WO2014058215A1 - Solar battery cell connecting member, method for manufacturing same, and apparatus for manufacturing solar battery cell connecting member - Google Patents

Solar battery cell connecting member, method for manufacturing same, and apparatus for manufacturing solar battery cell connecting member Download PDF

Info

Publication number
WO2014058215A1
WO2014058215A1 PCT/KR2013/008996 KR2013008996W WO2014058215A1 WO 2014058215 A1 WO2014058215 A1 WO 2014058215A1 KR 2013008996 W KR2013008996 W KR 2013008996W WO 2014058215 A1 WO2014058215 A1 WO 2014058215A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
strip
connection member
pattern
cell connection
Prior art date
Application number
PCT/KR2013/008996
Other languages
French (fr)
Korean (ko)
Inventor
김국진
김효년
Original Assignee
(주)산코코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)산코코리아 filed Critical (주)산코코리아
Publication of WO2014058215A1 publication Critical patent/WO2014058215A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell connecting member used in a solar cell module for converting solar energy into electrical energy, a method for manufacturing the same, and a solar cell connecting member manufacturing apparatus.
  • the present invention relates to a solar cell connection member having improved efficiency and a method of manufacturing the same, and a solar cell connection member manufacturing apparatus.
  • a typical solar cell is solar cells.
  • the solar cell is a device for producing power directly from solar energy.
  • the solar cell includes a plurality of solar cells for converting solar energy into electrical energy and a connection member for electrically connecting the solar cells, wherein the plurality of solar cells connected by the connection member are solar cells. It is called a module.
  • the solar cell is a diode consisting of a p-n junction.
  • an exciton which is an electron-hole pair, is generated, and the exciton is split so that electrons move to n layers and holes move to p layers. have. Accordingly, when one surface of the solar cell has a positive electrode, the other surface has a negative electrode.
  • FIG. 1 is a view showing a solar cell module 10 composed of a plurality of conventional solar cells 20,
  • Figure 2 shows a structure in which the conventional solar cell 20 and the solar cell connecting member 30 is connected.
  • the conventional solar cell 20 has a structure in which a positive (+) electrode 21 is formed on an upper surface thereof and a negative ( ⁇ ) electrode 22 is formed on a lower surface thereof.
  • the solar cell connecting member 30 has a negative (-) electrode 22 formed on the lower surface of the solar cell 20 adjacent to the positive (+) electrode 21 formed on the upper surface of the solar cell 20. Electrical connection.
  • thermobonding process for connecting the solar cell connection member 30 and the solar cell 20 to each other and modularizing is called a tabbing process.
  • a tabbing process a method of directly connecting by means of a soldering iron and an infrared lamp, Indirect connection is achieved by halogen lamps and hot air.
  • the efficiency of the solar cell module varies depending on the structure of the solar cell and the solar cell connection member, and various solar cell modules have been developed to absorb as much sunlight as possible.
  • the present invention provides a solar cell connection member and a method of manufacturing the same, which can increase the reuse rate of incident light by texturing a geometric pattern on the solar cell connection member.
  • the present invention provides a manufacturing apparatus capable of manufacturing such a solar cell connection member.
  • a solar cell connection member having a thin strip shape and having at least one surface of the thin strip a pattern portion having a plurality of geometric patterns textured thereon.
  • a planar portion on which the geometric pattern is not textured may be disposed.
  • the pattern portion and the planar portion may be arranged alternately and repeatedly.
  • the geometric pattern may have a hemispherical cross section and a shape extending in the first direction.
  • the pattern may be continuously formed in a second direction perpendicular to the first direction.
  • the contact angle of the hemispherical cross section may have a value of 45 degrees to 90 degrees.
  • the geometric pattern may have the shape of a cone or a pyramid having a rounded horn top.
  • the contact angle of the cone or pyramid structure may have a value of 45 degrees to 90 degrees.
  • Rolling a wire to form a thin strip texturing to form a plurality of geometric patterns on at least one surface of the strip, heat treating the textured strip, and forming a metal alloy layer on the heat treated strip. It provides a method for manufacturing a solar cell connection member comprising a.
  • the step of forming the strip and the texturing step can be performed simultaneously by rolling with a roll.
  • the texturing step may be performed by forging using a press.
  • dipping coating or electroplating may be applied.
  • a solar cell connection member manufacturing apparatus including an alloy tank containing a coating liquid for forming a metal coating layer on a strip and a second winding roller for winding the metal coated strip.
  • the rolling roller may be embossed or engraved with a master pattern for texturing a geometric pattern on the strip.
  • the second rolling roller may include an adjusting means for adjusting the gap between the upper rolling roller and the lower rolling roller.
  • a first winding roller for supplying a wire, a pair of rolling rollers installed up and down to process the wire supplied from the first winding roller into a thin strip form, and for texturing a plurality of geometric patterns on at least one surface of the strip.
  • An apparatus for manufacturing a solar cell connection member comprising a pair of presses installed up and down, an alloy tank containing a coating liquid for forming a metal coating layer on the textured strip, and a second winding roller for winding the metal coated strip. to provide.
  • the efficiency of the solar cell module may be increased by increasing the reuse rate of sunlight incident on the solar cell module through a geometric pattern having a predetermined reflection angle on the solar cell connection member.
  • FIG. 1 is a diagram illustrating a solar cell module 10 composed of a plurality of solar cell cells 20.
  • FIG. 2 is a view illustrating a structure in which a conventional solar cell 20 and a solar cell connection member 30 are connected.
  • FIG 3 is a view showing a solar cell connection member 100 according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the solar cell connection member 100 according to an embodiment of the present invention.
  • FIG 5 and 6 are views illustrating a solar cell connection member 100 according to another embodiment of the present invention.
  • FIG. 7 is a view showing a state in which the solar cell connection member 100 is attached to the electrode of the solar cell 20 according to an embodiment of the present invention.
  • FIG. 8 is a view showing a solar cell connection member 100 according to another embodiment of the present invention.
  • FIG 9 is a view illustrating a state in which the solar cell connection member 100 is attached to the electrode of the solar cell 20 according to another embodiment of the present invention.
  • 10 to 12 are views for explaining a method of manufacturing a solar cell connection member according to an embodiment of the present invention.
  • FIG. 13 is a view showing an apparatus for manufacturing a solar cell connection member according to an embodiment of the present invention.
  • FIG 3 is a view showing a solar cell connection member 100 according to an embodiment of the present invention
  • Figure 4 is a cross-sectional view of the solar cell connection member 100 according to an embodiment of the present invention.
  • the solar cell connection member 100 may be formed in the form of a thin strip 110 extending in a first direction.
  • the longitudinal direction of the strip 110 is referred to as a first direction
  • the width direction is referred to as a second direction.
  • the solar cell connection member 100 may have a width of 1.5 mm to 3 mm and may be formed in a thin strip form having a thickness of 0.01 mm to 0.2 mm.
  • the solar cell connection member 100 may be processed into a thin strip 110 having a thickness as described above by rolling a copper wire.
  • a pattern unit 120 in which a plurality of geometric patterns 200 is textured may be formed.
  • planar portion 130 The region in which the geometric pattern 200 is not formed in the thin strip 110 is called a planar portion 130.
  • the pattern portion 120 and the planar portion 130 will be described later. ) May be formed by alternately repeating each other.
  • the geometric pattern 200 may have a hemispherical cross section, and may be formed in a shape extending in the first direction, and the geometric pattern 200 may be continuously formed in a second direction perpendicular to the first direction. .
  • the geometric pattern 200 is illustrated as extending in the first direction, but is not necessarily limited thereto. In another embodiment of the present invention, the pattern extends in the second direction. It may be formed.
  • the width L of the geometric pattern 200 may have a value of 200 ⁇ m to 500 ⁇ m, and the height H of the geometric pattern 200 has a value of 10 ⁇ m to 100 ⁇ m.
  • the contact angle ⁇ of the geometric pattern 200 may have a value of 45 degrees to 90 degrees.
  • the contact angle ⁇ refers to an angle formed by the strip 110 and the geometric pattern 200 as shown in FIG. 4.
  • the geometric pattern 200 may be formed by pressing the thin strip 110 by using a rolling roller in which a master pattern for forming the geometric pattern 200 is embossed or engraved.
  • the geometric pattern 200 may be formed by pressing the thin strip 110 using a press in which the geometric pattern 200 is embossed or engraved.
  • FIG 5 and 6 are views illustrating a solar cell connection member 100 according to another embodiment of the present invention.
  • the solar cell connection member 100 is in the form of a thin strip 110 extending in a first direction, wherein a plurality of geometric patterns 200 are textured on at least one surface of the thin strip 110.
  • the pattern unit 120 may be formed.
  • the geometric pattern 200 has a hemispherical cross section, and may be formed in a shape extending in a second direction perpendicular to the first direction, and the geometric pattern 200 may extend in the first direction. It can be formed continuously.
  • the geometric pattern 200 may be formed in the shape of a cone or a pyramid having a rounded horn shape.
  • the pyramid structure may include a triangular pyramid and a square pyramid structure.
  • the width L of the geometric pattern 200 may have a value of 200 ⁇ m to 500 ⁇ m, and the height of the geometric pattern 200 ( H) may have a value of 10 ⁇ m to 100 ⁇ m.
  • the contact angle ⁇ of the geometric pattern 200 may have a value of 45 degrees to 90 degrees.
  • the geometric pattern 200 may be formed by pressing the thin strip 110 by using a rolling roller in which a master pattern for forming the geometric pattern 200 is embossed or engraved.
  • the geometric pattern 200 is formed by pressing the thin strip 110 using a press in which a master pattern for forming the geometric pattern 200 is embossed or engraved. You may.
  • FIG. 7 is a view showing a state in which the solar cell connection member 100 is attached to the electrode of the solar cell 20 according to an embodiment of the present invention.
  • the solar cell connection member 100 having the plurality of geometric patterns textured may electrically connect the electrodes 21 disposed on the top surface of the solar cell and the electrodes 22 disposed on the bottom surface of the neighboring solar cell. Can be.
  • the solar cell connection member 100 attached to the top electrode 21 of the solar cell 20 reflects the sunlight incident on the surface of the solar cell 20 so as to be irradiated to the solar cell again.
  • the incident solar light can be reused to increase the efficiency of the solar cell module.
  • the solar cell connection member 100 attached to the bottom electrode 22 of the solar cell may have a wide contact area contacting the solar cell through the geometric pattern 200 as described above.
  • the contact area is wider, the adhesion between the solar cell and the solar cell connection member may be increased, and the amount of power transfer between the solar cell and the solar cell connection member may be increased, thereby improving efficiency.
  • FIG. 8 is a view showing a solar cell connection member 100 according to another embodiment of the present invention.
  • a pattern unit 120 on which the plurality of geometric patterns are textured and a flat portion 130 on which the geometric patterns are not textured may be disposed on one surface of the solar cell connection member 100.
  • the pattern portion 120 and the flat portion 130 may be alternately formed.
  • the length of the region where the pattern portion 120 is formed is d1
  • the length of the region where the planar portion 130 is formed is d2.
  • the d1 and d2 may be formed to the same length as the electrode portion of the solar cell.
  • the d2 may be formed to the same length as the length of the vacuum adsorption equipment is connected during the tabbing process.
  • the vacuum adsorption equipment is a device for moving the solar cell connection member 100 to the solar cell 20 during the tabbing process.
  • the vacuum adsorption equipment may be connected to the flat part 130 to move the solar cell connection member 100 during a tabbing process.
  • the vacuum adsorption equipment When the vacuum adsorption equipment is connected to the pattern unit 120, there is a possibility that the adsorption may not occur properly due to the textured pattern. Accordingly, the portion to which the vacuum adsorption equipment is connected may be formed as the flat portion 130 where the pattern is not textured, so that the adsorption may be smoothly performed.
  • planar portion 130 may be attached to the bottom electrode 22 of the solar cell to serve to form a wide contact area in contact with the solar cell.
  • FIG 9 is a view illustrating a state in which the solar cell connection member 100 is attached to the electrode of the solar cell 20 according to another embodiment of the present invention.
  • the pattern portion 120 of the solar cell connection member 100 is connected to an electrode 21 disposed on an upper surface of the solar cell, and the planar portion is disposed on a lower surface of the solar cell adjacent to the solar cell. It is connected to the electrode 22, it is possible to electrically connect the solar cells to each other.
  • the pattern unit 120 attached to the top electrode 21 of the solar cell 20 reflects the sunlight incident on the surface of the solar cell 20 so as to be irradiated to the solar cell again.
  • the incident solar light can be reused to increase the efficiency of the solar cell module.
  • planar portion 130 attached to the bottom electrode 22 of the solar cell may have a wide contact area in contact with the solar cell.
  • the contact area is wider, the adhesion between the solar cell and the solar cell connection member may be increased, and the amount of power transfer between the solar cell and the solar cell connection member may be increased, thereby improving efficiency.
  • 10 to 12 are views for explaining a method of manufacturing a solar cell connection member according to an embodiment of the present invention.
  • the solar cell connection member 100 is formed by rolling a wire to form a thin strip, a texturing step of forming a plurality of geometric patterns on at least one surface of the strip, heat treating the textured strip, and the heat treatment.
  • the method may include forming a metal alloy layer on the strip.
  • the step of forming the strip and the texturing step can be performed simultaneously by rolling with a roll.
  • a master pattern for forming the geometric pattern may be embossed or engraved on the roll.
  • the wire supplied from the first winding roller 310 may be processed into a thin strip by the rolling roller 400 and a geometric pattern may be formed on at least one surface thereof.
  • At least one rolling roller 410, 420 of the pair of rolling roller 400 may be formed in an embossed or intaglio master pattern for forming the geometric pattern.
  • the embossed or intaglio pattern formed on the rolling roller 400 may be formed entirely on the surface of the rolling roller 400, and may be formed only in part.
  • the pattern portion 120 is formed by the portion where the pattern is formed, and the flat portion 130 may be formed by the portion where the pattern is not formed.
  • the pattern portion 120 and the flat portion 130 may be formed on the thin strip by adjusting the gap between the rolling rollers installed up and down.
  • the rolling roller 400 may be provided with an adjusting means (not shown) for adjusting the interval between the upper rolling roller 410 and the lower rolling roller 420.
  • the texturing step may be performed by forging using a press.
  • the wire supplied from the winding roller 310 is processed into a thin strip by the rolling roller 400, and then presses the thin strip using the press 500 to press the geometric pattern 200. Can be formed.
  • At least one press 510 or 520 of the pair of presses 500 may be embossed or engraved with a master pattern for forming the geometric pattern.
  • the strip textured through the rolling roller 400 or the press 500 process may be subjected to a heat treatment process to have desired characteristics of the user.
  • the heat treatment process may use electric or indirect heat.
  • the characteristics desired by the user include yield strength, tensile strength and elongation.
  • a metal alloy layer may be formed on the heat treated strip.
  • the metal alloy layer may be formed using a dipping coating or an electroplating method.
  • the metal alloy layer may be a tin-lead alloy or a tin-lead-silver alloy, and the metal alloy layer may be formed to have a thickness of 5 ⁇ m to 30 ⁇ m.
  • the metal alloy layer according to an embodiment of the present invention can be formed using a dipping coating.
  • the alloy tank 600 may be provided with a material forming the metal alloy layer, and the alloy tank 600 may include at least one shaft 610 for coating the metal alloy on the strip. .
  • the shaft 610 may serve to guide the strip to form a uniform coating layer on the surface of the strip, and may also serve to smooth the coated strip surface.
  • the metal alloy layer may be formed using an electroplating method.
  • Electroplating is a method of forming the surface of the heat-treated strip into a thin film of a metal such as tin-lead alloy or tin-lead-silver alloy using the principle of electrolysis.
  • the strip on which the metal alloy layer is formed may be wound by the second winding roller 320.
  • FIG. 13 is a view showing a solar cell connection member manufacturing apparatus according to an embodiment of the present invention.
  • the apparatus for manufacturing a solar cell connection member processes a first winding roller 310 for supplying a wire and a wire supplied from the first winding roller 310 in a thin strip shape, and at least one surface of the strip.
  • a pair of rolling rollers 400 installed up and down for texturing the geometric patterns, an alloy tank 600 containing a coating liquid for forming a metal coating layer on the textured strip, and a second for winding the metal coated strip. It may include a winding roller 320.
  • the rolling roller 400 may include an upper roller 410 and a lower roller 420 for processing the copper wire in the form of a wire in the form of a thin strip.
  • the upper roller 410 or the lower roller 420 may be formed by embossing or engraving a master pattern for texturing a geometric pattern on a thin strip.
  • the rolling roller 400 may further include an adjusting means (not shown) for adjusting the gap between the upper roller 410 and the lower roller 420.
  • the apparatus for manufacturing a solar cell connection member according to another embodiment of the present invention may further include a pair of presses (not shown) disposed up and down to texture a plurality of geometric patterns on at least one surface of the strip.
  • the press 500 may be formed by embossing or engraving a master pattern for texturing a geometric pattern on a thin strip.
  • At least one shaft 610 for coating a metal alloy on the strip may be provided in the alloy tank 600.
  • the shaft 610 may serve to guide the strip to form a uniform coating layer on the strip surface, and may also serve to smooth the coated strip surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a solar battery cell connecting member having the shape of a thin strip and a patterned portion which has multiple geometric patterns textured thereon and which is disposed on at least one surface of the thin strip.

Description

태양전지 셀 연결부재 및 이의 제조방법, 태양전지 셀 연결부재 제조장치Solar cell connection member and manufacturing method thereof, solar cell connection member manufacturing apparatus
본 발명은 태양광 에너지를 전기 에너지로 변환시키는 태양전지 모듈에 사용되는 태양전지 셀 연결부재 및 이의 제조방법, 태양전지 셀 연결부재 제조장치에 관한 것으로 특히, 상기 태양전지 셀 연결부재 표면에 패턴을 형성하여 효율이 향상된 태양전지 셀 연결부재 및 이의 제조방법, 이러한 태양전지 셀 연결부재 제조장치에 관한 것이다.The present invention relates to a solar cell connecting member used in a solar cell module for converting solar energy into electrical energy, a method for manufacturing the same, and a solar cell connecting member manufacturing apparatus. The present invention relates to a solar cell connection member having improved efficiency and a method of manufacturing the same, and a solar cell connection member manufacturing apparatus.
근래 들어 석유나 석탄과 같은 화석연료의 사용이 증대됨에 따라 자원고갈 및 환경오염과 같은 문제가 대두되었다. 이러한 문제를 해결하고자 대체에너지 개발에 대한 관심이 높아지고 있다. 특히, 태양에너지를 이용한 태양광 기술은 친환경적이면서도 영속적인 공급이 가능하다는 장점 때문에 차세대 에너지원으로 각광받고 있다.In recent years, as fossil fuels such as oil and coal have increased, problems such as resource depletion and environmental pollution have emerged. In order to solve these problems, interest in developing alternative energy is increasing. In particular, photovoltaic technology using solar energy has been in the spotlight as the next generation energy source because of the advantage that it can be supplied environmentally and permanently.
이러한 태양광 기술 가운데 대표적인 것이 태양전지이다. 상기 태양전지는 태양광에너지로부터 직접 전력을 생산시키는 장치이다. 상기 태양전지는 태양에너지를 전기에너지로 변환시키는 다수의 태양전지 셀(cell) 및 상기 태양전지 셀들을 전기적으로 연결하는 연결부재를 포함하며, 상기 연결부재에 의해 연결된 복수의 태양전지 셀들을 태양전지 모듈이라고 한다.A typical solar cell is solar cells. The solar cell is a device for producing power directly from solar energy. The solar cell includes a plurality of solar cells for converting solar energy into electrical energy and a connection member for electrically connecting the solar cells, wherein the plurality of solar cells connected by the connection member are solar cells. It is called a module.
상기 태양전지 셀(cell)은 p-n 접합으로 이루어진 다이오드이다. 태양광이 상기 태양전지 셀에 조사되면 전자-정공 쌍인 엑시톤(exiton)이 생성이 되고, 상기 엑시톤이 쪼개져서 전자는 n층으로, 정공은 p층으로 이동함으로써, 접합부 사이에 광기전력이 발생할 수 있다. 따라서 상기 태양전지 셀(cell)의 일면이 플러스(+)전극을 갖는 경우, 타면이 마이너스(-)전극을 갖는다.The solar cell is a diode consisting of a p-n junction. When sunlight is irradiated to the solar cell, an exciton, which is an electron-hole pair, is generated, and the exciton is split so that electrons move to n layers and holes move to p layers. have. Accordingly, when one surface of the solar cell has a positive electrode, the other surface has a negative electrode.
도 1은 종래 복수개의 태양전지 셀(20)로 구성된 태양전지 모듈(10)을 나타낸 도이며, 도 2는 종래 태양전지 셀(20)과 태양전지 셀 연결부재(30)가 연결되는 구조를 나타낸 도이다. 도 1 및 도 2를 참조하면, 종래 태양전지 셀(20)은 상면에 플러스(+) 전극(21)이 형성되고, 하면에는 마이너스(-) 전극(22)이 형성된 구조로 이루어진다. 상기 태양전지 셀 연결부재(30)는 상기 태양전지 셀(20)의 상면에 형성된 플러스(+) 전극(21)과 인접한 태양전지 셀(20)의 하면에 형성된 마이너스(-) 전극(22)을 전기적으로 연결하게 된다.1 is a view showing a solar cell module 10 composed of a plurality of conventional solar cells 20, Figure 2 shows a structure in which the conventional solar cell 20 and the solar cell connecting member 30 is connected. It is also. 1 and 2, the conventional solar cell 20 has a structure in which a positive (+) electrode 21 is formed on an upper surface thereof and a negative (−) electrode 22 is formed on a lower surface thereof. The solar cell connecting member 30 has a negative (-) electrode 22 formed on the lower surface of the solar cell 20 adjacent to the positive (+) electrode 21 formed on the upper surface of the solar cell 20. Electrical connection.
상기 태양전지 셀 연결부재(30)와 상기 태양전지 셀(20)을 서로 연결하여 모듈화하는 열 접합 공정을 태빙(tabbing) 공정이라 하며, 상기 태빙 공정에는 인두기에 의해 직접 연결하는 방식과 적외선 램프, 할로겐 램프 및 고온 가열(hot air)에 의해 간접 연결하는 방식이 있다.A thermobonding process for connecting the solar cell connection member 30 and the solar cell 20 to each other and modularizing is called a tabbing process. In the tabbing process, a method of directly connecting by means of a soldering iron and an infrared lamp, Indirect connection is achieved by halogen lamps and hot air.
한편, 이러한 태양전지 모듈은 상기 태양전지 셀 및 태양전지 셀 연결부재의 구조에 따라 그 효율이 달라지는데, 최대한 많은 태양광을 흡수하기 위해 다양한 구조의 태양전지 모듈이 개발되고 있다.Meanwhile, the efficiency of the solar cell module varies depending on the structure of the solar cell and the solar cell connection member, and various solar cell modules have been developed to absorb as much sunlight as possible.
이에 본 발명에서는 상기 태양전지 셀 연결부재에 기하학적 모양의 패턴을 텍스처링하여 입사된 광의 재사용률을 높일 수 있는 태양전지 셀 연결부재 및 이의 제조방법을 제공하고자 한다. 또한, 이러한 태양전지 셀 연결부재를 제조할 수 있는 제조장치를 제공하고자 한다.Accordingly, the present invention provides a solar cell connection member and a method of manufacturing the same, which can increase the reuse rate of incident light by texturing a geometric pattern on the solar cell connection member. In addition, the present invention provides a manufacturing apparatus capable of manufacturing such a solar cell connection member.
박형의 스트립(strip) 형태를 가지며, 상기 박형의 스트립의 적어도 일면에는 복수개의 기하학적 패턴이 텍스처링(texuring) 된 패턴부가 배치되어 있는 태양전지 셀 연결부재를 제공한다.Provided is a solar cell connection member having a thin strip shape and having at least one surface of the thin strip a pattern portion having a plurality of geometric patterns textured thereon.
상기 패턴부 이외의 영역에는 상기 기하학적 패턴이 텍스처링 되지 않은 평면부가 배치될 수 있다.In a region other than the pattern portion, a planar portion on which the geometric pattern is not textured may be disposed.
상기 패턴부 및 평면부는 교대로 반복되어 배치될 수 있다.The pattern portion and the planar portion may be arranged alternately and repeatedly.
상기 기하학적 패턴은 단면이 반구형이며 제 1 방향으로 연장된 형상을 가질 수 있다.The geometric pattern may have a hemispherical cross section and a shape extending in the first direction.
상기 패턴은 상기 제 1 방향과 직교하는 제 2 방향으로 연속적으로 형성될 수 있다.The pattern may be continuously formed in a second direction perpendicular to the first direction.
상기 반구형 단면의 접촉각은 45도 내지 90도의 값을 가질 수 있다.The contact angle of the hemispherical cross section may have a value of 45 degrees to 90 degrees.
상기 기하학적 패턴은 뿔 정상이 둥근 형태를 갖는 원뿔 또는 각뿔 구조체 형상을 가질 수 있다.The geometric pattern may have the shape of a cone or a pyramid having a rounded horn top.
상기 원뿔 또는 각뿔 구조체의 접촉각은 45도 내지 90도의 값을 가질 수 있다.The contact angle of the cone or pyramid structure may have a value of 45 degrees to 90 degrees.
와이어를 압연하여 박형의 스트립을 형성하는 단계, 상기 스트립의 적어도 일면에 복수개의 기하학적 패턴을 형성하는 텍스처링 단계, 상기 텍스처링된 스트립에 열처리하는 단계 및 상기 열처리된 스트립에 금속 합금층을 형성하는 단계를 포함하는 태양전지 셀 연결부재 제조방법을 제공한다.Rolling a wire to form a thin strip, texturing to form a plurality of geometric patterns on at least one surface of the strip, heat treating the textured strip, and forming a metal alloy layer on the heat treated strip. It provides a method for manufacturing a solar cell connection member comprising a.
상기 스트립을 형성하는 단계 및 텍스처링 단계는 롤(role)을 이용한 압연에 의하여 동시에 진행될 수 있다.The step of forming the strip and the texturing step can be performed simultaneously by rolling with a roll.
상기 텍스처링 단계는 프레스를 이용한 단조에 의하여 진행될 수 있다.The texturing step may be performed by forging using a press.
상기 금속 합금층을 형성하는 단계에서는 디핑 코팅 또는 전기 도금 방식을 적용할 수 있다.In the forming of the metal alloy layer, dipping coating or electroplating may be applied.
와이어를 공급하기 위한 제 1 권취롤러, 상기 제 1 권취롤러에서 공급되는 와이어를 박형의 스트립 형태로 가공하는 동시에 적어도 일면에 복수개의 기하학적 패턴을 텍스처링 하기 위하여 상하로 설치된 한쌍의 압연롤러, 상기 텍스처링된 스트립에 금속코팅층을 형성하기 위한 코팅액이 담겨지는 합금탱크 및 상기 금속코팅 처리된 스트립을 권선하기 위한 제 2 권취롤러를 포함하는 태양전지 셀 연결부재 제조장치를 제공한다.A first winding roller for supplying a wire, a pair of rolling rollers vertically installed to process a plurality of geometric patterns on at least one surface while processing the wire supplied from the first winding roller into a thin strip form, the textured Provided is a solar cell connection member manufacturing apparatus including an alloy tank containing a coating liquid for forming a metal coating layer on a strip and a second winding roller for winding the metal coated strip.
상기 압연롤러에는 상기 스트립에 기하학적 패턴을 텍스처링 하기 위한 마스터 패턴이 양각 또는 음각으로 형성될 수 있다.The rolling roller may be embossed or engraved with a master pattern for texturing a geometric pattern on the strip.
상기 제 2 압연롤러는 상부 압연롤러와 하부 압연롤러 사이의 간격을 조절하기 위한 조절수단을 포함할 수 있다.The second rolling roller may include an adjusting means for adjusting the gap between the upper rolling roller and the lower rolling roller.
와이어를 공급하기 위한 제 1 권취롤러, 상기 제 1 권취롤러에서 공급되는 와이어를 박형의 스트립 형태로 가공하기 위하여 상하로 설치된 한쌍의 압연롤러, 상기 스트립의 적어도 일면에 복수개의 기하학적 패턴을 텍스처링 하기 위하여 상하로 설치된 한쌍의 프레스, 상기 텍스처링된 스트립에 금속코팅층을 형성하기 위한 코팅액이 담겨지는 합금탱크 및 상기 금속코팅 처리된 스트립을 권선하기 위한 제 2 권취롤러를 포함하는 태양전지 셀 연결부재 제조장치를 제공한다.A first winding roller for supplying a wire, a pair of rolling rollers installed up and down to process the wire supplied from the first winding roller into a thin strip form, and for texturing a plurality of geometric patterns on at least one surface of the strip. An apparatus for manufacturing a solar cell connection member comprising a pair of presses installed up and down, an alloy tank containing a coating liquid for forming a metal coating layer on the textured strip, and a second winding roller for winding the metal coated strip. to provide.
상기 태양전지 셀 연결부재에 일정한 반사 각도를 갖는 기하학적 패턴을 통하여 상기 태양전지 모듈에 입사되는 태양광의 재사용률을 높임으로써 상기 태양전지 모듈의 효율을 증대시킬 수 있다.The efficiency of the solar cell module may be increased by increasing the reuse rate of sunlight incident on the solar cell module through a geometric pattern having a predetermined reflection angle on the solar cell connection member.
상기 태양전지 셀 연결부재에 형성된 기하학적 패턴을 통하여 상기 태양전지 셀과의 접촉 면적을 크게 함으로써, 태빙(tabbing) 공정시 접착력를 증가시킬 수 있다. 또한, 상기 태양전지 셀과 연결부재 사이에 전력 이동량을 증가시켜 상기 태양전지 모듈의 효율을 증대시킬 수 있다.By increasing the contact area with the solar cell through the geometric pattern formed on the solar cell connection member, it is possible to increase the adhesive force during the tabbing process. In addition, it is possible to increase the efficiency of the solar cell module by increasing the amount of power transfer between the solar cell and the connection member.
도 1은 종래 복수개의 태양전지 셀(20)로 구성된 태양전지 모듈(10)을 나타낸 도이다.1 is a diagram illustrating a solar cell module 10 composed of a plurality of solar cell cells 20.
도 2는 종래 태양전지 셀(20)과 태양전지 셀 연결부재(30)가 연결되는 구조를 나타낸 도이다.2 is a view illustrating a structure in which a conventional solar cell 20 and a solar cell connection member 30 are connected.
도 3은 본 발명의 일실시예에 따른 태양전지 셀 연결부재(100)를 나타낸 도이다.3 is a view showing a solar cell connection member 100 according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 태양전지 셀 연결부재(100)의 단면도이다.4 is a cross-sectional view of the solar cell connection member 100 according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 다른 일실시예에 따른 태양전지 셀 연결부재(100)를 나타낸 도이다.5 and 6 are views illustrating a solar cell connection member 100 according to another embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 태양전지 셀 연결부재(100)가 태양전지 셀(20)의 전극에 부착된 모습을 나타낸 도이다.7 is a view showing a state in which the solar cell connection member 100 is attached to the electrode of the solar cell 20 according to an embodiment of the present invention.
도 8은 본 발명의 다른 일실시예에 따른 태양전지 셀 연결부재(100)를 나타낸 도이다.8 is a view showing a solar cell connection member 100 according to another embodiment of the present invention.
도 9는 본 발명의 다른 일실시예에 따른 태양전지 셀 연결부재(100)가 태양전지 셀(20)의 전극에 부착된 모습을 나타낸 도이다.9 is a view illustrating a state in which the solar cell connection member 100 is attached to the electrode of the solar cell 20 according to another embodiment of the present invention.
도 10 내지 도 12는 본 발명의 일실시예에 따른 태양전지 셀 연결부재의 제조 방법을 설명하기 위한 도이다.10 to 12 are views for explaining a method of manufacturing a solar cell connection member according to an embodiment of the present invention.
도 13은 본 발명의 일실시예에 따른 태양전지 셀 연결부재의 제조 장치를 나타낸 도이다.13 is a view showing an apparatus for manufacturing a solar cell connection member according to an embodiment of the present invention.
이하, 본 발명의 일실시예에 따른 태양전지 셀 연결부재 및 이의 제조방법, 태양전지 셀 연결부재 제조장치에 대하여 첨부된 도면들을 참조하여 상세하게 설명한다. 본 발명의 범위가 하기 설명하는 실시예나 도면들에 의해 제한되는 것은 아니며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양한 다른 형태로 구현할 수 있을 것이다.Hereinafter, a solar cell connection member according to an embodiment of the present invention, a manufacturing method thereof, and a solar cell connection member manufacturing apparatus will be described in detail with reference to the accompanying drawings. The scope of the present invention is not limited by the embodiments or drawings described below, and those skilled in the art can implement the present invention in various other forms without departing from the technical spirit of the present invention. will be.
본 명세서에 있어서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예들을 설명하기 위한 목적으로 예시된 것이며, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In this specification, specific structural to functional descriptions are merely illustrated for the purpose of describing embodiments of the present invention, and embodiments of the present invention may be embodied in various forms and are limited to the embodiments described herein. It is not to be understood that the present invention is to be construed as including all modifications, equivalents, and substitutes included in the spirit and technical scope of the present invention.
참고로, 상기 도면에서는, 이해를 돕기 위하여 각 구성요소와 그 형상 등이 간략하게 그려지거나 또는 과장되어 그려지기도 하였다. 도면상에서 동일한 부호로 표시된 요소는 동일한 요소를 의미한다.For reference, in the drawing, each component and its shape, etc. are simply drawn or exaggerated for clarity. Elements denoted by the same reference numerals in the drawings means the same element.
도 3은 본 발명의 일실시예에 따른 태양전지 셀 연결부재(100)를 나타낸 도이며, 도 4는 본 발명의 일실시예에 따른 태양전지 셀 연결부재(100)의 단면도이다.3 is a view showing a solar cell connection member 100 according to an embodiment of the present invention, Figure 4 is a cross-sectional view of the solar cell connection member 100 according to an embodiment of the present invention.
도 3 및 도 4를 참조하면, 상기 태양전지 셀 연결부재(100)는 제 1 방향으로 연장된 박형의 스트립(110) 형태로 형성될 수 있다. 이하 도면에서 상기 스트립(110)의 길이 방향을 제 1 방향이라 하고, 폭 방향을 제 2 방향이라 한다.3 and 4, the solar cell connection member 100 may be formed in the form of a thin strip 110 extending in a first direction. Hereinafter, the longitudinal direction of the strip 110 is referred to as a first direction, and the width direction is referred to as a second direction.
일반적으로 상기 태양전지 셀 연결부재(100)는 1.5mm 내지 3mm의 폭을 가지며, 0.01mm 내지 0.2mm의 두께를 가지는 박형의 스트립 형태로 형성될 수 있다.In general, the solar cell connection member 100 may have a width of 1.5 mm to 3 mm and may be formed in a thin strip form having a thickness of 0.01 mm to 0.2 mm.
상기 태양전지 셀 연결부재(100)는 구리 소재의 와이어를 압연하여 상기와 같은 두께를 가지는 박형의 스트립(110) 형태로 가공할 수 있다.The solar cell connection member 100 may be processed into a thin strip 110 having a thickness as described above by rolling a copper wire.
상기 박형의 스트립(110)의 적어도 일면에는 복수개의 기하학적 패턴(200)이 텍스처링(texturing)되어 있는 패턴부(120)가 형성될 수 있다.On at least one surface of the thin strip 110, a pattern unit 120 in which a plurality of geometric patterns 200 is textured may be formed.
상기 박형의 스트립(110)에서 상기 기하학적 패턴(200)이 형성되어 있지 않은 영역을 평면부(130)라 하며, 후술할 본 발명의 다른 일실시예에서는 상기 패턴부(120)와 평면부(130)가 서로 교대로 반복되어 형성될 수 있다.The region in which the geometric pattern 200 is not formed in the thin strip 110 is called a planar portion 130. In another embodiment of the present invention, the pattern portion 120 and the planar portion 130 will be described later. ) May be formed by alternately repeating each other.
상기 기하학적 패턴(200)은 단면이 반구형이며, 상기 제 1 방향으로 연장된 형상으로 형성될 수 있으며, 상기 기하학적 패턴(200)은 상기 제 1 방향과 직교하는 제 2 방향으로 연속적으로 형성될 수 있다.The geometric pattern 200 may have a hemispherical cross section, and may be formed in a shape extending in the first direction, and the geometric pattern 200 may be continuously formed in a second direction perpendicular to the first direction. .
도 3에서는 상기 기하학적 패턴(200)이 상기 제 1 방향으로 연장된 형상으로 도시되었으나 반드시 이에 한정되는 것은 아니며, 후술할 본 발명의 다른 일실시예에서는 상기 패턴이 상기 제 2 방향으로 연장된 형상으로 형성될 수도 있다.In FIG. 3, the geometric pattern 200 is illustrated as extending in the first direction, but is not necessarily limited thereto. In another embodiment of the present invention, the pattern extends in the second direction. It may be formed.
도 4를 참조하면, 상기 기하학적 패턴(200)의 폭(L)은 200㎛ 내지 500㎛의 값을 가질 수 있으며, 상기 기하학적 패턴(200)의 높이(H)는 10㎛ 내지 100㎛의 값을 가질 수 있다. 또한, 상기 기하학적 패턴(200)의 접촉각(θ)은 45도 내지 90도의 값을 가질 수 있다. 이하에서, 상기 접촉각(θ)은 도 4에 도시된 바와 같이 상기 스트립(110)과 상기 기하학적 패턴(200)이 이루는 각을 말한다.Referring to FIG. 4, the width L of the geometric pattern 200 may have a value of 200 μm to 500 μm, and the height H of the geometric pattern 200 has a value of 10 μm to 100 μm. Can have In addition, the contact angle θ of the geometric pattern 200 may have a value of 45 degrees to 90 degrees. Hereinafter, the contact angle θ refers to an angle formed by the strip 110 and the geometric pattern 200 as shown in FIG. 4.
상기 기하학적 패턴(200)은 상기 기하학적 패턴(200)을 형성하기 위한 마스터 패턴이 양각 또는 음각으로 형성되어 있는 압연 롤러를 이용하여 상기 박형의 스트립(110)을 가압하여 형성할 수 있다.The geometric pattern 200 may be formed by pressing the thin strip 110 by using a rolling roller in which a master pattern for forming the geometric pattern 200 is embossed or engraved.
본 발명의 다른 일실시예에서 상기 기하학적 패턴(200)은 상기 기하학적 패턴(200)이 양각 또는 음각으로 형성되어 있는 프레스를 이용하여 상기 박형의 스트립(110)을 가압하여 형성할 수도 있다.In another embodiment of the present invention, the geometric pattern 200 may be formed by pressing the thin strip 110 using a press in which the geometric pattern 200 is embossed or engraved.
도 5 및 도 6은 본 발명의 다른 일실시예에 따른 태양전지 셀 연결부재(100)를 나타낸 도이다.5 and 6 are views illustrating a solar cell connection member 100 according to another embodiment of the present invention.
상기 태양전지 셀 연결부재(100)는 제 1 방향으로 연장된 박형의 스트립(110) 형태로서, 상기 박형의 스트립(110)의 적어도 일면에는 복수개의 기하학적 패턴(200)이 텍스처링(texturing)되어 있는 패턴부(120)가 형성될 수 있다.The solar cell connection member 100 is in the form of a thin strip 110 extending in a first direction, wherein a plurality of geometric patterns 200 are textured on at least one surface of the thin strip 110. The pattern unit 120 may be formed.
도 5를 참조하면, 상기 기하학적 패턴(200)은 단면이 반구형이며, 상기 제 1 방향과 직교하는 제 2 방향으로 연장된 형상으로 형성될 수 있으며, 상기 기하학적 패턴(200)은 상기 제 1 방향으로 연속적으로 형성될 수 있다.Referring to FIG. 5, the geometric pattern 200 has a hemispherical cross section, and may be formed in a shape extending in a second direction perpendicular to the first direction, and the geometric pattern 200 may extend in the first direction. It can be formed continuously.
도 6을 참조하면, 상기 기하학적 패턴(200)은 뿔 정상이 둥근 형태를 갖는 원뿔 또는 각뿔 구조체 형태로 형성될 수 있다. 상기 각뿔 구조체에는 삼각뿔 및 사각뿔 구조체를 포함할 수 있다.Referring to FIG. 6, the geometric pattern 200 may be formed in the shape of a cone or a pyramid having a rounded horn shape. The pyramid structure may include a triangular pyramid and a square pyramid structure.
상기 도 5 및 도 6의 경우에도 상기 도 4의 경우와 마찬가지로, 상기 기하학적 패턴(200)의 폭(L)은 200㎛ 내지 500㎛의 값을 가질 수 있으며, 상기 기하학적 패턴(200)의 높이(H)는 10㎛ 내지 100㎛의 값을 가질 수 있다. 또한, 상기 기하학적 패턴(200)의 접촉각(θ)은 45도 내지 90도의 값을 가질 수 있다.5 and 6, as in the case of FIG. 4, the width L of the geometric pattern 200 may have a value of 200 μm to 500 μm, and the height of the geometric pattern 200 ( H) may have a value of 10 μm to 100 μm. In addition, the contact angle θ of the geometric pattern 200 may have a value of 45 degrees to 90 degrees.
상기 기하학적 패턴(200)은 상기 기하학적 패턴(200)을 형성하기 위한 마스터 패턴이 양각 또는 음각으로 형성되어 있는 압연 롤러를 이용하여 상기 박형의 스트립(110)을 가압하여 형성할 수 있다.The geometric pattern 200 may be formed by pressing the thin strip 110 by using a rolling roller in which a master pattern for forming the geometric pattern 200 is embossed or engraved.
본 발명의 다른 일실시예에서 상기 기하학적 패턴(200)은 상기 기하학적 패턴(200)을 형성하기 위한 마스터 패턴이 양각 또는 음각으로 형성되어 있는 프레스를 이용하여 상기 박형의 스트립(110)을 가압하여 형성할 수도 있다.In another embodiment of the present invention, the geometric pattern 200 is formed by pressing the thin strip 110 using a press in which a master pattern for forming the geometric pattern 200 is embossed or engraved. You may.
도 7은 본 발명의 일실시예에 따른 태양전지 셀 연결부재(100)가 태양전지 셀(20)의 전극에 부착된 모습을 나타낸 도이다.7 is a view showing a state in which the solar cell connection member 100 is attached to the electrode of the solar cell 20 according to an embodiment of the present invention.
상기 복수개의 기하학적 패턴이 텍스처링된 태양전지 셀 연결부재(100)는 태양전지 셀의 상면에 배치된 전극(21)과 이웃하는 태양전지 셀의 하면에 배치된 전극(22)을 서로 전기적으로 연결시킬 수 있다.The solar cell connection member 100 having the plurality of geometric patterns textured may electrically connect the electrodes 21 disposed on the top surface of the solar cell and the electrodes 22 disposed on the bottom surface of the neighboring solar cell. Can be.
상기 태양전지 셀(20)의 상면 전극(21)에 부착되는 상기 태양전지 셀 연결부재(100)는 표면에 입사되는 태양광을 반사시켜 다시 태양전지 셀에 조사되도록 한다. 이와 같이 입사된 태양광을 재사용하여 태양전지 모듈의 효율을 증대시킬 수 있다.The solar cell connection member 100 attached to the top electrode 21 of the solar cell 20 reflects the sunlight incident on the surface of the solar cell 20 so as to be irradiated to the solar cell again. The incident solar light can be reused to increase the efficiency of the solar cell module.
또한, 상기 태양전지 셀의 하면 전극(22)에 부착되는 상기 태양전지 셀 연결부재(100)는 상기와 같은 기하학적 패턴(200)을 통하여 상기 태양전지 셀과 접촉하는 접촉면적을 넓게 형성할 수 있다. 이와 같이 접촉면적을 넓게 형성하면 상기 태양전지 셀과 태양전지 셀 연결부재간의 접착력을 증대시킬 수 있고, 상기 태양전지 셀과 태양전지 셀 연결부재간의 전력 이동량이 증가하여 효율을 향상시킬 수 있다.In addition, the solar cell connection member 100 attached to the bottom electrode 22 of the solar cell may have a wide contact area contacting the solar cell through the geometric pattern 200 as described above. . When the contact area is wider, the adhesion between the solar cell and the solar cell connection member may be increased, and the amount of power transfer between the solar cell and the solar cell connection member may be increased, thereby improving efficiency.
도 8은 본 발명의 다른 일실시예에 따른 태양전지 셀 연결부재(100)를 나타낸 도이다.8 is a view showing a solar cell connection member 100 according to another embodiment of the present invention.
도 8을 참조하면, 상기 태양전지 셀 연결부재(100)의 일면에는 상기 복수개의 기하학적 패턴이 텍스처링된 패턴부(120) 및 상기 기하학적 패턴이 텍스처링 되지 않은 평면부(130)가 배치될 수 있다. 상기 패턴부(120)와 평면부(130)는 교대로 반복되어 형성될 수 있다.Referring to FIG. 8, a pattern unit 120 on which the plurality of geometric patterns are textured and a flat portion 130 on which the geometric patterns are not textured may be disposed on one surface of the solar cell connection member 100. The pattern portion 120 and the flat portion 130 may be alternately formed.
이하에서, 상기 패턴부(120)가 형성되어 있는 영역의 길이를 d1, 상기 평면부(130)가 형성되어 있는 영역의 길이를 d2라고 한다. 상기 d1과 d2는 태양전지 셀의 전극부의 길이와 동일한 길이로 형성될 수 있다. 또한, 본 발명의 다른 일실시예에서는 상기 d2는 태빙(tabbing) 공정 시 진공 흡착 장비가 연결되는 길이와 동일한 길이로 형성될 수 있다.Hereinafter, the length of the region where the pattern portion 120 is formed is d1, and the length of the region where the planar portion 130 is formed is d2. The d1 and d2 may be formed to the same length as the electrode portion of the solar cell. In addition, in another embodiment of the present invention, the d2 may be formed to the same length as the length of the vacuum adsorption equipment is connected during the tabbing process.
상기 진공 흡착 장비는 태빙 공정시 상기 태양전지 셀 연결부재(100)를 태양전지 셀(20)로 이동시키기 위한 장비이다.The vacuum adsorption equipment is a device for moving the solar cell connection member 100 to the solar cell 20 during the tabbing process.
상기 진공 흡착 장비는 태빙(tabbing) 공정 시 상기 태양전지 셀 연결부재(100)를 이동시키기 위해 상기 평면부(130)에 연결될 수 있다. 상기 진공 흡착 장비가 상기 패턴부(120)에 연결되는 경우 텍스처링된 패턴 때문에 흡착이 제대로 이루어지지 않는 문제가 발생할 가능성이 있다. 따라서, 상기 진공 흡착 장비가 연결되는 부분을 상기 패턴이 텍스처링되지 않은 평면부(130)로 형성하여 흡착이 원활하게 이루어지도록 할 수 있다.The vacuum adsorption equipment may be connected to the flat part 130 to move the solar cell connection member 100 during a tabbing process. When the vacuum adsorption equipment is connected to the pattern unit 120, there is a possibility that the adsorption may not occur properly due to the textured pattern. Accordingly, the portion to which the vacuum adsorption equipment is connected may be formed as the flat portion 130 where the pattern is not textured, so that the adsorption may be smoothly performed.
또한, 상기 평면부(130)는 상기 태양전지 셀의 하면 전극(22)에 부착되어 상기 태양전지 셀과 접촉하는 접촉면적을 넓게 형성하는 역할을 할 수도 있다.In addition, the planar portion 130 may be attached to the bottom electrode 22 of the solar cell to serve to form a wide contact area in contact with the solar cell.
도 9는 본 발명의 다른 일실시예에 따른 태양전지 셀 연결부재(100)가 태양전지 셀(20)의 전극에 부착된 모습을 나타낸 도이다.9 is a view illustrating a state in which the solar cell connection member 100 is attached to the electrode of the solar cell 20 according to another embodiment of the present invention.
상기 태양전지 셀 연결부재(100)의 패턴부(120)는 상기 태양전지 셀의 상면에 배치된 전극(21)과 연결되고, 상기 평면부는 상기 태양전지 셀과 이웃하는 태양전지 셀의 하면에 배치된 전극(22)에 연결되어, 상기 태양전지 셀들을 서로 전기적으로 연결시킬 수 있다.The pattern portion 120 of the solar cell connection member 100 is connected to an electrode 21 disposed on an upper surface of the solar cell, and the planar portion is disposed on a lower surface of the solar cell adjacent to the solar cell. It is connected to the electrode 22, it is possible to electrically connect the solar cells to each other.
상기 태양전지 셀(20)의 상면 전극(21)에 부착되는 패턴부(120)는 표면에 입사되는 태양광을 반사시켜 다시 태양전지 셀에 조사되도록 한다. 이와 같이 입사된 태양광을 재사용하여 태양전지 모듈의 효율을 증대시킬 수 있다.The pattern unit 120 attached to the top electrode 21 of the solar cell 20 reflects the sunlight incident on the surface of the solar cell 20 so as to be irradiated to the solar cell again. The incident solar light can be reused to increase the efficiency of the solar cell module.
또한, 상기 태양전지 셀의 하면 전극(22)에 부착되는 평면부(130)는 상기 태양전지 셀과 접촉하는 접촉면적을 넓게 형성할 수 있다. 이와 같이 접촉면적을 넓게 형성하면 상기 태양전지 셀과 태양전지 셀 연결부재간의 접착력을 증대시킬 수 있고, 상기 태양전지 셀과 태양전지 셀 연결부재간의 전력 이동량이 증가하여 효율을 향상시킬 수 있다.In addition, the planar portion 130 attached to the bottom electrode 22 of the solar cell may have a wide contact area in contact with the solar cell. When the contact area is wider, the adhesion between the solar cell and the solar cell connection member may be increased, and the amount of power transfer between the solar cell and the solar cell connection member may be increased, thereby improving efficiency.
도 10 내지 도 12는 본 발명의 일실시예에 따른 태양전지 셀 연결부재의 제조 방법을 설명하기 위한 도이다.10 to 12 are views for explaining a method of manufacturing a solar cell connection member according to an embodiment of the present invention.
상기 태양전지 셀 연결부재(100)는 와이어를 압연하여 박형의 스트립을 형성하는 단계, 상기 스트립의 적어도 일면에 복수개의 기하학적 패턴을 형성하는 텍스처링 단계, 상기 텍스처링된 스트립에 열처리를 하는 단계 및 상기 열처리된 스트립에 금속 합금층을 형성하는 단계를 포함할 수 있다.The solar cell connection member 100 is formed by rolling a wire to form a thin strip, a texturing step of forming a plurality of geometric patterns on at least one surface of the strip, heat treating the textured strip, and the heat treatment. The method may include forming a metal alloy layer on the strip.
상기 스트립을 형성하는 단계 및 텍스처링 단계는 롤(role)을 이용한 압연에 의하여 동시에 진행될 수 있다. 상기 롤(role)에는 상기 기하학적 패턴을 형성하기 위한 마스터 패턴이 양각 또는 음각으로 형성될 수 있다.The step of forming the strip and the texturing step can be performed simultaneously by rolling with a roll. A master pattern for forming the geometric pattern may be embossed or engraved on the roll.
도 10을 참조하면, 제 1 권취롤러(310)로부터 공급된 와이어는 압연롤러(400)에 의해 박형의 스트립 형태로 가공됨과 동시에 적어도 일면에 기하학적 패턴이 형성될 수 있다.Referring to FIG. 10, the wire supplied from the first winding roller 310 may be processed into a thin strip by the rolling roller 400 and a geometric pattern may be formed on at least one surface thereof.
상기 한쌍으로 이루어진 압연롤러(400)의 적어도 하나의 압연롤러(410, 420)에는 상기 기하학적 패턴을 형성하기 위한 마스터 패턴이 양각 또는 음각으로 형성될 수 있다.At least one rolling roller 410, 420 of the pair of rolling roller 400 may be formed in an embossed or intaglio master pattern for forming the geometric pattern.
상기 압연롤러(400)에 형성된 양각 또는 음각 패턴은 상기 압연롤러(400) 표면에 전부 형성될 수 있으며, 일부에만 형성될 수 있다. 상기 패턴이 압연롤러의 일부에만 형성되는 경우, 패턴이 형성된 부분에 의해 패턴부(120)가 형성되고, 패턴이 형성되지 않은 부분에 의해 평면부(130)가 형성될 수 있다.The embossed or intaglio pattern formed on the rolling roller 400 may be formed entirely on the surface of the rolling roller 400, and may be formed only in part. When the pattern is formed only on a part of the rolling roller, the pattern portion 120 is formed by the portion where the pattern is formed, and the flat portion 130 may be formed by the portion where the pattern is not formed.
상기 패턴이 압연롤러 표면 전부에 형성된 경우라도, 상기 상하로 설치된 압연롤러 사이의 간격을 조절함으로써, 상기 박형의 스트립에 패턴부(120) 및 평면부(130)를 형성할 수 있다.Even when the pattern is formed on the entire surface of the rolling roller, the pattern portion 120 and the flat portion 130 may be formed on the thin strip by adjusting the gap between the rolling rollers installed up and down.
상기 압연롤러(400)에는 상기 상부 압연롤러(410) 및 하부 압연롤러(420) 사이의 간격을 조절하기 위한 조절수단(미도시)이 구비될 수 있다.The rolling roller 400 may be provided with an adjusting means (not shown) for adjusting the interval between the upper rolling roller 410 and the lower rolling roller 420.
도 11에 도시된 바와 같이, 상기 텍스처링 단계는 프레스를 이용한 단조에 의하여 진행될 수도 있다. 상기 권취롤러(310)로부터 공급된 와이어는 상기 압연롤러(400)에 의해 박형의 스트립 형태로 가공된 후, 상기 프레스(500)를 이용하여 상기 박형의 스트립을 가압하여 상기 기하학적 패턴(200)을 형성할 수 있다.As shown in FIG. 11, the texturing step may be performed by forging using a press. The wire supplied from the winding roller 310 is processed into a thin strip by the rolling roller 400, and then presses the thin strip using the press 500 to press the geometric pattern 200. Can be formed.
상기 한쌍으로 이루어진 프레스(500)의 적어도 하나의 프레스(510, 520)에는 상기 기하학적 패턴을 형성하기 위한 마스터 패턴이 양각 또는 음각으로 형성될 수 있다.At least one press 510 or 520 of the pair of presses 500 may be embossed or engraved with a master pattern for forming the geometric pattern.
상기 압연롤러(400) 또는 프레스(500) 공정을 거쳐 텍스처링된 스트립은 사용자가 원하는 특성을 갖도록 열처리 공정을 거칠 수 있다. 상기 열처리 공정은 전기 또는 간접열을 이용할 수 있다. 상기 사용자가 원하는 특성으로는 항복강도, 인장강도 및 연신율 등이 있다.The strip textured through the rolling roller 400 or the press 500 process may be subjected to a heat treatment process to have desired characteristics of the user. The heat treatment process may use electric or indirect heat. The characteristics desired by the user include yield strength, tensile strength and elongation.
상기 열처리된 스트립에 금속 합금층을 형성할 수 있다. 상기 금속 합금층은 디핑 코팅 또는 전기 도금방식을 이용하여 형성할 수 있다. 상기 금속 합금층은 주석-납 합금 또는 주석-납-은 합금이 사용될 수 있으며, 상기 금속 합금층은 5㎛ 내지 30㎛ 두께로 형성될 수 있다.A metal alloy layer may be formed on the heat treated strip. The metal alloy layer may be formed using a dipping coating or an electroplating method. The metal alloy layer may be a tin-lead alloy or a tin-lead-silver alloy, and the metal alloy layer may be formed to have a thickness of 5 μm to 30 μm.
도 12에 도시된 바와 같이, 본 발명의 일실시예에 따른 금속 합금층은 디핑 코팅을 이용하여 형성할 수 있다.As shown in Figure 12, the metal alloy layer according to an embodiment of the present invention can be formed using a dipping coating.
상기 합금탱크(600)에는 상기 금속 합금층을 형성하는 물질이 구비될 수 있으며, 상기 합금탱크(600) 내부에는 상기 스트립에 금속 합금을 코팅하기 위한 적어도 하나 이상의 샤프트(610)가 구비될 수 있다. 상기 샤프트(610)는 상기 스트립 표면에 균일한 코팅층을 형성할 수 있도록 상기 스트립을 유도하는 역할을 할 수 있으며, 상기 코팅된 스트립 표면을 매끄럽게 해주는 역할을 할 수도 있다.The alloy tank 600 may be provided with a material forming the metal alloy layer, and the alloy tank 600 may include at least one shaft 610 for coating the metal alloy on the strip. . The shaft 610 may serve to guide the strip to form a uniform coating layer on the surface of the strip, and may also serve to smooth the coated strip surface.
본 발명의 다른 일실시예에서 상기 금속합금층은 전기 도금방식을 이용하여 형성될 수도 있다. 전기 도금방식이란 전기 분해의 원리를 이용하여 상기 열처리된 스트립의 표면을 상기 주석-납 합금 또는 주석-납-은 합금과 같은 금속의 얇은 막으로 형성하는 방법이다.In another embodiment of the present invention, the metal alloy layer may be formed using an electroplating method. Electroplating is a method of forming the surface of the heat-treated strip into a thin film of a metal such as tin-lead alloy or tin-lead-silver alloy using the principle of electrolysis.
상기 금속 합금층이 형성된 스트립은 제 2 권취롤러(320)에 의해 권취될 수 있다.The strip on which the metal alloy layer is formed may be wound by the second winding roller 320.
도 13은 본 발명의 일실시예에 따른 태양전지 셀 연결부재 제조 장치를 나타낸 도이다. 상기 태양전지 셀 연결부재 제조 장치는 와이어를 공급하기 위한 제 1 권취롤러(310), 상기 제 1 권취롤러(310)에서 공급되는 와이어를 박형의 스트립 형태로 가공하는 동시에 상기 스트립의 적어도 일면에 복수개의 기하학적 패턴을 텍스처링 하기 위하여 상하로 설치된 한쌍의 압연롤러(400), 상기 텍스처링된 스트립에 금속코팅층을 형성하기 위한 코팅액이 담겨지는 합금탱크(600) 및 상기 금속 코팅된 스트립을 권취하기 위한 제 2 권취롤러(320)를 포함할 수 있다.13 is a view showing a solar cell connection member manufacturing apparatus according to an embodiment of the present invention. The apparatus for manufacturing a solar cell connection member processes a first winding roller 310 for supplying a wire and a wire supplied from the first winding roller 310 in a thin strip shape, and at least one surface of the strip. A pair of rolling rollers 400 installed up and down for texturing the geometric patterns, an alloy tank 600 containing a coating liquid for forming a metal coating layer on the textured strip, and a second for winding the metal coated strip. It may include a winding roller 320.
상기 압연롤러(400)는 와이어 형태로 되어 있는 동선을 박형의 스트립 형태로 가공하기 위한 상부롤러(410) 및 하부롤러(420)를 포함할 수 있다.The rolling roller 400 may include an upper roller 410 and a lower roller 420 for processing the copper wire in the form of a wire in the form of a thin strip.
상기 상부롤러(410) 또는 하부롤러(420)에는 박형의 스트립에 기하학적 패턴을 텍스처링하기 위한 마스터 패턴이 양각 또는 음각되어 형성될 수 있다. 또한, 상기 압연롤러(400)는 상기 상부롤러(410) 및 하부롤러(420) 사이의 간격을 조절하기 위한 조절수단(미도시)를 더 포함할 수 있다.The upper roller 410 or the lower roller 420 may be formed by embossing or engraving a master pattern for texturing a geometric pattern on a thin strip. In addition, the rolling roller 400 may further include an adjusting means (not shown) for adjusting the gap between the upper roller 410 and the lower roller 420.
본 발명의 다른 일실시예에 따른 태양전지 셀 연결부재 제조 장치는 상기 스트립의 적어도 일면에 복수개의 기하학적 패턴을 텍스처링 하기 위하여 상하로 설치된 한쌍의 프레스(미도시)를 더 포함할 수 있다. 상기 프레스(500)에는 박형의 스트립에 기하학적 패턴을 텍스처링하기 위한 위한 마스터 패턴이 양각 또는 음각되어 형성될 수 있다.The apparatus for manufacturing a solar cell connection member according to another embodiment of the present invention may further include a pair of presses (not shown) disposed up and down to texture a plurality of geometric patterns on at least one surface of the strip. The press 500 may be formed by embossing or engraving a master pattern for texturing a geometric pattern on a thin strip.
상기 합금탱크(600) 내부에는 상기 스트립에 금속 합금을 코팅하기 위한 적어도 하나 이상의 샤프트(610)가 구비될 수 있다. 상기 샤프트(610)는 상기 스트립 표면에 균일한 코팅층을 형성할 수 있도록 상기 스트립을 유도하는 역할을 할 수 있으며, 코팅된 스트립 표면을 매끄럽게 해주는 역할을 할 수도 있다.At least one shaft 610 for coating a metal alloy on the strip may be provided in the alloy tank 600. The shaft 610 may serve to guide the strip to form a uniform coating layer on the strip surface, and may also serve to smooth the coated strip surface.
이상에서 설명된 태양전지 셀 연결부재는 예시적인 것에 불과하며, 본 발명의 보호범위는 본 발명 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등예를 포함할 수 있다.The solar cell connection member described above is merely exemplary, and the protection scope of the present invention may include various modifications and equivalents from those skilled in the art.

Claims (16)

  1. 박형의 스트립(strip) 형태를 가지며,Has a thin strip shape,
    상기 박형의 스트립의 적어도 일면에는 복수개의 기하학적 패턴이 텍스처링(texuring) 된 패턴부가 배치되어 있는 태양전지 셀 연결부재.And a pattern portion having a plurality of geometric patterns textured on at least one surface of the thin strip.
  2. 제 1 항에 있어서, 상기 패턴부 이외의 영역에는 상기 기하학적 패턴이 텍스처링 되지 않은 평면부가 배치되어 있는 것을 특징으로 하는 태양전지 셀 연결부재.The solar cell connection member of claim 1, wherein a planar portion in which the geometric pattern is not textured is disposed in an area other than the pattern portion.
  3. 제 2 항에 있어서, 상기 패턴부 및 평면부는 교대로 반복되어 배치되어 있는 것을 특징으로 하는 태양전지 셀 연결부재.The solar cell connection member according to claim 2, wherein the pattern portion and the flat portion are alternately arranged alternately.
  4. 제 1 항에 있어서, 상기 기하학적 패턴은 단면이 반구형이며 제 1 방향으로 연장된 형상을 갖는 것을 특징으로 하는 태양전지 셀 연결부재.The solar cell connection member of claim 1, wherein the geometric pattern has a hemispherical cross section and has a shape extending in a first direction.
  5. 제 4 항에 있어서, 상기 패턴은 상기 제 1 방향과 직교하는 제 2 방향으로 연속적으로 형성되어 있는 것을 특징으로 하는 태양전지 셀 연결부재.The solar cell connection member of claim 4, wherein the pattern is continuously formed in a second direction perpendicular to the first direction.
  6. 제 4 항에 있어서, 상기 반구형 단면의 접촉각은 45도 내지 90도인 것을 특징으로 하는 태양전지 셀 연결부재.5. The solar cell connection member of claim 4, wherein the contact angle of the hemispherical cross section is 45 degrees to 90 degrees.
  7. 제 1 항에 있어서, 상기 기하학적 패턴은 뿔 정상이 둥근 형태를 갖는 원뿔 또는 각뿔 구조체 형상을 갖는 것을 특징으로 하는 태양전지 셀 연결부재.The method of claim 1, wherein the geometric pattern is a solar cell connection member, characterized in that the cone has a cone-shaped or pyramidal structure having a rounded top shape.
  8. 제 7 항에 있어서, 상기 원뿔 또는 각뿔 구조체의 접촉각은 45도 내지 90도인 것을 특징으로 하는 태양전지 셀 연결부재.The method of claim 7, wherein the contact angle of the cone or pyramid structure is a solar cell connection member, characterized in that 45 to 90 degrees.
  9. 와이어를 압연하여 박형의 스트립을 형성하는 단계;Rolling the wire to form a thin strip;
    상기 스트립의 적어도 일면에 복수개의 기하학적 패턴을 형성하는 텍스처링 단계;Texturing to form a plurality of geometric patterns on at least one surface of the strip;
    상기 텍스처링된 스트립에 열처리하는 단계; 및Heat-treating the textured strip; And
    상기 열처리된 스트립에 금속 합금층을 형성하는 단계;를 포함하는 태양전지 셀 연결부재 제조방법.Forming a metal alloy layer on the heat-treated strip; solar cell connecting member manufacturing method comprising a.
  10. 제 9 항에 있어서, 상기 스트립을 형성하는 단계 및 텍스처링 단계는 롤(role)을 이용한 압연에 의하여 동시에 진행되는 것을 특징으로 하는 태양전지 셀 연결부재 제조방법.The method of claim 9, wherein the forming of the strip and the texturing step are simultaneously performed by rolling using a roll.
  11. 제 9 항에 있어서, 상기 텍스처링 단계는 프레스를 이용한 단조에 의하여 진행되는 것을 특징으로 하는 태양전지 셀 연결부재 제조방법.10. The method of claim 9, wherein the texturing step is performed by forging using a press.
  12. 제 9 항에 있어서, 상기 금속 합금층을 형성하는 단계에서는 디핑 코팅 또는 전기 도금 방식을 적용하는 것을 특징으로 하는 태양전지 셀 연결부재 제조방법.The method of claim 9, wherein the forming of the metal alloy layer comprises dipping coating or electroplating.
  13. 와이어를 공급하기 위한 제 1 권취롤러;A first winding roller for supplying a wire;
    상기 제 1 권취롤러에서 공급되는 와이어를 박형의 스트립 형태로 가공하는 동시에 적어도 일면에 복수개의 기하학적 패턴을 텍스처링 하기 위하여 상하로 설치된 한쌍의 압연롤러;A pair of rolling rollers vertically installed to process the wires supplied from the first winding roller into a thin strip shape and to texture a plurality of geometric patterns on at least one surface thereof;
    상기 텍스처링된 스트립에 금속코팅층을 형성하기 위한 코팅액이 담겨지는 합금탱크; 및An alloy tank containing a coating liquid for forming a metal coating layer on the textured strip; And
    상기 금속코팅 처리된 스트립을 권선하기 위한 제 2 권취롤러;를 포함하는 태양전지 셀 연결부재 제조장치.And a second winding roller for winding the metal-coated strip.
  14. 제 13 항에 있어서, 상기 압연롤러에는 상기 스트립에 기하학적 패턴을 텍스처링 하기 위한 마스터 패턴이 양각 또는 음각으로 형성되어 있는 것을 특징으로 하는 태양전지 셀 연결부재 제조장치.The apparatus of claim 13, wherein a master pattern for texturing a geometric pattern on the strip is embossed or engraved on the rolling roller.
  15. 제 13 항에 있어서, 상기 제 2 압연롤러는 상부 압연롤러와 하부 압연롤러 사이의 간격을 조절하기 위한 조절수단을 포함하는 것을 특징으로 하는 태양전지 셀 연결부재 제조장치.The apparatus of claim 13, wherein the second rolling roller comprises an adjusting means for adjusting a gap between the upper rolling roller and the lower rolling roller.
  16. 와이어를 공급하기 위한 제 1 권취롤러;A first winding roller for supplying a wire;
    상기 제 1 권취롤러에서 공급되는 와이어를 박형의 스트립 형태로 가공하기 위하여 상하로 설치된 한쌍의 압연롤러;A pair of rolling rollers vertically installed to process the wire supplied from the first winding roller into a thin strip form;
    상기 스트립의 적어도 일면에 복수개의 기하학적 패턴을 텍스처링 하기 위하여 상하로 설치된 한쌍의 프레스;A pair of presses installed vertically on at least one surface of the strip for texturing a plurality of geometric patterns;
    상기 텍스처링된 스트립에 금속코팅층을 형성하기 위한 코팅액이 담겨지는 합금탱크; 및An alloy tank containing a coating liquid for forming a metal coating layer on the textured strip; And
    상기 금속코팅 처리된 스트립을 권선하기 위한 제 2 권취롤러;를 포함하는 태양전지 셀 연결부재 제조장치.And a second winding roller for winding the metal-coated strip.
PCT/KR2013/008996 2012-10-09 2013-10-08 Solar battery cell connecting member, method for manufacturing same, and apparatus for manufacturing solar battery cell connecting member WO2014058215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120111825A KR101427000B1 (en) 2012-10-09 2012-10-09 Solar cell module connection member and manufacturing method thereof, apparatus for munufacturing solar cell module connection member
KR10-2012-0111825 2012-10-09

Publications (1)

Publication Number Publication Date
WO2014058215A1 true WO2014058215A1 (en) 2014-04-17

Family

ID=50477622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008996 WO2014058215A1 (en) 2012-10-09 2013-10-08 Solar battery cell connecting member, method for manufacturing same, and apparatus for manufacturing solar battery cell connecting member

Country Status (2)

Country Link
KR (1) KR101427000B1 (en)
WO (1) WO2014058215A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023126151A1 (en) * 2021-12-29 2023-07-06 Rec Solar Pte. Ltd. An electrode assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027216A (en) 2017-09-06 2019-03-14 주식회사 제우스 Apparatus for changing strip of tabbing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059991A (en) * 2004-08-19 2006-03-02 Shin Etsu Handotai Co Ltd Solar battery module and its manufacturing method
KR100990114B1 (en) * 2009-07-07 2010-10-29 엘지전자 주식회사 Solar cell module having interconnector and fabricating method the same
JP2012182271A (en) * 2011-03-01 2012-09-20 Hitachi Cable Ltd Solar battery lead wire, manufacturing method thereof, and solar battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059991A (en) * 2004-08-19 2006-03-02 Shin Etsu Handotai Co Ltd Solar battery module and its manufacturing method
KR100990114B1 (en) * 2009-07-07 2010-10-29 엘지전자 주식회사 Solar cell module having interconnector and fabricating method the same
JP2012182271A (en) * 2011-03-01 2012-09-20 Hitachi Cable Ltd Solar battery lead wire, manufacturing method thereof, and solar battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023126151A1 (en) * 2021-12-29 2023-07-06 Rec Solar Pte. Ltd. An electrode assembly

Also Published As

Publication number Publication date
KR101427000B1 (en) 2014-08-07
KR20140048367A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
WO2010137854A2 (en) Method for manufacturing the front electrode of a high efficiency solar cell
WO2009104899A2 (en) Method of etching asymmetric wafer, solar cell including the asymmetrically etched wafer, and method of manufacturing the same
WO2010101350A2 (en) Solar cell and method of manufacturing the same
WO2010110510A1 (en) Solar cell and fabrication method thereof
WO2010150947A1 (en) Solar cell and fabrication method thereof
WO2014058215A1 (en) Solar battery cell connecting member, method for manufacturing same, and apparatus for manufacturing solar battery cell connecting member
WO2018078669A1 (en) Solar cell having high photoelectric conversion efficiency, and method for manufacturing solar cell having high photoelectric conversion efficiency
KR101009422B1 (en) Manufacturing method of solar cell
US20070031986A1 (en) Solar cell manufacturing method
WO2013058524A1 (en) Solar cell apparatus and method of fabricating the same
WO2022139076A1 (en) Production method for solar cell having increased surface area for power generation
WO2017222292A1 (en) Perl solar cell and method for preparing same
WO2012015150A1 (en) Device for generating photovoltaic power and method for manufacturing same
WO2018070636A1 (en) Solar cell module
WO2011004929A1 (en) Method for manufacturing color-design solar cell
WO2021112313A1 (en) Electrode wire for photovoltaic module, manufacturing method therefor, and photovoltaic module
WO2013081329A1 (en) Low-cost, mass-produced, high-efficiency solar cell having a do- type electrode and method for manufacturing same
WO2024063216A1 (en) Method for manufacturing flexible micro-supercapacitor, and flexible micro-supercapacitor having polymer buffer layer manufactured thereby
WO2011083995A2 (en) Solar photovoltaic device and a production method for the same
WO2012102455A1 (en) Solar cell and method for manufacturing the same
WO2012046932A1 (en) Solar cell and method for manufacturing same
WO2011004937A1 (en) Solar cell and method of manufacturing the same
WO2014021617A1 (en) Solar cell apparatus and method of fabricating the same
WO2018004179A1 (en) Solar cell module
WO2013183949A1 (en) Solar cell and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845219

Country of ref document: EP

Kind code of ref document: A1