WO2014057042A1 - High temperature sulfone (hts) foam meterials - Google Patents
High temperature sulfone (hts) foam meterials Download PDFInfo
- Publication number
- WO2014057042A1 WO2014057042A1 PCT/EP2013/071176 EP2013071176W WO2014057042A1 WO 2014057042 A1 WO2014057042 A1 WO 2014057042A1 EP 2013071176 W EP2013071176 W EP 2013071176W WO 2014057042 A1 WO2014057042 A1 WO 2014057042A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- foam material
- paes
- recurring units
- equal
- Prior art date
Links
- 150000003457 sulfones Chemical class 0.000 title claims description 14
- 239000006260 foam Substances 0.000 title description 55
- 229920000642 polymer Polymers 0.000 claims abstract description 99
- 239000000203 mixture Substances 0.000 claims abstract description 96
- 239000006261 foam material Substances 0.000 claims abstract description 55
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 claims abstract description 12
- 229920000110 poly(aryl ether sulfone) Polymers 0.000 claims abstract description 8
- UBKQRASXZMLQRJ-UHFFFAOYSA-N 2-phenylsulfanylethanamine Chemical compound NCCSC1=CC=CC=C1 UBKQRASXZMLQRJ-UHFFFAOYSA-N 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 69
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 40
- 238000005187 foaming Methods 0.000 claims description 40
- 239000004604 Blowing Agent Substances 0.000 claims description 33
- 229920006393 polyether sulfone Polymers 0.000 claims description 28
- -1 alkaline earth metal sulfonate Chemical class 0.000 claims description 23
- 229920001169 thermoplastic Polymers 0.000 claims description 23
- 239000002667 nucleating agent Substances 0.000 claims description 22
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 20
- 239000003513 alkali Substances 0.000 claims description 20
- 239000004695 Polyether sulfone Substances 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 17
- 239000004416 thermosoftening plastic Substances 0.000 claims description 16
- 238000001125 extrusion Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 150000001408 amides Chemical class 0.000 claims description 11
- 150000001412 amines Chemical class 0.000 claims description 11
- 125000003342 alkenyl group Chemical group 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- 125000005600 alkyl phosphonate group Chemical group 0.000 claims description 10
- 150000008052 alkyl sulfonates Chemical class 0.000 claims description 10
- 125000000304 alkynyl group Chemical group 0.000 claims description 10
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 10
- 150000002148 esters Chemical class 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 10
- 150000002367 halogens Chemical class 0.000 claims description 10
- 150000003949 imides Chemical class 0.000 claims description 10
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 10
- 150000003568 thioethers Chemical class 0.000 claims description 10
- 229920005649 polyetherethersulfone Polymers 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 229920002492 poly(sulfone) Polymers 0.000 claims description 4
- 229920001187 thermosetting polymer Polymers 0.000 claims description 4
- ZCILODAAHLISPY-UHFFFAOYSA-N biphenyl ether Natural products C1=C(CC=C)C(O)=CC(OC=2C(=CC(CC=C)=CC=2)O)=C1 ZCILODAAHLISPY-UHFFFAOYSA-N 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 125000005842 heteroatom Chemical group 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 28
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 17
- 239000000126 substance Substances 0.000 description 16
- 239000000155 melt Substances 0.000 description 14
- 229920000491 Polyphenylsulfone Polymers 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 229920001577 copolymer Polymers 0.000 description 12
- 239000004088 foaming agent Substances 0.000 description 12
- 230000009477 glass transition Effects 0.000 description 12
- 239000004615 ingredient Substances 0.000 description 12
- 229920001519 homopolymer Polymers 0.000 description 10
- 229920013655 poly(bisphenol-A sulfone) Polymers 0.000 description 9
- 229920001601 polyetherimide Polymers 0.000 description 9
- 238000004626 scanning electron microscopy Methods 0.000 description 8
- 239000000454 talc Substances 0.000 description 8
- 229910052623 talc Inorganic materials 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 229920002959 polymer blend Polymers 0.000 description 6
- 238000013329 compounding Methods 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000004408 titanium dioxide Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 2
- ZHXISMXDCUJVCY-UHFFFAOYSA-N 2-phenylsulfanylethanamine;hydrochloride Chemical compound [Cl-].[NH3+]CCSC1=CC=CC=C1 ZHXISMXDCUJVCY-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000006078 metal deactivator Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- YNCNODFWHUZNEF-UHFFFAOYSA-N 2-[2-(hydrazinesulfonyl)phenoxy]benzenesulfonohydrazide Chemical compound NNS(=O)(=O)C1=CC=CC=C1OC1=CC=CC=C1S(=O)(=O)NN YNCNODFWHUZNEF-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 239000004156 Azodicarbonamide Substances 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- XIAJWWWCYMMOMV-UHFFFAOYSA-N CC(C)(c(cc1)ccc1OC)c(cc1)ccc1Oc(cc1)ccc1S(c1ccc(C)cc1)(=O)=O Chemical compound CC(C)(c(cc1)ccc1OC)c(cc1)ccc1Oc(cc1)ccc1S(c1ccc(C)cc1)(=O)=O XIAJWWWCYMMOMV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- OHZHQDMOCQPJST-UHFFFAOYSA-N Cc(cc1)ccc1S(c(cc1)ccc1Oc(cc1)ccc1OC)(=O)=O Chemical compound Cc(cc1)ccc1S(c(cc1)ccc1Oc(cc1)ccc1OC)(=O)=O OHZHQDMOCQPJST-UHFFFAOYSA-N 0.000 description 1
- KKYYNRCGQRWMAA-UHFFFAOYSA-N Cc(cc1)ccc1S(c(cc1)ccc1Oc(cc1)ccc1S(c(cc1)ccc1OC)(=O)=O)(=O)=O Chemical compound Cc(cc1)ccc1S(c(cc1)ccc1Oc(cc1)ccc1S(c(cc1)ccc1OC)(=O)=O)(=O)=O KKYYNRCGQRWMAA-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920003295 Radel® Polymers 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 1
- 235000019399 azodicarbonamide Nutrition 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- VJRITMATACIYAF-UHFFFAOYSA-N benzenesulfonohydrazide Chemical compound NNS(=O)(=O)C1=CC=CC=C1 VJRITMATACIYAF-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002666 chemical blowing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012765 fibrous filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 210000000497 foam cell Anatomy 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000002064 nanoplatelet Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000646 scanning calorimetry Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009755 vacuum infusion Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/065—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
- C08G75/23—Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/142—Compounds containing oxygen but no halogen atom
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/06—Polysulfones; Polyethersulfones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/02—Cellular or porous
- B32B2305/022—Foam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/10—Properties of the layers or laminate having particular acoustical properties
- B32B2307/102—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2381/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
- C08J2381/06—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2481/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
- C08J2481/06—Polysulfones; Polyethersulfones
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
Definitions
- the present invention relates to polymeric foams, in particular, to high temperature sulfone foam materials.
- the invention further relates to methods of manufacturing high temperature sulfone foams and articles made therefrom. Background of the invention
- Polymeric foams made from high Tg thermoplastic polymers such as notably polyether sulfones (PES), polyphenylsulfones (PPSU) and
- polyetherimides are typically employed in lightweight applications across multiple market segments such as transport, mobile electronics, building materials, household goods, food service trays and medical, and the like.
- PEI polyetherimides
- the growing need to use high Tg thermoplastic polymeric foams especially in light structures, such as for example in structural sandwich panels implies critical properties such as notably thermal resistance, flame resistance, environmental resistance, mechanical strength, low-temperature impact resistance, excellent lightweight, thermal-insulating characteristics, soundproofing characteristics, vibration-proofing characteristics, chemical resistance, and recycling properties.
- US 2004/0167241 Al describes open-cell foams which are composed from high-temperature-resistant thermoplastics selected from the group consisting of polyetherimides (PEI), polyether sulfones (PES), polysulfones, polyether ketones, polyether ether ketones, polyether ketone ketones, polyethersulfonamides, and mixtures of these.
- PEI polyetherimides
- PES polyether sulfones
- PES polyether ketones
- polyether ether ketones polyether ether ketones
- polyether ketone ketones polyethersulfonamides
- US 2004/0212119 Al discloses a process for producing foam webs by foam extrusion of a mixture of a polysulfone or polyether sulfone and a volatile blowing agent, where the blowing agent is water or a mixture of water with an ancillary blowing agent such as notably an inert gas or organic liquid, e.g. an alcohol or a ketone.
- WO 2009/085688 discloses a foam composed of the high heat
- thermoplastic resin polyetherimides Said foams were made by a foam extrusion process.
- said foams composed of high Tg thermoplastic polymers such as polyetherimides (PEI), polyether sulfones (PES) and polyphenylsulfones (PPSU) still show some drawbacks in the manufacturing of foamed articles which requires very high processing temperatures. For example, in the hot
- thermosetting resin impregnation process used to produce structural sandwich panels as mentioned above, temperatures as high as 180°C are required. Said high temperatures are approaching the heat deflection temperatures of the high Tg thermoplastic polymers like PEI, PES and PPSU resulting in a more problematic retention of foam structural integrity during this high temperature manufacturing step.
- foam materials comprising high- temperature thermoplastic compositions which can overcome all these drawbacks, as mentioned above, and whereby said foam material are characterized by having improved thermal performance capabilities, in particular more robust resistance to very high temperatures used in the manufacturing of structural foamed articles and having improved chemical resistance such as for example resisting hot liquids that are typically used in the transport industry, like for example jet fuels and hydraulic fluids, in particular Skydrol, while retaining all excellent foam properties such as a well defined and fairly homogeneous cell structure and excellent balance of mechanical properties such as high stiffness and strength properties at a low foam density, higher impact resistance to resist breakage in use, high flame and heat resistance, and whereby the high- temperature thermoplastic foam articles made therefrom have excellent heat resistance, flame resistance, and environmental resistance, mechanical strength, and low-temperature impact resistance, and possesses excellent lightweight, thermal-insulating characteristics, soundproofing characteristics, vibration- proofing characteristics, chemical resistance, and recycling properties.
- thermoplastic foam materials based on high-temperature thermoplastic polymeric materials and comprising optionally specific ingredients are particularly effective in fulfilling above mentioned requirements.
- Said foam materials have unexpectedly a well defined and homogeneous cell structure as evidenced by closed and smaller foam cells, higher foam void contents, and/or greater uniformity of cell size.
- said foam materials are more robust resistance to the temperature conditions required for the manufacturing of the high- temperature thermoplastic foam articles.
- Said foam articles fulfil all
- composition (C) comprising at least one high temperature poly(aryl ether sulfone) (PAESHT) polymer characterized in that the (PAESHT) polymer comprises :
- Ar 1 , Ar 2 and Ar 4 equal to or different from each other and at each occurrence, are independently an aromatic mono- or polynuclear group ;
- Ar 3 and Ar 5 equal to or different from each other and at each occurrence, are independently aromatic moieties selected from the group consisting of those complying with followin formulae :
- each R equal to or different form each other, is selected from the group consisting of :
- each of T is a bond or a divalent group optionally comprising one or more than one heteroatom ;
- - n is 0, 1 , 2, 3 or 4 ;
- - m is 1 , 2, 3 or 4
- Another aspect of the present invention is directed to a process for the manufacturing of the foam material.
- Yet another aspect of the present invention is directed to an article that includes said foam material.
- RPAES recurring units
- Ar 1 , Ar 2 and Ar 4 in the formula (A), mentioned above are equal or different from each other and are aromatic moieties preferably selected from the group consisting of those complying with followin formulae :
- each R equal to or different form each other, is selected from the group consisting of :
- a hydrogen or a Ci-Ci 2 -alkyl, Ci-Ci 2 -alkoxy, or C 6 -Ci 8 -aryl group ; -(CH 2 ) q - and -(CF 2 ) q - with q integer from 1 to 6, or an aliphatic divalent group, linear or branched, of up to 6 carbon atoms ; and mixtures thereof.
- RPAES More preferred recurring units
- each of R' is selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, aryl, ether, thioether, carboxylic acid, ester, amide, imide, alkali or alkaline earth metal sulfonate, alkyl sulfonate, alkali or alkaline earth metal phosphonate, alkyl phosphonate, amine and quaternary ammonium ;
- each of j ' is independently zero or is an integer from 0 to 4 ;
- Ar 1 and Ar 2 are equal or different from each other and at each occurrence, are independently aromatic moieties preferably selected from the group consisting of those com lying with following formulae :
- each of R is selected from the group consisting of :
- - n 0, 1 , 2, 3 or 4 ;
- RPAES recurring units
- the recurring units (RpAEs- 1) are those complying with following formula (G), as detailed below :
- each of R' is selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, aryl, ether, thioether, carboxylic acid, ester, amide, imide, alkali or alkaline earth metal sulfonate, alkyl sulfonate, alkali or alkaline earth metal phosphonate, alkyl phosphonate, amine and quaternary ammonium ;
- each of j ' is independently zero or is an integer from 0 to 4.
- the recurring units (RpAEs-1) are those complying with formula (D), as mentioned above.
- the recurring units (RpAEs-2) are those complying with following formula (H), as detailed below :
- each of R' is selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, aryl, ether, thioether, carboxylic acid, ester, amide, imide, alkali or alkaline earth metal sulfonate, alkyl sulfonate, alkali or alkaline earth metal phosphonate, alkyl phosphonate, amine and quaternary ammonium ;
- each of j ' is independently zero or is an integer from 0 to 4.
- the recurring units (RpAEs-2) are those complying with formula (C), as mentioned above.
- the weight amount of the recurring units (RPAES-1) in the (PAESHT) polymer is generally of at least 1 %, preferably at least 5 %, preferably at least 15 %, preferably at least 30 %, more preferably at least 50 %, more preferably at least 60 %, even more preferably at least 75 %, most preferably at least 87 %, based on the total amount of recurring units (RPAES-1) and (RPAES-2) comprised in (PAESHT) polymer.
- the weight amount of the recurring units (RPAES-1) in (PAESHT) polymer will generally be of at most 1 %, preferably at most 5 %, preferably at most 15 %, preferably at most 30 %, preferably at most 50 %, more preferably at most 75 %, even more preferably at most 92 %, even more preferably at most 95 %, most preferably at most 98 % and most preferably at most 99 %.
- the foam material made from a composition [composition (C)] comprising a (PAESHT) polymer, wherein more than 75 % weight of the recurring units of the (PAESHT) polymer are recurring units (RPAES-1) according to formula (G), as mentioned above and (RpAEs-2) according to formula (H), as mentioned above and the weight amount of the recurring units (RPAES-1) in the (PAESHT) polymer ranges from 75 - 95 wt. %, based on the total amount of recurring units (RPAES-1) and (RpAEs-2).
- composition [composition (C)] comprising a (PAESHT) polymer, wherein more than 75 % weight of the recurring units of the (PAESHT) polymer are recurring units (RPAES-1) according to formula (G), as mentioned above and (RpAEs-2) according to formula (H), as mentioned above and the weight amount of the recurring units (RPAES-1) in the (PAESHT) polymer ranges from
- the foam material made from a composition [composition (C)] comprising a (PAESHT) polymer, wherein more than 75 % weight of the recurring units of the (PAESHT) polymer are recurring units (RPAES-1) according to formula (D), as mentioned above and (RPAES-2) according to formula (C), as mentioned above and the weight amount of the recurring units (RPAES-1) in the (PAESHT) polymer ranges from 75 - 95 wt. %, based on the total amount weight of recurring units (RPAES-1) and (RPAES-2).
- composition [composition (C)] comprising a (PAESHT) polymer, wherein more than 75 % weight of the recurring units of the (PAESHT) polymer are recurring units (RPAES-1) according to formula (D), as mentioned above and (RPAES-2) according to formula (C), as mentioned above and the weight amount of the recurring units (RPAES-1) in the (PAESHT) polymer ranges from 75
- the (PAESHT) polymer may further comprise recurring units other than (RPAES)- These recurring units (Rl) can notably be selected from the group consisting of those of formulae (I) to (K) herein below :
- each of R' is selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, aryl, ether, thioether, carboxylic acid, ester, amide, imide, alkali or alkaline earth metal sulfonate, alkyl sulfonate, alkali or alkaline earth metal phosphonate, alkyl phosphonate, amine and quaternary ammonium ;
- each of i' equal to or different from each other and at each occurrence, is independently zero or is an integer from 0 to 4 ;
- each of T is selected from the group consisting of a bond, -CH 2 - ; -O- ; -S0 2 - ; -S- ;-C(0 ; -C(CH 3 ) 2 - ;
- Rl Specific recurring units (Rl) can notably be selected from the group
- the (PAES HT ) polymer preferably more than 60 % weight, more preferably more than 75 % weight, still more preferably more than 90 % weight, most preferably more than 95 % weight, most preferably more than 99 % of the total weight amount of recurring units are recurring
- substantially all recurring units of (PAES HT ) polymer are recurring units (R PAE S), as above detailed ; chain defects, or very minor amounts of other units might be present, being understood that these latter do not substantially modify the properties of (PAES HT ) polymer.
- the (PAES HT ) polymer can be prepared by any method. Methods well known in the art are those notably described in U.S. Pat. Nos 2005/0228149 Al, 3,647,751 and 4,000,149 ; PCT patent applications WO 2005/095491 Al and WO 2007/039538 Al, the whole content of which is herein incorporated by reference.
- the molecular weight of the (PAES HT ) polymer can be greater than or equal to 0.3 dl/g, or, more specifically, greater than or equal to 0.4 dl/g and, typically, will not exceed 1.5 dl/g.
- the molecular weight of the (PAES HT ) polymer can be greater than or equal to 0.3 dl/g, or, more specifically, greater than or equal to 0.4 dl/g and, typically, will not exceed 1.5 dl/g.
- the melt flow rate (MFR) of the (PAES HT ) polymer at 400°C and under a load of 5.0 kg, as measured in accordance with ASTM method D1238, is generally equal to of at most 80 g/10 min, preferably equal to of at most 50 g/10 min, preferably equal to of at most 40 g/10 min and more preferably equal to of at most 30 g/10 min, most preferably equal to of at most 15 g/10 min.
- melt flow rate (MFR) of the (PAES HT ) polymer at 400°C and under a load of 5.0 kg, as measured in accordance with ASTM method D1238, is generally equal to of at least 2 g/10 min, preferably equal to of at
- PAES HT melt flow rate polymers having a melt flow rate (MFR) at 400°C and under a load of 5.0 kg, as measured in accordance with ASTM method D1238 from 2 g/10 min to 50 g/10 min are especially suitable for providing the foam material of the present invention.
- PAES HT melt flow rate polymers having a melt flow rate (MFR) at 400°C and under a load of 5.0 kg, as measured in accordance with ASTM method D1238 from 8 g/10 min to 15 g/10 min have been found particularly suitable for providing the foam material of the present invention.
- the (PAES HT ) polymer weight average molecular weight can be 20,000 to 100,000 grams per mole (g/mol) as determined by gel permeation
- the (PAES HT ) polymer weight average molecular weight can be 40,000 to 80,000 grams per mole (g/mol).
- the (PAES HT ) polymer of the present invention has advantageously a glass transition temperature (Tg) of at least 220°C, preferably at least 225°C, more preferably at least 230°C, even more preferably at least 240°C,most preferably of at least 255 °C.
- Tg glass transition temperature
- the (PAES HT ) polymer may have glass transition temperatures (Tg) of 220 to 290°C.
- the glass transition temperature (Tg) may be measured by Differential
- PAES HT PAES HT polymers have been found particularly suitable for the high- temperature thermoplastic compositions comprised in the high-temperature thermoplastic foam material of the present invention due to their excellent high temperature resistance, high melt viscosities which provides the high- temperature thermoplastic compositions, made there from, a robust foaming process and high chemical resistance, especially to hot liquids.
- the total weight of the (PAESHT) polymer, based on the total weight of the composition (C), is advantageously above 50 wt. %, preferably above 60 wt. %, preferably above 70 wt. %, preferably above 80 wt. % ; more preferably above 90 wt. % ; more preferably above 95 wt. % and more preferably above 99 wt. %.
- the total weight of the (PAESHT) polymer, based on the total weight of the composition (C), is advantageously in a range from 60 to 99.0 wt. %, preferably from 70 to 99 wt. %.
- composition (C) consists of the (PAESHT) polymer.
- composition (C) of the present invention may further comprise at least one other thermoplastic polymer (polymer T).
- the other thermoplastic polymer may notably be any suitable thermoplastic polymer capable to be foamed.
- composition (C) of the present invention are for example poly(aryl ether sulfone) (PAES*) polymers different from the (PAESHT) polymer such as polymers chosen from a group consisting of a poly(biphenyl ether sulfone), a polyethersulfone, a polyetherethersulfone or a polysulfone.
- PAES* poly(aryl ether sulfone)
- a polyphenylsulfone is intended to denote any polymer of which more than 50 wt. % of the recurring
- the polyphenylsulfone may be notably a homopolymer, or a copolymer such as a random or a block copolymer.
- its recurring units are advantageously a mix of recurring units (Ra) of formula (L) and of recurring units (Ra*), different from recurring units (Ra), such as recurrings units of formula (M), (N) or (O) represented hereafter :
- the polyphenylsulfone can also be a blend of the previously cited homopolymer and copolymer.
- RADEL ® R PPSU from Solvay Specialty Polymers USA, L.L.C. is an example of a polyphenylsulfone homopolymer.
- a polyethersulfone is intended to denote any polymer of which more than 50 wt. % of the recurring units are
- the recurring units of the polyethersulfone are recurring units of formula (O).
- the polyethersulfone may be notably a homopolymer, or a copolymer such as a random or a block copolymer.
- the polyethersulfone is a copolymer, its recurring units are advantageously a mix of recurring units (Rb) of formula (O) and of recurring units (Rb*), different from recurring units (Rb), such as
- the polyethersulfone can also be a blend of the previously cited homopolymer and copolymer.
- Polyethersulfone is notably available as Veradel ® A-201 NT
- Polyethersulfones can be prepared by known methods.
- a polyetherethersulfone is intended to denote any polymer of which more than 50 wt. % of the recurring units are recurring units (Rc) of formula (M)
- more than 75 wt. %, preferably more than 85 wt. %, preferably more than 95 wt. %, preferably more than 99 wt. % of the recurring units of the polyetherethersulfone are recurring units of formula (M). Most preferably all the recurring units of the polyetherethersulfone are recurring units of formula (M).
- the polyetherethersulfone may be notably a homopolymer, or a copolymer such as a random or a block copolymer.
- polyetherethersulfone When the polyetherethersulfone is a copolymer, its recurring units are advantageously a mix of recurring units (Rc) of formula (M) and of recurring units (Rc*), different from recurring units (Rc), such as recurrings units of formula (L), (N) or (O) represented hereafter :
- the polyetherethersulfone can also be a blend of the previously cited homopolymer and copolymer.
- Polyetherethersulfones can be prepared by known methods.
- a bisphenol A polysulfone is intended to denote any polymer of which more than 50 wt. % of the recurring
- more than 75 wt. %, preferably more than 85 wt. %, preferably more than 95 wt. %, preferably more than 99 wt. % of the recurring units of the bisphenol A polysulfone are recurring units of formula (N). Most preferably all the recurring units of the bisphenol A polysulfone are recurring units of formula (N).
- the bisphenol A polysulfone may be a homopolymer, or it may be a copolymer such as a random or a block copolymer.
- its recurring units are advantageously a mix of recurring units (Rd) and of recurring units (Rd*), different from recurring
- the Bisphenol A polysulfones can also be a blend of the previously cited homopolymer and copolymer.
- the Bisphenol A polysulfones are notably available as UDEL ® PSF from Solvay Specialty Polymers USA, L.L.C.
- Bisphenol A polysulfones can be prepared by known methods.
- the (PAES*) polymers as described above, has advantageously a glass transition temperature (Tg) equal to or below 240°C, preferably equal to or below 230°C, more preferably equal to or below 225 °C.
- Tg glass transition temperature
- the weight of said other polymers (polymers T), based on the total weight of polymer composition (C), ranges advantageously from 0 to 50 %, preferably from 0 to 40 % and more preferably from 0 to 30 %.
- composition (C) can further contain one or more ingredients other than the (PAESHT) polymer.
- the composition (C) may further contain conventional ingredients of polymeric compositions, additives such as UV absorbers ; stabilizers such as light stabilizers and others ; lubricants ; plasticizers ; pigments ; dyes ; colorants ; anti-static agents ; nucleating agents, foaming agents ; blowing agents ; metal deactivators ; and combinations comprising one or more of the foregoing additives.
- additives such as UV absorbers ; stabilizers such as light stabilizers and others ; lubricants ; plasticizers ; pigments ; dyes ; colorants ; anti-static agents ; nucleating agents, foaming agents ; blowing agents ; metal deactivators ; and combinations comprising one or more of the foregoing additives.
- Antioxidants can be compounds such as phosphites, phosphorates, hindered phenols or mixtures thereof.
- Surfactants may also be added to help nucleate bubbles and stabilize them during the bubble growth phase of the foaming process.
- the weight of said conventional ingredients ranges advantageously from 0 to 15 %, preferably from 0 to 10 % and more preferably from 0 to 5 %.
- the composition (C) comprises more than 85 wt. % of the the (PAES HT ) polymer with the proviso that the the (PAES HT ) polymer are the only polymeric components in the composition (C) and one or more optional ingredients such as additives ; stabilizers ; lubricants ; plasticizers ; pigments ; dyes ; colorants ; anti-static agents ; nucleating agents, foaming agents ; blowing agents ; metal deactivators ; antioxidants and surfactants might be present therein, without these components dramatically affecting relevant mechanical and toughness properties of the composition (C).
- the expression 'polymeric components' is to be understood according to its usual meaning, i.e. encompassing compounds characterized by repeated linked units, having typically a molecular weight of 2 000 or more.
- composition (C) can be prepared by a variety of methods involving intimate admixing of the polymer materials with any optional ingredient, as detailed above, desired in the formulation, for example by melt mixing or a combination of dry blending and melt mixing.
- any optional ingredient as detailed above, desired in the formulation, for example by melt mixing or a combination of dry blending and melt mixing.
- the dry blending of the (PAES HT ) polymer and all other optional thermoplastic typically, the dry blending of the (PAES HT ) polymer and all other optional thermoplastic
- polymers T polymers T
- ingredients as above details, is carried out by using high intensity mixers, such as notably Henschel-type mixers and ribbon mixers.
- So obtained powder mixture can comprise the (PAES HT ) polymer and optionally the polymers T in the weight ratios as above detailed, suitable for obtaining effective foaming, or can be a concentrated mixture to be used as masterbatch and diluted in further amounts of the (PAES HT ) polymer and optionally the polymers T in subsequent processing steps.
- melt compounding can be effected on the powder mixture as above detailed, or preferably directly on the (PAES HT ) polymer, optionally the polymers T and any other possible ingredient,
- melt compounding devices such as co- rotating and counter-rotating extruders, single screw extruders, co-kneaders, disc-pack processors and various other types of extrusion equipment can be used.
- extruders more preferably twin screw extruders can be used.
- extruders i.e. extruders specifically designed to effectively control temperature such that further processes such as foaming is not prematurely initiated and such that the composition may be melted, blended, extruded and palletized without premature foaming of the composition, are particularly preferred.
- the design of the compounding screw e.g. flight pitch and width, clearance, length as well as operating conditions will be
- Such strand extrudates can be chopped by means e.g. of a rotating cutting knife aligned downwards the die plate, generally with an underwater device, which assures perfect cutting knife to die plate alignment, and collected under the form of pellets or beads.
- composition (C) which may be present in the form of pellets or beads can then be further used for the manufacture of the foam material.
- composition (C), as mentioned above, is effective in providing foam materials having improved thermal performance capabilities, in particular more robust resistance to very high temperatures generally used in the manufacturing of structural foamed articles ; having improved chemical resistance such as for example resisting hot liquids that are typically used in the transport industry, like for example jet fuels and hydraulic fluids, in particular Skydrol ; improved structural integrity, high void content ; low apparent density ; closed cell structures and substantially uniform cell sizes.
- substantially uniform cell size is intended to denote a foam material wherein the magnitude of one standard deviation of the cell size frequency distribution is at most 40 % of the value of the estimated mean cell size, so as an example, a foam with an estimated mean cell size of 100 micrometers and a standard deviation of 35 micrometers in cell size distribution would fall within the scope of the above definition for "substantially uniform cell size”.
- the foam materials of the present invention endowed by having uniform cell size, have improved mechanical properties since larger cells act as a weak point in the foam, which may initiate a failure.
- the invention further pertains to a process for making a foam material by foaming the composition (C), as detailed above.
- the foam material of the present invention may be formed using any foaming processes, which is capable of forming the foam material.
- Suitable foaming processes that may be used in the present invention include, but are not limited to, pressure cell processes, autoclave processes, extrusion processes, injection processes and bead foaming. The extrusion process is most preferred.
- a pressure cell process for example, is carried out batchwise and in which the composition (C) is initially formed and is then charged with a gas under a pressure that is higher than atmospheric pressure and at a temperature that is below the glass transition temperature of the polymer/gas mixture. The temperature is then raised to a temperature that is above the glass transition temperature but below the critical temperature of the polymer/gas mixture, by immersing in a heating bath, and then the gas is driven out of the formed body to produce the desired foam structure. Transfer from the pressure cell to the heating bath must be carried out as fast as possible, considering that the dissolved gas can quickly diffuse out of the polymer at ambient pressure. After foaming, the polymeric formed body must be quenched in an ethanol/water mixture at about 20 °C.
- the composition (C) is charged with a gas at a temperature that is above the glass transition temperature of the polymer/gas mixture and foaming is induced by spontaneous release of the pressure.
- the autoclave process does not need a heating stage as the polymer is already at the required temperature that is above the glass transition temperature on charging with the gas.
- an extrusion process in contrast to the two processes described above, is a continuous process.
- the foam is formed by melting a thermoplastic, or a mixture comprising a thermoplastic (e.g. the composition (C) and a nucleating agent in the form of a pellet or a bead), giving a melt, whereby said melt is mixed with at least one blowing agent under pressure.
- the blowing agent vaporizes and, by absorbing heat of evaporation, rapidly cools the melt thereby forming the foam.
- any suitable extrusion equipment capable of processing composition (C) can be used for the extrusion.
- extrusion equipment capable of processing composition (C)
- single or multiple- screw extruders can be used, with a tandem extruder being preferred.
- composition (C) and any nucleating agent are first melt blended together in a primary extruder.
- the blowing agent is then fed into the primary extruder and mixed into the melt blend under high pressure and temperature in the last sections of the primary extruder.
- the melt is then fed under pressure to a secondary extruder, which is used to cool the material to be foamed and transport it through a die to a calibrator to form the foam material.
- the calibrator helps to control the cooling rate of the foaming mixture. Therefore, it is beneficial in helping to control the thickness, width and density of the foam material.
- the die is operated at a specific temperature range and pressure range to provide the necessary melt strength and to suppress premature foaming in the die.
- a single screw extruder is used for both the primary extruder and the secondary extruder.
- a twin-screw extruder is used for both the primary extruder and the secondary extruder.
- a single screw extruder is used for one of the primary extruder or the secondary extruder and a twin-screw extruder is used for the other.
- a blowing agent or blends of blowing agents, can advantageously be used in different amounts depending on the desired density of the foam.
- the amount used of the blowing agent is from 0.5 to 15 percent by weight, preferably from 1 to 12 percent by weight, particularly preferably from 3 to 10 percent by weight, based in each case on the total weight of the blowing agent
- blowing agent In general, a larger amount of blowing agent may be used for embodiments where lower density foams are to be formed.
- the blowing agent is selected to be sufficiently soluble to grow the voids into the bubbles that form a foam material having the selected density.
- viscosity/melt strength of the resin/ blowing agent is strong enough to form a stable foam as it cools, the result is a good, uniform, small celled foam having a selected density.
- the type of foam to be produced may also vary depending on other factors such as the presence of nucleating agent particles, the loading and/or process conditions, and the type of equipment used to form the foam materials.
- a nucleating agent, or blends of nucleating agents can advantageously be used and is/are preferably used in addition to the blowing agent, or blends of blowing agents.
- the nucleating agent helps control the foam structure by providing a site for bubble formation, and the greater the number of sites, the greater the number of bubbles and the less dense the final product can be, depending on processing conditions. As such, for lower density foams, a larger amount of nucleating agent may be used while no or small amounts of nucleating agent may be used for embodiments where higher density foams or larger bubbles are to be formed.
- Suitable nucleating agent that may be used in the present invention include, but are not limited to, metallic oxides such as titanium dioxide, clays, talc, silicates, silica, aluminates, barites, titanates, borates, nitrides, notably boron nitride, and even some finely divided, unreactive metals, carbon-based materials (such as diamonds, carbon black, nanotubes and graphenes) or combinations including at least one of the foregoing agents.
- silicon and any crosslinked organic material that is rigid and insoluble at the processing temperature may also function as nucleating agents.
- other fillers may be used provided they have the same effect as a nucleating agent in terms of providing a site for bubble formation.
- This includes fibrous fillers such as aramid fibers, carbon fibers, glass fibers, mineral fibers, or combinations including at least one of the foregoing fibers.
- Some nano-fillers and nano-reinforcements can also be used as nucleating agents. These include such materials as nano-silicates, nano-clays, carbon nanofibers and carbon nanotubes as well as graphenes and multi-layered graphitic nano-platelets.
- the nucleating agent is preferably used in the following amounts : advantageously from 0.1 to 5 % by weight, preferably from 0.2 to 3 % by weight based in each case on the total weight of the composition (C).
- the foaming process may be a chemical or a physical foaming process.
- the foaming process is a physical foaming process.
- Physical foaming ingredients such as physical blowing agents and optionally nucleating agents.
- Physical foaming agents generally refer to those compounds that are in the gaseous state in the foaming conditions (generally high temperature and pressure) because of their physical properties.
- the physical foaming agents can be fed to the equipment, wherein foaming takes place, either in their gaseous form, or in any other form, from which a gas will be generated via a physical process (e.g. evaporation, desorption).
- a physical process e.g. evaporation, desorption
- composition (C) to be introduced in the foaming equipment.
- any conventional physical blowing agent can be used such as inert gases, e.g. CO 2 , nitrogen, argon ; hydrocarbons, such as propane, butane, pentane, hexane ; aliphatic alcohols, such as methanol, ethanol, propanol, isopropanol, butanol ; aliphatic ketones, such as acetone, methyl ethyl ketone ; aliphatic esters, such as methyl and ethyl acetate ;
- inert gases e.g. CO 2 , nitrogen, argon
- hydrocarbons such as propane, butane, pentane, hexane
- aliphatic alcohols such as methanol, ethanol, propanol, isopropanol, butanol
- aliphatic ketones such as acetone, methyl ethyl ketone
- aliphatic esters such as methyl and ethy
- fluorinated hydrocarbons such as 1 , 1 , 1 ,2-tetrafluoroetha- ne (HFC 134a) and difluoroethane (HFC 152a) ; and mixtures thereof.
- HFC 134a 1 , 1 ,2-tetrafluoroetha- ne
- HFC 152a difluoroethane
- isopropanol or ethanol are used as physical blowing agent.
- the foaming process is a chemical foaming process.
- a chemical foaming agent in particular a chemical blowing agent.
- Chemical foaming agents generally refer to those compositions which decompose or react under the influence of heat in foaming conditions, to generate a foaming gas.
- Chemical foaming agents can be added to a melt thereby generating in situ the foaming gas or alternatively the generated foaming gas can be added to the melt. This may also be realized in extrusion devices.
- Suitable chemical foaming agents include notably simple salts such as ammonium or sodium bicarbonate, nitrogen evolving foaming agents ; notably aromatic, aliphatic-aromatic and aliphatic azo and diazo compounds, such as azodicarbonamide and sulphonhydrazides, such as benzene sulphonhydrazide and oxy-bis(benzenesulphonhydrazide).
- Said chemical foaming agents can optionally be mixed with suitable activators, such as for example amines and amides, urea, sulphonhydrazides (which may also act as secondary foaming agent) ; and the like.
- the finished foam material is substantially free of the blowing agents, it is contemplated that residual amounts of the one or more blowing agents may remain in the foam material, although these residual amounts are not sufficient to adversely affect the foam characteristics of the foam material.
- any of the residual blowing agent may be reduced by exposing the foam material further to a heat cycle.
- the foam material of the present invention has advantageously a density in the range from 10 to 500 kg/m 3 , preferably from 20 to 400 kg/m 3 ' more preferably from 30 to 300 kg/m 3 , even more preferably from 25 to 250 kg/m 3 .
- the foam material of the present invention has advantageously an average cell size of less than 1000 ⁇ , preferably less than 500 ⁇ , and more preferably less than 250 ⁇
- the density can be measured according to ASTM D1622.
- the cell size can be measured using optical or scanning electron microscopy.
- the foam materials, as formed according to the present invention may be in a variety of shapes, such as foam boards, foam sheets, foam film, foam tubes or any shape possible as determined by the skilled in the art using standard techniques and routine work, temperature, power and residence time of the composition in the extruder so as to obtain final desired shaped foamed parts having the desired void fraction or foaming level.
- An aspect of the present invention also provides an article comprising at least one component comprising the foam material, detailed as above, which provides various advantages over prior art parts and articles, in particular higher stiffness and improved strength properties relative to state of the art foams at a given density at elevated temperatures, particularly at temperatures between 150°C and 230°C ; the increased strength and stiffness at elevated temperature will result in improved structural integrity of the foam overall especially when high temperature fabrication steps such as for example thermosetting resin transfer molding, are applied.
- the article or part of the article consists of the foam material as above detailed.
- the article is an aircraft structural component a structural or secondary aircraft component.
- the aircraft structural component is a sandwich panel comprised of a core comprising the foam material of the present invention and laminated skin layers comprised of a continuous fiber-reinforced thermoset or thermoplastic composite.
- Said sandwich panels can be prepared by known methods, such as for example by vacuum infusion which involves notably infusing a system comprised of a foam with a skin comprising of carbon fibers or other fibers as mentioned above with an epoxy resin by means of an applied vacuum.
- the impregnation is generally performed at low temperatures which are usually in the range from 80°C to 130°C and the curing is generally between 120°C and 200°C.
- foam materials of the present invention as part of an aircraft structural component as described above are also objects of the present invention.
- epoxy resin systems such as Hexflow VRM34, (a two-part, amine-cured epoxy system) are used in vacuum assisted resin transfer molding (VARTM) processes, used in the manufacturing of aircraft structural components such as wing and fuselage structural elements.
- VARTM vacuum assisted resin transfer molding
- Titanium Dioxide -Tipure ® R-105 titanium dioxide, a rutile ⁇ (3 ⁇ 4 manufactured by the chloride process, treated with silica and alumina.
- IMI Fabi HTP-4 talc available from IMI Fabi LLC
- EpiSpire ® EP-340P high temperature sulfone polymer commercially available from Solvay Specialty Polymers USA, LLC, having melt flow rate according to ASTM D1238 in the range 8 to 15 g/10 min. as measured at 400°C and 5.0 kg weight.
- a (PAESHT) polymer comprising recurring units (RPAES-1) complying with formula (D) and recurring units (RPAES-2) complying with formula (C).
- EpiSpire ® EP-340NT high temperature sulfone polymer commercially available from Solvay Specialty Polymers USA, LLC, having melt flow rate according to ASTM D1238 in the range 8 to 15 g/10 min. as measured at 400°C and 5.0 kg weight.
- a (PAESHT) polymer comprising recurring units (RPAES-1) complying with formula (D) and recurring units (RPAES-2) complying with formula (C).
- Polyethersulfone Veradel ® A-201 NT polyethersulfone commercially available from Solvay Specialty Polymers USA, LLC, having melt flow rate according to ASTM D1238 in the range 15 to 25 g/10 min. as measured at 380°C and 2.16 kg weight.
- a polymer or polymer mixture is compounded with 2 parts of ⁇ (3 ⁇ 4 per hundred parts of resin. Compounding into pellets is performed on a
- Berstorff 25 mm twin screw extruder having an L/D ratio of 40: 1 and eight barrel sections, of which sections 2-8 are equipped with heating and cooling.
- the base polymer pellets and the ⁇ (3 ⁇ 4 are first tumble -blended for twenty minutes and then the mix is fed to the throat of the extruder.
- the extruder is set at a barrel temperature of 330 ° for barrel sections 2-8.
- the die temperature is set at 340°C and a screw speed of 200 rpm is used along with a throughput rate of 25 lb/hr for each of the four formulations. Vacuum venting of the melt is performed at barrel section 7.
- the extrudate from the extruder in each case is cooled in a water trough and then pelletized.
- the pellets produced from the formulation are dried at temperatures between 130 and 180°C for 8 hours and are next fed to the foaming set up which consists of a 41 mm diameter Reifenhauser twin screw extruder set in series with a 50 mm Reifenhauser single screw extruder.
- the first extruder (A extruder) output is fed via a melt pipe directly into the second (B extruder) in a parallel configuration.
- the A extruder has an L/D ratio of 43 while the B extruder has an L/D of 30.
- the B extruder is equipped with a 1 mm slit die.
- the pellets produced from the formulation is fed to the A extruder where it melts.
- the injection point for the blowing agent is located at two thirds of the way down the axial length of the A extruder.
- Isopropanol was metered and about 7 % by weight is injected into the polymer melt at pressures of 60-150 bar depending on the present melt pressure in the extruder.
- the homogenized polymer melt and isopropanol mixture is then fed into the B extruder where the mixture is cooled down to temperatures between 220 and 280°.
- the mixture is then extruded through the slit die and into a calibrator to form a foamed sheet.
- a foamed sheet is produced from the EpiSpire ® EP-340P high temperature sulfone polymer according to the general procedure, as described above.
- the resulting foam has an apparent density of 60-120/kg/m 3 , and from Scanning electron microscopy (SEM), a highly uniform cell morphology is observed.
- a foamed sheet is produced from the polymer mixture EpiSpire ® EP-340P high temperature sulfone polymer/ Veradel ® A-201 NT polyethersulfone in a 80/20 ratio according to the general procedure, as described above.
- the resulting foam has an apparent density of 60-120/kg/m 3 , and from Scanning electron microscopy (SEM), a highly uniform cell morphology is observed.
- a foamed sheet was produced from the EpiSpire ® EP-340NT high temperature sulfone polymer according to the general procedure, as described above, except that 1 % by weight of HTP-4 talc was used as nucleating agent instead of ⁇ (3 ⁇ 4 and ethanol was used as blowing agent instead of isopropanol and its concentration was set at 6.54 wt. %.
- the so obtained foam sheet was measured for its density and was found to have a density of 93.3 kg/m 3 . The corresponding properties are shown in Table 1.
- a foamed sheet was produced from the polymer mixture EpiSpire ® EP-
- a foamed sheet was produced from the polymer mixture EpiSpire ® EP- 340NT high temperature sulfone polymer/ Veradel ® A- 201 NT polyethersulfone in a 50/50 ratio according to the general procedure, as described above, except that 1 wt. % of HTP-4 talc was used as nucleating agent instead of ⁇ (3 ⁇ 4 and ethanol was used as blowing agent instead of isopropanol and its concentration was set at 6.10 wt. %.
- the so obtained foam sheet was measured for its density and was found to have a density of 47.4 kg/m 3 .
- the corresponding properties are shown in Table 1.
- a foamed sheet was produced from the polymer mixture EpiSpire ® EP-
- a foamed sheet was produced from Veradel ® A-201 NT polyethersulfone according to the general procedure, as described above, except that 1 wt. % of
- HTP-4 talc was used as nucleating agent instead of ⁇ (3 ⁇ 4 and ethanol was used as blowing agent instead of isopropanol and its concentration was set at 5.70 wt. %.
- the so obtained foam sheet was measured for its density and was found to have a density of 42.4 kg/m 3 .
- the corresponding properties are shown in Table 1.
- Density measurements Density was measured using ASTM method D1622 where the density was measured as the ratio of the weight to volume of foam blocks having precise dimensions.
- Compressive Strength according to ASTM D1621 standard method.
- the foam panels produced were first sanded on the top and bottom surfaces to remove the irregular skin on either side of the foam material and to level and smooth out the top and bottom surfaces of the panel. 2 inch x 2 inch square sections were then machined using a precision band saw to produce specimens of well defined dimensions for compression testing. Prior to compression testing the
- compression test specimens were heat treated in a forced air convection oven at a temperature of 225 °F (107°C) for 24 hours to assure removal of any residual blowing agent from the foam specimens.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/434,451 US9650485B2 (en) | 2012-10-12 | 2013-10-10 | High temperature sulfone (HTS) foam materials |
CN201380064475.0A CN104870566B (en) | 2012-10-12 | 2013-10-10 | High temperature sulfone (HTS) foamed material |
BR112015008010A BR112015008010A2 (en) | 2012-10-12 | 2013-10-10 | high temperature sulfone foam materials (hts) |
EP13774205.2A EP2906636B1 (en) | 2012-10-12 | 2013-10-10 | High temperature sulfone (hts) foam materials |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261713342P | 2012-10-12 | 2012-10-12 | |
US61/713,342 | 2012-10-12 | ||
EP12194087 | 2012-11-23 | ||
EP12194087.8 | 2012-11-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014057042A1 true WO2014057042A1 (en) | 2014-04-17 |
Family
ID=47227671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/071176 WO2014057042A1 (en) | 2012-10-12 | 2013-10-10 | High temperature sulfone (hts) foam meterials |
Country Status (5)
Country | Link |
---|---|
US (1) | US9650485B2 (en) |
EP (1) | EP2906636B1 (en) |
CN (1) | CN104870566B (en) |
BR (1) | BR112015008010A2 (en) |
WO (1) | WO2014057042A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018141527A1 (en) | 2017-01-31 | 2018-08-09 | Solvay Specialty Polymers Usa, Llc | Foam materials made of a combination of poly(biphenyl ether sulfone) (ppsu) and polyethersulfone (pes) |
WO2019025245A1 (en) | 2017-08-04 | 2019-02-07 | Basf Se | Expandable, expanding-agent-containing granules based on high-temperature thermoplastics |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201700007916A1 (en) * | 2017-01-25 | 2018-07-25 | Diab Int Ab | IMPROVED PROCEDURE FOR THE PRODUCTION OF SULFONIC POLYMER EXPANDED MATERIAL |
US20220297412A1 (en) * | 2019-04-17 | 2022-09-22 | Cytec Industries Inc. | Light-weight sandwich structure with flame-retardant property and method of making the same |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3647751A (en) | 1969-06-25 | 1972-03-07 | Bayer Ag | Polyarylether-sulphones |
US4000149A (en) | 1973-07-03 | 1976-12-28 | Shell Oil Company | Herbicidal amide derivatives |
GB1569763A (en) * | 1976-09-06 | 1980-06-18 | Ici Ltd | Manufacture of foamed thermoplastic aromatic polyether-sulphone |
EP0411437A2 (en) * | 1989-08-03 | 1991-02-06 | BASF Aktiengesellschaft | Process for producing expansible granulates and foam obtained thereby |
US5017622A (en) * | 1990-10-16 | 1991-05-21 | The Dow Chemical Company | Sulfone polymer foam produced with aqueous blowing agent |
US20040167241A1 (en) | 2003-02-24 | 2004-08-26 | Dietrich Scherzer | Open-cell foam composed of high-melting point plastics |
US20040212119A1 (en) | 2001-12-20 | 2004-10-28 | Franz-Josef Dietzen | Production of foam webs from high-temperature-resistant polysulfones or polyether sulfones |
US20050228149A1 (en) | 2004-04-01 | 2005-10-13 | Trivedi Prakash D | Process of preparation of block copolymers and the block copolymers prepared therefrom |
WO2005095491A1 (en) | 2004-04-01 | 2005-10-13 | Solvay Specialities India Private Limited | An improved process of preparation of block copolymers and the block copolymers prepared therefrom |
WO2007039538A1 (en) | 2005-09-30 | 2007-04-12 | Solvay Specialities India Private Limited | A process for preparing homoblock co-polysulfones and polysulfones prepared therefrom |
WO2009085688A1 (en) | 2007-12-20 | 2009-07-09 | Sabic Innovative Plastics Ip B.V. | Continuous process for making polyetherimide foam materials and articles made therefrom |
WO2011117410A1 (en) * | 2010-03-26 | 2011-09-29 | Solvay Sa | Polymer compositions comprising core/shell particles |
WO2013053851A1 (en) * | 2011-10-12 | 2013-04-18 | Solvay Specialty Polymers Usa, Llc | Polyetherimide/ poly(biphenyl ether sulfone) foam materials |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH062879B2 (en) * | 1988-12-19 | 1994-01-12 | 住友化学工業株式会社 | Method for producing aromatic polysulfone resin molding material with improved releasability |
US6228970B1 (en) * | 1998-09-25 | 2001-05-08 | Bp Amoco Corporation | Poly (biphenyl ether sulfone) |
DE10149871A1 (en) * | 2001-10-10 | 2003-04-17 | Basf Ag | Molding composition containing polyarylether sulfone and an impact modifying rubber useful in production of shaped parts, films, fibers or foams, household articles, electronic parts, medical equipment, and automobile parts |
US20060069236A1 (en) * | 2004-09-27 | 2006-03-30 | General Electric Company | Polyethersulfone compositions with high heat and good impact resistance |
RU2007134432A (en) * | 2005-02-16 | 2009-03-27 | СОЛВЕЙ ЭДВАНСТ ПОЛИМЕРС, Эл.Эл.Си. (US) | MATERIAL BASED ON A SIMPLE POLYESTER OF ARILSULPHON AND ITS APPLICATION |
US8240252B2 (en) * | 2005-03-07 | 2012-08-14 | Nikica Maljkovic | Ammunition casing |
TW200734402A (en) * | 2005-10-06 | 2007-09-16 | Solvay Advanced Polymers Llc | High-performance poly(aryl ether sulfone) composition |
US7273919B1 (en) * | 2005-11-21 | 2007-09-25 | General Electric Company | High heat polyethersulfone compositions |
US20070117962A1 (en) * | 2005-11-21 | 2007-05-24 | General Electric Company | High heat polyethersulfone compositions |
EP2129716B1 (en) * | 2007-02-28 | 2018-05-23 | Solvay Specialty Polymers USA, LLC. | Thermoplastic compositions containing microspheres |
US20090004425A1 (en) * | 2007-06-28 | 2009-01-01 | The Boeing Company | Ceramic Matrix Composite Structure having Fluted Core and Method for Making the Same |
US8034857B2 (en) * | 2007-07-12 | 2011-10-11 | Sabic Innovative Plastics Ip B.V. | Polyetherimide/polyphenylene ether sulfone blends |
EP2200672B1 (en) * | 2007-09-11 | 2012-06-27 | Solvay Specialty Polymers USA, LLC. | Improved prosthetic devices |
US7998299B2 (en) * | 2008-10-01 | 2011-08-16 | The Boeing Company | Method for making composite truss panel having a fluted core |
US20110237693A1 (en) * | 2010-03-23 | 2011-09-29 | Basf Se | Blends made of polyarylene ethers and of polyarylene sulfides |
US20110237694A1 (en) * | 2010-03-23 | 2011-09-29 | Basf Se | Polyarylene ethers with improved flowability |
US8703862B2 (en) * | 2010-05-26 | 2014-04-22 | Basf Se | Reinforced thermoplastic molding compositions based on polyarylene ethers |
US20140343184A1 (en) * | 2011-12-22 | 2014-11-20 | Solvay Specialty Polymers Usa, Llc. | Thermoformed foam articles |
-
2013
- 2013-10-10 WO PCT/EP2013/071176 patent/WO2014057042A1/en active Application Filing
- 2013-10-10 US US14/434,451 patent/US9650485B2/en active Active
- 2013-10-10 CN CN201380064475.0A patent/CN104870566B/en active Active
- 2013-10-10 BR BR112015008010A patent/BR112015008010A2/en active Search and Examination
- 2013-10-10 EP EP13774205.2A patent/EP2906636B1/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3647751A (en) | 1969-06-25 | 1972-03-07 | Bayer Ag | Polyarylether-sulphones |
US4000149A (en) | 1973-07-03 | 1976-12-28 | Shell Oil Company | Herbicidal amide derivatives |
GB1569763A (en) * | 1976-09-06 | 1980-06-18 | Ici Ltd | Manufacture of foamed thermoplastic aromatic polyether-sulphone |
EP0411437A2 (en) * | 1989-08-03 | 1991-02-06 | BASF Aktiengesellschaft | Process for producing expansible granulates and foam obtained thereby |
US5017622A (en) * | 1990-10-16 | 1991-05-21 | The Dow Chemical Company | Sulfone polymer foam produced with aqueous blowing agent |
US20040212119A1 (en) | 2001-12-20 | 2004-10-28 | Franz-Josef Dietzen | Production of foam webs from high-temperature-resistant polysulfones or polyether sulfones |
US20040167241A1 (en) | 2003-02-24 | 2004-08-26 | Dietrich Scherzer | Open-cell foam composed of high-melting point plastics |
US20050228149A1 (en) | 2004-04-01 | 2005-10-13 | Trivedi Prakash D | Process of preparation of block copolymers and the block copolymers prepared therefrom |
WO2005095491A1 (en) | 2004-04-01 | 2005-10-13 | Solvay Specialities India Private Limited | An improved process of preparation of block copolymers and the block copolymers prepared therefrom |
WO2007039538A1 (en) | 2005-09-30 | 2007-04-12 | Solvay Specialities India Private Limited | A process for preparing homoblock co-polysulfones and polysulfones prepared therefrom |
WO2009085688A1 (en) | 2007-12-20 | 2009-07-09 | Sabic Innovative Plastics Ip B.V. | Continuous process for making polyetherimide foam materials and articles made therefrom |
WO2011117410A1 (en) * | 2010-03-26 | 2011-09-29 | Solvay Sa | Polymer compositions comprising core/shell particles |
WO2013053851A1 (en) * | 2011-10-12 | 2013-04-18 | Solvay Specialty Polymers Usa, Llc | Polyetherimide/ poly(biphenyl ether sulfone) foam materials |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018141527A1 (en) | 2017-01-31 | 2018-08-09 | Solvay Specialty Polymers Usa, Llc | Foam materials made of a combination of poly(biphenyl ether sulfone) (ppsu) and polyethersulfone (pes) |
EP3372632A1 (en) | 2017-03-08 | 2018-09-12 | Solvay Specialty Polymers USA, LLC. | Foam materials made of a combination of poly(biphenyl ether sulfone) (ppsu) and polyethersulfone (pes) |
WO2019025245A1 (en) | 2017-08-04 | 2019-02-07 | Basf Se | Expandable, expanding-agent-containing granules based on high-temperature thermoplastics |
US11499028B2 (en) | 2017-08-04 | 2022-11-15 | Basf Se | Expandable, expanding-agent-containing granules based on high-temperature thermoplastics |
Also Published As
Publication number | Publication date |
---|---|
CN104870566B (en) | 2017-06-06 |
CN104870566A (en) | 2015-08-26 |
EP2906636A1 (en) | 2015-08-19 |
US9650485B2 (en) | 2017-05-16 |
EP2906636B1 (en) | 2016-10-05 |
BR112015008010A2 (en) | 2017-07-04 |
US20150267023A1 (en) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2794741B1 (en) | Thermoformed foam articles | |
US10233299B2 (en) | Polyarylene foam materials | |
EP3087120B1 (en) | New foam materials | |
JP6359453B2 (en) | Polyetherimide / poly (biphenyl ether sulfone) foam | |
US20190390058A1 (en) | Foam materials made of a combination of poly(biphenyl ether sulfone) (ppsu) and polyethersulfone (pes) | |
Li et al. | Polysulfone foam with high expansion ratio prepared by supercritical carbon dioxide assisted molding foaming method | |
EP2906636B1 (en) | High temperature sulfone (hts) foam materials | |
Jiang et al. | Poly (ether imide)/epoxy foam composites with a microcellular structure and ultralow density: bead foam fabrication, compression molding, mechanical properties, thermal stability, and flame-retardant properties | |
WO2014170255A2 (en) | Thermoformed foam articles | |
CN114605694B (en) | Reinforced polybutene foam material and preparation method thereof | |
WO2013085742A2 (en) | High compressive strength extruded polymeric foam | |
JP6962716B2 (en) | Fiber complex | |
ES2592429T3 (en) | Styrene foam cell size increase agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13774205 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013774205 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013774205 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14434451 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015008010 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015008010 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150409 |