The present invention will be described in further detail hereinafter with reference to accompanying drawings and embodiments to make the objective, technical solution and merits therein clearer.
For a cell which demodulates downlink control channel and PDSCH based on DMRS, FIG. 5 shows a synchronous HARQ transmission procedure for the PUSCH according to an example of the present invention.
At block 501, firstly, the UE transmits uplink data on the PUSCH according to the scheduling of the base station.
The uplink data may be dynamically scheduled according to UL grant, or may be re-transmission of previous uplink data triggered by the ePHICH, or may be transmitted on uplink channel resources allocated based on Semi-Persistent Scheduling (SPS).
At block 502, according to a timing relationship of synchronous HARQ, the UE detects a new UL grant and ePHICH information of the base station for the uplink data transmitted in block 501.
Herein, the ePHICH resources used for bearing the ePHICH information are mapped to at least some time-frequency resources of one distributed ePDCCH set.
At block 503, if the UL grant is not detected, the UE operates according to indication of the ePHICH. If the ePHICH indicates NACK, the UE re-transmits the uplink data according to the timing relationship of the synchronous HARQ; if the ePHICH indicates ACK, the UE does not transmit the uplink data.
Now, the synchronous HARQ transmission procedure of the PUSCH ends.
In block 502 of the above transmission procedure, for a cell which demodulates the downlink control channel and the PDSCH based on the DMRS, e.g., the above described NCT cell, since there is no CRS, the method for allocating PHICH resources defined in existing LTE systems is not applicable, i.e., the ePHICH needs to be transmitted based on the demodulation of the DMRS. Therefore, in the present invention, the ePHICH is also mapped to the data area of the subframe to be transmitted and is in a frequency division multiplex manner with the PDSCH, which is the same with the ePDCCH. In order to reduce inter-cell ePHICH interferences, increase capacity of the PHICH and ensure the frequency diversity gain, the set of multiple PRB pairs on which the ePHICH resources are mapped is designed in a same manner with that of the existing distributed ePDCCH set. In particular, the DMRS on each PRB pair of the ePDCCH set used for the ePHICH are shared. For example, the DMRS of two ports are transmitted on each PRB pair, and all ePHICH resources multiplexed on the ePDCCH set use the DMRS of these two ports. In the following descriptions of the present invention, the set of multiple PRB pairs on which the ePHICH is mapped is still referred to as a distributed ePDCCH set. In fact, the distributed ePDCCH and the ePHICH may be multiplexed on the distributed ePDCCH set at the same time. As described above, the ePHICH is mapped on the distributed ePDCCH set for transmission. Such distributed ePDCCH set may be dedicated for ePHICH transmission, or may be multiplexed by the ePDCCH and the ePHICH.
For example, as shown in FIG. 6, each ePHICH resource is mapped to multiple PRB pairs of the distributed ePDCCH set, so as to obtain the frequency diversity gain. The time-frequency resources of each PRB pair of the ePDCCH set may be multiplexed by the ePHICH and the ePDCCH. In the following description, users in systems after 3GPP LTE Release-12 are referred to Rel-12 UE, whereas users in systems of former Release-11 are referred to as Rel-11 UE.
In block 502 of the above procedure shown in FIG. 5, the ePHICH resources are mapped to at least some time-frequency resources of the distributed ePDCCH set, i.e., it is required to configure ePHICH resources on the time-frequency resources of the distributed ePDCCH set. Hereinafter, the configuration of the time-frequency resources of the distributed ePDCCH set occupied by the ePHICH resources are described with reference to three preferred examples.
Example 1
On one PRB pair of the distributed ePDCCH set, each ePHICH resource may occupy one or more REGs taking one REG as a unit. At the same time, in order to obtain the frequency diversity gain, each ePHICH resource may be mapped to multiples PRB pairs of the ePDCCH. For example, the PHICH is mapped to 3 REGs in conventional systems. Similarly, each ePHICH resource may be mapped to the REGs of three PRB pairs. Alternatively, for the ePDCCH set including 4 PRB pairs, each ePHICH resource may be mapped to the 4 PRB pairs, e.g., occupy one REG on each PRB pair. For the ePDCCH set including 8 PRB pairs, the 8 PRB pairs may be divided into two groups, and each group includes 4 PRB pairs. The ePHICH resources are mapped respectively on the 4 PRB pairs of each group. For the ePDCCH set including 2 PRB pairs, each ePHICH resource is mapped to the 2 PRB pairs and occupies at least one REG on each PRB pair.
Generally, some OFDM symbols in one subframe are used for special purposes. For example, some OFDM symbols in the subframe are used for bearing DMRS to demodulate downlink data transmission. For example, according to the design of the existing LTE systems, for a normal subframe, the DMRS is transmitted on last two OFDM symbols of each slot. For the DwPTS of the TDD system, the DMRS is configured on OFDM symbols different from those in the normal subframe. In addition, there are also some OFDM symbols in the subframe may be configured to transmit CSI-RS. For example, according to the design of the LTE FDD system, for a normal subframe, last two OFDM symbols of slot 0 and OFDM symbols 2, 3, 5, 6 in slot 1 can be used for transmitting the CSI-RS. In addition, in order to ensure the accurate time and frequency synchronization, a TRS used for synchronous tracking of time and frequency needs to be transmitted. For example, the TRS may reuse the time-frequency mapping structure of existing CRS port 0, i.e., for a normal subframe, the TRS occupies OFDM symbols 0 and 4 of each slot.
Based on the requirement that some OFDM symbols in the subframe are used for special purposes, the present invention provides that when allocating REG resources occupied by the ePHICH, OFDM symbols in the subframe except for those used for or may be used for the DMRS and the CSI-RS are used for bearing the ePHICH. According to this method, the definition of the REG in the existing systems may be reused completely, so as to ensure that available REs in one REG have a small subcarrier interval. In fact, the CSI-RS may be respectively configured for each UE, i.e., the number of the REs except for the REs used for the CSI-RS on the OFDM symbol used for the CSI-RS varies with the configurations of the UE. However, the ePHICH set needs to be shared by multiple UEs or determined according to a cell-specific manner, which makes it inapplicable for the ePHICH to be multiplexed on the OFDM symbols used for the CSI-RS using the REG dividing method. When the affection of the CSI-RS is processed, it is possible to ensure, for a system of any duplex mode (FDD or TDD), that all OFDM symbols may be used for CSI-RS are not used for transmission of the ePHICH. Or, for the FDD and TDD systems, it is possible to ensure that the OFDM symbols which may be used for bearing the CSI-RS in both of the two systems are not used for transmission of the ePHICH. Or, when allocating the REG resources occupied by the ePHICH, it may be further avoided that the OFDM symbols containing the TRS are used, such that each REG maps to four REs which are consecutive in frequency.
As described above, the definition of the REG may be the same as that in LTE Release-8. When one OFDM symbol is not used for transmission of the TRS, each REG consists of four consecutive REs, such that a total of three REGs are configured in the OFDM symbol of the PRB pair. When one OFDM symbols is used for transmission of the TRS and it is supposed that the TRS reuses the time-frequency pattern of an existing CRS port 0, the method of LTE Release-8 is adopted at this time. Still suppose that all of the REs corresponding to the CRS port 0 and port 1 are not used for transmitting the ePHICH. Thus, each REG consists of 6 consecutive REs. But only four of them can be used for transmitting the ePHICH. Finally, only 2 REGs can be configured on the OFDM symbol of the PRB pair. It should be noted that, suppose that the TRS occupies only the REs corresponding to the CRS port 0 actually, thus although the REs corresponding to the CRS port 1 cannot be used for transmitting the ePHICH, those can be used for transmitting the ePDCCH.
FIG. 7 shows a structure of an ePHICH of a frame structure with a normal CP according to an example of the present invention. Suppose that the DMRS time-frequency structure and the CSI-RS time-frequency structure in the existing LTE Release are used. And suppose that the TRS uses the time-frequency structure of the existing CRS port 0, and the OFDM symbols which can be used for bearing the DMRS and the CSI-RS are not used for transmitting the ePHICH. Thus, within one PRB pair, in order to avoid conflicts with the OFDM symbols used for the DMRS and the CSI-RS, only the OFDM symbols 0, 1, 2, 3, 4 of slot 0 and the OFDM symbols 0, 1, 4 of slot 1 can be used for bearing the transmission of the ePHICH. In FIG. 7, suppose that two traditionally defined REGs on OFDM symbol 1 of slot 1 are occupied for transmitting the ePHICH, whereas other REs of OFDM symbol 1 of slot 1 can be used for bearing the ePDCCH.
As described above, in this example, the time-frequency resources occupied by the ePHICH may be located on some designated OFDM symbols. In particular, in a system (TDD system or FDD system), when the ePHICH resources of the whole system are allocated, the OFDM symbols occupied by these ePHICH resources may be determined according to the following two manners.
In one manner, calculate according to the total amount of ePHICH resources to be reserved in the system the number of OFDM symbols to be occupied. It is ensured that only some REGs of at most one OFDM symbol are not reserved to the ePHICH. Then, the OFDM symbols used for transmitting the ePHICH are allocated according to the determined number of OFDM symbols.
The OFDM symbols used for transmitting the ePHICH may be allocated according to a time sequence of the OFDM symbols, i.e., the allocation sequence is: OFDM symbols 0, 1, 2, 3, 4 of slot 0, then OFDM symbols 0, 1, 4 of slot 1.
However, the channel estimation precisions of different OFDM symbols are different. For example, the OFDM symbols of slot 1 in FIG. 7 are located between DMRSs and thus have a better channel estimation performance. However, the OFDM symbols in slot 0 are located outside the DMRS and need additional extrapolation to obtain the channel estimation, thus the channel estimation precision is low. If the OFDM symbols occupied by the ePHICH resources are allocated according to the time sequence of the OFDM symbols, the ePHICH will be transmitted on the OFDM symbols with low channel estimation precisions. In order to improve the performance of the ePHICH, it is possible to allocate OFDM symbols with better channel estimation performances to the ePHICH preferably. For example, the OFDM symbols used for transmitting the ePHICH may be allocated according to a reverse order of the time sequence of the OFDM symbols, i.e., according to the number of the required OFDM symbols, the allocation order is: OFDM symbols 4, 1, 0 of slot 1, and then OFDM symbols 4, 3, 2, 1, 0 of slot 0.
In another method for allocating the OFDM symbols occupied by ePHICH resources in the whole system, a set of OFDM symbols can be used for transmitting the ePHICH is determined first. The number of time-frequency resources in this set may be far larger than the number of time-frequency resources need to be reserved for the ePHICH in the system. Then the ePHICH resources are allocated on the OFDM symbols of the set. The set of OFDM symbols can be used for transmitting the ePHICH may be defined in advance, e.g., all of the OFDM symbols can be used for transmitting the ePHICH in FIG. 7, or a subset of all of the OFDM symbols can be used for transmitting the ePHICH in FIG. 7. The set of the OFDM symbols can be used for transmitting the ePHICH may also be configured by higher layer signaling.
After the OFDM symbols used for transmitting the ePHICH are determined, each ePHICH resource needs to be mapped to a detailed REG in the allocated OFDM symbols. In order to obtain a frequency diversity gain, each ePHICH resource may be mapped to multiple PRB pairs of the ePDCCH. As to which REGs on the PRB pair are occupied by the ePHICH resource, there are two cases.
In one case, one ePHICH resource may occupy REGs on the same time-frequency location of multiple PRB pairs. On each PRB pair, the same method is adopted to index the REGs in the OFDM symbols reserved for transmitting the ePHICH, i.e., the ePHICH resource uses the REGs with the same indexes on each PRB pair. Multiple PHICH resources capable of being multiplexed on one REG are referred to as an ePHICH group. According to this method, when the time-frequency resource of the ePHICH is allocated on the OFDM symbol used for the TRS, the four available REs of one REG are not equally distributed in the 4 eCCEs, i.e., it is not the fact that one RE of each eCCE is occupied. However, considering that there are generally multiple REGs in one PRB pair are used for the ePHICH, these REGs have different impacts to the eCCE, and the impact to the number of available REs of the eCCE is averaged.
In the other case, the ePHICH resources occupy REGs of different time-frequency locations on different PRB pairs. The advantage is that the channel estimation performances of the REGs of the ePHICH resources are averaged. In addition, through controlling the REGs occupied by one ePHICH resource on different PRB pairs, it can be ensured that the number of REs occupied by each ePHICH on each eCCE is the same. On each PRB pair, the same method may be used for indexing the REGs in the OFDM symbols reserved for transmitting the ePHICH. Thus, REGs with different indexes on the PRB pairs are used by the ePHICH resource. For example, denote that the indexes of the REGs in the set of OFDM symbols used for ePHICH on one PRB pair are 0, 1, … NREG
PRBP-1, wherein NREG
PRBPdenotes the total number of REGs can be used for transmitting the ePHICH. Thus, the index of the REG occupied by the pth ePHICH resource on the mth PRB pair of the ePDCCH set is defined as the following equation.
Where NNPRBP denotes the number of PRB pairs occupied by the ePHICH resource. On the OFDM symbol set used for the ePHICH, the number of REGs reserved for the ePHICH on each PRB pair can be obtained through higher layer signaling. For example, denoting the number by NREG
configured, thus on the first PRB pair, the REGs with indexes 0, 1, …, NREG
configured-1 may be reserved for transmitting the ePHICH, whereas other REGs can still be used for transmitting the ePDCCH. For other PRB pairs, it can be determined that which REGs are reserved for the ePHICH according to a REG mapping relationship of the ePHICH resource, whereas other REGs can still be used for transmitting the ePDCCH. The present invention does not restrict the method for determining the indexes of the REGs on each PRB of one PHICH. Multiple PHICH resources multiplexed on one REG are referred to as an ePHICH group.
For example, as shown in FIG. 8, suppose that one ePHICH resource needs to be mapped to four REGs which are respectively: one REG of OFDM symbol 0 of slot 0 of the first PRB pair, one REG of OFDM symbol 3 of slot 0 of the second PRB pair, one REG of OFDM symbol 5 of slot 0 of the third PRB pair, one REG of OFDM symbol 1 of slot 1 of the fourth PRB pair.
When the ePHICH resources are mapped according to the above method, the UE needs to know the number of REs used for transmitting the ePHICH in one distributed ePDCCH set, so as to detect the ePHICH on the right RE set. This can be solved by semi-statically configuring the number of time-frequency resources occupied by the ePHICH. For example, similar to the transmission of the ePHICH in the existing system, the system may semi-statically configure the number of ePHICH groups on the ePDCCH set, so as to the number of REs occupied by the ePHICH.
For a cell which demodulates all downlink control channels and PDSCH based on the DMRS, if the receiving of the PDCCH of a Rel-11 UE needs to be supported, since the Rel-11 UE cannot recognize the time-frequency resources occupied by the ePHICH, the above method in which the OFDM symbols for the ePHICH are allocated according to the time sequence of the OFDM symbols may reduce the impact of the ePHICH to the ePDCCH of the Rel-11 UE.
In particular, for the Rel-11 UE, for one ePDCCH set, it may be configured by higher layer signaling that the ePDCCH is transmitted from the nth OFDM symbol in the subframe. Thus, the Rel-11 UE will not detect signals on OFDM symbols before the nth OFDM symbol in the subframe. Thus, the number N of OFDM symbols need to be reserved may be calculated according to the number of ePHICH resources. Then the Rel-11 UE is configured by higher layer signaling to transmit the ePDCCH from the nth OFDM symbol, n≥N. According to this method, since the Rel-11 UE does not transmit the ePDCCH on OFDM symbols before the nth OFDM symbol, it is not affected by the ePHICH multiplexed on the OFDM symbols before the nth OFDM symbol. The Rel-12 UE detects the ePHICH in the previous n OFDM symbols. Besides the OFDM symbols begin from the nth OFDM symbol, it may use REs not used for ePHICH in the OFDM symbols before the nth OFDM symbol for transmitting the ePDCCH.
FIG. 9 shows the above method according to the example of the present invention. Suppose that the time-frequency structure of the DMRS and the time-frequency structure of the CSI-RS in the existing LTE system are used. For the Rel-11 UE, the ePDCCH is configured to be mapped to an area from the nth OFDM symbol in the PRB pair through higher layer signaling, wherein n=2, i.e., the area surrounded with black thick lines. The ePDCCH of the Rel-12 UE may be mapped to all OFDM symbols in the subframe. The ePHICH of the Rel-12 UE is mapped to the area of former n=2 OFDM symbols in the PRB pair. As shown in FIG. 9, two REGs in OFDM symbol 0 in slot 0 are used for transmitting the ePHICH, other REs in the former 2 OFDM symbols of slot 0 may be used for transmitting the ePDCCH of the Rel-12 UE, but the Rel-11 UE can only use RE resources from the second OFDM symbol.
Example 2
In this example, when the ePHICH resource is allocated for the UE, the ePHICH may occupy time-frequency resources of one or more eCCEs in one distributed ePDCCH set. Thus, the transmission of the ePHICH does not impact the link performance of other eCCEs used for the ePDCCH in the ePDCCH set. Since the number of eCCEs configured in the ePDCCH set does not change, the number of eCCEs available for transmitting the ePDCCH is reduced.
At this time, the eCCE used for the ePHICH in the ePDCCH set may be semi-statically configured, i.e., these eCCEs are only used for the ePHICH but not for the ePDCCH. Or, the eCCEs allocated for the ePHICH in the ePDCCH set may change dynamically, i.e., when a User Specific Space (USS) of the ePDCCH is defined, the eCCEs in the USS may overlap with the eCCEs of the ePHICH. Thus, if one eCCE does not bear any ePHICH currently, the base station scheduler may use this eCCE for transmitting the ePDCCH of the UE dynamically, so as to increase resource utilization ratio.
FIG. 10 shows an ePHICH of a frame structure with a normal CP according to an example of the present invention. Suppose that the time-frequency structure of the DMRS and the time-frequency structure of the CSI-RS in the existing LTE system are used. And suppose that the TRS uses the time-frequency structure of the CRS port 0. In order to obtain the frequency diversity gain, the ePHICH is transmitted in a distributed manner, i.e., the ePHICH is mapped to one or more eCCEs in the distributed ePDCCH set, whereas other eCCE resources in the ePDCCH set are used for transmitting the ePDCCH.
In FIG. 10, suppose that the distributed ePDCCH set includes four PRB pairs based on the distributed transmission and suppose that the ePHICH resource is mapped to the eCCE with index 0 which occupies eREGs with indexes 0, 4, 8, 12 on each PRB pair of the ePDCCH set. Remaining eCCE resources are used for transmitting the ePDCCH. Since the REs occupied by the eREGs are distributed averagely in the PRB pair, the affection of the channel estimation based on the DMRS to the ePHICH transmission within one PRB pair is balanced. At the same time, since the four eREGs used for ePHICH are distributed on four PRB pairs of the ePDCCH set, the frequency diversity gain is obtained, which further improves the system performance of the ePHICH.
In the method provided by the example of the present invention, the system configures the time-frequency resource for the PHICH taking one eCCE as a unit. The system may allocate one or more eCCEs of the ePDCCH set to the ePHICH. Accordingly, a method that the ePHICH resources are multiplexed on one eCCE may be defined. The method may be used repeatedly on multiple eCCEs used for the ePHICH. Hereinafter, a method that multiple ePHICH information bits are multiplexed on one eCCE is described in further detail. Suppose that N ePHICH information bits need to be multiplexed on one eCCE. In this example, two multiplexing methods are provided.
In one method, an joint coding, e.g., convolution coding or RM coding, is performed to the N ePHICH information bits. Then, rate matching is performed, such that the number of bits after the rate mapping equals to the number of physical bits of all REs of one eCCE. Then, QPSK modulation is performed and the information bits are mapped to each RE of the eCCE for transmission.
In fact, the number of REs of the eCCE is relatively large, e.g., 36. Accordingly, it may bear a relatively large number N of information bits of the ePHICH. There may be some problems if the joint coding is directly performed to the N information bits. For example, transmission powers of the N bits are the same. Power control cannot be performed with respect to the link status of the UE corresponding to each bit. The UE needs to perform an associated decoding to the N bits to obtain one ePHICH information bit, which increases the operation complexity.
Based on the above consideration, a second ePHICH multiplexing method provided by the example of the present invention is as follows. The RE resources of one eCCE are divided into several sub-groups, and an association coding is performed on the resources of each sub-group according to the above first method to transmit the ePHICH information bit corresponding to this sub-group. Hereinafter, two sub-group dividing methods are described.
In one sub-group dividing method, the sub-groups are divided taking the RE as a unit. The dividing of the sub-groups may be performed within the PRB pair. For example, one eREG in one PRB pair may have 9 REs. Then, these REs may be divided into two sub-groups, one sub-group includes 4 REs and the other includes 5 REs. Or, these REs may be divided into 3 sub-groups which respectively includes 3 REs. Herein, when the sub-groups are divided, it is better to scatter the REs in one sub-group to multiple OFDM symbols and multiple subcarriers of the PRB pair, so as to balance the impact of the channel estimation. For example, the REs of the eREGs that the eCCE occupied on one PRB pair are indexed successively as rk, k = 0, 1, …, NeREG
RE-1, wherein NeREG
RE denotes the total number of REs of the eREG, the REs are divided into G sub-groups, then the index of the RE corresponding to the gth sub-group is defined as the following equation.
Or, the dividing of the sub-groups may be performed on multiple PRB pairs occupied by the eCCE. For example, the eCCE includes 36 REs which may be divided into two sub-groups, each of them includes 18 REs. Herein, when the sub-groups are divided, it is better to ensure that the REs of each sub-group are averagely distributed on different PRB pairs occupied by the eCCE, so as to ensure the frequency diversity feature. For example, the REs occupied by the eCCE may be indexed successively. It is possible to index the REs occupied by the eCCE on one PRB pair successively, and then index the REs occupied by the eCCE on a next PRB pair successively. Denote the indexes of the REs occupied by the eCCE by ck, k = 0, 1, …, NeCCE
RE-1, wherein NeCCE
RE denotes the total number of the REs of the eCCE, and G sub-groups need to be divided, then the index of the RE corresponding to the gth sub-group is defined as the following equation.
In the case that the numbers of REs are different in sub-groups, the number of ePHICH bits borne by each subframe may be determined according to a proportion of the numbers of REs of the sub-groups. Or, the operation may be simplified to fixedly bear fixed number of ePHICH bits on each sub-group. Suppose that M ePHICH information bits need to be multiplexed on one sub-group. The joint coding is firstly performed to the M ePHICH information bits. Then, rate matching is performed to make the number of bits after the rate matching equal to the number of physical bits of all REs of the sub-group. Then, QPSK modulation is performed and the information bits are mapped to the REs of the sub-group for transmission.
Alternatively, since the QPSK modulation is adopted, in the second sub-group dividing method, the I-branch and the Q-branch of the modulated symbol of each RE of the eCCE may be separated, i.e., the I-branches of all RE resources of one eCCE are divided into one sub-group, and all Q-branches are divided into another sub-group. As such, the ePHICH is transmitted independently on the two sub-groups I and Q. Suppose that M ePHICH information bits need to be multiplexed on one I-branch or Q-branch of the eCCE, M approximately equals to half of N. Then, the joint coding may be performed to the M ePHICH information bits firstly. Then, rate matching is performed to make the number of bits after the rate matching equal to the number of physical bits of all REs of one I-branch or Q-branch of the eCCE. Then, QPSK modulation is performed and the information bits are mapped to each RE of one I-branch or Q-branch of the eCCE for transmission.
In fact, according to the CP length of the system, the subframe is a normal subframe or a DwPTS of the TDD system. It is used for bearing an initial OFDM symbol index of the ePDCCH/ePHICH. The number of available REs of each eREG of each PRB pair of the ePDCCH set is variable. In addition, some REs are used for TRS or CSI-RS, which further aggravates the variation of the number of REs of the eREG. The variation of the number of REs of the eREG results in the variation of the number of REs of the eCCE. The variation of the number of REs of the eCCE results in the variation of capability for bearing ePHICH information bits. Hereinafter, one method is described to dealing with the impact of the variation of the number of REs of the eCCE.
For each subframe or each group of subframes, when the number of PHICH information bits can be borne by one eCCE is determined, the number of PHICH information bits to be transmitted may be determined according to the number of available REs of the eCCE or the sub-group of the eCCE.
Alternatively, in order to simplify the system and the UE's operation, the coding and multiplexing method of the ePHICH may be designed to transmit fixed number of PHICH information bits on the eCCE or the sub-group of the eCCE, suppose that the fixed number of bits is X. For example, the number X of ePHICH bits can be transmitted on one eCCE may be determined according to the maximum number of REs among eCCEs of all subframes. In the case that the number of available REs of the eCCE of the sub-group is relatively small, both the base station and the UE know that the eCCE of the current subframe has a relatively small number of available REs. Therefore, at the base station side, the base station scheduler ensures that ePHICH information is transmitted on Y bits of the X bits, wherein Y is smaller than or equal to X. Y is determined according to the number of available REs of the eCCE of the current subframe. Suppose that the Y bits are former Y bits in the X bits. Accordingly, at the UE side, the UE also knows that the base station uses the Y bits among the X bits to transmit the ePHICH information. Thus, during the decoding of the ePHICH, according to the prior information, the decoding complexity is decreased and the decoding performance to the Y bits is improved. For example, the joint coding may be the RM code. The base station may fixedly configure unused bits among the X bits to 0. The UE also fixedly takes the unused bits among the X bits as 0 to simplify the operation.
Similar to the PHICH transmission in the existing systems, for the resource mapping of the ePHICH, multiple ePHICH groups may be defined, each of which includes multiple ePHICH resources. Each ePHICH resource is identified by an index pair (nePHICH
group,nePHICH
seq), wherein nePHICH
group is the index of the ePHICH group, nePHICH
seq is the index of the ePHICH resource in the ePHICH group. Herein, each ePHICH actually corresponds to one bit of the joint coding.
The above of this example described the method that multiple ePHICH information bits are multiplexed on one eCCE using joint coding. The joint coding may be performed on all REs of the eCCE directly. Or, sub-groups may be divided firstly and then the joint coding is performed on the REs of the sub-groups.
Whichever of the above two multiplexing methods is adopted, the following method may be adopted to group and map the ePHICH resources. In particular, the ePHICH bits multiplexed on one eCCE may be indexed and are further divided into ePHICH groups. Suppose that the number of ePHICH bits can be transmitted on the eCCE is N and each ePHICH group includes Ng ePHICH bits, then the PHICH bits on the eCCE are divided into
groups, wherein
denotes round up. Consistent with existing LTE, Ng may be configured to be 8. If N can be divided by Ng with no remainder, an integer number of groups are divided. Otherwise,
groups including Ng ePHICH resources and one group including N mod N
g ePHICH resources are divided, wherein
denotes round down. In the case that there is a remainder, although there is one ePHICH group (generally the last group)in the eCCE has relatively less ePHICH resources, it is still possible to allocate PHICH resources for the UE supposing that this group has Ng ePHICH resources, e.g., map according to the minimum PRB index and n
DMRS of the PUSCH. The base station scheduler ensures that the unavailable ePHICH bits are not allocated to the UE.
If the REs on the eCCE are divided into multiple sub-groups and the joint coding is performed respectively to the ePHICH bits of each sub-group, the above method for dividing the ePHICH groups can still be used, i.e., the sub-groups are broken and the ePHICH groups are divided on all ePHICH bits of the eCCE. Alternatively, it is also possible to establish a corresponding relationship between the sub-groups divided on the eCCE and the ePHICH groups. Specially, the ePHICH bits of each sub-group map to one ePHICH group correspondingly.
If multiple eCCEs of the ePDCCH set are used for ePHICH transmission, the ePHICH information bits on each eCCE may be grouped according to the above method. Then, each ePHICH group on multiple eCCEs used for ePHICH may be indexed in association. Alternatively, the ePHICH bits can be borne on all the eCCEs used for ePHICH may be indexed in association, and then ePHICH groups are divided. Herein, if the number of ePHICH bits on all the eCCE used for ePHICH can be divided by Ng without remainder, each ePHICH group includes Ng ePHICH bits; otherwise, there is one ePHICH group which includes less than Ng ePHICH information bits.
Example 3
LTE Release-10/11 defines Channel Information Reference Signal (CSI-RS). A Rank Indication (RI), Precoding Matrix Index (PMI) and Channel Quality Indicator (CQI) that the user needs to feed back to the base station may be calculated through measuring the CSI-RS. The distributions of the CSI-RS in the time domain and the frequency domain are both sparse. In the frequency domain, the CSI-RS is wideband transmitted. And a density that one resource block includes only one CSI-RS of each antenna port of a serving cell should be ensured. In the time domain, CSI-RS requires a periodicity of multiples of 5ms, from 5ms to 80ms. The sparse CSI-RS supports 8-antenna configuration of the base station. Within one PRB pair, there are altogether 40 RE resources /20 pairs are available for the CSI-RS configuration.
In the LTE Release-10/11, the system may configure the CSI-RS (ZP CSI-RS) with a zero transmission power, so as to reduce the inter-cell CSI-RS interference and increase the accuracy ratio of CSI-RS measurement. The ePHICH may be borne by the time-frequency resources configured as the ZP CSI-RS. With this method, the Rel-11 UE determines that the REs that the ePHICH occupies are the ZP CSI-RS, thus it does not detect the ePDCCH on these REs, which avoids the affection to the ePDCCH of the Rel-11 UE.
FIG. 11a and FIG. 11b show ePHICH channels of a frame structure with a normal CP according to an example of the present invention. Suppose that the time-frequency structure of the DMRS and the time-frequency structure of the CSI-RS in the existing LTE system are adopted, and suppose that the TRS uses the time-frequency structure of the existing CRS port 0. According to the design of the LTE TDD system, for a normal subframe, last two OFDM symbols of slot 0 and OFDM symbols 3, 4, 6, 7 of slot 1 may be used for configuring and transmitting the CSI-RS.
As shown in FIG. 11a, suppose that the base station configures a group of 4-port ZP CSI-RS for the ePHICH. For example, on each PRB pair, there is a pair of CSI-RS resources which occupy 4 REs on OFDM symbols 3, 4 of slot 1. These four pairwise consecutive REs correspond to one traditional defined REG in number. Then, the REGs borne on different PRB pairs form the ePHICH transmission resource and ensure the frequency diversity gain. Alternatively, as shown in FIG. 11b, suppose that the base station configures two groups of 4-port CSI-RS time-frequency resources for the ePHICH, and the two groups of 4-port CSI-RS time-frequency resources form a group of 8-port CSI-RS time-frequency resource. Thus, every 4 REs which are adjacent to each other on time and frequency domains correspond to one traditionally defined REG. then, the REGs borne on different PRB pairs form the ePHICH transmission resource and ensure the frequency diversity gain.
The above describes the method for transmitting HARQ indication information provided by the examples of the present invention. Corresponding to the above method, an example of the present invention also provides an apparatus which is described hereinafter.
FIG. 12 is a schematic diagram illustrating a structure of a base station device for transmitting ePHICH signals according to an example of the present invention. The device includes: an ePHICH generating module and an ePHICH multiplexing module; wherein
the ePHICH generating module 1210 is adapted to perform operations such as coding, rate matching and modulating to the ePHICH;
the ePHICH multiplexing module 1220 is adapted to map ePHICH resources borne ePHICH information to some time-frequency resources of a distributed ePDCCH set according to the method described above, and transmit the generated ePHICH information on the ePHICH resources.
FIG. 13 is a schematic diagram illustrating a structure of a UE device for receiving ePHICH according to an example of the present invention. The device includes: an ePHICH de-multiplexing module and an ePHICH detecting module; wherein
the ePHICH de-multiplexing module 1310 is adapted to de-multiplex on the ePHICH resources used for bearing the ePHICH information according to the method described above to obtain the ePHICH; and
the ePHICH detecting module 1320 is adapted to perform operations such as demodulating and decoding to the ePHICH signals.
The foregoing descriptions are only preferred embodiments of this invention and are not for use in limiting the protection scope thereof. Any changes and modifications can be made by those skilled in the art without departing from the spirit of this invention and therefore should be covered within the protection scope as set by the appended claims.