WO2014065040A1 - 多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機 - Google Patents

多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機 Download PDF

Info

Publication number
WO2014065040A1
WO2014065040A1 PCT/JP2013/074955 JP2013074955W WO2014065040A1 WO 2014065040 A1 WO2014065040 A1 WO 2014065040A1 JP 2013074955 W JP2013074955 W JP 2013074955W WO 2014065040 A1 WO2014065040 A1 WO 2014065040A1
Authority
WO
WIPO (PCT)
Prior art keywords
telescopic
cylinder
sheave
outer cylinder
tube
Prior art date
Application number
PCT/JP2013/074955
Other languages
English (en)
French (fr)
Inventor
茂也 多田
稲元 昭
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201380053952.3A priority Critical patent/CN104718328B/zh
Priority to JP2014543190A priority patent/JP6026552B2/ja
Priority to IN2434DEN2015 priority patent/IN2015DN02434A/en
Priority to SG11201503124UA priority patent/SG11201503124UA/en
Priority to KR1020157009553A priority patent/KR101651048B1/ko
Publication of WO2014065040A1 publication Critical patent/WO2014065040A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/46Dredgers; Soil-shifting machines mechanically-driven with reciprocating digging or scraping elements moved by cables or hoisting ropes ; Drives or control devices therefor
    • E02F3/47Dredgers; Soil-shifting machines mechanically-driven with reciprocating digging or scraping elements moved by cables or hoisting ropes ; Drives or control devices therefor with grab buckets

Definitions

  • the present invention relates to a multi-stage telescopic arm device suitably used for excavating the ground deeply, for example, in civil engineering work, and a deep excavator equipped with the multi-stage telescopic arm device.
  • a deep excavator when excavating a vertical shaft deep in the ground in civil engineering work, a deep excavator is preferably used.
  • This deep digging machine includes a self-propelled vehicle body, a boom provided on the vehicle body so as to be able to move up and down, and a multistage telescopic arm device provided on the tip side of the boom.
  • the multi-stage telescopic arm device includes a telescopic arm having an outer cylinder extending in the upward and downward directions and a multi-stage inner cylinder, a telescopic fixed sheave fixed to the outer cylinder, and a length direction of the outer cylinder.
  • a telescopic cylinder arranged, a sheave mounting that is attached to the telescopic cylinder and moves in the longitudinal direction of the outer cylinder, a movable sheave for expansion and contraction provided on the sheave mounting, and one end side of which is locked to the outer cylinder At the same time, the other end is locked to the inner cylinder, and an intermediate portion is provided with a telescopic rope wound around the telescopic fixed sheave and the telescopic movable sheave. Furthermore, a clamshell bucket for earth and sand excavation is attached to the tip of the inner cylinder.
  • This deep digging machine reduces the telescopic cylinder in a state where the telescopic arm provided on the tip side of the boom is held perpendicular to the ground, thereby lowering the inner cylinder of the telescopic arm downward from the outer cylinder. Elongate. Therefore, the excavator can excavate the earth and sand using the clamshell bucket attached to the tip (lower end) of the inner cylinder.
  • the telescopic cylinder After gripping the earth and sand excavated by the clamshell bucket, the telescopic cylinder is extended, and the inner cylinder is pulled into the outer cylinder along with the clamshell bucket by the telescopic rope. In this state, the excavated earth and sand can be discharged by turning the upper swing body of the excavator toward a predetermined soil discharge position and opening the clamshell bucket (see Patent Document 1).
  • the tube of the telescopic cylinder is attached to the outer cylinder of the telescopic arm, and the rod of the telescopic cylinder projects downward from the tube. Therefore, the sheave attachment (hanger) that supports the movable movable sheave for expansion and contraction is attached to the lower end of the rod.
  • the deep excavator when pulling up the clamshell bucket, extends the rod of the expansion cylinder downward and moves the sheave fitting downward.
  • the telescopic rope is wound between the telescopic movable sheave supported by the sheave fitting and the telescopic fixed sheave fixed to the outer cylinder, and the inner cylinder can be pulled up into the outer cylinder. .
  • the tube of the telescopic cylinder is attached to the outer cylinder.
  • the sheave fitting is moved downward by extending the rod downward from the tube of the expansion / contraction cylinder, winding the expansion / contraction rope between the expansion / contraction movable sheave and the expansion / contraction fixed sheave, and pulling the clamshell bucket. It is configured to raise. Therefore, in the prior art, when the clamshell bucket is pulled up, the weight of the sheave fixture acts on the telescopic rope, but the weight of the tube of the telescopic cylinder does not act.
  • the deep excavator according to the prior art can use the weight of the tube of the telescopic cylinder as the lifting force when pulling the inner cylinder into the outer cylinder together with the earth and sand excavated by the clamshell bucket. Therefore, there is a problem that the inner cylinder cannot be efficiently lifted by the telescopic cylinder.
  • the present invention has been made in view of the above-described problems of the prior art, and increases the pulling force of the inner cylinder by utilizing the weight of the tube of the expansion cylinder when the expansion cylinder is extended to pull up the inner cylinder. It is an object of the present invention to provide a multi-stage telescopic arm device and a deep excavator provided with the multi-stage telescopic arm device.
  • the present invention relates to a boom to be mounted, and an inner cylinder that is provided so as to extend upward and downward on the distal end side of the boom and that is accommodated inside the outer cylinder so as to be extendable in the length direction.
  • a telescopic arm having a tube, a telescopic cylinder disposed along a length direction of the outer tube constituting the telescopic arm, a telescopic fixed sheave fixed to the outer tube, and the telescopic cylinder
  • a sheave fixture that moves in the length direction of the outer cylinder so as to approach or move away from the fixed sheave for expansion and contraction, a movable sheave for expansion and contraction provided in the sheave fixture, and one end side of the sheave on the outer cylinder
  • the telescopic rope includes a telescopic rope wound around the stationary sheave for expansion and contraction and the movable sheave for expansion and contraction. It is applied to the multistage telescopic arm device.
  • the telescopic cylinder is constituted by a hydraulic cylinder having a tube and a rod having one side fixed to the piston in the tube and the other side projecting outward from the tube.
  • the rod of the telescopic cylinder faces upward, and the tip of the rod is attached to the outer cylinder.
  • the heavy tube and the sheave fitting are moved downward together via the telescopic rope wound around the telescopic movable sheave and the telescopic stationary sheave.
  • the inner cylinder is pulled up into the outer cylinder.
  • a downward load due to the weight of the tube and the sheave fitting acts on the tube moving downward. Therefore, the pulling force of the inner cylinder can be increased by utilizing the weight of the tube and the sheave fitting, and the pulling operation of the inner cylinder by the expansion / contraction cylinder can be performed efficiently.
  • the tip of the rod of the telescopic cylinder is configured to be attached to the upper side of the outer cylinder.
  • a sheave attachment guide rail that extends in the length direction in parallel with the outer cylinder and is attached to the outer cylinder.
  • the present invention is configured to move along the sheave fixture guide rail according to expansion and contraction.
  • the sheave mounting tool when the sheave mounting tool is moved by the telescopic cylinder, the sheave mounting tool can always move on a fixed orbit by being guided by the sheave mounting tool guide rail.
  • the telescopic rope wound around the telescopic fixed sheave and the telescopic movable sheave can smoothly follow the movement of the telescopic movable sheave supported by the sheave fitting, and the inner cylinder relative to the outer cylinder
  • the stability of the expansion / contraction operation can be improved.
  • the strength of the outer cylinder can be increased by the sheave fixture guide rail provided on the outer cylinder, the reliability of the entire telescopic arm can be increased.
  • the tube to which the sheave fixture is attached can also move on a certain track along the sheave fixture guide rail.
  • the strength of the telescopic cylinder against buckling and lateral load can be increased, and the reliability of the telescopic cylinder can be increased.
  • the pair of boom brackets that are attached to the outer side of the outer cylinder and below the sheave mounting tool so as to face each other in the left and right directions with a space therebetween and to be swingable on the front end side of the boom.
  • the tube of the telescopic cylinder is arranged in a gap formed between the pair of boom brackets.
  • the telescopic cylinder is disposed in a gap formed between a pair of boom brackets provided on the outside of the outer cylinder, the telescopic cylinder, the sheave mounting unit mounted on the tube of the telescopic cylinder, and the sheave mounting
  • the telescopic movable sheave supported by the tool, the telescopic rope wound around the telescopic fixed sheave and the telescopic movable sheave can be viewed from the vehicle body side where the boom is provided.
  • the operator on the vehicle body side can accurately perform an operation of extending and retracting the inner cylinder with respect to the outer cylinder while directly viewing the expansion cylinder and the like.
  • the outer cylinder has a telescopic cylinder, a telescopic fixed sheave, a sheave fixture, a telescopic movable sheave on the side opposite to the surface on which the boom bracket is provided, that is, the side opposite to the vehicle body.
  • Etc. need not be provided. For this reason, when extending
  • the surface opposite to the surface attached to the boom can be placed on the ground. This prevents the weight of the telescopic arm from acting on the telescopic cylinder, sheave fitting, telescopic stationary sheave, telescopic movable sheave, etc., without using a special table or the like when placing the outer cylinder on the ground. It can be held in an upward posture.
  • the outer cylinder is provided with a tube guide that movably accommodates the tube of the telescopic cylinder and guides the tube in the length direction of the outer cylinder.
  • the tube to which the sheave fitting is attached can be moved smoothly.
  • the tube of the expansion / contraction cylinder can move on a fixed track along the tube guide, and the strength of the expansion / contraction cylinder against buckling or lateral load can be increased.
  • the tube can be protected from falling rocks or the like during excavation.
  • the outer cylinder includes at least a rear surface attached to the front end side of the boom, a front surface facing the rear surface in the front and rear directions, and a left side facing in the left and right directions across the rear surface and the front surface. And a right inclined surface disposed obliquely between the rear surface and the right side surface, and a right inclined surface disposed obliquely between the rear surface and the right side surface.
  • the movable movable sheave for expansion and contraction is configured to be arranged on the outer side in the left and right directions from the left and right side surfaces constituting the outer cylinder.
  • the outer cylinder is formed in a cylindrical shape having a polygonal cross-sectional shape, and the left and right inclined surfaces are provided between the rear surface attached to the front end side of the boom and the left and right side surfaces.
  • the buckling strength can be increased against the load acting on the outer cylinder. Thereby, the lifetime of an outer cylinder can be extended and the reliability of an expansion-contraction arm can be improved.
  • the movable sheave for expansion and contraction supported by the sheave mounting tool is arranged on the outer side of the left and right sides of the outer cylinder so that the movable sheave for expansion and contraction is located on the rear side of the outer cylinder. It is possible to suppress a large protrusion. As a result, even when a telescopic movable sheave having a large diameter sheave can be used, the periphery of the telescopic movable sheave can be reduced in size, so that the telescopic movable sheave having a large diameter sheave can be expanded and contracted. The life of the rope can be extended.
  • the structure can extend the life of the telescopic rope, the load acting on the telescopic rope can be set large. As a result, the capacity of the clamshell bucket attached to the inner cylinder to which the telescopic rope is connected can be increased, and a large amount of earth and sand can be excavated.
  • the outer cylinder includes a rear surface attached to the front end side of the boom, a front surface facing the rear surface in the front and rear directions, and a left side surface facing in the left and right directions across the rear surface and the front surface. And a right side surface, a left inclined surface disposed obliquely between the rear surface and the left side surface, and a right inclined surface disposed obliquely between the rear surface and the right side surface. It is in the shape of a rectangular tube having a cross-sectional shape. Thereby, buckling strength can be raised with respect to the load which acts on an outer cylinder, and the lifetime of an outer cylinder can be extended.
  • the first-stage inner cylinder is separated from the outer cylinder by the telescopic cylinder.
  • a pushing mechanism that pushes the first-stage inner cylinder in the extending direction when extended; and the pushing mechanism is located on the lower side of the outer cylinder and a fixed sheave for pushing provided on the outer cylinder.
  • the movable sheave for pushing provided on the sheave fixture at a position lower than the movable sheave for expansion and contraction, the one end side being locked to the outer cylinder and the other end side passing through the inner side of the outer cylinder.
  • a fixed sheave for pushing is formed on the lower side of the outer cylinder, and is formed by a pushing rope wound around the pushing sheave and the pushing movable sheave.
  • a sheave mounting opening is provided at the position where the Part of the fixed sheave is that where the structure placed inside of the outer cylinder through the sieve mounting opening.
  • the pressing sheave for pushing is arranged at the lower end portion of the outer cylinder as in the prior art
  • the first-stage inner cylinder when the first-stage inner cylinder is accommodated in the outer cylinder, it protrudes from the lower end portion of the outer cylinder.
  • the protruding amount of the lower end portion of the first stage inner cylinder can be reduced.
  • the total length when the telescopic arm is reduced to the minimum can be shortened. For example, when transporting a deep excavator, a compact transport posture can be achieved.
  • the present invention comprises a self-propelled vehicle body, a boom provided to the vehicle body so as to be able to move up and down, and a multistage telescopic arm device provided on the tip side of the boom, the multistage telescopic arm device comprising: A telescopic arm having an outer cylinder extending in the downward direction and a plurality of inner cylinders accommodated inside the outer cylinder so as to be stretchable in the length direction, and along the length direction of the outer cylinder constituting the telescopic arm A telescopic cylinder arranged; a telescopic stationary sheave fixed to the outer cylinder; and a lengthwise direction of the outer cylinder so as to approach or move away from the telescopic stationary sheave attached to the telescopic cylinder.
  • the middle part is stretched with the expansion / contraction fixed sheave. Applied to use the movable sheave and wound on the elastic rope and depth digging excavator becomes comprise.
  • the telescopic cylinder is constituted by a hydraulic cylinder having a tube and a rod having one side fixed to the piston in the tube and the other side protruding outward from the tube, and the rod of the telescopic cylinder is in an upward state.
  • the rod tip is attached to the outer cylinder of the telescopic arm, the tube of the telescopic cylinder is a free end, and the sheave attachment is attached to the tube of the telescopic cylinder.
  • the rod constituting the telescopic cylinder faces upward, and the tip of the rod is attached to the outer cylinder.
  • the heavy tube and the sheave fitting are moved downward together via the telescopic rope wound around the telescopic movable sheave and the telescopic stationary sheave.
  • the inner cylinder is pulled up into the outer cylinder.
  • a downward load due to the weight of the tube and the sheave fitting acts on the tube moving downward. Therefore, the pulling force of the inner cylinder can be increased by utilizing the weight of the tube and the sheave fitting, and the pulling operation of the inner cylinder by the expansion / contraction cylinder can be performed efficiently.
  • FIG. 4 is a front view of the multistage telescopic arm device as seen from the direction of arrows IV-IV in FIG. 3. It is a perspective view which shows a multistage telescopic arm apparatus alone.
  • FIG. 6 is an enlarged perspective view of main parts showing the outer cylinder, the telescopic cylinder, the telescopic fixed sheave, the sheave mounting tool, the telescopic movable sheave, the sheave mounting guide rail, and the like in FIG. 5.
  • It is a perspective view of the principal part expansion which shows a sheave attaching tool, a movable sheave for expansion and contraction, a movable sheave for pushing, a sheave attaching tool guide rail, and the like.
  • It is a front view of the principal part expansion which expands and shows the fixed sheave for expansion-contraction in FIG.
  • FIG. 4 is a cross-sectional view of the telescopic arm, the boom bracket, and the like viewed from the direction of arrows XI-XI in FIG.
  • FIG. 4 is a cross-sectional view of the telescopic arm, the telescopic cylinder, the sheave attachment, the telescopic movable sheave, etc., as viewed from the direction of arrows XII-XII in FIG.
  • FIG. 4 is a cross-sectional view of the telescopic arm, the telescopic cylinder, the sheave attachment, the telescopic movable sheave, etc., as viewed from the direction of arrows XII-XII in FIG.
  • FIG. 4 is a cross-sectional view of the telescopic arm, the telescopic cylinder, the sheave mounting tool, the pushable movable sheave, and the like viewed from the direction of arrows XIII-XIII in FIG. 3.
  • FIG. 4 is a cross-sectional view of the telescopic arm, the sheave mounting opening, the push-in fixed sheave, and the like when viewed from the direction of arrows XIV-XIV in FIG. 3. It is a side view which shows the state which put the expansion-contraction arm on the ground with the deep excavator as a transport posture.
  • FIG. 1 It is a front view which shows the modification which has arrange
  • reference numeral 1 denotes a deep excavator according to the present embodiment.
  • the deep excavator 1 is mounted on a crawler type lower traveling body 2 capable of self-propelling and capable of turning on the lower traveling body 2.
  • a vehicle body made up of the upper revolving body 3. This vehicle body is an attachment target of the multistage telescopic arm device 11 described later.
  • the upper swing body 3 includes a swing frame 3A as a base, a cab 3B disposed on the front left side of the swing frame 3A, a counterweight 3C provided on the rear end side of the swing frame 3A, and an engine inside. , And a building cover 3D that accommodates equipment (not shown) such as a hydraulic pump.
  • a boom cylinder 4A is provided between the boom 4 and the swing frame 3A, and the boom 4 moves up and down with respect to the upper swing body 3 by expanding and contracting the boom cylinder 4A.
  • the bottom side of the excavator swing cylinder 4B is attached to the upper surface side of the boom 4, and the rod side of the excavator swing cylinder 4B is attached to the multistage telescopic arm device 11.
  • Reference numeral 11 denotes a multi-stage telescopic arm device attached to the distal end side of the boom 4, and the multi-stage telescopic arm device 11 includes a telescopic arm 12, a telescopic cylinder 25, a sheave mounting tool 30, and a telescopic fixed sheave 31.
  • the movable sheave 33 for expansion and contraction and the rope 34 for expansion and contraction are provided.
  • the telescopic arm 12 indicates a telescopic telescopic arm attached to the tip side of the boom 4 so as to extend upward and downward.
  • the telescopic arm 12 includes an outer cylinder 13 positioned on the outermost side and a later-described first stage accommodated in the lengthwise direction on the inner peripheral side of the outer cylinder 13 (movable).
  • the outer cylinder 13 includes a rear surface 13A attached to the front end side of the boom 4, a front surface 13B facing the rear surface 13A with a distance in the front and rear directions, the rear surface 13A and the front surface.
  • the outer cylinder 13 is formed as a square cylinder having a hexagonal cross-sectional shape as a whole.
  • the outer cylinder 13 is provided with the left inclined surface 13E between the rear surface 13A and the left side surface 13C attached to the front end side of the boom 4, and the right inclined surface 13F is provided between the rear surface 13A and the right side surface 13D. It has been. Thereby, the outer cylinder 13 becomes a structure which can raise the buckling strength with respect to the load which acts on the said outer cylinder 13.
  • FIG. On the other hand, the upper end portion 13G and the lower end portion 13H of the outer cylinder 13 are open ends.
  • the upper flange plate 14 is located at an intermediate portion in the length direction of the outer cylinder 13 and is integrally provided on the outer peripheral side of the outer cylinder 13.
  • One end 42 ⁇ / b> A of a pushing rope 42 described later is locked to the upper flange plate 14.
  • the lower flange plate 15 is integrally provided at the lower end portion of the outer cylinder 13.
  • One end 37 ⁇ / b> A of a support rope 37 described later is locked to the lower flange plate 15.
  • Left and right sheave mounting openings 16 and 16 ′ are provided on the lower side of the outer cylinder 13. As shown in FIG. 14, the left sheave mounting opening 16 is formed at a portion where the left side surface 13 ⁇ / b> C and the left inclined surface 13 ⁇ / b> E constituting the outer cylinder 13 intersect, and the right sheave mounting opening 16 ′ is the right side of the outer cylinder 13. It is formed at a portion where the surface 13D and the right inclined surface 13F intersect.
  • the sheave mounting openings 16 and 16 ' open inside the outer cylinder 13, and a part of the pressing fixed sheaves 39 and 39' to be described later is inserted into the sheave mounting openings 16 and 16 '.
  • the pair of boom brackets 17 is a pair of left and right boom brackets provided on the outer side of the outer cylinder 13 and below the sheave fixture 30 described later.
  • the pair of boom brackets 17 are attached to the tip side of the boom 4. It is what Here, as shown in FIGS. 5 and 11, the pair of boom brackets 17 are formed of plates facing each other in the left and right directions, and each bracket 17 has a left and a right side of the cylindrical boom connecting portion 17A. Both sides in the right direction are fixed.
  • the pair of boom brackets 17 are integrally fixed to the rear surface 13A of the outer cylinder 13 by means of welding or the like, and the boom connecting portion 17A of the boom bracket 17 is attached to the boom 4 using a pin 18 (see FIG. 1). Pin connected to the tip side.
  • a gap 17B is formed between the pair of boom brackets 17, and a telescopic cylinder 25 described later is arranged in the gap 17B.
  • Reference numeral 19 denotes a pair of left and right cylinder brackets positioned on the upper side of the boom bracket 17 and provided outside the outer cylinder 13.
  • the pair of cylinder brackets 19 are attached to the rod side of the excavator swing cylinder 4B. It is what Here, the pair of cylinder brackets 19 are made of plates facing each other in the left and right directions, and include a cylinder connecting portion to which the rod tip of the excavator swing cylinder 4B is connected.
  • the pair of cylinder brackets 19 is integrally fixed to a position near the upper side of the boom bracket 17 on the rear surface 13A of the outer cylinder 13 by means of welding or the like.
  • the rod tip of the excavator swing cylinder 4B is pin-coupled so as to be rotatable using a pin 20 (see FIG. 1).
  • the outer cylinder 13 of the extendable arm 12 swings forward, backward, upward, and downward about the pin 18 on the tip side of the boom 4. ing.
  • the cylinder bracket 19 may be provided below the boom bracket 17 depending on the mounting position of the excavator swing cylinder 4B.
  • the first-stage inner cylinder 21 shows the inner cylinder of the 1st step
  • the first-stage inner cylinder 21 has a quadrangular cross-sectional shape surrounded by a rear surface 21A, a front surface 21B, a left side surface 21C, and a right side surface 21D.
  • the inner cylinder 21 is formed as a square cylinder as a whole, and both upper and lower ends are open ends. Furthermore, the inner cylinder 21 is accommodated inside the outer cylinder 13 from the lower end portion 13H of the outer cylinder 13, and is movable in the length direction (upward and downward) with respect to the outer cylinder 13.
  • a slide plate (not shown) for smoothly sliding the inner cylinder 21 along the outer cylinder 13 between the inner surface of the outer cylinder 13 and the outer surface of the first-stage inner cylinder 21.
  • a lower flange plate 22 is provided at the lower end portion of the inner cylinder 21, and a supporting fixed sheave 35 to be described later is attached to the lower flange plate 22.
  • the second-stage inner cylinder 23 indicates the innermost second-stage inner cylinder accommodated inside the first-stage inner cylinder 21 so as to be movable with an appropriate gap.
  • the inner cylinder 23 is surrounded by a rear surface 23A, a front surface 23B, a left side surface 23C, and a right side surface 23D.
  • the second-stage inner cylinder 23 is formed as a rectangular cylinder having a square cross-sectional shape that is slightly smaller than the first-stage inner cylinder 21.
  • the second-stage inner cylinder 23 is housed inside the inner cylinder 21 from the lower end side of the first-stage inner cylinder 21 and is movable in the length direction (upward and downward) with respect to the inner cylinder 21. Yes.
  • a mounting eye 24 is provided at the lower end portion of the inner cylinder 23, and a clamshell bucket 43 described later is mounted on the mounting eye 24.
  • the telescopic cylinder 25 according to this embodiment, the tube guide 26 attached to the telescopic cylinder 25, the sheave mounting guide rail 28, the sheave mounting 30 and the like will be described.
  • Numeral 25 indicates a telescopic cylinder disposed along the length direction of the outer cylinder 13 constituting the telescopic arm 12, and the telescopic cylinder 25 is a hydraulic cylinder that expands and contracts when pressure oil is supplied and discharged.
  • the telescopic cylinder 25 includes a tube 25A, a piston (not shown) slidably provided in the tube 25A, and a rod having one side fixed to the piston within the tube 25A and the other side protruding outward from the tube 25A. 25B.
  • the telescopic cylinder 25 is disposed on the rear surface 13A side of the outer cylinder 13 provided with the boom bracket 17 and at the center position in the left and right directions of the outer cylinder 13 with the rod 25B facing upward.
  • the tip 25C of the rod 25B of the telescopic cylinder 25 is pin-coupled via a pin 25D to a bracket 13J provided in the vicinity of the upper end 13G of the outer cylinder 13.
  • the tube 25A of the telescopic cylinder 25 is disposed in a gap 17B formed between the boom brackets 17 that extend downward as a free end and make a pair in the left and right directions. Further, a sheave mounting tool 30 to be described later is mounted on the upper side of the tube 25A. Accordingly, the tube 25A is moved along the outer cylinder 13 together with the sheave fitting 30 by expanding and contracting the telescopic cylinder 25 between the most extended state shown in FIG. 1 and the most contracted state shown in FIG. , It is configured to move downward.
  • L1 the length from the vicinity 13G1 of the outer cylinder 13 near the upper end (the position of the pin 25D where the rod 25B is connected to the outer cylinder 13) to the lower end 13H (the length of the outer cylinder 13).
  • the length dimension L1 of the telescopic cylinder 25 in the most contracted state is set to be approximately 1 ⁇ 2 the length dimension L2 of the outer cylinder 13.
  • the length dimension L1 of the telescopic cylinder 25 in the most contracted state and the length dimension L2 of the outer cylinder 13 are set in the following relationship.
  • the length dimension L1 of the telescopic cylinder 25 in the most contracted state and the length dimension L2 of the outer cylinder 13 are set in the following relationship.
  • the telescopic rope 34 is simply hung four times between the two fixed sheaves 31A and 31B of the telescopic fixed sheave 31 described later and the two movable sheaves 33A and 33B of the telescopic movable sheave 33.
  • the telescopic arm 12 can be expanded and contracted between the most contracted state shown in FIG. 1 and the most expanded state shown in FIG.
  • the tube guide 26 denotes a tube guide provided on the outer side of the rear surface 13A of the outer cylinder 13, and the tube guide 26 movably accommodates the tube 25A of the telescopic cylinder 25.
  • the tube guide 26 is formed by a rectangular tube having a substantially square cross-sectional shape.
  • the tube guide 26 is disposed in a gap 17B formed between the pair of boom brackets 17, and is fixed to the rear surface 13A of the outer cylinder 13 along the length direction thereof. Accordingly, the tube 25 ⁇ / b> A of the telescopic cylinder 25 that has become a free end can move in the length direction of the outer cylinder 13 while being guided by the tube guide 26.
  • a slide plate 27 is provided on the outer surface on the bottom side of the tube 25 ⁇ / b> A of the telescopic cylinder 25.
  • the tube 25 ⁇ / b> A of the telescopic cylinder 25 is fitted on the inner peripheral side of the tube guide 26, and the slide plate 27 moves along the inner side surface of the tube guide 26.
  • the tube 25 ⁇ / b> A can smoothly move in the length direction of the outer cylinder 13 along the tube guide 26.
  • each sheave fixture guide rail 28 denotes two sheave fixture guide rails provided outside the outer cylinder 13, and each sheave fixture guide rail 28 guides a sheave fixture 30 described later.
  • These two sheave attachment guide rails 28 are arranged one by one on the left and right with the telescopic cylinder 25 sandwiched between the rear surface 13A of the outer cylinder 13.
  • the sheave fixture guide rail 28 is formed of a rectangular tube having a rectangular cross-sectional shape.
  • the upper end portion of the sheave fixture guide rail 28 is fixed in the vicinity of the upper end portion 13G of the outer cylinder 13 via a bracket 28A, and the lower end portion of the sheave fixture guide rail 28 is in the vicinity of the upper flange plate 14 of the outer cylinder 13. It is fixed via a bracket 28B.
  • the sheave fixture guide rail 28 extends in the length direction in parallel with the rear surface 13A in a state in which a predetermined interval is formed between the sheave fixture guide rail 28 and the rear surface 13A of the outer cylinder 13.
  • the strength of the outer cylinder 13 can be increased by fixing the two sheave attachment guide rails 28 made of a rectangular cylinder to the outer cylinder 13.
  • the sheave mounting substrate 29 includes a sheave mounting portion 29A that projects from the rear surface 13A of the outer cylinder 13 to the rear side (the boom 4 side), and a rope locking portion 29B that is positioned on the front side of the sheave mounting portion 29A.
  • Reference numeral 30 denotes a sheave mounting tool attached to the tube 25A of the telescopic cylinder 25.
  • the sheave mounting tool 30 is provided with telescopic movable sheaves 33 and 33 'and push-in movable sheaves 41 and 41' to be described later. .
  • FIGS. 1-10 show that as shown in FIGS.
  • the sheave attachment 30 is located on the upper side of the main body 30 ⁇ / b> A, the main body 30 ⁇ / b> A fixed to the upper side of the tube 25 ⁇ / b> A of the telescopic cylinder 25,
  • An upper sheave support portion 30B that rotatably supports the movable sheaves 33 and 33 'for expansion and contraction, and a lower sheave that is positioned on the lower side of the main body portion 30A and that rotatably supports the movable sheaves 41 and 41' for pushing described later. It is comprised by the support part 30C.
  • the main body portion 30 ⁇ / b> A of the sheave fixture 30 is bent in a mountain shape so as to avoid the tube guide 26.
  • the left and right guide insertion portions 30D in the shape of a rectangular tube into which the left and right sheave attachment guide rails 28 are slidably inserted into the main body portion 30A of the sheave attachment 30.
  • the sheave fixture 30 is movable in the length direction (up and down) of the outer cylinder 13 while being guided by the left and right sheave fixture guide rails 28.
  • the telescopic fixed sheaves 31, 31 ′, the telescopic movable sheaves 33, 33 ′, the telescopic ropes 34, 34 ′, the supporting stationary sheaves 35, 35 ′, and the supporting ropes 37, 37 ′ are the outer cylinder 13.
  • they are provided so as to be symmetrical to the left and right with the telescopic cylinder 25 interposed therebetween, and have the same structure. Therefore, hereinafter, the telescopic fixed sheave 31, the telescopic movable sheave 33, the telescopic rope 34, the supporting fixed sheave 35, and the supporting rope 37 disposed on the left side of the outer cylinder 13 will be described and disposed on the right side.
  • a dash “′” is added to the reference numerals of corresponding components, and the description thereof is omitted.
  • Reference numeral 31 denotes a telescopic fixed sheave fixed to the upper end side of the outer cylinder 13 via a sheave mounting substrate 29.
  • the telescopic fixed sheave 31 is composed of two fixed sheaves 31A and 31B having the same diameter. Yes.
  • one fixed sheave 31A is rotatably supported by one bracket 32A among the brackets 32 provided on the sheave mounting portion 29A of the sheave mounting substrate 29, and the other fixed sheave 31B
  • the bracket 32B is rotatably supported.
  • the support shafts (not shown) of the fixed sheaves 31A and 31B are arranged so as to be non-parallel to the rear surface 13A of the outer cylinder 13, respectively.
  • the telescopic movable sheave 33 indicates a movable sheave for expansion and contraction supported rotatably on the sheave fixture 30.
  • the telescopic movable sheave 33 is composed of two movable sheaves 33A and 33B having the same diameter.
  • one movable sheave 33A and the other movable sheave 33B are rotatable adjacent to one support shaft 33C attached to the upper sheave support portion 30B of the sheave fixture 30. It is supported by.
  • the support shafts 33C of the movable sheaves 33A and 33B are arranged in parallel to the rear surface 13A of the outer cylinder 13.
  • the movable sheave 33 for expansion and contraction approaches or separates from the fixed sheave 31 for expansion and contraction when the sheave mounting tool 30 moves upward and downward according to the expansion and contraction of the expansion cylinder 25.
  • the movable sheave 33 for expansion and contraction supported by the sheave fixture 30 is disposed outside the left side surface 13C of the outer cylinder 13, and faces the left side surface 13C in the left and right directions with a slight gap. Thereby, the telescopic movable sheave 33 can be prevented from projecting greatly toward the rear surface 13A of the outer cylinder 13, and the periphery of the telescopic movable sheave 33 can be reduced in size.
  • the expansion / contraction rope 34 indicates an expansion / contraction rope connecting the outer cylinder 13 and the innermost second-stage inner cylinder 23, and the expansion / contraction rope 34 is constituted by a wire rope.
  • one end 34 ⁇ / b> A of the telescopic rope 34 is engaged with the rope engaging portion 29 ⁇ / b> B of the sheave mounting substrate 29 provided on the upper end portion 13 ⁇ / b> G of the outer cylinder 13.
  • the other end 34 ⁇ / b> B of the rope 34 is locked to the upper side of the second-stage inner cylinder 23.
  • the middle part of the telescopic rope 34 is 4 between the two fixed sheaves 31A and 31B constituting the telescopic fixed sheave 31 and the two movable sheaves 33A and 33B constituting the telescopic movable sheave 33. It has been spun around.
  • one end 34 ⁇ / b> A of the telescopic rope 34 is locked to the sheave mounting substrate 29, and an intermediate portion of the telescopic rope 34 is fixed to one movable sheave 33 ⁇ / b> A of the telescopic movable sheave 33 and one of the telescopic fixed sheave 31.
  • the sheave 31A, the other movable sheave 33B of the telescopic movable sheave 33, and the other fixed sheave 31B of the telescopic fixed sheave 31 are wound around one by one.
  • the telescopic rope 34 is inserted from the other fixed sheave 31B of the telescopic fixed sheave 31 into the outer cylinder 13 and the first stage inner cylinder 21, and the other end 34B of the telescopic rope 34 has two stages. Locked to the upper side of the inner cylinder 23 of the eye.
  • the expansion / contraction fixed sheave 31 is constituted by the two fixed sheaves 31A and 31B
  • the expansion / contraction movable sheave 33 is constituted by the two movable sheaves 33A and 33B.
  • the telescopic rope 34 is wound around the two fixed sheaves 31A and 31B and the two movable sheaves 33A and 33B for a total of four times.
  • the rope for expansion and contraction is expanded and contracted compared to the configuration in which the four sheaves of the fixed sheave for expansion and contraction and the four sheaves of the movable sheave for expansion and contraction are totaled eight times. In this configuration, the number of times that the rope 34 contacts the sheave can be halved.
  • the supporting fixed sheave 35 indicates one supporting fixed sheave provided on the lower flange plate 22 of the first-stage inner cylinder 21.
  • the supporting fixed sheave 35 is rotatably supported by a bracket 36 fixed to the lower flange plate 22 of the inner cylinder 21.
  • the support rope 37 indicates a support rope for supporting the inner cylinder 21 between the outer cylinder 13 and the inner cylinder 23, and the support rope 37 is constituted by a wire rope.
  • one end 37 ⁇ / b> A of the support rope 37 is locked to the lower flange plate 15 of the outer cylinder 13, and an intermediate portion of the support rope 37 is attached to the support fixed sheave 35. It is wound. Further, the support rope 37 is inserted into the first stage inner cylinder 21 from the support fixed sheave 35, and the other end 37 ⁇ / b> B of the support rope 37 is locked to the upper side of the second stage inner cylinder 23. Has been.
  • push mechanisms 38 and 38 'for pushing the first-stage inner cylinder 21 in the extending direction when the inner cylinder 21 is extended from the outer cylinder 13 by the telescopic cylinder 25 will be described.
  • left and right pushing mechanisms 38 and 38 ' are provided between the outer cylinder 13 and the first-stage inner cylinder 21.
  • Each pushing mechanism 38, 38 ′ holds the inner cylinder 21 in the extended state when the inner cylinder 21 is extended from the outer cylinder 13 by the telescopic cylinder 25.
  • the pushing mechanisms 38 and 38 ' are composed of pushing fixed sheaves 39 and 39', pushing movable sheaves 41 and 41 ', and pushing ropes 42 and 42'. It is configured.
  • Each push-in mechanism 38, 38 ' is provided so as to be left and right symmetrical with respect to the outer cylinder 13 with the telescopic cylinder 25 interposed therebetween, and has the same structure.
  • the pushing mechanism 38 disposed on the left side of the outer cylinder 13 will be described, and those disposed on the right side will be given a dash “′” to the reference numerals of the corresponding components, and the description thereof will be omitted. .
  • the pressing fixed sheave 39 indicates one pressing fixed sheave provided on the lower side of the outer cylinder 13.
  • the pressing fixed sheave 39 is rotatably supported by a bracket 40 that is fixed to the outer cylinder 13 across the sheave mounting opening 16 formed in the outer cylinder 13 via a support shaft 39A.
  • the support shaft 39A of the pushing-in fixed sheave 39 is arranged with an inclination angle of an angle ⁇ smaller than 90 degrees with respect to the left side surface 13C of the outer cylinder 13.
  • the support shaft 39A of the pushing fixed sheave 39 is arranged non-parallel to the rear surface 13A of the outer cylinder 13, and a part of the pushing fixed sheave 39 supported by the support shaft 39A is part of the outer cylinder 13. It is housed inside.
  • the pushable movable sheave 41 indicates a single movable movable sheave for pushing provided on the sheave fixture 30 at a position below the movable movable sheave 33 for expansion and contraction.
  • the pushable movable sheave 41 is rotatably supported by the lower sheave support portion 30C of the sheave fixture 30 via a support shaft 41A.
  • the support shaft 41 ⁇ / b> A of the pushing movable sheave 41 is disposed in parallel to the rear surface 13 ⁇ / b> A of the outer cylinder 13.
  • the movable sheave 41 for pushing approaches or moves away from the fixed sheave 39 for pushing as the sheave mounting tool 30 moves upward and downward according to the expansion and contraction of the telescopic cylinder 25.
  • the pushing rope 42 indicates a pushing rope for connecting the outer cylinder 13 and the first-stage inner cylinder 21, and the pushing rope 42 is constituted by a wire rope.
  • one end 42 ⁇ / b> A of the pushing rope 42 is locked to the upper flange plate 14 of the outer cylinder 13. It is wound around a pressing fixed sheave 39.
  • the other end 42 ⁇ / b> B of the pushing rope 42 is inserted into the outer cylinder 13 from the pushing fixed sheave 39 and is locked to the upper side of the inner cylinder 21 inside the outer cylinder 13.
  • the tube 25A of the telescopic cylinder 25 moves upward together with the sheave attachment 30,
  • the telescopic movable sheave 33 approaches the telescopic fixed sheave 31.
  • the telescopic rope 34 wound around the telescopic movable sheave 33 and the telescopic fixed sheave 31 is fed out, and the second-stage inner cylinder 23 extends downward from the outer cylinder 13 by its own weight.
  • the other end 37B of the support rope 37 locked to the upper side of the inner cylinder 23 moves downward together with the second-stage inner cylinder 23.
  • the cylinder 21 also extends downward from the outer cylinder 13 by its own weight.
  • the telescopic arm 12 is in the maximum extended state.
  • the pushing rope 42 is wound between the pushing movable sheave 41 and the pushing fixed sheave 39, and the other end 42B of the pushing rope 42 is The first stage inner cylinder 21 moves downward. Thereby, the pushing rope 42 always maintains a constant tension. Further, since the inner cylinder 21 extends while being supported by the support rope 37, the support rope 37 always maintains a constant tension.
  • the telescopic arm 12 expands and contracts between the most contracted state and the most extended state, the telescopic fixed sheave 31 ′, the telescopic movable sheave 33 ′, and the telescopic rope 34 arranged on the right side with the telescopic cylinder 25 interposed therebetween.
  • the supporting fixed sheave 35', the supporting rope 37 ', and the pressing fixed sheave 39' constituting the pressing mechanism 38 ', the pressing movable sheave 41', and the pressing rope 42 ' operate in the same manner as described above. Is.
  • the outer cylinder 13 has a hexagonal cross-sectional shape surrounded by a rear surface 13A, a front surface 13B, a left side surface 13C, a right side surface 13D, a left inclined surface 13E, and a right inclined surface 13F.
  • the pushing movable sheave 41 is disposed at a position facing the left inclined surface 13E in the left and right directions. For this reason, as shown by the arrow X in FIG. 13, the pushing movable sheave 41 can be disposed close to the left inclined surface 13E.
  • the movable movable sheave 41 for pushing is provided at the same position as the left side surface 13C or at a more inner position.
  • the support shaft 39A of the pushing fixed sheave 39 around which the pushing rope 42 is wound with the pushing movable sheave 41, and the outer cylinder 13 The angle ⁇ formed by the left side surface 13C can be increased.
  • a part of the pressing fixed sheave 39 accommodated in the outer cylinder 13 can be sufficiently separated from the inner cylinder 21. Further, the protruding amount of the pressing fixed sheave 39 from the left side surface 13C can be reduced.
  • the entire telescopic arm 12 can be configured compactly. The same applies to the pressing movable sheave 41 ′ and the pressing rope 42 ′ arranged on the right side with the telescopic cylinder 25 interposed therebetween.
  • the clamshell bucket 43 indicates a clamshell bucket that is swingably attached to an attachment eye 24 provided on the front end side (lower end side) of the inner cylinder 23.
  • the clamshell bucket 43 is opened and closed by expanding and contracting the bucket cylinder 44 to excavate earth and sand.
  • the deep excavator 1 has the above-described configuration.
  • an operation of excavating the vertical shaft 101 using the deep excavator 1 on the ground 100 to be deep excavated will be described. .
  • the deep excavator 1 extends the telescopic cylinder 25 to the maximum extent so that the telescopic arm 12 is in the minimum contracted state, and the telescopic arm 12 is perpendicular to the ground 100 on which the vertical shaft 101 is to be excavated. Hold in a proper posture.
  • the telescopic cylinder 25 is contracted to bring the telescopic arm 12 into an extended state. That is, the tube 25 ⁇ / b> A of the expansion / contraction cylinder 25 is moved upward together with the sheave attachment 30, and the expansion / contraction movable sheave 33 is brought close to the expansion / contraction fixed sheave 31.
  • the telescopic rope 34 wound around the two movable sheaves 33A and 33B of the telescopic movable sheave 33 and the two stationary sheaves 31A and 31B of the telescopic stationary sheave 31 is fed out.
  • the second-stage inner cylinder 23 extends downward from the outer cylinder 13 by its own weight
  • the first-stage inner cylinder 21 supported by the support rope 37 also extends downward from the outer cylinder 13 by its own weight.
  • the pushing rope 42 is wound between the pushing movable sheave 41 and the pushing fixed sheave 39 supported by the sheave fixture 30, so that the pushing rope 42 always maintains a constant tension.
  • the support rope 37 that supports the first-stage inner cylinder 21 between the outer cylinder 13 and the second-stage inner cylinder 23 always maintains a constant tension.
  • the tension of the pushing rope 42 and the supporting rope 37 can maintain the state in which the inner cylinders 21 and 23 are extended from the outer cylinder 13, and the clamshell bucket 43 is pushed into the bottom surface 102 of the vertical shaft 101. be able to.
  • the shaft 101 can be deeply excavated by using the clamshell bucket 43, and a large amount of earth and sand is scooped up by the clamshell bucket 43. Can do.
  • the telescopic cylinder 25 After scooping up the earth and sand with the clamshell bucket 43, the telescopic cylinder 25 is extended to move the tube 25A of the telescopic cylinder 25 downward together with the sheave attachment 30, and the telescopic movable sheave 33 is fixed for expansion and contraction. Separate from the sheave 31.
  • the telescopic rope 34 is wound up between the movable sheaves 33A, 33B of the telescopic movable sheave 33 and the fixed sheaves 31A, 31B of the telescopic fixed sheave 31, and the inner cylinder 23 moves upward.
  • the inner cylinder 23 moves upward.
  • the other end 37B of the support rope 37 connecting the outer cylinder 13 and the inner cylinder 23 moves upward together with the inner cylinder 23, so that the inner cylinder 21 supported by the support rope 37 is also upward.
  • the telescopic arm 12 is again in the most contracted state shown in FIG.
  • the tip 25C of the rod 25B of the telescopic cylinder 25 is pin-coupled to the bracket 13J provided on the outer cylinder 13 of the telescopic arm 12 using the pin 25D.
  • the sheave fixture 30 that supports the movable sheave 33 for expansion and contraction and the movable sheave 41 for push-in is attached to the tube 25A of the expansion cylinder 25 that is a free end. Accordingly, when the telescopic cylinder 25 is extended in order to lift the earth and sand excavated by the clamshell bucket 43, the heavy tube 25A moves downward together with the sheave attachment 30.
  • the telescopic rope 34 wound around the telescopic movable sheave 33 and the telescopic stationary sheave 31 receives a downward load due to the weight of the tube 25A and the sheave attachment 30.
  • the telescopic arm 12 can increase the pulling force of the inner cylinders 21 and 23 by using the weight of the tube 25A and the sheave fitting 30, and the pulling operation of the inner cylinders 21 and 23 by the telescopic cylinder 25 is efficient. Can be done well.
  • the telescopic fixed sheave 31 is configured by two fixed sheaves 31A and 31B
  • the telescopic movable sheave 33 is configured by two movable sheaves 33A and 33B.
  • the telescopic rope 34 is hung around the two fixed sheaves 31A and 31B and the two movable sheaves 33A and 33B for a total of four times.
  • the rope for expansion and contraction is compared with a configuration in which the four sheaves of the fixed sheave for expansion and contraction and the four sheaves of the movable sheave for expansion and contraction are totaled eight times. Can extend the life of the telescopic rope.
  • the telescopic rope 34 is hung four times between the two fixed sheaves 31A and 31B constituting the telescopic fixed sheave 31 and the two movable sheaves 33A and 33B constituting the telescopic movable sheave 33.
  • the pull-up amount of the inner cylinders 21, 23 using the telescopic rope 34 can be made four times the stroke of the telescopic cylinder 25, and the inner cylinders 21, 23 can be pulled up efficiently.
  • the rod 25B of the telescopic cylinder 25 is fixed on the upper side of the outer cylinder 13 and below the fixed sheave 31 for expansion and contraction.
  • the tube 25A of the telescopic cylinder 25 to which the sheave attachment 30 is attached can move upward and downward within a substantially upper half range of the outer cylinder 13 extending upward and downward.
  • the operator in the cab 3 ⁇ / b> B of the upper swing body 3 can extend and retract the extension cylinder 25. Can be confirmed visually. As a result, workability and safety of excavation work using the deep excavation machine 1 can be improved.
  • the two sheave fixture guide rails 28 are fixed to the outside of the outer cylinder 13 in a state of extending in the length direction in parallel with the outer cylinder 13.
  • the sheave fixture 30 is configured to move in the length direction of the outer cylinder 13 along the sheave fixture guide rail 28 in accordance with the expansion and contraction of the telescopic cylinder 25.
  • the sheave fixture 30 is always guided by the sheave fixture guide rail 28 and can always move on a certain track.
  • the expansion / contraction rope 34 wound around the expansion / contraction fixed sheave 31 and the expansion / contraction movable sheave 33 can smoothly follow the movement of the expansion / contraction movable sheave 33.
  • 23 can increase the stability of the expansion and contraction operation.
  • the strength of the outer cylinder 13 can be increased by the sheave attachment guide rail 28, and the reliability of the entire telescopic arm 12 is improved. be able to.
  • the tube 25A of the telescopic cylinder 25 to which the sheave fixture 30 is attached can move along a certain track along the sheave fixture guide rail 28.
  • the strength of the telescopic cylinder 25 against buckling and lateral load can be increased, and the reliability of the telescopic cylinder 25 can be increased.
  • the pair of boom brackets 17 are provided on the rear surface 13A of the outer cylinder 13 positioned on the cab 3B side of the upper swing body 3, and the pair of boom brackets 17 are attached to the front end side of the boom 4. It has been.
  • the telescopic cylinder 25 is disposed between the pair of boom brackets 17.
  • the rope 34 and the like can be disposed at a position facing the cab 3B of the upper swing body 3.
  • the operator in the cab 3B can expand and contract the inner cylinders 21 and 23 with respect to the outer cylinder 13 while observing the expansion cylinder 25 and the like, and can accurately perform this expansion and contraction operation.
  • the boom bracket 17 is provided on the rear surface 13A of the outer cylinder 13, the telescopic cylinder 25, the telescopic fixed sheave 31, the sheave mounting tool 30, the telescopic movable sheave 33, etc. need not be provided on the front surface 13B of the outer cylinder 13. . For this reason, when the vertical shaft 101 is excavated, the telescopic cylinders 25 and the like do not come into contact with an obstacle and are damaged, and the workability of excavation work can be improved.
  • the boom bracket 17 is provided on the rear surface 13A of the outer cylinder 13, the front surface 13B of the outer cylinder 13 is placed on the ground in order to bring the deep excavator 1 into the transport posture.
  • the telescopic cylinder 25, the sheave mounting tool 30, the telescopic fixed sheave 31, the telescopic movable sheave 33, etc. are placed in an upward posture in which the weight of the telescopic arm 12 does not act without using a special table or the like. Can be held.
  • the rectangular tube guide 26 is provided on the rear surface 13A of the outer cylinder 13, and the tube 25A of the telescopic cylinder 25 is accommodated in the tube guide 26 so as to be movable (slidable).
  • the tube 25 ⁇ / b> A of the telescopic cylinder 25 that has become a free end can be guided in the length direction of the outer cylinder 13 by the tube guide 26. Therefore, even if the sheave attachment 30 is attached to the tube 25A, the tube 25A can be smoothly moved along the tube guide 26.
  • the tube 25A of the telescopic cylinder 25 can move on a fixed track along the tube guide 26, the strength of the telescopic cylinder 25 against buckling and lateral load can be increased. Moreover, by accommodating the tube 25A in the tube guide 26, the tube 25A can be protected from falling rocks or the like due to excavation work of the vertical shaft 101.
  • the outer cylinder 13 is formed in a cylindrical shape having a hexagonal cross-sectional shape, and the outer cylinder 13 is provided between the rear surface 13A and the left and right side surfaces 13C and 13D.
  • the inclined surfaces 13E and 13F are provided.
  • the movable sheave 33 for expansion and contraction is disposed outside the left side surface 13C of the outer cylinder 13, the movable sheave 33 for expansion and contraction is left and right with a slight distance from the left side surface 13C of the outer cylinder 13. Face to face. Thereby, it is possible to prevent the movable sheave 33 for expansion and contraction from greatly projecting to the rear surface 13A side of the outer cylinder 13, and even when the movable movable sheave 33 for expansion and contraction having the large movable sheaves 33A and 33B is used. The periphery of the movable movable sheave 33 can be reduced in size.
  • the life of the telescopic rope 34 can be extended by using the telescopic movable sheave 33 provided with the movable sheaves 33A and 33B having a large diameter.
  • the telescopic movable sheave 33 ′ is arranged outside the right side surface 13 ⁇ / b> D of the outer cylinder 13, so that the same effect as described above can be obtained.
  • the deep excavation machine 1 since the deep excavation machine 1 according to the present embodiment has a structure that can extend the life of the telescopic rope 34, the load acting on the telescopic rope 34 can be set large. As a result, a large load can be lifted by the second-stage inner cylinder 23 to which the telescopic rope 34 is connected, and the capacity of the clamshell bucket 43 attached to the distal end side of the inner cylinder 23 can be increased. By excavating a large amount of earth and sand, the drilling efficiency can be increased.
  • the sheave mounting openings 16 and 16 ' are provided on the lower side of the outer cylinder 13, and a part of the pressing fixed sheaves 39 and 39' is part of the sheave mounting opening. It is arranged inside the outer cylinder 13 through 16, 16 '.
  • the pressing fixed sheaves 39 and 39 ' are arranged at the positions of the sheave mounting openings 16 and 16' provided on the lower side of the outer cylinder 13, the pressing fixing sheaves 39 and 39 'are fixed to the lower end of the outer cylinder as in the prior art. There is no need to place sheaves.
  • the lower flange plate 22 provided at the lower end of the inner cylinder 21 may interfere with the pressing fixed sheaves 39 and 39 '. Absent. Accordingly, the lower flange plate 22 of the inner cylinder 21 can be brought close to the lower end portion 13H of the outer cylinder 13, that is, the vicinity of the lower flange plate 15. As a result, the total length when the telescopic arm 12 is reduced to the minimum can be shortened, and for example, when the deep excavator 1 is transported, a compact transport posture can be achieved.
  • the outer cylinder 13 constituting the telescopic arm 12 has the telescopic cylinder 25, the sheave mounting guide rail 28, the sheave mounting 30 and the telescopic mounting on the rear surface 13A side to which the boom bracket 17 is mounted.
  • positions the fixed sheave 31, the movable sheave 33 for expansion / contraction, etc. is illustrated.
  • the present invention is not limited to this, and may be configured as a modification shown in FIG. 16, for example.
  • the telescopic cylinder 25, the sheave mounting tool guide rail 28, the sheave mounting tool 30, the telescopic fixed sheave 31, the telescopic movable sheave 33, and the like may be arranged on the front surface 13B side of the outer cylinder 13.
  • the members such as the pressing fixed sheaves 39 and 39 ′, the pressing movable sheaves 41 and 41 ′, and the pressing ropes 42 and 42 ′ are symmetric with respect to the outer cylinder 13 with the telescopic cylinder 25 interposed therebetween. The case where two sets are provided is illustrated.
  • the present invention is not limited to this, but the telescopic fixed sheave 31, the telescopic movable sheave 33, the telescopic rope 34, the supporting fixed sheave 35, the supporting rope 37, the pushing fixed sheave 39, the pushing movable sheave 41, A set of each member such as the pushing rope 42 may be provided at the center of the outer cylinder 13 in the left and right directions.
  • the sheave fixture guide rail 28 for guiding the sheave fixture 30 is formed of a rectangular tube having a rectangular cross-sectional shape.
  • the present invention is not limited to this, and the sheave fixture guide rail may be formed using, for example, a steel material having an L-shaped cross-sectional shape.

Abstract

 ブーム(4)の先端側には、外筒(13)および複数段の内筒(21,23)からなる伸縮アーム(12)を設ける。外筒(13)には、伸縮シリンダ(25)を配置すると共に伸縮用固定シーブ(31,31')を固定する。伸縮シリンダ(25)は、ロッド(25B)を上向きとして外筒(13)に取付けられ、チューブ(25A)が自由端となって外筒(13)に沿って移動する。伸縮シリンダ(25)のチューブ(25A)にはシーブ取付具(30)を設け、このシーブ取付具(30)には伸縮用可動シーブ(33,33')を設ける。伸縮用ロープ(34,34')は、伸縮用固定シーブ(31,31')と伸縮用可動シーブ(33,33')に巻回されている。

Description

多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機
 本発明は、例えば土木工事において地面を深く掘削する作業に好適に用いられる多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機に関する。
 一般に、土木工事において地面深く縦坑を掘削する場合には、深掘り掘削機が好適に用いられる。この深掘り掘削機は、自走可能な車体と、該車体に俯仰動可能に設けられたブームと、該ブームの先端側に設けられた多段伸縮アーム装置とを備えている。多段伸縮アーム装置は、上,下方向に延びる外筒および複数段の内筒を有する伸縮アームと、外筒に固定して設けられた伸縮用固定シーブと、外筒の長さ方向に沿って配置された伸縮シリンダと、該伸縮シリンダに取付けられ外筒の長さ方向に移動するシーブ取付具と、該シーブ取付具に設けられた伸縮用可動シーブと、一端側が外筒に係止されると共に他端側が内筒に係止され、途中部位が伸縮用固定シーブと伸縮用可動シーブとに巻回された伸縮用ロープとを備えて構成されている。さらに、内筒の先端には、土砂掘削用のクラムシェルバケットが取付けられている。
 この従来技術による深掘り掘削機は、ブームの先端側に設けられた伸縮アームを地面に対して垂直に保持した状態で伸縮シリンダを縮小させることにより、伸縮アームの内筒を外筒から下方に伸長させる。従って、掘削機は、内筒の先端部(下端部)に取付けられたクラムシェルバケットを用いて、土砂の掘削をすることができる。
 クラムシェルバケットによって掘削した土砂を把持した後には、伸縮シリンダを伸長させることにより、伸縮用ロープによってクラムシェルバケットと一緒に内筒を外筒内に引上げる。この状態で、掘削機の上部旋回体を所定の排土位置に向けて旋回させ、クラムシェルバケットを開くことにより、掘削した土砂を排土することができる(特許文献1参照)。
特開昭62-82131号公報
 ところで、上述した従来技術による深掘り掘削機は、伸縮アームの外筒に伸縮シリンダのチューブが取付けられ、伸縮シリンダのロッドは、このチューブから下向きに突出している。従って、伸縮用可動シーブを支持するシーブ取付具(ハンガー)は、ロッドの下端に取付けられている。
 このため、従来技術による深掘り掘削機は、クラムシェルバケットを引上げるときには、伸縮シリンダのロッドを下方に伸長させてシーブ取付具を下方に移動させる。これにより、伸縮用ロープは、シーブ取付具に支持された伸縮用可動シーブと外筒に固定された伸縮用固定シーブとの間に巻取られ、内筒を外筒内に引上げることができる。
 しかし、従来技術による深掘り掘削機は、伸縮シリンダのチューブが外筒に取付けられている。このため、伸縮シリンダのチューブからロッドを下方に伸長させることによってシーブ取付具を下方に移動させ、伸縮用可動シーブと伸縮用固定シーブとの間に伸縮用ロープを巻取り、クラムシェルバケットを引上げる構成となっている。従って、従来技術では、クラムシェルバケットを引上げるときに、伸縮用ロープに対してシーブ取付具の重量が作用するものの、伸縮シリンダのチューブの重量は作用することがない。このように、従来技術による深掘り掘削機は、クラムシェルバケットで掘削した土砂と一緒に内筒を外筒内に引上げるときに、伸縮シリンダのチューブの重量を引上げ力として利用することができず、伸縮シリンダによる内筒の引上げ動作を効率よく行うことができないという問題がある。
 本発明は上述した従来技術の問題に鑑みなされたもので、伸縮シリンダを伸長させて内筒を引上げるときに、伸縮シリンダのチューブの重量を利用することにより、内筒の引上げ力を増大することができるようにした多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機を提供することを目的としている。
 (1).本発明は、取付対象物のブームと、該ブームの先端側に上,下方向に延びるように設けられ外筒および該外筒の内側に長さ方向に伸縮可能に収容された複数段の内筒を有する伸縮アームと、該伸縮アームを構成する前記外筒の長さ方向に沿って配置された伸縮シリンダと、前記外筒に固定して設けられた伸縮用固定シーブと、前記伸縮シリンダに取付けられ前記伸縮用固定シーブに対し接近または離間するように前記外筒の長さ方向に移動するシーブ取付具と、該シーブ取付具に設けられた伸縮用可動シーブと、一端側が前記外筒に係止されると共に他端側が前記内筒のうち最も内側となる内筒に係止され、途中部位が前記伸縮用固定シーブと伸縮用可動シーブとに巻回された伸縮用ロープとを備えてなる多段伸縮アーム装置に適用される。
 本発明が採用する構成の特徴は、前記伸縮シリンダは、チューブと、一側が該チューブ内でピストンに固定され他側が前記チューブから外部に突出したロッドとを有する油圧シリンダにより構成し、前記伸縮シリンダのロッドを上向きの状態で該ロッドの先端部を前記伸縮アームの前記外筒に取付けると共に前記伸縮シリンダのチューブを自由端とし、前記シーブ取付具は前記伸縮シリンダのチューブに取付けたことにある。
 この構成によると、掘削具が取付けられた内筒を引下げる場合には、伸縮シリンダのチューブ内にロッドを引込んで伸縮シリンダを縮小させる。この状態では、シーブ取付具に支持された伸縮用可動シーブが上方に移動し、外筒に固定された伸縮用固定シーブに接近する。このため、伸縮用固定シーブと伸縮用可動シーブとに巻回された伸縮用ロープが繰出され、この伸縮用ロープの他端側が係止された内筒を外筒の外部へと伸長させることができる。一方、掘削具が取付けられた内筒を引上げる場合には、チューブからロッドを突出させて伸縮シリンダを伸長させる。この状態では、シーブ取付具に支持された伸縮用可動シーブが下方に移動し、外筒に固定された伸縮用固定シーブから離間する。このため、伸縮用ロープが伸縮用固定シーブと伸縮用可動シーブとの間に巻き取られ、伸縮用ロープの他端側が係止された内筒を外筒の内部に引込むことにより、伸縮アームを縮小させることができる。
 この場合、伸縮シリンダのロッドは上向きとなり、該ロッドの先端部は外筒に取付けられている。このため、伸縮シリンダを伸長させたときには、重量物であるチューブとシーブ取付具とが一緒に下方に移動し、伸縮用可動シーブと伸縮用固定シーブとに巻回された伸縮用ロープを介して、内筒が外筒の内部へと引上げられる。この場合、下方に移動するチューブには、当該チューブとシーブ取付具の重量による下向きの荷重が作用する。従って、これらチューブとシーブ取付具の重量を利用して内筒の引上げ力を増大させることができ、伸縮シリンダによる内筒の引上げ動作を効率よく行うことができる。
 (2).本発明によると、前記伸縮シリンダのロッドの先端部は、前記外筒の上部側に取付ける構成としたことにある。
 これにより、シーブ取付具が取付けられた伸縮シリンダのチューブを、上,下方向に延びた外筒のほぼ上半分の範囲で上,下方向に移動させることができる。このため、例えば縦坑の掘削時に外筒の下半分が地下にもぐった場合でも、ブームが設けられた車体側のオペレータは、伸縮シリンダの伸縮動作等を目視して確認することができるので、掘削作業の作業性や安全性を高めることができる。
 (3).本発明によると、前記外筒の外側には、前記外筒と平行して長さ方向に延び前記外筒に取付けられたシーブ取付具ガイドレールを設け、前記シーブ取付具は、前記伸縮シリンダの伸縮に応じて前記シーブ取付具ガイドレールに沿って移動する構成としたことにある。
 この構成によれば、伸縮シリンダによってシーブ取付具を移動させるときに、シーブ取付具は、シーブ取付具ガイドレールに案内されることにより常に一定の軌道上を移動することができる。この結果、伸縮用固定シーブと伸縮用可動シーブとに巻回された伸縮用ロープは、シーブ取付具に支持された伸縮用可動シーブの移動に円滑に追従することができ、外筒に対する内筒の伸縮動作の安定性を高めることができる。しかも、外筒に設けたシーブ取付具ガイドレールによって外筒の強度を高めることができるので、伸縮アーム全体の信頼性を高めることができる。
 一方、シーブ取付具が取付けられたチューブも、シーブ取付具ガイドレールに沿って一定の軌道上を移動することができる。この結果、伸縮シリンダの座屈や横荷重に対する強度を高めることができ、伸縮シリンダの信頼性を高めることができる。
 (4).本発明によると、前記外筒の外側であって前記シーブ取付具よりも下側部位には、左,右方向で間隔をもって対面し前記ブームの先端側に揺動可能に取付けられる一対のブームブラケットを設け、前記伸縮シリンダのチューブは、前記一対のブームブラケット間に形成された隙間に配置する構成としたことにある。
 この構成によれば、伸縮シリンダは、外筒の外側に設けた一対のブームブラケット間に形成された隙間に配置されるので、伸縮シリンダ、伸縮シリンダのチューブに取付けられたシーブ取付具、シーブ取付具に支持された伸縮用可動シーブ、伸縮用固定シーブと伸縮用可動シーブとに巻回された伸縮用ロープ等を、ブームが設けられた車体側から目視することができる。これにより、車体側のオペレータは、伸縮シリンダ等を直接目視しながら、外筒に対して内筒を伸縮させる操作を的確に行うことができる。
 一方、外筒のうちブームブラケットが設けられた面とは反対側となる側面、即ち、車体とは反対側となる側面には、伸縮シリンダ、伸縮用固定シーブ、シーブ取付具、伸縮用可動シーブ等を設ける必要がない。このため、縦坑等の掘削時にこれら伸縮シリンダ等が障害物と接触して損傷することがなく、掘削作業の作業性を高めることができる。
 しかも、多段伸縮アーム装置を輸送姿勢にするために、外筒を地面に置く場合、ブームに取付けられる面とは反対側の面を地面に置くことができる。これにより、外筒を地面に置くときに、格別な置台等を用いることなく、伸縮シリンダ、シーブ取付具、伸縮用固定シーブ、伸縮用可動シーブ等を、伸縮アームの重量が作用することがない上向きの姿勢に保持することができる。
 従って、多段伸縮アーム装置を輸送姿勢にした状態では、外筒に取付けられた伸縮シリンダ、伸縮用固定シーブ、シーブ取付具、伸縮用可動シーブ等に対するメンテナンス作業を、地面に近い位置で行うことができるので、このメンテナンス作業の作業性を高めることができる。
 (5).本発明によると、前記外筒の外側には、前記伸縮シリンダのチューブを移動可能に収容し該チューブを前記外筒の長さ方向にガイドするチューブガイドを設ける構成としたことにある。
 この構成によれば、伸縮シリンダのチューブの自由端側を、チューブガイドによって外筒の長さ方向にガイドすることにより、シーブ取付具が取付けられたチューブを円滑に移動させることができる。このため、伸縮シリンダのチューブは、チューブガイドに沿って一定の軌道上を移動することができ、伸縮シリンダの座屈や横荷重に対する強度を高めることができる。さらに、チューブガイド内にチューブを収容することにより、掘削時の落石等からチューブを保護することができる。
 (6).本発明によると、前記外筒は、少なくとも前記ブームの先端側に取付けられる後面と、該後面と前,後方向で対面する前面と、前記後面および前面を挟んで左,右方向で対面する左側面および右側面と、前記後面と左側面との間に斜めに傾斜して配置された左傾斜面と、前記後面と右側面との間に斜めに傾斜して配置された右傾斜面とを有する多角形の断面形状を有する角筒状に構成し、前記伸縮用可動シーブは、前記外筒を構成する左,右の側面よりも左,右方向の外側に配置する構成としたことにある。
 この構成によれば、外筒を多角形の断面形状を有する筒状に形成し、ブームの先端側に取付けられる後面と左,右の側面との間に左,右の傾斜面を設けたので、外筒に作用する荷重に対して座屈強度を高めることができる。これにより、外筒の寿命を延ばすことができ、伸縮アームの信頼性を高めることができる。
 しかも、シーブ取付具に支持される伸縮用可動シーブを、外筒を構成する左,右の側面よりも左,右方向の外側に配置することにより、伸縮用可動シーブが外筒の後面側に大きく突出するのを抑えることができる。この結果、直径の大きなシーブを有する伸縮用可動シーブを用いた場合でも、この伸縮用可動シーブの周囲を小型化することができるので、直径の大きなシーブを備えた伸縮用可動シーブを用いて伸縮用ロープの寿命を延ばすことができる。
 このように、伸縮用ロープの寿命を延ばすことができる構造であるため、伸縮用ロープに作用する負荷を大きく設定することができる。この結果、伸縮用ロープが接続された内筒に取付けられるクラムシェルバケットの容量を大きくすることができ、大量の土砂を掘削することができる。
 (7).本発明によると、前記外筒は、前記ブームの先端側に取付けられる後面と、該後面と前,後方向で対面する前面と、前記後面および前面を挟んで左,右方向で対面する左側面および右側面と、前記後面と左側面との間に斜めに傾斜して配置された左傾斜面と、前記後面と右側面との間に斜めに傾斜して配置された右傾斜面とにより六角形の断面形状を有する角筒状に構成したことにある。これにより、外筒に作用する荷重に対して座屈強度を高めることができ、外筒の寿命を延ばすことができる。
 (8).本発明によると、前記外筒と前記複数段の内筒のうち最も外側に位置する1段目の内筒との間には、前記伸縮シリンダによって前記1段目の内筒を前記外筒から伸長させたときに該1段目の内筒を伸長方向に押込む押込み機構を設け、該押込み機構は、前記外筒の下部側に位置して前記外筒に設けられた押込み用固定シーブと、前記伸縮用可動シーブよりも下側位置で前記シーブ取付具に設けられた押込み用可動シーブと、一端側が前記外筒に係止されると共に他端側が前記外筒の内側を通って前記1段目の内筒に係止され、途中部位が前記押込み用固定シーブと前記押込み用可動シーブとに巻回された押込み用ロープとにより構成し、前記外筒の下部側で前記押込み用固定シーブが設けられる位置にはシーブ取付け開口を設け、前記押込み用固定シーブの一部は、前記シーブ取付け開口を通じて前記外筒の内側に配置する構成としたことにある。
 この構成により、押込み用固定シーブの直径を大きく設定した場合でも、この押込み用固定シーブをコンパクトに外筒に取付けることができる。この結果、直径の大きな押込み用固定シーブを用いることができ、押込み用ロープの寿命を延ばすことができる。
 しかも、従来技術のように外筒の下端部に押込み用固定シーブを配置する構成に比較して、1段目の内筒を外筒内に収容したときに、外筒の下端部から突出する1段目の内筒の下端部の突出量を小さくすることができる。この結果、伸縮アームを最縮小させたときの全長を短縮することができ、例えば深掘り掘削機を輸送するときにコンパクトな輸送姿勢とすることができる。
 (9).本発明は、自走可能な車体と、該車体に俯仰動可能に設けられたブームと、該ブームの先端側に設けられた多段伸縮アーム装置とを備え、前記多段伸縮アーム装置は、上,下方向に延びる外筒および該外筒の内側に長さ方向に伸縮可能に収容された複数段の内筒を有する伸縮アームと、該伸縮アームを構成する前記外筒の長さ方向に沿って配置された伸縮シリンダと、前記外筒に固定して設けられた伸縮用固定シーブと、前記伸縮シリンダに取付けられ前記伸縮用固定シーブに対し接近または離間するように前記外筒の長さ方向に移動するシーブ取付具と、該シーブ取付具に設けられた伸縮用可動シーブと、一端側が前記外筒に係止されると共に他端側が前記内筒のうち最も内側となる内筒に係止され、途中部位が前記伸縮用固定シーブと伸縮用可動シーブとに巻回された伸縮用ロープとを備えてなる深掘り掘削機に適用される。
 そして、前記伸縮シリンダは、チューブと、一側が該チューブ内でピストンに固定され他側が前記チューブから外部に突出したロッドとを有する油圧シリンダにより構成し、前記伸縮シリンダのロッドを上向きの状態で該ロッドの先端部を前記伸縮アームの前記外筒に取付けると共に前記伸縮シリンダのチューブを自由端とし、前記シーブ取付具は前記伸縮シリンダのチューブに取付ける構成としたことを特徴としている。
 この構成によれば、伸縮シリンダを構成するロッドは上向きとなり、該ロッドの先端部は外筒に取付けられている。このため、伸縮シリンダを伸長させたときには、重量物であるチューブとシーブ取付具とが一緒に下方に移動し、伸縮用可動シーブと伸縮用固定シーブとに巻回された伸縮用ロープを介して、内筒が外筒の内部へと引上げられる。この場合、下方に移動するチューブには、当該チューブとシーブ取付具の重量による下向きの荷重が作用する。従って、これらチューブとシーブ取付具の重量を利用して内筒の引上げ力を増大させることができ、伸縮シリンダによる内筒の引上げ動作を効率よく行うことができる。
本発明の実施の形態による深掘り掘削機を伸縮アームが最縮小した状態で示す側面図である。 深掘り掘削機を伸縮アームが最伸長した状態で示す側面図である。 図1中の多段伸縮アーム装置を単体で示す側面図である。 多段伸縮アーム装置を図3中の矢示IV-IV方向からみた正面図である。 多段伸縮アーム装置を単体で示す斜視図である。 図5中の外筒、伸縮シリンダ、伸縮用固定シーブ、シーブ取付具、伸縮用可動シーブ、シーブ取付具ガイドレール等を示す要部拡大の斜視図である。 シーブ取付具、伸縮用可動シーブ、押込み用可動シーブ、シーブ取付具ガイドレール等を示す要部拡大の斜視図である。 図4中の伸縮用固定シーブ等を拡大して示す要部拡大の正面図である。 伸縮アームの伸縮機構を伸縮アームが縮小した状態で示す模式図である。 伸縮アームの伸縮機構を伸縮アームが伸長した状態で示す模式図である。 伸縮アーム、ブームブラケット等を図3中の矢示XI-XI方向からみた断面図である。 伸縮アーム、伸縮シリンダ、シーブ取付具、伸縮用可動シーブ等を図3中の矢示XII-XII方向からみた断面図である。 伸縮アーム、伸縮シリンダ、シーブ取付具、押込み用可動シーブ等を図3中の矢示XIII-XIII方向からみた断面図である。 伸縮アーム、シーブ取付け開口、押込み用固定シーブ等を図3中の矢示XIV-XIV方向からみた断面図である。 深掘り掘削機を輸送姿勢として伸縮アームを地面に置いた状態を示す側面図である。 外筒の前面側に伸縮シリンダ、伸縮用固定シーブ、シーブ取付具、伸縮用可動シーブ、シーブ取付具ガイドレール等を配置した変形例を示す正面図である。
 以下、本発明に係る深掘り掘削機の実施の形態について、添付図面を参照しつつ詳細に説明する。
 図1において、1は本実施の形態による深掘り掘削機を示し、該深掘り掘削機1は、自走可能なクローラ式の下部走行体2と、該下部走行体2上に旋回可能に搭載された上部旋回体3とからなる車体を有している。この車体は、後述する多段伸縮アーム装置11の取付対象物である。
 上部旋回体3は、ベースとなる旋回フレーム3Aと、該旋回フレーム3Aの前部左側に配設されたキャブ3Bと、旋回フレーム3Aの後端側に設けられたカウンタウエイト3Cと、内部にエンジン、油圧ポンプ等の搭載機器(いずれも図示せず)を収容した建屋カバー3Dとにより大略構成されている。
 4は上部旋回体3の前部側に俯仰動可能に設けられたブームを示している。ブーム4の基端側は旋回フレーム3Aの前部側に取付けられ、ブーム4の先端側には後述の多段伸縮アーム装置11が取付けられている。ブーム4と旋回フレーム3Aとの間にはブームシリンダ4Aが設けられ、該ブームシリンダ4Aを伸縮させることにより、ブーム4が上部旋回体3に対して俯仰動する。ブーム4の上面側には掘削装置揺動シリンダ4Bのボトム側が取付けられ、該掘削装置揺動シリンダ4Bのロッド側は多段伸縮アーム装置11に取付けられている。
 次に、ブーム4の先端側に取付けられ、地中深く縦坑を掘削する多段伸縮アーム装置11について説明する。
 11はブーム4の先端側に取付けられた多段伸縮アーム装置を示し、該多段伸縮アーム装置11は、後述する伸縮アーム12と、伸縮シリンダ25と、シーブ取付具30と、伸縮用固定シーブ31と、伸縮用可動シーブ33と、伸縮用ロープ34とを備えて構成されている。
 12はブーム4の先端側に上,下方向に延びるように取付けられたテレスコピック式の伸縮アームを示している。この伸縮アーム12は、図9等に示すように、最も外側に位置する外筒13と、外筒13の内周側に長さ方向に伸縮可能(移動可能)に収容された後述する1段目の内筒21と、1段目の内筒21の内周側に長さ方向に伸縮可能に収容された後述する2段目の内筒23とにより構成されている。
 ここで、図11ないし図14に示すように、外筒13は、ブーム4の先端側に取付けられる後面13Aと、後面13Aと前,後方向で間隔をもって対面する前面13Bと、後面13Aおよび前面13Bを挟んで左,右方向で対面する左側面13C,右側面13Dと、後面13Aと左側面13Cとの間に斜めに傾斜して配置された左傾斜面13Eと、後面13Aと右側面13Dとの間に斜めに傾斜して配置された右傾斜面13Fとによって形成されている。従って、外筒13は、全体として六角形の断面形状を有する角筒体として形成されている。
 このように、外筒13は、ブーム4の先端側に取付けられる後面13Aと左側面13Cとの間に左傾斜面13Eが設けられると共に、後面13Aと右側面13Dとの間に右傾斜面13Fが設けられている。これにより、外筒13は、当該外筒13に作用する荷重に対する座屈強度を高めることができる構成となっている。一方、外筒13の上端部13Gと下端部13Hとは、それぞれ開口端となっている。
 上フランジ板14は、外筒13の長さ方向の中間部に位置して外筒13の外周側に一体に設けられている。この上フランジ板14には、後述する押込み用ロープ42の一端42Aが係止される。一方、下フランジ板15は、外筒13の下端部に一体に設けられている。この下フランジ板15には、後述する支持用ロープ37の一端37Aが係止される。
 外筒13の下部側には、左,右のシーブ取付け開口16,16′が設けられている。図14に示すように、左側のシーブ取付け開口16は、外筒13を構成する左側面13Cと左傾斜面13Eとが交わる部位に形成され、右側のシーブ取付け開口16′は、外筒13の右側面13Dと右傾斜面13Fとが交わる部位に形成されている。シーブ取付け開口16,16′は、外筒13の内部に開口し、シーブ取付け開口16,16′には、後述する押込み用固定シーブ39,39′の一部が挿入される。
 17は外筒13の外側であって後述するシーブ取付具30よりも下側部位に設けられた左,右一対のブームブラケットを示し、これら一対のブームブラケット17は、ブーム4の先端側に取付けられるものである。ここで、図5および図11に示すように、一対のブームブラケット17は、左,右方向で間隔をもって対面する板体からなり、各ブラケット17には、円筒状のブーム連結部17Aの左,右方向の両側が固着されている。一対のブームブラケット17は、外筒13の後面13Aに溶接等の手段を用いて一体的に固着され、ブームブラケット17のブーム連結部17Aは、ピン18(図1参照)を用いてブーム4の先端側にピン結合されている。また、一対のブームブラケット17間には隙間17Bが形成され、この隙間17B内に、後述する伸縮シリンダ25が配置される構成となっている。
 19はブームブラケット17よりも上側に位置して外筒13の外側に設けられた左,右一対のシリンダブラケットを示し、該一対のシリンダブラケット19は、掘削装置揺動シリンダ4Bのロッド側に取付けられるものである。ここで、一対のシリンダブラケット19は、左,右方向で間隔をもって対面する板体からなり、掘削装置揺動シリンダ4Bのロッド先端部が連結されるシリンダ連結部を備えている。一対のシリンダブラケット19は、外筒13の後面13Aであってブームブラケット17の上側近傍位置に溶接等の手段を用いて一体的に固着され、これら一対のシリンダブラケット19のシリンダ連結部には、掘削装置揺動シリンダ4Bのロッド先端部が、ピン20(図1参照)を用いて回動可能にピン結合されている。
 従って、掘削装置揺動シリンダ4Bを伸縮させることにより、伸縮アーム12の外筒13は、ブーム4の先端側でピン18を中心として前,後方向または上,下方向に揺動する構成となっている。なお、シリンダブラケット19は、掘削装置揺動シリンダ4Bの取付け位置によっては、ブームブラケット17よりも下側に位置して設けられることがある。
 21は外筒13の内側に適度な隙間をもって移動可能に収容された最も外側に位置する1段目の内筒を示している。図11ないし図14に示すように、1段目の内筒21は、後面21A、前面21B、左側面21Cおよび右側面21Dによって囲まれた四角形の断面形状を有している。内筒21は、全体として角筒体として形成され、上,下方向の両端部は開口端となっている。さらに、内筒21は、外筒13の下端部13Hから外筒13の内側に収容され、外筒13に対し長さ方向(上,下方向)に移動可能となっている。
 ここで、外筒13の内側面と1段目の内筒21の外側面との間には、内筒21を外筒13に沿って円滑に摺動させるためのスライドプレート(図示せず)が設けられている。一方、内筒21の下端部には下フランジ板22が設けられ、該下フランジ板22には、後述する支持用固定シーブ35が取付けられている。
 23は1段目の内筒21の内側に適度な隙間をもって移動可能に収容された最も内側に位置する2段目の内筒を示している。この内筒23は、後面23A、前面23B、左側面23Cおよび右側面23Dによって囲まれている。2段目の内筒23は、1段目の内筒21よりも一回り小さな四角形の断面形状を有する角筒体として形成されている。2段目の内筒23は、1段目の内筒21の下端側から当該内筒21の内側に収容され、内筒21に対し長さ方向(上,下方向)に移動可能となっている。
 ここで、1段目の内筒21の内側面と2段目の内筒23の外側面との間には、内筒23を内筒21に沿って円滑に摺動させるためのスライドプレート(図示せず)が設けられている。一方、内筒23の下端部には取付アイ24が設けられ、該取付アイ24には後述するクラムシェルバケット43が取付けられる。
 次に、本実施の形態による伸縮シリンダ25と、伸縮シリンダ25に付設されたチューブガイド26、シーブ取付具ガイドレール28、シーブ取付具30等について説明する。
 25は伸縮アーム12を構成する外筒13の長さ方向に沿って配置された伸縮シリンダを示し、この伸縮シリンダ25は、圧油の給排により伸縮する油圧シリンダが用いられている。この伸縮シリンダ25は、チューブ25Aと、該チューブ25A内に摺動可能に設けられたピストン(図示せず)と、一側がチューブ25A内でピストンに固定され他側がチューブ25Aから外部に突出したロッド25Bとにより構成されている。
 ここで、伸縮シリンダ25は、ブームブラケット17が設けられた外筒13の後面13A側で、かつ外筒13の左,右方向の中心位置に、ロッド25Bを上向きとした状態で配置されている。図8に示すように、伸縮シリンダ25のロッド25Bの先端部25Cは、外筒13の上端部13Gの近傍部位に設けられたブラケット13Jに、ピン25Dを介してピン結合されている。
 一方、伸縮シリンダ25のチューブ25Aは、自由端となって下方に延び、左,右方向で対をなすブームブラケット17間に形成された隙間17B内に配置されている。また、チューブ25Aの上部側には、後述するシーブ取付具30が取付けられている。従って、伸縮シリンダ25を、図1に示す最伸長状態と、図2に示す最縮小状態との間で伸縮させることにより、チューブ25Aが、シーブ取付具30と一緒に外筒13に沿って上,下に移動する構成となっている。
 ここで、伸縮シリンダ25を図2に示す最縮小状態としたときに、チューブ25Aの底部25A1からロッド25Bの先端部25C(ピン25Dの位置)までの長さ寸法(最縮小状態の伸縮シリンダ25の長さ寸法)をL1とし、外筒13の上端近傍部位13G1(ロッド25Bが外筒13に連結されるピン25Dの位置)から下端部13Hまでの長さ寸法(外筒13の長さ寸法)をL2とすると、最縮小状態の伸縮シリンダ25の長さ寸法L1は、外筒13の長さ寸法L2のほぼ1/2の長さに設定されている。
 即ち、最縮小状態の伸縮シリンダ25の長さ寸法L1と、外筒13の長さ寸法L2とは、下記の関係に設定されている。
Figure JPOXMLDOC01-appb-M000001
 さらに好ましくは、最縮小状態の伸縮シリンダ25の長さ寸法L1と、外筒13の長さ寸法L2とは、下記の関係に設定されている。
Figure JPOXMLDOC01-appb-M000002
 このように、最縮小状態の伸縮シリンダ25の長さ寸法L1を、外筒13の長さ寸法L2のほぼ1/2の長さ寸法に設定することにより、伸縮シリンダ25のストロークを大きく確保することができる。これにより、後述する伸縮用固定シーブ31の2枚の固定シーブ31A,31Bと伸縮用可動シーブ33の2枚の可動シーブ33A,33Bとの間に伸縮用ロープ34を4回掛けまわすだけで、伸縮アーム12を図1に示す最縮小状態と図2に示す最伸長状態との間で伸縮させることができる。
 26は外筒13の後面13Aの外側に設けられたチューブガイドを示し、該チューブガイド26は、伸縮シリンダ25のチューブ25Aを移動可能に収容するものである。図12および図13に示すように、チューブガイド26は、ほぼ正方形の断面形状を有する角筒体により形成されている。チューブガイド26は、一対のブームブラケット17間に形成された隙間17B内に配置され、外筒13の後面13Aにその長さ方向に沿って固定されている。従って、自由端となった伸縮シリンダ25のチューブ25Aは、チューブガイド26に案内されつつ外筒13の長さ方向に移動することができる。
 伸縮シリンダ25のチューブ25Aのボトム側の外側面には、スライドプレート27が設けられている。伸縮シリンダ25のチューブ25Aは、チューブガイド26の内周側に挿嵌され、スライドプレート27は、チューブガイド26の内側面に沿って移動する。これにより、チューブ25Aはチューブガイド26に沿って円滑に外筒13の長さ方向に移動することができる。
 28は外筒13の外側に設けられた2本のシーブ取付具ガイドレールを示し、該各シーブ取付具ガイドレール28は、後述するシーブ取付具30を案内するものである。これら2本のシーブ取付具ガイドレール28は、外筒13の後面13Aに伸縮シリンダ25を挟んで左,右に1本ずつ配置されている。
 ここで、シーブ取付具ガイドレール28は、長方形の断面形状を有する角筒体により形成されている。シーブ取付具ガイドレール28の上端部は、外筒13の上端部13Gの近傍にブラケット28Aを介して固定され、シーブ取付具ガイドレール28の下端部は、外筒13の上フランジ板14の近傍にブラケット28Bを介して固定されている。これにより、シーブ取付具ガイドレール28は、外筒13の後面13Aとの間に一定の間隔を形成した状態で、後面13Aと平行して長さ方向に延びている。この場合、角筒体からなる2本のシーブ取付具ガイドレール28を外筒13に固定することにより、外筒13の強度を高めることができる構成となっている。
 29は外筒13の上端部13Gに固定して設けられたシーブ取付基板を示し、該シーブ取付基板29は、後述する伸縮用固定シーブ31,31′等が取付けられるものである。ここで、シーブ取付基板29は、外筒13の後面13Aから後側(ブーム4側)に張出すシーブ取付部29Aと、該シーブ取付部29Aよりも前側に位置するロープ係止部29Bとを有している。シーブ取付基板29のシーブ取付部29Aには、伸縮用固定シーブ31,31′が回転可能に支持され、ロープ係止部29Bには、後述する伸縮用ロープ34,34′の一端34A,34A′が係止される。
 30は伸縮シリンダ25のチューブ25Aに取付けられたシーブ取付具を示し、該シーブ取付具30は、後述する伸縮用可動シーブ33,33′と押込み用可動シーブ41,41′が取付けられるものである。ここで、図7、図12および図13に示すように、シーブ取付具30は、伸縮シリンダ25のチューブ25Aの上部側に固定された本体部30Aと、本体部30Aの上部側に位置し、伸縮用可動シーブ33,33′を回転可能に支持する上側シーブ支持部30Bと、本体部30Aの下部側に位置し、後述する押込み用可動シーブ41,41′を回転可能に支持する下側シーブ支持部30Cとにより構成されている。シーブ取付具30の本体部30Aは、チューブガイド26を避けるように山形状に屈曲している。
 一方、図12に示すように、シーブ取付具30の本体部30Aには、左,右のシーブ取付具ガイドレール28が摺動可能に挿通される角筒状の左,右のガイド挿通部30Dが設けられ、シーブ取付具30は、左,右のシーブ取付具ガイドレール28に案内されつつ、外筒13の長さ方向(上,下方向)に移動可能となっている。
 次に、伸縮アーム12を構成する外筒13と1段目の内筒21および2段目の内筒23を伸縮可能に連結するための構成、即ち伸縮用固定シーブ31,31′、伸縮用可動シーブ33,33′、伸縮用ロープ34,34′、支持用固定シーブ35,35′、支持用ロープ37,37′について説明する。
 ここで、伸縮用固定シーブ31,31′、伸縮用可動シーブ33,33′、伸縮用ロープ34,34′、支持用固定シーブ35,35′、支持用ロープ37,37′は、外筒13に対し伸縮シリンダ25を挟んで左,右対称となるように設けられ、互いに同一の構造を有している。このため、以下、外筒13の左側に配置された伸縮用固定シーブ31、伸縮用可動シーブ33、伸縮用ロープ34、支持用固定シーブ35、支持用ロープ37について説明し、右側に配置されたものについては、対応する構成要素の符号にダッシュ「′」を付し、その説明は省略する。
 31はシーブ取付基板29を介して外筒13の上端側に固定された伸縮用固定シーブを示し、この伸縮用固定シーブ31は、等しい直径を有する2枚の固定シーブ31A,31Bによって構成されている。図8に示すように、一方の固定シーブ31Aは、シーブ取付基板29のシーブ取付部29Aに設けられたブラケット32のうち一方のブラケット32Aに回転可能に支持され、他方の固定シーブ31Bは、他方のブラケット32Bに回転可能に支持されている。この場合、各固定シーブ31A,31Bの支持軸(図示せず)は、それぞれ外筒13の後面13Aに対して非平行となるように配置されている。
 33はシーブ取付具30に回転可能に支持された伸縮用可動シーブを示している。伸縮用可動シーブ33は、等しい直径を有する2枚の可動シーブ33A,33Bによって構成されている。ここで、図12に示すように、一方の可動シーブ33Aと他方の可動シーブ33Bとは、シーブ取付具30の上側シーブ支持部30Bに取付けられた1本の支持軸33Cに隣接して回転可能に支持されている。この場合、各可動シーブ33A,33Bの支持軸33Cは、外筒13の後面13Aに対して平行に配置されている。伸縮用可動シーブ33は、伸縮シリンダ25の伸縮に応じてシーブ取付具30が上,下方向に移動することにより、伸縮用固定シーブ31に対して接近または離間する。
 シーブ取付具30に支持された伸縮用可動シーブ33は、外筒13の左側面13Cよりも外側に配置され、当該左側面13Cと僅かな間隔をもって左,右方向で対面している。これにより、伸縮用可動シーブ33が、外筒13の後面13A側に大きく突出するのを抑え、伸縮用可動シーブ33の周囲を小型化することができる。
 34は外筒13と最も内側に位置する2段目の内筒23との間を連結する伸縮用ロープを示し、該伸縮用ロープ34は、ワイヤロープによって構成されている。ここで、図9および図10に示すように、伸縮用ロープ34の一端34Aは、外筒13の上端部13Gに設けられたシーブ取付基板29のロープ係止部29Bに係止され、伸縮用ロープ34の他端34Bは、2段目の内筒23の上部側に係止されている。また、伸縮用ロープ34の途中部位は、伸縮用固定シーブ31を構成する2枚の固定シーブ31A,31Bと、伸縮用可動シーブ33を構成する2枚の可動シーブ33A,33Bとの間に4回掛けまわされている。
 即ち、伸縮用ロープ34の一端34Aは、シーブ取付基板29に係止され、伸縮用ロープ34の途中部位は、伸縮用可動シーブ33の一方の可動シーブ33A、伸縮用固定シーブ31の一方の固定シーブ31A、伸縮用可動シーブ33の他方の可動シーブ33B、伸縮用固定シーブ31の他方の固定シーブ31Bに順次巻回されている。さらに、伸縮用ロープ34は、伸縮用固定シーブ31の他方の固定シーブ31Bから外筒13および1段目の内筒21の内側に挿通され、該伸縮用ロープ34の他端34Bは、2段目の内筒23の上部側に係止されている。
 このように、伸縮用固定シーブ31を2枚の固定シーブ31A,31Bによって構成すると共に、伸縮用可動シーブ33を2枚の可動シーブ33A,33Bによって構成している。この上で、伸縮用ロープ34を、2枚の固定シーブ31A,31Bと2枚の可動シーブ33A,33Bとに合計4回掛けまわしている。これにより、例えば従来技術のように、伸縮用ロープを、伸縮用固定シーブの4枚のシーブと伸縮用可動シーブの4枚のシーブとの間に合計8回掛けまわす構成に比較して、伸縮用ロープ34がシーブに接触する回数を半減させることができる構成となっている。
 35は1段目の内筒21の下フランジ板22に設けられた1枚の支持用固定シーブを示している。この支持用固定シーブ35は、内筒21の下フランジ板22に固定されたブラケット36に回転可能に支持されている。
 37は外筒13と内筒23との間で内筒21を支持する支持用ロープを示し、該支持用ロープ37は、ワイヤロープによって構成されている。ここで、図9および図10に示すように、支持用ロープ37の一端37Aは、外筒13の下フランジ板15に係止され、支持用ロープ37の途中部位は、支持用固定シーブ35に巻回されている。さらに、支持用ロープ37は、支持用固定シーブ35から1段目の内筒21の内側に挿入され、支持用ロープ37の他端37Bは、2段目の内筒23の上部側に係止されている。
 次に、伸縮シリンダ25によって内筒21を外筒13から伸長させたときに1段目の内筒21を伸長方向に押込む押込み機構38,38′について説明する。
 即ち、外筒13と1段目の内筒21との間には、左,右の押込み機構38,38′が設けられている。各押込み機構38,38′は、伸縮シリンダ25によって内筒21を外筒13から伸長させたときに、この内筒21を伸長状態に保持するものである。
 ここで、図13および図14に示すように、押込み機構38,38′は、押込み用固定シーブ39,39′と、押込み用可動シーブ41,41′と、押込み用ロープ42,42′とにより構成されている。各押込み機構38,38′は、外筒13に対し伸縮シリンダ25を挟んで左,右対称となるように設けられ、互いに同一の構造を有している。このため、以下、外筒13の左側に配置された押込み機構38について説明し、右側に配置されたものについては、対応する構成要素の符号にダッシュ「′」を付し、その説明は省略する。
 39は外筒13の下部側に設けられた1枚の押込み用固定シーブを示している。図14に示すように、押込み用固定シーブ39は、外筒13に形成されたシーブ取付け開口16を跨いで外筒13に固定されたブラケット40に、支持軸39Aを介して回転可能に支持されている。この場合、押込み用固定シーブ39の支持軸39Aは、外筒13の左側面13Cに対し、90度よりも小さい角度θの傾斜角度をもって配置されている。即ち、押込み用固定シーブ39の支持軸39Aは、外筒13の後面13Aに対して非平行に配置され、支持軸39Aによって支持された押込み用固定シーブ39は、その一部が外筒13の内側に収容されている。
 41は伸縮用可動シーブ33よりも下側位置でシーブ取付具30に設けられた1枚の押込み用可動シーブを示している。図13に示すように、押込み用可動シーブ41は、シーブ取付具30の下側シーブ支持部30Cに、支持軸41Aを介して回転可能に支持されている。この場合、押込み用可動シーブ41の支持軸41Aは、外筒13の後面13Aに対して平行に配置されている。押込み用可動シーブ41は、伸縮シリンダ25の伸縮に応じてシーブ取付具30が上,下方向に移動することにより、押込み用固定シーブ39に対して接近または離間する。
 42は外筒13と1段目の内筒21との間を連結する押込み用ロープを示し、該押込み用ロープ42は、ワイヤロープによって構成されている。ここで、図9および図10に示すように、押込み用ロープ42の一端42Aは、外筒13の上フランジ板14に係止され、押込み用ロープ42の途中部位は、押込み用可動シーブ41と押込み用固定シーブ39とに巻回されている。さらに、押込み用ロープ42の他端42Bは、押込み用固定シーブ39から外筒13の内側に挿入され、該外筒13の内側で内筒21の上部側に係止されている。
 従って、伸縮シリンダ25を図1および図9に示す最伸長状態から、図10に示す状態に縮小させた場合には、伸縮シリンダ25のチューブ25Aがシーブ取付具30と一緒に上方に移動し、伸縮用可動シーブ33が伸縮用固定シーブ31に接近する。これにより、伸縮用可動シーブ33と伸縮用固定シーブ31とに巻回された伸縮用ロープ34が繰出され、2段目の内筒23は自重によって外筒13から下方に伸長する。このとき、内筒23の上部側に係止された支持用ロープ37の他端37Bが2段目の内筒23と共に下方に移動するので、支持用ロープ37によって支持された1段目の内筒21も自重によって外筒13から下方に伸長する。かくして、図2および図10に示すように、チューブ25Aが上限位置まで移動して伸縮シリンダ25が最縮小状態に達することにより、伸縮アーム12は最伸長状態となる。
 ここで、シーブ取付具30が伸縮用固定シーブ31に接近すると、押込み用可動シーブ41と押込み用固定シーブ39との間に押込み用ロープ42が巻き取られ、押込み用ロープ42の他端42Bが1段目の内筒21に伴って下方に移動する。これにより、押込み用ロープ42は常に一定の張力を保つ。また、内筒21は支持用ロープ37に支持された状態で伸長するので、支持用ロープ37も常に一定の張力を保つ。
 従って、外筒13から内筒21,23が伸長した状態で、後述するクラムシェルバケット43を用いて掘削作業を行うことにより、内筒21,23に対して上向きの掘削反力が作用した場合でも、押込み用ロープ42、支持用ロープ37の張力によって、内筒21,23が縮小側に移動してしまうのを抑えることができる。
 次に、伸縮シリンダ25を、図2および図10に示す最縮小状態から伸長させた場合には、伸縮シリンダ25のチューブ25Aがシーブ取付具30と一緒に下方に移動し、伸縮用可動シーブ33が伸縮用固定シーブ31から離間する。これにより、伸縮用可動シーブ33と伸縮用固定シーブ31との間で伸縮用ロープ34が巻き取られ、2段目の内筒23は上方に移動して1段目の内筒21内に収容されていく。このとき、内筒23の上部側に係止された支持用ロープ37の他端37Bが内筒23と共に上方に移動するので、支持用ロープ37によって支持された1段目の内筒21も上方に移動して外筒13内に収容されていく。かくして、図1および図9に示すように、チューブ25Aが下限位置まで移動して伸縮シリンダ25が最伸長状態に達することにより、伸縮アーム12は最縮小状態となる。
 一方、伸縮アーム12が最縮小状態と最伸長状態との間で伸縮するときには、伸縮シリンダ25を挟んで右側に配置された伸縮用固定シーブ31′、伸縮用可動シーブ33′、伸縮用ロープ34′、支持用固定シーブ35′、支持用ロープ37′、および押込み機構38′を構成する押込み用固定シーブ39′、押込み用可動シーブ41′、押込み用ロープ42′も上述したと同様に作動するものである。
 ここで、図13および図14に示すように、外筒13は、後面13A、前面13B、左側面13C、右側面13D、左傾斜面13E、右傾斜面13Fによって囲まれた六角形の断面形状を有し、押込み用可動シーブ41は、左傾斜面13Eと左,右方向で対面する位置に配置されている。このため、図13中に矢印Xで示すように、押込み用可動シーブ41を左傾斜面13Eに接近させて配置することができる。好ましくは、押込み用可動シーブ41は、左側面13Cと同等位置か、より内側の位置に設けることが望ましい。このように、押込み用可動シーブ41を外筒13の左傾斜面13Eに近づけることにより、外筒13の左側面13Cに対する押込み用可動シーブ41の左,右方向への張出しを抑えることができる上に、外筒13の後面13Aに対する押込み用可動シーブ41の前,後方向への張出しをも抑えることができる。
 一方、押込み用可動シーブ41をこのように配置した場合には、押込み用可動シーブ41との間で押込み用ロープ42が巻回される押込み用固定シーブ39の支持軸39Aと、外筒13の左側面13Cとがなす角度θを大きくすることができる。これにより、図14中に矢印Yで示すように、外筒13内に収容された押込み用固定シーブ39の一部を、内筒21から十分に離間させることができる。また、左側面13Cからの押込み用固定シーブ39の突出量を少なくすることができる。この結果、外筒13の左,右の側面13C,13D間の寸法を大きくすることなく、押込み用固定シーブ39と1段目の内筒21との間に両者が干渉しない充分な間隔を確保することができ、伸縮アーム12全体をコンパクトに構成することができる。このことは、伸縮シリンダ25を挟んで右側に配置された押込み用可動シーブ41′、押込み用ロープ42′についても同様である。
 43は内筒23の先端側(下端側)に設けられた取付アイ24に揺動可能に取付けられたクラムシェルバケットを示している。このクラムシェルバケット43は、バケットシリンダ44を伸縮させることにより開,閉し、土砂を掘削するものである。
 本実施の形態による深掘り掘削機1は上述の如き構成を有するもので、以下、深掘り掘削すべき地面100に対し、深掘り掘削機1を用いて縦坑101を掘削する作業について説明する。
 まず、図1に示すように、深掘り掘削機1は、伸縮シリンダ25を最伸長させて伸縮アーム12を最縮小状態とし、縦坑101を掘削すべき地面100に対して伸縮アーム12を垂直な姿勢に保持する。
 次に、図2に示すように、伸縮シリンダ25を縮小させることにより、伸縮アーム12を伸長状態とする。即ち、伸縮シリンダ25のチューブ25Aをシーブ取付具30と一緒に上方に移動させ、伸縮用可動シーブ33を伸縮用固定シーブ31に接近させる。これにより、伸縮用可動シーブ33の2枚の可動シーブ33A,33Bと、伸縮用固定シーブ31の2枚の固定シーブ31A,31Bとに巻回された伸縮用ロープ34が繰出される。この結果、2段目の内筒23が自重によって外筒13から下方に伸長すると共に、支持用ロープ37によって支持された1段目の内筒21も自重によって外筒13から下方に伸長する。
 このとき、シーブ取付具30に支持された押込み用可動シーブ41と押込み用固定シーブ39との間で押込み用ロープ42が巻き取られることにより、押込み用ロープ42は常に一定の張力を保つ。また、外筒13と2段目の内筒23との間で1段目の内筒21を支持する支持用ロープ37も常に一定の張力を保つ。
 この結果、押込み用ロープ42、支持用ロープ37の張力によって、外筒13から内筒21,23が伸長した状態を保持することができ、クラムシェルバケット43を縦坑101の底面102に押込むことができる。この状態で、バケットシリンダ44によってクラムシェルバケット43を開,閉させることにより、クラムシェルバケット43を用いて縦坑101を深く掘削することができ、クラムシェルバケット43によって大量の土砂を掬い取ることができる。
 クラムシェルバケット43によって土砂を掬い取った後には、伸縮シリンダ25を伸長させることにより、伸縮シリンダ25のチューブ25Aをシーブ取付具30と一緒に下方に移動させ、伸縮用可動シーブ33を伸縮用固定シーブ31から離間させる。
 これにより、伸縮用可動シーブ33の各可動シーブ33A,33Bと、伸縮用固定シーブ31の各固定シーブ31A,31Bとの間で伸縮用ロープ34が巻き取られ、内筒23は上方に移動して内筒21内に収容されていく。このとき、外筒13と内筒23との間を連結する支持用ロープ37の他端37Bが、内筒23と共に上方に移動することにより、支持用ロープ37によって支持された内筒21も上方に移動して外筒13内に収容されていく。この結果、伸縮アーム12は、再び図1に示す最縮小状態となる。
 次に、図1に示すように、伸縮シリンダ25が最伸長状態に達し、伸縮アーム12が最縮小状態となった後には、ブーム4の先端側を持上げてクラムシェルバケット43を縦坑101から抜出す。そして、下部走行体2を停止させたまま、上部旋回体3を所定の排土位置に向けて旋回させた後、この排土位置に、クラムシェルバケット43によって把持した土砂を排出する。
 ここで、本実施の形態に係る深掘り掘削機1によると、伸縮シリンダ25のロッド25Bの先端部25Cは、伸縮アーム12の外筒13に設けられたブラケット13Jにピン25Dを用いてピン結合されている。一方、伸縮用可動シーブ33および押込み用可動シーブ41を支持するシーブ取付具30は、自由端となった伸縮シリンダ25のチューブ25Aに取付けられている。従って、クラムシェルバケット43によって掘削した土砂を持上げるために、伸縮シリンダ25を伸長させると、重量物であるチューブ25Aが、シーブ取付具30と一緒に下方に移動する。
 これにより、伸縮用可動シーブ33と伸縮用固定シーブ31とに巻回された伸縮用ロープ34は、チューブ25Aとシーブ取付具30の重量による下向きの荷重を受ける。この結果、伸縮アーム12は、チューブ25Aとシーブ取付具30の重量を利用して内筒21,23の引上げ力を増大させることができ、伸縮シリンダ25による内筒21,23の引上げ動作を効率よく行うことができる。
 本実施の形態に係る深掘り掘削機1によると、伸縮用固定シーブ31は、2枚の固定シーブ31A,31Bによって構成され、伸縮用可動シーブ33は、2枚の可動シーブ33A,33Bによって構成されている。そして、伸縮用ロープ34は、2枚の固定シーブ31A,31Bと2枚の可動シーブ33A,33Bとに合計4回掛けまわされている。この結果、例えば従来技術のように、伸縮用ロープが、伸縮用固定シーブの4枚のシーブと、伸縮用可動シーブの4枚のシーブとの間に合計8回掛けまわされる構成に比較して、伸縮用ロープの寿命を延ばすことができる。
 しかも、伸縮用ロープ34は、伸縮用固定シーブ31を構成する2枚の固定シーブ31A,31Bと、伸縮用可動シーブ33を構成する2枚の可動シーブ33A,33Bとの間に4回掛けまわされている。この結果、伸縮用ロープ34を用いた内筒21,23の引上げ量を伸縮シリンダ25のストロークの4倍とすることができ、内筒21,23を効率良く引上げることができる。
 本実施の形態によると、伸縮シリンダ25のロッド25Bは、外筒13の上部側で、かつ伸縮用固定シーブ31よりも下側に固定されている。これにより、シーブ取付具30が取付けられた伸縮シリンダ25のチューブ25Aは、上,下方向に延びた外筒13のほぼ上半分の範囲で上,下方向に移動することができる。このため、例えば図1に示すように、縦坑101の掘削時に外筒13の下半分が地下にもぐった場合でも、上部旋回体3のキャブ3B内のオペレータは、伸縮シリンダ25の伸縮動作等を目視して確認することができる。この結果、深掘り掘削機1を用いた掘削作業の作業性や安全性を高めることができる。
 本実施の形態によると、2本のシーブ取付具ガイドレール28は、外筒13と平行して長さ方向に延びた状態で、外筒13の外側に固定されている。一方、シーブ取付具30は、伸縮シリンダ25の伸縮に応じ、シーブ取付具ガイドレール28に沿って外筒13の長さ方向に移動する構成となっている。
 従って、シーブ取付具30は、シーブ取付具ガイドレール28に案内されて常に一定の軌道上を移動することができる。この結果、伸縮用固定シーブ31と伸縮用可動シーブ33とに巻回された伸縮用ロープ34は、伸縮用可動シーブ33の移動に円滑に追従することができるので、外筒13に対する内筒21,23の伸縮動作の安定性を高めることができる。しかも、2本のシーブ取付具ガイドレール28は、外筒13に固定されているので、外筒13の強度をシーブ取付具ガイドレール28によって高めることができ、伸縮アーム12全体の信頼性を高めることができる。
 一方、シーブ取付具30が取付けられた伸縮シリンダ25のチューブ25Aは、シーブ取付具ガイドレール28に沿って一定の軌道上を移動することができる。この結果、伸縮シリンダ25の座屈や横荷重に対する強度を高めることができ、伸縮シリンダ25の信頼性を高めることができる。
 本実施の形態によると、一対のブームブラケット17は、上部旋回体3のキャブ3B側に位置する外筒13の後面13Aに設けられ、これら一対のブームブラケット17は、ブーム4の先端側に取付けられている。この上で、伸縮シリンダ25は、一対のブームブラケット17間に配置されている。
 これにより、伸縮シリンダ25のチューブ25Aに取付けられたシーブ取付具30、シーブ取付具30に支持された伸縮用可動シーブ33、伸縮用固定シーブ31と伸縮用可動シーブ33とに巻回された伸縮用ロープ34等は、上部旋回体3のキャブ3Bと対面した位置に配置することができる。この結果、キャブ3B内のオペレータは、伸縮シリンダ25等を目視しつつ、外筒13に対して内筒21,23を伸縮させることができ、この伸縮動作を的確に行うことができる。
 ブームブラケット17は、外筒13の後面13Aに設けられるので、伸縮シリンダ25、伸縮用固定シーブ31、シーブ取付具30、伸縮用可動シーブ33等は、外筒13の前面13Bに設ける必要がない。このため、縦坑101の掘削時にこれら伸縮シリンダ25等が障害物と接触して損傷することがなく、掘削作業の作業性を高めることができる。
 一方、図15に示すように、ブームブラケット17が外筒13の後面13Aに設けられているので、深掘り掘削機1を輸送姿勢にするために、外筒13の前面13Bを地面に置くことができる。これにより、格別な置台等を用いることなく、伸縮シリンダ25、シーブ取付具30、伸縮用固定シーブ31、伸縮用可動シーブ33等を、伸縮アーム12の重量が作用することがない上向きの姿勢に保持することができる。
 従って、深掘り掘削機1を輸送姿勢にした状態では、外筒13に取付けられた伸縮シリンダ25、伸縮用固定シーブ31、シーブ取付具30、伸縮用可動シーブ33等に対するメンテナンス作業を、地面に近い位置で行うことができるので、このメンテナンス作業の作業性を高めることができる。
 本実施の形態によると、角筒状のチューブガイド26を外筒13の後面13Aに設け、このチューブガイド26内に伸縮シリンダ25のチューブ25Aを移動(摺動)可能に収容している。これにより、自由端となった伸縮シリンダ25のチューブ25Aを、チューブガイド26によって外筒13の長さ方向に案内することができる。従って、チューブ25Aにシーブ取付具30が取付けられていても、このチューブ25Aをチューブガイド26に沿って円滑に移動させることができる。
 しかも、伸縮シリンダ25のチューブ25Aは、チューブガイド26に沿って一定の軌道上を移動することができるので、伸縮シリンダ25の座屈や横荷重に対する強度を高めることができる。また、チューブガイド26内にチューブ25Aを収容することにより、縦坑101の掘削作業による落石等からチューブ25Aを保護することができる。
 本実施の形態によると、外筒13は、六角形の断面形状を有する筒状に形成され、かつ外筒13は、後面13Aと左,右の側面13C,13Dとの間に左,右の傾斜面13E,13Fを設ける構成としている。これにより、外筒13に作用する荷重に対して座屈強度を高めることができ、外筒13の寿命を延ばすことができるので、伸縮アーム12全体の信頼性を高めることができる。
 しかも、伸縮用可動シーブ33は、外筒13の左側面13Cよりも外側に配置されているので、伸縮用可動シーブ33は、外筒13の左側面13Cと僅かな間隔をもって左,右方向で対面している。これにより、伸縮用可動シーブ33が、外筒13の後面13A側に大きく突出するのを抑えることができ、直径の大きな可動シーブ33A,33Bを有する伸縮用可動シーブ33を用いた場合でも、この伸縮用可動シーブ33の周囲を小型化することができる。この結果、直径の大きな可動シーブ33A,33Bを備えた伸縮用可動シーブ33を用いることにより、伸縮用ロープ34の寿命を延ばすことができる。なお、伸縮用可動シーブ33′は、外筒13の右側面13Dよりも外側に配置されることにより、上述したと同様の効果を得ることができる。
 このように、本実施の形態による深掘り掘削機1は、伸縮用ロープ34の寿命を延ばすことができる構造であるため、伸縮用ロープ34に作用する負荷を大きく設定することができる。この結果、伸縮用ロープ34が接続された2段目の内筒23によって大きな荷重を吊上げることができると共に、内筒23の先端側に取付けられるクラムシェルバケット43の容量を大きくすることができ、大量の土砂を掘削することによって掘削効率を高めることができる。
 さらに、本実施の形態に係る深掘り掘削機1によると、外筒13の下部側にシーブ取付け開口16,16′が設けられ、押込み用固定シーブ39,39′の一部は、シーブ取付け開口16,16′を通じて外筒13の内側に配置されている。これにより、押込み用固定シーブ39,39′の直径を大きく設定した場合でも、外筒13に対して押込み用固定シーブ39,39′をコンパクトに取付けることができる。この結果、直径の大きな押込み用固定シーブ39,39′を用いることにより、押込み用ロープ42,42′の寿命を延ばすことができる。
 しかも、押込み用固定シーブ39,39′は、外筒13の下部側に設けたシーブ取付け開口16,16′の位置に配置されるので、従来技術のように外筒の下端部に押込み用固定シーブを配置する必要がない。これにより、1段目の内筒21を外筒13内に収容した場合でも、内筒21の下端部に設けられた下フランジ板22は、押込み用固定シーブ39,39′に干渉することがない。従って、内筒21の下フランジ板22を、外筒13の下端部13H、即ち下フランジ板15の近傍まで接近させることができる。この結果、伸縮アーム12を最縮小させたときの全長を短縮することができ、例えば深掘り掘削機1を輸送するときにコンパクトな輸送姿勢とすることができる。
 なお、上述した実施の形態では、伸縮アーム12を構成する外筒13のうち、ブームブラケット17が取付けられる後面13A側に、伸縮シリンダ25、シーブ取付具ガイドレール28、シーブ取付具30、伸縮用固定シーブ31、伸縮用可動シーブ33等を配置する構成を例示している。しかし、本発明はこれに限るものではなく、例えば図16に示す変形例のように構成してもよい。即ち、外筒13の前面13B側に、伸縮シリンダ25、シーブ取付具ガイドレール28、シーブ取付具30、伸縮用固定シーブ31、伸縮用可動シーブ33等を配置する構成としてもよい。これにより、既存の伸縮アームに慣れたオペレータにとって、深掘り掘削機を操作するときの違和感がなく、その操作性を高めることができる。
 上述した実施の形態では、伸縮用固定シーブ31,31′、伸縮用可動シーブ33,33′、伸縮用ロープ34,34′、支持用固定シーブ35,35′、支持用ロープ37,37′、押込み用固定シーブ39,39′、押込み用可動シーブ41,41′、押込み用ロープ42,42′等の各部材を、外筒13に対し伸縮シリンダ25を挟んで左,右対称となるように2組設けた場合を例示している。しかし、本発明はこれに限らず、伸縮用固定シーブ31、伸縮用可動シーブ33、伸縮用ロープ34、支持用固定シーブ35、支持用ロープ37、押込み用固定シーブ39、押込み用可動シーブ41、押込み用ロープ42等の各部材を、外筒13の左,右方向の中央部に1組設ける構成としてもよい。
 さらに、上述した実施の形態では、シーブ取付具30を案内するシーブ取付具ガイドレール28を、長方形の断面形状を有する角筒体により形成した場合を例示している。しかし、本発明はこれに限らず、例えばL字型の断面形状を有する鋼材を用いてシーブ取付具ガイドレールを形成してもよい。
 2 下部走行体(車体)
 3 上部旋回体(車体)
 4 ブーム
 12 伸縮アーム
 13 外筒
 13A 後面
 13B 前面
 13C 左側面
 13D 右側面
 13E 左傾斜面
 13F 右傾斜面
 13G 上端部
 13H 下端部
 16 シーブ取付け開口
 17 ブームブラケット
 21 1段目の内筒
 23 2段目の内筒
 25 伸縮シリンダ
 25A チューブ
 25B ロッド
 26 チューブガイド
 28 シーブ取付具ガイドレール
 30 シーブ取付具
 31,31′ 伸縮用固定シーブ
 33,33′ 伸縮用可動シーブ
 34,34′ 伸縮用ロープ
 35,35′ 支持用固定シーブ
 38,38′ 押込み機構
 39,39′ 押込み用固定シーブ
 41,41′ 押込み用可動シーブ
 42,42′ 押込み用ロープ

Claims (9)

  1.  取付対象物のブーム(4)の先端側に上,下方向に延びるように設けられ外筒(13)および該外筒(13)の内側に長さ方向に伸縮可能に収容された複数段の内筒(21,23)を有する伸縮アーム(12)と、該伸縮アーム(12)を構成する前記外筒(13)の長さ方向に沿って配置された伸縮シリンダ(25)と、前記外筒(13)に固定して設けられた伸縮用固定シーブ(31,31′)と、前記伸縮シリンダ(25)に取付けられ前記伸縮用固定シーブ(31,31′)に対し接近または離間するように前記外筒(13)の長さ方向に移動するシーブ取付具(30)と、該シーブ取付具(30)に設けられた伸縮用可動シーブ(33,33′)と、一端側が前記外筒(13)に係止されると共に他端側が前記内筒(21,23)のうち最も内側となる内筒(23)に係止され、途中部位が前記伸縮用固定シーブ(31,31′)と伸縮用可動シーブ(33,33′)とに巻回された伸縮用ロープ(34,34′)とを備えてなる多段伸縮アーム装置において、
     前記伸縮シリンダ(25)は、チューブ(25A)と、一側が該チューブ(25A)内でピストンに固定され他側が前記チューブ(25A)から外部に突出したロッド(25B)とを有する油圧シリンダにより構成し、
     前記伸縮シリンダ(25)のロッド(25B)を上向きの状態で該ロッド(25B)の先端部を前記伸縮アーム(12)の前記外筒(13)に取付けると共に前記伸縮シリンダ(25)のチューブ(25A)を自由端とし、
     前記シーブ取付具(30)は前記伸縮シリンダ(25)のチューブ(25A)に取付ける構成としたことを特徴とする多段伸縮アーム装置。
  2.  前記伸縮シリンダ(25)のロッド(25B)の先端部は、前記外筒(13)の上部側に取付ける構成としてなる請求項1に記載の多段伸縮アーム装置。
  3.  前記外筒(13)の外側には、前記外筒(13)と平行して長さ方向に延び前記外筒(13)に取付けられたシーブ取付具ガイドレール(28)を設け、
     前記シーブ取付具(30)は、前記伸縮シリンダ(25)の伸縮に応じて前記シーブ取付具ガイドレール(28)に沿って移動する構成としてなる請求項1に記載の多段伸縮アーム装置。
  4.  前記外筒(13)の外側であって前記シーブ取付具(30)よりも下側部位には、左,右方向で間隔をもって対面し前記ブーム(4)の先端側に揺動可能に取付けられる一対のブームブラケット(17)を設け、
     前記伸縮シリンダ(25)のチューブ(25A)は、前記一対のブームブラケット(17)間に形成された隙間(17B)に配置する構成としてなる請求項1に記載の多段伸縮アーム装置。
  5.  前記外筒(13)の外側には、前記伸縮シリンダ(25)のチューブ(25A)を移動可能に収容し該チューブ(25A)を前記外筒(13)の長さ方向にガイドするチューブガイド(26)を設ける構成としてなる請求項1に記載の多段伸縮アーム装置。
  6.  前記外筒(13)は、少なくとも前記ブーム(4)の先端側に取付けられる後面(13A)と、該後面(13A)と前,後方向で対面する前面(13B)と、前記後面(13A)および前面(13B)を挟んで左,右方向で対面する左側面(13C)および右側面(13D)と、前記後面(13A)と左側面(13C)との間に斜めに傾斜して配置された左傾斜面(13E)と、前記後面(13A)と右側面(13D)との間に斜めに傾斜して配置された右傾斜面(13F)とを有する多角形の断面形状を有する角筒状に構成し、
     前記伸縮用可動シーブ(33,33′)は、前記外筒(13)を構成する左,右の側面(13C,13D)よりも左,右方向の外側に配置する構成としてなる請求項1に記載の多段伸縮アーム装置。
  7.  前記外筒(13)は、前記ブーム(4)の先端側に取付けられる後面(13A)と、該後面(13A)と前,後方向で対面する前面(13B)と、前記後面(13A)および前面(13B)を挟んで左,右方向で対面する左側面(13C)および右側面(13D)と、前記後面(13A)と左側面(13C)との間に斜めに傾斜して配置された左傾斜面(13E)と、前記後面(13A)と右側面(13D)との間に斜めに傾斜して配置された右傾斜面(13F)とにより六角形の断面形状を有する角筒状に構成してなる請求項1に記載の多段伸縮アーム装置。
  8.  前記外筒(13)と前記複数段の内筒(21,23)のうち最も外側に位置する1段目の内筒(21)との間には、前記伸縮シリンダ(25)によって前記1段目の内筒(21)を前記外筒(13)から伸長させたときに該1段目の内筒(21)を伸長方向に押込む押込み機構(38,38′)を設け、
     該押込み機構(38,38′)は、前記外筒(13)の下部側に位置して前記外筒(13)に設けられた押込み用固定シーブ(39,39′)と、
     前記伸縮用可動シーブ(33,33′)よりも下側位置で前記シーブ取付具(30)に設けられた押込み用可動シーブ(41,41′)と、
     一端側が前記外筒(13)に係止されると共に他端側が前記外筒(13)の内側を通って前記1段目の内筒(21)に係止され、途中部位が前記押込み用固定シーブ(39,39′)と前記押込み用可動シーブ(41,41′)とに巻回された押込み用ロープ(42,42′)とにより構成し、
     前記外筒(13)の下部側で前記押込み用固定シーブ(39,39′)が設けられる位置にはシーブ取付け開口(16,16′)を設け、
     前記押込み用固定シーブ(39,39′)の一部は、前記シーブ取付け開口(16,16′)を通じて前記外筒(13)の内側に配置する構成としてなる請求項1に記載の多段伸縮アーム装置。
  9.  自走可能な車体(2,3)と、該車体(2,3)に俯仰動可能に設けられたブーム(4)と、該ブーム(4)の先端側に設けられた多段伸縮アーム装置(11)とを備え、
     前記多段伸縮アーム装置(11)は、上,下方向に延びる外筒(13)および該外筒(13)の内側に長さ方向に伸縮可能に収容された複数段の内筒(21,23)を有する伸縮アーム(12)と、該伸縮アーム(12)を構成する前記外筒(13)の長さ方向に沿って配置された伸縮シリンダ(25)と、前記外筒(13)に固定して設けられた伸縮用固定シーブ(31,31′)と、前記伸縮シリンダ(25)に取付けられ前記伸縮用固定シーブ(31,31′)に対し接近または離間するように前記外筒(13)の長さ方向に移動するシーブ取付具(30)と、該シーブ取付具(30)に設けられた伸縮用可動シーブ(33,33′)と、一端側が前記外筒(13)に係止されると共に他端側が前記内筒(21,23)のうち最も内側となる内筒(23)に係止され、途中部位が前記伸縮用固定シーブ(31,31′)と伸縮用可動シーブ(33,33′)とに巻回された伸縮用ロープ(34,34′)とにより構成してなる深掘り掘削機において、
     前記伸縮シリンダ(25)は、チューブ(25A)と、一側が該チューブ(25A)内でピストンに固定され他側が前記チューブ(25A)から外部に突出したロッド(25B)とを有する油圧シリンダにより構成し、
     前記伸縮シリンダ(25)のロッド(25B)を上向きの状態で該ロッド(25B)の先端部を前記伸縮アーム(12)の前記外筒(13)に取付けると共に前記伸縮シリンダ(25)のチューブ(25A)を自由端とし、
     前記シーブ取付具(30)は前記伸縮シリンダ(25)のチューブ(25A)に取付ける構成としたことを特徴とする深掘り掘削機。
PCT/JP2013/074955 2012-10-26 2013-09-16 多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機 WO2014065040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380053952.3A CN104718328B (zh) 2012-10-26 2013-09-16 多级伸缩臂装置及具有多级伸缩臂装置的深挖挖掘机
JP2014543190A JP6026552B2 (ja) 2012-10-26 2013-09-16 多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機
IN2434DEN2015 IN2015DN02434A (ja) 2012-10-26 2013-09-16
SG11201503124UA SG11201503124UA (en) 2012-10-26 2013-09-16 Multistage telescopic arm device and deep digging excavator with the same
KR1020157009553A KR101651048B1 (ko) 2012-10-26 2013-09-16 다단 신축 아암 장치 및 다단 신축 아암 장치를 구비한 심굴 굴삭기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012237230 2012-10-26
JP2012-237230 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014065040A1 true WO2014065040A1 (ja) 2014-05-01

Family

ID=50544420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074955 WO2014065040A1 (ja) 2012-10-26 2013-09-16 多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機

Country Status (8)

Country Link
JP (1) JP6026552B2 (ja)
KR (1) KR101651048B1 (ja)
CN (1) CN104718328B (ja)
IN (1) IN2015DN02434A (ja)
MY (1) MY172348A (ja)
SG (1) SG11201503124UA (ja)
TW (1) TWI548797B (ja)
WO (1) WO2014065040A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594419A (zh) * 2014-12-05 2015-05-06 中交烟台环保疏浚有限公司 一种抓斗船挖掘危险爆炸物的施工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6324934B2 (ja) * 2015-08-31 2018-05-16 日立建機株式会社 散水アタッチメント、作業機械及び散水システム
CN105735727A (zh) * 2016-04-24 2016-07-06 羊丁 一种电力铁塔除冰机器人

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282131A (ja) * 1985-10-04 1987-04-15 Hitachi Constr Mach Co Ltd 建設機械の多段伸縮ア−ム
JPH07292706A (ja) * 1994-04-28 1995-11-07 Komatsu Ltd 建設機械の多段伸縮アーム
JPH11148144A (ja) * 1997-11-14 1999-06-02 Hitachi Constr Mach Co Ltd 建設機械の掘削装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561243U (ja) * 1992-01-28 1993-08-13 住友建機株式会社 多段伸縮アーム式掘削機の押付け機構
CN2767507Y (zh) * 2005-01-24 2006-03-29 萧守让 多功能挖掘机
CN201027318Y (zh) * 2006-11-22 2008-02-27 窦钦玉 伸缩臂挖掘机
CN200989343Y (zh) * 2006-12-08 2007-12-12 三一重工股份有限公司 用于伸缩机构的油缸组
CN201915824U (zh) * 2010-11-22 2011-08-03 萧守让 一种兼具地下连续墙施工功能的汽车旋挖钻机
CN203066130U (zh) * 2012-12-05 2013-07-17 山河智能装备股份有限公司 一种伸缩臂挖掘机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282131A (ja) * 1985-10-04 1987-04-15 Hitachi Constr Mach Co Ltd 建設機械の多段伸縮ア−ム
JPH07292706A (ja) * 1994-04-28 1995-11-07 Komatsu Ltd 建設機械の多段伸縮アーム
JPH11148144A (ja) * 1997-11-14 1999-06-02 Hitachi Constr Mach Co Ltd 建設機械の掘削装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594419A (zh) * 2014-12-05 2015-05-06 中交烟台环保疏浚有限公司 一种抓斗船挖掘危险爆炸物的施工方法
CN104594419B (zh) * 2014-12-05 2018-05-15 中交烟台环保疏浚有限公司 一种抓斗船挖掘危险爆炸物的施工方法

Also Published As

Publication number Publication date
TWI548797B (zh) 2016-09-11
KR20150053999A (ko) 2015-05-19
CN104718328B (zh) 2016-10-26
JPWO2014065040A1 (ja) 2016-09-08
TW201433676A (zh) 2014-09-01
IN2015DN02434A (ja) 2015-09-04
JP6026552B2 (ja) 2016-11-16
CN104718328A (zh) 2015-06-17
KR101651048B1 (ko) 2016-08-24
MY172348A (en) 2019-11-21
SG11201503124UA (en) 2015-06-29

Similar Documents

Publication Publication Date Title
JP5178923B2 (ja) 建設機械のエンジンフード
WO2014065041A1 (ja) 多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機
US9487145B2 (en) Handrail locking mechanism
US10697147B2 (en) Drilling machine
JP5873840B2 (ja) 多段アームの油圧装置および深掘り掘削機
JP6026552B2 (ja) 多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機
US20150291100A1 (en) Handrail locking mechanism
JP2010156123A (ja) 伸縮トラックフレーム
JP6147029B2 (ja) アースドリル
JP5816225B2 (ja) 多段伸縮アーム装置および多段伸縮アーム装置を備えた深掘り掘削機
JP5747518B2 (ja) マスト起伏用アダプタ、マスト起伏装置及びウィンチ取り外し方法
WO2008053779A1 (en) Boom and front attachment for working machine
CN108533174B (zh) 螺旋钻连接机构
JP6134299B2 (ja) 作業機械、カウンタウエイト装置、および、カウンタウエイト装置取付方法
JP3706330B2 (ja) 多段伸縮式アームおよび作業機
JP2019073879A (ja) 斜路開閉機構及びインバート桟橋
JP6294716B2 (ja) 掘削機械
JP2018080011A (ja) 移動式クレーン
JP7189512B2 (ja) 連結ピン挿入装置
JP5476744B2 (ja) 移動式クレーン
JP2004176390A (ja) 多段伸縮式アームおよび作業機
JP2004176388A (ja) 多段伸縮式アームの油圧シリンダ取付構造および多段伸縮式アーム作業機
JPH07115829B2 (ja) テレスコピツクア−ム装置
JPH04277225A (ja) 建設機械の中深度、大深度兼用伸縮アーム
JPH1161874A (ja) 建設機械の作業装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543190

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157009553

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201502468

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849785

Country of ref document: EP

Kind code of ref document: A1