WO2014068759A1 - Moving apparatus - Google Patents

Moving apparatus Download PDF

Info

Publication number
WO2014068759A1
WO2014068759A1 PCT/JP2012/078429 JP2012078429W WO2014068759A1 WO 2014068759 A1 WO2014068759 A1 WO 2014068759A1 JP 2012078429 W JP2012078429 W JP 2012078429W WO 2014068759 A1 WO2014068759 A1 WO 2014068759A1
Authority
WO
WIPO (PCT)
Prior art keywords
stable posture
moving
ground
contact
mobile
Prior art date
Application number
PCT/JP2012/078429
Other languages
French (fr)
Japanese (ja)
Inventor
泰士 上田
亮介 中村
梓 網野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/078429 priority Critical patent/WO2014068759A1/en
Publication of WO2014068759A1 publication Critical patent/WO2014068759A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • B60L3/0015Prevention of collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B33/00Castors in general; Anti-clogging castors
    • B60B33/04Castors in general; Anti-clogging castors adjustable, e.g. in height; linearly shifting castors
    • B60B33/06Castors in general; Anti-clogging castors adjustable, e.g. in height; linearly shifting castors mounted retractably
    • B60B33/063Castors in general; Anti-clogging castors adjustable, e.g. in height; linearly shifting castors mounted retractably by linear movement parallel to swivel axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

The purpose of the present invention is to provide a moving apparatus having a means for easily determining the possibility of self-support in a dynamically stable posture. For this purpose, this moving apparatus is provided with: a displacement unit for displacing the position of the apparatus itself, with respect to a ground surface contacted by the apparatus itself; and a control unit for controlling the displacement unit in such a way that the apparatus itself can move to a target spot. The moving apparatus has at least two different self-supporting postures: a statically stable posture for which control is not required for self support, and a dynamically stable posture for which control is required for self support. During transition from the statically stable posture to the dynamically stable posture, through a contacted ground condition recognition operation involving actively applying force to a portion of the ground contacted by the apparatus itself, with respect to the contacted ground surface, the apparatus recognizes that the contacted ground surface is such that self-support is possible, and thereafter transitions to the dynamically stable posture.

Description

移動装置Mobile device
 本発明は、自立に制御を必要としない静的安定姿勢と、自立に制御を必要とする動的安定姿勢との2種類の自立姿勢を持つ移動装置に関する。 The present invention relates to a mobile device having two types of self-supporting postures: a static stable posture that does not require control independently, and a dynamic stable posture that requires control independently.
 特許文献1に、倒立振子姿勢と安定姿勢の2種類の自立姿勢を備え、倒立振子制御によって自立したまま機敏に移動し、転倒の危険性が高い時は1つ以上の支持脚を繰り出して安定姿勢を保つ移動装置が開示されている。この移動装置では、安定姿勢から倒立振子姿勢へ移行する際は、接地した前記支持脚の繰り出し量と移動装置の傾斜姿勢角から走行面の傾斜角を推定し、走行面の傾斜角が所定の値より小さい場合、走行面が水平面かどうかを判定してから、倒立振子姿勢へ移行する。 Patent Document 1 has two types of self-supporting postures, an inverted pendulum posture and a stable posture. It moves quickly while standing independently by the inverted pendulum control. A moving device that maintains a posture is disclosed. In this moving device, when shifting from the stable posture to the inverted pendulum posture, the inclination angle of the running surface is estimated from the amount of extension of the grounded support leg and the inclination posture angle of the moving device, and the inclination angle of the running surface is predetermined. When it is smaller than the value, it is determined whether or not the traveling surface is a horizontal surface, and then the posture is shifted to the inverted pendulum posture.
 さらに、特許文献2に、2足歩行姿勢と、3点支持姿勢の2種類の自立姿勢を持ち、2足歩行姿勢で転倒の危険が高い時は補助脚を繰り出して3点支持姿勢へ移行する移動装置が開示されている。この移動装置では、3点支持姿勢から2足歩行姿勢への移行時は、傾斜センサから得た姿勢データを基に安定な姿勢であるかを判定し、安定姿勢の場合のみ2足歩行姿勢へ移行する。 Furthermore, Patent Document 2 has two types of self-supporting postures, a biped walking posture and a three-point supporting posture, and when the risk of falling is high in the biped walking posture, the auxiliary leg is extended to shift to the three-point supporting posture. A mobile device is disclosed. In this moving device, when shifting from the three-point support posture to the biped walking posture, it is determined whether the posture is stable based on the posture data obtained from the tilt sensor, and the biped walking posture is changed only in the stable posture. Transition.
特開2006-247802号公報JP 2006-247802 A 特開2003-334773号公報JP 2003-334773 A
 倒立振子や2足歩行の様に、移動能力が高いが自立するための制御が必要な姿勢(以後、動的安定姿勢と呼ぶ)では、接地面の傾斜角、凹凸、摩擦等の状態が自立の可否に影響する。特許文献1の移動装置は、接地した支持脚の繰り出し量と移動装置の傾斜姿勢角から、接地面の水平を判定し倒立振子姿勢への移行を決定するが、例えば支持脚が水平面上の突起物の上に位置している場合は、接地面が水平であるにもかかわらず傾斜していると判定したり、接地面が滑りやすい場合や柔らかい場合は、接地面が水平でも倒立振子姿勢へ移行後に転倒したりする可能性がある。また、特許文献2の移動装置は傾斜センサにより装置の姿勢が2足歩行に耐えうるかを判定しているが、接地面が滑りやすい場合は、2足歩行中に転倒する可能性がある。また、接地面にかかわらず動的安定姿勢への移行を試みて、転倒した場合は接地面が滑りやすいと判断する方法があるが、転倒は装置の故障を引き起こしたり、周囲へ不安感を与えたりするため極力防止することが重要である。 In postures that have high mobility but require control to stand on their own (like dynamic pendulums), such as an inverted pendulum and biped walking, the ground surface slope angle, unevenness, friction, etc. are self-supporting. Affects whether or not The moving device of Patent Document 1 determines the level of the ground contact surface from the amount of extension of the grounded support leg and the inclination posture angle of the moving device and determines the transition to the inverted pendulum posture. If it is positioned on an object, it is judged that the grounding surface is tilted even though it is horizontal, or if the grounding surface is slippery or soft, move to the inverted pendulum posture even if the grounding surface is horizontal. There is a possibility of falling after the transition. Moreover, although the moving apparatus of patent document 2 determines whether the attitude | position of an apparatus can endure bipedal walking by an inclination sensor, when a grounding surface is slippery, it may fall down during bipedal walking. In addition, there is a method to determine that the ground contact surface is slippery when trying to shift to a dynamic stable posture regardless of the contact surface, and if it falls, the fall may cause a failure of the device or give anxiety to the surroundings. It is important to prevent as much as possible.
 したがって、動的安定姿勢で自立する移動装置には、接地面の傾斜だけでなく、摩擦や凹凸などを考慮して、動的安定姿勢へ移行する前に自立可能性を判断する手段が必要である。また、自立可能性を判断する手段は、コスト面、エネルギー効率面から、新たな構成部品等を必要としない方法が望ましい。 Therefore, a mobile device that is self-supporting in a dynamic stable posture needs a means to determine the possibility of self-support before moving to the dynamic stable posture, considering not only the inclination of the ground contact surface but also friction and unevenness. is there. Further, as a means for determining the possibility of self-sustainability, a method that does not require a new component or the like is desirable from the viewpoint of cost and energy efficiency.
 このような背景に鑑みて本発明がなされたのであり、本発明の目的は、動的安定姿勢の自立可能性を簡便に判断する手段を持つ移動装置を提供することにある。 The present invention has been made in view of such a background, and an object of the present invention is to provide a moving device having a means for easily judging the possibility of independence of a dynamic stable posture.
 上記課題を解決するため、本発明の移動装置は、自立に制御を必要としない静的安定姿勢から、自立に制御を必要とする動的安定姿勢へ移行する際、能動的に移動装置の接地部へ力を加えることによって、接地面が動的安定姿勢での自立可能な条件を満たすことを確認した後に、動的安定姿勢へ移行することを特徴とする。 In order to solve the above-mentioned problems, the mobile device of the present invention actively grounds the mobile device when shifting from a static stable posture that does not require control independently to a dynamic stable posture that requires control independently. It is characterized in that, by applying a force to the part, after confirming that the ground contact surface satisfies a condition capable of being independent in the dynamic stable posture, the transition to the dynamic stable posture is performed.
 本発明によれば、移動装置において、動的安定姿勢の自立可能性を簡便に判断することができる。 According to the present invention, it is possible to easily determine the independence possibility of the dynamic stable posture in the mobile device.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施形態の移動装置の機能構成図である。It is a functional block diagram of the moving apparatus of embodiment of this invention. 本発明の実施形態の倒立振子型移動装置の側面図である。It is a side view of the inverted pendulum type moving device of the embodiment of the present invention. 本発明の実施形態の倒立振子型移動装置の構成図である。It is a block diagram of the inverted pendulum type moving apparatus of embodiment of this invention. 本発明の実施形態の倒立振子型移動装置のシステム構成図である。It is a system configuration figure of an inverted pendulum type moving device of an embodiment of the present invention. 本発明の実施形態の倒立振子型移動装置の姿勢移行時のフローチャートである。It is a flowchart at the time of the attitude | position transition of the inverted pendulum type moving apparatus of embodiment of this invention. 本発明の実施形態の倒立振子型移動装置の接地面状態確認動作を説明する図である。It is a figure explaining the contact surface state confirmation operation | movement of the inverted pendulum type moving apparatus of embodiment of this invention. 本発明の実施形態の2足歩行型移動装置の側面図である。It is a side view of the biped walking type mobile device of an embodiment of the present invention. 本発明の実施形態の2足歩行型移動装置の構成図である。It is a block diagram of the biped walking type moving apparatus of embodiment of this invention. 本発明の実施形態の2足歩行型移動装置のシステム構成図である。1 is a system configuration diagram of a biped walking type movement apparatus according to an embodiment of the present invention. 本発明の実施形態の倒立振子型移動装置の接地面状態確認動作を説明する図である。It is a figure explaining the contact surface state confirmation operation | movement of the inverted pendulum type moving apparatus of embodiment of this invention.
次に、本発明に係る実施例について、適宜図面を参照しながら詳細に説明する。なお、各図面において、同様の構成要素については、同一の符号を付して説明を省略する。 Next, embodiments according to the present invention will be described in detail with reference to the drawings as appropriate. In addition, in each drawing, about the same component, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 まず始めに、図1を用いて本発明の実施形態の移動装置の機能構成を説明する。その後、具体的な機構を用いた実施例1及び実施例2について説明する。 First, the functional configuration of the mobile device according to the embodiment of the present invention will be described with reference to FIG. Then, Example 1 and Example 2 using a specific mechanism will be described.
 移動装置1000は、移動装置1000の姿勢を認識するための姿勢認識装置1100と、移動装置1000の動作の制御を行う制御装置1001と、外部との情報の入出力を行う情報入出力装置1002と、各構成要素へ動力源を供給する動力源供給装置1003と、移動装置1000を変位させる変位装置1004とを備える。 The mobile device 1000 includes a posture recognition device 1100 for recognizing the posture of the mobile device 1000, a control device 1001 that controls the operation of the mobile device 1000, and an information input / output device 1002 that inputs / outputs information from / to the outside. A power source supply device 1003 that supplies a power source to each component and a displacement device 1004 that displaces the moving device 1000 are provided.
 制御装置1001は、運動制御部1011と、情報記憶部1012と、接地面状態確認部1013とで構成される。運動制御部1011は、他の構成要素からの情報を基に移動装置1000の姿勢や変位を制御する。情報記憶部1012は、情報入力装置1002からの動作目標値や、ハードウェアの仕様値などのパラメータ、運動制御部1011や接地面状態確認部1013からの動作ログ等を記憶する。接地面状態確認部1013は、変位装置1004からの駆動情報と、情報記憶部1012へ記憶したパラメータとを基に、変位装置1004の接地面が走行可能であるかを確認する。 The control device 1001 includes a motion control unit 1011, an information storage unit 1012, and a ground plane state confirmation unit 1013. The motion control unit 1011 controls the posture and displacement of the moving apparatus 1000 based on information from other components. The information storage unit 1012 stores operation target values from the information input device 1002, parameters such as hardware specification values, operation logs from the motion control unit 1011 and the ground plane state confirmation unit 1013, and the like. The ground plane state confirmation unit 1013 confirms whether the ground plane of the displacement device 1004 can travel based on the drive information from the displacement device 1004 and the parameters stored in the information storage unit 1012.
 変位装置1004は、駆動部1040と、駆動情報検出部1041と、接地部1042と、姿勢制御部1043とで構成される。駆動部1040は接地部1042を駆動して移動装置1000を変位させる。駆動情報検出部1041は駆動部1040の駆動情報を検出し、運動制御部1011と接地面状態確認部1013とへ駆動情報を伝える。姿勢制御部1043は運動制御部1011からの制御信号に従って、移動装置1000の自立姿勢を、静的安定姿勢から動的安定姿勢へ移行或いは動的安定姿勢から静的安定姿勢へ移行し、動作ログを運動制御部1011へ送る。 The displacement device 1004 includes a drive unit 1040, a drive information detection unit 1041, a grounding unit 1042, and an attitude control unit 1043. The driving unit 1040 drives the grounding unit 1042 to displace the moving device 1000. The drive information detection unit 1041 detects the drive information of the drive unit 1040 and transmits the drive information to the motion control unit 1011 and the ground plane state confirmation unit 1013. The posture control unit 1043 changes the self-supporting posture of the mobile device 1000 from the static stable posture to the dynamic stable posture or from the dynamic stable posture to the static stable posture according to the control signal from the motion control unit 1011. Is sent to the motion control unit 1011.
 なお、動的安定姿勢は移動能力が高いが自立するための制御が必要な姿勢であり、静的安定姿勢は移動能力が動的安定姿勢に比べて低いものの自立するための制御が必要でない姿勢である。 The dynamic stable posture is a posture that has high movement ability but requires control to stand on its own. The static stable posture is a posture that has low movement ability compared to the dynamic stable posture but does not require control to stand on its own. It is.
 以下に、具体的な機構を用いた場合の実施例を述べる。ただし機構は以下に記載する限りではなく、各機能構成要素の機能を実現可能な機構であれば好適に変更や付加が可能である。 The following is an example where a specific mechanism is used. However, the mechanism is not limited to that described below, and can be suitably changed or added as long as the mechanism can realize the function of each functional component.
実施例1では、倒立振子制御による差動2輪で移動する装置を挙げる。まず始めに、本実施例の倒立振子型移動装置1の特徴を述べ、詳細は後述する。 In the first embodiment, a device that moves with two differential wheels by inverted pendulum control will be described. First, the features of the inverted pendulum type moving apparatus 1 of this embodiment will be described, and details will be described later.
 倒立振子型移動装置1の側面図を図2に示す。倒立振子型移動装置1は左右1対の駆動輪142と前後1対の補助輪143を持ち、(a)静的安定姿勢と、(b)動的安定姿勢の2種類の自立姿勢を持つ。待機中や、滑りやすい路面、凹凸の多い路面などを走行する際は補助輪を接地した静的安定姿勢で低速走行し、十分な摩擦力がある滑らかな路面を機敏に動く際は補助輪を上昇させて動的安定姿勢で走行する。動的安定姿勢での走行は、倒立振子制御によって行うが、接地面が滑りやすく摩擦力が不十分な場合や、凹凸が激しすぎて車輪が滑らかに回転しない場合は転倒する可能性がある。そこで、本実施例の倒立振子型移動装置1は、静的安定姿勢から動的安定姿勢へ移行する前に、接地部である駆動輪142を能動的に回転させ、動的安定姿勢での走行が可能であるかを確認してから動的安定姿勢へ移行する。 A side view of the inverted pendulum type moving device 1 is shown in FIG. The inverted pendulum type moving apparatus 1 has a pair of left and right drive wheels 142 and a pair of front and rear auxiliary wheels 143, and has two types of self-standing postures: (a) a static stable posture and (b) a dynamic stable posture. When running on standby, slippery roads, or roads with many bumps, run at a low speed in a static stable posture with the auxiliary wheel in contact with the ground, and use an auxiliary wheel to move quickly on a smooth road surface with sufficient friction. Raise and drive in a dynamic and stable posture. Running in a dynamic stable posture is performed by inverted pendulum control, but if the ground contact surface is slippery and the frictional force is insufficient, or if the unevenness is too intense and the wheel does not rotate smoothly, it may fall over . Therefore, the inverted pendulum type moving apparatus 1 according to the present embodiment actively rotates the driving wheel 142 as the ground contact portion before moving from the static stable posture to the dynamic stable posture, and travels in the dynamic stable posture. After confirming whether or not it is possible, shift to a dynamic stable posture.
 以後、詳細を述べる。 Details are described below.
 図3に倒立振子型移動装置1の構成を示す。倒立振子型移動装置1は、情報入出力装置1002として無線LAN端末12を、姿勢認識装置1100として装置のロール・ピッチ・ヨー角を検出する傾きセンサ10を、変位装置1004として走行装置14を、傾きセンサ10と走行装置14との情報を基に走行装置14を制御する制御装置11を具備している。走行装置14は、駆動部1040として左右1対のモータ140、駆動情報検出部1041としてエンコーダ141、接地部1042として駆動輪142、姿勢制御部1043として前後1対の補助輪143及び補助輪昇降装置144を具備している。補助輪143は自在式のキャスタで、それぞれ補助輪昇降装置144によって垂直方向へ昇降可能である。動力源供給装置1003としてバッテリ13を用いて各構成要素へ電力を供給する。 FIG. 3 shows the configuration of the inverted pendulum type moving device 1. The inverted pendulum type moving device 1 includes a wireless LAN terminal 12 as an information input / output device 1002, an inclination sensor 10 that detects a roll, pitch, and yaw angle of the device as an attitude recognition device 1100, and a traveling device 14 as a displacement device 1004. A control device 11 that controls the traveling device 14 based on information on the inclination sensor 10 and the traveling device 14 is provided. The traveling device 14 includes a pair of left and right motors 140 as a drive unit 1040, an encoder 141 as a drive information detection unit 1041, a drive wheel 142 as a grounding unit 1042, a pair of front and rear auxiliary wheels 143 and an auxiliary wheel lifting device as a posture control unit 1043. 144. The auxiliary wheels 143 are free casters and can be moved up and down in the vertical direction by auxiliary wheel lifting devices 144, respectively. Electric power is supplied to each component using the battery 13 as the power source supply device 1003.
 図4に、倒立振子型移動装置1のシステム構成を示す。傾きセンサ10は倒立振子型移動装置1のロール・ピッチ・ヨー角を制御装置11へ伝える。エンコーダ141は、モータ140の瞬時角度差分を制御装置11へ伝え、制御装置11は前記角度差分を基にモータ140の回転速度を計算する。制御装置11は、傾きセンサ10とエンコーダ141の情報を基にモータ140へ制御信号を送り、モータ140を制御する。また、制御装置11は補助輪昇降装置144へ補助輪昇降制御信号を送る。補助輪昇降装置144には、例えばポテンショメータを付属したボールスプライン機構が適用可能であるが、他の機構であっても、補助輪143を昇降させ、昇降量を計測可能であれば同様の効果を得る事が可能である。補助輪昇降装置144は補助輪143の位置情報を制御装置11へ送る。 FIG. 4 shows a system configuration of the inverted pendulum type moving apparatus 1. The tilt sensor 10 transmits the roll pitch pitch yaw angle of the inverted pendulum type moving device 1 to the control device 11. The encoder 141 transmits the instantaneous angle difference of the motor 140 to the control device 11, and the control device 11 calculates the rotational speed of the motor 140 based on the angle difference. The control device 11 controls the motor 140 by sending a control signal to the motor 140 based on information from the tilt sensor 10 and the encoder 141. Further, the control device 11 sends an auxiliary wheel lifting control signal to the auxiliary wheel lifting device 144. For example, a ball spline mechanism with a potentiometer can be applied to the auxiliary wheel elevating device 144, but even with other mechanisms, the same effect can be obtained if the auxiliary wheel 143 can be raised and lowered to measure the amount of elevation. It is possible to get. The auxiliary wheel lifting device 144 sends the position information of the auxiliary wheel 143 to the control device 11.
 図5に倒立振子型移動装置1が静的安定姿勢から動的安定姿勢へ移行する際のフローチャートを示す。S1では、傾きセンサ10より装置のロール・ピッチ角を取得する。S2では、倒立振子型移動装置1が動的安定姿勢で自立可能な所定角度範囲未満に前記ロール・ピッチ角が収まっているかを調べる。前記ロール・ピッチ角が予め制御装置11の情報記憶部に記憶した一定角度範囲以上の場合は動的安定姿勢での自立は不可能と判断し、S5へ進み不安定接地面対応動作を実行し、再度S1へ戻り前述のフローを繰り返す。不安定接地面対応動作S5としては、例えば、任意の位置へ静的安定姿勢のまま移動して動的安定姿勢で移動可能な接地面を探したり、警告音を鳴らして周囲へ倒立振子型移動装置1が動的安定姿勢で移動不可能なことを知らせたりすればよい。前記ロール・ピッチ角が所定角度範囲未満の場合は、S3へ進み、接地面状態確認動作を実行する。接地面状態確認動作の具体例は後述する。S4で、接地面が倒立振子型移動装置1の動的安定姿勢での走行可能な条件(動的安定条件)を満たすかを判断し、動的安定条件を満たさない場合はS5へ進んで不安定接地面対応動作を実行し、S1へ戻る。S4で動的安定条件を満たす場合は、S6へ進み、補助輪143を上昇させて動的安定姿勢へ移行する。 FIG. 5 shows a flowchart when the inverted pendulum type moving device 1 shifts from the static stable posture to the dynamic stable posture. In S <b> 1, the roll pitch angle of the apparatus is acquired from the tilt sensor 10. In S2, it is checked whether the roll / pitch angle is within a predetermined angle range in which the inverted pendulum type moving device 1 can stand by itself in a dynamic stable posture. If the roll / pitch angle is greater than or equal to a predetermined angle range stored in the information storage unit of the control device 11 in advance, it is determined that the independence in the dynamic stable posture is impossible, and the process proceeds to S5 to execute the operation corresponding to the unstable ground plane. Return to S1 again and repeat the above-described flow. As the operation S5 corresponding to the unstable grounding surface, for example, the grounding surface that can be moved in a static stable posture by moving to an arbitrary position is searched for, or an inverted pendulum type movement to the surroundings by sounding a warning sound What is necessary is just to notify that the apparatus 1 cannot move in a dynamic stable posture. When the roll / pitch angle is less than the predetermined angle range, the process proceeds to S3, and the contact surface state confirmation operation is executed. A specific example of the ground surface state confirmation operation will be described later. In S4, it is determined whether or not the ground contact surface satisfies the condition (dynamic stability condition) in which the inverted pendulum type mobile device 1 can travel in the dynamic stable posture. If the dynamic stability condition is not satisfied, the process proceeds to S5 and is not satisfied. The operation corresponding to the stable ground plane is executed, and the process returns to S1. When the dynamic stability condition is satisfied in S4, the process proceeds to S6, and the auxiliary wheel 143 is raised to shift to the dynamic stable posture.
 前述した確認動作の具体例を、図6を用いて説明する。倒立振子型移動装置1が動的安定姿勢で移動中に、車輪と接地面間の静止摩擦力の最大値を与えるモータトルクをNmaxとする。図6最上欄のグラフのように、左右のモータ140へ互いに逆位相となるようにNmaxを最大値、-Nmaxを最小値とするステップ上のトルクを与えたときの装置の動作を、走行可能な接地面で上記トルク与えた場合の動作と比較することで、接地面が動的安定姿勢で走行可能であるかを調べる。 A specific example of the confirmation operation described above will be described with reference to FIG. Let Nmax be a motor torque that gives the maximum value of the static frictional force between the wheel and the contact surface while the inverted pendulum type moving device 1 is moving in a dynamic stable posture. As shown in the graph at the top of FIG. 6, the operation of the apparatus can be performed when torque is applied to the left and right motors 140 so that Nmax is the maximum value and −Nmax is the minimum value so that the phases are opposite to each other. By comparing with the operation when the above torque is applied to a ground contact surface, it is examined whether the ground contact surface can travel in a dynamic stable posture.
 例えば、図6(a)のように、走行可能な接地面で前記モータトルクを与えた場合のモータ回転量θl,θrを複数回観察した結果、それぞれθmin < θl < θmax,-θmax < θr < -θminを満たしたとする。そこで、走行可能か否かが不明な接地面に対し前記トルクをモータ140へ与えた時、もしモータ回転量が、θmin < θl < θmax,-θmax < θr < -θminを満たせば、その接地面は走行可能と判断する。 For example, as shown in FIG. 6 (a), the motor rotation amounts θl and θr when the motor torque is applied on the grounding surface capable of traveling are observed a plurality of times. As a result, θmin <θl <θmax, −θmax <θr < Assume that −θmin is satisfied. Therefore, when the torque is applied to the motor 140 with respect to a ground plane that is unclear whether or not it can travel, if the motor rotation amount satisfies θmin <θl <θmax, −θmax <θr <−θmin, that ground plane Is determined to be able to travel.
 一方、図6(b)欄に示すように θl > θmax、θr < -θmaxとなる場合は、走行可能な場合に比べモータ140が回転し過ぎている。この場合は、車輪が滑りやすい接地面だと判断できる。 On the other hand, as shown in the column of FIG. 6 (b), when θl> θmax and θr <−θmax, the motor 140 rotates too much as compared with the case where the vehicle can run. In this case, it can be determined that the wheel is a slippery ground contact surface.
 逆に図6(c)欄に示すようにθl < θmin、θr > -θminとなる場合は、走行可能な場合に比べモータ140の回転が少ない。この場合は、車輪が滑らかに転がらない接地面だと判断できる。 On the contrary, as shown in the column (c) of FIG. 6, when θl <θmin, θr> −θmin, the rotation of the motor 140 is less than when the vehicle can run. In this case, it can be determined that the wheel is a ground contact surface that does not roll smoothly.
 以上のように、前記トルクに対するモータ回転量が、θmin < θl < θmax、-θmax < θr < -θminを満たすか否かで、接地面が動的安定姿勢で走行可能か否かを判断可能である。あるいは、例えば駆動情報検出部1041として傾きセンサ10を用いて、前記トルクを与えた際に傾きセンサ10から得るヨー角が、走行可能な接地面の場合と同様に変化しているかを調べることによって接地面の走行可能性を判断することも可能である。あるいは,例えば前記検出部1041としてひずみセンサを用いて、前記トルクをモータ140へ与えた際に、車輪軸へかかるひずみを計測するなど、力学センサを利用しても走行可能性を判断可能である。 As described above, it is possible to determine whether or not the ground contact surface can travel in a dynamic stable posture depending on whether the motor rotation amount with respect to the torque satisfies θmin <θl <θmax, −θmax <θr <−θmin. is there. Alternatively, for example, by using the tilt sensor 10 as the drive information detection unit 1041, by examining whether the yaw angle obtained from the tilt sensor 10 when the torque is applied is changed in the same manner as in the case of a travelable ground plane. It is also possible to determine the traveling possibility of the ground plane. Alternatively, for example, when a torque sensor is used as the detection unit 1041 and the torque is applied to the motor 140, the strain applied to the wheel shaft is measured. .
 左右逆位相にトルク与えるのは,旋回のみで前述の確認動作を行い、狭いスペースでも動作可能とするための工夫である。本実施例では、モータ140へ与えるトルクを図6のようなステップ状のパターンにしたが、移動可能な接地面上と移動不可能な接地面上において倒立振子型移動装置1の挙動に差が現れるパターンであればどのようなパターンでも良い。また、様々な強さのトルクをモータ140へ与え、車輪が滑り始めるトルクを把握することで、移動中にモータ140へ与えるトルクを、車輪が滑らないようにコントロールすることが可能である。また、最大静止摩擦力を把握して、車輪が滑らないように車輪への荷重をコントロールしたりすることも可能である。 ト ル ク Giving torque to the left and right anti-phase is a device to enable the operation in a narrow space by performing the above-mentioned confirmation operation only by turning. In this embodiment, the torque applied to the motor 140 has a stepped pattern as shown in FIG. 6, but there is a difference in the behavior of the inverted pendulum type moving device 1 on the movable ground surface and the non-movable ground surface. Any pattern can be used as long as it appears. Further, by applying torque of various strengths to the motor 140 and grasping the torque at which the wheel starts to slip, it is possible to control the torque applied to the motor 140 during movement so that the wheel does not slip. It is also possible to grasp the maximum static friction force and control the load on the wheels so that the wheels do not slip.
 以上によって、特別なセンサや装置を追加することなく接地面が動的安定姿勢で走行可能であるかを確認し、動的安定姿勢からの転倒を低減可能な倒立振子型の移動装置を実現する。 As described above, it is confirmed whether or not the ground contact surface can travel in a dynamic stable posture without adding a special sensor or device, and an inverted pendulum type moving device capable of reducing the fall from the dynamic stable posture is realized. .
実施例2では、2足歩行型の移動装置を挙げる。まず始めに本実施例の二足歩行型移動装置2の特徴を述べ、詳細を後述する。 In the second embodiment, a biped walking type moving device will be described. First, the characteristics of the biped walking type moving apparatus 2 of the present embodiment will be described, and details will be described later.
 二足歩行型移動装置2の側面図を図7に示す。二足歩行型移動装置2は左右1対の脚部24を持ち,直立不動状態の(a)静的安定姿勢と、転倒しないようバランスを保ちながら歩行する(b)動的安定姿勢の2種類の自立姿勢を持つ。動的安定姿勢で歩行中は、バランスを保つ様に制御するが、接地面が滑りやすい場合は足部247の裏面が滑って転倒する可能性がある。本実施例の二足歩行型移動装置2は、静的安定姿勢から動的安定姿勢へ移行する前に、能動的に脚部24を開閉する方向へ力を加える接地面状態確認動作を行う。この接地面状態確認動作により、滑るかどうかを判断することで、接地面が動的安定姿勢での歩行が可能であるかを確認する。また、前記接地面確認動作は、装置起動直後や、環境が変わった際等に適宜行う事とし、歩行に支障の無い頻度で行う。 FIG. 7 shows a side view of the biped walking type moving device 2. The biped walking type mobile device 2 has a pair of left and right legs 24, and is two types of (a) static stable posture in an upright immovable state and walking while maintaining a balance so as not to fall down (b) a dynamic stable posture. With a self-supporting attitude. While walking in a dynamic stable posture, control is performed so as to maintain balance, but if the ground contact surface is slippery, the back surface of the foot 247 may slip and fall. The biped walking type moving apparatus 2 according to the present embodiment performs a contact surface state confirmation operation that actively applies a force in a direction to open and close the leg portion 24 before shifting from the static stable posture to the dynamic stable posture. It is confirmed whether or not the ground plane can be walked in a dynamic stable posture by determining whether or not the vehicle is slipping by the ground plane state confirmation operation. In addition, the contact surface check operation is appropriately performed immediately after the device is started or when the environment changes, and is performed at a frequency that does not hinder walking.
 以後、詳細を説明する。 Details will be described below.
 図8に二足歩行型移動装置2の構成を示す。(a)図は二足歩行型移動装置2の正面図である。(b)図は二足歩行型移動装置2の側面図である。(c)図は左足247lと右足247rの各裏面を示す図である。二足歩行型移動装置2は、変位装置1004として2足歩行で移動するための脚部24を具備する。脚部24は、1対のx軸周り関節240、y軸周り関節241、上腿部242、膝関節243、下腿部244、足首x軸周り関節245、足首y軸周り関節246、足部247(247l、247r)から成り立っている。各関節は駆動部1040である内蔵モータ249により駆動し、各内蔵モータ249には駆動情報検出部1041としてモータ回転量を検出するポテンショメータ250を具備する。
図9に二足歩行型移動装置2のシステム構成を示す。各関節の内蔵モータ249へ、制御装置11が信号を送り回転制御する。ポテンショメータ250はモータ回転量を制御装置11へ送ることで、制御装置11は歩行時のバランス制御を行う。尚、図9では、内蔵モータ249及びポテンショメータ250は一つの関節分について示している。内蔵モータ249及びポテンショメータ250は脚部24の中に関節の個数分設けられる。
FIG. 8 shows the configuration of the biped walking type moving apparatus 2. (A) The figure is a front view of the bipedal walking type moving apparatus 2. (B) The figure is a side view of the bipedal walking type moving apparatus 2. (C) The figure shows each back of left foot 247l and right foot 247r. The biped walking type moving device 2 includes a leg portion 24 for moving by biped walking as the displacement device 1004. The leg 24 includes a pair of an x-axis joint 240, a y-axis joint 241, an upper leg 242, a knee joint 243, a lower leg 244, an ankle x-axis joint 245, an ankle y-axis joint 246, and a foot. 247 (247l, 247r). Each joint is driven by a built-in motor 249 that is a drive unit 1040, and each built-in motor 249 includes a potentiometer 250 that detects a motor rotation amount as a drive information detection unit 1041.
FIG. 9 shows a system configuration of the biped walking type moving apparatus 2. The control device 11 sends a signal to the built-in motor 249 of each joint to control rotation. The potentiometer 250 sends the motor rotation amount to the control device 11 so that the control device 11 performs balance control during walking. In FIG. 9, the built-in motor 249 and the potentiometer 250 are shown for one joint. The built-in motor 249 and the potentiometer 250 are provided in the leg portion 24 by the number of joints.
 静的安定姿勢から動的安定姿勢への移行時のフローは実施例1の図5と同じである。 The flow at the time of transition from the static stable posture to the dynamic stable posture is the same as that in FIG.
 接地面状態確認動作について図10を用いて説明する。動的安定姿勢での歩行時に発生する足部247と接地面との間の静止摩擦力の最大値と等しい摩擦力を与える、上腿x軸周り関節240のトルクをNmaxとする。図10最上欄のグラフのように時間とともに変化するトルクを両脚の上腿x軸周り関節240に与え、脚部24が開閉する方向(y軸方向)へ力(F1l,F1r)を加える。脚部24の開閉方向は、例えば、左の足部247lの裏面内の代表点Olを左足部247lの概略接地点(接地中心点)とし、右の足部247rの裏面内の代表点Orを右足部247rの概略接地点とした場合に、左右の概略接地点(Ol,Or)同士の中点Ocを基準に対称の方向とする。前記代表点Ol,Orは、例えば足部247の裏面形状の幾何的な重心位置などが適しているが、脚部開閉の際に移動装置が転倒しなければ他の位置でも差し支えない。代表点Ol,Orは左足247lと右足247rとで同じように設定する。また、加える力は、F2l,F2rのようにして、左右の概略接地点(Ol,Or)同士の中点Ocを基準に対称の方向としてもよい。 The ground plane state confirmation operation will be described with reference to FIG. A torque of the joint 240 around the upper thigh x-axis that gives a frictional force equal to the maximum value of the static frictional force generated between the foot 247 and the contact surface generated during walking in a dynamic stable posture is Nmax. As shown in the graph in the uppermost column of FIG. 10, torque that changes with time is applied to the joint 240 around the upper thigh x-axis of both legs, and forces (F1l, F1r) are applied in the direction in which the leg 24 opens and closes (y-axis direction). The opening / closing direction of the leg 24 is, for example, a representative point Ol in the back surface of the left foot 247l is set as a rough ground point (grounding center point) of the left foot 247l, and a representative point Or in the back surface of the right foot 247r is used. In the case where the ground contact point of the right foot portion 247r is used, the direction is symmetrical with respect to the midpoint Oc between the left and right ground contact points (Ol, Or). The representative points Ol and Or are suitable, for example, the geometric center of gravity of the back surface of the foot 247, but may be at other positions if the moving device does not fall down when the leg is opened and closed. The representative points Ol and Or are set in the same way for the left foot 247l and the right foot 247r. Further, the applied force may be symmetric with respect to the midpoint Oc between the right and left ground contact points (Ol, Or) as in F2l, F2r.
 代表点(概略接地点)Ol,Orと左右の概略接地点(Ol,Or)同士の中点Ocとは、実施例1の左右の駆動輪142に対しても実施例2と同様に設定することができる。そして、実施例1においては、左右の駆動輪142と接地面との摩擦力が中点Ocを基準に点対称となる方向に生じるように、モータトルクを発生させる。 The representative points (schematic grounding points) Ol, Or and the middle point Oc between the left and right rough grounding points (Ol, Or) are set for the left and right drive wheels 142 of the first embodiment in the same manner as in the second embodiment. be able to. In the first embodiment, the motor torque is generated so that the frictional force between the left and right drive wheels 142 and the ground contact surface is symmetric with respect to the middle point Oc.
 概略接地点(接地中心点)が理想的に設定された場合、二足歩行型移動装置2(実施例1における倒立振子型移動装置1)は実質的に位置を変えることなく、向きを変える或いは上下方向に変位するなどして、その場で接地面状態確認動作を行うことができる。 When the approximate grounding point (grounding center point) is ideally set, the biped walking type moving device 2 (inverted pendulum type moving device 1 in the first embodiment) changes its direction without substantially changing the position or It is possible to perform an operation for checking the contact surface state on the spot by displacing it in the vertical direction.
 この時、接地面が滑ることなく歩行可能であれば、脚部24の動きは足部247と床面との摩擦力によって妨げられる。このため、前記関節の回転量は変化しないか、図10(a)欄のようにわずかに滑りながらもバランスを維持できる角度範囲0 < θl < θmax、-θmax < θr < 0に収まる。しかし接地面が滑りやすい場合は、足部247が大きく滑って変位する。このため、前記関節の回転量は図10(b)欄のように前記角度範囲を超えて変化する。よって、脚部24へ能動的に力を加え、前記関節が回転するかを調べることで、接地面が動的安定姿勢で歩行可能か否かを判断可能となる。 At this time, if the ground surface can walk without slipping, the movement of the leg 24 is hindered by the frictional force between the foot 247 and the floor surface. Therefore, the rotation amount of the joint does not change or falls within the angle ranges 0 範 囲 <θl <θmax, −θmax <θr <0 where the balance can be maintained while sliding slightly as shown in FIG. 10A. However, when the ground contact surface is slippery, the foot portion 247 slips greatly and is displaced. For this reason, the rotation amount of the joint changes beyond the angle range as shown in FIG. Therefore, it is possible to determine whether or not the ground contact surface can be walked in a dynamic stable posture by actively applying force to the leg portion 24 and examining whether the joint rotates.
 また、接地面の走行可能性を判断するために、駆動情報検出部1041として力学センサ等を用いて、前記トルクをモータへ加えた時の、上腿x軸周り関節240や足首関節の負荷トルク、回転速度を調べてもよい。或いは、前記検出部1041としてひずみゲージを用いて、上腿部242や下腿部244のひずみを調べたりすることでも接地面の走行可能性を判断可能である。 In addition, in order to determine the possibility of running on the ground contact surface, load torque of the joint around the upper thigh x-axis 240 and the ankle joint when the torque is applied to the motor using a dynamic sensor or the like as the drive information detection unit 1041. The rotational speed may be checked. Alternatively, by using a strain gauge as the detection unit 1041 and examining the strain of the upper leg 242 and the lower leg 244, it is possible to determine the possibility of running on the ground contact surface.
 また、図10最上欄の様に、脚部24を広げるような方向へトルクを加えることで、足部247が滑った時の前後左右の移動を少なくすることができる。 Also, as shown in the uppermost column of FIG. 10, by applying torque in a direction that spreads the leg portion 24, it is possible to reduce the forward / backward / left / right movement when the foot portion 247 slips.
 本実施例では、前記関節245へ与えるトルクを図10のような台形状のパターンにしたが、移動可能な接地面上と移動不可能な接地面上において二足歩行型移動装置2の挙動に差が現れるパターンであればどのようなパターンでも良い。また、足部247が滑り始めた時のトルクから足部247と接地面間の最大静止摩擦力を計算することで、歩行時の脚部繰り出し加速度、接地角度を、前記最大静止摩擦力以内に抑えるよう制御することができる。また、足部247の接地部分を変形して静止摩擦力を増やしたりすることで転倒を防ぐことも可能である。 In the present embodiment, the torque applied to the joint 245 has a trapezoidal pattern as shown in FIG. 10, but the behavior of the biped walking type moving device 2 on the movable grounding surface and the non-movable grounding surface is similar. Any pattern may be used as long as a difference appears. Further, by calculating the maximum static friction force between the foot 247 and the ground contact surface from the torque when the foot 247 starts to slip, the leg extension acceleration and the ground contact angle during walking are within the maximum static friction force. It can be controlled to suppress. In addition, it is possible to prevent falling by deforming the ground contact portion of the foot 247 to increase the static frictional force.
 以上によって、特別なセンサや装置を追加することなく、接地面が動的安定姿勢で歩行可能であるかを確認することで転倒を低減可能な2足歩行型の移動装置を実現する。 As described above, a biped walking type moving device capable of reducing a fall is realized by confirming whether the ground contact surface can be walked in a dynamic stable posture without adding a special sensor or device.
 なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to each above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
 1000 移動装置, 1001 制御装置, 1002 情報入出力装置, 1003 動力源供給装置, 1004 変位装置, 1011 運動制御部, 1012 情報記憶部, 1013 接地面状態確認部, 1040 駆動部, 1041 駆動情報検出部, 1042 接地部, 1043 姿勢制御部, 1100 姿勢認識装置, 1 倒立振子型移動装置, 10 傾きセンサ, 11 制御装置, 12 補助輪昇降装置, 13 バッテリ, 14 走行装置, 140 モータ, 141 エンコーダ, 142 駆動輪, 143 補助輪, 2 二足歩行型移動装置, 24 脚部, 240 上腿x軸周り関節, 241 上腿y軸周り関節, 242 上腿部, 243 膝関節, 244 下腿部, 245 足首x軸周り関節、 246 足首y軸周り関節, 247 足部 1000 moving device, 1001 control device, 1002 information input / output device, 1003 power source supply device, 1004 displacement device, 1011 motion control unit, 1012 information storage unit, 1013 ground plane state confirmation unit, 1040 drive unit, 1041 drive information detection unit , 1042 grounding unit, 1043 posture control unit, 1100 posture recognition device, 1 inverted pendulum type moving device, 10 tilt sensor, 11 control device, 12 auxiliary wheel lifting device, 13 battery, 14 travel device, 140 motor, 141 encoder, 142 Drive wheel, 143 auxiliary wheel, 2 biped walking type movement device, 24 legs, 240 joint around the upper thigh x-axis, 241 joint around the upper thigh y-axis, 242 upper thigh, 243 knee joint, 244 lower thigh 245 ankle x-axis around the joint, 246 ankle y-axis around the joint, 247 foot portion

Claims (7)

  1.  接地面に対して自身の位置を変位する変位装置と、自身が目標地点へ移動できるよう前記変位装置を制御する制御装置とを備え、自立に制御を必要としない静的安定姿勢と、自立に制御を必要とする動的安定姿勢との少なくとも2種類の自立姿勢を持つ移動装置において、
     前記静的安定姿勢から前記動的安定姿勢へ移行する際に、能動的に接地面に対する自身の接地部へ力を加える接地面状態確認動作によって、接地面が動的安定姿勢で自立可能であることを確認した後に、動的安定姿勢へ移行することを特徴とする移動装置。
    It has a displacement device that displaces its own position with respect to the ground plane, and a control device that controls the displacement device so that it can move to a target point. In a mobile device having at least two types of self-supporting postures with a dynamic stable posture requiring control,
    When shifting from the static stable posture to the dynamic stable posture, the grounding surface can stand by itself in the dynamic stable posture by the grounding surface state confirmation operation that actively applies a force to the grounding portion of the grounding surface against the grounding surface. After confirming this, the moving device is characterized by shifting to a dynamic stable posture.
  2.  請求項1に記載の移動装置において、
     前記接地面状態確認動作では、確認対象である接地面の上で、時間とともに変化する所定パターンの力を前記接地部へ加えた場合の移動装置の挙動を、動的安定姿勢で移動可能な接地面上で前記所定パターンの力を前記接地部へ加えた場合の挙動と比較することで、前記確認対象の接地面が動的安定姿勢で自立可能であるかを判断することを特徴とする移動装置。
    The mobile device according to claim 1,
    In the contact surface state checking operation, the behavior of the moving device when a force of a predetermined pattern that changes with time is applied to the contact surface on the contact surface to be checked is a contact that can move in a dynamic stable posture. A movement characterized by determining whether the grounding surface to be confirmed can be self-supporting in a dynamic stable posture by comparing with a behavior when the force of the predetermined pattern is applied to the grounding unit on the ground. apparatus.
  3.  請求項2に記載の移動装置において、
     前記変位装置は、車輪又は脚のいずれかを移動手段として、1対の移動手段を備え、
     前記1対の移動手段のそれぞれの接地面内に含まれる代表点を概略接地点としたとき、接地面状態確認動作で、前記1対の移動手段に設定される2つの概略接地点間の中心点を基準に点対象、又は前記2つの概略接地点を結ぶ線分の垂直2等分線を基準に線対象になるように、前記1対の移動手段へ力を加えることを特徴とする移動装置。
    The mobile device according to claim 2, wherein
    The displacement device includes a pair of moving means using either the wheel or the leg as the moving means,
    When a representative point included in each ground plane of the pair of moving means is an approximate ground point, the center between the two approximate ground points set in the pair of moving means in the ground plane state confirmation operation A movement characterized by applying a force to the pair of moving means so as to be a line object with respect to a point object based on a point or a vertical bisector of a line segment connecting the two approximate ground points apparatus.
  4.  請求項3に記載の移動装置において、
     前記移動手段として車輪を備え、前記接地面状態確認動作で、1対の車輪を逆位相に回転することを特徴とする移動装置。
    The mobile device according to claim 3,
    A moving apparatus comprising a wheel as the moving means, and rotating the pair of wheels in opposite phases in the contact surface state confirmation operation.
  5.  請求項3に記載の移動装置において、
     前記移動手段として脚を備え、前記接地面状態確認動作で、1対の脚に対し、脚を左右へ開閉する方向へ力を与えることを特徴とする移動装置。
    The mobile device according to claim 3,
    A moving device comprising a leg as the moving means, and applying a force to the pair of legs in a direction to open and close the legs to the left and right in the contact surface state confirmation operation.
  6.  請求項1又は3に記載の移動装置において、
     前記接地面状態確認動作によって接地面が動的安定姿勢で自立不可能と判断した場合、静的安定姿勢を保ったまま任意の位置へ移動し、再度接地面状態確認動作を行うことを特徴とする移動装置。
    The mobile device according to claim 1 or 3,
    When it is determined that the ground contact surface cannot stand by a dynamic stable posture by the ground contact state confirmation operation, the ground surface state is moved to an arbitrary position while maintaining the static stable posture, and the contact surface state confirmation operation is performed again. Mobile device to do.
  7.  請求項1又は3に記載の移動装置において、
     前記接地面状態確認動作によって接地面が動的安定姿勢で自立不可能と判断した場合、静的安定姿勢を保ったまま警告音を発して周囲へ動的安定姿勢での自立が不可能なことを知らせることを特徴とする移動装置。
    The mobile device according to claim 1 or 3,
    When it is determined that the ground contact surface cannot stand by a dynamic stable posture by the above-mentioned ground surface state confirmation operation, it is impossible to stand independently in a dynamic stable posture by emitting a warning sound while maintaining a static stable posture. A mobile device characterized by notifying.
PCT/JP2012/078429 2012-11-02 2012-11-02 Moving apparatus WO2014068759A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/078429 WO2014068759A1 (en) 2012-11-02 2012-11-02 Moving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/078429 WO2014068759A1 (en) 2012-11-02 2012-11-02 Moving apparatus
JP2014544171A JP5923620B2 (en) 2012-11-02 2012-11-02 Mobile device

Publications (1)

Publication Number Publication Date
WO2014068759A1 true WO2014068759A1 (en) 2014-05-08

Family

ID=50626723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078429 WO2014068759A1 (en) 2012-11-02 2012-11-02 Moving apparatus

Country Status (2)

Country Link
JP (1) JP5923620B2 (en)
WO (1) WO2014068759A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101484A (en) * 2007-10-24 2009-05-14 Toyota Motor Corp Inversion traveling robot and its control method
JP2012115988A (en) * 2012-02-16 2012-06-21 Fuji Soft Inc Learning walking robot device, and control program therefor
JP2012136207A (en) * 2010-12-28 2012-07-19 Toyota Motor Corp Inverted two-wheel vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215350A (en) * 2002-12-27 2004-07-29 Sony Corp Drive controller, controlling method and two-wheeled vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101484A (en) * 2007-10-24 2009-05-14 Toyota Motor Corp Inversion traveling robot and its control method
JP2012136207A (en) * 2010-12-28 2012-07-19 Toyota Motor Corp Inverted two-wheel vehicle
JP2012115988A (en) * 2012-02-16 2012-06-21 Fuji Soft Inc Learning walking robot device, and control program therefor

Also Published As

Publication number Publication date
JP5923620B2 (en) 2016-05-24
JPWO2014068759A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
US7658245B2 (en) Mobile robot
US8014923B2 (en) Travel device
CN101836171B (en) Inverted type movable body and control method thereof
US11027415B1 (en) Generalized coordinate surrogates for integrated estimation and control
US20120310412A1 (en) Robot and control method thereof
WO2015009198A1 (en) Two-wheeled gyro-stabilized vehicle and methods for controlling such a vehicle
JP2019519415A (en) Self-propelled personal transport device
US20130144439A1 (en) Walking robot and control method thereof
US20120316682A1 (en) Balance control apparatus of robot and control method thereof
US20180290684A1 (en) Vehicle
JP2007237750A (en) Inverted pendulum type moving body
JP2006326739A (en) Leg wheel separation type robot
US20140379198A1 (en) Mobile Object
US20110172823A1 (en) Robot and control method thereof
US8781628B2 (en) Walking robot and control method thereof
Sygulla et al. A force-control scheme for biped robots to walk over uneven terrain including partial footholds
JP2006055972A (en) Foot traveling mechanism and bipedal walking robot with the same
JP5923620B2 (en) Mobile device
US20160151175A1 (en) Controlled coronal stiffness prosthetic ankle
US20210269017A1 (en) Vehicle
JP5167077B2 (en) Mobile body and control method thereof
US10052253B2 (en) Hand-propelled vehicle
US10239570B2 (en) Device and method for performing tilt compensation by rotating arms
JP5488095B2 (en) Inverted moving body and control method thereof
JP4784432B2 (en) Multi-legged walking robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887844

Country of ref document: EP

Kind code of ref document: A1