WO2014048179A1 - 高分子材料异型材单螺杆挤出机筒成型法及设备 - Google Patents
高分子材料异型材单螺杆挤出机筒成型法及设备 Download PDFInfo
- Publication number
- WO2014048179A1 WO2014048179A1 PCT/CN2013/081373 CN2013081373W WO2014048179A1 WO 2014048179 A1 WO2014048179 A1 WO 2014048179A1 CN 2013081373 W CN2013081373 W CN 2013081373W WO 2014048179 A1 WO2014048179 A1 WO 2014048179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- screw
- profile
- polymer material
- polymer
- barrel
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/397—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/12—Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/535—Screws with thread pitch varying along the longitudinal axis
Definitions
- the invention relates to a continuous and high-efficiency single-screw extruder barrel molding method and equipment for polymer material profile, which can form a poor fluidity polymer material and a thermosetting plastic profile.
- the molding method of the polymer material profile material is mainly obtained by using a common single (double) screw extruder combined with a profiled head to form a profile and mechanically processing the polymer block material.
- a single (double) screw extruder is generally used in combination with a profiled head, which is mature and has high molding efficiency and is widely used.
- thermosetting plastics and molding materials with poor fluidity such as ultra high molecular weight polyethylene (UHMWPE) and polytetrafluoroethylene (PTFE)
- UHMWPE ultra high molecular weight polyethylene
- PTFE polytetrafluoroethylene
- the molding method is molded by a molding method or by a molding method (stick, After the block, etc., the desired profile is obtained by the mechanical processing method.
- the molding process is discontinuous, the material waste is serious, the production efficiency is low, and the local temperature of the material is too high due to the long molding time, which may lead to the material. Degradation affects the performance of the product.
- the technical problem to be solved by the present invention is to provide a single-screw extruder molding method and a device for a thermosetting plastic and a molding material having a poor flowability, which can achieve poor fluidity to thermosetting plastics and molding.
- the polymer material is continuously and efficiently shaped and material saved.
- a polymer material profile single-screw extruder barrel molding apparatus which is characterized by comprising a screw, a feed seat, a power barrel, a bearing, a bearing seat, and a profile forming core.
- Rod and profile forming outer mold wherein the two ends of the power barrel are coupled with the bearing, the bearing is placed in the bearing seat and the feeding seat, and rotates under the action of external power; the screw is in a stationary state, one end of which is fixed at The profiled forming mandrel is screwed to the end face of the screw, and the profiled outer die is coupled to the bearing block through the flange; the screw structure is divided into: a feed compression section, and the structure of the feed compression section is: The pitch of the pitch becomes variable, the pitch of the variable pitch becomes the depth of the groove or the pitch of the variable pitch, and the geometric compression ratio of the screw gradually reaches the physical compression ratio of the polymer raw material, ensuring that the raw material is compacted in the section; compaction section: The geometric compression ratio of the screw is not less than the physical compression ratio of the polymer material; the straight line segment of the ridge line: the ridge line is excessively close to the end face of the screw Straight line in the direction of the screw, the material to ensure a straight line
- a screw having one or more helical ribs it has the same number of slots, in which case the feedstocks are each fan-shaped and move along respective independent channels.
- the material reaches a screw end face and has a separate fan-shaped surface, which moves along a separate screw groove; when the double screw head screw material reaches the screw end face, there are two independent fan-shaped faces along two independent snails. Groove movement; when the three screw head screw material reaches the screw end face, there are three independent fan-shaped faces, which move along three independent screw grooves. And so on.
- the inner wall of the power barrel is provided with a groove corresponding to the compacting section of the screw to ensure that the power cylinder can generate sufficient extrusion pressure.
- the profile forming outer mold is provided with a heater.
- the profiled mandrel and the profiled outer die cavity gradually transition from the respective independent fan shapes at the screw end faces to the profile shape, and The molds meet at each other to realize the molding process of the profile. Thereafter, in the heating of the heater and the frictional heat during the operation of the material, the polymer material profile is plasticized.
- the method for molding a single-screw extruder barrel of a polymer material rod is characterized by the following steps: the polymer material is fed from the feeding seat, the screw is stationary, and under the action of the frictional drag of the rotating of the power barrel, the polymer The raw material advances along the direction of the groove, and the polymer raw material is gradually compacted.
- a groove is formed on the inner wall of the power barrel, and sufficient extrusion pressure is generated in the section, when the polymer raw material reaches the screw At the end face, the spiral ridge line gradually becomes a straight line, and the linear material moves when the polymer raw material enters the profile forming region, and the cavity between the polymer material forming the mandrel and the profiled outer mold cavity gradually changes from the screw end face. Transitioning to the shape of the corresponding profile, thereby realizing the molding process of the profiled material, and then, in combination with the heating of the heater and the frictional heat during the operation of the material, the plastic material profile material is plasticized; finally, the traction device and the metering device are adopted. Coordinated work with the cutting device to achieve continuous molding of polymer material profiles.
- the invention patent has different molding process from the traditional single (double) screw forming polymer profile.
- the invention patent has a unique molding process, and the molding process thereof: material feeding from the feeding seat ⁇ gradually compacting ⁇ complete Compaction ⁇ formation of profiled embryos ⁇ plasticization ⁇ cooling precision shaping ⁇ traction, cutting, stacking and other processes.
- Forming process of ordinary single-screw forming polymer material profile material material feeding from feeding seat ⁇ gradual compaction ⁇ complete compaction state ⁇ plasticization ⁇ formation of profiled embryo through the head ⁇ cooling precision shaping ⁇ traction, cutting, Stacking and other processes.
- the profiled preform is formed in the front and plasticized, and the conventional molding process firstly realizes the plasticization of the polymer raw material, and then realizes the profile forming in the machine head;
- the invention patent can realize flow momentum or even no fluidity.
- the polymer material or composite material adopts single-screw continuous molding profile.
- the invention patent first forms the profile type embryo and then plasticizes, and the molding process ensures that the molding process does not necessarily have a relationship with the fluidity of the material, even if the fluidity is poor or even the fluid polymer material can be formed, the molding process is continuous, molding.
- the speed is more than 10 times that of the compression sintering method; (3)
- the polymer material profile obtained by the invention can maintain the physical properties of the raw material
- Figure 1 is a schematic structural view of a molding apparatus of the present invention
- Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
- Figure 3 is a schematic view of the screw structure of the present invention.
- Figure 4 is a cross-sectional view of a typical profile and a corresponding screw end view.
- the molding apparatus of the present invention mainly comprises: a polymer material profile single-screw extruder barrel molding apparatus, including a screw 1, a feed base 2, a power barrel 3, a bearing 4, a bearing housing 5, and a different The profile forming core rod 6 and the profile forming outer mold 7, wherein the two ends of the power barrel are coupled with the bearing, and the bearing is placed in the bearing seat and the feeding seat, and rotates under the action of external power; the screw is at a static state
- the profiled outer mold is equipped with a heater 8, the profiled mandrel is screwed to the end face of the screw, and the profiled outer die is coupled to the bearing block through the flange; the screw structure is divided into:
- the compression section 9 the structure of the feed compression section is: the pitch of the pitch becomes variable, the pitch of the variable pitch becomes the depth of the groove or the pitch of the variable pitch, and the geometric compression ratio of the screw gradually reaches the physical compression of the polymer raw material.
- compaction section 10 the geometric compression ratio of the screw is not less than the physical compression ratio of the polymer raw material; the straight line segment of the ridge line 12: near the end face 13 of the screw, Over the ridgeline direction parallel to the straight line of the screw, the material to ensure a straight line.
- the inner wall of the power barrel is provided with a groove corresponding to the compacting section of the screw to ensure that the power barrel can generate sufficient extrusion pressure.
- the power equipment, transmission, and temperature control system required for the single-screw extrusion molding of the polymer material profile can use the same equipment and technology of the existing single-screw extruder.
- the traction device, the metering device and the cutting device are now used. Have regular equipment.
- Polymer material profile single-screw extrusion molding barrel molding method which is characterized by the following steps: The polymer material is fed from the feeding seat, the screw is stationary, and under the action of the friction drag of the rotating power of the power barrel, the polymer The raw material advances along the direction of the screw groove, and the polymer raw material is gradually compacted. In the screw compaction section, a groove is formed on the inner wall of the power barrel, The segment will generate sufficient extrusion pressure. When the polymer raw material reaches the end face of the screw, the spiral ridge line gradually becomes a straight line, and the polymer material enters the profile forming region 11 to perform linear motion. At this time, the shape of the raw material is independent.
- the polymer raw material enters into the cavity between the profiled mandrel and the profiled outer die, from the fan shape at the end face of the screw, and then the shaped cavity gradually transitions to the corresponding profile.
- the geometric structure and the confluence at the die form the shape of the corresponding profile, thereby realizing the molding process of the profile.
- the number of spiral ribs determines the number of slots of the screw.
- the shape of the raw materials at this time is a separate fan shape.
- the raw material having a fan-shaped cross section is formed by the profile forming mandrel and the cavity of the forming outer mold, and gradually transitions to the geometry of the corresponding profile, and merges at the profile forming die to form a specific profile section.
- the polymer material profile is plasticized; finally, the traction device, the metering device and the cutting device work together to realize the continuous molding of the polymer material profile. .
- the compacted material is a separate fan shape at the end of the screw, through the profiled mandrel and profile.
- the outer mold cavity is gradually over-shaped to the shape of the profile, thereby realizing the molding process of the profiled material, or adopting the double-spiral screw thread screw shown in Fig. 4(B), and the compacted raw material has two independent sectors on the screw end face.
- the outer cavity is gradually over-shaped to the profile shape, thus realizing the molding process of the profile.
- the double-spiral screw shown in Fig. 4 (B ) is used.
- the compacted material has two independent sectors on the end face of the screw, through the profiled mandrel and profile.
- the outer mold cavity is gradually over-shaped to the shape of the profile, thereby realizing the molding process of the profile.
- the three-screw screw shown in Fig. 4 (C) is used.
- the compacted material has three independent sectors on the end face of the screw, through the profiled mandrel and profile.
- the outer mold cavity is gradually over-shaped to the shape of the profile, in which the adc fan shape gradually transitions to the abef rectangle, and the other two segments gradually transition to the abed rectangle, thereby realizing the molding process of the profiled material.
- the compacted material has three independent sectors on the end face of the screw, through the profiled mandrel and profile.
- the outer mold cavity is gradually over-shaped to the profile shape, in which the ad fan shape gradually transitions to the abef rectangle, the dc fan shape gradually transitions to the abed rectangle, and the ac fan shape gradually transitions to the cdgh rectangle, thereby realizing the molding process of the profiled material.
- the compacted material is two independent fan-shaped ends on the end of the screw, which are molded by the profiled mandrel and profile.
- the cavity of the model gradually over-shaped to the shape of the profile, in which the adc fan gradually transitions to the abic quadrilateral, and the abc fan gradually transitions to the adefg pentagon, thereby realizing the profile.
- the molding process
- Table 1 uses the pure UHMWPE profile produced by the patented technology of the present invention to perform a key performance parameter test report, indicating that the sample retains the physical properties of pure UHMWPE in terms of density, Vicat softening temperature, wear resistance and dry friction coefficient.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
本发明涉及发明高分子材料异型材单螺杆挤出机筒成型法及设备,按以下步骤顺序进行:高分子材料从进料座进料,螺杆静止,高分子原料随螺槽方向前行,高分子原料逐渐被压实,在螺杆压实段,对应动力机筒的内壁上开有沟槽,在该段将产生足够的挤出压力,当高分子原料到达螺杆端面时,螺棱线逐渐变为直线,使高分子原料进入异型材成型区时做直线运动,高分子原料在异型材成型芯棒和异型材成型外模间型腔从螺杆端面处的扇形逐渐过渡到所对应异型材的形状,从而实现异型材的成型过程。本发明优点:本发明专利可实现流动动差甚至没有流动性这类高分子材料或复合材料采用单螺杆连续成型异型材;本发明所成型得到的高分子材料异型材可保持原料的物理性能。
Description
高分子材料异型材单螺杆挤出机筒成型法及设备 【技术领域】
本发明涉及一种连续高效的高分子材料异型材单螺杆挤出机筒成型法及设备, 该方法能 成型流动性差高分子材料和热固性塑料异型材。
【背景技术】
目前高分子材料异型材的成型方法主要有采用普通单(双)螺杆挤出机结合异型材机头来 成型异型材和对高分子块状胚料进行机械加工等方法而获得。
对成型过程中具有一定流动性的高分子材料异型材的成型, 一般采用单(双)螺杆挤出机 结合异型材机头来成型, 该成型方法成熟、 成型效率高, 得到广泛应用。 对于热固性塑料和 成型流动性差这类高分子材料 , 如超高分子量聚乙烯 (UHMWPE) 和聚四氟乙烯 (PTFE)等 异型材的成型方法, 采用模压方法或者先采用模压方法现成型材 (棒、 块等) 后, 再通过机 械加工的方法而获得所需异型材, 该方法成型过程不连续, 材料浪费严重, 生产效率低, 同 时由于成型时间长, 材料局部的温度过高, 有可能导致材料降解而影响产品的性能。
【发明内容】
本发明所要解决的技术问题是针对上述现有技术而提供一种针对热固性塑料和成型流动 性差的高分子材料异型材单螺杆挤出机筒成型法及设备, 可以实现对热固性塑料和成型流动 性差的高分子材料连续、 高效成型和节约材料。
本发明解决上述技术问题所采用的技术方案是: 高分子材料异型材单螺杆挤出机筒成型 设备, 其特征在于包括有螺杆、 进料座、 动力机筒、 轴承、 轴承座、 异型材成型芯棒和异型 材成型外模, 其中, 动力机筒的两端和轴承相联接, 轴承安放在轴承座和进料座中, 在外在 动力的作用下作旋转运动; 螺杆处于静止状态, 其中一端固定在; 异型材成型芯棒与螺杆端 面通过螺纹连接, 异型材成型外模通过法兰与轴承座联接; 所述的螺杆结构分为: 进料压縮 段, 进料压縮段的结构为: 等螺距变螺槽深度、 变螺距变螺槽深度或变螺距等螺槽深度, 螺 杆的几何压縮比逐渐达到高分子原料的物理压縮比, 确保原料在该段被压实; 压实段: 螺杆 的几何压縮比不小于高分子原料的物理压縮比; 螺棱线直线段: 在接近螺杆的端面, 螺棱线 过度到平行于螺杆方向的直线, 确保物料作直线运动。
对于具有一个或者多个螺棱的螺杆, 其具有相同的螺槽数量, 此时, 原料为各自独立扇 形且沿着各自的独立螺槽运动。 对于单螺头螺杆, 原料到达螺杆端面时呈一个独立扇形面, 沿一个独立螺槽运动; 对双螺头螺杆原料到达螺杆端面时呈两个独立扇形面, 沿两个独立螺
槽运动; 对三螺头螺杆原料到达螺杆端面时呈三个独立扇形面, 沿三个独立螺槽运动。 依次 类推。
按上述方案, 所述的动力机筒的内壁上开有沟槽, 与螺杆的压实段相对应, 确保动力机 筒能产生足够的挤出压力。
按上述方案, 所述的异型材成型外模装有加热器。
当被压实的原料沿各自的螺槽进入异型材成型区时, 异型材成型芯棒和异材成型外模间 型腔从螺杆端面处的各自独立扇形逐渐过渡到异型材的形状, 并在口模处汇合, 从而实现异 型材的成型过程。 其后, 在加热器加热和物料运行过程摩擦热的共同作用, 高分子材料异型 材实现塑化。
高分子材料棒材单螺杆挤出机筒成型方法, 其特征在于按以下步骤顺序进行: 高分子材 料从进料座进料, 螺杆静止, 在动力机筒的旋转的摩擦拖曳的作用下, 高分子原料随螺槽方 向前行, 高分子原料逐渐被压实, 在螺杆压实段, 对应动力机筒的内壁上开有沟槽, 在该段 将产生足够的挤出压力, 当高分子原料到达螺杆端面时, 螺棱线逐渐变为直线, 使高分子原 料进入异型材成型区时做直线运动, 高分子原料在异型材成型芯棒和异型材成型外模间型腔 从螺杆端面处的扇形逐渐过渡到所对应异型材的形状, 从而实现异型材的成型过程, 其后, 在加热器加热和物料运行过程摩擦热的共同作用, 高分子材料异型材实现塑化; 最后通过牵 引装置、 计量装置和切割装置共同协调工作下, 实现高分子材料异型材的连续成型。
本发明相比现有技术所具有的优点:
( 1 ) 该发明专利不同于传统单 (双) 螺杆成型高分子异型材具有不同的成型工艺 本发明专利具有独特的成型工艺, 其成型工艺: 物料从进料座进料→逐渐压实→完全压实态 →形成异型材型胚→塑化→冷却精密定型→牵引、 切割、 堆放等过程。 普通单螺杆成型高分 子材料异型材的成型工艺: 物料从进料座进料→逐渐压实→完全压实态→塑化→通过机头形 成异型材型胚→冷却精密定型→牵引、 切割、 堆放等过程。 本发明专利工序中异型材型胚成 型在前而塑化在后, 而传统成型工序是先实现高分子原料的塑化, 再在机头中实现异型材成 型;
(2)本发明专利可实现流动动差甚至没有流动性这类高分子材料或复合材料采用单螺杆连续 成型异型材
本发明专利先形成异型材型胚然后塑化, 这种成型工艺确保成型过程于物料的流动性没有必 然关系, 即使流动性很差甚至没有流动性高分子材料也能成型, 成型过程连续, 成型速度是 模压烧结方法的 10倍以上;
(3)本发明所成型得到的高分子材料异型材可保持原料的物理性能
在进行高分子材料异型材成型时, 对流动性差的高分子原料不需要进行工艺改性来提高原料 的流动性, 同时成型温度低于原料分解温度, 则成型的高分子材料异型材将完好的保留原料 的性能, 表 1为采用本发明专利技术成型流动性很差的纯超高分子量聚乙烯异型材, 结果显 示本发明专利技术所生产的纯超高分子量聚乙烯异型材完全保留了超高分子量聚乙烯原有的 优异性能。
【附图说明】
图 1为本发明的成型设备结构示意图;
图 2为图 1的 A-A剖视图;
图 3为本发明的螺杆结构简图;
图 4为典型异型材截面图及对应螺杆端面图。
【具体实 »式】
下面结合附图对本发明作进一步的描述, 但是不会构成对本发明的限制。
如图 1-3, 本发明的成型设备主要包括: 高分子材料异型材单螺杆挤出机筒成型设备, 包 括有螺杆 1、 进料座 2、 动力机筒 3、 轴承 4、 轴承座 5、 异型材成型芯棒 6和异型材成型外 模 7, 其中, 动力机筒的两端和轴承相联接, 轴承安放在轴承座和进料座中, 在外在动力的 作用下作旋转运动; 螺杆处于静止状态; 所述的异型材成型外模装有加热器 8, 异型材成型 芯棒与螺杆端面通过螺纹连接, 异型材成型外模通过法兰与轴承座联接; 所述的螺杆结构分 为: 进料压縮段 9, 进料压縮段的结构为: 等螺距变螺槽深度、 变螺距变螺槽深度或变螺距 等螺槽深度,螺杆的几何压縮比逐渐达到高分子原料的物理压縮比,确保原料在该段被压实; 压实段 10: 螺杆的几何压縮比不小于高分子原料的物理压縮比; 螺棱线直线段 12: 在接近螺 杆的端面 13, 螺棱线过度到平行于螺杆方向的直线, 确保物料作直线运动。
所述的动力机筒的内壁上开有沟槽, 与螺杆的压实段相对应, 确保动力机筒能产生足够 的挤出压力。
高分子材料异型材单螺杆挤出成型机筒成型法需要的动力装置、 传动装置、 温度控制系 统都可采用现有单螺杆挤出机相同设备及技术, 牵引装置、 计量装置和切割装置采用现有常 规装备。
高分子材料异型材单螺杆挤出成型机筒成型法, 其特征在于按以下步骤顺序进行: 高分 子材料从进料座进料, 螺杆静止, 在动力机筒旋转的摩擦拖曳的作用下, 高分子原料随螺槽 方向前行, 高分子原料逐渐被压实, 在螺杆压实段, 对应动力机筒的内壁上开有沟槽, 在该
段将产生足够的挤出压力, 当高分子原料到达螺杆端面时, 螺棱线逐渐变为直线, 使高分子 原料进入异型材成型区 11时做直线运动, 此时的原料的形状是各自独立的扇形, 在挤出压力 的作用下高分子原料进入到异型材成型芯棒和异型材成型外模间型腔,从螺杆端面处的扇形, 其后成型型腔逐步过渡到所对应异型材的几何结构, 并在口模处汇合, 形成对应异型材的形 状, 从而实现异型材的成型过程。
如图 4所示, 根据不同异型材的几何结构特征, 采用不同的螺棱数目的螺杆, 螺棱数决 定螺杆的螺槽数目, 当原料到达螺杆端面时, 被压实的原料随各自螺槽运动, 此时的原料的 形状是各自独立的扇形。 随后, 截面为扇形的原料通过异型材成型芯棒和成型外模的型腔, 逐步过渡到所对应异型材的几何形状, 并在异型材成型口模处汇合, 从而形成了特定异型材 截面,其后,在加热器加热和物料运行过程摩擦热的共同作用,高分子材料异型材实现塑化; 最后通过牵引装置、 计量装置和切割装置共同协调工作下, 实现高分子材料异型材的连续成 型。
要得到如图 4 ( I ) 所示的板材, 采用图 4 (A) 所示的单螺头螺棱螺杆, 压实的原料在 螺杆端面为一个独立的扇形,通过异型材芯棒和异型材成型外模型腔逐渐过度到异型材形状, 从而实现了异型材的成型过程, 或者采用图 4 (B )所示的双螺头螺棱螺杆, 压实的原料在螺 杆端面为两个独立的扇形, 通过异型材芯棒和异型材成型外模型腔逐渐过度到异型材形状, 从而实现了异型材的成型过程。 要得到如图 4 ( II ) 所示的异型材, 采用图 4 (B ) 所示的双 螺棱螺杆, 压实的原料在螺杆端面为两个独立的扇形, 通过异型材芯棒和异型材成型外模型 腔逐渐过度到异型材形状, 从而实现了异型材的成型过程。
要得到如图 4 ( III) 所示的异型材, 采用图 4 (C) 所示的三螺棱螺杆, 压实的原料在螺 杆端面为三个独立的扇形, 通过异型材芯棒和异型材成型外模型腔逐渐过度到异型材形状, 其中 adc扇形逐渐过渡到 abef矩形, 另外两个扇形逐步过渡到 abed矩形, 从而实现了异型 材的成型过程。
要得到如图 4 ( IV ) 所示的异型材, 采用图 4 (D) 所示的三螺棱螺杆, 压实的原料在螺杆端 面为三个独立的扇形, 通过异型材芯棒和异型材成型外模型腔逐渐过度到异型材形状, 其中 ad扇形逐渐过渡到 abef矩形, dc扇形逐渐过渡到 abed矩形, ac扇形逐渐过渡到 cdgh矩形, 从而实现了异型材的成型过程。
要得到如图 4 ( ¥ ) 所示的异型材, 采用图 B所示的双螺棱螺杆, 压实的原料在螺杆端 面为两个个独立的扇形, 通过异型材芯棒和异型材成型外模型腔逐渐过度到异型材形状, 其 中 adc扇形逐渐过渡到 abic四边形, abc扇形逐渐过渡到 adefg五边形, 从而实现了异型材
的成型过程。
表 1采用本发明专利技术所生产的纯 UHMWPE异型材进行关键性能参数检测报告, 表 明样品在密度、 维卡软化温度、 耐磨性和干摩擦系数等方面完好的保留了纯 UHMWPE的物 理性能。
表 1 按本发明专利方法生产的纯 UHMWPE异型材进行关键性能参数检测报告
替换页 (细则第 26条)
Claims
1. 高分子材料异型材单螺杆挤出机筒成型设备, 其特征在于包括有螺杆 (1 )、 进料座 (2)、 动力机筒(3)、轴承(4)、轴承座(5)、异型材成型芯棒(6)和异型材成型外模(7), 其中, 动力机筒的两端和轴承相联接, 轴承安放在轴承座和进料座中, 在外在动力的作用下作旋转 运动; 螺杆处于静止状态, 其中一端固定在; 异型材成型芯棒与螺杆端面通过螺纹连接, 异 型材成型外模通过法兰与轴承座联接; 所述的螺杆结构分为: 进料压縮段 (9), 进料压縮段 的结构为: 等螺距变螺槽深度、 变螺距变螺槽深度或变螺距等螺槽深度, 螺杆的几何压縮比 逐渐达到高分子原料的物理压縮比, 确保原料在该段被压实; 压实段(10): 螺杆的几何压縮 比不小于高分子原料的物理压縮比; 螺棱线直线段 (12): 在接近螺杆的端面 (13 ), 螺棱线 过度到平行于螺杆方向的直线, 确保物料作直线运动。
2. 按权利要求 1所述的高分子材料异型材单螺杆挤出机筒成型设备, 其特征在于所述的动力 机筒的内壁上开有沟槽, 与螺杆的压实段相对应, 确保动力机筒能产生足够的挤出压力。
3. 按权利要求 1或 2所述的高分子材料异型材单螺杆挤出机筒成型设备, 其特征在于所述的 异型材成型外模装有加热器 (8)。
4. 采用权利要求 1所述的高分子材料异型材单螺杆挤出机筒成型设备的高分子材料棒材单螺 杆挤出机筒成型方法, 其特征在于按以下步骤顺序进行: 高分子材料从进料座进料, 螺杆静 止, 在动力机筒的旋转的摩擦拖曳的作用下, 高分子原料随螺槽方向前行, 高分子原料逐渐 被压实, 在螺杆压实段, 对应动力机筒的内壁上开有沟槽, 在该段将产生足够的挤出压力, 当高分子原料到达螺杆端面时, 螺棱线逐渐变为直线, 使高分子原料进入异型材成型区时做 直线运动, 高分子原料在异型材成型芯棒和异型材成型外模间型腔从螺杆端面处的扇形逐渐 过渡到所对应异型材的形状, 从而实现异型材的成型过程, 其后, 在加热器加热和物料运行 过程摩擦热的共同作用, 高分子材料异型材实现塑化; 最后通过牵引装置、 计量装置和切割 装置共同协调工作下, 实现高分子材料异型材的连续成型。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012103684812 | 2012-09-28 | ||
CN2012103684812A CN102990899A (zh) | 2012-09-28 | 2012-09-28 | 高分子材料异型材单螺杆挤出机筒成型法及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014048179A1 true WO2014048179A1 (zh) | 2014-04-03 |
Family
ID=47920261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/081373 WO2014048179A1 (zh) | 2012-09-28 | 2013-08-13 | 高分子材料异型材单螺杆挤出机筒成型法及设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102990899A (zh) |
WO (1) | WO2014048179A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117903547A (zh) * | 2024-01-18 | 2024-04-19 | 中科万通新材料(北京)有限公司 | 一种耐高温高分子水润滑轴承材料及其制备工艺 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102990899A (zh) * | 2012-09-28 | 2013-03-27 | 武汉工程大学 | 高分子材料异型材单螺杆挤出机筒成型法及设备 |
CN105014919A (zh) * | 2014-04-17 | 2015-11-04 | 奥卓海(上海)机械有限公司 | 超高分子量聚乙烯纯料挤出单螺杆挤出机 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007144628A (ja) * | 2005-11-24 | 2007-06-14 | Mitsubishi Heavy Ind Ltd | 押出成形機、スクリュー部材 |
CN102303400A (zh) * | 2011-09-21 | 2012-01-04 | 武汉工程大学 | 高分子材料棒材单螺杆挤出机筒成型法及设备 |
CN102303401A (zh) * | 2011-09-21 | 2012-01-04 | 武汉工程大学 | 高分子材料多束细棒同时成型单螺杆机筒成型法及设备 |
CN102310541A (zh) * | 2011-09-21 | 2012-01-11 | 武汉工程大学 | 高分子材料棒材单螺杆挤出机筒成型法及其成型设备 |
CN102358022A (zh) * | 2011-08-01 | 2012-02-22 | 武汉工程大学 | 高分子材料管材单螺杆连续挤出成型机筒成型法及其成型设备 |
CN102990899A (zh) * | 2012-09-28 | 2013-03-27 | 武汉工程大学 | 高分子材料异型材单螺杆挤出机筒成型法及设备 |
-
2012
- 2012-09-28 CN CN2012103684812A patent/CN102990899A/zh active Pending
-
2013
- 2013-08-13 WO PCT/CN2013/081373 patent/WO2014048179A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007144628A (ja) * | 2005-11-24 | 2007-06-14 | Mitsubishi Heavy Ind Ltd | 押出成形機、スクリュー部材 |
CN102358022A (zh) * | 2011-08-01 | 2012-02-22 | 武汉工程大学 | 高分子材料管材单螺杆连续挤出成型机筒成型法及其成型设备 |
CN102303400A (zh) * | 2011-09-21 | 2012-01-04 | 武汉工程大学 | 高分子材料棒材单螺杆挤出机筒成型法及设备 |
CN102303401A (zh) * | 2011-09-21 | 2012-01-04 | 武汉工程大学 | 高分子材料多束细棒同时成型单螺杆机筒成型法及设备 |
CN102310541A (zh) * | 2011-09-21 | 2012-01-11 | 武汉工程大学 | 高分子材料棒材单螺杆挤出机筒成型法及其成型设备 |
CN102990899A (zh) * | 2012-09-28 | 2013-03-27 | 武汉工程大学 | 高分子材料异型材单螺杆挤出机筒成型法及设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117903547A (zh) * | 2024-01-18 | 2024-04-19 | 中科万通新材料(北京)有限公司 | 一种耐高温高分子水润滑轴承材料及其制备工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN102990899A (zh) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106313496B (zh) | 连续纤维增强热塑性树脂基复合材料3d打印方法及打印头 | |
CN103252885B (zh) | 一种基于径向熔融的沟槽机筒挤出机 | |
WO2014048179A1 (zh) | 高分子材料异型材单螺杆挤出机筒成型法及设备 | |
WO2019134250A1 (zh) | 一种基于体积形变的脉动塑化螺杆 | |
CN102358022B (zh) | 高分子材料管材单螺杆连续挤出成型机筒成型法及其成型设备 | |
CN109291401A (zh) | 一种塑料模具生产用高速挤出规整装置 | |
CN207207071U (zh) | 管材成型设备用挤压模具 | |
CN204109329U (zh) | 滑动式自适应塑化挤出装置 | |
CN102303401B (zh) | 高分子材料多束细棒同时成型单螺杆机筒成型法及设备 | |
CN102310541B (zh) | 高分子材料棒材单螺杆挤出机筒成型法及其成型设备 | |
CN104129057B (zh) | 一种废橡胶连续化再生的解联塑化机及工艺方法 | |
CN206520224U (zh) | 一种高效率的橡胶冷喂料挤出机 | |
CN204526092U (zh) | 电线电缆挤出机专用两段bm式螺杆 | |
CN102303400A (zh) | 高分子材料棒材单螺杆挤出机筒成型法及设备 | |
CN201960729U (zh) | 一种超高分子聚乙烯挤出机 | |
CN211868552U (zh) | 节能型螺杆挤压机 | |
CN2759759Y (zh) | 注塑机锥形挤压筒机构 | |
CN1377762A (zh) | 利用螺杆挤出机生产超高分子量聚乙烯制品的方法 | |
CN208854901U (zh) | 基于二维铺坯的橡塑制品压塑成型设备 | |
CN102975349B (zh) | 高分子材料管材螺杆挤出方法 | |
CN207711345U (zh) | 一种基于体积形变的脉动塑化螺杆 | |
CN202862570U (zh) | 高分子材料管材螺杆挤出设备 | |
CN206870341U (zh) | 单螺杆塑料挤出机专用螺杆 | |
CN103331896A (zh) | 一种超高分子量聚乙烯垂直挤出模具结构设计 | |
CN105881864A (zh) | 一种柱推式单螺杆挤出机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13840212 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13840212 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.10.2015) |