WO2014044146A1 - 一种高容量高分子聚合物储氢材料及其制备方法 - Google Patents

一种高容量高分子聚合物储氢材料及其制备方法 Download PDF

Info

Publication number
WO2014044146A1
WO2014044146A1 PCT/CN2013/083371 CN2013083371W WO2014044146A1 WO 2014044146 A1 WO2014044146 A1 WO 2014044146A1 CN 2013083371 W CN2013083371 W CN 2013083371W WO 2014044146 A1 WO2014044146 A1 WO 2014044146A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
polymer
storage material
capacity
hydrogen
Prior art date
Application number
PCT/CN2013/083371
Other languages
English (en)
French (fr)
Inventor
方章建
陈义龙
张岩丰
郑兴才
薛永杰
陶磊明
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to JP2015531450A priority Critical patent/JP6012872B2/ja
Priority to KR1020157008560A priority patent/KR101739498B1/ko
Priority to BR112015005969A priority patent/BR112015005969A2/zh
Priority to CA2885357A priority patent/CA2885357A1/en
Priority to AU2013317452A priority patent/AU2013317452B2/en
Priority to EP13839381.4A priority patent/EP2899156A4/en
Priority to RU2015114482/05A priority patent/RU2595667C1/ru
Publication of WO2014044146A1 publication Critical patent/WO2014044146A1/zh
Priority to US14/660,962 priority patent/US9234082B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • C08G73/0226Quaternisation of polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to the field of polymer materials, hydrogen storage materials and energy, and in particular to a high-capacity polymer hydrogen storage material and a preparation method thereof.
  • hydrogen storage materials can be roughly divided into two categories: chemical adsorption materials and physical adsorption materials.
  • Chemical adsorption refers to the insertion of a hydrogen atom from a hydrogen molecule into a crystal lattice of a substrate or formation of a new compound.
  • the chemical adsorption material mainly includes a metal hydride material, a hydride material, an ammonia borane derivative, and the like.
  • Ammonia borane compound (NH3BH3, AB) is a new type of hydride hydrogen storage material that has received close attention in recent years. It has an ultra-high hydrogen density (19.6 Wt%), with both thermal stability and good chemical stability, is an excellent hydrogen storage material with great application prospects.
  • the preparation method mainly has the following two methods: a borane method and a sodium borohydride method.
  • the borane method directly uses borane as a boron source to react with liquid ammonia to form a product; as in patent CN102030313A, a composite ammonia borane hydrogen storage material is prepared by using ammonia borane and organic materials as raw materials at a lower hydrogen release temperature. The materials have low temperature hydrogen evolution characteristics.
  • the sodium borohydride process is generally prepared by the reaction of sodium borohydride with an amine compound.
  • the patent CN102180445A discloses a method for preparing a high-capacity hydrogen storage material, hydroboration p-/m-phenylenediamine, which can be NH3+ from p-m-phenylenediamine hydrochloride and borohydride.
  • the BH4-molar ratio 1:1 mixture is obtained by grinding or ball milling in an inert gas.
  • the existing ammonia borane derivatives have some problems that restrict their on-board hydrogen storage applications, including: the slow hydrogen release kinetics of such hydrogen storage materials under mild operating conditions, and the release of harmful impurity gases during hydrogen release. .
  • the technical problem to be solved by the present invention is to provide a high-capacity high-molecular polymer hydrogen storage material and a preparation method thereof, which have high hydrogen storage capacity and low hydrogen release temperature; and are transparent solid materials, which can form a transparent The film is easy to use.
  • the technical solution adopted by the present invention is:
  • a high-capacity high-molecular polymer hydrogen storage material characterized in that it comprises a linear polymer as a main chain and is aminated with a polyamine compound by a side chain and/or a terminal group thereof and then boron.
  • An ammonia borane derivative grafted onto its side chains and/or ends by a hydride reaction.
  • the linear polymer as the main chain includes, but is not limited to, polyvinyl chloride, polyvinyl chloride-polyethylene copolymer, polyethyleneimine, acrylate copolymer, polyacrylic acid, polystyrene. a styrene-acrylate copolymer, a polysiloxane or the like; a polyamine compound used for amination of a side chain and/or a terminal group of the polymer, including but not limited to: 1-methylindole, Bismuth, ethylenediamine, diethylenetriamine.
  • the linear polymer of the high-capacity polymer hydrogen storage material as a main chain has a molecular weight of 5,000 to 50,000; the ammonia borane derivative of the high-capacity polymer hydrogen storage material The content is in the range of 25-75 wt%.
  • the high-capacity high molecular polymer hydrogen storage material can be used in a film form after post-treatment into a film.
  • a method for preparing a high-capacity high-molecular polymer hydrogen storage material characterized in that it comprises the following steps:
  • the linear polymer as the main chain includes, but is not limited to, polyvinyl chloride, polyvinyl chloride-polyethylene copolymer, polyethyleneimine, acrylate copolymer, polyacrylic acid, polystyrene. , styrene-acrylate copolymer, polysiloxane, etc.;
  • the polyamine compound used for amination of the polymer polymer side chain and/or terminal group includes, but is not limited to, 1-methyl hydrazine, hydrazine, ethylene diamine, diethylene triamine, and the like.
  • the organic solvent includes, but is not limited to, tetrahydrofuran, acetonitrile, dimethyl sulfoxide, etc.;
  • the borohydride is selected from sodium borohydride, lithium borohydride or potassium borohydride.
  • the step (1) is that the linear polymer is chemically modified in the side chain and/or the terminal which is pre-aminated, and then the polyamine compound is added for amination reaction to obtain an amine group. Functionalized polymer.
  • the method for preparing the high-capacity high-molecular polymer hydrogen storage material further comprises post-processing to obtain a film-like high-capacity high-molecular polymer hydrogen storage material.
  • the present invention bonds a polyamine compound to a side chain and/or a terminal of a polymer by chemically modifying a linear high molecular polymer to obtain a functionalized polymer containing an amine group, and finally by a suitable chemical reaction in the polymer.
  • the ammonia chain borane derivative is formed at the side chain and/or the end, and the obtained high-capacity high-molecular polymer hydrogen storage material can adjust the hydrogen storage capacity by selecting different polymers, and at the same time effectively reduce the temperature of the heat liberation hydrogen (60). °C-250 ° C, preferably 90-160 ° C), and effectively inhibit the generation of harmful gas impurities such as borazine, diborane, ammonia.
  • the film forming performance is good, and can be processed to form a transparent film form for use, thereby avoiding the problem that the hydrogen storage of the existing hydrogen storage material may be uncontrollable due to uneven heating. If it is applied to the field of automotive hydrogen energy storage, by applying it to components such as heat sinks of automobiles, it will release hydrogen energy evenly by heat, and better control the hydrogen release performance of the hydrogen storage material.
  • the high-capacity polymer hydrogen storage material prepared by the surface modification of the polymer and the high-capacity aminoborane derivative bonded on the polymerization surface has the following advantages: (1) the hydrogen storage capacity is high and can be Adjustment, low hydrogen release temperature, no harmful impurity gas generated during hydrogen release; (2) is a solid flexible material with good film forming properties, which can be post-processed to form a film for use, avoiding existing hydrogen storage materials The problem of uncontrollable hydrogen release due to uneven heating; (3) The preparation process is simple, the cost is moderate, and there is a good prospect of large-scale industrial production.
  • Example 1 is a synthetic route diagram of a hydrogen storage material polymer c in Example 1;
  • Example 2 is a synthetic route diagram of a hydrogen storage material polymer d in Example 2;
  • Figure 4 is a temperature-programming drawing of the hydrogen storage material polymer d
  • Figure 5 is the effect of Wilkinson catalyst on the hydrogen evolution kinetics of hydrogen storage material polymer d; in the figure: "! Indicates that the Wilkinson catalyst is added; “-" means that no Wilkinson catalyst is added;
  • FIG. 6 is a process flow diagram of a method for preparing a hydrogen storage material polymer h in Embodiment 3;
  • Example 7 is a synthetic route diagram of a hydrogen storage material polymer e in Example 3.
  • Figure 8 is another high capacity polymer hydrogen storage material prepared in Examples 5-7.
  • polymer a (polyacrylic acid, molecular weight 5000) was added to ice-cold dichloromethane, then an excess of thionyl chloride was added, and the reaction was stirred at 0 ° C for 1 h, then the solvent was dried, and then dried. Methyl chloride is dissolved, and then added hydrazine and triethylamine to the above solution and reacted at 0 ° C for 2 hours, then the solution is spun dry, washed three times with deionized water and dried to obtain polymer b;
  • the aminated polymer b and sodium borohydride were stirred at a stoichiometric ratio in a tetrahydrofuran suspension at 25 ° C for 12 h, and the lower organic phase was collected by filtration, and the solvent was evaporated under reduced pressure.
  • the ratio of the c-borane derivative in c to the entire polymer was 57% by weight.
  • the hydrogen storage material polymer c was subjected to a hydrogen discharge performance test, and it was found that the hydrogen evolution temperature of the polymer c was about 105 ° C, and about 6.2 wt% of pure hydrogen was released at 105 ° C.
  • a polyvinyl chloride-polyethylene copolymer m (having a molecular weight of 50,000, wherein the degree of polymerization of the polyvinyl chloride monomer n is 750) is added to dry dichloromethane to dissolve it, and then 1-methyl hydrazine is added. After adding triethylamine to the above solution at 20 ° C for 12 hours, the solution was spun dry, washed three times with deionized water and dried to obtain polymer n.
  • the amine group-containing polymer n and sodium borohydride are stoichiometrically in a tetrahydrofuran suspension at 20 ° C After stirring for 8 hours, the lower organic phase was collected by filtration, the solvent was evaporated under reduced pressure, and the mixture was washed twice with diethyl ether to obtain a hydrogen storage material polymer d.
  • the ammonia borane derivative in polymer d constitutes 75% by weight of the entire polymer material.
  • the hydrogen storage material polymer d is subjected to hydrogen discharge performance test, and FIG. 3 and FIG. 4 respectively show the hydrogen evolution kinetic curve and the temperature programmed release of the polymer hydrogen storage material. It can be seen from the figure that the hydrogen storage material polymer d has a lower initial hydrogen evolution temperature (about 50 ° C), and as the temperature increases, the hydrogen evolution reaction proceeds in a step, and the hydrogen discharge peak temperature is 100 ° C. The amount of hydrogen released is about 8 wt%. And no harmful gas substances are produced during the entire hydrogen release process.
  • polymer j (molecular weight 16000) was added to ice-cold dichloromethane, then excess thionyl chloride was added, and the reaction was stirred at 0 ° C for 2 h, then the solvent was dried, then dried dichloromethane was added. After dissolving, ethylenediamine and potassium carbonate were added to the above solution for 5 hours at 5 ° C, and the solution was spun dry, washed three times with deionized water and dried to obtain an aminated polymer k.
  • the aminated polymer k and sodium borohydride were stirred in a dimethyl sulfoxide suspension at 50 ° C for 6 h, and the lower organic phase was collected by filtration, and the solvent was evaporated under reduced pressure.
  • the ratio of the ammonia borane derivative to the entire polymer in the obtained polymer was 39.6 wt%.
  • the hydrogen storage peak of the hydrogen storage material polymer h is 110 ° C, and about 3.8 wt% of pure hydrogen can be released at 110 ° C. And no harmful impurity gas is generated during the hydrogen release process.
  • polyethyleneimine (molecular weight 5000) is first added to acetonitrile, then stoichiometric bromoethanol is added, and the reaction is stirred for 24 hours at 80 ° C. The precipitate is filtered, washed with water, dried, and then dried. The polymer was dissolved in anhydrous dichloromethane, reacted with 1.5 equivalents of methylsulfonyl chloride and triethylamine for 2 hours, then the solvent was evaporated, extracted with dichloromethane, dried, and then reacted with hydrazine and triethylamine at 25 ° C. After overnight filtration and washing with water, an amine-functionalized polymer was obtained.
  • aminated polymer and potassium borohydride were stirred at a concentration of 50 ° C for 6 hours in a dimethyl sulfoxide suspension, followed by filtration.
  • the lower organic phase was distilled off under reduced pressure, and finally washed twice with diethyl ether to give a synthetic polymer hydrogen storage material e.
  • the high molecular hydrogen storage material e has a hydrogen evolution peak temperature of 115 ° C, and about 6.7 wt% of pure hydrogen can be released at 110 ° C. And no harmful impurity gas is generated during the hydrogen release process.
  • the polymer a (polyacrylic acid, molecular weight 20000) was used as a raw material, and ethyleneamine was used as a polymer a side chain group to bond a polyamine compound to carry out an amine.
  • the base material is then further prepared with sodium borohydride to obtain a hydrogen storage material polymer f, as shown in FIG.
  • the hydrogen storage material polymer f has a hydrogen evolution peak temperature of 109 ° C, and approximately 4.6 wt% of pure hydrogen can be released at 115 ° C. And no harmful impurity gas is generated during the hydrogen release process.
  • a polyvinylamine (molecular weight of 50,000) is used as a raw material, and a diamine triamine is used as a polyvinyl chloride side chain group to bond a polyamine compound for amination. Then, a hydrogen storage material polymer g is further prepared with sodium borohydride, as shown in FIG.
  • the hydrogen storage material polymer g has a hydrogen evolution peak temperature of 103 ° C, and about 7.8 wt% of pure hydrogen can be released at 110 ° C. And no harmful impurity gas is generated during the hydrogen release process.
  • the hydrogen storage material polymer i can be used for film formation on the surface of an automobile exhaust sheet by a film forming method.
  • the hydrogen storage material polymer i has a hydrogen evolution peak temperature of 116 ° C, and about 2.8 wt% of pure hydrogen can be released at 120 ° C. And no harmful impurity gas is generated during the hydrogen release process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

提供一种高容量高分子聚合物储氢材料,包括作为主链的线形高分子聚合物,和由其侧链和/或末端基团经多胺类化合物胺基化后再与硼氢化物反应而接枝于其侧链和/或末端上的氨硼烷衍生物。还提供一种高容量高分子聚合物储氢材料的制备方法。

Description

一种高容量高分子聚合物储氢材料及其制备方法 技术领域
本发明涉及高分子材料、储氢材料及能源领域,具体的是指一种高容量高分子聚合物储氢材料及其制备方法。
背景技术
工业革命开启了人类走向现代化的进程。一个多世纪以来,人类社会快速发展,能源一直是强大的推动力。为了人类的可持续发展,寻找一种可再生、具高燃烧值、易于利用又不污染环境的新型燃料已迫在眉睫。氢能具有环境友好、资源丰富、热值高、燃烧性能好等特点,是未来最有发展前景的绿色能源之一,但氢气的安全高效储存问题一直是制约氢能开发和利用的瓶颈。目前利用氢与材料的相互作用发展起来的储氢方法由于其储氢能量密度高、安全性好而备受世人关注。储氢材料与此也已成为国际上高度关注的研究领域之一。高容量储氢材料的发展是解决人类未来能源的关键,对于氢能的规模化利用具有巨大的推动作用。
根据吸附氢气作用力的不同,储氢材料可大体分为两类:化学吸附材料和物理吸附材料。化学吸附是指氢分子解离后的氢原子插入底物的晶格或者形成新化合物。化学吸附材料主要包括金属氢化物材料、氢化物材料、氨硼烷衍生物等。氨硼烷化合物(NH3BH3, AB)是近年来受到密切关注的一种新型氢化物储氢材料。它具有超高氢密度(19.6 wt%),并兼具热稳定性适中和化学稳定性良好等优点,是一种极具应用前景的优良储氢材料。其制备方法主要有下述两种方式:硼烷法和硼氢化钠法。硼烷法是用硼烷作为硼源与液氨反应直接生成产物;如专利CN102030313A以氨硼烷与有机物为原料,在较低的放氢温度下制备一种复合氨硼烷储氢材料,这种材料具有低温的放氢特性。硼氢化钠法一般通过硼氢化钠和胺类化合物反应制得。如专利CN102180445A公开了一种高容量储氢材料硼氢化对/间苯二胺的制备方法,该物质可由对/间苯二胺盐酸盐与硼氢化物以NH3+ : BH4-摩尔比1:1混合物在惰性气体中研磨或球磨制得。目前,现有氨硼烷衍生物多存在一些制约其车载储氢应用的问题,主要包括:这类储氢材料在温和操作条件下放氢动力学缓慢,而且放氢过程中伴随有害杂质气体的释放。此外其在应用中往往会出现受热不均匀的问题。
技术问题
本发明所要解决的技术问题是提供一种高容量高分子聚合物储氢材料及其制备方法,其具有高的储氢容量和低的放氢温度等特性;为固态柔性材料,可形成透明的薄膜,便于使用。
技术解决方案
为解决上述技术问题,本发明采用的技术方案为:
一种高容量高分子聚合物储氢材料,其特征在于:它包括作为主链的线形高分子聚合物和由其侧链和/或末端基团经多胺类化合物胺基化后再和硼氢化物反应而接枝于其侧链和/或末端上的氨硼烷衍生物。
按上述方案,所述作为主链的线形高分子聚合物包括但不限于:聚氯乙烯、聚氯乙烯-聚乙烯共聚物、聚乙烯亚胺、丙烯酸酯类共聚物、聚丙烯酸、聚苯乙烯、苯乙烯-丙烯酸酯类共聚物、聚硅氧烷等;所述高分子聚合物侧链和/或末端基团胺基化所用的多胺类化合物包括但不限于:1-甲基胍、胍、乙二胺、二乙烯三胺。
按上述方案,所述高容量高分子聚合物储氢材料中作为主链的线形高分子聚合物的分子量为5000-50000;所述高容量高分子聚合物储氢材料中氨硼烷衍生物的含量在25-75wt%。
按上述方案,所述的高容量高分子聚合物储氢材料可经后处理成膜以膜状形式使用。
一种高容量高分子聚合物储氢材料的制备方法,其特征在于:它包括以下步骤:
(1)将线形高分子聚合物预进行胺基化的侧链和/或末端基团采用多胺类化合物进行胺基化反应得到含有胺基功能化的聚合物;
(2)将步骤(1)得到的胺基化聚合物和硼氢化物按化学计量比在有机溶剂悬浮液中在5-50℃下搅拌1-12h后过滤收集下层有机相,减压蒸馏除去溶剂,洗涤得到本发明所述的高容量高分子聚合物储氢材料。
按上述方案,所述作为主链的线形高分子聚合物包括但不限于:聚氯乙烯、聚氯乙烯-聚乙烯共聚物、聚乙烯亚胺、丙烯酸酯类共聚物、聚丙烯酸、聚苯乙烯、苯乙烯-丙烯酸酯类共聚物、聚硅氧烷等;
所述高分子聚合物侧链和/或末端基团胺基化所用的多胺类化合物包括但不限于:1-甲基胍、胍、乙二胺、二乙烯三胺等。
按上述方案,所述的有机溶剂包括但不限于四氢呋喃、乙腈、二甲基亚砜等;所述的硼氢化物选自硼氢化钠、硼氢化锂或硼氢化钾。
按上述方案,所述的步骤(1)为将线形高分子聚合物在预进行胺基化的侧链和/或末端经化学修饰后再加入多胺类化合物进行胺化反应,得到含有胺基功能化的聚合物。
按上述方案,所述的高容量高分子聚合物储氢材料的制备方法还包括将其进行后处理以得到膜状高容量高分子聚合物储氢材料。
本发明通过对线性高分子聚合物进行化学修饰而将多胺类化合物键连到聚合物的侧链和/或末端,得到含有胺基的功能化聚合物,最后通过合适的化学反应在聚合物侧链和/或末端形成氨硼烷衍生物,而得到的新型高容量高分子聚合物储氢材料可通过选择不同的聚合物,调节其储氢容量,同时有效降低其热解放氢温度(60 ℃-250℃,优选为90-160℃),并有效抑制硼嗪、乙硼烷、氨气等有害气体杂质的产生。在放氢过程中通过加入Wilkinson催化剂,还可提高其放氢量,改善放氢性能。另,其作为一种固态柔性材料,成膜性能好,可经处理形成透明的薄膜形式以进行使用,避免了现有储氢材料因受热不均而可能导致的氢气释放不可控的问题。如将其应用于汽车氢能储放领域,通过将其涂覆在汽车的散热片等部件,其则会经均匀受热释放氢能,而较好地控制该储氢材料的放氢性能。
有益效果
本发明通过对聚合物进行表面改性,在聚合表面键连高容量的氨硼烷衍生物而制备得到的高容量高分子聚合物储氢材料具有以下优点:(1)储氢容量高且可调节,放氢温度低,在放氢过程中无有害杂质气体产生;(2)是一种固态柔性材料,成膜性能好,可经后处理形成薄膜以进行使用,避免了现有储氢材料因受热不均而可能导致的氢气释放不可控的问题;(3)制备工艺简单,成本适中,有大规模工业化生产的良好前景。
附图说明
图1为实施例1中储氢材料聚合物c的合成路线图;
图2为实施例2中储氢材料聚合物d的合成路线图;
图3为储氢材料聚合物d的的放氢动力学曲线;
图4为储氢材料聚合物d的程序升温脱附图;
图5为Wilkinson催化剂对储氢材料聚合物d的放氢动力学的影响;图中:“…” 表示加入Wilkinson催化剂;“—” 表示不加入Wilkinson催化剂;
图6为实施例3中储氢材料聚合物h的制备方法工艺流程图;
图7为实施例3中储氢材料聚合物e的合成路线图;
图8为实施例5-7中制备的其他高容量高分子聚合物储氢材料。
本发明的实施方式
为了更好地解释本发明,以下结合附图和具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
实施例1:储氢材料聚合物 c的合成
参考图1,将聚合物a(聚丙烯酸,分子量5000)加入到冰冷的二氯甲烷中,然后加入过量的二氯亚砜,0℃下搅拌反应1h后旋干溶剂,然后加入干燥过的二氯甲烷将其溶解,再将胍、三乙胺加入到上述溶液中在0℃反应2小时后,旋干溶液,去离子水洗涤三次后干燥得到聚合物b;
将胺基化的聚合物b和硼氢化钠按化学计量比在四氢呋喃悬浮液中25℃搅拌12h后过滤收集下层有机相,减压蒸馏除去溶剂,最后用乙醚洗涤两次得到产物,所得聚合物c中氨硼烷衍生物占整个聚合物的比例为57wt%。
将该储氢材料聚合物c进行放氢性能测试,得:该聚合物c放氢温度大约为105℃,在105℃大约可以放出6.2wt%的纯氢。
本发明的实施方式
实施例2:聚合物d储氢材料的合成
参考图2,将聚氯乙烯-聚乙烯共聚物m(分子量为50000,其中聚氯乙烯单体的聚合度n为750)加入到干燥的二氯甲烷将其溶解,再将1-甲基胍、三乙胺加入到上述溶液中20℃反应12小时后,旋干溶液,去离子水洗涤三次后干燥得到聚合物n。
将含胺基的聚合物n和硼氢化钠按化学计量比在四氢呋喃悬浮液中20℃ 搅拌8h后过滤收集下层有机相,减压蒸馏除去溶剂,最后用乙醚洗涤两次得到储氢材料聚合物d。聚合物d中氨硼烷衍生物占整个聚合物材料的75wt%。
将所述储氢材料聚合物d进行放氢性能测试,图3和图4分别为该聚合物储氢材料的放氢动力学曲线和程序升温脱附图。由图可以看出,该储氢材料聚合物d具有较低的起始放氢温度(约50℃),随着温度升高,放氢反应近以一步进行,放氢峰温为100℃,放氢量为8wt%左右。且在整个放氢过程中没有任何有害气体物质产生。
另,在放氢过程中加入Wilkinson催化剂进行放氢性能的测试,作为比较试验,见图5。从图5可以看出,加入Wilkinson催化剂后,聚合物储氢材料的放氢性能得到明显改善。
本发明的实施方式
实施例3:聚合物h储氢材料的合成
参考图6,将聚合物j(分子量为16000)加入到冰冷的二氯甲烷中,然后加入过量的二氯亚砜,0℃搅拌反应2h后旋干溶剂,然后加入干燥的二氯甲烷将其溶解,再将乙二胺、碳酸钾加入到上述溶液中5℃反应2小时后,旋干溶液,去离子水洗涤三次后干燥得到胺基化的聚合物k。
将胺基化的聚合物k和硼氢化钠按计量比在二甲基亚砜悬浮液中在50℃下搅拌6h后过滤收集下层有机相,减压蒸馏除去溶剂,最后用乙醚洗涤两次得到产物,所得聚合物中氨硼烷衍生物占整个聚合物的比例为39.6wt%。
经测试,该储氢材料聚合物h的放氢峰温为110℃,在110℃大约可以放出3.8wt%的纯氢。且在放氢过程中没有有害杂质气体的产生。
本发明的实施方式
实施例4
参考图7,先将聚乙烯亚胺(分子量5000)加入到乙腈中,然后加入化学计量比的溴乙醇,碳酸钾80℃下搅拌反应24h后将沉淀过滤、水洗、干燥,然后将干燥后的聚合物溶解在无水二氯甲烷中,加入1.5当量的甲基磺酰氯、三乙胺反应2小时后旋干溶剂,二氯甲烷萃取、干燥后再加入胍、三乙胺在25℃下反应过夜后过滤、水洗后得到胺基功能化的聚合物,最后将得到的胺基化的聚合物和硼氢化钾按计量比在二甲基亚砜悬浮液中在50℃下搅拌6h后过滤收集下层有机相,减压蒸馏除去溶剂,最后用乙醚洗涤两次得到合成的聚合物储氢材料e。
该高分子聚合物储氢材料e的放氢峰温为115℃,在110℃大约可以放出6.7wt%的纯氢。且在放氢过程中没有有害杂质气体的产生。
本发明的实施方式
实施例5
参考实施例1中储氢材料聚合物c的合成方法,以聚合物a(聚丙烯酸,分子量20000)为原料,采用乙二胺做聚合物a侧链基团键连用多胺类化合物以进行胺基化,然后和硼氢化钠进一步制备得到储氢材料聚合物f,见图8。
该储氢材料聚合物f的放氢峰温为109℃,在115℃大约可以放出4.6wt%的纯氢。且在放氢过程中没有有害杂质气体的产生。
本发明的实施方式
实施例6
参考实施例2中储氢材料聚合物d的合成方法,以聚氯乙烯(分子量50000)为原料,采用二乙烯三胺做聚氯乙烯侧链基团键连用多胺类化合物以进行胺基化,然后和硼氢化钠进一步制备得到储氢材料聚合物g,见图8。
储氢材料聚合物g的放氢峰温为103℃,在110℃大约可以放出7.8wt%的纯氢。且在放氢过程中没有有害杂质气体的产生。
本发明的实施方式
实施例7
将聚对溴苯乙烯-聚丙烯酸丁酯(分子量为30000,其中溴苯乙烯单体的聚合度n为100)溶解在二氧六环中,然后按计量比将乙二胺、碳酸钾加入到上述溶液中回流反应12小时后,旋干溶液,去离子水洗涤三次后干燥得到含胺基的聚合物;将含胺基的聚合物和硼氢化钠按化学计量比在四氢呋喃悬浮液中室温搅拌8h后过滤收集下层有机相,减压蒸馏除去溶剂最后用乙醚洗涤两次得到储氢材料聚合物i,见图8,所得聚合物中氨硼烷衍生物占整个聚合物的比例为25wt%。
该储氢材料聚合物i可以通过涂覆成膜的方法在汽车尾气片表面成膜使用。
该储氢材料聚合物i的放氢峰温为116℃,在120℃大约可以放出2.8wt%的纯氢。且在放氢过程中没有有害杂质气体的产生。

Claims (9)

1、一种高容量高分子聚合物储氢材料,其特征在于:它包括作为主链的线形高分子聚合物和由其侧链和/或末端基团经多胺类化合物胺基化后再和硼氢化物反应而接枝于其侧链和/或末端上的氨硼烷衍生物。
2、根据权利要求所述的高容量高分子聚合物储氢材料,其特征在于:所述作为主链的线形高分子聚合物包括但不限于:聚氯乙烯、聚氯乙烯-聚乙烯共聚物、聚乙烯亚胺、丙烯酸酯类共聚物、聚丙烯酸、聚苯乙烯、苯乙烯-丙烯酸酯类共聚物、聚硅氧烷; 所述高分子聚合物侧链和/或末端基团胺基化所用的多胺类化合物包括但不限于:1-甲基胍、胍、乙二胺、二乙烯三胺。
3、根据权利要求所述的高容量高分子聚合物储氢材料,其特征在于:所述高容量高分子聚合物储氢材料中作为主链的线形高分子聚合物的分子量为5000-50000;所述高容量高分子聚合物储氢材料中氨硼烷衍生物的含量在25-75wt%。
4、根据权利要求所述的高容量高分子聚合物储氢材料,其特征在于:所述的高容量高分子聚合物储氢材料可经后处理成膜以膜状形式使用。
5、一种高容量高分子聚合物储氢材料的制备方法,其特征在于:它包括以下步骤:
(1)将线形高分子聚合物预进行胺基化的侧链和/或末端基团采用多胺类化合物进行胺基化反应得到含有胺基功能化的聚合物;
(2)将步骤(1)得到的胺基化聚合物和硼氢化物按化学计量比在有机溶剂悬浮液中在5-50℃下搅拌1-12h后过滤收集下层有机相,减压蒸馏除去溶剂,洗涤得到本发明所述的高容量高分子聚合物储氢材料。
6、根据权利要求5所述的高容量高分子聚合物储氢材料的制备方法,其特征在于:所述作为主链的线形高分子聚合物包括但不限于:聚氯乙烯、聚氯乙烯-聚乙烯共聚物、聚乙烯亚胺、丙烯酸酯类共聚物、聚丙烯酸、聚苯乙烯、苯乙烯-丙烯酸酯类共聚物、聚硅氧烷;
所述高分子聚合物侧链和/或末端基团胺基化所用的多胺类化合物包括但不限于:1-甲基胍、胍、乙二胺、二乙烯三胺。
7、根据权利要求5所述的高容量高分子聚合物储氢材料的制备方法,其特征在于:所述的有机溶剂包括但不限于四氢呋喃、乙腈、二甲基亚砜;所述的硼氢化物选自硼氢化钠、硼氢化锂或硼氢化钾。
8、根据权利要求5所述的高容量高分子聚合物储氢材料的制备方法,其特征在于:所述的步骤(1)为将线形高分子聚合物在预进行胺基化的侧链和/或末端经化学修饰后再加入多胺类化合物进行胺化反应,得到含有胺基功能化的聚合物。
9、根据权利要求5所述的高容量高分子聚合物储氢材料的制备方法,其特征在于:它还包括将其进行后处理以得到膜状高容量高分子聚合物储氢材料。
PCT/CN2013/083371 2012-09-18 2013-09-12 一种高容量高分子聚合物储氢材料及其制备方法 WO2014044146A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015531450A JP6012872B2 (ja) 2012-09-18 2013-09-12 大容量高分子ポリマー水素吸蔵材料およびその合成方法
KR1020157008560A KR101739498B1 (ko) 2012-09-18 2013-09-12 고용량 거대분자 폴리머 수소 저장 재료 및 이의 준비 방법
BR112015005969A BR112015005969A2 (zh) 2012-09-18 2013-09-12 A high-capacity hydrogen storage material polymer and preparation method
CA2885357A CA2885357A1 (en) 2012-09-18 2013-09-12 High-capacity macromolecular polymer hydrogen storage material and preparation method thereof
AU2013317452A AU2013317452B2 (en) 2012-09-18 2013-09-12 High-capacity macromolecular polymer hydrogen storage material and preparation method thereof
EP13839381.4A EP2899156A4 (en) 2012-09-18 2013-09-12 HIGHLY CAPACITIVE HYDROGEN MEMORY FROM MACROMOLECULAR POLYMERS AND METHOD OF MANUFACTURING THEREOF
RU2015114482/05A RU2595667C1 (ru) 2012-09-18 2013-09-12 Макромолекулярный полимерный материал высокой емкости для хранения водорода и способ его получения
US14/660,962 US9234082B2 (en) 2012-09-18 2015-03-18 Polymer material having high capacity for hydrogen storage and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210347088.5 2012-09-18
CN201210347088.5A CN102838085B (zh) 2012-09-18 2012-09-18 一种高容量高分子聚合物储氢材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/660,962 Continuation-In-Part US9234082B2 (en) 2012-09-18 2015-03-18 Polymer material having high capacity for hydrogen storage and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2014044146A1 true WO2014044146A1 (zh) 2014-03-27

Family

ID=47365854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083371 WO2014044146A1 (zh) 2012-09-18 2013-09-12 一种高容量高分子聚合物储氢材料及其制备方法

Country Status (10)

Country Link
US (1) US9234082B2 (zh)
EP (1) EP2899156A4 (zh)
JP (1) JP6012872B2 (zh)
KR (1) KR101739498B1 (zh)
CN (1) CN102838085B (zh)
AU (1) AU2013317452B2 (zh)
BR (1) BR112015005969A2 (zh)
CA (1) CA2885357A1 (zh)
RU (1) RU2595667C1 (zh)
WO (1) WO2014044146A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102838085B (zh) * 2012-09-18 2014-04-02 武汉凯迪工程技术研究总院有限公司 一种高容量高分子聚合物储氢材料及其制备方法
CN104558599B (zh) * 2015-01-29 2018-03-09 黎明化工研究设计院有限责任公司 一种聚合物储氢材料多乙烯多胺基硼烷及其制备方法和使用方法
KR101685486B1 (ko) 2015-04-14 2016-12-13 현대자동차주식회사 내구성을 향상시킨 침탄 합금강 및 이의 제조방법
CN105062033B (zh) * 2015-07-16 2017-05-17 武汉凯迪工程技术研究总院有限公司 高容量有机‑无机复合储氢材料及其制备方法
WO2017145142A1 (en) 2016-02-25 2017-08-31 Nobio Ltd. Micro and nanoparticulate compositions comprising anti-microbially active groups
JP6522063B2 (ja) * 2017-08-10 2019-05-29 マクカイ メモリアル ホスピタル 脱毛症及び/又は毛髪色素脱失を治療するためのpedf由来のポリペプチドの使用
JP7337778B2 (ja) 2017-08-30 2023-09-04 ノビオ リミテッド 抗微生物粒子を含む組成物および医療機器
FR3070974A1 (fr) * 2017-09-14 2019-03-15 Universite de Bordeaux Nouveau procede de stockage de l'hydrogene
WO2019159882A1 (ja) * 2018-02-15 2019-08-22 三井・ダウポリケミカル株式会社 成形体用変性樹脂およびゴルフボール
KR102592099B1 (ko) 2018-02-15 2023-10-20 미츠이·다우 폴리케미칼 가부시키가이샤 성형체용 변성 수지 및 골프 볼
WO2021167140A1 (ko) * 2020-02-21 2021-08-26 한국가스공사 수소 저장 시스템 및 그의 제조 방법
CN113975401B (zh) * 2021-09-29 2023-09-22 中国科学院深圳先进技术研究院 一种医用储氢材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070152A1 (en) * 2007-05-18 2011-03-24 Kamaluddin Abdur-Rashid Method for the production of hydrogen from ammonia borane
CN102030313A (zh) 2010-11-26 2011-04-27 南开大学 一种有机物复合氨硼烷储氢材料及其制备方法
CN102180445A (zh) 2011-04-11 2011-09-14 复旦大学 一种高容量储氢材料硼氢化对/间苯二胺的制备方法
CN102838085A (zh) * 2012-09-18 2012-12-26 武汉凯迪工程技术研究总院有限公司 一种高容量高分子聚合物储氢材料及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107099A (en) * 1977-02-10 1978-08-15 Ventron Corporation Borohydride exchange resins and their uses as reducing agents and in preparation of volatile metal hydrides
US4281086A (en) * 1978-12-11 1981-07-28 The University Of Illinois Foundation Polymer bound multidentate complexes
US5616796A (en) * 1995-04-14 1997-04-01 Minnesota Mining And Manufacturing Company Organoborane polyamine complexes and adhesive composition made therewith
CA2594216A1 (en) * 2004-12-30 2006-07-06 Hadasit Medical Research Services & Development Ltd. Antimicrobial nanoparticulate additives forming non-leachable sustained antimicrobial polymeric compositions
US20070068071A1 (en) 2005-09-21 2007-03-29 Kelly Michael T Compositions and methods for hydrogen generation
CN100494225C (zh) * 2006-09-14 2009-06-03 上海交通大学 聚苯乙烯系金属交联树脂储氢材料
US8372947B2 (en) * 2006-10-03 2013-02-12 Georgia Tech Research Corporation Foldable hydrogen storage media and methods
WO2008094007A1 (en) * 2007-02-01 2008-08-07 Seoul National University Industry Foundation Polymer-metal hydride complexes containing aromatic group as hydrogen storage materials and a method of preparing the same
RU2323045C1 (ru) * 2007-03-12 2008-04-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор (варианты), способ его приготовления и процесс получения водорода из растворов гидридов
EP2382224B1 (en) * 2008-12-23 2014-05-21 University Of Windsor Metal hydrazide materials
US8029602B1 (en) * 2009-03-05 2011-10-04 The United States Of America As Represented By The Secretary Of The Navy Chemical hydrogen storage materials having guanidinium borohydride
CN101851540B (zh) * 2009-03-30 2014-04-16 财团法人工业技术研究院 具有高分子基材的固态氢燃料及其制造方法
US20120195823A1 (en) * 2011-01-28 2012-08-02 The Regents Of The University Of California Novel Hydrogen Storage Materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110070152A1 (en) * 2007-05-18 2011-03-24 Kamaluddin Abdur-Rashid Method for the production of hydrogen from ammonia borane
CN102030313A (zh) 2010-11-26 2011-04-27 南开大学 一种有机物复合氨硼烷储氢材料及其制备方法
CN102180445A (zh) 2011-04-11 2011-09-14 复旦大学 一种高容量储氢材料硼氢化对/间苯二胺的制备方法
CN102838085A (zh) * 2012-09-18 2012-12-26 武汉凯迪工程技术研究总院有限公司 一种高容量高分子聚合物储氢材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2899156A4 *

Also Published As

Publication number Publication date
CN102838085B (zh) 2014-04-02
CA2885357A1 (en) 2014-03-27
KR101739498B1 (ko) 2017-06-08
US9234082B2 (en) 2016-01-12
EP2899156A4 (en) 2016-05-25
CN102838085A (zh) 2012-12-26
EP2899156A1 (en) 2015-07-29
US20150191573A1 (en) 2015-07-09
AU2013317452A1 (en) 2015-04-09
AU2013317452B2 (en) 2015-10-22
RU2595667C1 (ru) 2016-08-27
BR112015005969A2 (zh) 2019-11-05
JP6012872B2 (ja) 2016-10-25
JP2015531418A (ja) 2015-11-02
KR20150052243A (ko) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2014044146A1 (zh) 一种高容量高分子聚合物储氢材料及其制备方法
Hu et al. Poly (ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery
Chen et al. Dopamine functionalization for improving crystallization behaviour of polyethylene glycol in shape-stable phase change material with silica fume as the matrix
WO2011000187A1 (zh) 有机多孔聚合物材料及其合成方法
CN108341961B (zh) 一种含有组合动态共价键的动态聚合物制备及其应用
Cao et al. Healable supramolecular phase change polymers for thermal energy harvesting and storage
CN111548485B (zh) 一种共轭微孔有机聚合物及其制备方法和应用
CN105107477A (zh) 一种超支化大分子/粘土矿物杂化材料与制备方法
CN110092912B (zh) 基于Diels-Alder反应的聚硅氧烷弹性体材料在可重塑材料中的应用
CN106467608A (zh) 一种苝基甲氧基聚乙二醇、其制备方法及基于苝基聚乙二醇的石墨烯分散液制备方法
Deng et al. The effect of dopamine modified titanium dioxide nanoparticles on the performance of Poly (vinyl alcohol)/titanium dioxide composites
CN113871705B (zh) 一种自修复聚离子液体基电解质及其制备和应用
Xue et al. Intrinsically stretchable and healable polymer semiconductors
Gan et al. Effect of glutaraldehyde as crosslinker on the properties of cellulose nanocrystal/chitosan films
Mao et al. Ti3C2Tx intercalation, modification and application in enzymatic CO2 conversion
CN113754667B (zh) 一种快速、宏量制备高结晶半导体共价三嗪框架的方法
CN112142957B (zh) 一种高分子电子受体材料及其制备方法和应用
WO2007092601A2 (en) Energy efficient synthesis of boranes
CN111269252A (zh) 一种新型硼酸酯及其制备方法
CN110734392A (zh) 基于改性顺式-5-降冰片烯-2,3-二羧酸酐的偶氮苯侧链可聚合单体及其应用
CN115368757B (zh) 高强高阻隔高热稳定性改性石墨烯粉体的制备工艺
CN110387101A (zh) 一种石墨烯/卟啉化聚苯乙烯类弹性复合材料及其制备方法与用途
CN117563664B (zh) 一种亲水性共轭聚合物复合富羟基氮化碳光催化剂的制备方法
CN111204750B (zh) 一种改性石墨烯及其制备方法与应用
Wen et al. Tough and Transparent Supramolecular Cross‐Linked Co‐Assembled Silk Fibroin Films for Passive Radiative Cooling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531450

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2885357

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008560

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013839381

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015005969

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2013317452

Country of ref document: AU

Date of ref document: 20130912

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015114482

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015005969

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150318

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015005969

Country of ref document: BR

Kind code of ref document: A2

Free format text: SOLICITA-SE APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE CN201210347088.5, DE 18/09/2012; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS SEUS DADOS IDENTIFICADORES (TITULARES, NUMERO DE REGISTRO, DATA E TITULO), UMA VEZ QUE A DOCUMENTACAO APRESENTADA REFERE-SE SOMENTE AO PCT/CN2013/083371, QUE JA TEM COMO TITULAR O MESMO DEPOSITANTE DA FASE NACIONAL.

ENP Entry into the national phase

Ref document number: 112015005969

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150318