s) of PI3K (e.g., PI3K-a or ⁇ 3 ⁇ - ⁇ ) are reduced.
- a PI3K pan inhibitor e.g., PI3K- ⁇ , ⁇ , ⁇ , ⁇
- Such adverse effects can include, but not be limited to, nausea, diarrhea, constipation, fatigue, pyrexia, chills, vomiting, decreased appetite, rash, elevated ASL, elevated ALT, increased blood urea, increased alanine aminotransferase, increased aspartate aminotransferase, increased blood alkaline phosphatase, neutropenia, thrombocytopenia, anaemia, hyperglycemia, hypercholesterolemia, hypertrigliceridemia, hyperphosphataemia, hypomagnesaemia, pain, back pain, muscle pain, cough, and dyspnoea.
- reduction of one or more adverse effects means a decrease of the occurrence and/or the severity of one or more of the adverse effects provided herein or known in the art that are typically associated with administration of a PI3K inhibitor, e.g., by about 10%, by about 20%, by about 30%, by about 40%, by about 50%, by about 60%, by about 70%, by about 80%, by about 90%, by about 95%, by about 100% as compared to treatment with another PI3K inhibitor (e.g., a non-selective or less selective inhibitor).
- a PI3K inhibitor e.g., by about 10%, by about 20%, by about 30%, by about 40%, by about 50%, by about 60%, by about 70%, by about 80%, by about 90%, by about 95%, by about 100% as compared to treatment with another PI3K inhibitor (e.g., a non-selective or less selective inhibitor).
- cancer in one embodiment, described herein is a method of treating or preventing cancer, or a specific type or a specific sub-type of cancer provided herein.
- a modulator of PI3K e.g., PI3K-8 and/or ⁇ 3 ⁇ - ⁇
- a compound provided herein include, e.g., leukemia, chronic lymphocytic leukemia, acute myeloid leukemia, chronic myeloid leukemia (e.g., Salmena, L et al. (2008) Cell 133:403-414; Chapuis, N et al. (2010) Clin Cancer Res.
- lymphoma e.g., non-Hodgkin lymphoma (e.g., Salmena, L et al. (2008) Cell 133:403-414); lung cancer, e.g., non-small cell lung cancer, small cell lung cancer (e.g., Herrera, VA et al. (201 1) Anticancer Res. 31(3):849-54); melanoma (e.g., Haluska, F et al. (2007) Semin Oncol. 34(6):546-54); prostate cancer (e.g., Sarker, D et al. (2009) Clin Cancer Res.
- non-Hodgkin lymphoma e.g., Salmena, L et al. (2008) Cell 133:403-414
- lung cancer e.g., non-small cell lung cancer, small cell lung cancer (e.g., Herrera, VA et al. (201 1) Anticancer Res. 31(3):849-54); melanoma (e.g
- glioblastoma e.g., Chen, JS et al. (2008) Mol Cancer Ther. 7:841-850
- endometrial cancer e.g., Bansal, N et al. (2009) Cancer Control. 16(1):8-13
- pancreatic cancer e.g., Furukawa, T (2008) J Gastroenterol. 43(12):905-1 1
- renal cell carcinoma e.g., Porta, C and Figlin, RA (2009) J Urol. 182(6):2569-77
- colorectal cancer e.g., Saif, MW and Chu, E (2010) Cancer J.
- breast cancer e.g., Torbett, NE et al. (2008) Biochem J. 415:97- 100
- thyroid cancer e.g., Brzezianska, E and Pastuszak- Lewandoska, D (201 1) Front Biosci. 16:422-39
- ovarian cancer e.g., Mazzoletti, M and Broggini, M (2010) Curr Med Chem. 17(36):4433-47).
- said method relates to the treatment of cancer such as acute myeloid leukemia, thymus, brain, lung, squamous cell, skin, eye, retinoblastoma, intraocular melanoma, oral cavity and oropharyngeal, bladder, gastric, stomach, pancreatic, bladder, breast, cervical, head, neck, renal, kidney, liver, ovarian, prostate, colorectal, esophageal, testicular, gynecological, thyroid, CNS, PNS, AIDS-related (e.g., lymphoma and Kaposi's sarcoma) or other viral-induced cancers.
- cancer such as acute myeloid leukemia, thymus, brain, lung, squamous cell, skin, eye, retinoblastoma, intraocular melanoma, oral cavity and oropharyngeal, bladder, gastric, stomach, pancreatic, bladder, breast, cervical, head, neck, renal, kidney, liver,
- said method relates to the treatment of a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate (e.g., benign prostatic hypertrophy (BPH)).
- a non-cancerous hyperproliferative disorder such as benign hyperplasia of the skin (e.g., psoriasis), restenosis, or prostate (e.g., benign prostatic hypertrophy (BPH)).
- Patients that can be treated with a compound provided herein, or a pharmaceutically acceptable form (e.g., pharmaceutically acceptable salts, hydrates, solvates, isomers, prodrugs, and isotopically labeled derivatives) thereof, or a pharmaceutical composition as provided herein, according to the methods as provided herein include, for example, but not limited to, patients that have been diagnosed as having breast cancer such as a ductal carcinoma , lobular carcinoma, medullary carcinomas, colloid carcinomas, tubular carcinomas, and inflammatory breast cancer; ovarian cancer, including epithelial ovarian tumors such as adenocarcinoma in the ovary and an adenocarcinoma that has migrated from the ovary into the abdominal cavity; uterine cancer; cervical cancer such as adenocarcinoma in the cervix epithelial including or squamous cell carcinoma; prostate cancer, such as a prostate cancer selected from the following: an adenocarcinoma
- pancreatic cancer such as epitheliod carcinoma in the pancreatic duct tissue and an adenocarcinoma in a pancreatic duct
- bladder cancer such as a transitional cell carcinoma in urinary bladder, urothelial carcinomas (transitional cell carcinomas), tumors in the urothelial cells that line the bladder, squamous cell carcinomas, adenocarcinomas, and small cell cancers
- leukemia such as acute myeloid leukemia (AML), acute lymphoblastic leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, hairy cell leukemia, , myeloproliferative disorders, NK cell leukemia (e.g., blastic plasmacytoid dendritic cell neoplasm), acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), mastocytosis, chronic lymphocytic leukemia (CLL), multiple myeloma (MM),
- hypopharyngeal cancer laryngeal cancer, nasopharyngeal cancer, and oropharyngeal cancer
- stomach cancer such as lymphomas, gastric stromal tumors, and carcinoid tumors
- testicular cancers such as germ cell tumors (GCTs), which include seminomas and nonseminomas, and gonadal stromal tumors, which include Leydig cell tumors and Sertoli cell tumors
- thymus cancer such as to thymomas, thymic carcinomas, Hodgkin lymphoma, non-Hodgkin lymphomas, carcinoids or carcinoid tumors
- rectal cancer and colon cancer.
- hematologic malignancy or a specific type or a specific subtype of the hematologic malignancy provided herein
- myeloid disorder including, but not limited to, myeloid disorder, lymphoid disorder, leukemia, lymphoma, myelodysplastic syndrome (MDS), myeloproliferative disease (MPD), mast cell disorder, and myeloma (e.g., multiple myeloma), among others.
- the hematologic malignancy includes, but is not limited to, acute lymphoblastic leukemia (ALL), T-cell ALL (T-ALL), B-cell ALL (B-ALL), acute T-cell leukemia, acute B-cell leukemia, acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), blast phase CML, small lymphocytic lymphoma (SLL), CLL/SLL, blast phase CLL, Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL), B-cell NHL, T-cell NHL, indolent NHL (iNHL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), aggressive B-cell NHL, B-cell lymphoma (BCL), Richter's syndrome (RS), T-cell lymphoma (TCL), peripheral T- cell lymphoma (PTCL), cutaneous T-cell ALL, acute
- the cancer or hematologic malignancy is CLL. In exemplary embodiments, the cancer or hematologic malignancy is CLL/SLL. In exemplary embodiments, the cancer or hematologic malignancy is blast phase CLL. In exemplary embodiments, the cancer or hematologic malignancy is SLL.
- the cancer or hematologic malignancy is CLL, and a compound provided herein promotes apoptosis of CLL cells.
- a compound provided herein e.g., Compound 292
- the protective effects induced by anti-IgM crosslinking or stromal cells can be mitigated by a compound provided herein.
- a method of promoting apoptosis of CLL cells comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the compound is Compound 292.
- a method of mitigating protective effects on CLL cells induced by anti- IgM crosslinking comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the compound is Compound 292.
- provided herein is a method of mitigating protective effects on CLL induced by stromal cells comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the compound is Compound 292.
- provided herein is a method of inhibiting proliferation of CLL cells in the lymph nodes comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the compound is Compound 292.
- a method of producing a rapid onset of response in CLL patients administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the compound is Compound 292.
- the cancer or hematologic malignancy is iNHL. In exemplary embodiments, the cancer or hematologic malignancy is DLBCL. In exemplary embodiments, the cancer or hematologic malignancy is B-cell NHL (e.g., aggressive B-cell NHL). In exemplary embodiments, the cancer or hematologic malignancy is MCL. In exemplary embodiments, the cancer or hematologic malignancy is RS. In exemplary embodiments, the cancer or hematologic malignancy is AML. In exemplary embodiments, the cancer or hematologic malignancy is MM. In exemplary embodiments, the cancer or hematologic malignancy is ALL.
- B-cell NHL e.g., aggressive B-cell NHL
- MCL e.g., aggressive B-cell NHL
- the cancer or hematologic malignancy is MCL.
- the cancer or hematologic malignancy is RS.
- the cancer or hematologic malignancy is AML.
- the cancer or hematologic malignancy is T-ALL. In exemplary embodiments, the cancer or hematologic malignancy is B-ALL. In exemplary embodiments, the cancer or hematologic malignancy is TCL. In exemplary embodiments, the cancer or hematologic malignancy is ALCL. In exemplary embodiments, the cancer or hematologic malignancy is leukemia. In exemplary embodiments, the cancer or hematologic malignancy is lymphoma. In exemplary embodiments, the cancer or hematologic malignancy is T-cell lymphoma. In exemplary embodiments, the cancer or hematologic malignancy is MDS (e.g., low grade MDS).
- MDS e.g., low grade MDS
- the cancer or hematologic malignancy is MPD. In exemplary embodiments, the cancer or hematologic malignancy is a mast cell disorder. In exemplary embodiments, the cancer or hematologic malignancy is Hodgkin lymphoma (HL). In exemplary embodiments, the cancer or hematologic malignancy is non-Hodgkin lymphoma. In exemplary embodiments, the cancer or hematologic malignancy is PTCL. In exemplary embodiments, the cancer or hematologic malignancy is CTCL (e.g., mycosis fungoides or Sezary syndrome). In exemplary embodiments, the cancer or hematologic malignancy is WM.
- HL Hodgkin lymphoma
- CTCL e.g., mycosis fungoides or Sezary syndrome
- the cancer or hematologic malignancy is WM.
- the cancer or hematologic malignancy is CML. In exemplary embodiments, the cancer or hematologic malignancy is FL. In exemplary embodiments, the cancer or hematologic malignancy is transformed mycosis fungoides. In exemplary embodiments, the cancer or hematologic malignancy is Sezary syndrome. In exemplary embodiments, the cancer or hematologic malignancy is acute T-cell leukemia. In exemplary embodiments, the cancer or hematologic malignancy is acute B-cell leukemia. In exemplary embodiments, the cancer or hematologic malignancy is Burkitt lymphoma.
- the cancer or hematologic malignancy is myeloproliferative neoplasms. In exemplary embodiments, the cancer or hematologic malignancy is splenic marginal zone. In exemplary embodiments, the cancer or hematologic malignancy is nodal marginal zone. In exemplary embodiments, the cancer or hematologic malignancy is extranodal marginal zone.
- the cancer or hematologic malignancy is a B cell lymphoma.
- a method of treating or managing a B cell lymphoma comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the compound is Compound 292.
- a method of treating or lessening one or more of the symptoms associated with a B cell lymphoma comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the B cell lymphoma is iNHL. In another embodiment, the B cell lymphoma is follicular lymphoma. In another embodiment, the B cell lymphoma is Waldenstrom macroglobulinemia (lymphoplasmacytic lymphoma). In another embodiment, the B cell lymphoma is marginal zone lymphoma (MZL). In another embodiment, the B cell lymphoma is MCL. In another embodiment, the B cell lymphoma is HL. In another embodiment, the B cell lymphoma is aNHL. In another embodiment, the B cell lymphoma is DLBCL. In another embodiment, the B cell lymphoma is Richters lymphoma.
- the cancer or hematologic malignancy is a T cell lymphoma.
- a method of treating or managing a T cell lymphoma comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the compound is Compound 292.
- a method of treating or lessening one or more of the symptoms associated with a T cell lymphoma comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the T cell lymphoma is peripheral T cell lymphoma (PTCL).
- the T cell lymphoma is cutaneous T cell lymphoma (CTCL).
- the cancer or hematologic malignancy is Sezary syndrome.
- provided herein is a method of treating or managing Sezary syndrome comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the compound is Compound 292.
- a method of treating or lessening one or more of the symptoms associated with Sezary syndrome comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the symptoms associated with Sezary syndrome include, but are not limited to, epidermotropism by neoplastic CD4+ lymphocytes, Pautrier's
- the compound is Compound 292.
- the therapeutically effective amount for treating or managing Sezary syndrome is from about 25 mg to 75 mg, administered twice daily. In other embodiments, the therapeutically effective amount is from about 50 mg to about 75 mg, from about 30 mg to about 65 mg, from about 45 mg to about 60 mg, from about 30 mg to about 50 mg, or from about 55 mg to about 65 mg, each of which is administered twice daily. In one embodiment, the effective amount is about 60 mg, administered twice daily.
- the cancer or hematologic malignancy is relapsed. In one embodiment, the cancer or hematologic malignancy is refractory. In certain embodiments, the cancer being treated or prevented is a specific sub-type of cancer described herein. In certain embodiments, the hematologic malignancy being treated or prevented is a specific sub-type of hematologic malignancy described herein. Certain classifications of type or subtype of a cancer or hematologic malignancy provided herein is known in the art. Without being limited by a particular theory, it is believed that many of the cancers that become relapsed or refractory develop resistance to the particular prior therapy administered to treat the cancers.
- a compound provided herein can provide a second line therapy by providing an alternative mechanism to treat cancers different from those mechanisms utilized by certain prior therapies.
- a method of treating or managing cancer or hematologic malignancy comprising administering to a patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof, wherein the cancer or hematologic malignancy is relapsed after, or refractory to, a prior therapy.
- the cancer or hematologic malignancy is refractory iNHL. In exemplary embodiments, the cancer or hematologic malignancy is refractory CLL. In exemplary embodiments, the cancer or hematologic malignancy is refractory SLL. In exemplary embodiments, the cancer or hematologic malignancy is refractory to rituximab therapy. In exemplary embodiments, the cancer or hematologic malignancy is refractory to chemotherapy. In exemplary embodiments, the cancer or hematologic malignancy is refractory to
- the cancer or hematologic malignancy is iNHL, FL, splenic marginal zone, nodal marginal zone, extranodal marginal zone, or SLL, the cancer or hematologic malignancy is refractory to rituximab therapy, chemotherapy, and/or RIT.
- the cancer or hematologic malignancy is lymphoma, and the cancer is relapsed after, or refractory to, the treatment by a BTK inhibitor such as, but not limited to, ibrutinib.
- a BTK inhibitor such as, but not limited to, ibrutinib.
- the cancer or hematologic malignancy is CLL, and the cancer is relapsed after, or refractory to, the treatment by a BTK inhibitor such as, but not limited to, ibrutinib and AVL-292.
- a method for treating or managing cancer or hematologic malignancy comprising administering to a patient having cysteine to serine or cysteine to phenylalanine mutation on residue 481 of BTK a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof, wherein the cancer or hematologic malignancy is relapsed after, or refractory to, a prior therapy.
- a pharmaceutically acceptable derivative e.g., salt or solvate
- a method of treating or managing cancer or hematologic malignancy comprising: (1) identifying a patient who has cysteine to serine or cysteine to phenylalanine mutation on residue 481 of BTK; and (2) administering to the patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the patient is a CLL patient.
- the patient is an ibrutinib-resistant CLL patient.
- a method for treating or managing cancer or hematologic malignancy comprising administering to a patient having tyrosine to tryptophan mutation on residue 665 of PLCgamma2 gene a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof, wherein the cancer or hematologic malignancy is relapsed after, or refractory to, a prior therapy.
- a pharmaceutically acceptable derivative e.g., salt or solvate
- a method of treating or managing cancer or hematologic malignancy comprising: (1) identifying a patient who has tyrosine to tryptophan mutation on residue 665 of PLCgamma2 gene; and (2) administering to the patient a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- the patient is a CLL patient.
- the patient is an ibrutinib-resistant CLL patient.
- a method of treating or managing cancer or hematologic malignancy comprising: administering a therapeutically effective amount of a compound provided herein, or a pharmaceutically acceptable derivative (e.g., salt or solvate) and a therapeutically effective amount of a BTK inhibitor is disclosed.
- a pharmaceutically acceptable derivative e.g., salt or solvate
- Exemplary BTK inhibitors include, but are not limited to, ibrutinib (l-[(3R)-3-[4-Amino-3-(4-phenoxyphenyl)pyrazolo[3,4- d]pyrimidin- 1 -yljpiperidin- 1 -yl]prop-2-en- 1 -one), GDC-0834 ([R-N-(3-(6-(4-(l ,4-dimethyl-3-oxopiperazin-2- yl)phenylamino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene- 2-carboxamide]), CGI-560 (4-(tert-butyl)-N-(3-(8-(phenylamino)imidazo[l,2-a]pyrazin-6-yl)phenyl)benzamide), CGI- 1746
- the compound is compound 292 and the BTK inhibitor is selected from ibrutinib and AVL-292.
- the cancer is a lymphoma or leukemia.
- the lymphoma is non-Hodgkin lymphoma.
- the leukemia is B-cell chronic lymphocytic leukemia.
- provided herein is a method of treating a particular subtype of a cancer by a compound provided herein, wherein the subtype comprises of cells having BCR-dependent signaling.
- the subtype is Ri- 1, WSU- DLCL2, Toledo, OCI-LY8, SU-DHL-4, or SU-DHL-6.
- the subtype is Ri- 1, SU-DHL-4 or SU-DHL-6.
- PI3K kinase activity e.g., selectively modulating
- Modulation can be inhibition (e.g., reduction) or activation (e.g., enhancement) of kinase activity.
- provided herein are methods of inhibiting kinase activity by contacting the kinase with an effective amount of a compound as provided herein in solution. In some embodiments, provided herein are methods of inhibiting the kinase activity by contacting a cell, tissue, organ that express the kinase of interest, with a compound provided herein. In some embodiments, provided herein are methods of inhibiting kinase activity in a subject by administering into the subject an effective amount of a compound as provided herein, or a
- the kinase activity is inhibited (e.g. , reduced) by more than about 25%, 30%, 40%, 50%, 60%, 70%, 80%, or 90%, when contacted with a compound provided herein as compared to the kinase activity without such contact.
- provided herein are methods of inhibiting PI3 kinase activity in a subject (including mammals such as humans) by contacting said subject with an amount of a compound as provided herein sufficient to inhibit or reduce the activity of the PI3 kinase in said subject.
- the kinase is a lipid kinase or a protein kinase.
- the kinase is selected from a PI3 kinase including different isoforms, such as PI3 kinase ⁇ , PI3 kinase ⁇ , PI3 kinase ⁇ , PI3 kinase ⁇ ; DNA-PK; mTOR; Abl, VEGFR, Ephrin receptor B4 (EphB4); TEK receptor tyrosine kinase (TIE2); FMS-related tyrosine kinase 3 (FLT-3); Platelet derived growth factor receptor (PDGFR); RET; ATM; ATR; hSmg-1 ; Hck; Src; Epidermal growth factor receptor (EGFR); KIT; Inulsin Receptor (IR); and IGFR.
- PI3 kinase including different isoforms such as PI3 kinase ⁇ , PI3 kinase ⁇ , PI3 kinase ⁇ ,
- a method of reducing a symptom associated with cancer or disorder such as a hematologic malignancy, in a biological sample comprising contacting the biological sample with a compound provided herein (e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof), in an amount sufficient to reduce the symptom.
- the method is carried out in vivo, for example, in a mammalian subject, e.g., an animal model or as part of therapeutic protocol.
- the compound is used as a single agent or in combination with another agent or therapeutic modality.
- contacting can be direct (e.g., by direct application of the compound provided herein to a biological sample, e.g. , in vitro) or indirect (e.g. , by administering the compound provided herein to a subject (e.g., by any known administration route, e.g., orally), such that the compound provided herein reaches an affected biological sample within the body.
- a “biological sample” includes, for example, a cell or group of cells (e.g., PBMCs, or plasmacytoid dendritic cell(s)), a tissue, or a fluid (e.g., whole blood or serum) that comes into contact with a compound provided herein, e.g., a PI3K modulator, thereby resulting in a decrease or inhibition of cancer or hematologic malignancy, or associated symptoms.
- the biological sample is present within or derived from a subject who has cancer or hematologic malignancy, or from a subject at risk for developing cancer or hematologic malignancy.
- the biological sample can be contacted with the compound provided herein outside the body and then introduced into the body of a subject (e.g., into the body of the subject from whom the biological sample was derived or into the body of a different subject).
- the biological sample includes cells that express one or more isoforms of PI3K.
- a method of treating, preventing, and/or managing cancer or hematologic malignancy in a subject comprising administering an effective amount of a compound provided herein (e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof) to a subject in need thereof.
- the compound is administered as a single agent.
- the compound is administered in combination with another agent or therapeutic modality.
- hematologic malignancy or a symptom associated with hematologic malignancy encompasses all types of manifestation of hematologic malignancy as disclosed herein or as known in the art.
- cancer or a symptom associated with cancer encompasses all types of manifestation of cancer as disclosed herein or as known in the art. Symptoms can be assessed using assays and scales disclosed and/or exemplified herein and/or as known in the art.
- the symptom is reduced by at least about 2%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or at least about 95% relative to a control level.
- the control level includes any appropriate control as known in the art.
- the control level can be the pre-treatment level in the sample or subject treated, or it can be the level in a control population (e.g., the level in subjects who do not have cancer or hematologic malignancy or the level in samples derived from subjects who do not have cancer or hematologic malignancy).
- the decrease is statistically significant, for example, as assessed using an appropriate parametric or non-parametric statistical comparison.
- the subject is a mammal. In some embodiments, the subject is a human.
- the subject is an animal model of cancer or hematologic malignancy, a human with cancer or hematologic malignancy, or a subject (e.g., a human) at risk for developing cancer or hematologic malignancy.
- the subject is a human who has a family history of cancer or hematologic malignancy, who carries a gene associated with cancer or hematologic malignancy, who is positive for a biomarker associated with cancer or hematologic malignancy (e.g., a biomarker provided herein), or a combination thereof.
- the subject has been diagnosed with cancer or hematologic malignancy.
- the subject has one or more signs or symptoms associated with cancer or hematologic malignancy.
- the subject is at risk for developing cancer or hematologic malignancy (e.g., the subject carries a gene that, individually, or in combination with other genes or environmental factors, is associated with development of cancer or hematologic malignancy).
- the subject exhibits elevated level of one or more PI3K isoform(s) (e.g., ⁇ - ⁇ and/or ⁇ 3 ⁇ - ⁇ , which can be indicative of increased likelihood of responding to, or better efficacy of, a particular treatment or therapeutic agent, as compared to another subject with lower level of the PI3K isoform(s).
- PI3K isoforms e.g., ⁇ - ⁇ and/or ⁇ 3 ⁇ - ⁇ , which can be indicative of increased likelihood of responding to, or better efficacy of, a particular treatment or therapeutic agent, as compared to another subject with lower level of the PI3K isoform(s).
- the levels of PI3K isoforms can be assessed using methods known in the art.
- the subject exhibits one or more biomarkers provided herein, which can be indicative of increased likelihood of responding to, or better efficacy of, a particular treatment or therapeutic agent.
- the subject has a mutation (e.g., an SNP) in a gene associated with cancer or hematologic malignancy.
- the gene is selected from CXCR4, IGH7, KRAS, NRAS, A20, CARD 1 1 , CD79B, TP53, CARD 1 1 , MYD88, GNA13, MEF2B, TNFRSF14, MLL2, BTG1, EZH2, NOTCH1, JAK1, JAK2, PTEN, FBW7, PHF6, IDH1, IDH2, TET2, FLT3, KIT, NPM1, CEBPA, DNMT3A, BAALC, RU X1, ASXL1, IRF8, POU2F2, WIF1, ARID 1 A, MEF2B, TNFAIP3, PIK3R1, MTOR, PIK3CA, PI3K8, and/or ⁇ , or a combination thereof.
- the disorder to be treated, prevented and/or managed is
- the subject exhibits excessive PI3K activity or abnormal activity (e.g., excessive or reduced activity) of one or more components of the PI3K signaling pathway (e.g., Akt (PKB), mTOR, a Tec kinase (e.g., Btk, Itk, Tec), phospholipase C, PDK1, PKCs, NFKB, Rac GEF (e.g., Vav-1), or Rac).
- Akt Akt
- mTOR e.g., Akt (PKB)
- mTOR e.g., Akt (PKB), mTOR, a Tec kinase (e.g., Btk, Itk, Tec), phospholipase C, PDK1, PKCs, NFKB, Rac GEF (e.g., Vav-1), or Rac).
- Akt Akt
- mTOR e.g., Akt (PKB)
- a Tec kinase
- a method of treating or managing a hematologic malignancy comprising administering to a patient who has one or more mutations selected from MYD88 (L265P), CXCR4, ARID 1 A, MUC16, TRAF2, TRRAP, and MYBBPIA mutations a therapeutically effective amount of a compound provided herein (e.g. , Compound 292), or a pharmaceutically acceptable derivative (e.g. , salt or solvate) thereof.
- the patient has MYD88 (L265P) and/or N-terminal domain of CXCR4 mutation.
- the hematologic malignancy is Waldenstrom's macroglobulinemia (WM).
- the hematologic malignancy is DLBCL. In one embodiment, the hematologic malignancy is CLL. In one embodiment, a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof, can be used in combination with one or more other therapeutic agents described herein below.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate
- a method of treating or managing WM comprising administering to a patient who has CXCR4 mutation a therapeutically effective amount of a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate thereof
- a method of treating or managing DLBCL comprising administering to a patient who has CXCR4 mutation a therapeutically effective amount of a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate thereof
- a method of treating or managing CLL comprising administering to a patient who has CXCR4 mutation a therapeutically effective amount of a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate thereof
- provided herein is a method of treating or managing CLL comprising administering to a patient who has CD38 positive cancer cells a therapeutically effective amount of a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate thereof
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate
- provided herein is a method of treating or managing CLL comprising administering to a patient who has CD69 positive cancer cells a therapeutically effective amount of a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate thereof
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate
- provided herein is a method of treating or managing CLL comprising administering to a patient who has CD38/CD69 double positive cancer cells a therapeutically effective amount of a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g. , salt or solvate
- provided herein is a method of treating or managing CLL comprising administering to a patient who has Ki67 positive cancer cells a therapeutically effective amount of a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate thereof
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate
- provided herein is a method of treating or managing CLL comprising administering to a patient who has pAKT positive cancer cells a therapeutically effective amount of a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g., salt or solvate
- provided herein is a method of treating or managing CLL comprising administering to a patient who has Ki67/pAKT double positive cancer cells a therapeutically effective amount of a compound provided herein (e.g., Compound 292), or a pharmaceutically acceptable derivative (e.g., salt or solvate) thereof.
- a compound provided herein e.g., Compound 292
- a pharmaceutically acceptable derivative e.g. , salt or solvate
- the subject has been previously treated for cancer or hematologic malignancy.
- the subject has been previously treated for cancer or hematologic malignancy but are non- responsive to standard therapies.
- a method of treating, preventing, and/or managing cancer or hematologic malignancy in a subject comprising administering an effective amount of a compound provided herein (e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof) to a subject in need thereof, wherein the subject has been previously administered a therapy for cancer or hematologic malignancy.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate,
- the subject has been previously administered a therapy for cancer or hematologic malignancy at least 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, 12 weeks, or 16 weeks before a compound provided herein (e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof) is administered.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- the subject has been previously administered a therapy for cancer or hematologic malignancy at least 1 week, 2 weeks, 1 month, 2 months, 3 months, or 4 months before a compound provided herein (e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof) is administered.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- the subject has been administered a stable dose of a therapy for cancer or hematologic malignancy before a compound provided herein (e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co- crystal, clathrate, or polymorph thereof) is administered.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co- crystal, clathrate, or polymorph thereof
- the subject has been administered a stable dose of a therapy for cancer or hematologic malignancy for at least 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, 12 weeks, or 16 weeks before a compound provided herein (e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof) is administered.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- the subject has been administered a stable dose of a therapy for cancer or hematologic malignancy for at least 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, 12 weeks, or 16 weeks before a compound provided herein (e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof) is administered.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- the subject has been previously administered a therapy for cancer or hematologic malignancy at least 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, 12 weeks, or 16 weeks before, and the subject has been administered a stable dose of the same therapy for cancer or hematologic malignancy for at least 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, 12 weeks, or 16 weeks before, a compound provided herein (e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof) is administered.
- a compound provided herein e.g.
- the stable dose of the previously administered therapy is from about 0.005 to about 1,000 mg per week, from about 0.01 to about 500 mg per week, from about 0.1 to about 250 mg per week, from about 1 to about 100 mg per week, from about 2 to about 75 mg per week, from about 3 to about 50 mg per week, from about 5 to about 50 mg per week, from about 7.5 to about 25 mg per week, from about 10 to about 25 mg per week, from about 12.5 to about 25 mg per week, from about 15 to about 25 mg per week, or from about 15 to about 20 mg per week.
- the total dose per week can be administered once or administered among split doses.
- the subject has not been previously treated for cancer or hematologic malignancy.
- a therapeutically or prophylactically effective amount of a compound provided herein is from about 0.005 to about 1,000 mg per day, from about 0.01 to about 500 mg per day, from about 0.01 to about 250 mg per day, from about 0.01 to about 100 mg per day, from about 0.1 to about 100 mg per day, from about 0.5 to about 100 mg per day, from about 1 to about 100 mg per day, from about 0.01 to about 50 mg per day, from about 0.1 to about 50 mg per day, from about 0.5 to about 50 mg per day, from about 1 to about 50 mg per day, from about 2 to about 25 mg per day, or from about 5 to about 10 mg per day.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein is from about 0.005
- the therapeutically or prophylactically effective amount is about 0.1, about 0.2, about 0.5, about 1, about 2, about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 60, about 70, about 80, about 90, about 100, or about 150 mg per day.
- the recommended daily dose range of a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, for the conditions described herein lie within the range of from about 0.5 mg to about 100 mg per day, or from about 0.5 mg to about 50 mg per day, preferably given as a single once-a-day dose, or in divided doses throughout a day. In some embodiments, the dosage ranges from about 1 mg to about 50 mg per day. In other embodiments, the dosage ranges from about 0.5 to about 25 mg per day.
- a compound of Formula I e.g., Compound 292
- an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, for the conditions described herein lie within the range of from
- Specific doses per day include 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 100 mg per day.
- the recommended starting dosage can be 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, or 100 mg per day. In another embodiment, the recommended starting dosage can be 0.5, 1, 2, 3, 4, or 5 mg per day. The dose can be escalated to 15, 20, 25, 30, 35, 40, 45, 50, 75, or 100 mg/day.
- the therapeutically or prophylactically effective amount is from about 0.001 to about 100 mg/kg/day, from about 0.01 to about 50 mg/kg/day, from about 0.01 to about 25 mg/kg/day, from about 0.01 to about 10 mg/kg/day, from about 0.01 to about 9 mg/kg/day, 0.01 to about 8 mg/kg/day, from about 0.01 to about 7 mg/kg/day, from about 0.01 to about 6 mg/kg/day, from about 0.01 to about 5 mg/kg/day, from about 0.01 to about 4 mg/kg/day, from about 0.01 to about 3 mg/kg/day, from about 0.01 to about 2 mg/kg/day, or from about 0.01 to about 1 mg/kg/day.
- the administered dose can also be expressed in units other than mg/kg/day.
- doses for parenteral administration can be expressed as mg/m 2 /day.
- doses for parenteral administration can be expressed as mg/m 2 /day.
- One of ordinary skill in the art would readily know how to convert doses from mg/kg/day to mg/m 2 /day to given either the height or weight of a subject or both (see, www.fda.gov/cder/cancer/animalframe.htm).
- a dose of 1 mg/kg/day for a 65 kg human is approximately equal to 38 mg/m 2 /day.
- the amount of the compound administered is sufficient to provide a plasma concentration of the compound at steady state, ranging from about 0.005 to about 100 ⁇ , from about 0.005 to about 10 ⁇ , from about 0.01 to about 10 ⁇ , from about 0.01 to about 5 ⁇ , from about 0.005 to about 1 ⁇ , from about 0.005 to about 0.5 ⁇ , from about 0.005 to about 0.5 ⁇ , from about 0.01 to about 0.2 ⁇ , or from about 0.01 to about 0.1 ⁇ . In one embodiment, the amount of the compound administered is sufficient to provide a plasma concentration at steady state, of about 0.005 to about 100 ⁇ .
- the amount of the compound administered is sufficient to provide a plasma concentration at steady state, of about 0.005 to about 10 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a plasma concentration at steady state, of about 0.01 to about 10 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a plasma concentration at steady state, of about 0.01 to about 5 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a plasma
- the amount of the compound administered is sufficient to provide a plasma concentration at steady state, of about 0.005 to about 1 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a plasma concentration at steady state, of about 0.005 to about 0.5 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a plasma concentration of the compound at steady state, of about 0.01 to about 0.2 ⁇ . In still another embodiment, the amount of the compound administered is sufficient to provide a plasma concentration of the compound at steady state, of about 0.01 to about 0.1 ⁇ .
- the amount of the compound administered is sufficient to provide a plasma concentration of the compound at steady state at a level higher than IC 50 for a particular isoform of PI3K. In another embodiment, the amount of the compound administered is sufficient to provide a plasma concentration of the compound at steady state at a level higher than IC 90 for a particular isoform of PI3K. In one embodiment, the PI3K isoform is PI3K-8 for which IC 90 is about 361 mg/ml. In another embodiment, the PI3K isoform is ⁇ 3 ⁇ - ⁇ for which IC 50 is about 429 ng/ml.
- the compound is Compound 292, and the PI3K isoform is PI3K-8. In another embodiment, the compound is Compound 292, and the PI3K isoform is ⁇ 3 ⁇ - ⁇ . In another embodiment wherein the compound is Compound 292, the amount of Compound 292 administered is sufficient to provide a plasma concentration of the compound at steady state of about 300 ng/ml to about 500 ng/ml, about 350 ng/ml to about 450 ng/ml, or from about 380 ng/ml to about 420 ng/ml. In another embodiment, wherein the compound is Compound 292, the amount of Compound 292 administered is sufficient to provide a plasma concentration of the compound at steady state of about 390 ng/ml. As used herein, the term "plasma concentration at steady state" is the
- the amount administered is sufficient to provide a maximum plasma concentration (peak concentration) of the compound, ranging from about 0.005 to about 100 ⁇ , from about 0.005 to about 10 ⁇ , from about 0.01 to about 10 ⁇ , from about 0.01 to about 5 ⁇ , from about 0.005 to about 1 ⁇ , from about 0.005 to about 0.5 ⁇ , from about 0.01 to about 0.2 ⁇ , or from about 0.01 to about 0.1 ⁇ .
- the amount of the compound administered is sufficient to provide a maximum plasma concentration of the compound of about 0.005 to about 100 ⁇ .
- the amount of the compound administered is sufficient to provide a maximum plasma concentration of the compound of about 0.005 to about 10 ⁇ .
- the amount of the compound administered is sufficient to provide a maximum plasma concentration of the compound of about 0.01 to about 10 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a maximum plasma concentration of the compound of about 0.01 to about 5 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a maximum plasma concentration of the compound of about 0.005 to about 1 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a maximum plasma concentration of the compound of about 0.005 to about 0.5 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a maximum plasma concentration of the compound of about 0.01 to about 0.2 ⁇ . In still another embodiment, the amount of the compound administered is sufficient to provide a maximum plasma concentration of the compound of about 0.01 to about 0.1 ⁇ .
- the amount administered is sufficient to provide a minimum plasma concentration (trough concentration) of the compound, ranging from about 0.005 to about 100 ⁇ , from about 0.005 to about 10 ⁇ , from about 0.01 to about 10 ⁇ , from about 0.01 to about 5 ⁇ , from about 0.005 to about 1 ⁇ , about 0.005 to about 0.5 ⁇ , from about 0.01 to about 0.2 ⁇ , or from about 0.01 to about 0.1 ⁇ , when more than one doses are administered.
- the amount of the compound administered is sufficient to provide a minimum plasma concentration of the compound of about 0.005 to about 100 ⁇ .
- the amount of the compound administered is sufficient to provide a minimum plasma concentration of the compound of about 0.005 to about 10 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a minimum plasma concentration of the compound of about 0.01 to about 10 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a minimum plasma concentration of the compound of about 0.01 to about 5 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a minimum plasma concentration of the compound of about 0.005 to about 1 ⁇ . In yet another embodiment, the amount of the compound administered is sufficient to provide a minimum plasma concentration of the compound of about 0.005 to about 0.5 ⁇ .
- the amount of the compound administered is sufficient to provide a minimum plasma concentration of the compound of about 0.01 to about 0.2 ⁇ . In still another embodiment, the amount of the compound administered is sufficient to provide a minimum plasma concentration of the compound of about 0.01 to about 0.1 ⁇ .
- the amount administered is sufficient to provide an area under the curve (AUC) of the compound, ranging from about 50 to about 10,000 ng*hr/mL, about 100 to about 50,000 ng*hr/mL, from about 100 to 25,000 ng*hr/mL, or from about 10,000 to 25,000 ng*hr/mL.
- AUC area under the curve
- a method of achieving rapid onset of response in patients having cancer or hematologic malignancy comprising administering to the patient a compound provided herein, or a pharmaceutically acceptable derivative (e.g. , salt or solvate) thereof.
- the onset of response is achieved within about 4 months, 3 months, 2 months, or 1 month from the date of first administration of a compound provided herein.
- the compound is Compound 292, or a pharmaceutically acceptable derivative thereof.
- the cancer or hematologic malignancy is a T cell lymphoma and the onset of response is achieved within about 2 months of first administration of the compound.
- the cancer or hematologic malignancy is a T cell lymphoma and the onset of response is achieved within about 1.9 months of first administration of the compound. In one embodiment where the compound is Compound 292, or a pharmaceutically acceptable derivative thereof, the cancer or hematologic malignancy is a B cell lymphoma and the onset of response is achieved within about 2 months of first administration of the compound. In another embodiment where the compound is Compound 292, or a pharmaceutically acceptable derivative thereof, the cancer or hematologic malignancy is a B cell lymphoma and the onset of response is achieved within about 1.8 months of first administration of the compound.
- the compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound of Formula I e.g., Compound 292
- parenteral e.g., intramuscular, intraperitoneal, intravenous, CIV, intracistemal injection or infusion, subcutaneous injection, or implant
- inhalation nasal, vaginal, rectal, sublingual, or topical (e.g. , transdermal or local) routes of administration.
- the compound is administered orally.
- the compound is administered parenterally.
- the compound is administered intravenously.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- QD once daily
- BID twice daily
- TID three times daily
- QID four times daily
- the administration can be continuous (i.e., daily for consecutive days or every day), intermittent, e.g., in cycles (i.e., including days, weeks, or months of rest without drug).
- the term “daily” is intended to mean that a therapeutic compound, such as a compound of Formula I, is administered once or more than once each day, for example, for a period of time.
- the term “continuous” is intended to mean that a therapeutic compound, such as a compound of Formula I, is administered daily for an uninterrupted period of at least 10 days to 52 weeks.
- intermittent administration of a compound of Formula I is administration for one to six days per week, administration in cycles (e.g., daily administration for two to eight consecutive weeks, then a rest period with no administration for up to one week), or administration on alternate days.
- cycling as used herein is intended to mean that a therapeutic compound, such as a compound of Formula I, is administered daily or continuously but with a rest period (e.g., after dosing for 7, 14, 21, or 28 days).
- the frequency of administration is in the range of about a daily dose to about a monthly dose.
- administration is once a day, twice a day, three times a day, four times a day, once every other day, twice a week, once every week, once every two weeks, once every three weeks, or once every four weeks.
- the compound provided herein is administered once a day.
- the compound provided herein is administered twice a day.
- the compound provided herein is administered three times a day.
- the compound provided herein is administered four times a day.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co- crystal, clathrate, or polymorph thereof
- a compound provided herein is administered about 0.1, 0.2, 0.25, 0.5, 1, 2, 2.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 mg, or 75 mg BID.
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- the compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound of Formula I e.g., Compound 292
- the compound provided herein is administered once per day for one week, two weeks, three weeks, or four weeks.
- the compound provided herein is administered once per day for one week.
- the compound provided herein is administered once per day for two weeks. In yet another embodiment, the compound provided herein is administered once per day for three weeks. In still another embodiment, the compound provided herein is administered once per day for four weeks. In still another embodiment, the compound provided herein is administered once per day for more than four weeks.
- the compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a compound of Formula I e.g., Compound 292
- the compound provided herein is administered twice per day from one day to six months, from one week to three months, from one week to four weeks, from one week to three weeks, or from one week to two weeks.
- the compound provided herein is administered twice per day for one week, two weeks, three weeks, or four weeks.
- the compound provided herein is administered twice per day for one week.
- the compound provided herein is administered twice per day for two weeks. In yet another embodiment, the compound provided herein is administered twice per day for three weeks. In still another embodiment, the compound provided herein is administered twice per day for four weeks. In still another embodiment, the compound provided herein is administered twice per day for more than four weeks.
- the compound provided herein e.g., a compound of Formula I (e.g., Compound 292), or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
- a single dose such as, e.g., a single bolus injection, or oral tablets or pills; or over time, such as, e.g. , continuous infusion over time or divided bolus doses over time.
- the compound can be administered repeatedly if necessary, for example, until the patient experiences stable disease or regression, or until the patient experiences disease progression or unacceptable toxicity.
- the compound provided herein is administered in combination with one or more other therapies.
- provided herein are methods for combination therapies in which an agent known to modulate other pathways, or other components of the same pathway, or even overlapping sets of target enzymes are used in combination with a compound provided herein, or a pharmaceutically acceptable form (e.g., pharmaceutically acceptable salts, hydrates, solvates, isomers, prodrugs, and isotopically labeled derivatives) thereof.
- a pharmaceutically acceptable form e.g., pharmaceutically acceptable salts, hydrates, solvates, isomers, prodrugs, and isotopically labeled derivatives
- such therapy includes, but is not limited to, the combination of the subject compound with chemotherapeutic agents, therapeutic antibodies, and/or radiation treatment, to provide a synergistic or additive therapeutic effect.
- each therapeutic agent will be administered at a time and/or formulated for delivery together, although these methods of delivery are within the scope of this disclosure.
- the compound provided herein can be administered concurrently with, prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, 12 weeks, or 16 weeks before), or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, 12 weeks, or 16 weeks after), one or more other therapies (e.g., one or more other additional agents).
- each therapeutic agent will be administered at a time and/or formulated for delivery together, although these methods of delivery are within the scope of this disclosure.
- the compound provided herein is a first line treatment for cancer or hematologic malignancy, i.e., it is used in a subject who has not been previously administered another drug or therapy intended to treat cancer or hematologic malignancy or one or more symptoms thereof.
- the compound provided herein is a second line treatment for cancer or hematologic malignancy, i.e., it is used in a subject who has been previously administered another drug or therapy intended to treat cancer or hematologic malignancy or one or more symptoms thereof.
- the compound provided herein is a third or fourth line treatment for cancer or hematologic malignancy, i.e., it is used in a subject who has been previously administered two or three other drugs or therapies intended to treat cancer or hematologic malignancy or one or more symptoms thereof.
- the agents can be administered in any order.
- the two agents can be administered concurrently (i.e., essentially at the same time, or within the same treatment) or sequentially (i.e., one immediately following the other, or alternatively, with a gap in between administration of the two).
- the compound provided herein is administered sequentially (i.e., after the first therapeutic).
- a combination therapy for inhibiting abnormal cell growth in a subject which comprises administering a compound provided herein, or a pharmaceutically acceptable form (e.g., pharmaceutically acceptable salts, hydrates, solvates, isomers, prodrugs, and isotopically labeled derivatives) thereof, in combination with an amount of an anti-cancer agent (e.g., a chemotherapeutic agent).
- a pharmaceutically acceptable form e.g., pharmaceutically acceptable salts, hydrates, solvates, isomers, prodrugs, and isotopically labeled derivatives
- an anti-cancer agent e.g., a chemotherapeutic agent
- chemotherapeutics are presently known in the art and can be used in combination with a compound provided herein.
- the chemotherapeutic is selected from mitotic inhibitors, alkylating agents, antimetabolites, intercalating antibiotics, growth factor inhibitors, cell cycle inhibitors, enzymes, topoisomerase inhibitors, biological response modifiers, anti-hormones, angiogenesis inhibitors, and anti-androgens.
- Non-limiting examples are chemotherapeutic agents, cytotoxic agents, and non-peptide small molecules such as Gleevec® (imatinib mesylate), Velcade® (bortezomib), CasodexTM (bicalutamide), Iressa® (gefitinib), Tarceva® (erlotinib), and Adriamycin® (doxorubicin) as well as a host of chemotherapeutic agents.
- Gleevec® imatinib mesylate
- Velcade® bortezomib
- CasodexTM bicalutamide
- Iressa® gefitinib
- Tarceva® erlotinib
- Adriamycin® doxorubicin
- Non-limiting examples of chemotherapeutic agents include alkylating agents such as thiotepa and cyclosphosphamide (CYTOXANTM); alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine,
- alkylating agents such as thiotepa and cyclosphosphamide (CYTOXANTM)
- alkyl sulfonates such as busulfan, improsulfan and piposulfan
- aziridines such as benzodopa, carboquone, meturedopa, and uredopa
- ethylenimines and methylamelamines including altretamine, triethylenemelamine
- BTK inhibitors such as ibrutinib (PCI-32765), AVL-292, Dasatinib, LFM-AI3, ONO-WG-307, and GDC-0834
- HDAC inhibitors such as vorinostat, romidepsin, panobinostat, valproic acid, belinostat, mocetinostat, abrexinostat, entinostat, SB939, resminostat, givinostat, CUDC-101, AR-42, CHR-2845, CHR-3996, 4SC-202, CG200745, ACY-1215 and kevetrin
- EZH2 inhibitors such as, but not limited to, EPZ-6438 (N-((4,6-dimethyl-2-oxo- l,2-dihydropyridin-3-yl)methyl)-5- (ethyl(te
- JAK/STAT inhibitors such as lestaurtinib, tofacitinib, ruxolitinib, pacritinib, CYT387, baricitinib, GLPG0636, TG101348, INCB 16562, CP-690550, and AZD1480; PKC- ⁇ inhibitor such as Enzastaurin; SYK inhibitors such as, but not limited to, GS-9973, R788 (fostamatinib), PRT 062607, R406, (S)-2-(2-((3,5-dimethylphenyl)amino)pyrimidin-4-yl)-N-(l-hydroxypropan-2- yl)-4-methylthiazole
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Epidemiology (AREA)
- Cell Biology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Steroid Compounds (AREA)
Abstract
Description
Claims
Priority Applications (55)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2015005536A MX2015005536A (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators. |
PL13792144T PL2914296T5 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
RU2015120616A RU2702908C2 (en) | 2012-11-01 | 2013-11-01 | Treating malignant tumours using modulators of pi3-kinase isoforms |
AU2013337717A AU2013337717B2 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using PI3 kinase isoform modulators |
IL291945A IL291945A (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
EP13792144.1A EP2914296B2 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
DK13792144.1T DK2914296T4 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using PI3 kinase isoform modulators |
CN201380069471.1A CN105102000B (en) | 2012-11-01 | 2013-11-01 | Cancer therapy using PI3 kinase subtype modulators |
RS20181027A RS58023B2 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
NZ708563A NZ708563A (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
LTEP13792144.1T LT2914296T (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
ES13792144T ES2691742T5 (en) | 2012-11-01 | 2013-11-01 | Treatment of Cancers Using Modulators of PI3 Kinase Isoforms |
BR112015010035A BR112015010035A2 (en) | 2012-11-01 | 2013-11-01 | cancer treatment using pi3 isoform kinase modulators |
SI201331150T SI2914296T2 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
KR1020157014360A KR102229478B1 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
MX2020009849A MX2020009849A (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators. |
US14/439,965 US20150283142A1 (en) | 2013-03-15 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
JP2015540794A JP6584952B2 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancer using PI3 kinase isoform modulator |
CA2890105A CA2890105C (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
CN201480043018.8A CN105682658B (en) | 2013-05-30 | 2014-05-30 | Cancer therapy using PI3 kinase subtype modulators |
RU2015156069A RU2705204C2 (en) | 2013-05-30 | 2014-05-30 | Treating malignant tumors using piz-kinase isoform modulators |
CA2914284A CA2914284A1 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators |
PCT/US2014/040337 WO2014194254A1 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators |
EP14804451.4A EP3003309B1 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators |
BR112015029969A BR112015029969A2 (en) | 2013-05-30 | 2014-05-30 | cancer treatment using pi3 isoform kinase modulators |
SG10201709926VA SG10201709926VA (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators |
RU2019134551A RU2019134551A (en) | 2013-05-30 | 2014-05-30 | TREATING MALIGNANT TUMORS USING MODULATORS OF PI3-KINASE ISOFORM |
AU2014273946A AU2014273946B2 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using PI3 kinase isoform modulators |
KR1020157036896A KR20160013204A (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators |
EP20194640.7A EP3811974A1 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators |
US14/894,854 US20160113932A1 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators |
NZ754026A NZ754026B2 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using P13 kinase isoform modulators |
DK14804451.4T DK3003309T3 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancer with PI3 kinase isoform modulators |
ES14804451T ES2834638T3 (en) | 2013-05-30 | 2014-05-30 | Cancer treatment using PI3 kinase isoform modulators |
MX2015016277A MX2015016277A (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators. |
JP2016517058A JP6556702B2 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancer using PI3 kinase isoform modulator |
NZ714846A NZ714846B2 (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators |
SG11201509842SA SG11201509842SA (en) | 2013-05-30 | 2014-05-30 | Treatment of cancers using pi3 kinase isoform modulators |
IL238565A IL238565B (en) | 2012-11-01 | 2015-04-30 | Treatment of cancers using pi3 kinase isoform modulators |
ZA2015/03134A ZA201503134B (en) | 2012-11-01 | 2015-05-07 | Treatment of cancers using pi3 kinase isoform modulators |
ZA2015/08711A ZA201508711B (en) | 2013-05-30 | 2015-11-26 | Treatment of cancers using pi3 kinase isoform modulators |
IL24282615A IL242826B (en) | 2013-05-30 | 2015-11-29 | Treatment of cancers using pi3 kinase isoform modulators |
HK16101799.3A HK1213784A1 (en) | 2012-11-01 | 2016-02-18 | Treatment of cancers using pi3 kinase isoform modulators pi3 |
HK16107388.7A HK1219870A1 (en) | 2013-05-30 | 2016-06-24 | Treatment of cancers using pi3 kinase isoform modulators pi3 |
US15/581,414 US20180015093A1 (en) | 2012-11-01 | 2017-04-28 | Treatment of cancers using pi3 kinase isoform modulators |
HRP20181367TT HRP20181367T4 (en) | 2012-11-01 | 2018-08-27 | Treatment of cancers using pi3 kinase isoform modulators |
CY20181100908T CY1122247T1 (en) | 2012-11-01 | 2018-08-30 | CANCER INDUCTION USING PI3 KINASE ISOFORM MODIFIERS |
AU2019200222A AU2019200222B2 (en) | 2012-11-01 | 2019-01-14 | Treatment of cancers using PI3 kinase isoform modulators |
JP2019128045A JP6870185B2 (en) | 2013-05-30 | 2019-07-10 | Treatment of cancer with PI3 kinase isoform modulator |
IL26960119A IL269601A (en) | 2013-05-30 | 2019-09-24 | Treatment of cancers using pi3 kinase isoform modulators |
US16/848,485 US20210060022A1 (en) | 2012-11-01 | 2020-04-14 | Treatment of cancers using pi3 kinase isoform modulators |
AU2020239720A AU2020239720A1 (en) | 2012-11-01 | 2020-09-24 | Treatment of cancers using PI3 kinase isoform modulators |
NL301141C NL301141I2 (en) | 2012-11-01 | 2021-10-29 | duvelisib |
LTPA2021527C LTPA2021527I1 (en) | 2012-11-01 | 2021-11-12 | |
HUS2100049C HUS2100049I1 (en) | 2012-11-01 | 2021-11-12 | Treatment of cancers using pi3 kinase isoform modulators |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261721432P | 2012-11-01 | 2012-11-01 | |
US61/721,432 | 2012-11-01 | ||
US201261733852P | 2012-12-05 | 2012-12-05 | |
US61/733,852 | 2012-12-05 | ||
US201361767606P | 2013-02-21 | 2013-02-21 | |
US61/767,606 | 2013-02-21 | ||
US13/840,822 | 2013-03-15 | ||
US13/840,822 US20140120083A1 (en) | 2012-11-01 | 2013-03-15 | Treatment of cancers using pi3 kinase isoform modulators |
US201361829168P | 2013-05-30 | 2013-05-30 | |
US61/829,168 | 2013-05-30 | ||
US201361836088P | 2013-06-17 | 2013-06-17 | |
US61/836,088 | 2013-06-17 | ||
US201361863365P | 2013-08-07 | 2013-08-07 | |
US61/863,365 | 2013-08-07 | ||
US201361888454P | 2013-10-08 | 2013-10-08 | |
US61/888,454 | 2013-10-08 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/840,822 Continuation-In-Part US20140120083A1 (en) | 2012-11-01 | 2013-03-15 | Treatment of cancers using pi3 kinase isoform modulators |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/439,965 A-371-Of-International US20150283142A1 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
US15/581,414 Continuation US20180015093A1 (en) | 2012-11-01 | 2017-04-28 | Treatment of cancers using pi3 kinase isoform modulators |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014071109A1 true WO2014071109A1 (en) | 2014-05-08 |
Family
ID=50628070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/067929 WO2014071109A1 (en) | 2012-11-01 | 2013-11-01 | Treatment of cancers using pi3 kinase isoform modulators |
Country Status (28)
Country | Link |
---|---|
US (2) | US20180015093A1 (en) |
EP (1) | EP2914296B2 (en) |
JP (3) | JP6584952B2 (en) |
KR (1) | KR102229478B1 (en) |
CN (1) | CN105102000B (en) |
AU (3) | AU2013337717B2 (en) |
BR (1) | BR112015010035A2 (en) |
CA (1) | CA2890105C (en) |
CY (2) | CY1122247T1 (en) |
DK (1) | DK2914296T4 (en) |
ES (1) | ES2691742T5 (en) |
HK (1) | HK1213784A1 (en) |
HR (1) | HRP20181367T4 (en) |
HU (2) | HUE040126T2 (en) |
IL (2) | IL291945A (en) |
LT (2) | LT2914296T (en) |
MX (2) | MX2020009849A (en) |
NL (1) | NL301141I2 (en) |
NO (1) | NO2021049I1 (en) |
NZ (2) | NZ708563A (en) |
PL (1) | PL2914296T5 (en) |
PT (1) | PT2914296T (en) |
RS (1) | RS58023B2 (en) |
RU (2) | RU2019131148A (en) |
SI (1) | SI2914296T2 (en) |
TR (1) | TR201812261T4 (en) |
WO (1) | WO2014071109A1 (en) |
ZA (1) | ZA201503134B (en) |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2776441A1 (en) * | 2011-11-08 | 2014-09-17 | Intellikine, LLC | Treatment regimens using multiple pharmaceutical agents |
WO2014194254A1 (en) | 2013-05-30 | 2014-12-04 | Infinity Pharmaceuticals, Inc. | Treatment of cancers using pi3 kinase isoform modulators |
US8921314B2 (en) | 2008-10-15 | 2014-12-30 | Angiochem, Inc. | Conjugates of GLP-1 agonists and uses thereof |
WO2015001491A1 (en) | 2013-07-02 | 2015-01-08 | Rhizen Pharmaceuticals Sa | Pi3k protein kinase inhibitors, particularly delta and/or gamma inhibitors |
US9051269B2 (en) | 2011-11-18 | 2015-06-09 | Constellation Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
WO2015083008A1 (en) * | 2013-12-05 | 2015-06-11 | Acerta Pharma B.V. | Therapeutic combination of a pi3k inhibitor and a btk inhibitor |
US9085583B2 (en) | 2012-02-10 | 2015-07-21 | Constellation—Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
EP2950097A1 (en) * | 2014-05-28 | 2015-12-02 | Universitätsspital Basel | Podoplanin as a biomarker of the activation of PI3K/mTOR signaling in human tumors |
US9206182B2 (en) | 2009-07-15 | 2015-12-08 | Intellikine Llc | Substituted isoquinolin-1(2H)-one compounds, compositions, and methods thereof |
WO2015160975A3 (en) * | 2014-04-16 | 2015-12-10 | Infinity Pharmaceuticals, Inc. | Combination of a pi3k inhibitor with a bcl-2 inhibitor for use in the treatment of cancer |
WO2015160986A3 (en) * | 2014-04-16 | 2015-12-17 | Infinity Pharmaceuticals, Inc. | Combination therapies |
WO2015195848A1 (en) * | 2014-06-17 | 2015-12-23 | Epizyme, Inc. | Ezh2 inhibitors for treating lymphoma |
WO2016004221A1 (en) * | 2014-07-01 | 2016-01-07 | Mayo Foundation For Medical Education And Research | Methods and materials for identifying and treating mammals resistant to proteasome inhibitor treatments |
WO2016022358A1 (en) * | 2014-08-08 | 2016-02-11 | The Regents Of The University Of California | Compositions and methods for reactivating latent viral infections |
WO2016025656A1 (en) * | 2014-08-13 | 2016-02-18 | Celgene Avilomics Research, Inc. | Combinations of an erk inhibitor and a pi3k inhibitor or dual pi3k/tor inhibitor and related methods |
WO2016025652A1 (en) * | 2014-08-13 | 2016-02-18 | Celgene Avilomics Research, Inc. | Combinations of an erk inhibitor and a bcl-2 pathway modulator and related methods |
WO2016025649A1 (en) * | 2014-08-13 | 2016-02-18 | Celgene Avilomics Research, Inc. | Combinations of an erk inhibitor and a dot1l inhibitor and related methods |
WO2016033100A1 (en) * | 2014-08-25 | 2016-03-03 | Salk Institute For Biological Studies | Novel ulk1 inhibitors and methods using same |
US9290497B2 (en) | 2011-01-10 | 2016-03-22 | Infinity Pharmaceuticals, Inc. | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
WO2016090255A1 (en) * | 2014-12-05 | 2016-06-09 | Sriram Balasubramanian | Biological markers for predicting responsiveness to ibrutinib and r-chop combination therapy and methods of using the same |
CN105669679A (en) * | 2015-03-20 | 2016-06-15 | 苏州晶云药物科技有限公司 | Preparation method of PCI-32765 crystal form A |
JP2016525532A (en) * | 2013-07-26 | 2016-08-25 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Treatment of myelodysplastic syndrome |
US9527847B2 (en) | 2012-06-25 | 2016-12-27 | Infinity Pharmaceuticals, Inc. | Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors |
US20170020872A1 (en) * | 2013-10-08 | 2017-01-26 | Acetylon Pharmaceuticals, Inc. | Combinations of histone deacetylase inhibitors and either her2 inhibitors or pi3k inhibitors |
CN106366085A (en) * | 2015-07-25 | 2017-02-01 | 复旦大学 | Isoquinolone compound or salt thereof, and preparation method and use of isoquinolone compound |
WO2017096458A1 (en) * | 2015-12-07 | 2017-06-15 | Ontario Institute For Cancer Research (Oicr) | Immune gene signature predictive of anthracycline benefit |
US9745305B2 (en) | 2013-03-15 | 2017-08-29 | Constellation Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
JP2017528498A (en) * | 2014-09-25 | 2017-09-28 | アラクセス ファーマ エルエルシー | Inhibitors of KRAS G12C mutant protein |
US9775841B2 (en) | 2011-05-04 | 2017-10-03 | Rhizen Pharmaceuticals Sa | Compounds as modulators of protein kinases |
WO2017197046A1 (en) | 2016-05-10 | 2017-11-16 | C4 Therapeutics, Inc. | C3-carbon linked glutarimide degronimers for target protein degradation |
WO2017197055A1 (en) | 2016-05-10 | 2017-11-16 | C4 Therapeutics, Inc. | Heterocyclic degronimers for target protein degradation |
US9822131B2 (en) | 2008-01-04 | 2017-11-21 | Intellikine Llc | Certain chemical entities, compositions and methods |
WO2018054782A1 (en) * | 2016-09-23 | 2018-03-29 | Bayer Pharma Aktiengesellschaft | Combination of pi3k-inhibitors |
WO2018064797A1 (en) * | 2016-10-05 | 2018-04-12 | 杭州领业医药科技有限公司 | Crystal form of acp-196, preparation method therefor and pharmaceutical composition thereof |
US9944639B2 (en) | 2014-07-04 | 2018-04-17 | Lupin Limited | Quinolizinone derivatives as PI3K inhibitors |
US9969716B2 (en) | 2013-08-15 | 2018-05-15 | Constellation Pharmaceuticals, Inc. | Indole derivatives as modulators of methyl modifying enzymes, compositions and uses thereof |
JP2018512413A (en) * | 2015-03-19 | 2018-05-17 | チョーチアン ディーティーアールエム バイオファーマ コーポレーション リミテッド | Optimized combination therapy and its use for treating cancer and autoimmune diseases |
WO2018094227A1 (en) | 2016-11-17 | 2018-05-24 | The University Of North Carolina At Chapel Hill | Alkyl pyrrolopyrimidine analogs and methods of making and using same |
CN108137592A (en) * | 2015-11-03 | 2018-06-08 | 纽弗姆制药有限公司 | For treat the deuterated compound of leukemia with and combinations thereof and method |
JP2018525379A (en) * | 2015-08-03 | 2018-09-06 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Heterocyclic compounds useful as modulators of TNF alpha |
WO2019006393A1 (en) | 2017-06-29 | 2019-01-03 | G1 Therapeutics, Inc. | Morphic forms of git38 and methods of manufacture thereof |
RU2679122C2 (en) * | 2012-07-06 | 2019-02-06 | ГБ005, Инк. | Protein kinase inhibitors |
WO2019028055A1 (en) * | 2017-07-31 | 2019-02-07 | The Trustees Of Columbia Univeristy In The City Of New York | Compounds, compositionals, and methods for treating t-cell acute lymphoblastic leukemia |
WO2019047915A1 (en) * | 2017-09-08 | 2019-03-14 | Beigene, Ltd. | IMIDAZO[1,5-A]PYRAZINE DERIVATIVES AS PI3Kdelta INHIBITORS |
US10231969B2 (en) | 2014-09-12 | 2019-03-19 | GI Therapeutics, Inc. | Anti-neoplastic combinations and dosing regimens using CDK4/6 inhibitor compounds to treat RB-positive tumors |
WO2019108789A1 (en) * | 2017-11-29 | 2019-06-06 | The Trustees Of Columbia University In The City Of New York | Combination therapy of lymphoma |
WO2019120276A1 (en) * | 2017-12-21 | 2019-06-27 | 上海青煜医药科技有限公司 | Pyrimidone compound and application thereof |
US10413547B2 (en) | 2014-09-12 | 2019-09-17 | G1 Therapeutics, Inc. | Treatment of Rb-negative tumors using topoisomerase with cyclin dependent kinase 4/6 inhibitors |
WO2019191112A1 (en) | 2018-03-26 | 2019-10-03 | C4 Therapeutics, Inc. | Cereblon binders for the degradation of ikaros |
US10457640B2 (en) | 2016-10-19 | 2019-10-29 | Constellation Pharmaceuticals, Inc. | Synthesis of inhibitors of EZH2 |
US10463671B2 (en) | 2013-12-06 | 2019-11-05 | Epizyme, Inc. | Combination therapy for treating cancer |
US10485794B2 (en) | 2015-04-13 | 2019-11-26 | Daiichi Sankyo Company, Limited | Treatment method by combined use of MDM2 inhibitor and BTK inhibitor |
US10525074B2 (en) | 2013-03-14 | 2020-01-07 | Epizyme, Inc. | Combination therapy for treating cancer |
US10577350B2 (en) | 2015-08-28 | 2020-03-03 | Constellation Pharmaceuticals, Inc. | Crystalline forms of (R)-N-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide |
WO2020051235A1 (en) | 2018-09-04 | 2020-03-12 | C4 Therapeutics, Inc. | Compounds for the degradation of brd9 or mth1 |
US10647703B2 (en) | 2015-09-28 | 2020-05-12 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
US10646488B2 (en) | 2016-07-13 | 2020-05-12 | Araxes Pharma Llc | Conjugates of cereblon binding compounds and G12C mutant KRAS, HRAS or NRAS protein modulating compounds and methods of use thereof |
US10689356B2 (en) | 2015-09-28 | 2020-06-23 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
WO2020132561A1 (en) | 2018-12-20 | 2020-06-25 | C4 Therapeutics, Inc. | Targeted protein degradation |
US10723738B2 (en) | 2016-09-29 | 2020-07-28 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
US10736897B2 (en) | 2017-05-25 | 2020-08-11 | Araxes Pharma Llc | Compounds and methods of use thereof for treatment of cancer |
US10829458B2 (en) | 2015-04-10 | 2020-11-10 | Araxes Pharma Llc | Substituted quinazoline compounds and methods of use thereof |
US10858343B2 (en) | 2015-09-28 | 2020-12-08 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
RU2738934C2 (en) * | 2015-07-20 | 2020-12-18 | ЭйАй ТЕРАПЬЮТИКС, ИНК. | Methods of treating cancer using apilimod |
US10882847B2 (en) | 2015-09-28 | 2021-01-05 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
US10919850B2 (en) | 2013-03-15 | 2021-02-16 | Araxes Pharma Llc | Covalent inhibitors of KRas G12C |
US10927125B2 (en) | 2013-10-10 | 2021-02-23 | Araxes Pharma Llc | Substituted cinnolines as inhibitors of KRAS G12C |
US10980892B2 (en) | 2015-06-15 | 2021-04-20 | Angiochem Inc. | Methods for the treatment of leptomeningeal carcinomatosis |
EP3858835A1 (en) | 2016-07-01 | 2021-08-04 | G1 Therapeutics, Inc. | Pyrimidine-based antiproliferative agents |
US11136323B2 (en) | 2016-12-07 | 2021-10-05 | Beigene, Ltd. | Imidazo[1,5-a]pyrazine derivatives as PI3K δ inhibitors |
US11142518B2 (en) | 2017-04-20 | 2021-10-12 | Otsuka Pharmaceutical Co., Ltd. | 6-pyrimidin-isoindole derivative as ERK1/2 inhibitor |
US11147818B2 (en) | 2016-06-24 | 2021-10-19 | Infinity Pharmaceuticals, Inc. | Combination therapies |
US11154554B2 (en) * | 2015-08-21 | 2021-10-26 | Acera Pharma B.V. | Therapeutic combinations of a MEK inhibitor and a BTK inhibitor |
US11202781B2 (en) | 2015-06-10 | 2021-12-21 | Epizyme, Inc. | EZH2 inhibitors for treating lymphoma |
US11285159B2 (en) | 2019-11-05 | 2022-03-29 | Abbvie Inc. | Dosing regimens for use in treating myelofibrosis and MPN-related disorders with navitoclax |
US11939321B2 (en) | 2015-10-21 | 2024-03-26 | Otsuka Pharmaceutical Co., Ltd. | Benzolactam compounds as protein kinase inhibitors |
US11969428B2 (en) | 2011-03-08 | 2024-04-30 | Thomas Diacovo | Methods and pharmaceutical compositions for treating lymphoid malignancy |
EP4185279A4 (en) * | 2020-07-24 | 2024-05-01 | Secura Bio, Inc. | Treatment of cancers using pi3 kinase isoform modulators |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1486450B1 (en) * | 2001-11-08 | 2011-03-16 | Mitsubishi Denki Kabushiki Kaisha | Hoist and elevator equipment |
US20130102477A1 (en) | 2010-06-23 | 2013-04-25 | Ryan D. Morin | Biomarkers for non-hodgkin lymphomas and uses thereof |
DK2914296T4 (en) * | 2012-11-01 | 2022-01-03 | Infinity Pharmaceuticals Inc | Treatment of cancers using PI3 kinase isoform modulators |
US20200069630A1 (en) * | 2016-07-11 | 2020-03-05 | Hennipen Life Sciences, Llc | Compositions for sexually transmitted diseases |
KR20190058550A (en) * | 2016-09-19 | 2019-05-29 | 메이 파마, 아이엔씨. | Combination therapy |
WO2018231973A1 (en) * | 2017-06-13 | 2018-12-20 | Epizyme, Inc. | Inhibitors of ezh2 and methods of use thereof |
GB201710851D0 (en) * | 2017-07-06 | 2017-08-23 | Galápagos Nv | Novel compounds and pharmaceutical compositions thereof for the treatment of fibrosis |
TW201934123A (en) * | 2018-01-12 | 2019-09-01 | 韓商保寧製藥股份公司 | Pharmaceutical composition for preventing or treating cancer comprising PI3 kinase inhibitor and cytotoxicity anticancer agents |
WO2019183003A1 (en) * | 2018-03-18 | 2019-09-26 | The University Of North Carolina At Chapel Hill | Methods and assays for endometrial diseases |
AU2019251518A1 (en) * | 2018-04-13 | 2020-09-24 | Bionomics Limited | Method of monitoring response to a treatment |
CN108743947B (en) * | 2018-07-04 | 2020-12-15 | 复旦大学附属肿瘤医院 | Pharmaceutical composition for treating B cell lymphoma |
US10579964B1 (en) * | 2018-08-21 | 2020-03-03 | Intelligrated Headquarters, Llc | Method, apparatus and system for goods replenishment |
KR20200129704A (en) * | 2019-05-09 | 2020-11-18 | 보령제약 주식회사 | Crystal Polymorphism of PI3K Inhibitor and Method for Producing the Same |
CN110975919B (en) * | 2019-12-25 | 2021-06-01 | 福州大学 | Nitrogen-doped carbon quantum dot in-situ growth denitration sulfur-resistant catalyst and preparation method thereof |
CN111402523A (en) * | 2020-03-24 | 2020-07-10 | 宋钰堃 | Medical alarm system and method based on facial image recognition |
CN114432490B (en) * | 2021-11-10 | 2023-01-06 | 北京大学口腔医学院 | 3D printing material and preparation method and application thereof |
WO2023239821A2 (en) * | 2022-06-07 | 2023-12-14 | Lantern Pharma Inc. | Treating cancers with combinations of acylfulvenes with ibrutinib or bortezomib |
CN114788830B (en) * | 2022-06-08 | 2024-01-23 | 东阳市人民医院 | Application of small molecule inhibitor capable of inhibiting toxoplasma proliferation |
CN115177622B (en) * | 2022-07-19 | 2024-09-17 | 中南大学湘雅二医院 | Application of multiple compounds in preparation of medicines for treating myeloproliferative neoplasms |
Citations (163)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3536809A (en) | 1969-02-17 | 1970-10-27 | Alza Corp | Medication method |
US3598123A (en) | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3845770A (en) | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3916899A (en) | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US4008719A (en) | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
US4270537A (en) | 1979-11-19 | 1981-06-02 | Romaine Richard A | Automatic hypodermic syringe |
US4596556A (en) | 1985-03-25 | 1986-06-24 | Bioject, Inc. | Hypodermic injection apparatus |
US4790824A (en) | 1987-06-19 | 1988-12-13 | Bioject, Inc. | Non-invasive hypodermic injection device |
US4886499A (en) | 1986-12-18 | 1989-12-12 | Hoffmann-La Roche Inc. | Portable injection appliance |
WO1990005719A1 (en) | 1988-11-23 | 1990-05-31 | British Bio-Technology Limited | Hydroxamic acid based collagenase inhibitors |
US4940460A (en) | 1987-06-19 | 1990-07-10 | Bioject, Inc. | Patient-fillable and non-invasive hypodermic injection device assembly |
US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
US4992445A (en) | 1987-06-12 | 1991-02-12 | American Cyanamid Co. | Transdermal delivery of pharmaceuticals |
US5001139A (en) | 1987-06-12 | 1991-03-19 | American Cyanamid Company | Enchancers for the transdermal flux of nivadipine |
US5015235A (en) | 1987-02-20 | 1991-05-14 | National Carpet Equipment, Inc. | Syringe needle combination |
US5023252A (en) | 1985-12-04 | 1991-06-11 | Conrex Pharmaceutical Corporation | Transdermal and trans-membrane delivery of drugs |
US5059595A (en) | 1989-03-22 | 1991-10-22 | Bioresearch, S.P.A. | Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances |
US5064413A (en) | 1989-11-09 | 1991-11-12 | Bioject, Inc. | Needleless hypodermic injection device |
US5073543A (en) | 1988-07-21 | 1991-12-17 | G. D. Searle & Co. | Controlled release formulations of trophic factors in ganglioside-lipsome vehicle |
US5120548A (en) | 1989-11-07 | 1992-06-09 | Merck & Co., Inc. | Swelling modulated polymeric drug delivery device |
US5141496A (en) | 1988-11-03 | 1992-08-25 | Tino Dalto | Spring impelled syringe guide with skin penetration depth adjustment |
US5190521A (en) | 1990-08-22 | 1993-03-02 | Tecnol Medical Products, Inc. | Apparatus and method for raising a skin wheal and anesthetizing skin |
WO1993018186A1 (en) | 1992-03-04 | 1993-09-16 | The Regents Of The University Of California | Comparative genomic hybridization (cgh) |
US5312335A (en) | 1989-11-09 | 1994-05-17 | Bioject Inc. | Needleless hypodermic injection device |
US5328483A (en) | 1992-02-27 | 1994-07-12 | Jacoby Richard M | Intradermal injection device with medication and needle guard |
EP0606046A1 (en) | 1993-01-06 | 1994-07-13 | Ciba-Geigy Ag | Arylsulfonamido-substituted hydroxamic acids |
US5334144A (en) | 1992-10-30 | 1994-08-02 | Becton, Dickinson And Company | Single use disposable needleless injector |
US5339163A (en) | 1988-03-16 | 1994-08-16 | Canon Kabushiki Kaisha | Automatic exposure control device using plural image plane detection areas |
US5354556A (en) | 1984-10-30 | 1994-10-11 | Elan Corporation, Plc | Controlled release powder and process for its preparation |
US5383851A (en) | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
US5417662A (en) | 1991-09-13 | 1995-05-23 | Pharmacia Ab | Injection needle arrangement |
US5466220A (en) | 1994-03-08 | 1995-11-14 | Bioject, Inc. | Drug vial mixing and transfer device |
US5480381A (en) | 1991-08-23 | 1996-01-02 | Weston Medical Limited | Needle-less injector |
US5527288A (en) | 1990-12-13 | 1996-06-18 | Elan Medical Technologies Limited | Intradermal drug delivery device and method for intradermal delivery of drugs |
WO1996027583A1 (en) | 1995-03-08 | 1996-09-12 | Pfizer Inc. | Arylsulfonylamino hydroxamic acid derivatives |
WO1996033172A1 (en) | 1995-04-20 | 1996-10-24 | Pfizer Inc. | Arylsulfonyl hydroxamic acid derivatives as mmp and tnf inhibitors |
US5569189A (en) | 1992-09-28 | 1996-10-29 | Equidyne Systems, Inc. | hypodermic jet injector |
US5591767A (en) | 1993-01-25 | 1997-01-07 | Pharmetrix Corporation | Liquid reservoir transdermal patch for the administration of ketorolac |
US5599302A (en) | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
WO1997013537A1 (en) | 1995-10-10 | 1997-04-17 | Visionary Medical Products Corporation | Gas pressured needle-less injection device |
US5639480A (en) | 1989-07-07 | 1997-06-17 | Sandoz Ltd. | Sustained release formulations of water soluble peptides |
US5639476A (en) | 1992-01-27 | 1997-06-17 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
EP0780386A1 (en) | 1995-12-20 | 1997-06-25 | F. Hoffmann-La Roche Ag | Matrix metalloprotease inhibitors |
US5649912A (en) | 1994-03-07 | 1997-07-22 | Bioject, Inc. | Ampule filling device |
US5674533A (en) | 1994-07-07 | 1997-10-07 | Recordati, S.A., Chemical And Pharmaceutical Company | Pharmaceutical composition for the controlled release of moguisteine in a liquid suspension |
WO1997037705A1 (en) | 1996-04-11 | 1997-10-16 | Weston Medical Limited | Spring-powered dispensing device for medical purposes |
WO1998003516A1 (en) | 1996-07-18 | 1998-01-29 | Pfizer Inc. | Phosphinate based inhibitors of matrix metalloproteases |
WO1998007697A1 (en) | 1996-08-23 | 1998-02-26 | Pfizer Inc. | Arylsulfonylamino hydroxamic acid derivatives |
US5733566A (en) | 1990-05-15 | 1998-03-31 | Alkermes Controlled Therapeutics Inc. Ii | Controlled release of antiparasitic agents in animals |
US5739108A (en) | 1984-10-04 | 1998-04-14 | Monsanto Company | Prolonged release of biologically active polypeptides |
WO1998030566A1 (en) | 1997-01-06 | 1998-07-16 | Pfizer Inc. | Cyclic sulfone derivatives |
WO1998033768A1 (en) | 1997-02-03 | 1998-08-06 | Pfizer Products Inc. | Arylsulfonylamino hydroxamic acid derivatives |
WO1998034918A1 (en) | 1997-02-11 | 1998-08-13 | Pfizer Inc. | Arylsulfonyl hydroxamic acid derivatives |
WO1998034915A1 (en) | 1997-02-07 | 1998-08-13 | Pfizer Inc. | N-hydroxy-beta-sulfonyl-propionamide derivatives and their use as inhibitors of matrix metalloproteinases |
US5891474A (en) | 1997-01-29 | 1999-04-06 | Poli Industria Chimica, S.P.A. | Time-specific controlled release dosage formulations and method of preparing same |
US5893397A (en) | 1996-01-12 | 1999-04-13 | Bioject Inc. | Medication vial/syringe liquid-transfer apparatus |
WO1999029667A1 (en) | 1997-12-05 | 1999-06-17 | Pfizer Limited | Hydroxamic acid derivatives as matrix metalloprotease (mmp) inhibitors |
US5922356A (en) | 1996-10-09 | 1999-07-13 | Sumitomo Pharmaceuticals Company, Limited | Sustained release formulation |
WO1999034850A1 (en) | 1998-01-08 | 1999-07-15 | Fiderm S.R.L. | Device for controlling the penetration depth of a needle, for application to an injection syringe |
EP0931788A2 (en) | 1998-01-27 | 1999-07-28 | Pfizer Limited | Metalloprotease inhibitors |
WO1999052889A1 (en) | 1998-04-10 | 1999-10-21 | Pfizer Products Inc. | (4-arylsulfonylamino)-tetrahydropyran-4-carboxylic acid hydroxamides |
WO1999052910A1 (en) | 1998-04-10 | 1999-10-21 | Pfizer Products Inc. | Bicyclic hydroxamic acid derivatives |
US5972891A (en) | 1992-12-07 | 1999-10-26 | Takeda Chemical Industries, Ltd. | Sustained-release preparation |
US5980945A (en) | 1996-01-16 | 1999-11-09 | Societe De Conseils De Recherches Et D'applications Scientifique S.A. | Sustained release drug formulations |
US5993855A (en) | 1995-09-18 | 1999-11-30 | Shiseido Company, Ltd. | Delayed drug-releasing microspheres |
US5993412A (en) | 1997-05-19 | 1999-11-30 | Bioject, Inc. | Injection apparatus |
US6045830A (en) | 1995-09-04 | 2000-04-04 | Takeda Chemical Industries, Ltd. | Method of production of sustained-release preparation |
US6087324A (en) | 1993-06-24 | 2000-07-11 | Takeda Chemical Industries, Ltd. | Sustained-release preparation |
US6113943A (en) | 1996-10-31 | 2000-09-05 | Takeda Chemical Industries, Ltd. | Sustained-release preparation capable of releasing a physiologically active substance |
US6197350B1 (en) | 1996-12-20 | 2001-03-06 | Takeda Chemical Industries, Ltd. | Method of producing a sustained-release preparation |
WO2001019800A2 (en) | 1999-09-16 | 2001-03-22 | Curis, Inc. | Mediators of hedgehog signaling pathways, compositions and uses related thereto |
WO2001027135A2 (en) | 1999-10-13 | 2001-04-19 | Johns Hopkins University School Of Medicine | Regulators of the hedgehog pathway, compositions and uses related thereto |
WO2001026644A2 (en) | 1999-10-14 | 2001-04-19 | Curis, Inc. | Mediators of hedgehog signaling pathways, compositions and uses related thereto |
US6248363B1 (en) | 1999-11-23 | 2001-06-19 | Lipocine, Inc. | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
WO2001049279A2 (en) | 1999-12-30 | 2001-07-12 | Yeda Research And Development Co. Ltd. | Use of steroidal alkaloids to reverse multidrug resistance |
US6264970B1 (en) | 1996-06-26 | 2001-07-24 | Takeda Chemical Industries, Ltd. | Sustained-release preparation |
US6267981B1 (en) | 1995-06-27 | 2001-07-31 | Takeda Chemical Industries, Ltd. | Method of producing sustained-release preparation |
WO2001074344A2 (en) | 2000-03-30 | 2001-10-11 | Curis, Inc. | Small organic molecule regulators of cell proliferation |
US20020006931A1 (en) | 1998-04-09 | 2002-01-17 | Philip A. Beachy | Inhibitors of hedgehog signaling pathways, compositions and uses related thereto |
US6419961B1 (en) | 1996-08-29 | 2002-07-16 | Takeda Chemical Industries, Ltd. | Sustained release microcapsules of a bioactive substance and a biodegradable polymer |
WO2003011219A2 (en) | 2001-07-27 | 2003-02-13 | Curis, Inc. | Mediators of hedgehog signaling pathways, compositions and uses related thereto |
WO2003030902A1 (en) | 2001-10-09 | 2003-04-17 | Tularik Inc. | Imidazole derivates as anti-inflammatory agents |
US20030113828A1 (en) | 2001-11-09 | 2003-06-19 | Ginsberg Mark H. | Compositions and methods for modulating Syk function |
US6589548B1 (en) | 1998-05-16 | 2003-07-08 | Mogam Biotechnology Research Institute | Controlled drug delivery system using the conjugation of drug to biodegradable polyester |
US20030158195A1 (en) | 2001-12-21 | 2003-08-21 | Cywin Charles L. | 1,6 naphthyridines useful as inhibitors of SYK kinase |
US6613358B2 (en) | 1998-03-18 | 2003-09-02 | Theodore W. Randolph | Sustained-release composition including amorphous polymer |
WO2003088970A2 (en) | 2002-04-22 | 2003-10-30 | Johns Hopkins University School Of Medicine | Modulators of hedgehog signaling pathways, compositions and uses related thereto |
WO2004020599A2 (en) | 2002-08-29 | 2004-03-11 | Curis, Inc. | Hedgehog antagonists, methods and uses related thereto |
WO2004041285A1 (en) | 2002-10-31 | 2004-05-21 | Amgen Inc. | Antiinflammation agents |
WO2005013800A2 (en) | 2003-07-15 | 2005-02-17 | The Johns Hopkins University | Elevated hedgehog pathway activity in digestive system tumors, and methods of treating digestive system tumors having elevated hedgehog pathway activity |
US20050075306A1 (en) | 2003-07-03 | 2005-04-07 | The Trustees Of The University Of Pennsylvania | Inhibition of Syk kinase expression |
WO2005033288A2 (en) | 2003-09-29 | 2005-04-14 | The Johns Hopkins University | Hedgehog pathway antagonists |
WO2005032343A2 (en) | 2003-10-01 | 2005-04-14 | The Johns Hopkins University | Hedgehog signaling in prostate regeneration neoplasia and metastasis |
WO2005042700A2 (en) | 2003-10-20 | 2005-05-12 | The Johns Hopkins University | Use of hedgehog pathway inhibitors in small-cell lung cancer |
US6927024B2 (en) | 1998-11-30 | 2005-08-09 | Genentech, Inc. | PCR assay |
US20050232969A1 (en) | 2004-04-19 | 2005-10-20 | Portola Pharmaceuticals, Inc. | Methods of treatment with Syk inhibitors |
US20050267059A1 (en) | 2003-11-14 | 2005-12-01 | Diana Beardsley | Syk-targeted nucleic acid interference |
WO2005113556A1 (en) | 2004-05-13 | 2005-12-01 | Icos Corporation | Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta |
WO2006028958A2 (en) | 2004-09-02 | 2006-03-16 | Genentech, Inc. | Pyridyl inhibitors of hedgehog signalling |
WO2006050351A2 (en) | 2004-10-28 | 2006-05-11 | Irm Llc | Compounds and compositions as hedgehog pathway modulators |
WO2006078283A2 (en) | 2004-04-30 | 2006-07-27 | Genentech, Inc. | Quinoxaline inhibitors of hedgehog signalling |
US7101663B2 (en) | 2001-03-02 | 2006-09-05 | University of Pittsburgh—of the Commonwealth System of Higher Education | PCR method |
US20060205731A1 (en) | 2005-02-28 | 2006-09-14 | Japan Tobacco Inc. | Novel aminopyridine compounds having Syk inhibitory activity |
US7122799B2 (en) | 2003-12-18 | 2006-10-17 | Palo Alto Research Center Incorporated | LED or laser enabled real-time PCR system and spectrophotometer |
US20060247262A1 (en) | 2003-09-16 | 2006-11-02 | Rolf Baenteli | 2,4 Di (hetero) -arylamino-pyrimidine derivatives as ZAP-70 and/or syk inhibitors |
US20070021493A1 (en) | 1999-09-16 | 2007-01-25 | Curis, Inc. | Mediators of hedgehog signaling pathways, compositions and uses related thereto |
US7186507B2 (en) | 1999-12-09 | 2007-03-06 | Indiana University Research And Technology Corporation | Fluorescent in situ RT-PCR |
US20070060546A1 (en) | 2003-01-22 | 2007-03-15 | Centre National De La Recherche Scientif | Novel use of mifepristone and derivatives therefor as hedgehog protein signaling pathway modulators and applications of same |
WO2007054623A2 (en) | 2005-11-11 | 2007-05-18 | Licentia Oy | Mammalian hedgehog signaling inhiabitors |
WO2007059157A1 (en) | 2005-11-14 | 2007-05-24 | Genentech, Inc. | Bisamide inhibitors of hedgehog signaling |
US7230004B2 (en) | 2004-08-27 | 2007-06-12 | Infinity Discovery, Inc. | Cyclopamine analogues and methods of use thereof |
US20070219195A1 (en) | 2006-03-20 | 2007-09-20 | Roche Palo Alto Llc | Methods of inhibiting BTK and SYK protein kinases |
WO2007120827A2 (en) | 2006-04-14 | 2007-10-25 | Novartis Ag | Use of biarylcarboxamides in the treatment of hedgehog pathway-related disorders |
WO2007131201A2 (en) | 2006-05-05 | 2007-11-15 | Irm Llc | Compounds and compositions as hedgehog pathway modulators |
WO2008030579A2 (en) | 2006-09-07 | 2008-03-13 | Biogen Idec Ma Inc. | Irak modulators for treating an inflammatory condition, cell proliferative disorder, immune disorder |
WO2008070357A2 (en) | 2006-10-31 | 2008-06-12 | Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Smoothened polypeptides and methods of use |
WO2008112913A1 (en) | 2007-03-14 | 2008-09-18 | Exelixis, Inc. | Inhibitors of the hedgehog pathway |
WO2008110611A1 (en) | 2007-03-15 | 2008-09-18 | Novartis Ag | Organic compounds and their uses |
WO2008131354A2 (en) | 2007-04-20 | 2008-10-30 | The Curators Of The University Of Missouri | Phytoestrogens as regulators of hedgehog signaling and methods of their use in cancer treatment |
US20080287420A1 (en) | 2007-03-07 | 2008-11-20 | Infinity Discovery, Inc. | Cyclopamine lactam analogs and methods of use thereof |
US20080293754A1 (en) | 2006-12-28 | 2008-11-27 | Brian Austad | Cyclopamine analogs |
US20080293755A1 (en) | 2007-03-07 | 2008-11-27 | Infinity Discovery, Inc. | Heterocyclic cyclopamine analogs and methods of use thereof |
US20090012031A1 (en) | 2007-07-03 | 2009-01-08 | The Regents Of The University Of Michigan | EZH2 Cancer Markers |
WO2009088990A1 (en) | 2008-01-04 | 2009-07-16 | Intellikine, Inc. | Certain chemical entities, compositions and methods |
WO2009088086A1 (en) | 2008-01-10 | 2009-07-16 | Asahi Glass Company, Limited | Glass, coating material for light-emitting device, and light-emitting device |
US20090203010A1 (en) | 2008-01-18 | 2009-08-13 | Katholieke Universiteit Leuven, K.U. Leuven R&D | MSMB-gene based diagnosis, staging and prognosis of prostate cancer |
WO2009114870A2 (en) | 2008-03-14 | 2009-09-17 | Intellikine, Inc. | Kinase inhibitors and methods of use |
US20090306214A1 (en) | 2006-05-09 | 2009-12-10 | Eliahu Kaplan | Use of Syk Tyrosine Kinase Inhibitors for the Treatment of Cell Proliferative Disorders |
US20090312319A1 (en) | 2008-01-04 | 2009-12-17 | Intellikine | Certain chemical entities, compositions and methods |
US20090312310A1 (en) | 2006-12-14 | 2009-12-17 | Haruko Kawato | Imidazothiazole derivatives |
WO2010006086A2 (en) | 2008-07-08 | 2010-01-14 | Intellikine, Inc. | Kinase inhibitors and methods of use |
US20100029693A1 (en) | 2003-08-14 | 2010-02-04 | Jason Douangpanya | Novel pi3k delta inhibitors and methods of use thereof |
US20100048567A1 (en) | 2008-04-16 | 2010-02-25 | Portola Pharmaceuticals Inc. | Inhibitors of syk and JAK protein kinases |
WO2010036380A1 (en) | 2008-09-26 | 2010-04-01 | Intellikine, Inc. | Heterocyclic kinase inhibitors |
WO2010057048A1 (en) * | 2008-11-13 | 2010-05-20 | Calistoga Pharmaceuticals Inc. | Therapies for hematologic malignancies |
US20100152159A1 (en) | 2008-12-08 | 2010-06-17 | Mitchell Scott A | Imidazopyrazine syk inhibitors |
US20100286114A1 (en) | 2007-12-13 | 2010-11-11 | Siena Biotech S.P.A. | Hedgehog pathway antagonists and therapeutic applications thereof |
US20100305096A1 (en) | 2009-05-27 | 2010-12-02 | Georgette Castanedo | Bicyclic pyrimidine pi3k inhibitor compounds selective for p110 delta, and methods of use |
US20100305084A1 (en) | 2009-05-27 | 2010-12-02 | Georgette Castanedo | Bicyclic indole-pyrimidine pi3k inhibitor compounds selective for p110 delta, and methods of use |
US20100316649A1 (en) | 2009-06-15 | 2010-12-16 | Jing Zhang | Small molecule inhibitors of spleen tyrosine kinase (syk) |
US20110053897A1 (en) | 2009-07-30 | 2011-03-03 | Irm Llc | Compounds and compositions as syk kinase inhibitors |
WO2011041399A2 (en) | 2009-09-29 | 2011-04-07 | Tyrogenex, Inc. | Pi3k (delta) selective inhibitors |
US20110112098A1 (en) | 2008-04-09 | 2011-05-12 | Piona Dariavach | Molecules inhibiting a metabolic pathway involving the syk protein tyrosine kinase and method for identifying said molecules |
US20110245205A1 (en) | 2009-12-17 | 2011-10-06 | Altman Michael D | Aminopyrimidines as syk inhibitors |
US20110251216A1 (en) | 2010-02-19 | 2011-10-13 | The Regents Of The University Of Michigan | Compositions and methods for inhibiting ezh2 |
US20110275655A1 (en) | 2009-01-13 | 2011-11-10 | Glaxo Group Limited | Pyrimidinecarboxamide derivatives as inhibitors of syk kinase |
WO2011146882A1 (en) * | 2010-05-21 | 2011-11-24 | Intellikine, Inc. | Chemical compounds, compositions and methods for kinase modulation |
US20110286990A1 (en) | 2008-10-31 | 2011-11-24 | University Of Rochester | Methods of diagnosing and treating fibrosis |
US20110306622A1 (en) * | 2010-06-11 | 2011-12-15 | Calitoga Pharmaceuticals, Inc. | Methods of treating hematological disorders with quinazolinone compounds in selected subjects |
US20120014962A1 (en) | 2009-02-04 | 2012-01-19 | University Of Newcastle Upon Tyne | Method of inhibiting fibrogenesis and treating fibrotic disease |
US20120071418A1 (en) | 2010-09-10 | 2012-03-22 | Epizyme, Inc. | Inhibitors of Human EZH2 and Methods of Use Thereof |
WO2012064973A2 (en) * | 2010-11-10 | 2012-05-18 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
US20120142671A1 (en) | 2010-11-01 | 2012-06-07 | Portola Pharmaceuticals, Inc. | Benzamides and nicotinamides as syk modulators |
US20120184568A1 (en) | 2011-01-10 | 2012-07-19 | Pingda Ren | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
US20120184526A1 (en) | 2009-07-30 | 2012-07-19 | Jianwei Che | Compounds and compositions as syk kinase inhibitors |
US20120220582A1 (en) | 2008-12-08 | 2012-08-30 | Gilead Connecticut, Inc. | Imidazopyrazine syk inhibitors |
WO2012121953A1 (en) * | 2011-03-08 | 2012-09-13 | The Trustees Of Columbia University In The City Of New York | Methods and pharmaceutical compositions for treating lymphoid malignancy |
US20120309735A1 (en) | 2009-12-17 | 2012-12-06 | Altman Michael D | Aminopyrimidines as syk inhibitors |
US20130040906A1 (en) | 2010-09-10 | 2013-02-14 | Kevin W. Kuntz | Inhibitors of Human EZH2, and Methods of Use Thereof |
US20130040984A1 (en) | 2010-04-29 | 2013-02-14 | Glaxo Group Limited | 7-(lH-PYRAZOL-4-YL)-1,6-NAPHTHYRIDINE COMPOUNDS AS SYK INHIBITORS |
US20130090309A1 (en) | 2011-05-04 | 2013-04-11 | Eric Thomas Romeo | Amino-pyridine-containing spleen tyrosine kinase (syk) inhibitors |
US20130116260A1 (en) | 2009-12-23 | 2013-05-09 | Takeda Pharmaceutical Company Limited | Fused heteroaromatic pyrrolidinones as syk inhibitors |
US20130195843A1 (en) | 2010-06-23 | 2013-08-01 | British Columbia Cancer Agency Branch | Biomarkers for Non-Hodgkin Lymphomas and Uses Thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR053272A1 (en) * | 2005-05-11 | 2007-04-25 | Hoffmann La Roche | DETERMINATION OF RESPONSIVES TO CHEMOTHERAPY |
PL2050749T3 (en) * | 2006-08-08 | 2018-03-30 | Chugai Seiyaku Kabushiki Kaisha | Pyrimidine derivative as pi3k inhibitor and use thereof |
HUE027698T2 (en) * | 2009-05-26 | 2016-10-28 | Abbvie Bahamas Ltd | Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases |
DK2914296T4 (en) * | 2012-11-01 | 2022-01-03 | Infinity Pharmaceuticals Inc | Treatment of cancers using PI3 kinase isoform modulators |
-
2013
- 2013-11-01 DK DK13792144.1T patent/DK2914296T4/en active
- 2013-11-01 ES ES13792144T patent/ES2691742T5/en active Active
- 2013-11-01 TR TR2018/12261T patent/TR201812261T4/en unknown
- 2013-11-01 PL PL13792144T patent/PL2914296T5/en unknown
- 2013-11-01 SI SI201331150T patent/SI2914296T2/en unknown
- 2013-11-01 RU RU2019131148A patent/RU2019131148A/en unknown
- 2013-11-01 PT PT13792144T patent/PT2914296T/en unknown
- 2013-11-01 RU RU2015120616A patent/RU2702908C2/en active
- 2013-11-01 BR BR112015010035A patent/BR112015010035A2/en not_active Application Discontinuation
- 2013-11-01 CN CN201380069471.1A patent/CN105102000B/en active Active
- 2013-11-01 EP EP13792144.1A patent/EP2914296B2/en active Active
- 2013-11-01 NZ NZ708563A patent/NZ708563A/en unknown
- 2013-11-01 RS RS20181027A patent/RS58023B2/en unknown
- 2013-11-01 WO PCT/US2013/067929 patent/WO2014071109A1/en active Application Filing
- 2013-11-01 JP JP2015540794A patent/JP6584952B2/en active Active
- 2013-11-01 MX MX2020009849A patent/MX2020009849A/en unknown
- 2013-11-01 AU AU2013337717A patent/AU2013337717B2/en active Active
- 2013-11-01 KR KR1020157014360A patent/KR102229478B1/en active IP Right Grant
- 2013-11-01 HU HUE13792144A patent/HUE040126T2/en unknown
- 2013-11-01 LT LTEP13792144.1T patent/LT2914296T/en unknown
- 2013-11-01 IL IL291945A patent/IL291945A/en unknown
- 2013-11-01 NZ NZ744567A patent/NZ744567A/en unknown
- 2013-11-01 MX MX2015005536A patent/MX2015005536A/en active IP Right Grant
- 2013-11-01 CA CA2890105A patent/CA2890105C/en active Active
-
2015
- 2015-04-30 IL IL238565A patent/IL238565B/en unknown
- 2015-05-07 ZA ZA2015/03134A patent/ZA201503134B/en unknown
-
2016
- 2016-02-18 HK HK16101799.3A patent/HK1213784A1/en unknown
-
2017
- 2017-04-28 US US15/581,414 patent/US20180015093A1/en not_active Abandoned
-
2018
- 2018-08-27 HR HRP20181367TT patent/HRP20181367T4/en unknown
- 2018-08-30 CY CY20181100908T patent/CY1122247T1/en unknown
-
2019
- 2019-01-14 AU AU2019200222A patent/AU2019200222B2/en active Active
- 2019-09-04 JP JP2019160815A patent/JP7088889B2/en active Active
-
2020
- 2020-04-14 US US16/848,485 patent/US20210060022A1/en active Pending
- 2020-09-24 AU AU2020239720A patent/AU2020239720A1/en not_active Abandoned
-
2021
- 2021-10-29 NL NL301141C patent/NL301141I2/en unknown
- 2021-11-11 NO NO2021049C patent/NO2021049I1/en unknown
- 2021-11-12 HU HUS2100049C patent/HUS2100049I1/en unknown
- 2021-11-12 LT LTPA2021527C patent/LTPA2021527I1/lt unknown
- 2021-11-12 CY CY2021035C patent/CY2021035I1/en unknown
-
2022
- 2022-02-18 JP JP2022023736A patent/JP2022078117A/en active Pending
Patent Citations (187)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3536809A (en) | 1969-02-17 | 1970-10-27 | Alza Corp | Medication method |
US3598123A (en) | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3845770A (en) | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3916899A (en) | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US4008719A (en) | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
US4270537A (en) | 1979-11-19 | 1981-06-02 | Romaine Richard A | Automatic hypodermic syringe |
US5739108A (en) | 1984-10-04 | 1998-04-14 | Monsanto Company | Prolonged release of biologically active polypeptides |
US5354556A (en) | 1984-10-30 | 1994-10-11 | Elan Corporation, Plc | Controlled release powder and process for its preparation |
US4596556A (en) | 1985-03-25 | 1986-06-24 | Bioject, Inc. | Hypodermic injection apparatus |
US5023252A (en) | 1985-12-04 | 1991-06-11 | Conrex Pharmaceutical Corporation | Transdermal and trans-membrane delivery of drugs |
US4886499A (en) | 1986-12-18 | 1989-12-12 | Hoffmann-La Roche Inc. | Portable injection appliance |
US5015235A (en) | 1987-02-20 | 1991-05-14 | National Carpet Equipment, Inc. | Syringe needle combination |
US4992445A (en) | 1987-06-12 | 1991-02-12 | American Cyanamid Co. | Transdermal delivery of pharmaceuticals |
US5001139A (en) | 1987-06-12 | 1991-03-19 | American Cyanamid Company | Enchancers for the transdermal flux of nivadipine |
US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
US4940460A (en) | 1987-06-19 | 1990-07-10 | Bioject, Inc. | Patient-fillable and non-invasive hypodermic injection device assembly |
US4790824A (en) | 1987-06-19 | 1988-12-13 | Bioject, Inc. | Non-invasive hypodermic injection device |
US5339163A (en) | 1988-03-16 | 1994-08-16 | Canon Kabushiki Kaisha | Automatic exposure control device using plural image plane detection areas |
US5073543A (en) | 1988-07-21 | 1991-12-17 | G. D. Searle & Co. | Controlled release formulations of trophic factors in ganglioside-lipsome vehicle |
US5141496A (en) | 1988-11-03 | 1992-08-25 | Tino Dalto | Spring impelled syringe guide with skin penetration depth adjustment |
WO1990005719A1 (en) | 1988-11-23 | 1990-05-31 | British Bio-Technology Limited | Hydroxamic acid based collagenase inhibitors |
US5059595A (en) | 1989-03-22 | 1991-10-22 | Bioresearch, S.P.A. | Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances |
US5639480A (en) | 1989-07-07 | 1997-06-17 | Sandoz Ltd. | Sustained release formulations of water soluble peptides |
US5120548A (en) | 1989-11-07 | 1992-06-09 | Merck & Co., Inc. | Swelling modulated polymeric drug delivery device |
US5312335A (en) | 1989-11-09 | 1994-05-17 | Bioject Inc. | Needleless hypodermic injection device |
US5064413A (en) | 1989-11-09 | 1991-11-12 | Bioject, Inc. | Needleless hypodermic injection device |
US5503627A (en) | 1989-11-09 | 1996-04-02 | Bioject, Inc. | Ampule for needleless injection |
US5733566A (en) | 1990-05-15 | 1998-03-31 | Alkermes Controlled Therapeutics Inc. Ii | Controlled release of antiparasitic agents in animals |
US5190521A (en) | 1990-08-22 | 1993-03-02 | Tecnol Medical Products, Inc. | Apparatus and method for raising a skin wheal and anesthetizing skin |
US5527288A (en) | 1990-12-13 | 1996-06-18 | Elan Medical Technologies Limited | Intradermal drug delivery device and method for intradermal delivery of drugs |
US5480381A (en) | 1991-08-23 | 1996-01-02 | Weston Medical Limited | Needle-less injector |
US5417662A (en) | 1991-09-13 | 1995-05-23 | Pharmacia Ab | Injection needle arrangement |
US5639476A (en) | 1992-01-27 | 1997-06-17 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
US5328483A (en) | 1992-02-27 | 1994-07-12 | Jacoby Richard M | Intradermal injection device with medication and needle guard |
WO1993018186A1 (en) | 1992-03-04 | 1993-09-16 | The Regents Of The University Of California | Comparative genomic hybridization (cgh) |
US5383851A (en) | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
US5520639A (en) | 1992-07-24 | 1996-05-28 | Bioject, Inc. | Needleless hypodermic injection methods and device |
US5704911A (en) | 1992-09-28 | 1998-01-06 | Equidyne Systems, Inc. | Needleless hypodermic jet injector |
US5569189A (en) | 1992-09-28 | 1996-10-29 | Equidyne Systems, Inc. | hypodermic jet injector |
US5334144A (en) | 1992-10-30 | 1994-08-02 | Becton, Dickinson And Company | Single use disposable needleless injector |
US5972891A (en) | 1992-12-07 | 1999-10-26 | Takeda Chemical Industries, Ltd. | Sustained-release preparation |
EP0606046A1 (en) | 1993-01-06 | 1994-07-13 | Ciba-Geigy Ag | Arylsulfonamido-substituted hydroxamic acids |
US5591767A (en) | 1993-01-25 | 1997-01-07 | Pharmetrix Corporation | Liquid reservoir transdermal patch for the administration of ketorolac |
US6376461B1 (en) | 1993-06-24 | 2002-04-23 | Takeda Chemical Industries, Ltd. | Sustained-release preparation |
US6087324A (en) | 1993-06-24 | 2000-07-11 | Takeda Chemical Industries, Ltd. | Sustained-release preparation |
US5649912A (en) | 1994-03-07 | 1997-07-22 | Bioject, Inc. | Ampule filling device |
US5466220A (en) | 1994-03-08 | 1995-11-14 | Bioject, Inc. | Drug vial mixing and transfer device |
US5674533A (en) | 1994-07-07 | 1997-10-07 | Recordati, S.A., Chemical And Pharmaceutical Company | Pharmaceutical composition for the controlled release of moguisteine in a liquid suspension |
US5599302A (en) | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
WO1996027583A1 (en) | 1995-03-08 | 1996-09-12 | Pfizer Inc. | Arylsulfonylamino hydroxamic acid derivatives |
US5863949A (en) | 1995-03-08 | 1999-01-26 | Pfizer Inc | Arylsulfonylamino hydroxamic acid derivatives |
US5861510A (en) | 1995-04-20 | 1999-01-19 | Pfizer Inc | Arylsulfonyl hydroxamic acid derivatives as MMP and TNF inhibitors |
WO1996033172A1 (en) | 1995-04-20 | 1996-10-24 | Pfizer Inc. | Arylsulfonyl hydroxamic acid derivatives as mmp and tnf inhibitors |
US6267981B1 (en) | 1995-06-27 | 2001-07-31 | Takeda Chemical Industries, Ltd. | Method of producing sustained-release preparation |
US6045830A (en) | 1995-09-04 | 2000-04-04 | Takeda Chemical Industries, Ltd. | Method of production of sustained-release preparation |
US5993855A (en) | 1995-09-18 | 1999-11-30 | Shiseido Company, Ltd. | Delayed drug-releasing microspheres |
WO1997013537A1 (en) | 1995-10-10 | 1997-04-17 | Visionary Medical Products Corporation | Gas pressured needle-less injection device |
EP0780386A1 (en) | 1995-12-20 | 1997-06-25 | F. Hoffmann-La Roche Ag | Matrix metalloprotease inhibitors |
US5893397A (en) | 1996-01-12 | 1999-04-13 | Bioject Inc. | Medication vial/syringe liquid-transfer apparatus |
US5980945A (en) | 1996-01-16 | 1999-11-09 | Societe De Conseils De Recherches Et D'applications Scientifique S.A. | Sustained release drug formulations |
WO1997037705A1 (en) | 1996-04-11 | 1997-10-16 | Weston Medical Limited | Spring-powered dispensing device for medical purposes |
US6264970B1 (en) | 1996-06-26 | 2001-07-24 | Takeda Chemical Industries, Ltd. | Sustained-release preparation |
WO1998003516A1 (en) | 1996-07-18 | 1998-01-29 | Pfizer Inc. | Phosphinate based inhibitors of matrix metalloproteases |
WO1998007697A1 (en) | 1996-08-23 | 1998-02-26 | Pfizer Inc. | Arylsulfonylamino hydroxamic acid derivatives |
US6419961B1 (en) | 1996-08-29 | 2002-07-16 | Takeda Chemical Industries, Ltd. | Sustained release microcapsules of a bioactive substance and a biodegradable polymer |
US5922356A (en) | 1996-10-09 | 1999-07-13 | Sumitomo Pharmaceuticals Company, Limited | Sustained release formulation |
US6113943A (en) | 1996-10-31 | 2000-09-05 | Takeda Chemical Industries, Ltd. | Sustained-release preparation capable of releasing a physiologically active substance |
US6699500B2 (en) | 1996-10-31 | 2004-03-02 | Takeda Chemical Industries, Ltd. | Sustained-release preparation capable of releasing a physiologically active substance |
US6197350B1 (en) | 1996-12-20 | 2001-03-06 | Takeda Chemical Industries, Ltd. | Method of producing a sustained-release preparation |
WO1998030566A1 (en) | 1997-01-06 | 1998-07-16 | Pfizer Inc. | Cyclic sulfone derivatives |
US5891474A (en) | 1997-01-29 | 1999-04-06 | Poli Industria Chimica, S.P.A. | Time-specific controlled release dosage formulations and method of preparing same |
WO1998033768A1 (en) | 1997-02-03 | 1998-08-06 | Pfizer Products Inc. | Arylsulfonylamino hydroxamic acid derivatives |
WO1998034915A1 (en) | 1997-02-07 | 1998-08-13 | Pfizer Inc. | N-hydroxy-beta-sulfonyl-propionamide derivatives and their use as inhibitors of matrix metalloproteinases |
WO1998034918A1 (en) | 1997-02-11 | 1998-08-13 | Pfizer Inc. | Arylsulfonyl hydroxamic acid derivatives |
US5993412A (en) | 1997-05-19 | 1999-11-30 | Bioject, Inc. | Injection apparatus |
WO1999029667A1 (en) | 1997-12-05 | 1999-06-17 | Pfizer Limited | Hydroxamic acid derivatives as matrix metalloprotease (mmp) inhibitors |
WO1999034850A1 (en) | 1998-01-08 | 1999-07-15 | Fiderm S.R.L. | Device for controlling the penetration depth of a needle, for application to an injection syringe |
EP0931788A2 (en) | 1998-01-27 | 1999-07-28 | Pfizer Limited | Metalloprotease inhibitors |
US6613358B2 (en) | 1998-03-18 | 2003-09-02 | Theodore W. Randolph | Sustained-release composition including amorphous polymer |
US20020006931A1 (en) | 1998-04-09 | 2002-01-17 | Philip A. Beachy | Inhibitors of hedgehog signaling pathways, compositions and uses related thereto |
WO1999052889A1 (en) | 1998-04-10 | 1999-10-21 | Pfizer Products Inc. | (4-arylsulfonylamino)-tetrahydropyran-4-carboxylic acid hydroxamides |
WO1999052910A1 (en) | 1998-04-10 | 1999-10-21 | Pfizer Products Inc. | Bicyclic hydroxamic acid derivatives |
US6589548B1 (en) | 1998-05-16 | 2003-07-08 | Mogam Biotechnology Research Institute | Controlled drug delivery system using the conjugation of drug to biodegradable polyester |
US6927024B2 (en) | 1998-11-30 | 2005-08-09 | Genentech, Inc. | PCR assay |
US20070021493A1 (en) | 1999-09-16 | 2007-01-25 | Curis, Inc. | Mediators of hedgehog signaling pathways, compositions and uses related thereto |
WO2001019800A2 (en) | 1999-09-16 | 2001-03-22 | Curis, Inc. | Mediators of hedgehog signaling pathways, compositions and uses related thereto |
WO2001027135A2 (en) | 1999-10-13 | 2001-04-19 | Johns Hopkins University School Of Medicine | Regulators of the hedgehog pathway, compositions and uses related thereto |
WO2001026644A2 (en) | 1999-10-14 | 2001-04-19 | Curis, Inc. | Mediators of hedgehog signaling pathways, compositions and uses related thereto |
US6248363B1 (en) | 1999-11-23 | 2001-06-19 | Lipocine, Inc. | Solid carriers for improved delivery of active ingredients in pharmaceutical compositions |
US7186507B2 (en) | 1999-12-09 | 2007-03-06 | Indiana University Research And Technology Corporation | Fluorescent in situ RT-PCR |
WO2001049279A2 (en) | 1999-12-30 | 2001-07-12 | Yeda Research And Development Co. Ltd. | Use of steroidal alkaloids to reverse multidrug resistance |
WO2001074344A2 (en) | 2000-03-30 | 2001-10-11 | Curis, Inc. | Small organic molecule regulators of cell proliferation |
US7101663B2 (en) | 2001-03-02 | 2006-09-05 | University of Pittsburgh—of the Commonwealth System of Higher Education | PCR method |
WO2003011219A2 (en) | 2001-07-27 | 2003-02-13 | Curis, Inc. | Mediators of hedgehog signaling pathways, compositions and uses related thereto |
WO2003030902A1 (en) | 2001-10-09 | 2003-04-17 | Tularik Inc. | Imidazole derivates as anti-inflammatory agents |
US20030113828A1 (en) | 2001-11-09 | 2003-06-19 | Ginsberg Mark H. | Compositions and methods for modulating Syk function |
US20030229090A1 (en) | 2001-12-21 | 2003-12-11 | Boehringer Ingelheim Pharmaceuticals, Inc. | 1,6 Naphthyridines useful as inhibitors of SYK kinase |
US20080114024A1 (en) | 2001-12-21 | 2008-05-15 | Cywin Charles L | 1,6 naphthyridines useful as inhibitors of syk kinase |
US20030158195A1 (en) | 2001-12-21 | 2003-08-21 | Cywin Charles L. | 1,6 naphthyridines useful as inhibitors of SYK kinase |
US20090171089A1 (en) | 2001-12-21 | 2009-07-02 | Boehringer Ingelheim Pharmaceuticals, Inc. | 1,6 naphthridines useful as inhibitors of syk kinase |
WO2003088970A2 (en) | 2002-04-22 | 2003-10-30 | Johns Hopkins University School Of Medicine | Modulators of hedgehog signaling pathways, compositions and uses related thereto |
WO2004020599A2 (en) | 2002-08-29 | 2004-03-11 | Curis, Inc. | Hedgehog antagonists, methods and uses related thereto |
WO2004041285A1 (en) | 2002-10-31 | 2004-05-21 | Amgen Inc. | Antiinflammation agents |
US20070060546A1 (en) | 2003-01-22 | 2007-03-15 | Centre National De La Recherche Scientif | Novel use of mifepristone and derivatives therefor as hedgehog protein signaling pathway modulators and applications of same |
US20120093913A1 (en) | 2003-07-03 | 2012-04-19 | The Trustees Of The University Of Pennsylvania | Inhibition of SYK kinase expression |
US20050075306A1 (en) | 2003-07-03 | 2005-04-07 | The Trustees Of The University Of Pennsylvania | Inhibition of Syk kinase expression |
US20070219152A1 (en) | 2003-07-03 | 2007-09-20 | The Trustees Of The University Of Pennsylvania | Inhibition of Syk kinase expression |
WO2005013800A2 (en) | 2003-07-15 | 2005-02-17 | The Johns Hopkins University | Elevated hedgehog pathway activity in digestive system tumors, and methods of treating digestive system tumors having elevated hedgehog pathway activity |
US20100029693A1 (en) | 2003-08-14 | 2010-02-04 | Jason Douangpanya | Novel pi3k delta inhibitors and methods of use thereof |
US20060247262A1 (en) | 2003-09-16 | 2006-11-02 | Rolf Baenteli | 2,4 Di (hetero) -arylamino-pyrimidine derivatives as ZAP-70 and/or syk inhibitors |
US20100152182A1 (en) | 2003-09-16 | 2010-06-17 | Rolf Baenteli | 2,4- Di(hetero)-arylamino-pyrimidine Derivatives as ZAP-70 and/or SYK inhibitors |
WO2005033288A2 (en) | 2003-09-29 | 2005-04-14 | The Johns Hopkins University | Hedgehog pathway antagonists |
WO2005032343A2 (en) | 2003-10-01 | 2005-04-14 | The Johns Hopkins University | Hedgehog signaling in prostate regeneration neoplasia and metastasis |
WO2005042700A2 (en) | 2003-10-20 | 2005-05-12 | The Johns Hopkins University | Use of hedgehog pathway inhibitors in small-cell lung cancer |
US20050267059A1 (en) | 2003-11-14 | 2005-12-01 | Diana Beardsley | Syk-targeted nucleic acid interference |
US7122799B2 (en) | 2003-12-18 | 2006-10-17 | Palo Alto Research Center Incorporated | LED or laser enabled real-time PCR system and spectrophotometer |
US20120027834A1 (en) | 2004-04-19 | 2012-02-02 | Portola Phamaceuticals, Inc. | Methods of treatment with syk inhibitors |
US20050232969A1 (en) | 2004-04-19 | 2005-10-20 | Portola Pharmaceuticals, Inc. | Methods of treatment with Syk inhibitors |
WO2006078283A2 (en) | 2004-04-30 | 2006-07-27 | Genentech, Inc. | Quinoxaline inhibitors of hedgehog signalling |
WO2005113556A1 (en) | 2004-05-13 | 2005-12-01 | Icos Corporation | Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta |
US7230004B2 (en) | 2004-08-27 | 2007-06-12 | Infinity Discovery, Inc. | Cyclopamine analogues and methods of use thereof |
WO2006028958A2 (en) | 2004-09-02 | 2006-03-16 | Genentech, Inc. | Pyridyl inhibitors of hedgehog signalling |
WO2006050351A2 (en) | 2004-10-28 | 2006-05-11 | Irm Llc | Compounds and compositions as hedgehog pathway modulators |
US20060205731A1 (en) | 2005-02-28 | 2006-09-14 | Japan Tobacco Inc. | Novel aminopyridine compounds having Syk inhibitory activity |
WO2007054623A2 (en) | 2005-11-11 | 2007-05-18 | Licentia Oy | Mammalian hedgehog signaling inhiabitors |
WO2007059157A1 (en) | 2005-11-14 | 2007-05-24 | Genentech, Inc. | Bisamide inhibitors of hedgehog signaling |
US20070219195A1 (en) | 2006-03-20 | 2007-09-20 | Roche Palo Alto Llc | Methods of inhibiting BTK and SYK protein kinases |
WO2007120827A2 (en) | 2006-04-14 | 2007-10-25 | Novartis Ag | Use of biarylcarboxamides in the treatment of hedgehog pathway-related disorders |
WO2007131201A2 (en) | 2006-05-05 | 2007-11-15 | Irm Llc | Compounds and compositions as hedgehog pathway modulators |
US20090306214A1 (en) | 2006-05-09 | 2009-12-10 | Eliahu Kaplan | Use of Syk Tyrosine Kinase Inhibitors for the Treatment of Cell Proliferative Disorders |
WO2008030579A2 (en) | 2006-09-07 | 2008-03-13 | Biogen Idec Ma Inc. | Irak modulators for treating an inflammatory condition, cell proliferative disorder, immune disorder |
WO2008070357A2 (en) | 2006-10-31 | 2008-06-12 | Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services | Smoothened polypeptides and methods of use |
US20100093625A1 (en) | 2006-10-31 | 2010-04-15 | The U.S.A., As Represented By The Secretary, Dept. Of Health And Human Service | Smoothened polypeptides and methods of use |
US20090312310A1 (en) | 2006-12-14 | 2009-12-17 | Haruko Kawato | Imidazothiazole derivatives |
US7812164B2 (en) | 2006-12-28 | 2010-10-12 | Infinity Pharmaceuticals, Inc. | Cyclopamine analogs |
US20080293754A1 (en) | 2006-12-28 | 2008-11-27 | Brian Austad | Cyclopamine analogs |
US20080293755A1 (en) | 2007-03-07 | 2008-11-27 | Infinity Discovery, Inc. | Heterocyclic cyclopamine analogs and methods of use thereof |
US20080287420A1 (en) | 2007-03-07 | 2008-11-20 | Infinity Discovery, Inc. | Cyclopamine lactam analogs and methods of use thereof |
WO2008112913A1 (en) | 2007-03-14 | 2008-09-18 | Exelixis, Inc. | Inhibitors of the hedgehog pathway |
WO2008110611A1 (en) | 2007-03-15 | 2008-09-18 | Novartis Ag | Organic compounds and their uses |
WO2008131354A2 (en) | 2007-04-20 | 2008-10-30 | The Curators Of The University Of Missouri | Phytoestrogens as regulators of hedgehog signaling and methods of their use in cancer treatment |
US20100222420A1 (en) | 2007-07-03 | 2010-09-02 | The Regents Of The University Of Michigan | Compositions and methods for inhibiting ezh2 |
US20090012031A1 (en) | 2007-07-03 | 2009-01-08 | The Regents Of The University Of Michigan | EZH2 Cancer Markers |
US20100286114A1 (en) | 2007-12-13 | 2010-11-11 | Siena Biotech S.P.A. | Hedgehog pathway antagonists and therapeutic applications thereof |
US20090312319A1 (en) | 2008-01-04 | 2009-12-17 | Intellikine | Certain chemical entities, compositions and methods |
WO2009088990A1 (en) | 2008-01-04 | 2009-07-16 | Intellikine, Inc. | Certain chemical entities, compositions and methods |
US20110046165A1 (en) | 2008-01-04 | 2011-02-24 | Pingda Ren | Certain chemical entitles, compositions and methods |
WO2009088986A1 (en) * | 2008-01-04 | 2009-07-16 | Intellikine, Inc. | Certain chemical entities, compositions and methods |
WO2009088086A1 (en) | 2008-01-10 | 2009-07-16 | Asahi Glass Company, Limited | Glass, coating material for light-emitting device, and light-emitting device |
US20090203010A1 (en) | 2008-01-18 | 2009-08-13 | Katholieke Universiteit Leuven, K.U. Leuven R&D | MSMB-gene based diagnosis, staging and prognosis of prostate cancer |
WO2009114870A2 (en) | 2008-03-14 | 2009-09-17 | Intellikine, Inc. | Kinase inhibitors and methods of use |
US20110112098A1 (en) | 2008-04-09 | 2011-05-12 | Piona Dariavach | Molecules inhibiting a metabolic pathway involving the syk protein tyrosine kinase and method for identifying said molecules |
US20100048567A1 (en) | 2008-04-16 | 2010-02-25 | Portola Pharmaceuticals Inc. | Inhibitors of syk and JAK protein kinases |
US20120101275A1 (en) | 2008-04-16 | 2012-04-26 | Portola Pharmaceuticals, Inc. | Inhibitors of syk and jak protein kinases |
US20120130073A1 (en) | 2008-04-16 | 2012-05-24 | Portola Pharmaceuticals, Inc. | Inhibitors of syk and jak protein kinases |
US20130165431A1 (en) | 2008-04-16 | 2013-06-27 | Portola Pharmaceuticals, Inc. | Inhibitors of syk and jak protein kinases |
WO2010006086A2 (en) | 2008-07-08 | 2010-01-14 | Intellikine, Inc. | Kinase inhibitors and methods of use |
WO2010036380A1 (en) | 2008-09-26 | 2010-04-01 | Intellikine, Inc. | Heterocyclic kinase inhibitors |
US20110286990A1 (en) | 2008-10-31 | 2011-11-24 | University Of Rochester | Methods of diagnosing and treating fibrosis |
WO2010057048A1 (en) * | 2008-11-13 | 2010-05-20 | Calistoga Pharmaceuticals Inc. | Therapies for hematologic malignancies |
US20120220582A1 (en) | 2008-12-08 | 2012-08-30 | Gilead Connecticut, Inc. | Imidazopyrazine syk inhibitors |
US20100152159A1 (en) | 2008-12-08 | 2010-06-17 | Mitchell Scott A | Imidazopyrazine syk inhibitors |
US20110275655A1 (en) | 2009-01-13 | 2011-11-10 | Glaxo Group Limited | Pyrimidinecarboxamide derivatives as inhibitors of syk kinase |
US20120014962A1 (en) | 2009-02-04 | 2012-01-19 | University Of Newcastle Upon Tyne | Method of inhibiting fibrogenesis and treating fibrotic disease |
US20100305084A1 (en) | 2009-05-27 | 2010-12-02 | Georgette Castanedo | Bicyclic indole-pyrimidine pi3k inhibitor compounds selective for p110 delta, and methods of use |
US20100305096A1 (en) | 2009-05-27 | 2010-12-02 | Georgette Castanedo | Bicyclic pyrimidine pi3k inhibitor compounds selective for p110 delta, and methods of use |
US20100316649A1 (en) | 2009-06-15 | 2010-12-16 | Jing Zhang | Small molecule inhibitors of spleen tyrosine kinase (syk) |
WO2011008302A1 (en) | 2009-07-15 | 2011-01-20 | Intellikine, Inc. | Certain chemical entities, compositions and methods |
US20120184526A1 (en) | 2009-07-30 | 2012-07-19 | Jianwei Che | Compounds and compositions as syk kinase inhibitors |
US20110053897A1 (en) | 2009-07-30 | 2011-03-03 | Irm Llc | Compounds and compositions as syk kinase inhibitors |
WO2011041399A2 (en) | 2009-09-29 | 2011-04-07 | Tyrogenex, Inc. | Pi3k (delta) selective inhibitors |
US20110245205A1 (en) | 2009-12-17 | 2011-10-06 | Altman Michael D | Aminopyrimidines as syk inhibitors |
US20120309735A1 (en) | 2009-12-17 | 2012-12-06 | Altman Michael D | Aminopyrimidines as syk inhibitors |
US20120277192A1 (en) | 2009-12-17 | 2012-11-01 | Altman Michael D | Aminopyrimidines as syk inhibitors |
US20130116260A1 (en) | 2009-12-23 | 2013-05-09 | Takeda Pharmaceutical Company Limited | Fused heteroaromatic pyrrolidinones as syk inhibitors |
US20110251216A1 (en) | 2010-02-19 | 2011-10-13 | The Regents Of The University Of Michigan | Compositions and methods for inhibiting ezh2 |
US20130040984A1 (en) | 2010-04-29 | 2013-02-14 | Glaxo Group Limited | 7-(lH-PYRAZOL-4-YL)-1,6-NAPHTHYRIDINE COMPOUNDS AS SYK INHIBITORS |
WO2011146882A1 (en) * | 2010-05-21 | 2011-11-24 | Intellikine, Inc. | Chemical compounds, compositions and methods for kinase modulation |
US20110306622A1 (en) * | 2010-06-11 | 2011-12-15 | Calitoga Pharmaceuticals, Inc. | Methods of treating hematological disorders with quinazolinone compounds in selected subjects |
US20130195843A1 (en) | 2010-06-23 | 2013-08-01 | British Columbia Cancer Agency Branch | Biomarkers for Non-Hodgkin Lymphomas and Uses Thereof |
US20130040906A1 (en) | 2010-09-10 | 2013-02-14 | Kevin W. Kuntz | Inhibitors of Human EZH2, and Methods of Use Thereof |
US20120071418A1 (en) | 2010-09-10 | 2012-03-22 | Epizyme, Inc. | Inhibitors of Human EZH2 and Methods of Use Thereof |
US20120142671A1 (en) | 2010-11-01 | 2012-06-07 | Portola Pharmaceuticals, Inc. | Benzamides and nicotinamides as syk modulators |
WO2012064973A2 (en) * | 2010-11-10 | 2012-05-18 | Infinity Pharmaceuticals, Inc. | Heterocyclic compounds and uses thereof |
US20120184568A1 (en) | 2011-01-10 | 2012-07-19 | Pingda Ren | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
WO2012121953A1 (en) * | 2011-03-08 | 2012-09-13 | The Trustees Of Columbia University In The City Of New York | Methods and pharmaceutical compositions for treating lymphoid malignancy |
US20130090309A1 (en) | 2011-05-04 | 2013-04-11 | Eric Thomas Romeo | Amino-pyridine-containing spleen tyrosine kinase (syk) inhibitors |
Non-Patent Citations (171)
Title |
---|
"IRAK-4 inhibitors. Part II: a structure-based assessment of imidazo[1 2-a]pyridine binding", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, no. 11, 2008, pages 3291 - 3295 |
"IRAK-4 inhibitors. Part III: a series ofimidazo[1 ,2-a]pyridines", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, no. 11, 2008, pages 3656 - 3660 |
"Remingtons Pharmaceutical Sciences 20th Ed.,", 2000, LIPPINCOTT WILLIAMS & WILKINS |
AKINLEYE ET AL., JOURNAL OF HEMATOLOGY & ONCOLOGY, vol. 6, 2013, pages 59 |
AL-ALWAN ET AL., J IMMUNOL., vol. 178, no. 4, 2007, pages 2328 - 35 |
ALI ET AL., NATURE, vol. 431, no. 7011, 2004, pages 1007 - 11 |
ANDERSON, PHILIP O.; KNOBEN, JAMES E.; TROUTMAN, WILLIAM G,: "Handbook of Clinical Drug Data, Tenth Edition,", 2002, MCGRAW-HILL |
ANGERER ET AL.: "Genetic Engineering: Principles and Methods", vol. 7, 1985, PLENUM PRESS, pages: 43 - 65 |
ANONYMOUS: "Infinity Regains Worldwide Rights to PI3K, FAAH and Early Discovery Programs", 18 July 2012 (2012-07-18), XP002718538, Retrieved from the Internet <URL:http://phx.corporate-ir.net/phoenix.zhtml?c=121941&p=irol-newsArticle_print&ID=1715695&highlight=> [retrieved on 20140110] * |
AUSUBEL ET AL.: "Short Protocols in Molecular Biology 3rd ed.,", 1995, WILEY & SONS |
BALAKRISHNAN ET AL.: "AT -101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance", BLOOD, vol. 113, 2009, pages 149 - 53, XP055395103, DOI: doi:10.1182/blood-2008-02-138560 |
BALAKRISHNAN ET AL.: "Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells", BLOOD, vol. 116, 2010, pages 1083 - 91 |
BANSAL, N ET AL., CANCER CONTROL., vol. 16, no. 1, 2009, pages 8 - 13 |
BERGE ET AL.: "describes pharmaceutically acceptable salts", J. PHARMACEUTICAL SCIENCES, vol. 66, 1977, pages 1 - 19 |
BI ET AL., JBIOL CHEM, vol. 274, 1999, pages 10963 - 10968 |
BILANCIO ET AL., BLOOD, vol. 107, no. 2, 2006, pages 642 - 50 |
BROWN JENNIFER R ET AL: "Phase I Trial of SAR245408 (S08), a Pan-Phosphatidylinositol 3 Kinase (PI3K) Inhibitor, in Patients with Chronic Lymphocytic Leukemia (CLL) and Lymphoma", BLOOD, vol. 118, no. 21, November 2011 (2011-11-01), & 53RD ANNUAL MEETING AND EXPOSITION OF THE AMERICAN-SOCIETY-OF-HEMATOLOGY (ASH); SAN DIEGO, CA, USA; DECEMBER 10 -13, 2011, pages 1153, XP008168091 * |
BRZEZIANSKA, E; PASTUSZAK-LEWANDOSKA, D, FRONT BIOSCI., vol. 16, 2011, pages 422 - 39 |
BUCHWALD ET AL., SURGERY, vol. 88, 1980, pages 507 |
BUCKLEY ET AL.: "IRAK-4 inhibitors. Part 1: a series of amides", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, no. 11, 2008, pages 3211 - 3214, XP022711199, DOI: doi:10.1016/j.bmcl.2008.04.058 |
BUITENHUIS ET AL.: "The role of the PI3k-PKB signaling module in regulation of hematopoiesis", CELL CYCLE, vol. 8, no. 4, 2009, pages 560 - 566 |
BUNDGARD, H.: "Design of Prodrugs", 1985, ELSEVIER, pages: 7 9,21 2 |
BURGER ET AL.: "Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1", BLOOD, vol. 96, 2000, pages 2655 - 63, XP002649433 |
BURGER ET AL.: "High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation", BLOOD, vol. 113, no. 13, 2009, pages 3050 - 3058, XP055005241, DOI: doi:10.1182/blood-2008-07-170415 |
BURGER: "Inhibiting B-Cell Receptor Signaling Pathways in Chronic Lymphocytic Leukemia", CURR. MEMATOL. MALIG. REP., vol. 7, 2012, pages 26 - 33, XP035015776, DOI: doi:10.1007/s11899-011-0104-z |
BURGER: "Inhibiting B-Cell Receptor Signaling Pathways in Chronic Lymphocytic. Leukemia", CURR. MEMATOL. MALIG. REP., vol. 7, 2012, pages 26 - 33, XP035015776, DOI: doi:10.1007/s11899-011-0104-z |
BUSTIN ET AL., CLIN. SCI., vol. 109, 2005, pages 365 - 379 |
CAMPS ET AL.: "Blockade of PI3Ky suppresses joint inflammation and damage in mouse models of rheumatoid arthritis", NAT. MED., vol. 11, no. 9, 2005, pages 936 - 943, XP055105863, DOI: doi:10.1038/nm1284 |
CANTRELL, D.A., JOURNAL OF CELL SCIENCE, vol. 114, 2001, pages 1439 - 1445 |
CARRUTHERS: "Some Modern Methods of Organic Synthesis, 3rd ed.,", 1987, CAMBRIDGE UNIVERSITY PRESS |
CHAPUIS, N ET AL., CLIN CANCER RES., vol. 16, no. 22, 2010, pages 5424 - 35 |
CHEN J.S. ET AL., MOL CANCER THER., vol. 7, no. 4, 2008, pages 841 - 50 |
CHEN, JS ET AL., MOL CANCER THER., vol. 7, 2008, pages 841 - 850 |
CIRAOLO ET AL., MOLECULAR BIOLOGY OF THE CELL, vol. 21, 2010, pages 704 - 711 |
CLAYTON ET AL., J EXP MED., vol. 196, no. 6, 2002, pages 753 - 63 |
COMERFOLD, PLOS ONE, vol. 7, 2012, pages E45095 |
COURTNEY, KD ET AL., J CLIN ONCOL., vol. 28, no. 6, 2010, pages 1075 - 1083 |
CUSHING ET AL.: "PI3K8 and PI3Ky as Targets for Autoimmune and Inflammatory Diseases", J. MED. CHEM., vol. 55, 2012, pages 8559 - 8581, XP055110817, DOI: doi:10.1021/jm300847w |
DAVIS ET AL.: "Chronic active B-cell-receptor signaling in diffuse large B-cell lymphoma", NATURE, vol. 463, 2010, pages 88 - 92, XP002646596, DOI: doi:10.1038/NATURE08638 |
DE VOS SVEN ET AL: "A Phase 1 Study of the Selective Phosphatidylinositol 3-Kinase-Delta (PI3K delta) Inhibitor, Cal-101 (GS-1101), in Combination with Rituximab and/or Bendamustine in Patients with Previously Treated, Indolent Non-Hodgkin Lymphoma (iNHL)", BLOOD, AMERICAN SOCIETY OF HEMATOLOGY, US, vol. 118, no. 21, 13 December 2011 (2011-12-13), pages 1160, XP008152289, ISSN: 0006-4971 * |
DE WEERS ET AL.: "The Bruton's tyrosine kinase gene is expressed throughout B cell differentiation, from early precursor B cell stages preceding immunoglobulin gene rearrangement up to mature B cell stages", EUR. J. IMMUNOL., vol. 23, 1993, pages 3109 - 3114 |
DIL ET AL., MOL IMMUNOL., vol. 46, no. 10, 2009, pages 1970 - 78 |
DURAND ET AL., J IMMUNOL., vol. 183, no. 9, 2009, pages 5673 - 84 |
E.L. ELIEL,: "Stereochemistry of Carbon Compounds", 1962, MCGRAW-HILL |
E.L. ELIEL,: "Tables of Resolving Agents and Optical Resolutions", 1972, UNIV. OF NOTRE DAME PRESS, pages: 268 |
EDWARD B. ROCHE,: "Bioreversible Carriers in Drug Design", 1987, AMERICAN PHARMACEUTICAL ASSOCIATION AND PERGAMON PRESS |
FAY WANG ET AL.: "RNAscope: A Novel in Situ RNA Analysis Platform for Formalin-Fixed, Paraffin-Embedded Tissues", THE JOURNAL OF MOLECULAR DIAGNOSITCS, vol. 14, no. 1, 2012, pages 22 - 29 |
FLINN IAN W ET AL: "Clinical Safety and Activity in a Phase 1 Trial of IPI-145, a Potent Inhibitor of Phosphoinositide-3-Kinase-delta,gamma, in Patients with Advanced Hematologic Malignancies", BLOOD, vol. 120, no. 21, 16 November 2012 (2012-11-16), & 54TH ANNUAL MEETING AND EXPOSITION OF THE AMERICAN-SOCIETY-OF-HEMATOLOGY (ASH); ATLANTA, GA, USA; DECEMBER 08 -11, 2012, pages 3663, XP008166549 * |
FLINN, IW ET AL., J CLIN ONCOL., vol. 27, 2009, pages 156S |
FOSTER, F.M. ET AL., J CELL SCI, vol. 116, 2003, pages 3037 - 3040 |
FRESNO VARA, JA ET AL., CANCER TREAT REV., vol. 30, no. 2, 2004, pages 193 - 204 |
FRUMAN D A ET AL: "PI3K[delta] inhibitors in cancer: Rationale and serendipity merge in the clinic", CANCER DISCOVERY 2011 AMERICAN ASSOCIATION FOR CANCER RESEARCH INC. USA, vol. 1, no. 7, December 2011 (2011-12-01), pages 562 - 572, XP002718537, ISSN: 2159-8274 * |
FUNG-LEUNG, CELL SIGNAL., vol. 23, no. 4, 2011, pages 603 - 8 |
FUNG-LEUNG, CELL, vol. 23, no. 4, 2011, pages 603 - 8 |
FURMAN RICHARD R ET AL: "CAL-101, An Isoform-Selective Inhibitor of Phosphatidylinositol 3-Kinase P110 delta, Demonstrates Clinical Activity and Pharmacodynamic Effects In patients with Relapsed or Refractory Chronic Lymphocytic Leukemia", BLOOD; 52ND ANNUAL MEETING OF THE AMERICAN-SOCIETY-OF-HEMATOLOGY (ASH), AMERICAN SOCIETY OF HEMATOLOGY, US; ORLANDO, FL, USA, vol. 116, no. 21, 1 November 2010 (2010-11-01), pages 31, XP008168032, ISSN: 0006-4971 * |
FURUKAWA, T, J GASTROENTEROL., vol. 43, no. 12, 2008, pages 905 - 11 |
GAESTEL ET AL., CURRENT MEDICINAL CHEMISTRY, vol. 14, 2007, pages 2214 - 2234 |
GALL ET AL., METH. ENZYMOL., vol. 21, 1981, pages 470 - 480 |
GARCON ET AL., BLOOD, vol. 111, no. 3, 2008, pages 1464 - 71 |
GOODMAN AND GILMAN,: "The Pharmacological Basis of Therapeutics, Tenth Edition,", 2001, MCGRAW HILL |
GOODMAN; GILMAN: "Physician's Desk Reference", HARDMAN, LIMBIRD AND GILMAN, article "The Pharmacological Basis of Therapeutics" |
GOODSON, MEDICAL APPLICATIONS OF CONTROLLED RELEASE, vol. 2, 1984, pages 115 - 138 |
GREENE; WUTS: "Protective Groups in Organic Synthesis, 3rd ed.,", vol. 3, 1999, JOHN WILEY & SONS |
GUO ET AL., J EXP MED., vol. 205, no. 10, 2008, pages 2419 - 35 |
H. BUNDGAARD: "Design of Prodrugs", 1985, ELSEVIER |
HALUSKA, F ET AL., SEMIN ONCOL., vol. 34, no. 6, 2007, pages 546 - 54 |
HAYLOCK-JACOBS ET AL., J AUTOIMMUN, vol. 36, no. 3-4, 2011, pages 278 - 87 |
HAYLOCK-JACOBS ET AL.: "PI3K8 drives the pathogenesis of experimental autoimmune encephalomyelitis by inhibiting effector T cell apoptosis and promoting Thl7 differentiation", J. AUTOIMMUN., vol. 36, 2011, pages 278 - 287, XP028226364, DOI: doi:10.1016/j.jaut.2011.02.006 |
HERISHANU ET AL.: "The lymph node microenvironment promotes B-cell receptor signaling, NF-KB activation, and tumor proliferation in chronic lymphocytic leukemia", BLOOD, vol. 117, no. 2, 2011, pages 563 - 574 |
HERRERA, VA ET AL., ANTICANCER RES., vol. 31, no. 3, 2011, pages 849 - 54 |
HIGUCHI, T. ET AL.: "Pro drugs as Novel Delivery Systems", vol. 14, A.C.S. SYMPOSIUM SERIES |
HIRSCH ET AL.: "Central Role for G Protein-Coupled Phosphoinositide 3-Kinase y in Inflammation", SCIENCE, vol. 287, 2000, pages 1049 - 1053 |
HOELLENRIEGE; BURGER: "Phosphoinositide 3'-kinase delta: turning offBCR signaling in Chronic Lymphocytic Leukemia", ONCOTARGET, vol. 2, no. 10, 2011, pages 737 - 738 |
HOELLENRIEGEL ET AL.: "The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leuckemia", BLOOD, vol. 118, no. 13, 2011, pages 3603 - 3612, XP002676784, DOI: doi:10.1182/blood-2011-05-352492 |
HOELLENRIEGEL; BURGER: "Phosphoinositide 3'-kinase delta: turning off BCR signaling in Chronic Lymphocytic Leukemia", ONCOTARGET, vol. 2, no. 10, 2011, pages 737 - 738 |
HOFF D. ET AL., N ENGL. J. MED., vol. 361, no. 12, 2009, pages 1164 - 72 |
IKEDA H. ET AL., BLOOD, vol. 116, no. 9, 2010, pages 1460 - 8 |
INES M MACIAS-PEREZ ET AL: "B-Cell Receptor Pathobiology and Targeting in NHL", CURRENT ONCOLOGY REPORTS, CURRENT SCIENCE INC, NEW YORK, vol. 14, no. 5, 5 August 2012 (2012-08-05), pages 411 - 418, XP035106569, ISSN: 1534-6269, DOI: 10.1007/S11912-012-0254-8 * |
JACQUES: "Enantiomers, Racemates and Resolutions", 1981, WILEY INTERSCIENCE |
JARMIN ET AL., J. CLIN. INVEST., vol. 118, no. 3, 2008, pages 1154 - 64 |
JI ET AL., BLOOD, vol. 110, no. 8, 2007, pages 2940 - 47 |
JIMENO, A ET AL., J CLIN ONCOL., vol. 27, 2009, pages 156S |
KALLIONIEMI ET AL., SCIENCE, vol. 258, 1992, pages 818 - 821 |
KATSO ET AL., ANNU. REV. CELL DEV. BIOL., vol. 17, 2001, pages 615 - 675 |
KATZUNG,: "Basic and Clinical Pharmacology, Twelfth Edition,", 2011, MCGRAW HILL |
KHWAJA, CURR TOP MICROBIOL LMMUNOL., vol. 347, 2010, pages 169 - 88 |
KIM ET AL., BLOOD, vol. 110, no. 9, 2007, pages 3202 - 08 |
KIM ET AL., TRENDS IMMUNOL., vol. 29, no. 10, 2008, pages 493 - 501 |
KNIGHT ET AL., CELL, vol. 125, no. 4, 2006, pages 733 - 47 |
KONG, D; YAMORI, T, CURR MED CHEM., vol. 16, no. 22, 2009, pages 2839 - 54 |
KONRAD ET AL., J. BIOL. CHEM., vol. 283, no. 48, 2008, pages 33296 - 303 |
KULKARNI ET AL., SCIENCE, vol. 287, 2000, pages 1049 - 1053 |
KURTOVA ET AL.: "Diverse marrow stromal cells protect CLL cells from spontaneous and drig-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance", BLOOD, vol. 114, no. 20, 2009, pages 4441 - 4450 |
LANGER, SCIENCE, vol. 249, 1990, pages 1527 - 1533 |
LANNUTTI ET AL.: "CAL-101 a p110? selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability", BLOOD, vol. 117, no. 2, 2011, pages 591 - 594, XP008152256, DOI: doi:10.1182/blood-2010-03-275305 |
LAROCK: "Comprehensive Organic Transformations", 1989, VCH PUBLISHERS, INC |
LEE ET AL., FASEB J., vol. 20, no. 3, 2006, pages 455 - 65 |
LI ET AL.: "Roles of PLC-?2 and -p3 and PI3Ky in Chemoattractant-Mediated Signal Transduction", SCIENCE, vol. 287, 2000, pages 1046 - 1049 |
LI ET AL.: "Roles ofPLC-p2 and -p3 and PI3Ky in Chemoattractant-Mediated Signal Transduction", SCIENCE, vol. 287, 2000, pages 1046 - 1049 |
LIU ET AL., J IMMUNOL., vol. 184, no. 6, 2010, pages 3098 - 105 |
LUCAS B.S. ET AL., BIOORG. MED. CHEM. LETT., vol. 20, no. 12, 2010, pages 3618 - 22 |
MANFRED E. WOLFF: "Burger's Medicinal Chemistry and Drug Discovery, 5th ed.,", vol. 172-178, 1995, pages: 949 - 982 |
MARKMAN, B ET AL., ANN ONCOL., vol. 21, no. 4, 2010, pages 683 - 91 |
MARTINDALE: "The Extra Pharmacopoeia, Thirty-Second Edition", 1999, THE PHARMACEUTICAL PRESS |
MARTINEZ ET AL.: "The Molecular Signature of Mantle Cell Lymphoma Reveals Multiple Signals Favoring Cell Survival", CANCER RES., vol. 63, 2003, pages 8226 - 8232 |
MARWICK ET AL., AM J RESPIR CRIT CARE MED., vol. 179, no. 7, 2009, pages 542 - 48 |
MAXWELL ET AL.: "Attenuation of phosphoinositide 3-kinase 8 signaling restrains autoimmune disease", J. AUTOIMMUN., vol. 38, 2012, pages 381 - 391, XP028488840, DOI: doi:10.1016/j.jaut.2012.04.001 |
MAZZOLETTI, M; BROGGINI, M, CURR MED CHEM., vol. 17, no. 36, 2010, pages 4433 - 47 |
NISITANI ET AL.: "Posttranscriptional regulation of Bruton's tyrosine kinase expression in antigen receptor-stimulated splenic B cells", PNAS, vol. 97, no. 6, 2000, pages 2737 - 2742 |
OKKENHAUG ET AL., J. IMMUNOL., vol. 177, no. 8, 2006, pages 5122 - 28 |
OKKENHAUG ET AL., SCIENCE, vol. 297, no. 5583, 2002, pages 1031 - 34 |
OLSEN ET AL., JOURNAL OF CLINICAL ONCOLOGY, 2011, Retrieved from the Internet <URL:http://jco.ascopubs.org/cgi/doi/10.1200.JC0.2010.32.0630> |
PAN S. ET AL., ACS MED. CHEM. LETT., vol. 1, no. 3, 2010, pages 130 - 134 |
PIGHI ET AL.: "Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling", CELL ONCOL. (DORDR, vol. 34, no. 2, 2011, pages 141 - 153 |
PORTA, C; FIGLIN, RA, J UROL., vol. 182, no. 6, 2009, pages 2569 - 77 |
PRATT AND TAYLOR: "Principles of Drug Action, Third Edition,", 1990 |
PURI; GOLD: "Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatory disease and B-cell malignancies", FRONT. IMMUNOL., vol. 3, 2012, pages 256 |
PURL; GOLD: "Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatory disease and B-cell malignancies", FRONT. IMMUNOL., vol. 3, 2012, pages 256 |
QUIROGA ET AL.: "B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406", BLOOD, vol. 114, no. 5, 2009, pages 1029 - 1037, XP055374645, DOI: doi:10.1182/blood-2009-03-212837 |
RANDIS ET AL., EUR J IMMUNOL., vol. 38, no. 5, 2008, pages 1215 - 24 |
RANDIS ET AL., EUR. J. IMMUNOL., vol. 38, no. 5, 2008, pages 1215 - 24 |
REIF ET AL., J. IMMUNOL., vol. 173, no. 4, 2004, pages 2236 - 40 |
RIZZATTI ET AL.: "Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFp signaling pathways", BRIT. J. HAEMATOL., vol. 130, 2005, pages 516 - 526 |
ROBARGE K.D. ET AL., BIOORG MED CHEM LETT., vol. 19, no. 19, 2009, pages 5576 - 81 |
ROLLER ET AL.: "Blockade of Phosphatidylinositol 3-Kinase (PI3K)? or PI3K? Reduces IL-17 and Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis", J. IMMUNOL., vol. 189, 2012, pages 4612 - 4620, XP055065662, DOI: doi:10.4049/jimmunol.1103173 |
ROLLER ET AL.: "Blockade of Phosphatidylinositol 3-Kinase (PI3K)8 or PI3Ky Reduces IL-17 and Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis", J. IMMUNOL., vol. 189, 2012, pages 4612 - 4620, XP055065662, DOI: doi:10.4049/jimmunol.1103173 |
ROMINGER C.M. ET AL., J. PHARMACOL. EXP. THER., vol. 329, no. 3, 2009, pages 995 - 1005 |
RUDIN, C. ET AL., NEW ENGLAND J OF MEDICINE, 2009, pages 361 - 366 |
S. M. ELBASHIR ET AL., NATURE, vol. 411, 2001, pages 494 - 498 |
SAIF, MW; CHU, E, CANCERJ., vol. 16, no. 3, 2010, pages 196 - 201 |
SALMENA, L ET AL., CELL, vol. 133, 2008, pages 403 - 414 |
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual 3rd ed.,", 2001, COLD SPRING HARBOR |
SARKER, D ET AL., CLIN CANCER RES., vol. 15, no. 15, 2009, pages 4799 - 805 |
SASAKI ET AL., SCIENCE, vol. 287, 2000, pages 1040 - 46 |
SASAKI ET AL.: "Function of PI3Ky in Thymocyte Development, T Cell Activation, and Neutrophil Migration", SCIENCE, vol. 287, 2000, pages 1040 - 1046, XP002214938, DOI: doi:10.1126/science.287.5455.1040 |
SAUDEK ET AL., N. ENGL. J. MED., vol. 321, 1989, pages 574 |
SAUDEMONT ET AL., PROC NATL ACAD SCI USA., vol. 106, no. 14, 2009, pages 5795 - 800 |
SCHMID ET AL., CANCER CELL, vol. 19, 2011, pages 715 - 27 |
SCHMID ET AL., CANCER CELL, vol. 19, 2011, pages 715 - 727 |
SCHMID ET AL., CANCER CELL, vol. 19, no. 6, 2011, pages 715 - 27 |
SCIENCEXPRESS, pages 1 - 3 |
SEFTON, CRC CRIT. REF BIOMED. ENG., vol. 14, 1987, pages 201 |
SHAPIRO, G ET AL., J CLIN ONCOL., vol. 27, 2009, pages 146S |
SHARMAN JEFF ET AL: "A Phase 1 Study of the Selective Phosphatidylinositol 3-Kinase-Delta (PI3K delta) Inhibitor, CAL-101 (GS-1101), in Combination with Rituximab and/or Bendamustine in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia (CLL)", vol. 118, no. 21, 18 November 2011 (2011-11-18), pages 779 - 780, XP008152290, ISSN: 0006-4971, Retrieved from the Internet <URL:http://www.bloodjournal.org/> * |
SIU L. ET AL., J. CLIN. ONCOL., vol. 28, 2010, pages 15S |
SIVINA ET AL.: "CCL3 (MIP-1 alpha) plasma levels and the risk for disease progression in chronic lymphocytic leukemia", BLOOD, vol. 117, 2011, pages 1662 - 69 |
SMITH ET AL.: "Expression of Bruton's Agammaglobulinemia Tyrosine Kinase Gene, BTK, Is Selectively Down-Regulated in T Lymphocytes and Plasma Cells", J. IMMUNOL., vol. 152, 1994, pages 557 - 565 |
SMITH; MARCH: "March's Advanced Organic Chemistry, 5th ed.", 2001, JOHN WILEY & SONS, INC |
SOOND ET AL., BLOOD, vol. 115, no. 11, 2010, pages 2203 - 13 |
SOOND ET AL.: "PI3K p110? regulates T-cell cytokine production during primary and secondary immune responses in mice and humans", BLOOD, vol. 115, no. 11, 2010, pages 2203 - 2213 |
SOOND ET AL.: "PI3K p1108 regulates T-cell cytokine production during primary and secondary immune responses in mice and humans", BLOOD, vol. 115, no. 11, 2010, pages 2203 - 2213 |
SRINIVASAN ET AL., CELL, vol. 139, no. 3, 2009, pages 573 - 86 |
SUBRAMAN1AM ET AL.: "Targeting Nonclassical Oncogenes for Therapy in T-ALL", CANCER CELL, vol. 21, 2012, pages 459 - 472, XP028410924, DOI: doi:10.1016/j.ccr.2012.02.029 |
SUBRAMANIAM ET AL., CANCER CELL, vol. 21, 2012, pages 459 - 472 |
SUBRAMANIAM ET AL.: "Targeting Nonclassical Oncogenes for Therapy in T-ALL", CANCER CELL, vol. 21, 2012, pages 459 - 472, XP028410924, DOI: doi:10.1016/j.ccr.2012.02.029 |
TAKEDA ET AL., J. ALLERGY CLIN. IMMUNOL., vol. 123, 2009, pages 805 - 12 |
TASSI ET AL., IMMUNITY, vol. 27, no. 2, 2007, pages 214 - 27 |
THOMAS SORRELL: "Organic Chemistry", 1999, UNIVERSITY SCIENCE BOOK |
TIJSSEN: "Hybridization with Nucleic Acid Probes", 1993, ELSEVIER |
TORBETT, NE ET AL., BIOCHEM J., vol. 415, 2008, pages 97 - 100 |
VANHAESEBROECK ET AL., CURRENT TOPIC MICROBIOL. IMMUNOL., vol. 347, 2010, pages 1 - 19 |
VOGT, PK ET AL., CURR TOP MICROBIOL IMMUNOL., vol. 347, 2010, pages 79 - 104 |
VOGT, PK ET AL., VIROLOGY, vol. 344, no. 1, 2006, pages 131 - 8 |
WAGNER, AJ ET AL., J CLIN ONCOL., vol. 27, 2009, pages 146S |
WARD, S ET AL., CHEM BIOL., vol. 10, no. 3, 2003, pages 207 - 13 |
WEBB ET AL., J. IMMUNOL., vol. 175, no. 5, 2005, pages 2783 - 87 |
WILE ET AL., TETRAHEDRON, vol. 33, 1977, pages 2725 |
WISLER ET AL., AMGEN SOT, 2012 |
YAUCH, R. L ET AL., SCIENCE, vol. 326, 2009, pages 572 - 574 |
ZHANG ET AL., J. ALLERGY & CLIN. IMMUNOL., vol. 122, no. 4, 2008, pages 811 - 9.E2 |
ZHAO, L; VOGT, PK., ONCOGENE, vol. 27, no. 41, 2008, pages 5486 - 96 |
Cited By (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11433065B2 (en) | 2008-01-04 | 2022-09-06 | Intellikine Llc | Certain chemical entities, compositions and methods |
US9822131B2 (en) | 2008-01-04 | 2017-11-21 | Intellikine Llc | Certain chemical entities, compositions and methods |
US9655892B2 (en) | 2008-01-04 | 2017-05-23 | Intellikine Llc | Certain chemical entities, compositions and methods |
US9216982B2 (en) | 2008-01-04 | 2015-12-22 | Intellikine Llc | Certain chemical entities, compositions and methods |
US8921314B2 (en) | 2008-10-15 | 2014-12-30 | Angiochem, Inc. | Conjugates of GLP-1 agonists and uses thereof |
US9522146B2 (en) | 2009-07-15 | 2016-12-20 | Intellikine Llc | Substituted Isoquinolin-1(2H)-one compounds, compositions, and methods thereof |
US9206182B2 (en) | 2009-07-15 | 2015-12-08 | Intellikine Llc | Substituted isoquinolin-1(2H)-one compounds, compositions, and methods thereof |
US10550122B2 (en) | 2011-01-10 | 2020-02-04 | Infinity Pharmaceuticals, Inc. | Solid forms of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one and methods of use thereof |
US9290497B2 (en) | 2011-01-10 | 2016-03-22 | Infinity Pharmaceuticals, Inc. | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
US11312718B2 (en) | 2011-01-10 | 2022-04-26 | Infinity Pharmaceuticals, Inc. | Formulations of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one |
US9840505B2 (en) | 2011-01-10 | 2017-12-12 | Infinity Pharmaceuticals, Inc. | Solid forms of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1 (2H)-one and methods of use thereof |
USRE46621E1 (en) | 2011-01-10 | 2017-12-05 | Infinity Pharmaceuticals, Inc. | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
US11969428B2 (en) | 2011-03-08 | 2024-04-30 | Thomas Diacovo | Methods and pharmaceutical compositions for treating lymphoid malignancy |
US9775841B2 (en) | 2011-05-04 | 2017-10-03 | Rhizen Pharmaceuticals Sa | Compounds as modulators of protein kinases |
US10322130B2 (en) | 2011-05-04 | 2019-06-18 | Rhizen Pharmaceuticals Sa | Substituted chromenones as modulators of protein kinases |
US10220035B2 (en) | 2011-05-04 | 2019-03-05 | Rhizen Pharmaceuticals Sa | Compounds as modulators of protein kinases |
US11020399B2 (en) | 2011-05-04 | 2021-06-01 | Rhizen Pharmaceuticals Sa | Intermediates useful in the synthesis of compounds as modulators of protein kinases |
EP2776441A4 (en) * | 2011-11-08 | 2015-04-08 | Intellikine Llc | Treatment regimens using multiple pharmaceutical agents |
EP2776441A1 (en) * | 2011-11-08 | 2014-09-17 | Intellikine, LLC | Treatment regimens using multiple pharmaceutical agents |
US9051269B2 (en) | 2011-11-18 | 2015-06-09 | Constellation Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
US9085583B2 (en) | 2012-02-10 | 2015-07-21 | Constellation—Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
US9980952B2 (en) | 2012-02-10 | 2018-05-29 | Constellation Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
US10016405B2 (en) | 2012-02-10 | 2018-07-10 | Constellation Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
US9371331B2 (en) | 2012-02-10 | 2016-06-21 | Constellation Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
US9469646B2 (en) | 2012-02-10 | 2016-10-18 | Constellation Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
USRE47428E1 (en) | 2012-02-10 | 2019-06-11 | Constellation Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
US9527847B2 (en) | 2012-06-25 | 2016-12-27 | Infinity Pharmaceuticals, Inc. | Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors |
RU2679122C2 (en) * | 2012-07-06 | 2019-02-06 | ГБ005, Инк. | Protein kinase inhibitors |
US10525074B2 (en) | 2013-03-14 | 2020-01-07 | Epizyme, Inc. | Combination therapy for treating cancer |
US10919850B2 (en) | 2013-03-15 | 2021-02-16 | Araxes Pharma Llc | Covalent inhibitors of KRas G12C |
US9745305B2 (en) | 2013-03-15 | 2017-08-29 | Constellation Pharmaceuticals, Inc. | Modulators of methyl modifying enzymes, compositions and uses thereof |
EP3811974A1 (en) * | 2013-05-30 | 2021-04-28 | Infinity Pharmaceuticals, Inc. | Treatment of cancers using pi3 kinase isoform modulators |
WO2014194254A1 (en) | 2013-05-30 | 2014-12-04 | Infinity Pharmaceuticals, Inc. | Treatment of cancers using pi3 kinase isoform modulators |
WO2015001491A1 (en) | 2013-07-02 | 2015-01-08 | Rhizen Pharmaceuticals Sa | Pi3k protein kinase inhibitors, particularly delta and/or gamma inhibitors |
JP2016525532A (en) * | 2013-07-26 | 2016-08-25 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Treatment of myelodysplastic syndrome |
US9969716B2 (en) | 2013-08-15 | 2018-05-15 | Constellation Pharmaceuticals, Inc. | Indole derivatives as modulators of methyl modifying enzymes, compositions and uses thereof |
US20170020872A1 (en) * | 2013-10-08 | 2017-01-26 | Acetylon Pharmaceuticals, Inc. | Combinations of histone deacetylase inhibitors and either her2 inhibitors or pi3k inhibitors |
US10722512B2 (en) * | 2013-10-08 | 2020-07-28 | Acetylon Pharmaceuticals, Inc. | Combinations of histone deacetylase inhibitors and either HER2 inhibitors or PI3K inhibitors |
US10927125B2 (en) | 2013-10-10 | 2021-02-23 | Araxes Pharma Llc | Substituted cinnolines as inhibitors of KRAS G12C |
US10328080B2 (en) | 2013-12-05 | 2019-06-25 | Acerta Pharma, B.V. | Therapeutic combination of PI3K inhibitor and a BTK inhibitor |
WO2015083008A1 (en) * | 2013-12-05 | 2015-06-11 | Acerta Pharma B.V. | Therapeutic combination of a pi3k inhibitor and a btk inhibitor |
US10463671B2 (en) | 2013-12-06 | 2019-11-05 | Epizyme, Inc. | Combination therapy for treating cancer |
US11110096B2 (en) | 2014-04-16 | 2021-09-07 | Infinity Pharmaceuticals, Inc. | Combination therapies |
WO2015160986A3 (en) * | 2014-04-16 | 2015-12-17 | Infinity Pharmaceuticals, Inc. | Combination therapies |
US11944631B2 (en) | 2014-04-16 | 2024-04-02 | Infinity Pharmaceuticals, Inc. | Combination therapies |
WO2015160975A3 (en) * | 2014-04-16 | 2015-12-10 | Infinity Pharmaceuticals, Inc. | Combination of a pi3k inhibitor with a bcl-2 inhibitor for use in the treatment of cancer |
EP2950097A1 (en) * | 2014-05-28 | 2015-12-02 | Universitätsspital Basel | Podoplanin as a biomarker of the activation of PI3K/mTOR signaling in human tumors |
WO2015195848A1 (en) * | 2014-06-17 | 2015-12-23 | Epizyme, Inc. | Ezh2 inhibitors for treating lymphoma |
CN113289022A (en) * | 2014-06-17 | 2021-08-24 | Epizyme股份有限公司 | EZH2 inhibitors for the treatment of lymphoma |
US11642347B2 (en) | 2014-06-17 | 2023-05-09 | Epizyme, Inc. | EZH2 inhibitors for treating lymphoma |
CN106999498A (en) * | 2014-06-17 | 2017-08-01 | Epizyme股份有限公司 | EZH2 inhibitor for treating lymthoma |
EP4252851A3 (en) * | 2014-06-17 | 2023-11-22 | Epizyme Inc | Ezh2 inhibitors for treating lymphoma |
AU2020244382B2 (en) * | 2014-06-17 | 2022-08-04 | Epizyme, Inc. | Ezh2 inhibitors for treating lymphoma |
US10166238B2 (en) | 2014-06-17 | 2019-01-01 | Epizyme, Inc. | EZH2 inhibitors for treating lymphoma |
EA038337B1 (en) * | 2014-06-17 | 2021-08-11 | Эпизим, Инк. | Ezh2 inhibitors for treating lymphoma |
EP3157527A4 (en) * | 2014-06-17 | 2018-05-23 | Epizyme, Inc. | Ezh2 inhibitors for treating lymphoma |
CN106999498B (en) * | 2014-06-17 | 2021-06-08 | Epizyme股份有限公司 | EZH2 inhibitors for the treatment of lymphoma |
WO2016004221A1 (en) * | 2014-07-01 | 2016-01-07 | Mayo Foundation For Medical Education And Research | Methods and materials for identifying and treating mammals resistant to proteasome inhibitor treatments |
US9944639B2 (en) | 2014-07-04 | 2018-04-17 | Lupin Limited | Quinolizinone derivatives as PI3K inhibitors |
WO2016022358A1 (en) * | 2014-08-08 | 2016-02-11 | The Regents Of The University Of California | Compositions and methods for reactivating latent viral infections |
US10376486B2 (en) | 2014-08-08 | 2019-08-13 | The Regents Of The University Of California | Compositions and methods for reactivating latent viral infections |
WO2016025652A1 (en) * | 2014-08-13 | 2016-02-18 | Celgene Avilomics Research, Inc. | Combinations of an erk inhibitor and a bcl-2 pathway modulator and related methods |
WO2016025649A1 (en) * | 2014-08-13 | 2016-02-18 | Celgene Avilomics Research, Inc. | Combinations of an erk inhibitor and a dot1l inhibitor and related methods |
WO2016025656A1 (en) * | 2014-08-13 | 2016-02-18 | Celgene Avilomics Research, Inc. | Combinations of an erk inhibitor and a pi3k inhibitor or dual pi3k/tor inhibitor and related methods |
US10774092B2 (en) | 2014-08-25 | 2020-09-15 | Salk Institute For Biological Studies | ULK1 inhibitors and methods using same |
WO2016033100A1 (en) * | 2014-08-25 | 2016-03-03 | Salk Institute For Biological Studies | Novel ulk1 inhibitors and methods using same |
US10689397B2 (en) | 2014-08-25 | 2020-06-23 | Salk Institute For Biological Studies | ULK1 inhibitors and methods using same |
US10266549B2 (en) | 2014-08-25 | 2019-04-23 | Salk Institute For Biological Studies | ULK1 inhibitors and methods using same |
US10413547B2 (en) | 2014-09-12 | 2019-09-17 | G1 Therapeutics, Inc. | Treatment of Rb-negative tumors using topoisomerase with cyclin dependent kinase 4/6 inhibitors |
US11090306B2 (en) | 2014-09-12 | 2021-08-17 | G1 Therapeutics, Inc. | Treatment of Rb-negative tumors using topoisomerase inhibitors in combination with cyclin dependent kinase 4/6 inhibitors |
US11446295B2 (en) | 2014-09-12 | 2022-09-20 | G1 Therapeutics, Inc. | Anti-neoplastic combinations and dosing regimens using CDK4/6 inhibitor compounds to treat Rb-positive tumors |
US10231969B2 (en) | 2014-09-12 | 2019-03-19 | GI Therapeutics, Inc. | Anti-neoplastic combinations and dosing regimens using CDK4/6 inhibitor compounds to treat RB-positive tumors |
JP2017528498A (en) * | 2014-09-25 | 2017-09-28 | アラクセス ファーマ エルエルシー | Inhibitors of KRAS G12C mutant protein |
WO2016090255A1 (en) * | 2014-12-05 | 2016-06-09 | Sriram Balasubramanian | Biological markers for predicting responsiveness to ibrutinib and r-chop combination therapy and methods of using the same |
JP2018512413A (en) * | 2015-03-19 | 2018-05-17 | チョーチアン ディーティーアールエム バイオファーマ コーポレーション リミテッド | Optimized combination therapy and its use for treating cancer and autoimmune diseases |
JP7012534B2 (en) | 2015-03-19 | 2022-02-14 | チョーチアン ディーティーアールエム バイオファーマ コーポレーション リミテッド | Optimized combination therapies and their use to treat cancer and autoimmune diseases |
CN105669679A (en) * | 2015-03-20 | 2016-06-15 | 苏州晶云药物科技有限公司 | Preparation method of PCI-32765 crystal form A |
US10829458B2 (en) | 2015-04-10 | 2020-11-10 | Araxes Pharma Llc | Substituted quinazoline compounds and methods of use thereof |
US10485794B2 (en) | 2015-04-13 | 2019-11-26 | Daiichi Sankyo Company, Limited | Treatment method by combined use of MDM2 inhibitor and BTK inhibitor |
US11202781B2 (en) | 2015-06-10 | 2021-12-21 | Epizyme, Inc. | EZH2 inhibitors for treating lymphoma |
US11951109B2 (en) | 2015-06-10 | 2024-04-09 | Epizyme, Inc. | EZH2 inhibitors for treating lymphoma |
US10980892B2 (en) | 2015-06-15 | 2021-04-20 | Angiochem Inc. | Methods for the treatment of leptomeningeal carcinomatosis |
RU2738934C2 (en) * | 2015-07-20 | 2020-12-18 | ЭйАй ТЕРАПЬЮТИКС, ИНК. | Methods of treating cancer using apilimod |
CN106366085A (en) * | 2015-07-25 | 2017-02-01 | 复旦大学 | Isoquinolone compound or salt thereof, and preparation method and use of isoquinolone compound |
JP2018525379A (en) * | 2015-08-03 | 2018-09-06 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Heterocyclic compounds useful as modulators of TNF alpha |
US10865191B2 (en) | 2015-08-03 | 2020-12-15 | Bristol-Myers Squibb Company | Heterocyclic compounds useful as modulators of TNF alpha |
US11154554B2 (en) * | 2015-08-21 | 2021-10-26 | Acera Pharma B.V. | Therapeutic combinations of a MEK inhibitor and a BTK inhibitor |
US10577350B2 (en) | 2015-08-28 | 2020-03-03 | Constellation Pharmaceuticals, Inc. | Crystalline forms of (R)-N-((4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide |
US10689356B2 (en) | 2015-09-28 | 2020-06-23 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
US10858343B2 (en) | 2015-09-28 | 2020-12-08 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
US10882847B2 (en) | 2015-09-28 | 2021-01-05 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
US10647703B2 (en) | 2015-09-28 | 2020-05-12 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
US11939321B2 (en) | 2015-10-21 | 2024-03-26 | Otsuka Pharmaceutical Co., Ltd. | Benzolactam compounds as protein kinase inhibitors |
CN108137592A (en) * | 2015-11-03 | 2018-06-08 | 纽弗姆制药有限公司 | For treat the deuterated compound of leukemia with and combinations thereof and method |
CN108137592B (en) * | 2015-11-03 | 2021-03-05 | 纽弗姆制药有限公司 | Deuterated compounds and compositions and methods thereof for treating leukemia |
WO2017096458A1 (en) * | 2015-12-07 | 2017-06-15 | Ontario Institute For Cancer Research (Oicr) | Immune gene signature predictive of anthracycline benefit |
WO2017197055A1 (en) | 2016-05-10 | 2017-11-16 | C4 Therapeutics, Inc. | Heterocyclic degronimers for target protein degradation |
WO2017197046A1 (en) | 2016-05-10 | 2017-11-16 | C4 Therapeutics, Inc. | C3-carbon linked glutarimide degronimers for target protein degradation |
US11147818B2 (en) | 2016-06-24 | 2021-10-19 | Infinity Pharmaceuticals, Inc. | Combination therapies |
EP3858835A1 (en) | 2016-07-01 | 2021-08-04 | G1 Therapeutics, Inc. | Pyrimidine-based antiproliferative agents |
US10646488B2 (en) | 2016-07-13 | 2020-05-12 | Araxes Pharma Llc | Conjugates of cereblon binding compounds and G12C mutant KRAS, HRAS or NRAS protein modulating compounds and methods of use thereof |
WO2018054782A1 (en) * | 2016-09-23 | 2018-03-29 | Bayer Pharma Aktiengesellschaft | Combination of pi3k-inhibitors |
US10925880B2 (en) | 2016-09-23 | 2021-02-23 | Bayer Pharma Aktiengesellschaft | Combination of PI3K-inhibitors |
US10723738B2 (en) | 2016-09-29 | 2020-07-28 | Araxes Pharma Llc | Inhibitors of KRAS G12C mutant proteins |
CN108137605B (en) * | 2016-10-05 | 2021-07-13 | 杭州领业医药科技有限公司 | ACP-196 crystal form, preparation method and pharmaceutical composition thereof |
CN113416194A (en) * | 2016-10-05 | 2021-09-21 | 杭州领业医药科技有限公司 | ACP-196 crystal form, preparation method and pharmaceutical composition thereof |
US11919906B2 (en) | 2016-10-05 | 2024-03-05 | Hangzhou Solipharma Co., Ltd. | Crystal form of ACP-196 and method of treatment thereof |
US10899767B2 (en) | 2016-10-05 | 2021-01-26 | Hangzhou Solipharma Co., Ltd. | Crystal form of ACP-196, preparation method therefor and pharmaceutical composition thereof |
WO2018064797A1 (en) * | 2016-10-05 | 2018-04-12 | 杭州领业医药科技有限公司 | Crystal form of acp-196, preparation method therefor and pharmaceutical composition thereof |
CN108137605A (en) * | 2016-10-05 | 2018-06-08 | 杭州领业医药科技有限公司 | Crystal form of ACP-196 and preparation method thereof and pharmaceutical composition |
US10457640B2 (en) | 2016-10-19 | 2019-10-29 | Constellation Pharmaceuticals, Inc. | Synthesis of inhibitors of EZH2 |
WO2018094227A1 (en) | 2016-11-17 | 2018-05-24 | The University Of North Carolina At Chapel Hill | Alkyl pyrrolopyrimidine analogs and methods of making and using same |
US11725012B2 (en) | 2016-12-07 | 2023-08-15 | Beigene, Ltd. | Imidazo[1,5-a]pyrazine derivatives as PI3K δ inhibitors |
US11136323B2 (en) | 2016-12-07 | 2021-10-05 | Beigene, Ltd. | Imidazo[1,5-a]pyrazine derivatives as PI3K δ inhibitors |
US12030873B2 (en) | 2017-04-20 | 2024-07-09 | Otsuka Pharmaceutical Co., Ltd. | 6-pyrimidin-isoindole derivative as ERK1/2 inhibitor |
US11142518B2 (en) | 2017-04-20 | 2021-10-12 | Otsuka Pharmaceutical Co., Ltd. | 6-pyrimidin-isoindole derivative as ERK1/2 inhibitor |
US10736897B2 (en) | 2017-05-25 | 2020-08-11 | Araxes Pharma Llc | Compounds and methods of use thereof for treatment of cancer |
WO2019006393A1 (en) | 2017-06-29 | 2019-01-03 | G1 Therapeutics, Inc. | Morphic forms of git38 and methods of manufacture thereof |
WO2019028055A1 (en) * | 2017-07-31 | 2019-02-07 | The Trustees Of Columbia Univeristy In The City Of New York | Compounds, compositionals, and methods for treating t-cell acute lymphoblastic leukemia |
US11459306B2 (en) | 2017-07-31 | 2022-10-04 | The Trustees Of Columbia University In The City Of New York | Compounds, compositions, and methods for treating T-cell acute lymphoblastic leukemia |
US11220506B2 (en) | 2017-09-08 | 2022-01-11 | Beigene, Ltd. | Imidazo[1,5-a]pyrazine derivatives as PI3Kdelta inhibitors |
EP4219502A1 (en) * | 2017-09-08 | 2023-08-02 | BeiGene, Ltd. | Imidazo[1,5-a]pyrazine derivatives as pi3kdelta inhibitors |
WO2019047915A1 (en) * | 2017-09-08 | 2019-03-14 | Beigene, Ltd. | IMIDAZO[1,5-A]PYRAZINE DERIVATIVES AS PI3Kdelta INHIBITORS |
US11905294B2 (en) | 2017-09-08 | 2024-02-20 | Beigene, Ltd. | Imidazo[1,5-a]pyrazine derivatives as PI3Kδ inhibitors |
US11597933B2 (en) | 2017-11-29 | 2023-03-07 | The Trustees Of Columbia University In The City Of New York | Combination therapy of lymphoma |
WO2019108789A1 (en) * | 2017-11-29 | 2019-06-06 | The Trustees Of Columbia University In The City Of New York | Combination therapy of lymphoma |
WO2019120276A1 (en) * | 2017-12-21 | 2019-06-27 | 上海青煜医药科技有限公司 | Pyrimidone compound and application thereof |
WO2019191112A1 (en) | 2018-03-26 | 2019-10-03 | C4 Therapeutics, Inc. | Cereblon binders for the degradation of ikaros |
WO2020051235A1 (en) | 2018-09-04 | 2020-03-12 | C4 Therapeutics, Inc. | Compounds for the degradation of brd9 or mth1 |
WO2020132561A1 (en) | 2018-12-20 | 2020-06-25 | C4 Therapeutics, Inc. | Targeted protein degradation |
US11285159B2 (en) | 2019-11-05 | 2022-03-29 | Abbvie Inc. | Dosing regimens for use in treating myelofibrosis and MPN-related disorders with navitoclax |
EP4185279A4 (en) * | 2020-07-24 | 2024-05-01 | Secura Bio, Inc. | Treatment of cancers using pi3 kinase isoform modulators |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230364097A1 (en) | Treatment of cancers using pi3 kinase isoform modulators | |
AU2019200222B2 (en) | Treatment of cancers using PI3 kinase isoform modulators | |
US20180002335A1 (en) | Treatment of cancers using pi3 kinase isoform modulators | |
US20150283142A1 (en) | Treatment of cancers using pi3 kinase isoform modulators | |
NZ754026B2 (en) | Treatment of cancers using P13 kinase isoform modulators | |
NZ714846B2 (en) | Treatment of cancers using pi3 kinase isoform modulators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380069471.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13792144 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2890105 Country of ref document: CA Ref document number: 2015540794 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 238565 Country of ref document: IL Ref document number: 14439965 Country of ref document: US Ref document number: MX/A/2015/005536 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015010035 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20157014360 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015120616 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013792144 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013337717 Country of ref document: AU Date of ref document: 20131101 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112015010035 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150504 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112015010035 Country of ref document: BR Kind code of ref document: A2 Free format text: APRESENTE CESSAO PARA AS PRIORIDADES REIVINDICADAS (A EXCECAO DA PRIORIDADE US 13/840,822). E QUANTO AS PRIORIDADES US 61/733,852; US 61/767,606; E US 61/721,432, APRESENTE TAMBEM DECLARACAO ASSINADA CONSTANDO TODOS OS DADOS IDENTIFICADORES DESSAS PRIORIDADES. |
|
ENP | Entry into the national phase |
Ref document number: 112015010035 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150504 |