WO2014061910A1 - 양자 암호키 분배 시스템에 있어서 차동 광위상변조 방법 및 장치 - Google Patents

양자 암호키 분배 시스템에 있어서 차동 광위상변조 방법 및 장치 Download PDF

Info

Publication number
WO2014061910A1
WO2014061910A1 PCT/KR2013/007507 KR2013007507W WO2014061910A1 WO 2014061910 A1 WO2014061910 A1 WO 2014061910A1 KR 2013007507 W KR2013007507 W KR 2013007507W WO 2014061910 A1 WO2014061910 A1 WO 2014061910A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
single photon
signal
optical
photon pulse
Prior art date
Application number
PCT/KR2013/007507
Other languages
English (en)
French (fr)
Inventor
조정식
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Priority to CN201380054457.4A priority Critical patent/CN104737474B/zh
Publication of WO2014061910A1 publication Critical patent/WO2014061910A1/ko
Priority to US14/691,133 priority patent/US9464937B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/24Key scheduling, i.e. generating round keys or sub-keys for block encryption

Definitions

  • This embodiment relates to an optical phase modulation method and apparatus. More specifically, the present invention relates to an optical phase modulation method and an optical phase modulation apparatus of a differential phase modulation method that can be applied to a phase modulation based quantum encryption key distribution system.
  • Quantum Key Distribution System transmits the cryptographic key information on the single photon to the receiver by adjusting the polarization or phase of the single photon.
  • the receiver extracts the encryption key information by applying a polarization receiver or an optical phase modulator.
  • Such single photon transmission is implemented based on optical communication technology, and a quantum cryptographic key distribution system for long-distance transmission mainly uses single mode optical fiber as a quantum channel.
  • the polarization characteristic is unstable and thus the transmission characteristic is not good. Therefore, the encryption key is distributed in a phase modulation manner rather than polarization modulation.
  • a time-division interference method is mainly used.
  • an asymmetric optical interferometer and an optical phase modulator are required.
  • An asymmetric optical interferometer has a structure in which two paths required for optical interference have different lengths.
  • a single photon input to an asymmetric optical interferometer is divided into two distributions whose presence probability distributions have different coordinates in the time domain.
  • An optical phase modulator modulates the phase of a single photon through one of its paths.
  • the asymmetric optical interferometer of the receiver divides the existence probability into four coordinates in the time domain.
  • the receiver also has an optical phase modulator to modulate the phase of a single photon. If the sum of the phase modulations applied by the transmitter and the receiver is 2n ⁇ (where n is an integer), the probability of existence of two superimposed single photons is constructively interfered, showing the maximum detection probability, and the sum of the phase modulations is (2n + 1). ⁇ exhibits minimal detection probability due to destructive interference. Therefore, optical interference performance affects the overall performance of the quantum cryptographic key transmission system.
  • phase compensation control may be performed as a complementary measure.
  • Korean Patent Laid-Open No. 10-2011-0071803 is shown outside the optical interferometer as shown in FIG.
  • the configuration of the optical interferometer is simplified, and a phase modulation method and apparatus are proposed that can alleviate problems such as the extension of the optical path induced by the optical phase modulator, an increase in the optical interferometer instability, and an increase in insertion loss. It was.
  • a phase modulation based quantum cryptographic key distribution system in which an optical phase modulator is disposed outside an optical interferometer to improve the stability of the optical interferometer, the differential phase modulation is applied to two time-division pulses.
  • the main purpose is to reduce the required operating range of the optical phase modulator driver.
  • the optical interferometer receives a single photon from a light source and provides two paths having a predetermined path difference for the single photon to pass through and a phase of the single photon passing through the optical interferometer. And an optical phase modulator for differentially modulating, wherein a single photon having passed through the optical interferometer has an existence probability distribution distributed in two time domains. to provide.
  • the optical phase modulator is configured such that the phase difference of the single photon when passing through the shorter path of the two paths and when passing the longer path of the two paths has a predetermined value (hereinafter referred to as ' ⁇ A '). Can be.
  • the optical phase modulator differentially modulates the phase of the single photon, modulates the phase when passing through one path by - ⁇ A / 2, and modifies the phase when passing through the other path. You can modulate A / 2.
  • ⁇ A may be a predetermined value corresponding to bit information composed of random numbers and basis information composed of random numbers.
  • ⁇ A may be any one of ⁇ / 4, - ⁇ / 4, 3 ⁇ / 4 or -3 ⁇ / 4.
  • the transmitter may further include a phase modulated signal generator for generating a differential phase modulated signal corresponding to a bit signal composed of random numbers and a base signal composed of random numbers as a signal for driving the optical phase modulator.
  • a phase modulated signal generator for generating a differential phase modulated signal corresponding to a bit signal composed of random numbers and a base signal composed of random numbers as a signal for driving the optical phase modulator.
  • the differential phase modulation signal may be any one of a signal in the form of inverting from a high signal to a low signal or a signal in the form of inverting from a low signal to a high signal for one period.
  • the apparatus may further include a signal converter for performing signal conversion with ⁇ 0, 1 ⁇ , ⁇ 1, 0 ⁇ , and ⁇ 1, 1 ⁇ .
  • a differential phase modulated single photon is input from a transmitter of a quantum cryptographic key distribution system and connected to an optical phase modulator and a phase changer for temporally differential phase modulating the input single photon. And an optical interferometer for providing two paths having the same path difference as the transmitting device for the single photon to pass through, wherein the single photon transmitted from the transmitting device is distributed in two time domains divided in time.
  • the present invention provides a receiver of a quantum cryptographic key distribution system, characterized in that it has an existence probability distribution (hereinafter, referred to as a "time division existence probability distribution").
  • the optical interferometer may further divide the existence probability distribution of the single photon transmitted from the optical phase modulator at the same time interval as the time division existence probability distribution.
  • a single photon passing through the optical interferometer may have a distribution of probability of existence distributed in three time domains.
  • the optical phase modulator has a predetermined value (hereinafter referred to as ⁇ B ') when the phase difference of the single photon when passing through the shorter path of the two paths and when passing the longer path of the two paths. You can have it.
  • the optical phase modulator modulates the phase when passing through one path by - ⁇ B / 2 and differentially modulates the phase when passing through the other path in differentially modulating the phase of the single photon. It can modulate by ⁇ B / 2.
  • ⁇ B may be a predetermined value corresponding to the basis information composed of random numbers.
  • ⁇ B may be any one of ⁇ / 4 and - ⁇ / 4.
  • the receiver may further include a phase modulated signal generator for generating a differential phase modulated signal corresponding to a base signal composed of random numbers as a signal for driving the optical phase modulator.
  • the differential phase modulation signal may be any one of a signal in the form of inverting from a high signal to a low signal or a signal in the form of inverting from a low signal to a high signal for one period.
  • the process of receiving a single photon from a light source, by dividing the input single photon path into two paths having a predetermined path difference, the probability of existence of the single photon is divided in time
  • a time division process for distributing the data in two time domains, an optical phase modulation process for temporally differentially modulating the phase of the time-divided single photon, and transmitting the two differentially modulated single photons to a receiver through a quantum channel Provided is a transmission method of a quantum cryptographic key distribution system.
  • the present invention provides a method for receiving a quantum cryptographic key distribution system comprising an optical interference process for superposing and interfering with each other.
  • the operation ranges of the optical phase modulator and the optical phase modulator actuator used in the optical phase modulation-based quantum cryptographic key distribution system can be reduced by half to reduce the required performance specifications of the device or circuit. Can reduce the malfunction caused by the deformation of the device characteristics. In addition, it is possible to effectively generate an electrical signal for differential phase modulation.
  • FIG. 1 is a diagram schematically illustrating a conventional phase modulation based quantum cryptographic key distribution system.
  • FIG. 2 is a diagram illustrating a structure of a quantum cryptographic key distribution system in which an optical phase modulator is disposed outside an interferometer, and a phase change of pulses for each step.
  • FIG. 3 is a diagram illustrating a combination of phase modulation amounts of a transmitter and a receiver of FIG. 2.
  • FIG. 4 is a diagram illustrating a phase modulated signal required by a transmitter and a receiver of FIG. 2 to modulate the amount of phase modulation shown in FIG.
  • FIG. 5 is a diagram showing another combination of phase modulation amounts of a transmitter and a receiver applicable to the BB84 protocol.
  • FIG. 6 is a diagram illustrating phase modulation signals required by the transmitter and receiver of FIG. 2 to modulate the amount of phase modulation shown in FIG. 5.
  • FIG. 7 is a diagram illustrating a configuration of a quantum cryptographic key distribution system using a differential phase modulation method and a phase change of pulses for each step.
  • FIG. 8 is a diagram illustrating a phase modulation signal input to an optical phase modulator for differential phase modulation.
  • FIG. 9 is a diagram illustrating conversion of a ⁇ bit, basis ⁇ combination for generating a phase modulated signal.
  • FIG. 10 is a diagram schematically illustrating a structure of a phase modulated signal generator including a signal conversion function of FIG. 9.
  • the phase modulation amount of the transmitter and receiver proposed in Publication 1 is changed, while the phase modulation signal of half the size of the conventional method is applied.
  • FIG. 2 is a diagram illustrating a structure of a quantum cryptographic key distribution system in which an optical phase modulator is disposed outside an interferometer, and a phase change of pulses for each step.
  • an optical pulse including a single photon that is, a single photon pulse, is incident from the light source 210 into the optical interferometer 220.
  • the luminous flux emitted from the light source may be a laser beam with a very small amount of light including a very small number of photons, but will be described based on a single photon pulse.
  • FIG. 2 a probability distribution curve showing a probability of existence of a single photon pulse over time in each step is illustrated, and a relative phase of a single photon pulse corresponding to each region divided into pulse shapes in the probability distribution curve is described.
  • the relative phase is determined based on the phase of the single photon pulse incident on the optical interferometer 220 from the light source 210. For example, from the probability distribution curve shown at the rear end of the transmission-side optical interferometer 220, the single photon pulse passing through the optical interferometer 220 has an existence probability distribution along the probability distribution curve divided into two pulse forms. It can be seen that the phases of the single photon pulses corresponding to the existence probability of the pulse shape are changed by ⁇ / 2, respectively.
  • the optical interferometer 220 provides two paths having a predetermined path difference through which an incident single photon pulse can pass, and may be implemented as an optical fiber-based or optical system-based Mahzander optical interferometer or a Michelson optical interferometer. . Due to the path difference between the two paths, the existence probability distribution over time of the single photon pulse passing through the optical interferometer 220 follows a probability distribution curve divided into two pulse forms on the time axis. The reason why the phase of the single photon pulse passed through the optical interferometer 220 is changed by? / 2 is due to the optical coupler inside the optical interferometer 220. That is, the 2x2 optical coupler included in the optical system based optical interferometer has no phase change in the case of parallel input / output, but has a phase change of ⁇ / 2 in the case of crossing input / output.
  • the optical phase modulator 230 selectively modulates the phase of a single photon pulse passing through one specific path among two paths (short path and long path) provided by the optical interferometer 220. Since a single photon pulse incident on the optical phase modulator 230 passes through which of the two paths provided by the optical interferometer 220 can be distinguished according to the time to reach the optical phase modulator 230, for example, By performing phase modulation only during the time that the single photon pulse passed through can reach the optical phase modulator 230, it selectively phase modulates only the single photon pulse passing through the short path.
  • the optical phase modulator 230 of the single photon pulse passing only during the time corresponding to any one of the two pulse-shaped distribution curve of the time-divided existence probability distribution of the single photon pulse passed through the optical interferometer 220 Modulate the phase.
  • the phase modulation amount ⁇ A of the optical phase modulator 230 is determined according to a combination of randomly generated bits and basis information, and will be described with reference to FIG. 3.
  • the single photon pulse passing through the transmitting side optical phase modulator 230 is transmitted through the optical fiber-based quantum channel 240 to reach the receiving side optical phase modulator 250.
  • the receiving side optical phase modulator 250 performs a single photon pulse passing for a time corresponding to the other unmodulated phase in the transmitting side optical phase modulator 230 among two pulse-shaped distribution curves of time division existence probability distribution. Modulate the phase. For example, when the transmitting side modulates the phase of a single photon pulse passing through a short path, the receiving side phase modulator 250 modulates the phase of the single photon pulse passing through the long path.
  • the phase modulation amount ⁇ B of the receiving side optical phase modulator 250 is determined according to the randomly generated basis information, which will be described with reference to FIG. 3.
  • the phase is modulated by ⁇ A by the transmitter-side optical phase modulator 230
  • the phase is modulated by ⁇ B by the receiving optical phase modulator 250.
  • the receiving side optical interferometer 260 provides two paths through which a single photon pulse through the optical phase modulator 250 can pass, and the two paths provided have the same path difference as the transmitting side optical interferometer 220. .
  • the receiving side optical interferometer 260 may also be implemented as an optical fiber based Mahzander optical interferometer, an optical fiber based Michelson optical interferometer, or the like.
  • the receiving optical interferometer 260 again time-divides the existence probability distribution over time of a single photon pulse divided into two parts on the time axis to have a probability distribution curve divided into four parts on the time axis.
  • the path difference between the transmitting and receiving optical interferometers 220 and 260 is the same, two adjacent parts of the four divided parts of the probability distribution curve overlap each other, and an interference phenomenon occurs.
  • the existence probability distribution of three pulses is obtained.
  • the two overlapping probabilities cause constructive or destructive interference depending on the relative phase difference.
  • the sum of the amount of phase modulation applied by the transmitting side and the receiving side is 2n ⁇ (where n is an integer)
  • the probability of existence of the superimposed single photon pulses is constructively interfered, showing the maximum detection probability
  • the sum of the phase modulation amounts is If (2n + 1) ⁇ , destructive interference results in the minimum detection probability.
  • the time intervals corresponding to the two uninterrupted probability distributions always show a constant detection probability and therefore are not considered because no information can be transmitted.
  • two single photon detectors (SPDs 270 and 280) are operated in gated Geiger mode, thereby interfering with the center of the signals from the two outputs of the receiving optical interferometer 260. Selectively detect only signals.
  • one side shows the maximum intensity complementarily and the other side shows the minimum intensity.
  • the receiving side interprets the two detection signals complementarily to estimate the bit signal transmitted from the transmitting side.
  • FIG. 3 is a diagram illustrating a combination of phase modulation amounts of a transmitter and a receiver of FIG. 2.
  • the transmitter allocates four phase modulation amounts (0, ⁇ / 2, ⁇ , 3 ⁇ / 2) to each of four randomly generated ⁇ bit, basis ⁇ combinations, and the receiver randomly.
  • the transmitter-side optical phase modulator 230 modulates the phase information according to four phase modulation amounts by combining bit information and basis information. That is, a single photon pulse having phase values of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 may be generated similarly to the case of applying a quadrature phase shift keying (QPSK) method used in a conventional communication technology.
  • the receiving optical phase modulator 250 modulates the phase according to two randomly generated basis information. In this case, the receiving side optical phase modulator 250 may apply a phase change of 0 or ⁇ / 2 or a phase change of ⁇ or 3 ⁇ / 2. In general, phase modulation is applied to 0 or ⁇ / 2 for the convenience of driving the receiving side optical phase modulator 250 to give basis information orthogonal to each other.
  • a single photon pulse can be detected with a maximum or minimum probability at the receiving side only when the basis information of the transmitting side and the receiving side is matched.
  • a question mark ('?') Means a case in which a single photon pulse is detected at a probability that the single single photon detector has neither a minimum nor a maximum because a randomly generated basis information of a transmitting side and a receiving side does not match.
  • FIG. 4 is a diagram illustrating a phase modulated signal required by a transmitter and a receiver of FIG. 2 to modulate the amount of phase modulation shown in FIG.
  • the phase modulated signal is shown based on the voltage V ⁇ necessary for the optical phase modulator to induce a phase change of half wavelength ( ⁇ ). Since the transmitter uses a phase modulation amount of ⁇ 0, ⁇ / 2, ⁇ , 3 ⁇ / 2 ⁇ to distinguish a combination of bit information and basis information, the maximum amount of the phase modulation signal input to the optical phase modulator 230 at the transmitter is used.
  • V pp Peak to Peak Voltage
  • V pp Peak to Peak Voltage
  • a conventional optical phase modulator has a V pi value of 3 V to 5 V
  • the maximum V pp of the phase modulated signal required by the transmitter is 4.5 V to 7.5 V.
  • FIG. 5 is a diagram showing another combination of phase modulation amounts of a transmitter and a receiver applicable to the BB84 protocol.
  • phase modulation amount shown in FIG. 5 as in FIG. 3, four phase modulation amounts ⁇ A are allocated to the transmitting side and two phase modulation amounts ⁇ B are allocated to the receiving side, but the phase modulation amount shown in FIG. They are shifted by - ⁇ / 4.
  • the receiver may apply a phase modulation amount of (3 ⁇ / 4, -3 ⁇ / 4) instead of a phase modulation amount ( ⁇ / 4, - ⁇ / 4), but it may be obtained as a phase modulation signal having a relatively low V PP value. It is preferable to apply a phase modulation amount of ( ⁇ / 4, - ⁇ / 4).
  • the receiver single photon detectors 270 and 280 may detect a single photon with a maximum or minimum probability only when the basis information of the transmitter and the receiver is identical.
  • each phase modulation amount is equal to the same value as shown in FIG. Changes work the same way.
  • FIG. 6 is a diagram illustrating phase modulation signals required by the transmitter and receiver of FIG. 2 to modulate the amount of phase modulation shown in FIG. 5.
  • the transmitting-side optical phase modulator 230 is -V to obtain the phase modulation amount shown in FIG.
  • a phase modulated signal having V PP of ⁇ / 4, + V ⁇ / 4, -3V ⁇ / 4, and + 3V ⁇ / 4 is required. Therefore, the transmitter-side optical phase modulator 230 operates in a maximum ⁇ 3 / 4V pi range, and its driving range corresponds to 1.5 times V pi . This is the same result as in FIG.
  • the present invention In order to reduce the driving range of the optical phase modulator, the present invention, unlike the selective phase modulation of FIG. 2, modulates the phase differentially with respect to the time-division single photon pulse. That is, unlike the phase modulation method of FIG. 2, which selectively modulates only a phase of a single photon pulse passing through one specific path among two paths provided by the transmitter-side optical interferometer 220, the present invention passes through each path. The phase of one single photon pulse is modulated differentially.
  • FIG. 7 is a diagram illustrating a configuration of a quantum cryptographic key distribution system using a differential phase modulation method and a phase change of pulses for each step.
  • Transmitter-side optical phase modulator 730 differentially modulates a single photon pulse having a time division existence probability distribution. That is, the optical phase modulator 730 modulates the phase of a single photon pulse input for a time corresponding to any one of two pulse-shaped probability distribution curves of time-divided existence probability distribution by - ⁇ A / 2, while the other The phase of a single photon pulse input for one corresponding time period is modulated differentially by + ⁇ A / 2. In other words, the phase of a single photon pulse when passing through one path provided by the transmitting optical interferometer 720 is modulated by - ⁇ A / 2 and the phase of the single photon pulse when passing through the other path.
  • phase modulation amount ( ⁇ ⁇ A / 2) of the optical phase modulator 730 is determined according to a combination 731 of randomly generated bits and basis information, as shown in FIG.
  • Receive-side optical phase modulator 750 also differentially modulates a single photon pulse having a time division existence probability distribution. That is, the receiving side optical phase modulator 750 sets the phase of the single photon pulse whose phase is modulated by + ⁇ A / 2 in the transmitting side optical phase modulator 730 by - ⁇ B / 2, and the transmitting side optical phase modulator 730. ) Differentially modulates the phase of a single photon pulse modulated by + ⁇ A / 2 by - ⁇ B / 2. The amount of phase modulation ( ⁇ ⁇ B / 2) of the receiving optical phase modulator 750 is determined according to the randomly generated basis information 751, which is shown in FIG.
  • the transmit / receive optical phase modulators 730 and 750 simultaneously perform phase modulation of a single photon pulse having a time division existence probability distribution, thereby simultaneously shifting the phases of the two photon pulses to opposite values. Modulate. This means that you can double the phase difference between two single-photon pulses time-divided in one modulation.
  • FIG. 8 is a diagram illustrating a phase modulation signal input to an optical phase modulator for differential phase modulation.
  • phase modulated signal inverted from a high signal to a low level signal and a phase modulated signal inverted from a low signal to a high signal within one period are included. need.
  • an appropriate time delay should be generated so that the inversion part coincides with the midpoint of two time-division pulse signals.
  • phase modulation since both the high signal and the low signal are contained within one period of the phase modulation signal, when the high signal is applied to one of the time-divisionally divided photon pulses, the low signal is automatically applied to the other pulse. Differential phase modulation can be performed.
  • Table 3 is a table summarizing the phase modulation amount and the phase input voltage of the optical phase modulator 730 of the transmitting side according to the number of bits and key information. Since one signal reversal occurs within a period, the phase modulation amount is summarized by dividing it into the first half and the second half.
  • the differential phase modulation method can alleviate the burden or performance specifications of the optical phase modulators 730 and 750 and the optical phase modulator driver in half.
  • the transmission side phase modulation signal has a number of four cases.
  • bits and base signals are generated by using a random signal generator, and thus, outputs are two-stage digital signals that can be represented by ⁇ 1, 0 ⁇ or ⁇ High, Low ⁇ .
  • signal synthesis must be performed.
  • 1 may be represented by + V and 0 may be represented by -V.
  • the ⁇ bit, base ⁇ combination is ⁇ 0, 0 ⁇ , ⁇ 0, 1 ⁇ , ⁇ 1, 0 ⁇ , ⁇ 1, 1 ⁇
  • the signal when generating a phase modulated signal for the bit and the base signal of the transmitter, the signal is converted as shown in FIG. 9.
  • FIG. 9 is a diagram illustrating conversion of a ⁇ bit, basis ⁇ combination for generating a phase modulated signal.
  • a ⁇ bit, basis ⁇ signal combination generated using a random number generator is ⁇ 0, 0 ⁇ , ⁇ 0, 1 ⁇ , ⁇ 1, 0 ⁇
  • a signal converter is used to convert a combination of ⁇ 0, 1 ⁇ , ⁇ 1, 0 ⁇ , ⁇ 1, 1 ⁇ , and ⁇ 0, 0 ⁇ to generate a phase modulated signal.
  • FIG. 10 is a diagram schematically illustrating a structure of a phase modulated signal generator including a signal conversion function of FIG. 9.
  • a randomly generated bit signal and a base signal are converted into a signal for differential phase modulation through a signal converter 1020, and a differential signal generator 1030 corresponding to the converted bit signal and the base signal.
  • the differential signal generated by) is finally input to the optical phase modulator 730 through the signal synthesizer and the signal amplifier 1040.
  • Bits and base signals generated using the random number generators 1010 and 1011 are stored in a memory (not shown) for base comparison and final key generation, but signals generated using the signal converter 1020 are used only for phase modulation. It does not need to be stored separately.
  • differential phase modulation and phase modulation signal generation methods described above are illustrated based on the BB84 protocol, but are applicable to the SARG04 protocol (Scarani-Acin-Ribordy-Gisin Protocol) having the same physical structure as the BB84 protocol.
  • SARG04 protocol Carani-Acin-Ribordy-Gisin Protocol
  • optical interferometer 270 single photon detector
  • optical interferometer 730 quantum channel
  • optical phase modulator 760 optical interferometer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

양자 암호키 분배 시스템에 있어서 차동 광위상변조 방법 및 장치를 개시한다. 본 실시예의 일 측면에 의하면, 두 경로의 길이가 다른 비대칭 광간섭계의 외부에 광위상변조기를 배치하는 양자 암호키 분배 시스템에서, 송신부 및 수신부 위상 변조 과정에서 시분할된 두 단일 광자를 서로 반대의 값으로 동시에 변조하는 차동변조방식을 통해, 종래의 방법에 비해 위상 변조기 및 위상변조기구동기의 구동 범위를 반으로 낮출 수 있는 방법 및 장치를 제공한다

Description

양자 암호키 분배 시스템에 있어서 차동 광위상변조 방법 및 장치
본 실시예는 광위상변조 방법 및 장치에 관한 것이다. 더욱 상세하게는, 위상변조 기반의 양자 암호키 분배 시스템에 적용할 수 있는 차동 위상변조 방식의 광위상변조 방법 및 광위상변조 장치에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
양자 암호키 분배 시스템(Quantum Key Distribution System)은 단일 광자의 편광 또는 위상을 조절하는 방식으로 단일 광자에 암호 키 정보를 실어 수신자에게 전송한다. 수신자는 편광 수신기 또는 광위상변조기(Optical Phase Modulator) 등을 적용하여 암호 키 정보를 추출한다. 이러한 단일 광자 전송은 광통신 기술을 기반으로 구현되며, 장거리 전송을 목적으로 하는 양자 암호키 분배 시스템은 주로 단일모드 광섬유(Single Mode Optical Fiber)를 양자 채널(Quantum Channel)로 사용한다. 단일 모드 광섬유에 편광 변조된 단일 광자를 전송하면 편광 특성이 불안정하여 전송 특성이 좋지 못하므로, 편광 변조보다는 위상변조 방식으로 암호 키를 분배한다.
위상변조 기반 양자 암호키 분배 시스템에서는 시분할 광간섭(Time-division Interference) 방식을 주로 이용한다. 시분할 광간섭을 위해서는 비대칭 광간섭계(Asymmetric Optical Interferometer), 광위상변조기 등이 필요하다. 비대칭 광간섭계는 광간섭에 필요한 두 경로의 길이가 서로 다른 구조를 가진다. 비대칭 광간섭계에 입력된 단일 광자는 그 존재확률 분포가 시간 영역에서 서로 다른 좌표를 갖는 두 개의 분포로 분할된다. 광위상변조기는 그 중 한 경로를 통과하는 단일 광자의 위상을 변조한다. 수신부의 비대칭 광간섭계는 상기 존재확률을 시간 영역에서 네 개의 좌표로 분할한다. 만약 송신부와 수신부 비대칭 광간섭계의 경로차가 서로 같다면 네 개의 단일 광자 존재확률 중 인접한 두 개는 서로 중첩하여 간섭 현상이 발생한다. 수신부에도 광위상변조기가 있어 단일 광자의 위상을 변조한다. 송신부와 수신부에서 가한 위상변조량의 합이 2nπ(여기서, n은 정수)이면 중첩한 두 단일 광자의 존재확률은 보강 간섭하여 최대의 검출 확률을 보이고, 위상변조량의 합이 (2n+1)π이면 상쇄 간섭하여 최소의 검출 확률을 보인다. 따라서, 광간섭 성능은 양자 암호키 전송 시스템의 전체 성능에 영향을 준다.
우수한 광간섭 성능을 위해서는 광간섭계의 편광 및 위상 특성에 대한 안정성이 확보되어야 한다. 수신부 광간섭계에서 간섭하는 두 단일 광자는 편광이 일치해야 하며, 광위상변조기에 의해 추가된 위상변조값을 제외한 전체 광경로에 의한 위상은 일정한 값을 유지해야 한다. 이를 위해서는 광간섭계의 정교한 구성이 필수적이며 보완책으로 위상 보상 제어를 수행하기도 한다.
종래의 위상변조 기반 양자암호 시스템에서 광간섭계의 경로 내부에 광위상변조기를 배치하여 발생하는 광간섭계의 불안정성 문제를 해결하기 위해 한국 특허공개공보 10-2011-0071803호는 도 1과 같이 광간섭계 외부에 광위상변조기를 배치함으로써, 광간섭계 구성을 단순화하는 한편, 광위상변조기가 유발하는 광경로의 연장, 광간섭계 불안정성 상승, 삽입 손실 상승 등의 문제를 완화할 수 있는 위상변조 방법 및 장치를 제안하였다.
본 실시예는, 광위상변조기를 광간섭계의 외부에 배치하여 광간섭계의 안정성을 향상시킨 위상변조 기반의 양자 암호키 분배 시스템에 있어서, 시분할된 두 펄스에 차동위상변조를 적용하여 광위상변조기 및 광위상변조기 구동기의 필요동작 범위를 줄이는 데 주된 목적이 있다.
본 실시예의 일 측면에 의하면, 광원으로부터 단일 광자를 입력받아, 상기 단일 광자가 통과하기 위한 소정의 경로차를 가진 2개의 경로를 제공하는 광간섭계 및 상기 광간섭계를 통과한 단일 광자의 위상을 시간적으로 차동 변조시키기 위한 광위상변조기를 포함하되, 상기 광간섭계를 통과한 단일 광자는 시간적으로 분할된 2개의 시간영역에 분포하는 존재확률분포를 갖는 것을 특징으로 하는 양자 암호키 분배 시스템의 송신장치를 제공한다.
상기 광위상변조기는 상기 2개의 경로 중 짧은 경로를 통과하는 경우와 상기 2개의 경로 중 긴 경로를 통과하는 경우의 상기 단일 광자의 위상차가 소정의 값(이하 'φA'라고 칭함)을 갖도록 할 수 있다.
또한, 상기 광위상변조기는 상기 단일 광자의 위상을 차동으로 변조하되, 어느 하나의 경로를 통과하는 경우의 위상을 -φA/2만큼 변조하고, 다른 하나의 경로를 통과하는 경우의 위상을 φA/2만큼 변조할 수 있다.
또한, 상기 φA는 난수로 구성된 비트(Bit) 정보 및 난수로 구성된 기저(Basis) 정보에 대응하여 기 결정된 값일 수 있다.
또한, 상기 φA는 π/4, -π/4, 3π/4 또는 -3π/4 중 어느 하나의 값일 수 있다.
또한, 상기 송신장치는 상기 광위상변조기를 구동하기 위한 신호로서, 난수로 구성된 비트 신호 및 난수로 구성된 기저 신호에 대응되는 차동 위상변조신호를 생성하는 위상변조신호생성기를 더 포함할 수 있다.
또한, 상기 차동 위상변조신호는 1 주기 동안 고신호에서 저신호로 반전하는 형태의 신호 또는 저신호에서 고신호로 반전하는 형태의 신호 중 어느 하나의 신호일 수 있다.
더불어, 상기 차동 위상변조신호를 생성하기 위해 난수로 구성된 비트 및 기저 신호의 조합 {0, 0}, {0, 1}, {1, 0}, {1, 1}을 {0, 0}, {0, 1}, {1, 0}, {1, 1} 로 신호변환을 수행하는 신호변환기를 더 포함할 수 있다.
본 실시예의 다른 측면에 의하면, 양자 암호키 분배 시스템의 송신장치로부터 차동 위상 변조된 단일 광자를 입력받아, 입력된 상기 단일 광자를 시간적으로 차동 위상변조시키기 위한 광위상변조기 및 상기 광위상변조기에 연결되어, 상기 단일 광자가 통과하기 위한 상기 송신장치와 동일한 경로차를 가진 2개의 경로를 제공하는 광간섭계를 포함하되, 상기 송신장치로부터 전송된 상기 단일 광자는 시간적으로 분할된 2개의 시간영역에 분포하는 존재확률분포(이하 '시분할 존재확률분포'라고 칭함)를 갖는 것을 특징으로 하는 양자 암호키 분배 시스템의 수신장치를 제공한다.
상기 광간섭계는 상기 광위상변조기로부터 전달된 상기 단일 광자의 존재확률분포를 상기 시분할 존재확률분포와 동일한 시간간격으로 다시 시간적으로 분할할 수 있다.
또한, 상기 광간섭계를 통과한 단일 광자는 시간적으로 분할된 3개의 시간영역에 분포하는 존재확률분포를 가질 수 있다.
또한, 상기 광위상변조기는 상기 2개의 경로 중 짧은 경로를 통과하는 경우와 상기 2개의 경로 중 긴 경로를 통과하는 경우의 상기 단일 광자의 위상차가 소정의 값(이하 'φB'라고 칭함)을 갖도록 할 수 있다.
또한, 상기 광위상변조기는 상기 단일 광자의 위상을 차동으로 변조함에 있어서, 어느 하나의 경로를 통과하는 경우의 위상을 -φB/2만큼 변조하고, 다른 하나의 경로를 통과하는 경우의 위상을 φB/2만큼 변조할 수 있다.
또한, 상기 φB는 난수로 구성된 기저 정보에 대응하여 기 결정된 값일 수 있다.
또한, 상기 φB는 π/4, -π/4 중 어느 하나의 값일 수 있다.
또한, 상기 수신장치는 상기 광위상변조기를 구동하기 위한 신호로서, 난수로 구성된 기저 신호에 대응되는 차동 위상변조신호를 생성하는 위상변조신호생성기를 더 포함할 수 있다.
더불어, 상기 차동 위상변조신호는 1 주기 동안 고신호에서 저신호로 반전하는 형태의 신호 또는 저신호에서 고신호로 반전하는 형태의 신호 중 어느 하나의 신호일 수 있다.
본 실시예의 또다른 측면에 의하면, 광원으로부터 단일 광자를 입력받는 과정, 입력된 상기 단일 광자의 경로를 소정의 경로차를 가진 2개의 경로로 분할함으로써, 상기 단일 광자의 존재확률이 시간적으로 분할된 2개의 시간영역에 분포하도록 하는 시분할 과정, 상기 시분할된 단일 광자의 위상을 시간적으로 차동 변조하는 광위상변조 과정 및 차동 변조된 상기 2개의 단일 광자를 양자 채널을 통해 수신장치에 전송하는 과정을 포함하는 양자 암호키 분배 시스템의 송신방법을 제공한다.
본 실시예의 또다른 측면에 의하면, 양자 채널을 통해 송신장치로부터 시분할된 존재확률분포를 갖는 차동 위상 변조된 단일 광자를 입력받는 과정, 입력된 상기 단일 광자를 시간적으로 차동 위상변조시키는 광위상변조 과정 및 상기 광위상변조 과정을 거친 상기 단일 광자의 경로를 상기 송신장치와 동일한 경로차를 가진 2개의 경로로 분할함으로써, 상기 단일 광자의 존재확률분포를 시간적으로 다시 분할하여 이 중에서 2개의 존재확률분포가 중첩하여 간섭하도록 하는 광간섭 과정 및 상기 광간섭된 단일 광자를 검출하는 과정을 포함하는 양자 암호키 분배 시스템의 수신방법을 제공한다.
이상에서 설명한 바와 같이 본 실시예에 의하면, 광위상변조기반 양자 암호키 분배 시스템에 사용하는 광위상변조기 및 광위상변조기구동기의 동작범위를 절반으로 줄일 수 있어 소자 또는 회로의 요구성능규격을 완화할 수 있고 소자 특성의 변형에 의한 오작동을 줄일 수 있다. 또한, 차동위상변조를 위한 전기 신호를 효과적으로 생성할 수 있다.
도 1은 종래의 위상변조 기반 양자 암호키 분배 시스템을 개략적으로 도시한 도면이다.
도 2는 간섭계 외부에 광위상변조기를 배치한 양자 암호키 분배 시스템 구조 및 각 단계별 펄스의 위상 변화를 예시한 도면이다.
도 3은 도 2의 송신부 및 수신부의 위상변조량의 조합을 도시한 도면이다.
도 4는 도 3에 도시된 위상변조량을 변조하기 위해 도 2의 송신부 및 수신부에서 요구되는 위상변조신호를 도시한 도면이다.
도 5는 BB84 프로토콜에 적용할 수 있는 송신부 및 수신부의 위상변조량의 다른 조합을 도시한 도면이다.
도 6은 도 5에 도시된 위상변조량을 변조하기 위해 도 2의 송신부 및 수신부에서 요구되는 위상변조신호를 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 차동위상변조 방법을 적용한 양자 암호키 분배 시스템의 구성도 및 각 단계별 펄스의 위상 변화를 도시한 도면이다.
도 8은 차동위상변조를 위해 광위상변조기에 입력되는 위상변조신호를 예시한 도면이다.
도 9는 위상변조신호 생성을 위한 {비트, 기저} 조합의 변환을 예시한 도면이다.
도 10은 도 9의 신호변환기능을 포함한 위상변조신호 생성부의 구조를 개략적으로 도시한 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 '포함', '구비'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 실시예에서는 간섭계 외부에 광위상변조기를 배치한 양자 암호키 분배 시스템에서, 공개공보 1에서 제안한 송신부 및 수신부의 위상변조량을 변경하는 한편, 기존 방법에 비해 절반 크기의 위상변조신호를 가하면서도 동일한 위상변조 효과를 얻을 수 있는 차동 위상변조 방법을 제안한다.
도 2는 간섭계 외부에 광위상변조기를 배치한 양자 암호키 분배 시스템 구조 및 각 단계별 펄스의 위상 변화를 예시한 도면이다.
도 2를 참조하면, 광원(210)으로부터 단일 광자를 포함한 광펄스, 즉 단일 광자 펄스가 광간섭계(220)에 입사된다. 실제적으로 광원으로부터 출사되는 광속은 매우 적은 수의 광자가 포함된 매우 미약한 광량의 레이저 펄스일 수 있으나, 여기서는 단일 광자 펄스를 기준으로 설명하기로 한다.
도 2에서는 각 단계별로 단일 광자 펄스의 시간에 따른 존재확률을 나타내는 확률분포곡선을 도시하였으며, 확률분포곡선에서 펄스 형태로 구분되는 영역마다 그에 해당하는 단일 광자 펄스가 갖는 상대 위상을 기재하였다. 여기서 상대 위상은 광원(210)으로부터 광간섭계(220)에 입사된 단일 광자 펄스의 위상을 기준으로 결정된다. 예컨대, 송신측 광간섭계(220) 후단에 도시된 확률분포곡선으로부터, 광간섭계(220)를 통과한 단일광자펄스는 2개의 펄스 형태로 분할된 확률분포곡선을 따르는 존재확률분포를 갖으며, 각 펄스 형태의 존재확률에 대응되는 단일 광자 펄스의 위상은 각각 π/2씩 위상이 변하였음을 알 수 있다.
광간섭계(220)는 입사된 단일 광자 펄스가 통과할 수 있는 소정의 경로차를 가진 2개의 경로를 제공하며, 광섬유 기반 혹은 광학계 기반의 마흐젠더 광간섭계나 마이켈슨 광간섭계 등으로 구현될 수 있다. 2개의 경로 간의 경로차로 인해, 광간섭계(220)를 통과한 단일 광자 펄스의 시간에 따른 존재확률분포는 시간축에서 2개의 펄스 형태로 분할된 확률분포곡선을 따르게 된다. 광간섭계(220)를 통과한 단일 광자 펄스의 위상이 π/2씩 변한 이유는 광간섭계(220) 내부의 광 커플러(Optical Coupler)에 의한 것이다. 즉, 광학계 기반의 광간섭계에 포함된 2×2 광 커플러는 평행하는 입출력의 경우 위상 변화가 없지만, 교차하는 입출력의 경우 π/2의 위상 변화를 수반한다.
광위상변조기(230)는 광간섭계(220)가 제공하는 2개의 경로(짧은 경로 및 긴 경로) 중 1개의 특정 경로를 통과한 단일 광자 펄스의 위상을 선택적으로 변조한다. 광위상변조기(230)에 입사되는 단일 광자 펄스가 광간섭계(220)가 제공하는 2개의 경로 중 어떠한 경로를 통과하였는지는 광위상변조기(230)에 도달하는 시간에 따라 구분할 수 있으므로, 예컨대 짧은 경로를 통과한 단일 광자 펄스가 광위상변조기(230)에 도달할 수 있는 시간 동안에만 위상변조를 수행함으로써, 짧은 경로를 통과한 단일 광자 펄스만을 선택적으로 위상변조한다. 다시 말해, 광위상변조기(230)는 광간섭계(220)를 통과한 단일 광자 펄스의 시분할된 존재확률분포의 2개의 펄스 형태의 분포곡선 중 어느 하나에 대응되는 시간 동안에만 통과하는 단일 광자 펄스의 위상을 변조한다. 광위상변조기(230)의 위상 변조량(φA)은 무작위로 생성된 비트 및 기저 정보의 조합에 따라 결정되며, 도 3을 참조하여 설명하기로 한다.
송신측 광위상변조기(230)를 거친 단일 광자 펄스는 광섬유 기반의 양자 채널(240)을 통해 전송되어, 수신측 광위상변조기(250)에 도달한다.
수신측 광위상변조기(250)는 시분할된 존재확률분포의 2개의 펄스 형태의 분포곡선 중 송신측 광위상변조기(230)에서 위상이 변조되지 않은 나머지 하나에 대응되는 시간 동안 통과하는 단일 광자 펄스의 위상을 변조한다. 예컨대, 송신측에서 짧은 경로를 통과한 단일 광자 펄스의 위상을 변조한 경우, 수신측 광위상변조기(250)는 긴 경로를 통과한 단일 광자 펄스의 위상을 변조한다. 수신측 광위상변조기(250)의 위상 변조량(φB)은 무작위로 생성된 기저 정보에 따라 결정되며, 도 3을 참조하여 설명하기로 한다.
이로써, 송신측 광간섭계(220)에 입사된 단일 광자 펄스는, 송신측 광간섭계(220)의 제1경로를 통과한 경우 송신측 광위상변조기(230)에 의해 φA 만큼 위상이 변조되고, 송신측 광간섭계(220)의 제2경로를 통과한 경우 수신측 광위상변조기(250)에 의해 φB 만큼 위상이 변조된다.
수신측 광간섭계(260)는 광위상변조기(250)를 거친 단일 광자 펄스가 통과할 수 있는 2개의 경로를 제공하며, 제공되는 2개의 경로는 송신측 광간섭계(220)와 동일한 경로차를 갖는다. 수신측 광간섭계(260) 역시 광섬유 기반의 마흐젠더 광간섭계, 광섬유 기반의 마이켈슨 광간섭계 등으로 구현될 수 있다.
수신측 광간섭계(260)는 이미 시간축에서 두 부분으로 분할된 단일 광자 펄스의 시간에 따른 존재확률분포를 다시 시분할하여 시간축에서 네 부분으로 구분되는 확률분포곡선을 갖도록 한다. 이때 송신측 및 수신측 광간섭계(220, 260)의 경로차가 동일하므로, 확률분포곡선의 분할된 네 부분 중 인접한 두 부분이 서로 중첩하여 간섭 현상이 발생한다. 그 결과 도 2에 도시된 바와 같이 3개의 펄스 형태의 존재확률분포를 갖게 된다.
중첩한 두 개의 존재확률은 상대적인 위상차에 따라 보강 간섭 또는 상쇄간섭을 일으킨다. 다시 말해, 송신측과 수신측에서 가한 위상변조량의 합이 2nπ(여기서, n은 정수)이면 중첩한 단일 광자 펄스의 존재확률은 보강 간섭하여 최대의 검출 확률을 보이고, 위상변조량의 합이 (2n+1)π이면 상쇄 간섭하여 최소의 검출 확률을 보인다. 간섭하지 않은 두 확률분포에 해당하는 시간구간에서는 항상 일정한 검출 확률을 보이므로 어떠한 정보도 전송할 수 없어 고려 대상에서 제외된다.
수신측에서는 두 개의 단일광자검출기(Single Photon Detector: SPD; 270, 280)를 게이티드 가이거 모드(Gated-Geiger Mode)로 동작시켜 수신측 광간섭계(260)의 두 출력에서 나오는 신호 중 가운데에 위치한 간섭 신호만을 선택적으로 검출한다. 간섭계(260) 출력에서는 상보적으로 한쪽이 최대 세기를 보이면 다른쪽은 최소 세기를 보인다. 수신측은 두 검출신호를 상호 보완적으로 해석하여 송신측에서 전송한 비트 신호를 추정한다.
도 3은 도 2의 송신부 및 수신부의 위상변조량의 조합을 도시한 도면이다.
도 3에 도시된 바와 같이, 송신부에서는 무작위로 생성되는 4가지 {비트, 기저} 조합에 각각 (0, π/2, π, 3π/2)의 4가지 위상변조량을 할당하며, 수신부에서는 무작위로 생성되는 2개의 기저에 (0, π/2)의 2가지 위상변조량을 할당한다. 수신부에서는 위상변조량 (0, π/2) 대신 (π, 3π/2)의 위상변조량을 적용하는 것도 가능하다.
이러한 도 3의 위상변조량을 바탕으로 한 BB84(Bennett Brassard 84) 프로토콜을 도 2의 시스템에 적용한 경우에, 송신측과 수신측의 위상변조량 및 그에 따른 수신측 단일광자검출기의 검출 확률을 표 1에 정리하였다.
표 1
Figure PCTKR2013007507-appb-T000001
표 1을 참조하면, 송신측 광위상변조기(230)는 비트 정보와 및 기저 정보를 조합하여 4가지 위상변조량에 따라 위상변조한다. 즉 기존 통신 기술에서 사용되는 QPSK(Quadrature Phase Shift Keying) 방식을 적용한 경우와 유사하게 0, π/2, π 및 3π/2의 위상 값을 가지는 단일 광자 펄스가 생성될 수 있다. 수신측 광위상변조기(250)는 무작위로 생성된 2가지 기저 정보에 따라 위상변조한다. 이 경우 수신측 광위상변조기(250)는 0 또는 π/2의 위상 변화를 가하거나 π 또는 3π/2의 위상 변화를 가할 수 있다. 통상적으로 수신측 광위상변조기(250) 구동의 편리함을 위해 0 또는 π/2로 위상변조를 가하여 서로 직교하는 기저 정보를 부여한다.
그 결과, 표 1과 같은 위상변조에 따르는 광간섭이 발생한다. BB84 프로토콜에서는 송신측과 수신측의 기저 정보가 일치할 때에만 수신측에서 최대 또는 최소 확률로 단일 광자 펄스를 검출할 수 있다. 표 1에서 의문 부호('?')는 무작위로 생성된 송신측과 수신측의 기저 정보가 일치하지 않아 두 단일 광자 검출기에서 최소도 최대도 아닌 확률로 단일 광자 펄스가 검출되는 경우를 의미한다. 이 결과들은 양자 암호키 분배 시스템의 기저 교환(Key Sifting) 절차에서 무효한 데이터로 취급되어 걸러진다.
도 4는 도 3에 도시된 위상변조량을 변조하기 위해 도 2의 송신부 및 수신부에서 요구되는 위상변조신호를 도시한 도면이다.
도 4에서는 광위상변조기가 반파장(π)의 위상 변화를 유도하는 데 필요한 전압 Vπ를 기준으로 위상변조신호를 도시하였다. 송신부에서는 비트 정보 및 기저 정보의 조합을 구분하기 위해 {0, π/2, π, 3π/2}의 위상변조량을 사용하므로, 송신부에서 광위상변조기(230)에 입력되는 위상변조신호의 최대 Vpp(피크 투 피크 전압: Peak to Peak Voltage)는 Vπ의 1.5 배에 해당한다. 통상의 광위상변조기가 3 V 내지 5 V의 Vπ값을 가지므로, 송신부에서 필요한 위상변조신호의 최대 Vpp는 4.5 V 내지 7.5 V가 된다.
도 5는 BB84 프로토콜에 적용할 수 있는 송신부 및 수신부의 위상변조량의 다른 조합을 도시한 도면이다.
도 5에 도시된 위상변조량은 도 3과 마찬가지로 송신측에 4개의 위상변조량 (φA)과 수신측에 2개의 위상변조량(φB)을 할당하되, 도 3에 도시된 위상변조량들을 -π/4씩 이동한 것이다. 수신부에서는 위상변조량 (π/4, -π/4) 대신 (3π/4, -3π/4)의 위상변조량을 적용할 수도 있으나, 상대적으로 낮은 VPP 값의 위상변조신호로 얻어질 수 있는 (π/4, -π/4)의 위상변조량을 적용하는 것이 바람직하다.
이러한 도 5의 위상변조량을 바탕으로 한 BB84(Bennett Brassard 84) 프로토콜을 도 2의 시스템에 적용한 경우에, 송신측과 수신측의 위상변조량 및 그에 따른 수신측 단일광자검출기의 검출 확률을 표 2에 정리하였다.
표 2
Figure PCTKR2013007507-appb-T000002
표 1과 마찬가지로, 수신부 단일광자검출기(270, 280)는 송신측 및 수신측의 기저 정보가 일치한 경우에만 최대 또는 최소의 확률로 단일광자를 검출할 수 있다.
위상변조 기반의 양자 암호키 분배 시스템에서는 송신부와 수신부에서 가한 위상변조량의 차이로 인해 생기는 간섭광의 위상차에 기초한 보강간섭 또는 상쇄간섭 원리를 이용하므로, 도 5와 같이 각 위상변조량을 동일한 값만큼 변경하더라도 동일한 방식으로 동작한다.
도 6은 도 5에 도시된 위상변조량을 변조하기 위해 도 2의 송신부 및 수신부에서 요구되는 위상변조신호를 도시한 도면이다.
도 6에 도시된 바와 같이, 광간섭계의 어느 한 경로를 통과한 단일 광자 펄스만을 선택적으로 위상변조하는 경우, 송신측 광위상변조기(230)는 도 5에 도시된 위상변조량을 얻기 위해서 -Vπ/4, +Vπ/4, -3Vπ/4, +3Vπ/4의 VPP를 갖는 위상변조신호가 필요하다. 따라서 송신측 광위상변조기(230)는 최대 ±3/4Vπ 범위에서 동작하게 되고, 그 구동범위는 Vπ의 1.5 배에 해당한다. 이는 도 4와 동일한 결과이다.
본 발명은 이러한 광위상변조기의 구동범위를 줄이고자, 도 2의 선택적 위상변조와는 달리, 시분할된 단일 광자 펄스에 대해 차동으로 위상을 변조한다. 즉, 송신측 광간섭계(220)가 제공하는 2개의 경로 중 1개의 특정 경로를 통과한 단일 광자 펄스의 위상만을 선택적으로 변조하는 도 2의 위상변조방법과는 달리, 본 발명은 각 경로를 통과한 단일 광자 펄스의 위상을 차동으로 변조한다.
이하에서는 도 7 내지 도 10을 참조하여 차동위상변조 방법을 적용한 양자암호키 분배 시스템을 설명하기로 한다.
도 7은 본 발명의 일 실시예에 따른 차동위상변조 방법을 적용한 양자 암호키 분배 시스템의 구성도 및 각 단계별 펄스의 위상 변화를 도시한 도면이다.
도 7에 도시된 양자암호키 분배 시스템에서 송수신측 광위상변조기(730, 750)를 제외한 다른 구성요소(710, 720, 740, 760, 770, 771)는 도 2에 도시된 양자암호키 분배 시스템의 대응되는 구성요소와 그 수행하는 기능이 동일하므로 상세한 설명은 생략한다.
송신측 광위상변조기(730)는 시분할된 존재확률분포를 갖는 단일 광자 펄스를 차동변조한다. 즉, 광위상변조기(730)는 시분할된 존재확률분포의 2개의 펄스 형태의 확률분포곡선 중 어느 하나에 대응되는 시간 동안 입력되는 단일 광자 펄스의 위상을 -φA/2 만큼 변조하는 한편, 다른 하나에 대응되는 시간 동안 입력되는 단일 광자 펄스의 위상을 +φA/2 만큼 차동으로 변조한다. 다시 말해, 송신측 광간섭계(720)에 의해 제공되는 어느 한 경로를 통과하는 경우의 단일 광자 펄스의 위상을 -φA/2 만큼 변조하고 나머지 한 경로를 통과하는 경우의 단일 광자 펄스의 위상을 +φA/2 만큼 변조함으로써, 각 경우의 단일 광자 펄스간의 위상차가 φA가 되도록 차동변조한다. 광위상변조기(730)의 위상 변조량(±φA/2)은 무작위로 생성된 비트 및 기저 정보의 조합(731)에 따라 결정되며, 이는 도 6과 같다.
수신측 광위상변조기(750) 역시 시분할된 존재확률분포를 갖는 단일 광자 펄스를 차동변조한다. 즉, 수신측 광위상변조기(750)는 송신측 광위상변조기(730)에서 +φA/2 만큼 위상이 변조된 단일 광자 펄스의 위상을 -φB/2 만큼, 송신측 광위상변조기(730)에서 +φA/2 만큼 위상이 변조된 단일 광자 펄스의 위상을 -φB/2 만큼씩 차동변조한다. 수신측 광위상변조기(750)의 위상 변조량(±φB/2)은 무작위로 생성된 기저 정보(751)에 따라 결정되며, 이는 도 6과 같다.
위와 같이, 송수신측 광위상변조기(730, 750)는 시분할된 존재확률분포를 갖는 단일 광자 펄스의 위상변조를 차동방식으로 수행함으로써, 2가지 경우의 단일 광자 펄스의 위상을 서로 반대의 값으로 동시에 변조한다. 이는 한 번의 변조로 시분할된 2가지 경우의 단일 광자 펄스간의 위상 차이를 두 배로 만들 수 있음을 의미한다.
도 8은 차동위상변조를 위해 광위상변조기에 입력되는 위상변조신호를 예시한 도면이다.
도 8에 도시된 바와 같이, 차동 위상변조를 위해서는 한 주기 안에 고신호(High Level Signal)에서 저신호(Low Level Signal)로 반전되는 위상변조신호와 저신호에서 고신호로 반전되는 위상변조신호가 필요하다. 또한 위상변조신호를 광위상변조기에 입력할 때 적절한 시간 지연을 발생시켜 반전이 일어나는 부분이 시분할된 두 펄스 신호의 중간 지점과 일치하도록 하여야 한다.
위와 같은 위상변조를 적용할 경우, 위상변조신호의 한 주기 안에 고신호와 저신호가 모두 들어 있으므로, 시분할된 단일 광자 펄스 중 하나의 펄스에 고신호가 적용되면 다른 펄스에는 자동적으로 저신호가 적용되어 차동위상변조를 수행할 수 있다.
표 3은 비트 및 기조 정보의 경우의 수에 따른 송신측 광위상변조기(730)의 위상변조량 및 광위상변조기 입력전압을 정리한 표이다. 한 주기 안에서 한 번의 신호 반전이 일어나므로 전반과 후반으로 나누어 위상변조량을 정리하였다.
표 3
Figure PCTKR2013007507-appb-T000003
표 3에서 정리된 바와 같이, 차동위상변조 방법을 적용할 경우, 기존의 선택적 위상변조 방법에 비해 절반 크기의 위상변조신호를 가하고도 동일한 위상차를 얻을 수 있음을 알 수 있다.
즉, 차동위상변조 방법을 적용하면, 시분할된 두 단일광자 펄스의 위상차가 3π/4인 경우라 하더라도 실제로 위상변조를 위해 입력되는 위상변조신호는 시분할된 펄스에 각각 ±3π/8 만큼의 위상변조를 발생시키는 신호면 충분하다. 다시 말해, 송신측 광위상변조기(730)는 최대 3Vπ/4만큼의 VPP를 갖는 위상변조신호를 요구하므로, 예를 들어 Vπ가 5V인 광위상변조기라 하더라도 3.75V의 전위 변화를 갖는 신호를 입력하면 충분하다. 따라서 차동위상변조 방식을 통해 광위상변조기(730, 750) 및 광위상변조기 구동기의 부담 내지 성능 규격을 절반으로 완화할 수 있음을 알 수 있다.
한편, 도 8에서 송신측 위상변조신호는 4가지 경우의 수를 가진다. 양자 암호키 분배 시스템에서 비트 및 기저 신호는 랜덤신호생성기를 이용하여 생성하므로 출력이 {1, 0} 또는 {High, Low} 등으로 표현될 수 있는 2단계의 디지털 신호들이다. 2단계의 비트 및 기저 신호를 이용하여 4단계의 신호를 생성하기 위해서는 신호합성을 수행해야 한다. AC 커플링 기반의 신호합성 과정에서는 1은 +V로, 0은 -V로 표현될 수 있다. 만약, 비트 신호에 따른 전압 차가 기저 신호에 따른 전압차보다 2배가 크다고 가정하면, {비트, 기저} 조합이 {0, 0}, {0, 1}, {1, 0}, {1, 1} 일 경우 {-2V, -V}, {-2V, +V}, {+2V, -V}, {+2V, +V}가 되어, 각각 -3V, -V, +V 및 +3V의 전압으로 표현될 수 있다.
그런데 표 2, 표 3 및 도 8에 의하면, 시스템이 올바르게 동작하기 위해서는 {비트, 기저} 조합이 {0, 0}, {0, 1}, {1, 0}, {1, 1}일 경우에 대해 각각 -V, +V, +3V, -3V로 설정되어야 하며, 이러한 결과는 위 AC 커플링 기반의 신호합성의 결과와 일치하지 않음을 알 수 있다.
이러한 불일치 문제를 해결하기 위해, 본 실시예에서는 송신부의 비트 및 기저 신호에 대한 위상변조 신호 생성시 도 9과 같이 신호를 변환한다.
도 9는 위상변조신호 생성을 위한 {비트, 기저} 조합의 변환을 예시한 도면이다.
도 9를 참조하면, 본 실시예에서는 난수생성기(Random Number Generator: RNG)를 이용하여 생성한 {비트, 기저} 신호 조합이 {0, 0}, {0, 1}, {1, 0}, {1, 1}일 경우 신호변환기를 이용하여 {0, 1}, {1, 0}, {1, 1}, {0, 0}의 조합으로 바꾸고, 이를 기초로 위상변조 신호를 생성한다.
도 10은 도 9의 신호변환기능을 포함한 위상변조신호 생성부의 구조를 개략적으로 도시한 도면이다.
도 10에 도시된 바와 같이, 무작위로 생성된 비트 신호 및 기저 신호는 신호 변환기(1020)를 통해 차동위상변조를 위한 신호로 변환되며, 변환된 비트 신호 및 기저 신호에 대응하여 차동신호생성기(1030)에 의해 생성된 차동신호는 신호합성기 및 신호 증폭기(1040)를 거쳐 최종적으로 광위상변조기(730)에 입력된다. 난수생성기(1010, 1011)를 이용하여 생성한 비트 및 기저 신호는 기저 비교 및 최종 키 생성 과정을 위해 메모리(미도시)에 저장되지만, 신호변환기(1020)를 이용해 생성한 신호는 위상변조에만 사용되므로 별도로 저장될 필요는 없다.
이상에서 설명한 차동위상변조 및 위상변조신호 생성 방법은 BB84 프로토콜을 기반으로 예시하였지만, BB84 프로토콜과 동일한 물리구조를 가지는 SARG04 프로토콜(Scarani-Acin-Ribordy-Gisin Protocol)에도 적용 가능하다.
더불어, 이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
(부호의 설명)
210: 광원 220: 광간섭계
230: 양자채널 250: 광위상변조기
260: 광간섭계 270: 단일광자검출기
280: 단일광자검출기 710: 광원
720: 광간섭계 730: 양자채널
750: 광위상변조기 760: 광간섭계
770: 단일광자검출기 771: 단일광자검출기
1010: 난수생성기 1011: 난수생성기
1020: 신호변환기 1030: 차동신호생성기
1031: 차동신호생성기
1040: 신호합성기 및 신호증폭기 1060: 난수생성기
1070: 차동신호생성기 1080: 신호증폭기
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2012년 10월 18일 한국에 출원한 특허출원번호 제 10-2012-0116268 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (19)

  1. 광원으로부터 단일 광자 펄스를 입력받아, 상기 단일 광자 펄스가 통과하기 위한 소정의 경로차를 가진 2개의 경로를 제공하는 광간섭계; 및
    상기 광간섭계를 통과한 단일 광자 펄스의 위상을 시간적으로 차동 변조시키기 위한 광위상변조기를 포함하되,
    상기 광간섭계를 통과한 단일 광자 펄스는 시간적으로 분할된 2개의 시간영역에 분포하는 존재확률분포를 갖는 것을 특징으로 하는 양자 암호키 분배 시스템의 송신장치.
  2. 제1항에 있어서,
    상기 광위상변조기는,
    상기 2개의 경로 중 짧은 경로를 통과하는 경우와 상기 2개의 경로 중 긴 경로를 통과하는 경우의 상기 단일 광자 펄스의 위상차가 소정의 값(이하 'φA'라고 칭함)을 갖도록 하는 것을 특징으로 하는 양자 암호키 분배 시스템의 송신장치.
  3. 제2항에 있어서,
    상기 광위상변조기는,
    상기 단일 광자 펄스의 위상을 차동으로 변조함에 있어서,
    상기 2개의 경로 중 어느 하나의 경로를 통과하는 경우의 위상을 -φA/2만큼 변조하고, 다른 하나의 경로를 통과하는 경우의 위상을 φA/2만큼 변조하는 것을 특징으로 하는 양자 암호키 분배 시스템의 송신장치.
  4. 제3항에 있어서,
    상기 φA는,
    난수로 구성된 비트(Bit) 정보 및 난수로 구성된 기저(Basis) 정보에 대응하여 기 결정된 값인 것을 특징으로 양자 암호키 분배 시스템의 송신장치.
  5. 제4항에 있어서,
    상기 φA는,
    π/4, -π/4, 3π/4 또는 -3π/4 중 어느 하나의 값인 것을 특징으로 하는 양자 암호키 분배 시스템의 송신장치.
  6. 제1항에 있어서,
    상기 광위상변조기를 구동하기 위한 신호로서, 난수로 구성된 비트 신호 및 난수로 구성된 기저 신호에 대응되는 차동 위상변조신호를 생성하는 위상변조신호생성기를 더 포함하는 것을 특징으로 하는 양자 암호키 분배 시스템의 송신장치.
  7. 제6항에 있어서,
    상기 차동 위상변조신호는,
    1 주기 동안 고신호에서 저신호로 반전하는 형태의 신호 또는 저신호에서 고신호로 반전하는 형태의 신호 중 어느 하나의 신호인 것을 특징으로 하는 양자 암호키 분배 시스템의 송신장치.
  8. 제6항에 있어서,
    상기 차동 위상변조신호를 생성하기 위해 난수로 구성된 비트 및 기저 신호의 조합 {0, 0}, {0, 1}, {1, 0}, {1, 1}을 {0, 0}, {0, 1}, {1, 0}, {1, 1} 로 신호변환을 수행하는 신호변환기를 더 포함하는 것을 특징으로 하는 양자 암호키 분배 시스템의 송신장치.
  9. 양자 암호키 분배 시스템의 송신장치로부터 전송된 차동 위상 변조된 단일 광자 펄스를 입력받아, 입력된 상기 단일 광자 펄스를 시간적으로 차동 위상변조시키기 위한 광위상변조기; 및
    상기 광위상변조기로부터 전달된, 상기 단일 광자 펄스가 통과하기 위한 상기 송신장치와 동일한 경로차를 가진 2개의 경로를 제공하는 광간섭계를 포함하되,
    상기 송신장치로부터 전송된 상기 단일 광자 펄스는 시간적으로 분할된 2개의 시간영역에 분포하는 존재확률분포(이하 '시분할 존재확률분포'라고 칭함)를 갖는 것을 특징으로 하는 양자 암호키 분배 시스템의 수신장치.
  10. 제9항에 있어서,
    상기 광간섭계는,
    상기 광위상변조기로부터 전달된 상기 단일 광자 펄스의 존재확률분포를 상기 시분할 존재확률분포와 동일한 시간간격으로 다시 시간적으로 분할하는 것을 특징으로 하는 양자 암호키 분배 시스템의 수신장치.
  11. 제10항에 있어서,
    상기 광간섭계를 통과한 단일 광자 펄스는,
    시간적으로 분할된 3개의 시간영역에 분포하는 존재확률분포를 갖는 것을 특징으로 하는 양자 암호키 분배 시스템의 수신장치.
  12. 제9항에 있어서,
    상기 광위상변조기는,
    상기 2개의 경로 중 짧은 경로를 통과하는 경우와 상기 2개의 경로 중 긴 경로를 통과하는 경우의 상기 단일 광자 펄스의 위상차가 소정의 값(이하 'φB'라고 칭함)을 갖도록 차동으로 위상변조하는 것을 특징으로 하는 양자 암호키 분배 시스템의 수신장치.
  13. 제12항에 있어서,
    상기 광위상변조기는,
    상기 단일 광자 펄스의 위상을 차동으로 변조함에 있어서,
    상기 2개의 경로 중 어느 하나의 경로를 통과하는 경우의 위상을 -φB/2만큼 변조하고, 다른 하나의 경로를 통과하는 경우의 위상을 φB/2만큼 변조하는 것을 특징으로 하는 양자 암호키 분배 시스템의 수신장치.
  14. 제13항에 있어서,
    상기 φB는,
    난수로 구성된 기저 정보에 대응하여 기 결정된 값인 것을 특징으로 양자 암호키 분배 시스템의 수신장치.
  15. 제14항에 있어서,
    상기 φB는,
    π/4, -π/4 중 어느 하나의 값인 것을 특징으로 하는 양자 암호키 분배 시스템의 수신장치.
  16. 제9항에 있어서,
    상기 광위상변조기를 구동하기 위한 신호로서, 난수로 구성된 기저 신호에 대응되는 차동 위상변조신호를 생성하는 위상변조신호생성기를 더 포함하는 것을 특징으로 하는 양자 암호키 분배 시스템의 수신장치.
  17. 제16항에 있어서,
    상기 차동 위상변조신호는,
    1 주기 동안 고신호에서 저신호로 반전하는 형태의 신호 또는 저신호에서 고신호로 반전하는 형태의 신호 중 어느 하나의 신호인 것을 특징으로 하는 양자 암호키 분배 시스템의 수신장치.
  18. 광원으로부터 단일 광자 펄스를 입력받는 과정;
    입력된 상기 단일 광자 펄스의 경로를 짧은 경로 및 긴 경로를 포함하는 길이가 다른 2개의 경로로 분할함으로써, 상기 단일 광자 펄스의 존재확률이 시간적으로 분할된 2개의 시간영역에 분포하도록 하는 시분할 과정;
    상기 시분할 과정을 거친 상기 단일 광자 펄스의 위상을 시간적으로 차동 변조하는 광위상변조 과정; 및
    차동 변조된 상기 2개의 단일 광자 펄스를 양자 채널을 통해 수신장치에 전송하는 과정
    을 포함하는 양자 암호키 분배 시스템의 송신방법.
  19. 양자 채널을 통해 송신장치로부터 전송된 시분할된 존재확률분포를 갖는 차동 위상 변조된 단일 광자 펄스를 입력받는 과정;
    입력된 상기 단일 광자 펄스를 시간적으로 차동 위상변조시키는 광위상변조 과정; 및
    상기 광위상변조 과정을 거친 상기 단일 광자 펄스의 경로를 상기 송신장치와 동일한 경로차를 가진 2개의 경로로 분할함으로써, 상기 단일 광자 펄스의 존재확률분포를 시간적으로 다시 분할하는 광간섭 과정
    을 포함하는 양자 암호키 분배 시스템의 수신방법.
PCT/KR2013/007507 2012-10-18 2013-08-21 양자 암호키 분배 시스템에 있어서 차동 광위상변조 방법 및 장치 WO2014061910A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380054457.4A CN104737474B (zh) 2012-10-18 2013-08-21 量子密钥分配系统中用于差分光学相位调制的方法和装置
US14/691,133 US9464937B2 (en) 2012-10-18 2015-04-20 Method and device for differential optical phase modulation in quantum key distribution system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0116268 2012-10-18
KR1020120116268A KR101466213B1 (ko) 2012-10-18 2012-10-18 양자 암호키 분배 시스템에 있어서 차동 광위상변조 방법 및 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/691,133 Continuation US9464937B2 (en) 2012-10-18 2015-04-20 Method and device for differential optical phase modulation in quantum key distribution system

Publications (1)

Publication Number Publication Date
WO2014061910A1 true WO2014061910A1 (ko) 2014-04-24

Family

ID=50488431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007507 WO2014061910A1 (ko) 2012-10-18 2013-08-21 양자 암호키 분배 시스템에 있어서 차동 광위상변조 방법 및 장치

Country Status (4)

Country Link
US (1) US9464937B2 (ko)
KR (1) KR101466213B1 (ko)
CN (1) CN104737474B (ko)
WO (1) WO2014061910A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104767609B (zh) * 2015-04-23 2017-12-05 山西大学 双边带干涉的相位编码量子密钥分发系统
CN106685655B (zh) * 2017-01-16 2019-08-16 华南师范大学 一种相位偏振多自由度调制qkd网络系统及方法
KR102038829B1 (ko) * 2018-04-27 2019-10-31 주식회사 우리로 광자 펄스 검출 장치
CN110635853B (zh) * 2018-11-19 2023-01-10 科大国盾量子技术股份有限公司 适用于量子态随机光信号的调制器驱动方法及系统
CN110635852B (zh) * 2018-11-19 2023-01-10 科大国盾量子技术股份有限公司 适用于量子态随机光信号的调制器驱动方法及系统
EP3703283A1 (en) * 2019-02-27 2020-09-02 Fundació Institut de Ciències Fotòniques Generation of optical pulses with controlled distributions of quadrature values
KR20210045285A (ko) 2019-10-16 2021-04-26 고태영 양자 엔트로피 운용 서비스 시스템
CN111238398B (zh) * 2020-03-02 2021-06-04 四川大学 一种基于概率分布函数的相移误差检测方法
US11846574B2 (en) 2020-10-29 2023-12-19 Hand Held Products, Inc. Apparatuses, systems, and methods for sample capture and extraction
CN114323243B (zh) * 2021-11-26 2024-07-05 军事科学院系统工程研究院网络信息研究所 基于分布式量子干涉仪的高灵敏度周界安全监测方法
CN114785420B (zh) * 2022-04-19 2023-07-11 国开启科量子技术(北京)有限公司 用于合束光脉冲的方法和装置
CN116723054B (zh) * 2023-08-08 2023-10-27 合肥量芯科技有限公司 抵御校准过程中引入探测效率失配漏洞的方法
CN117579178B (zh) * 2024-01-15 2024-03-29 北京量子信息科学研究院 基于随机数的量子通信方法和装置、量子通信系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11331089A (ja) * 1997-08-22 1999-11-30 Matsushita Electric Ind Co Ltd 光伝送システムならびにそれに用いられる光送信装置および光受信装置
KR20000049868A (ko) * 2000-05-03 2000-08-05 이재승 비대칭 마하젠더 간섭계를 이용한 광신호대잡음비모니터링 및 광섬유 절단 검출
KR20070061016A (ko) * 2005-12-08 2007-06-13 한국전자통신연구원 고속 자동 보상 양자 암호 송수신장치 및 방법
KR20110071803A (ko) * 2009-12-21 2011-06-29 한국전자통신연구원 양자 암호키 분배를 위한 광위상 변조 방법 및 장치
JP4883813B2 (ja) * 2007-01-15 2012-02-22 アンリツ株式会社 光信号モニタ装置及びその方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1651947A (zh) * 2004-02-02 2005-08-10 中国科学技术大学 一种偏振控制编码方法、编码器和量子密钥分配系统
US7639947B2 (en) * 2005-09-19 2009-12-29 The Chinese University Of Hong Kong System and methods for quantum key distribution over WDM links
JP4893961B2 (ja) * 2007-09-04 2012-03-07 日本電気株式会社 光送信器および複合変調器の制御方法
CN101820343A (zh) * 2010-02-05 2010-09-01 北京邮电大学 一种量子通讯保密的方法及其系统
US8554814B2 (en) * 2010-08-20 2013-10-08 The Governing Council Of The University Of Toronto Random signal generator using quantum noise
CN102739394B (zh) * 2012-06-07 2013-11-06 中国科学技术大学 光量子相位调制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11331089A (ja) * 1997-08-22 1999-11-30 Matsushita Electric Ind Co Ltd 光伝送システムならびにそれに用いられる光送信装置および光受信装置
KR20000049868A (ko) * 2000-05-03 2000-08-05 이재승 비대칭 마하젠더 간섭계를 이용한 광신호대잡음비모니터링 및 광섬유 절단 검출
KR20070061016A (ko) * 2005-12-08 2007-06-13 한국전자통신연구원 고속 자동 보상 양자 암호 송수신장치 및 방법
JP4883813B2 (ja) * 2007-01-15 2012-02-22 アンリツ株式会社 光信号モニタ装置及びその方法
KR20110071803A (ko) * 2009-12-21 2011-06-29 한국전자통신연구원 양자 암호키 분배를 위한 광위상 변조 방법 및 장치

Also Published As

Publication number Publication date
US20150226609A1 (en) 2015-08-13
CN104737474A (zh) 2015-06-24
KR20140049893A (ko) 2014-04-28
CN104737474B (zh) 2017-03-22
KR101466213B1 (ko) 2014-11-27
US9464937B2 (en) 2016-10-11

Similar Documents

Publication Publication Date Title
WO2014061910A1 (ko) 양자 암호키 분배 시스템에 있어서 차동 광위상변조 방법 및 장치
US7844186B2 (en) Method and apparatus for optical transmission
US7796896B2 (en) Secure optical communication
WO2006018952A1 (ja) 多モード光伝送装置
WO2017204440A1 (ko) 코드 기반 양자 암호 키 분배 방법, 장치 및 시스템
CN101170363B (zh) 一种光差分偏振位移键控系统及其信号发送装置与方法
Ortigosa-Blanch et al. Subcarrier multiplexing optical quantum key distribution
JPWO2005025094A1 (ja) 光送信器
WO2020256408A1 (ko) 양자 암호키 분배 방법, 장치 및 시스템
JPWO2009104631A1 (ja) 光通信システム、光通信方法、および光通信装置
CN113422650A (zh) 一种多通道光跳频系统、信号加密方法和光通信设备
JP6850516B2 (ja) 信号処理装置
CN116192284B (zh) 一种用于在光通信系统物理层中无痕加密的装置及方法
KR20210121337A (ko) 양자 정보 송신기, 이를 포함하는 양자 통신 시스템, 및 양자 정보 송신기의 동작 방법
Bae Dispersion-tolerant 200-Gb/s OTDM-PAM4 system using a simple phase-alternating pulse generator
JP4575813B2 (ja) 秘密鍵配送装置および秘密鍵配送方法
Kim et al. 300-Gb/s transmission using OTDM system implemented with sinusoidally modulated input light source
CN217135505U (zh) 即插即用型sagnac环参考系无关测量设备无关QKD系统
CN114142933B (zh) 一种基于多芯光纤的保密通信装置及其通信方法
He et al. 40 Gb/s CSRZFSK signal generation and transmission labeled with ASK in optical packet networks
WO2022145534A1 (ko) 라이다 센서 장치 및 레이저 신호 송출 방법
KR20200080708A (ko) 양자암호통신 시스템의 양자채널 이중화 장치
CN110995359B (zh) 基于数字dsp解调的相位调制方法及系统
Shao et al. DRZ, DQPSK, and PoISK orthogonal modulations for 100Gbit/s transmission system applications
WO2015115704A1 (ko) 광 무선통신 시스템의 송신 장치 및 방법, 수신 장치 및 수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846305

Country of ref document: EP

Kind code of ref document: A1