WO2014041653A1 - 電力制御装置及び電力制御方法 - Google Patents

電力制御装置及び電力制御方法 Download PDF

Info

Publication number
WO2014041653A1
WO2014041653A1 PCT/JP2012/073440 JP2012073440W WO2014041653A1 WO 2014041653 A1 WO2014041653 A1 WO 2014041653A1 JP 2012073440 W JP2012073440 W JP 2012073440W WO 2014041653 A1 WO2014041653 A1 WO 2014041653A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
control
target
power value
Prior art date
Application number
PCT/JP2012/073440
Other languages
English (en)
French (fr)
Inventor
茂文 後藤
啓介 秋保
裕久 吉川
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to EP12884428.9A priority Critical patent/EP2897019A4/en
Priority to US14/421,517 priority patent/US9523992B2/en
Priority to CN201280075649.9A priority patent/CN104756031B/zh
Priority to JP2014535299A priority patent/JP5975107B2/ja
Priority to PCT/JP2012/073440 priority patent/WO2014041653A1/ja
Priority to KR1020157004301A priority patent/KR101728251B1/ko
Publication of WO2014041653A1 publication Critical patent/WO2014041653A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a power control apparatus and a power control method for controlling power supplied to a plurality of loads in a time-sharing manner.
  • Patent Literatures 1 and 2 below disclose power control devices that supply power proportional to an operation signal (target value) output from a PID controller to a load such as a heater.
  • control for switching on / off of power supplied to a load is performed every time corresponding to an integral multiple of a half cycle of a power supply waveform (hereinafter referred to as “unit time”).
  • unit time an integral multiple of a half cycle of a power supply waveform
  • FIG. 6 is an explanatory diagram showing an example of an on / off state of each channel when power control is performed on 16 channels by the time division output control method. As is clear from FIG. 6, all 16 channels may be off or all 16 channels may be on, and the number of channels that are on at the same time ranges from 0 to 16 Either.
  • Patent Documents 3 to 5 by limiting the number of channels to which power is simultaneously supplied in each unit time, the total output power value (one or more to which power is supplied) in each unit time is described.
  • a power control method (hereinafter referred to as “peak power suppression control”) that suppresses the total power consumption value in the channels of the power source to a preset power upper limit value (upper limit value of power supplied to all channels per unit time) or less. are disclosed).
  • Japanese Patent No. 3022051 Japanese Patent No. 3675951 Japanese Patent No. 3754974 Japanese Patent No. 4529153 JP 2011-205731 A
  • the power upper limit is a preset fixed value (for example, a value set by the user in consideration of the power supply capacity of the factory, the amount of power required for control, etc.), and the setting is automatically changed. It is not something. For this reason, for example, when the power upper limit value is set to a value close to the total amount of power necessary for temperature control stability, as shown in part B of FIG.
  • the total output power value is the upper limit of the power even if the total target power value is large (for example, the total target power value may become large due to temperature rise, setting change, or disturbance) Although it is suppressed below the value, there is a problem that it takes a long time to reach the target temperature and the controllability is impaired. In addition, since the disturbance response becomes slow, there is a problem that optimum temperature control cannot be performed.
  • the total target power value becomes smaller than necessary as compared with the power upper limit value, the difference between the maximum value and the minimum value of the total output power value in each unit time is There has been a problem that the flickering of the power supply voltage becomes large as the power supply voltage increases.
  • the present invention has been made in order to solve the above-described problems, and is capable of preventing loss of controllability associated with a change in the total target power value and controlling power supply voltage flicker.
  • An object is to obtain a device and a power control method.
  • the power control apparatus includes a plurality of switching control means for switching on / off of power supplied to each control target at predetermined unit times, and target power that is a target value of power supplied to each control target.
  • Power is supplied to each control target, target power value calculation means for calculating a value, output power value calculation means for calculating an output power value that is the value of power supplied to each control target
  • Power estimation means for estimating the power value when power is supplied to the control target during the unit time of the next control cycle from the output power value calculated by the output power value calculation means, and for each control target
  • the power difference integrated value is calculated by repeating the addition of the target power value calculated by the target power value calculating means and the subtraction of the output power value calculated by the output power value calculating means for each control cycle, and the previous control Intermediate integrated power value calculation for adding the power difference integrated value up to the vehicle and the target power value of the next control cycle calculated by the target power value calculating means and calculating the latest intermediate integrated power value that is the added value
  • upper limit value calculating means for
  • the power value of the control target estimated by the power estimation unit and the power value estimated by the power estimation unit when the power is larger and the power supply to the control target is performed, If the power supply condition that the sum with the power value of the other control target that is determined to supply power in the control cycle does not become higher than the upper limit value calculated by the upper limit value calculating means is satisfied, If the switching control means is controlled to the on state and the power supply condition is not satisfied, the process for controlling the switching control means to be turned off is repeatedly performed, and the above control cycle in the next control cycle is performed for all control objects.
  • the switching control means is controlled to be turned on and off.
  • the upper limit value calculating unit adds a predetermined correction value to the sum of the target power values of the respective control targets calculated by the target power value calculating unit, so that the supplied power value The upper limit value is calculated.
  • the upper limit value calculating unit multiplies the total sum of the target power values of each control target calculated by the target power value calculating unit by a predetermined coefficient, thereby The upper limit value is calculated.
  • the upper limit value calculating means divides the sum of the power difference integrated values of each control object calculated by the intermediate integrated power value calculating means by a predetermined integration time, and corrects the division result.
  • the upper limit value of the supplied power value is calculated by adding the value to the sum of the target power values of the respective control targets calculated by the target power value calculating means.
  • the upper limit value calculating means calculates the difference between the sum of the power difference integrated values of each control object calculated by the intermediate integrated power value calculating means and the sum of the threshold values of each control object.
  • the upper limit value of the supplied power value is calculated by dividing the result by the predetermined integration time and adding the result of the division as a correction value to the sum of the target power values of the respective control targets calculated by the target power value calculation means. It is what I did.
  • the correction value added by the upper limit value calculating means is a value within a range from the zero value to the maximum value of the power supplied to the control target. .
  • the upper limit value calculating means divides the correction value within the range from the zero value to the maximum value of the power supplied to the control target, or the division result obtained by dividing by a predetermined integration time.
  • the upper limit value of the supplied power value is calculated by adding any one of the correction values to the sum of the target power values of the respective control targets calculated by the target power value calculating means.
  • the power control method includes a plurality of switching processing steps in which a plurality of switching control means switches on / off of power supplied to each control object every predetermined unit time, and a target power value calculation means includes A target power value calculation processing step that calculates a target power value that is a target value of power to be supplied to the control target, and an output power value calculation means that calculates an output power value that is a value of power supplied to each control target.
  • the power difference integrated value is calculated by repeating the addition of the target power value calculated in step and the subtraction of the output power value calculated in the output power value calculation processing step for each control cycle, and the power difference up to the previous control cycle is calculated.
  • the upper limit value calculating means calculates the upper limit value of the supply power value for all the control targets per unit time based on the sum of the target power values of the control targets calculated in the target power value calculation processing step.
  • the value calculation processing step and the power control means perform the control pair in order from the control target having the largest intermediate integrated power value calculated in the intermediate integrated power value calculation processing step.
  • the upper limit value of the supplied power value is appropriately calculated according to the change in the total target power value, and as a result, the loss of controllability associated with the change in the total target power value is prevented.
  • FIG. 6 is an explanatory diagram illustrating an example of an on / off state of each channel when a power upper limit value is set by a method C.
  • FIG. It is explanatory drawing which shows an example of a total electric power difference integrated value when the electric power upper limit is set by the method C.
  • FIG. 1 is a block diagram showing a power control apparatus according to Embodiment 1 of the present invention.
  • the power control apparatus of FIG. 1 turns on / off the power supplied to the control target every time corresponding to an integral multiple of a half cycle of the power waveform (hereinafter referred to as “unit time”).
  • An operation signal (target value) output from the PID controller is controlled by controlling a time ratio between an on time that is a time for supplying power and an off time that is a time for not supplying power. ) Is supplied to the controlled object.
  • a cycle in which the control for turning on / off the power supplied to the control target for each unit time is repeated is referred to as a “control cycle”.
  • loads 1-1 to 1-M are objects to be controlled by the power control apparatus, for example, heaters.
  • the controllers 2-1 to 2-M are external devices of the power control device, and are devices that output an output target value A mn of power supplied to the load 1-m to the power control device every control cycle n.
  • m is a number that identifies the loads 1-1 to 1-M to be controlled
  • m 1, 2,
  • n is a number that identifies the control cycle supplied to the loads 1-1 to 1-M, and the time of one control cycle matches the above unit time.
  • n 1, 2,.
  • the target power value calculation unit 11 constitutes a target power value calculation unit.
  • the output target value input unit 12 of the target power value calculation unit 11 is an interface device for the controllers 2-1 to 2-M, and performs a process of inputting the output target value A mn output from the controller 2-m.
  • the reference power value storage unit 13 is constituted by a memory such as a RAM, for example, and stores a reference power value q m of the load 1-m (for example, a rated power of the load 1-m).
  • the target power value calculation processing units 14-1 to 14-M are composed of, for example, multipliers and the like. For each control cycle n, the output target value A input by the output target value input unit 12 at the beginning of the control cycle n. A process for calculating the target power value x mn of the load 1-m is performed by multiplying mn by the reference power value q m stored in the reference power value storage unit 13.
  • the power supply on / off devices 15-1 to 15-M are composed of, for example, thyristors, and control on / off of power supplied to the load 1-m under the instruction of the peak power suppression calculation unit 21. The processing performed every cycle (every unit time) is performed.
  • the power supply on / off devices 15-1 to 15-M constitute switching control means.
  • the output power value calculation unit 16 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer, and the value of power supplied to the load 1-m during a unit time of the control cycle n.
  • the process which calculates the output electric power value qmn tilde which is is implemented.
  • the output power value calculation unit 16 constitutes output power value calculation means.
  • q mn with a symbol “ ⁇ ” attached at the top is shown as the output power value.
  • the symbol “ ⁇ ” is represented as q in the description of the electronic application. Since it cannot be attached to the upper part of mn , it is written as “q mn tilde”.
  • the value output from the output power value calculation unit 16 to the peak power suppression calculation unit 21 at the beginning of the control cycle n is the output power value q calculated in the previous control cycle (n ⁇ 1).
  • m (n-1) tilde is the output power value q calculated in the previous control cycle (n ⁇ 1).
  • the output power value calculation unit 16 may have any configuration as long as it can calculate the output power value q mn tilde for each unit time of the control cycle n.
  • Voltage measuring means for measuring the voltage V mn applied to 1-m, current measuring means for measuring the current I mn flowing through the load 1-m, and the load 1 ⁇ from the voltage V mn and the current I mn It is conceivable to include a calculation means for calculating an output power value q mn tilde which is a value of power supplied to m.
  • the on-power estimation unit 17 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer, and the output power value when power is supplied to the load 1-m before.
  • the output power value at the time of ON measured by the calculation unit 16 is stored, and based on the output power value, power is supplied to the load 1-m during the unit time of the control cycle n.
  • a process of estimating the power value and outputting the power estimated value q mon tilde is performed.
  • the on-power estimation unit 17 constitutes a power estimation unit.
  • the total target power value calculation unit 18 includes, for example, an adder and the like, and the target power value x 1n to the loads 1-1 to 1-M calculated by the target power value calculation processing units 14-1 to 14-M. A process of calculating the sum ⁇ x n of x Mn is performed.
  • the correction value calculation unit 19 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like, and the sum of target power values x 1n to x Mn calculated by the total target power value calculation unit 18. A process of calculating a correction value H n to be added to ⁇ x n is performed.
  • the upper limit calculator 20 includes, for example, an adder and the like, and is calculated by the correction value calculator 19 for the total sum ⁇ x n of the target power values x 1n to x Mn calculated by the total target power value calculator 18. by adding the correction value H n that is, in a unit time of the control cycle n, the upper limit value of the supply power value for the M full load P LIM (hereinafter, referred to as "power upper limit value P LIM”) is calculated Perform the process.
  • the total target power value calculation unit 18, the correction value calculation unit 19 and the upper limit value calculation unit 20 constitute an upper limit value calculation unit.
  • the peak power suppression calculation unit 21 includes an on power estimation unit 17, an intermediate integrated power value calculation unit 22, and an on / off device control unit 23.
  • the intermediate integrated power value calculation unit 22 includes a subtractor 22a-1 to 22a-M, an adder 22b-1 to 22b-M, and a buffer (Z ⁇ 1 ) 22c-1 which means that the value is shifted by one control cycle.
  • Output power value calculated by the output power value calculation unit 16 from the intermediate integrated power value S m (n-1) hat calculated in the previous control cycle (n-1).
  • the intermediate integrated power value calculation unit 22 constitutes intermediate integrated power value calculation means.
  • S mn with “ ⁇ ” attached at the top is shown as the intermediate integrated power value.
  • “ ⁇ ” is used for the electronic application. Since it cannot be attached to the upper part of S mn , it is written as “s mn hat”.
  • the intermediate integrated power value s mn hat of m is larger than a predetermined threshold value s th and is estimated by the on-power estimation unit 17 and the estimated power q mon tilde of the load 1-m estimated by the on-power estimation unit 17.
  • the on / off device control unit 23 constitutes a control means.
  • the target power value calculation unit 11 the power supply on / off devices 15-1 to 15-M, the output power value calculation unit 16, the on power estimation unit 17, and the total target power value, which are components of the power control apparatus. It is assumed that each of the calculation unit 18, the correction value calculation unit 19, the upper limit value calculation unit 20, the intermediate integrated power value calculation unit 22, and the on / off device control unit 23 is configured by dedicated hardware. All or part of the control device may be configured by a computer.
  • FIG. 2 is a flowchart showing the processing contents of the power control apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart which shows the processing content of the on-off apparatus control part 23 of the electric power control apparatus by Embodiment 1 of this invention.
  • the operation will be described.
  • the total output power value of a plurality of channels is suppressed to a predetermined power upper limit value or less in each unit time. Is a fixed value set in advance, and the setting is not automatically changed as appropriate.
  • an appropriate power upper limit value P LIM is automatically calculated without manual setting by the user.
  • FIG. 4 is an explanatory diagram showing processing timing of the power control apparatus. This indicates that the processing of the nth control cycle is executed near the boundary between the (n-1) th control cycle and the nth control cycle.
  • the nth time Power is supplied to the load 1-m during the control cycle.
  • the instruction of the on / off device control unit 23 for the power supply on / off device 15-m of the load 1-m is off in the process of the nth control cycle, the load 1-m is not applied during the nth control cycle. Power is not supplied.
  • the output power value calculation unit 16 outputs the output power value q m (n ⁇ 1) that is the value of the power supplied to the load 1-m during the unit time of the control cycle n ⁇ 1.
  • a tilde is calculated (step ST1 in FIG. 2). That is, the output power value calculation unit 16 includes, for example, a voltage measuring unit that measures the voltage V m (n ⁇ 1) applied to the load 1-m, and a current I m (n ⁇ 1) , the current measuring means measures the voltage V m (n-1) measured by the voltage measuring means and the current measuring means in the (n-1) th control cycle.
  • the output power value q m (n ⁇ 1) tilde which is the value of the electric power supplied to the load 1-m, is calculated from the current I m (n ⁇ 1) thus obtained at the beginning of the nth control cycle.
  • the on-power estimating unit 17 stores the output power value calculated by the output power value calculating unit 16 when power is supplied to the loads 1-1 to 1-M (the output power value for each load is calculated).
  • the output power value q m (n-1) tilde calculated at the beginning of the nth control cycle is not zero (the load 1-m is supplied with power) If so, the stored output power value is updated (step ST2). If the output power value q m (n ⁇ 1) tilde calculated in the (n ⁇ 1) th control cycle is zero, the stored output power value is not updated.
  • the on-power estimation unit 17 is configured to supply power to the load 1-m during the unit time of the n-th control cycle based on the stored output power value in the n-th control cycle. Is estimated at the beginning of the n-th control cycle, and the power estimation value q mon tilde is output to the on / off device control unit 23 (step ST2).
  • the output power value q m (n ⁇ 1) tilde calculated at the beginning of the nth control cycle is used as the load 1 Output to the on / off device control unit 23 as an estimated power value q mon tilde of ⁇ m.
  • the output power value q m (n ⁇ 2) tilde calculated at the beginning of the (n ⁇ 1) th control cycle is output to the on / off device control unit 23 as the power estimated value q mon tilde of the load 1-m.
  • the subtractor 22a-m of the intermediate integrated power value calculation unit 22 receives the output power value qm (n-1) tilde from the output power value calculation unit 16 in the nth control cycle, the subtracter 22a-m sets the value for one control cycle.
  • the output target value input unit 12 of the target power value calculation unit 11 inputs the output target value A mn of the power supplied to the load 1-m output from the controller 2-m at the beginning of the nth control cycle.
  • the output target value A mn is output to the target power value calculation processing unit 14-m.
  • the reference power value q m is the rated power of the load 1-m, but is not limited to the rated power of the load 1-m.
  • x mn A mn ⁇ q m (3)
  • the adder 22b-m of the intermediate integrated power value calculation unit 22 uses the power difference integrated value sm (n-1) until the subtractor 22a-m performs the (n-1) -th control cycle.
  • the power difference integration value s m (n-1) by adding the target power value target power value x mn calculated by the calculation processing section 14-1 ⁇ 14-M, n-th control
  • the intermediate integrated power value s mn hat in the cycle is calculated, and the intermediate integrated power value s mn hat is output to the on / off device control unit 23 and the buffer (Z ⁇ 1 ) 22c-m (step ST5).
  • the buffer (Z -1) 22c-m of Z -1 is an operator means to shift one control cycle time value, the output is calculated in (n-1) th control cycle
  • the intermediate integrated power value sm (n-1) hat is an operator means to shift one control cycle time value.
  • the target power value calculation processing units 14-1 to 14-M calculate the target power values x 1n to x Mn of the loads 1-1 to 1-M in the n-th control cycle.
  • the total target power value calculation unit 18 Then, the sum ⁇ x n of these target power values x 1n to x Mn is calculated (step ST6).
  • ⁇ x n x 1n + x 2n +... + X Mn (5)
  • the correction value calculation unit 19 calculates a correction value H n to be added to the sum ⁇ x n of the target power values x 1n to x Mn calculated by the total target power value calculation unit 18 in the nth control cycle (step ST7). ).
  • a value obtained by adding an appropriate correction value H n to the total sum ⁇ x n of the target power values x 1n to x Mn is a power upper limit value P LIM. Then, the difference between the maximum value and the minimum value of the total output power value per unit time can be reduced, and loss of controllability and power supply voltage flicker can be suppressed (details will be described later).
  • the upper limit calculation unit 20 is calculated by the correction value calculation unit 19 with respect to the total sum ⁇ x n of the target power values x 1n to x Mn calculated by the total target power value calculation unit 18 in the n-th control cycle.
  • the power upper limit value P LIM for the M loads 1-1 to 1-M is calculated (step ST8).
  • P LIM ⁇ x n + H n (6)
  • the on / off device control unit 23 of the peak power suppression calculation unit 21 determines on / off of the power supply on / off device 15-m in the n-th control cycle (step ST9).
  • the processing content of the on / off device control unit 23 of the peak power suppression calculation unit 21 will be specifically described with reference to the flowchart of FIG. 3.
  • the on / off device control unit 23 of the peak power suppression calculation unit 21 clears a total power estimated value ⁇ q on which will be described later as an initialization process for each control cycle (step ST21 in FIG. 3).
  • the ON / OFF device control unit 23 receives the intermediate integrated power values s 1n hat to s Mn hat in the loads 1-1 to 1-M from the intermediate integrated power value calculation unit 22 in the n-th control cycle,
  • the integrated power values s 1n hat to s Mn hat are compared, the M intermediate integrated power values s 1n hat to s Mn hat are sorted in descending order, and the load 1 ⁇ Set to control objects in order from m. That is, among the loads 1-m that have not yet been set as control targets, the load 1-m with the largest intermediate integrated power value s mn hat is set as the control target (step ST22).
  • the control target is “load 1-1” ⁇ “ Set in the order of “Load 1-2” ⁇ “Load 1-3”.
  • the control target is “load 1-3” ⁇ “load 1-1” ⁇ “load Set in the order of “1-2”.
  • the on / off device control unit 23 compares the intermediate integrated power value s mn hat of the load 1-m with a predetermined threshold value s th (step ST23), and the load
  • a predetermined threshold value s th When the 1-m intermediate integrated power value s mn hat is larger than the predetermined threshold value s th, an on / off determination is made by adding a power estimated value q mon tilde of the load 1-m to a total power estimated value ⁇ q on described later.
  • a total power estimated value ⁇ q on ′ is calculated (step ST24).
  • the on / off device control unit 23 determines that the intermediate integrated power value s mn hat of the load 1-m is larger than the predetermined threshold value s th (step ST23) and the on / off determination. It is determined whether or not the power total estimated value ⁇ q on ′ satisfies a power supply condition that does not become higher than the power upper limit value P LIM calculated by the upper limit value calculation unit 20 (step ST25). That is, it is determined whether the following formulas (7) and (8) are satisfied.
  • the on / off device control unit 23 satisfies the above power supply condition, so that the power supply on / off device 15-m of the load 1-m is turned on ( ON) (step ST26). As a result, power is supplied to the load 1-m.
  • the on / off device control unit 23 does not satisfy the above power supply condition when at least one of the equations (7) and (8) is not satisfied, so the power supply on / off device 15-m of the load 1-m is set. Control to the cut-off state (off) (step ST27). As a result, no power is supplied to the load 1-m.
  • the on / off device control unit 23 in the nth control cycle, sums the power estimated values q mon tilde of the loads 1-1 to 1-M estimated by the on power estimation unit 17 (hereinafter referred to as “total power estimated value ⁇ q on”). Is calculated) (step ST28).
  • the on / off device control unit 23 sets the control target in order from the load 1-m related to the intermediate integrated power value having a large value, and performs the above-described control process (steps ST22 to ST22) until the control for all the loads 1-m is completed.
  • the process of ST28 is repeated (step ST29).
  • the above is the processing content of the nth control cycle.
  • the power supply on / off device 15 of the load 1-m is satisfied.
  • -M is controlled to be in the on state (on), so that the total output power value q mn tilde is suppressed to be equal to or less than the power upper limit value P LIM in the unit time of each control cycle.
  • an appropriate power upper limit value P LIM (a value obtained by adding an appropriate correction value H n to the sum ⁇ x n of target power values x 1n to x Mn ) is automatically calculated.
  • the power difference integrated value s mn of the load 1-m can be divided into an integrated value of the target power value x mn and an integrated value of the output power value q mn tilde.
  • the integrated value of the target power value x mn and the integrated value of the output power value q mn tilde become very large values.
  • the power difference integrated value s mn is sufficiently smaller than the integrated value of the target power value x mn and the integrated value of the output power value q mn tilde, so the integrated value and output of the target power value x mn are output.
  • the integrated value of the power value q mn tilde is almost equal to the integrated value.
  • the mathematical expression that the target power value x mn matches the output power value q mn tilde is as follows.
  • FIG. 5 is an explanatory diagram showing an example of control in each control cycle by the time division output control method.
  • the target power value, the intermediate integrated power value, the actual power value (output power value), and the power difference integrated value are expressed in%.
  • the target power value is set to 30% of the rated power of the load
  • the average value of the actual power value (output power value) is controlled to 30% as shown in FIG. I understand.
  • the target power value is set to 55% of the rated power of the load, as shown in FIG. 5B, the average value of the actual power value (output power value) is controlled to 55%. I understand.
  • the integrated value of the target power value per unit time (hereinafter referred to as “target power integrated value”) and the integrated value of the output power value per unit time (hereinafter, (Hereinafter referred to as “power difference integrated value”) is smaller than a predetermined threshold value by the time-division proportional control calculation process, and the power value when the power is turned on from the threshold value.
  • the value is in the range larger than the subtracted value.
  • total target power integrated value the total value of the target power integrated values of all loads
  • total output power integrated value the output power integrated value of all loads
  • total power difference integrated value is a value obtained by adding the threshold values of all loads
  • total on-power value a value obtained by subtracting the total value of power when the power is supplied to the entire load from the total threshold
  • FIG 7 is an explanatory diagram showing an example of the total power difference integrated value when the power upper limit value is not set, and represents the above situation.
  • the threshold value is zero.
  • the threshold value need not be zero.
  • the output is either on or off, and the total output power value is obtained by summing the power consumption of the turned on channels (loads). It becomes a discrete value.
  • the output target value sent from the temperature controller or the like is a continuous value calculated by PID calculation or the like
  • the target power value calculated from the output target value is also a continuous value. Therefore, the total target power value, which is the total value of the target power values for all channels, is also a continuous value.
  • the total target power value and the total output power value do not match except in exceptional cases.
  • the total output power value repeats a state where the total output power value is a large value and a small value with respect to the total target power value, but the total output power integrated value and the total target power integrated value are It is controlled so that it almost matches.
  • the peak power suppression control method uses the time-division output control method as the basic operation, so the total target power value or the total output power value and the power upper limit value are the same as the time-division output control method. There is no match except in special cases.
  • FIG. 8 shows an example of the on / off status of each channel when the control target of 16 channels is subjected to peak power suppression control. In the example of FIG. 8, the total output power value varies, and there are a state where all channels are off and a state where the power value is close to the power upper limit value.
  • the difference between the maximum value and the minimum value of the total output power value per unit time increases as the difference between the total target power value and the power upper limit value increases.
  • the smaller the difference between the total target power value and the power upper limit value the smaller the difference between the maximum value and the minimum value of the total output power value per unit time. From this, it can be seen that in order to reduce the difference between the maximum value and the minimum value of the total output power value per unit time, the power upper limit value should be as close to the total target power value as possible.
  • the B part of FIG. 9 which shows the change of the total electric power difference integrated value in the B part of FIG. 8 is an example which shows the said state. If the power upper limit value is too close to the total target power value, or if the power upper limit value is smaller than the total target power value, the total target power value cannot be output. The difference integrated value increases monotonously.
  • FIG. 9B shows a state where the total power difference integrated value monotonously increases when the power upper limit value is too close to the total target power value or when the power upper limit value is smaller than the total target power value.
  • the power upper limit value is calculated by selecting a correction value according to the power control status such as the power consumption and load factor of the loads 1-1 to 1-M and adding the correction value to the total target power value.
  • Method A a correction value according to the power control status such as the power consumption and load factor of the loads 1-1 to 1-M and adding the correction value to the total target power value.
  • FIG. 10 is an explanatory diagram showing an example of an on / off state of each channel when the power upper limit value is set by the method A.
  • FIG. 11 is an explanatory diagram showing an example of the total power difference integrated value when the power upper limit value is set by the method A.
  • the appropriate power upper limit is a value that varies depending on the variation in the rated power of each load 1-m and the power target value sent from the controller 2-m. Therefore, it is necessary to set an arbitrary value within a predetermined range.
  • the correction value calculation unit 19 arbitrarily sets the correction value H n within the range of 0 to the maximum value of the output power value (maximum value of power supplied to the load 1-m). Select a value. For example, in the n-th control cycle, the output power value q m (n ⁇ 1) tilde supplied to the load 1-m may be used as the correction value H n , or when power is supplied to the load 1-m. the average value of the output power values may be the correction value H n the minimum or maximum value. Further, the average value may be corrected value H n the result of multiplying appropriate coefficients for the minimum value or maximum value.
  • the upper limit value calculation unit 20 determines the total target power value (the target power values x 1n to x Mn calculated by the total target power value calculation unit 18 as described above).
  • the power upper limit value P LIM of the supplied power value is calculated by adding the correction value H n to the total sum ⁇ x n ) (see the above formula (6)).
  • the power upper limit value P LIM becomes a value within the range of the total target power value to (total target power value + correction value H n ).
  • the power upper limit value P LIM is desirably a sufficiently large value.
  • the power upper limit value P LIM set by the method A is the limit value (total Since there is a margin with respect to the maximum output power value)
  • the delay of the output power value q mn tilde with respect to the target power value x mn is reduced, and there is an advantage that the influence on the temperature control is reduced. As shown in FIG.
  • an appropriate correction value H n is selected and the correction value H n is added to the total target power value to calculate the power upper limit value P LIM , but the correction value H n is a predetermined value.
  • select the coefficient is multiplied by the coefficient total target power value, be calculated power upper limit value P LIM corresponding to the power upper limit value P LIM of '(P LIM ⁇ P LIM' ) Good.
  • FIG. 12 is an explanatory diagram showing an example of an on / off state of each channel when the power upper limit value is set by the method B.
  • FIG. 13 is an explanatory diagram showing an example of the total power difference integrated value when the power upper limit value is set by the method B.
  • the total sum of the threshold values s th in the loads 1-1 to 1-M is referred to as “total threshold value”.
  • the threshold value s th in the loads 1-1 to 1-M is zero.
  • the method B is “by multiplying the sum of the power difference integrated values of the loads 1-1 to 1-M by a predetermined coefficient and adding the multiplication result as the correction value H n to the total target power value.
  • the power upper limit value P LIM is calculated ”.
  • the reciprocal of the predetermined coefficient is a value generally corresponding to a value called integration time in PID control, so multiplying the predetermined coefficient is synonymous with dividing by the integration time. is there.
  • the power difference integrated value sm ( up to the (n ⁇ 1) th control cycle calculated by the subtractor 22a-m of the intermediate integrated power value calculation unit 22 is obtained.
  • n ⁇ 1) is always a value smaller than the threshold value s th (here, since the threshold value s th is assumed to be zero, the value is smaller than zero).
  • FIG. 9 is an explanatory diagram showing an example of the total power difference integrated value when a fixed power upper limit value is set, and part A in FIG. 9 corresponds to the above situation.
  • the power difference integrated value sm (n-1) up to the (n-1) th control cycle increases.
  • Part B in FIG. 9 corresponds to the above situation. Therefore, by the method B, the sum ⁇ s (n ⁇ 1) of the power difference integrated values s 1 (n ⁇ 1) to s M (n ⁇ 1) of the loads 1-1 to 1-M is divided by the integration time, the division result as a correction value H n, by adding to the sum? x n of the target power value x 1n ⁇ x Mn, calculating the power upper limit value P LIM, as follows.
  • the power upper limit value P LIM is small, and the total output power value (the output power values q 1 (n ⁇ 1) tilde to q M (n of the loads 1-1 to 1-M calculated by the output power value calculation unit 16 ).
  • the total power difference integrated value (the sum of the power difference integrated values s 1 (n-1) to s M (n-1) ) becomes large under a situation where the sum of tildes is small, the power upper limit value P
  • the LIM gradually becomes a large value and eventually changes to a situation where the target power value can be output.
  • the power upper limit value P LIM is large and a sufficient total output power value can be output
  • the total power difference integrated value becomes a negative value (a value smaller than the total threshold value), so the power upper limit value P LIM gradually increases.
  • the state of the power upper limit value P LIM that is larger than necessary is eventually eliminated.
  • the power upper limit value P LIM is in an equilibrium state with an appropriate value.
  • FIG. 14 is an explanatory diagram showing an example of an on / off state of each channel when the power upper limit value is set by the method C.
  • FIG. 15 is an explanatory diagram showing an example of the total power difference integrated value when the power upper limit value is set by the method C.
  • the correction value calculation unit 19 sets the correction value H n (an arbitrary value in the range of 0 to the maximum value of the output power value) set by the method A or the method B. Any one of the correction values H n (the division result by the integration time) is output to the upper limit calculator 20.
  • the upper limit value calculation unit 20 Upon receiving the correction value H n from the correction value calculation unit 19, the upper limit value calculation unit 20 (the total target power value (the total sum ⁇ x n of the target power values x 1n to x Mn calculated by the total target power value calculation unit 18))
  • the power upper limit value P LIM of the supplied power value is calculated by adding the correction value H n (see the above formula (6)).
  • the total power difference integrated value can be set to a value in the vicinity of zero (total threshold) as shown in FIG. Therefore, it is possible to improve the coincidence between the total target power integrated value and the total output power integrated value, as shown in FIG. 15, rather than using the method A or the method B.
  • the correction value calculation unit 19 calculates the total sum ⁇ x n of the target power values x 1n to x Mn calculated by the total target power value calculation unit 18.
  • an upper limit value calculation unit 20 for calculating a power upper limit value P LIM for all loads is provided, and the on / off device control unit 23 includes the loads 1-1 to 1-M.
  • an intermediate integral power value s mn hat of the load 1-m is greater than a predetermined threshold value s th
  • the estimated power q mon tilde of the load 1-m estimated by the on-power estimating unit 17 and the estimated power q q 1on tilde to q of the loads 1-1 to 1-M estimated by the on-power estimating unit 17 met at the Mon tilde , Is satisfied power supply conditions the sum of the power estimates q mon tilde load that decides to turn on in the next control cycle is not higher than the power upper limit value P LIM calculated by the upper limit value calculation unit 20, the The power supply on / off device 15-m of the load 1-m is controlled to be turned on, and if the power supply condition is not satisfied, the power supply on / off device 15-m of the load 1-m is controlled to be turned off. With this configuration, it is possible to prevent loss

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 総目標電力値の変化に伴う制御性の損失を防止することができるとともに、電源電圧のフリッカを抑制することができるようにする。 総目標電力値算出部18により算出された目標電力値x1n~xMnの総和Σxに対して、補正値算出部19により算出された補正値Hを加算することで、全負荷に対する電力上限値PLIMを算出する上限値算出部20を設けることで、目標電力値x1n~xMnの総和Σxの変動に応じて、適正な電力上限値PLIMが得られるようにする。

Description

電力制御装置及び電力制御方法
 この発明は、複数の負荷に供給する電力を時分割で制御する電力制御装置及び電力制御方法に関するものである。
 例えば、PID調節計から出力される操作信号(目標値)に比例する電力をヒータなどの負荷に供給する電力制御装置が以下の特許文献1,2に開示されている。
 この電力制御装置では、電源波形の半サイクルの整数倍に相当する時間(以下、「単位時間」と称する)毎に、負荷に供給する電力の入切(オン/オフ)を切り換える制御を行うものであり、電力を供給する時間であるオン時間と、電力を供給しない時間であるオフ時間との時間的割合を制御することで、PID調節計から出力される操作信号(目標値)に比例する電力を負荷に供給している。
 以下、この電力制御装置による電力の制御方式を「時分割出力制御方式」と称する。
 N個の負荷(チャンネル)に供給する電力を制御する際、各々のチャンネルを時分割出力制御方式で制御する場合、各単位時間において、同時に電力が供給されるチャンネルの数(同時にオンになるチャンネルの数)は、0(全チャンネルがオフ)からN(全チャンネルがオン)までの範囲のいずれかとなる。
 図6は16個のチャンネルが時分割出力制御方式によって電力制御が実施された場合の各チャンネルのオンオフ状況の一例を示す説明図である。
 図6からも明らかなように、16個のチャンネルの全てがオフである場合や、16個のチャンネルの全てがオンである場合があり、同時にオンになるチャンネルの数は、0~16の範囲のいずれかとなる。
 また、以下の特許文献3~5には、各単位時間において、同時に電力が供給されるチャンネルの数を制限することにより、各単位時間において、総出力電力値(電力が供給されている1以上のチャンネルにおける消費電力値の合計)を、予め設定された電力上限値(単位時間当りの全チャンネルに対する供給電力値の上限値)以下に抑制する電力制御方法(以下、「ピーク電力抑制制御」と称する)が開示されている。
特許第3022051号公報 特許第3674951号公報 特許第3754974号公報 特許第4529153号公報 特開2011-205731号公報
 従来のピーク電力抑制制御を行う電力制御装置は以上のように構成されているので、各単位時間において、複数のチャンネルの総出力電力値が予め設定された電力上限値以下に抑制されるが、その電力上限値は、予め設定された固定値(例えば、使用者が、工場の電源容量や、制御に必要な電力量などを考慮して設定する値)であり、設定が自動的に変更されるものではない。
 このため、例えば、電力上限値が、温度制御の安定に必要な電力量の合計値と近い値に設定されている場合、図8のB部に示すように、総目標電力値(各々のチャンネルの目標電力値の合計)が大きな値になっても(例えば、昇温、設定変更や外乱などの影響によって、総目標電力値が大きな値になることがある)、総出力電力値が電力上限値以下に抑制されるが、目標温度に到達するまでに長い時間を要して、制御性が損なわれてしまう課題があった。また、外乱応答が遅くなるため、最適な温度制御を行うことができない課題があった。
 一方、図8のA部に示すように、電力上限値と比べて、総目標電力値が必要以上に小さな値になると、各単位時間において、総出力電力値の最大値と最小値の差が大きくなって、電源電圧のフリッカが大きくなる課題があった。
 この発明は上記のような課題を解決するためになされたもので、総目標電力値の変化に伴う制御性の損失を防止することができるとともに、電源電圧のフリッカを抑制することができる電力制御装置及び電力制御方法を得ることを目的とする。
 この発明に係る電力制御装置は、各々の制御対象に供給する電力の入切を所定の単位時間毎に切り換える複数のスイッチング制御手段と、各々の制御対象に供給する電力の目標値である目標電力値を算出する目標電力値算出手段と、各々の制御対象に供給された電力の値である出力電力値を算出する出力電力値算出手段と、各々の制御対象毎に、電力が供給されているときに出力電力値算出手段により算出された出力電力値から、次の制御サイクルの単位時間中に制御対象に電力を供給した場合の電力値を推定する電力推定手段と、各々の制御対象毎に、目標電力値算出手段により算出された目標電力値の加算と出力電力値算出手段により算出された出力電力値の減算を制御サイクル毎に繰り返すことで電力差積算値を算出し、前回の制御サイクルまでの電力差積算値と目標電力値算出手段により算出された次の制御サイクルの目標電力値とを加算して、その加算値である最新の中間積算電力値を算出する中間積算電力値算出手段と、目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に基づいて、単位時間当りの総ての制御対象に対する供給電力値の上限値を算出する上限値算出手段とを設け、電力制御手段が、各々の制御対象の中で、中間積算電力値算出手段により算出された中間積算電力値が大きい制御対象から順番に、当該制御対象の中間積算電力値が所定の閾値より大きく、かつ、当該制御対象に対する電力の供給を行うとした場合に、電力推定手段により推定された当該制御対象の電力値と、電力推定手段により推定された電力値であって、次の制御サイクルで電力の供給を行うことを決定している他の制御対象の電力値との総和が上限値算出手段により算出された上限値より高くならない電力供給条件を満足すれば、当該制御対象のスイッチング制御手段を入り状態に制御し、その電力供給条件を満足しなければ、当該制御対象のスイッチング制御手段を切り状態に制御する処理を繰り返し行い、総ての制御対象について次の制御サイクルにおける前記スイッチング制御手段の入切を制御するようにしたものである。
 この発明に係る電力制御装置は、上限値算出手段が、目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に対して所定の補正値を加算することで、供給電力値の上限値を算出するようにしたものである。
 この発明に係る電力制御装置は、上限値算出手段が、目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に対して所定の係数を乗算することで、供給電力値の上限値を算出するようにしたものである。
 この発明に係る電力制御装置は、上限値算出手段が、中間積算電力値算出手段により算出された各々の制御対象の電力差積算値の総和を所定の積分時間で除算し、その除算結果を補正値として、目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に加算することで、供給電力値の上限値を算出するようにしたものである。
 この発明に係る電力制御装置は、上限値算出手段が、中間積算電力値算出手段により算出された各々の制御対象の電力差積算値の総和と、各々の制御対象における閾値の総和との差分を所定の積分時間で除算し、その除算結果を補正値として、目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に加算することで、供給電力値の上限値を算出するようにしたものである。
 この発明に係る電力制御装置は、上限値算出手段により加算される補正値が、零値から、当該制御対象に供給される電力の最大値に至る範囲内の値であるようにしたものである。
 この発明に係る電力制御装置は、上限値算出手段が、零値から、当該制御対象に供給される電力の最大値に至る範囲内にある補正値、または、所定の積分時間で除算した除算結果である補正値のいずれか一方を目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に加算することで、供給電力値の上限値を算出するようにしたものである。
 この発明に係る電力制御方法は、複数のスイッチング制御手段が、各々の制御対象に供給する電力の入切を所定の単位時間毎に切り換える複数のスイッチング処理ステップと、目標電力値算出手段が、各々の制御対象に供給する電力の目標値である目標電力値を算出する目標電力値算出処理ステップと、出力電力値算出手段が、各々の制御対象に供給された電力の値である出力電力値を算出する出力電力値算出処理ステップと、電力推定手段が、各々の制御対象毎に、電力が供給されているときに出力電力値算出処理ステップで算出された出力電力値から、次の制御サイクルの単位時間中に制御対象に電力を供給した場合の電力値を推定する電力推定処理ステップと、中間積算電力値算出手段が、各々の制御対象毎に、目標電力値算出処理ステップで算出された目標電力値の加算と出力電力値算出処理ステップで算出された出力電力値の減算を制御サイクル毎に繰り返すことで電力差積算値を算出し、前回の制御サイクルまでの電力差積算値と目標電力値算出処理ステップで算出された次の制御サイクルの目標電力値とを加算して、その加算値である最新の中間積算電力値を算出する中間積算電力値算出処理ステップと、上限値算出手段が、目標電力値算出処理ステップで算出された各々の制御対象の目標電力値の総和に基づいて、単位時間当りの総ての制御対象に対する供給電力値の上限値を算出する上限値算出処理ステップと、電力制御手段が、各々の制御対象の中で、中間積算電力値算出処理ステップで算出された中間積算電力値が大きい制御対象から順番に、当該制御対象の中間積算電力値が所定の閾値より大きく、かつ、当該制御対象に対する電力の供給を行うとした場合に、電力推定処理ステップで推定された当該制御対象の電力値と、電力推定処理ステップで推定された電力値であって、次の制御サイクルで電力の供給を行うことを決定している他の制御対象の電力値との総和が上限値算出処理ステップで算出された上限値より高くならない電力供給条件を満足すれば、当該制御対象のスイッチング制御手段を入り状態に制御し、その電力供給条件を満足しなければ、当該制御対象のスイッチング制御手段を切り状態に制御する処理を繰り返し行い、総ての制御対象について次の制御サイクルにおける前記スイッチング制御手段の入切を制御する電力制御処理ステップとを備えるようにしたものである。
 この発明によれば、総目標電力値の変化に応じて、供給電力値の上限値が適正に算出されるようになり、その結果、総目標電力値の変化に伴う制御性の損失を防止することができるとともに、電源電圧のフリッカを抑制することができる効果がある。
 また、使用者による上限値設定の手間を省くことができる効果がある。
この発明の実施の形態1による電力制御装置を示す構成図である。 この発明の実施の形態1による電力制御装置の処理内容を示すフローチャートである。 この発明の実施の形態1による電力制御装置のオンオフ機器制御部23の処理内容を示すフローチャートである。 電力制御装置の処理タイミングを示す説明図である。 時分割出力制御方式による各制御サイクルでの制御例を示す説明図である。 16個のチャンネルが時分割出力制御方式によって電力制御が実施された場合の各チャンネルのオンオフ状況の一例を示す説明図である。 電力上限値が設定されない場合の総電力差積算値の一例を示す説明図である。 固定の電力上限値が設定された場合の各チャンネルのオンオフ状況の一例を示す説明図である。 固定の電力上限値が設定された場合の総電力差積算値の一例を示す説明図である。 方法Aで電力上限値が設定された場合の各チャンネルのオンオフ状況の一例を示す説明図である。 方法Aで電力上限値が設定された場合の総電力差積算値の一例を示す説明図である。 方法Bで電力上限値が設定された場合の各チャンネルのオンオフ状況の一例を示す説明図である。 方法Bで電力上限値が設定された場合の総電力差積算値の一例を示す説明図である。 方法Cで電力上限値が設定された場合の各チャンネルのオンオフ状況の一例を示す説明図である。 方法Cで電力上限値が設定された場合の総電力差積算値の一例を示す説明図である。
実施の形態1.
 図1はこの発明の実施の形態1による電力制御装置を示す構成図である。
 図1の電力制御装置では、M(Mは2以上の整数)個の制御対象に対する電力の供給を時分割で制御する例を説明する。
 即ち、図1の電力制御装置は、電源波形の半サイクルの整数倍に相当する時間(以下、「単位時間」と称する)毎に、制御対象に供給する電力を入切(オン/オフ)する制御を行うものであり、電力を供給する時間であるオン時間と、電力を供給しない時間であるオフ時間との時間的割合を制御することで、PID調節計から出力される操作信号(目標値)に比例する電力を制御対象に供給するものである。
 以下、単位時間毎に制御対象に供給する電力を入切(オン/オフ)する制御を繰り返すサイクルを「制御サイクル」と称する。
 図1において、負荷1-1~1-Mは電力制御装置の制御対象であり、例えば、ヒータなどが該当する。
 調節計2-1~2-Mは電力制御装置の外部機器であり、制御サイクルn毎に、負荷1-mに供給する電力の出力目標値Amnを電力制御装置に出力する機器である。
 ただし、mは制御対象の負荷1-1~1-Mを特定する番号であり、m=1,2,・・・,Mである。
 また、nは負荷1-1~1-Mに供給する制御サイクルを特定する番号であり、1つの制御サイクルの時間は、上記の単位時間と一致する。ただし、n=1,2,・・・である。
 目標電力値算出部11は制御サイクルn毎に、制御サイクルnの冒頭で調節計2-mから出力された値を出力目標値Amn(例えば、負荷1-mの定格電力に対する目標電力のパーセンテージ)として入力して、その出力目標値Amnを所定の基準電力値に乗算し、その乗算結果xmn(=Amn・q)を制御サイクルnで負荷1-mに供給する目標電力値xmnとして算出する処理を実施する。なお、目標電力値算出部11は目標電力値算出手段を構成している。
 目標電力値算出部11の出力目標値入力部12は調節計2-1~2-Mに対するインタフェース機器であり、調節計2-mから出力された出力目標値Amnを入力する処理を実施する。
 基準電力値記憶部13は例えばRAMなどのメモリから構成されており、負荷1-mの基準電力値q(例えば、負荷1-mの定格電力)を記憶している。
 目標電力値算出処理部14-1~14-Mは例えば乗算器などから構成されており、制御サイクルn毎に、制御サイクルnの冒頭で出力目標値入力部12により入力された出力目標値Amnを基準電力値記憶部13により記憶されている基準電力値qに乗算することで、負荷1-mの目標電力値xmnを算出する処理を実施する。
 電力供給オンオフ機器15-1~15-Mは例えばサイリスタなどから構成されており、ピーク電力抑制演算部21の指示の下、負荷1-mに供給する電力の入切(オン/オフ)を制御サイクル毎(単位時間毎)に行う処理を実施する。なお、電力供給オンオフ機器15-1~15-Mはスイッチング制御手段を構成している。
 出力電力値算出部16は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、制御サイクルnの単位時間中に、負荷1-mに供給された電力の値である出力電力値qmnチルダを算出する処理を実施する。なお、出力電力値算出部16は出力電力値算出手段を構成している。
 図1では、出力電力値として、“~”の記号が上部に付されているqmnを表記しているが、電子出願の関係上、明細書の文章中では、“~”の記号をqmnの上部に付することができないため、「qmnチルダ」のように表記している。
 制御サイクルn毎に、出力電力値算出部16から、制御サイクルnの冒頭でピーク電力抑制演算部21に出力される値は、前回の制御サイクル(n-1)で算出された出力電力値qm(n-1)チルダとなる。
 なお、出力電力値算出部16は、制御サイクルnの単位時間毎に、出力電力値qmnチルダを算出することができるものであれば、どのような構成であってもよいが、例えば、負荷1-mに印加されている電圧Vmnを計測する電圧測定手段と、負荷1-mに流れている電流Imnを計測する電流測定手段と、その電圧Vmnと電流Imnから負荷1-mに供給された電力の値である出力電力値qmnチルダを算出する算出手段とを備えたものが考えられる。
 オン電力推定部17は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、以前、負荷1-mに対して電力が供給されているときに、出力電力値算出部16により測定されたオン時の出力電力値を記憶しておき、その出力電力値に基づいて、制御サイクルnの単位時間中に、負荷1-mに対して電力が供給された場合の電力値を推定し、その電力推定値qmonチルダを出力する処理を実施する。なお、オン電力推定部17は電力推定手段を構成している。
 総目標電力値算出部18は例えば加算器などから構成されており、目標電力値算出処理部14-1~14-Mにより算出された負荷1-1~1-Mの目標電力値x1n~xMnの総和Σxを算出する処理を実施する。
 補正値算出部19は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、総目標電力値算出部18により算出された目標電力値x1n~xMnの総和Σxに加算する補正値Hを算出する処理を実施する。
 上限値算出部20は例えば加算器などから構成されており、総目標電力値算出部18により算出された目標電力値x1n~xMnの総和Σxに対して、補正値算出部19により算出された補正値Hを加算することで、制御サイクルnの単位時間において、M個の全負荷に対する供給電力値の上限値PLIM(以下、「電力上限値PLIM」と称する)を算出する処理を実施する。
 なお、総目標電力値算出部18、補正値算出部19及び上限値算出部20から上限値算出手段が構成されている。
 ピーク電力抑制演算部21はオン電力推定部17、中間積算電力値算出部22及びオンオフ機器制御部23から構成されている。
 中間積算電力値算出部22は減算器22a-1~22a-M、加算器22b-1~22b-M及び値を1制御サイクル分時間シフトすることを意味するバッファ(Z-1)22c-1~22c-Mから構成されており、前回の制御サイクル(n-1)で算出している中間積算電力値Sm(n-1)ハットから出力電力値算出部16により算出された出力電力値qm(n-1)チルダを減算することで、前回の制御サイクル(n-1)での電力差積算値sm(n-1)(=sm(n-1)ハット-qm(n-1)チルダ)を算出するとともに、その電力差積算値Sm(n-1)と目標電力値算出処理部14-mにより算出された目標電力値xmnを加算とを加算して、その加算値である最新の中間積算電力値smnハットを算出する処理を実施する。なお、中間積算電力値算出部22は中間積算電力値算出手段を構成している。
 図1では、中間積算電力値として、“^”の記号が上部に付されているSmnを表記しているが、電子出願の関係上、明細書の文章中では、“^”の記号をSmnの上部に付することができないため、「smnハット」のように表記している。
 オンオフ機器制御部23は負荷1-1~1-Mの中で、中間積算電力値算出部22により算出された中間積算電力値smnハットが大きい負荷1-mから順番に、当該負荷1-mの中間積算電力値smnハットが所定の閾値sthより大きく、かつ、オン電力推定部17により推定された負荷1-mの電力推定値qmonチルダと、オン電力推定部17により推定された負荷1-1~1-Mの電力推定値q1onチルダ~qMonチルダであって、次の制御サイクルでオンすると決定している負荷の電力推定値qmonチルダとの総和が上限値算出部20により算出された電力上限値PLIMより高くならない電力供給条件を満足すれば、当該負荷1-mの電力供給オンオフ機器15-mを入り状態(オン)に制御し、その電力供給条件を満足しなければ、当該負荷1-mの電力供給オンオフ機器15-mを切り状態(オフ)に制御する処理を繰り返し行い、総ての負荷について次の制御サイクルにおける電力供給オンオフ機器15の入切を制御する。なお、オンオフ機器制御部23は制御手段を構成している。
 図1の例では、電力制御装置の構成要素である目標電力値算出部11、電力供給オンオフ機器15-1~15-M、出力電力値算出部16、オン電力推定部17、総目標電力値算出部18、補正値算出部19、上限値算出部20、中間積算電力値算出部22及びオンオフ機器制御部23のそれぞれが専用のハードウェアで構成されているものを想定しているが、電力制御装置の全部又は一部がコンピュータで構成されていてもよい。
 例えば、電力制御装置の全部をコンピュータで構成する場合、目標電力値算出部11、電力供給オンオフ機器15-1~15-M、出力電力値算出部16、オン電力推定部17、総目標電力値算出部18、補正値算出部19、上限値算出部20、中間積算電力値算出部22及びオンオフ機器制御部23の処理内容を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
 図2はこの発明の実施の形態1による電力制御装置の処理内容を示すフローチャートである。
 また、図3はこの発明の実施の形態1による電力制御装置のオンオフ機器制御部23の処理内容を示すフローチャートである。
 次に動作について説明する。
 従来のピーク電力抑制制御を行う電力制御装置では、上述したように、各単位時間において、複数のチャンネルの総出力電力値が予め設定された電力上限値以下に抑制されるが、その電力上限値は、予め設定された固定値であり、適宜、自動的に設定が変更されるものではない。
 この実施の形態1の電力制御装置では、使用者が手動で設定することなく、自動的に適正な電力上限値PLIMを算出するものである。
 これにより、詳細は後述するが、総目標電力値の変化に伴う制御性の損失を防止することができるとともに、電源電圧のフリッカを抑制することができる。
 この実施の形態1では、n回目の制御サイクルでの電力制御について説明する。図4は電力制御装置の処理タイミングを示す説明図である。n回目の制御サイクルの処理は(n-1)回目の制御サイクルとn回目の制御サイクルの境目付近で実行されることを示している。以後、n回目の制御サイクルの冒頭で、n回目の制御サイクルの処理を実施する場合の動作を説明する。
 また、電力供給オンオフ機器15-m(m=1,2,・・・,M)は、ピーク電力抑圧演算部20のオンオフ機器制御部23の指示の下、負荷1-mに供給する電力の入切(オン/オフ)を制御するが、n回目の制御サイクルの処理で、負荷1-mの電力供給オンオフ機器15-mに対するオンオフ機器制御部23の指示がオンであれば、n回目の制御サイクル中、負荷1-mに電力が供給される。
 一方、n回目の制御サイクルの処理で、負荷1-mの電力供給オンオフ機器15-mに対するオンオフ機器制御部23の指示がオフであれば、n回目の制御サイクル中、負荷1-mには電力が供給されない。
 出力電力値算出部16は、n回目の制御サイクルの処理では制御サイクルn-1の単位時間中に、負荷1-mに供給された電力の値である出力電力値qm(n-1)チルダを算出する(図2のステップST1)。
 即ち、出力電力値算出部16は、例えば、負荷1-mに印加された電圧Vm(n-1)を計測する電圧測定手段と、負荷1-mに流れている電流Im(n-1)を計測する電流測定手段とを備えている場合、(n-1)回目の制御サイクルにおいて、前記電圧測定手段により計測された電圧Vm(n-1)と、前記電流測定手段により計測された電流Im(n-1)とから、負荷1-mに供給された電力の値である出力電力値qm(n-1)チルダをn回目の制御サイクルの冒頭で算出する。
Figure JPOXMLDOC01-appb-M000001
 オン電力推定部17は、負荷1-1~1-Mに電力が供給されたときに、出力電力値算出部16により算出された出力電力値を記憶しており(負荷毎の出力電力値を記憶している)、n回目の制御サイクルでは、n回目の制御サイクルの冒頭で算出された出力電力値qm(n-1)チルダがゼロでなければ(負荷1-mには電力が供給されている場合)、その記憶している出力電力値を更新する(ステップST2)。(n-1)回目の制御サイクルで算出された出力電力値qm(n-1)チルダがゼロであれば、その記憶している出力電力値を更新しない。
 また、オン電力推定部17は、n回目の制御サイクルにおいて、その記憶している出力電力値に基づいて、n回目の制御サイクルの単位時間中に、負荷1-mに電力が供給された場合の電力値をn回目の制御サイクルの冒頭で推定し、その電力推定値qmonチルダをオンオフ機器制御部23に出力する(ステップST2)。
 例えば、(n-1)回目の制御サイクルで負荷1-mに電力が供給されている場合、n回目の制御サイクルの冒頭で算出された出力電力値qm(n-1)チルダを負荷1-mの電力推定値qmonチルダとしてオンオフ機器制御部23に出力する。
 また、例えば、(n-1)回目の制御サイクルで負荷1-mに電力が供給されていないが、(n-2)回目の制御サイクルで負荷1-mに電力が供給されている場合、(n-1)回目の制御サイクルの冒頭で算出された出力電力値qm(n-2)チルダを負荷1-mの電力推定値qmonチルダとしてオンオフ機器制御部23に出力する。
 中間積算電力値算出部22の減算器22a-mは、n回目の制御サイクルにおいて、出力電力値算出部16から出力電力値qm(n-1)チルダを受けると、値を1制御サイクル分時間シフトすることを意味するバッファ(Z-1)22c-mを通した値((n-1)回目の制御サイクルで算出された中間積算電力値sm(n-1)ハット)から、その出力電力値qm(n-1)チルダを減算することで、(n-1)回目の制御サイクルまでの電力差積算値sm(n-1)を算出し、その電力差積算値sm(n-1)を補正値算出部19及び加算器22b-mに出力する(ステップST3)。
Figure JPOXMLDOC01-appb-M000002
 目標電力値算出部11の出力目標値入力部12は、n回目の制御サイクルの冒頭において、調節計2-mから出力された負荷1-mに供給する電力の出力目標値Amnを入力し、その出力目標値Amnを目標電力値算出処理部14-mに出力する。
 目標電力値算出部11の目標電力値算出処理部14-mは、n回目の制御サイクルにおいて、出力目標値入力部12から出力目標値Amnを受けると、その出力目標値Amnを対して、基準電力値記憶部13により記憶されている基準電力値qを乗算することで、負荷1-mの目標電力値xmnを算出し、その目標電力値xmnをピーク電力抑制演算部21及び総目標電力値算出部18に出力する(ステップST4)。ここでは、基準電力値qが、負荷1-mの定格電力であるものを想定しているが、負荷1-mの定格電力に限るものではない。
   xmn=Amn×q                    (3)
 中間積算電力値算出部22の加算器22b-mは、n回目の制御サイクルにおいて、減算器22a-mが(n-1)回目の制御サイクルまでの電力差積算値sm(n-1)を算出すると、その電力差積算値sm(n-1)と、目標電力値算出処理部14-1~14-Mにより算出された目標電力値xmnを加算することで、n回目の制御サイクルでの中間積算電力値smnハットを算出し、その中間積算電力値smnハットをオンオフ機器制御部23及びバッファ(Z-1)22c-mに出力する(ステップST5)。なお、バッファ(Z-1)22c-mのZ-1は、値を1制御サイクル分時間シフトすることを意味する演算子であり、その出力は(n-1)回目の制御サイクルで算出した中間積算電力値sm(n-1)ハットとなる。
Figure JPOXMLDOC01-appb-M000003
 総目標電力値算出部18は、n回目の制御サイクルにおいて、目標電力値算出処理部14-1~14-Mが負荷1-1~1-Mの目標電力値x1n~xMnを算出すると、それらの目標電力値x1n~xMnの総和Σxを算出する(ステップST6)。
   Σx=x1n+x2n+・・・+xMn          (5)
 補正値算出部19は、n回目の制御サイクルにおいて、総目標電力値算出部18により算出された目標電力値x1n~xMnの総和Σxに加算する補正値Hを算出する(ステップST7)。
 補正値算出部19による補正値Hの算出処理の詳細については後述するが、目標電力値x1n~xMnの総和Σxに適正な補正値Hを加算した値を電力上限値PLIMとすれば、単位時間毎の総出力電力値の最大値と最小値の差を小さくして、制御性の損失や、電源電圧のフリッカを抑制することができる(詳細は後述する)。
 上限値算出部20は、n回目の制御サイクルにおいて、総目標電力値算出部18により算出された目標電力値x1n~xMnの総和Σxに対して、補正値算出部19により算出された補正値Hを加算することで、M個の負荷1-1~1-Mに対する電力上限値PLIMを算出する(ステップST8)。
   PLIM=Σx+H                   (6)
 ピーク電力抑制演算部21のオンオフ機器制御部23は、n回目の制御サイクルにおける電力供給オンオフ機器15-mの入切(オン/オフ)を決定する(ステップST9)。
 以下、図3のフローチャートを参照しながら、ピーク電力抑制演算部21のオンオフ機器制御部23の処理内容を具体的に説明する。
 ピーク電力抑制演算部21のオンオフ機器制御部23は、制御サイクル毎に初期化処理として、後述する総電力推定値Σqonをクリアする(図3のステップST21)。
 オンオフ機器制御部23は、n回目の制御サイクルにおいて、中間積算電力値算出部22から負荷1-1~1-Mにおける中間積算電力値s1nハット~sMnハットを受けると、M個の中間積算電力値s1nハット~sMnハットを比較して、値が大きい順にM個の中間積算電力値s1nハット~sMnハットをソートして、値が大きい中間積算電力値に係る負荷1-mから順番に制御対象に設定する。
 即ち、未だ制御対象に設定されていない負荷1-mの中で、最も中間積算電力値smnハットが大きい負荷1-mを制御対象に設定する(ステップST22)。
 例えば、負荷の数が3個であるとき、中間積算電力値s1nハット>中間積算電力値s2nハット>中間積算電力値s3nハットであれば、制御対象を「負荷1-1」→「負荷1-2」→「負荷1-3」の順番に設定する。
 また、例えば、中間積算電力値s3nハット>中間積算電力値s1nハット>中間積算電力値s2nハットであれば、制御対象を「負荷1-3」→「負荷1-1」→「負荷1-2」の順番に設定する。
 オンオフ機器制御部23は、制御対象を負荷1-mに設定すると、その負荷1-mの中間積算電力値smnハットと所定の閾値sthの大小を比較して(ステップST23)、その負荷1-mの中間積算電力値smnハットが所定の閾値sthより大きい場合には、後述する総電力推定値Σqonに当該負荷1-mの電力推定値qmonチルダを加算したオンオフ判断用総電力推定値Σqon’を算出する(ステップST24)。
また、オンオフ機器制御部23は、制御対象を負荷1-mに設定すると、その負荷1-mの中間積算電力値smnハットが所定の閾値sthより大きく(ステップST23)、かつ、オンオフ判断用総電力推定値Σqon’が上限値算出部20により算出された電力上限値PLIMより高くならない電力供給条件を満足しているか否かを判定する(ステップST25)。即ち、下記の式(7)(8)が成立しているか否かを判定する。
Figure JPOXMLDOC01-appb-M000004
 オンオフ機器制御部23は、式(7)(8)が成立している場合、上記の電力供給条件を満足しているので、その負荷1-mの電力供給オンオフ機器15-mを入り状態(オン)に制御する(ステップST26)。これにより、負荷1-mに電力が供給される。
 オンオフ機器制御部23は、式(7)または式(8)の少なくとも一方が成立しない場合、上記の電力供給条件を満足していないので、その負荷1-mの電力供給オンオフ機器15-mを切り状態(オフ)に制御する(ステップST27)。これにより、負荷1-mには電力が供給されない。
 オンオフ機器制御部23は、n回目の制御サイクルにおいて、オン電力推定部17により推定された負荷1-1~1-Mの電力推定値qmonチルダの総和(以下、「総電力推定値Σqon」と称する)を算出する(ステップST28)。
オンオフ機器制御部23は、値が大きい中間積算電力値に係る負荷1-mから順番に制御対象に設定して、全ての負荷1-mに対する制御が完了するまで上記の制御処理(ステップST22~ST28の処理)を繰り返し実施する(ステップST29)。
 以上が、n回目の制御サイクルの処理内容である。
 この実施の形態1では、総電力推定値Σqonが上限値算出部20により算出された電力上限値PLIMより高くならない電力供給条件を満足する場合に、負荷1-mの電力供給オンオフ機器15-mを入り状態(オン)に制御することで、各々の制御サイクルの単位時間において、出力電力値qmnチルダの総和が電力上限値PLIM以下になるように抑制しているが、従来の時分割出力制御と異なり、適正な電力上限値PLIM(目標電力値x1n~xMnの総和Σxに適正な補正値Hを加算した値)を自動的に算出するようにしているので、総目標電力値の変化に伴う制御性の損失を防止することができるとともに、電源電圧のフリッカを抑制することができる効果が得られる。
 以下、上記の効果が得られる理由を説明する。
 まず、時分割出力制御方式により、目標電力値xmnの積算値と出力電力値qmnチルダの積算値とが一致する原理について説明する。
 図1の電力制御装置では、負荷1-mの中間積算電力値smnハットが閾値sthを越えることで電力供給条件を満足すると、負荷1-mの電力供給オンオフ機器15-mがオンになり、負荷1-mの中間積算電力値smnハットから出力電力値qmnチルダが減算されるため、負荷1-mの電力差積算値smnは、閾値sthから出力電力値qmnチルダが減算された値と、その閾値sthとの間の有限な値になる。
 一方、負荷1-mの電力差積算値smnは、目標電力値xmnの積算値と、出力電力値qmnチルダの積算値とに分けることができるが、オンオフ機器制御部23によるオンオフ処理が繰り返され、その繰り返し回数nが十分に大きな値になると、目標電力値xmnの積算値及び出力電力値qmnチルダの積算値が非常に大きな値になる。
 この結果、目標電力値xmnの積算値及び出力電力値qmnチルダの積算値と比較して、電力差積算値smnは十分小さな値になるため、目標電力値xmnの積算値と出力電力値qmnチルダの積算値とはほぼ等しい値になる。
 繰り返し回数nを無限大にしたときに、目標電力値xmnと出力電力値qmnチルダが一致することを数式で示すと以下のようになる。
Figure JPOXMLDOC01-appb-M000005
 ここで、図5は時分割出力制御方式による各制御サイクルでの制御例を示す説明図である。図5では、負荷の定格電力を100%として、目標電力値、中間積算電力値、実電力値(出力電力値)及び電力差積算値を%で表現している。
 例えば、目標電力値が負荷の定格電力の30%に設定されている場合、図5(a)を示すように、実電力値(出力電力値)の平均値が30%に制御されていることが分かる。
 また、目標電力値が負荷の定格電力の55%に設定されている場合、図5(b)を示すように、実電力値(出力電力値)の平均値が55%に制御されていることが分かる。
 前記で示した時分割出力制御方式の演算により、単位時間毎の目標電力値の積算値(以下、「目標電力積算値」と称する)と、単位時間毎の出力電力値の積算値(以下、「出力電力積算値」と称する)との差(以下、「電力差積算値」と称する)は、時分割比例制御演算の処理によって所定の閾値より小さく、その閾値からオンしたときの電力値を減算した値より大きい範囲の値になる。
 よって、複数の負荷を時分割出力制御方式で制御した場合には、全負荷の目標電力積算値の合計値(以下、「総目標電力積算値」と称する)と、全負荷の出力電力積算値の合計値(以下、「総出力電力積算値」と称する)との差(以下、「総電力差積算値」と称する)は、全負荷の閾値を加算した値(以下、「総閾値」と称する)より小さく、総閾値から全負荷に電力を供給したときの電力の合計値(以下、「総オン電力値」と称する)を減算した値より大きい範囲の値となる。
 図7は電力上限値が設定されない場合の総電力差積算値の一例を示す説明図であり、上記の様子を表している。
 以下、動作原理を分かり易く説明するために閾値がゼロである場合で説明するが、閾値がゼロである必要はない。
 時分割出力制御方式では、上述したように、出力はオンまたはオフのいずれかであり、オンしたチャンネル(負荷)の消費電力を合計した値が総出力電力値であるため、総出力電力値は離散的な値となる。
 一方、温度調節計等から送られてくる出力目標値は、PID演算等で算出される連続的な値であるため、その出力目標値から算出した目標電力値も連続的な値である。よって、目標電力値を全チャンネル分合計した値である総目標電力値も連続的な値である。
 以上の理由により、総目標電力値と総出力電力値は例外的な場合を除いて一致することはない。例えば、図6及び図8においても、総出力電力値は総目標電力値に対して、大きな値である状態と小さな値である状態を繰り返すが、総出力電力積算値と総目標電力積算値はほぼ一致するように制御されている。
 次に、ピーク電力抑制制御方式では、電力上限値という概念を導入し、同一の単位時間において、同時にオンするチャンネルの出力電力値の合計値を電力上限値以下にすることで、同時にオンするチャンネルを制限しているが、ピーク電力抑制制御方式では、時分割出力制御方式を基本動作としているため、時分割出力制御方式と同様に、総目標電力値又は総出力電力値と電力上限値は例外的な場合を除いて一致することはない。
 図8では、16チャンネルの制御対象をピーク電力抑制制御した場合の各チャンネルのオンオフ状況の一例を示している。
 図8の例では、総出力電力値がばらついており、総てのチャンネルがオフしている状態や、電力上限値に近い電力値の状態もある。
 また、図8の例では、総目標電力値と電力上限値の差が大きいほど、単位時間毎の総出力電力値の最大値と最小値の差が大きくなることを示している。また同時に、総目標電力値と電力上限値の差が小さいほど、単位時間毎の総出力電力値の最大値と最小値の差が小さくなることを示している。
 このことから、単位時間毎の総出力電力値の最大値と最小値の差を小さくするためには、電力上限値は、出来るだけ総目標電力値に近い値にすればよいことが分かる。
 ただし、総出力電力値は離散的な値であり、かつ、例外的な場合を除き総出力電力値は電力上限値未満の値になるため、電力上限値を総目標電力値に近づけ過ぎると、ピーク電力抑制制御の動作によって、目標電力積算値を負荷に供給することができなくなる。
 図8のB部における総電力差積算値の変化を示している図9のB部は、前記状態を示す一例である。電力上限値を総目標電力値に近づけ過ぎた場合や、電力上限値が総目標電力値より小さい場合には、総目標電力値を出力できないため、時分割出力制御方式の動作原理によって、総電力差積算値が単調増加する。図9のB部は、電力上限値を総目標電力値に近づけ過ぎた場合や、電力上限値が総目標電力値より小さい時に総電力差積算値が単調増加する様子を示している。
 以上より、総目標電力値に適正な電力値を加算した値を電力上限値とすることにより、単位時間毎の総出力電力値の最大値と最小値の差を小さくして、負荷へ目標電力値を供給する動作を実現することができる。
 以下、適正な電力上限値の算出方法を明示する。
(1)負荷1-1~1-Mの消費電力や負荷率などの電力制御状況に応じて補正値を選択し、その補正値を総目標電力値に加算することで、電力上限値を算出する方法(以下、「方法A」と称する)。
 図10は方法Aで電力上限値が設定された場合の各チャンネルのオンオフ状況の一例を示す説明図である。
 また、図11は方法Aで電力上限値が設定された場合の総電力差積算値の一例を示す説明図である。
 適正な電力上限値は、各負荷1-mの定格電力のバラツキや、調節計2-mなどから送られてくる電力目標値によって変化する値であるため、その定格電力や電力目標値に応じて所定の範囲内の任意の値に設定する必要がある。
 方法Aが用いられる場合、補正値算出部19では、補正値Hとして、0~出力電力値の最大値(負荷1-mに供給される電力の最大値)の範囲の中で、任意の値を選択する。
 例えば、n回目の制御サイクルでは、負荷1-mに供給された出力電力値qm(n-1)チルダを補正値Hとしてもよいし、負荷1-mに電力が供給されているときの出力電力値の平均値、最小値又は最大値を補正値Hとしてもよい。
 また、その平均値、最小値又は最大値に対して適正な係数を乗算した結果を補正値Hとしてもよい。
 上限値算出部20は、補正値算出部19が補正値Hを選択すると、上述したように、総目標電力値(総目標電力値算出部18により算出された目標電力値x1n~xMnの総和Σx)に対して、その補正値Hを加算することで、供給電力値の電力上限値PLIMを算出する(上記の式(6)を参照)。
 これにより、電力上限値PLIMは、総目標電力値~(総目標電力値+補正値H)の範囲内の値になる。
 ここで、電力制御においては、目標電力値xmnを負荷1-mに供給することが優先されるべきであるため、電力上限値PLIMは十分に大きい値であることが望ましい。
 このことより、単位時間毎の総出力電力値の最大値と最小値の差を更に小さくできる点で改善の余地はあるが、方法Aで設定された電力上限値PLIMは、限界値(総出力電力値の最大値)に対して余裕があるため、目標電力値xmnに対する出力電力値qmnチルダの遅れが小さくなって、温度制御への影響が小さくなるメリットがある。
 図10に示すように、方法Aで設定された電力上限値PLIMは、総目標電力値の変化に応じて変動しているため、単位時間毎の総出力電力値のバラツキが小さくなり、結果として、総出力電力値の最大値も小さくなっている。
 また、固定の電力上限値の場合、図8のB部に示すように、総目標電力値が電力上限値以上になると、総目標電力値を出力することができなくなる問題があるが、方法Aで電力上限値PLIMが設定される場合、総目標電力値の変化に応じて変動するため、総目標電力値が電力上限値PLIM以上になることがなく、上記のような問題が発生しない。
 ここでは、適正な補正値Hを選択し、その補正値Hを総目標電力値に加算することで、電力上限値PLIMを算出するものを示したが、補正値Hとして、所定の係数を選択し、その係数を総目標電力値に乗算することで、上記の電力上限値PLIMに相当する電力上限値PLIM’(PLIM≒PLIM’)を算出するようにしてもよい。
(2)負荷1-1~1-Mの電力差積算値の総和と、負荷1-1~1-Mにおける閾値の総和との差分に所定の係数を乗算し、その乗算結果を補正値として、総目標電力値に加算することで、電力上限値を算出する方法(以下、「方法B」と称する)。
 図12は方法Bで電力上限値が設定された場合の各チャンネルのオンオフ状況の一例を示す説明図である。
 また、図13は方法Bで電力上限値が設定された場合の総電力差積算値の一例を示す説明図である。
 以下、負荷1-1~1-Mにおける閾値sthの総和を「総閾値」と称するが、ここでは、説明の簡単化のため、負荷1-1~1-Mにおける閾値sthが零である場合について説明する。
 この場合、方法Bは、「負荷1-1~1-Mの電力差積算値の総和に所定の係数を乗算し、その乗算結果を補正値Hとして、総目標電力値に加算することで、電力上限値PLIMを算出する」方法となる。
 なお、上記の所定の係数の逆数は、PID制御において、一般的に積分時間と言われる値に相当する値であるため、所定の係数を乗算することは、積分時間で除算することと同義である。
 時分割電力制御のプロトコルにより、n回目の制御サイクルにおいて、中間積算電力値算出部22の減算器22a-mにより算出される(n-1)回目の制御サイクルまでの電力差積算値sm(n-1)は、必ず閾値sthより小さな値になる(ここでは、閾値sthが零であるとしているため、零より小さな値になる)。
 図9は固定の電力上限値が設定された場合の総電力差積算値の一例を示す説明図であるが、図9のA部が上記の状況に相当する。
 一方、ピーク電力抑制機能によって、負荷1-mに電力が供給されない場合、(n-1)回目の制御サイクルまでの電力差積算値sm(n-1)は増加する。図9のB部が上記の状況に相当する。
 このため、方法Bによって、負荷1-1~1-Mの電力差積算値s1(n-1)~sM(n-1)の総和Σs(n-1)を積分時間で除算し、その除算結果を補正値Hとして、目標電力値x1n~xMnの総和Σxに加算することで、電力上限値PLIMを算出すると、以下のようになる。
 まず、電力上限値PLIMが小さく、総出力電力値(出力電力値算出部16により算出された負荷1-1~1-Mの出力電力値q1(n-1)チルダ~qM(n-1)チルダの総和)が小さい状況下では、総電力差積算値(電力差積算値s1(n-1)~sM(n-1)の総和)が大きくなるため、電力上限値PLIMが徐々に大きな値になり、いずれ目標電力値を出力することができる状況に変化する。
 一方、電力上限値PLIMが大きく、十分な総出力電力値を出力できる状況下では、総電力差積算値がマイナスの値(総閾値より小さい値)になるため、電力上限値PLIMが徐々に小さな値になり、いずれ必要以上に大きな電力上限値PLIMの状態が解消される。
 以上より、方法Bで電力上限値が設定された場合、図12に示すように、電力上限値PLIMが適正な値で平衡状態になる。
(3)方法Aと方法Bを併用する方法(以下、「方法C」と称する)。
 図14は方法Cで電力上限値が設定された場合の各チャンネルのオンオフ状況の一例を示す説明図である。
 また、図15は方法Cで電力上限値が設定された場合の総電力差積算値の一例を示す説明図である。
 方法Cが用いられる場合、補正値算出部19では、方法Aで設定される補正値H(0~出力電力値の最大値の範囲の中の任意の値)、または、方法Bで設定される補正値H(積分時間での除算結果)のいずれか一方を上限値算出部20に出力する。
 上限値算出部20は、補正値算出部19から補正値Hを受けると、総目標電力値(総目標電力値算出部18により算出された目標電力値x1n~xMnの総和Σx)に対して、その補正値Hを加算することで、供給電力値の電力上限値PLIMを算出する(上記の式(6)を参照)。
 方法Cが用いられる場合、図14に示すように、総電力差積算値をゼロ(総閾値)近辺の値にすることが可能になる。
 このため、方法A又は方法Bを用いる場合よりも、図15に示すように、総目標電力積算値と総出力電力積算値との一致性を改善することが可能になる。
 以上で明らかなように、この実施の形態1によれば、総目標電力値算出部18により算出された目標電力値x1n~xMnの総和Σxに対して、補正値算出部19により算出された補正値Hを加算することで、全負荷に対する電力上限値PLIMを算出する上限値算出部20を設け、オンオフ機器制御部23が、負荷1-1~1-Mの中で、中間積算電力値算出部22により算出された中間積算電力値smnハットが大きい負荷1-mから順番に、当該負荷1-mの中間積算電力値smnハットが所定の閾値sthより大きく、かつ、オン電力推定部17により推定された負荷1-mの電力推定値qmonチルダと、オン電力推定部17により推定された負荷1-1~1-Mの電力推定値q1onチルダ~qMonチルダであって、次の制御サイクルでオンすると決定している負荷の電力推定値qmonチルダとの総和が上限値算出部20により算出された電力上限値PLIMより高くならない電力供給条件を満足すれば、当該負荷1-mの電力供給オンオフ機器15-mを入り状態に制御し、その電力供給条件を満足しなければ、当該負荷1-mの電力供給オンオフ機器15-mを切り状態に制御するように構成したので、総目標電力値の変化に伴う制御性の損失を防止することができるとともに、電源電圧のフリッカを抑制することができる効果を奏する。
 また、使用者による電力上限値PLIMの設定の手間を省くことができる効果を奏する。
 1-1~1-M 負荷、2-1~2-M 調節計、11 目標電力値算出部(目標電力値算出手段)、12 出力目標値入力部、13 基準電力値記憶部、14-1~14-M 目標電力値算出部、15-1~15-M 電力供給オンオフ機器(スイッチング制御手段)、16 出力電力値算出部(出力電力値算出手段)、17 オン電力推定部(電力推定手段)、18 総目標電力値算出部(上限値算出手段)、19 補正値算出部(上限値算出手段)、20 上限値算出部(上限値算出手段)、21 ピーク電力抑制演算部、22 中間積算電力値算出部(中間積算電力値算出手段)、22a-1~22a-M 減算器、22b-1~22b-M 加算器、22c-1~22c-M バッファ(Z-1)、23 オンオフ機器制御部(制御手段)。

Claims (8)

  1.  各々の制御対象に供給する電力の入切を所定の単位時間毎に切り換える複数のスイッチング制御手段と、
     前記各々の制御対象に供給する電力の目標値である目標電力値を算出する目標電力値算出手段と、
     前記各々の制御対象に供給された電力の値である出力電力値を算出する出力電力値算出手段と、
     前記各々の制御対象毎に、電力が供給されているときに前記出力電力値算出手段により算出された出力電力値から、次の制御サイクルの単位時間中に制御対象に電力を供給した場合の電力値を推定する電力推定手段と、
     前記目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に基づいて、単位時間当りの総ての制御対象に対する供給電力値の上限値を算出する上限値算出手段と、
     前記各々の制御対象毎に、前記目標電力値算出手段により算出された目標電力値の加算と前記出力電力値算出手段により算出された出力電力値の減算を制御サイクル毎に繰り返すことで電力差積算値を算出し、前回の制御サイクルまでの電力差積算値と前記目標電力値算出手段により算出された次の制御サイクルの目標電力値とを加算して、その加算値である最新の中間積算電力値を算出する中間積算電力値算出手段と、
     前記各々の制御対象の中で、前記中間積算電力値算出手段により算出された中間積算電力値が大きい制御対象から順番に、当該制御対象の中間積算電力値が所定の閾値より大きく、かつ、当該制御対象に対する電力の供給を行うとした場合に、前記電力推定手段により推定された当該制御対象の電力値と、前記電力推定手段により推定された電力値であって、次の制御サイクルで電力の供給を行うことを決定している他の制御対象の電力値との総和が前記上限値算出手段により算出された上限値より高くならない電力供給条件を満足すれば、当該制御対象のスイッチング制御手段を入り状態に制御し、前記電力供給条件を満足しなければ、当該制御対象のスイッチング制御手段を切り状態に制御する処理を繰り返し行い、総ての制御対象について次の制御サイクルにおける前記スイッチング制御手段の入切を制御する電力制御手段と
     を備えた電力制御装置。
  2.  前記上限値算出手段は、前記目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に対して所定の補正値を加算することで、供給電力値の上限値を算出することを特徴とする請求項1記載の電力制御装置。
  3.  前記上限値算出手段は、前記目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に対して所定の係数を乗算することで、供給電力値の上限値を算出することを特徴とする請求項1記載の電力制御装置。
  4.  前記上限値算出手段は、前記中間積算電力値算出手段により算出された各々の制御対象の電力差積算値の総和を所定の積分時間で除算し、その除算結果を補正値として、前記目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に加算することで、供給電力値の上限値を算出することを特徴とする請求項1記載の電力制御装置。
  5.  前記上限値算出手段は、前記中間積算電力値算出手段により算出された各々の制御対象の電力差積算値の総和と、前記各々の制御対象における閾値の総和との差分を所定の積分時間で除算し、その除算結果を補正値として、前記目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に加算することで、供給電力値の上限値を算出することを特徴とする請求項1記載の電力制御装置。
  6.  前記上限値算出手段により加算される補正値は、零値から、当該制御対象に供給される電力の最大値に至る範囲内の値であることを特徴とする請求項2記載の電力制御装置。
  7.  前記上限値算出手段は、零値から、当該制御対象に供給される電力の最大値に至る範囲内にある補正値、または、所定の積分時間で除算した除算結果である補正値のいずれか一方を前記目標電力値算出手段により算出された各々の制御対象の目標電力値の総和に加算することで、供給電力値の上限値を算出することを特徴とする請求項4または請求項5記載の電力制御装置。
  8.  複数のスイッチング制御手段が、各々の制御対象に供給する電力の入切を所定の単位時間毎に切り換える複数のスイッチング処理ステップと、
     目標電力値算出手段が、前記各々の制御対象に供給する電力の目標値である目標電力値を算出する目標電力値算出処理ステップと、
     出力電力値算出手段が、前記各々の制御対象に供給された電力の値である出力電力値を算出する出力電力値算出処理ステップと、
     電力推定手段が、前記各々の制御対象毎に、電力が供給されているときに前記出力電力値算出処理ステップで算出された出力電力値から、次の制御サイクルの単位時間中に制御対象に電力を供給した場合の電力値を推定する電力推定処理ステップと、
     上限値算出手段が、前記目標電力値算出処理ステップで算出された各々の制御対象の目標電力値の総和に基づいて、単位時間当りの総ての制御対象に対する供給電力値の上限値を算出する上限値算出処理ステップと、
     中間積算電力値算出手段が、前記各々の制御対象毎に、前記目標電力値算出処理ステップで算出された目標電力値の加算と前記出力電力値算出処理ステップで算出された出力電力値の減算を制御サイクル毎に繰り返すことで電力差積算値を算出し、前回の制御サイクルまでの電力差積算値と前記目標電力値算出処理ステップで算出された次の制御サイクルの目標電力値とを加算して、その加算値である最新の中間積算電力値を算出する中間積算電力値算出処理ステップと、
     電力制御手段が、前記各々の制御対象の中で、前記中間積算電力値算出処理ステップで算出された中間積算電力値が大きい制御対象から順番に、当該制御対象の中間積算電力値が所定の閾値より大きく、かつ、当該制御対象に対する電力の供給を行うとした場合に、前記電力推定処理ステップで推定された当該制御対象の電力値と、前記電力推定処理ステップで推定された電力値であって、次の制御サイクルで電力の供給を行うことを決定している他の制御対象の電力値との総和が前記上限値算出処理ステップで算出された上限値より高くならない電力供給条件を満足すれば、当該制御対象のスイッチング制御手段を入り状態に制御し、前記電力供給条件を満足しなければ、当該制御対象のスイッチング制御手段を切り状態に制御する処理を繰り返し行い、総ての制御対象について次の制御サイクルにおける前記スイッチング制御手段の入切を制御する電力制御処理ステップと
     を備えた電力制御方法。
PCT/JP2012/073440 2012-09-13 2012-09-13 電力制御装置及び電力制御方法 WO2014041653A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12884428.9A EP2897019A4 (en) 2012-09-13 2012-09-13 POWER CONTROL DEVICE AND POWER CONTROL METHOD
US14/421,517 US9523992B2 (en) 2012-09-13 2012-09-13 Power control device and power control method
CN201280075649.9A CN104756031B (zh) 2012-09-13 2012-09-13 功率控制装置及功率控制方法
JP2014535299A JP5975107B2 (ja) 2012-09-13 2012-09-13 電力制御装置及び電力制御方法
PCT/JP2012/073440 WO2014041653A1 (ja) 2012-09-13 2012-09-13 電力制御装置及び電力制御方法
KR1020157004301A KR101728251B1 (ko) 2012-09-13 2012-09-13 전력 제어장치 및 전력 제어방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073440 WO2014041653A1 (ja) 2012-09-13 2012-09-13 電力制御装置及び電力制御方法

Publications (1)

Publication Number Publication Date
WO2014041653A1 true WO2014041653A1 (ja) 2014-03-20

Family

ID=50277807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073440 WO2014041653A1 (ja) 2012-09-13 2012-09-13 電力制御装置及び電力制御方法

Country Status (6)

Country Link
US (1) US9523992B2 (ja)
EP (1) EP2897019A4 (ja)
JP (1) JP5975107B2 (ja)
KR (1) KR101728251B1 (ja)
CN (1) CN104756031B (ja)
WO (1) WO2014041653A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105528011A (zh) * 2016-01-29 2016-04-27 宇龙计算机通信科技(深圳)有限公司 一种电路控制方法及装置
CN114024783A (zh) * 2021-09-29 2022-02-08 深圳市联洲国际技术有限公司 功率校准方法、装置、pse、电子设备以及可读存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150220128A1 (en) * 2014-02-04 2015-08-06 Infineon Technologies Ag Method and Apparatus for Use in a Data Processing System
KR101683515B1 (ko) 2015-05-06 2016-12-07 현대자동차 주식회사 가변 압축비 엔진
CN105759601B (zh) * 2016-02-23 2019-02-15 杭州福斯达深冷装备股份有限公司 基于pid算法及队列模型的顺序控制与调节方法
CN106951022B (zh) * 2017-05-15 2018-10-30 深圳市莱福德光电有限公司 数字电源控制方法及装置
JP7167791B2 (ja) * 2019-03-20 2022-11-09 トヨタ自動車株式会社 需給制御装置
JP7162166B2 (ja) * 2019-06-04 2022-10-28 理化工業株式会社 電力制御装置、電力供給の割付方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322051B2 (ja) 1981-11-30 1991-03-26 Handotai Kenkyu Shinkokai
JP3674951B2 (ja) 2002-11-14 2005-07-27 理化工業株式会社 Ac電力制御装置
JP3754974B2 (ja) 2003-11-14 2006-03-15 キヤノン株式会社 ネットワークプリンタ制御方法、ネットワークプリンタ制御装置及びプログラム
JP4529153B1 (ja) 2009-11-27 2010-08-25 理化工業株式会社 マルチチャンネル電力制御器
JP2010220363A (ja) * 2009-03-16 2010-09-30 Toshiba Corp 小規模電力系統の電源容量推定装置、その電源容量推定方法及び電源容量推定用プログラム
JP2011205731A (ja) 2010-03-24 2011-10-13 Rkc Instrument Inc マルチチャンネル電力制御器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1065453A (en) * 1975-05-30 1979-10-30 Owens-Corning Fiberglas Corporation Method of and apparatus for controlling the distribution of fibers on a receiving surface
DE2607948C3 (de) * 1976-02-27 1979-07-19 Kober Ag, Glarus (Schweiz) Verfahren zur Herstellung eines Fugenrandkörpers für Dehnungsfugen in Verkehrswegen und Mehrfachprofil zur Durchführung des Verfahrens
US4324987A (en) * 1978-05-26 1982-04-13 Cyborex Laboratories, Inc. System and method for optimizing shed/restore operations for electrical loads
US4283635A (en) * 1979-07-25 1981-08-11 Honeywell Inc. Load demand control system
JP2727319B2 (ja) * 1988-02-05 1998-03-11 富士写真フイルム株式会社 温度制御装置
JP3022051B2 (ja) 1993-04-27 2000-03-15 理化工業株式会社 Ac電力制御装置
US5615105A (en) * 1994-07-07 1997-03-25 Leach Corporation Multichannel power distribution system
JP3069851B2 (ja) * 1998-10-06 2000-07-24 政治 宮本 電力デマンド制御装置
CN101442287B (zh) * 2008-12-25 2011-04-06 中国北车集团大连机车车辆有限公司 带限压限流保护的内燃机车恒功率控制方法
JP5652478B2 (ja) 2010-12-24 2015-01-14 日本電気株式会社 電力制御システムとその電力制御方法、およびパワーゲートウェイ装置とその電力制御方法
JP5478536B2 (ja) * 2011-02-22 2014-04-23 株式会社京三製作所 三相コンバータの力率制御方法、三相コンバータの無効電力制御方法、三相コンバータの制御装置
US8915250B2 (en) 2011-05-11 2014-12-23 Carefusion 207, Inc. Tube placement in non-invasive ventilation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322051B2 (ja) 1981-11-30 1991-03-26 Handotai Kenkyu Shinkokai
JP3674951B2 (ja) 2002-11-14 2005-07-27 理化工業株式会社 Ac電力制御装置
JP3754974B2 (ja) 2003-11-14 2006-03-15 キヤノン株式会社 ネットワークプリンタ制御方法、ネットワークプリンタ制御装置及びプログラム
JP2010220363A (ja) * 2009-03-16 2010-09-30 Toshiba Corp 小規模電力系統の電源容量推定装置、その電源容量推定方法及び電源容量推定用プログラム
JP4529153B1 (ja) 2009-11-27 2010-08-25 理化工業株式会社 マルチチャンネル電力制御器
JP2011205731A (ja) 2010-03-24 2011-10-13 Rkc Instrument Inc マルチチャンネル電力制御器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2897019A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105528011A (zh) * 2016-01-29 2016-04-27 宇龙计算机通信科技(深圳)有限公司 一种电路控制方法及装置
CN114024783A (zh) * 2021-09-29 2022-02-08 深圳市联洲国际技术有限公司 功率校准方法、装置、pse、电子设备以及可读存储介质
CN114024783B (zh) * 2021-09-29 2023-10-17 成都市联洲国际技术有限公司 功率校准方法、装置、pse、电子设备以及可读存储介质

Also Published As

Publication number Publication date
KR20150063362A (ko) 2015-06-09
EP2897019A4 (en) 2016-05-11
CN104756031B (zh) 2016-07-13
JP5975107B2 (ja) 2016-08-23
CN104756031A (zh) 2015-07-01
US20150212533A1 (en) 2015-07-30
KR101728251B1 (ko) 2017-04-18
EP2897019A1 (en) 2015-07-22
JPWO2014041653A1 (ja) 2016-08-12
US9523992B2 (en) 2016-12-20

Similar Documents

Publication Publication Date Title
JP5975107B2 (ja) 電力制御装置及び電力制御方法
CN103329418B (zh) 用于控制开关模式电源的具有瞬态检测器的数字控制单元
CN112305907B (zh) 自适应pid温度控制方法、装置及设备
WO2010149205A1 (en) Intermediate bus architecture power supply controller
JP6041075B2 (ja) 電動機制御装置
CN105745831A (zh) 快速模型预测脉冲模式控制
CN108352828B (zh) 用于电力转换器中的电压回转的数字预补偿
JP4407616B2 (ja) 電力制御方法、電力制御装置および温度調節器
CN108566089A (zh) 降压型dc-dc变换器系统的输出反馈电压控制方法
EP3323195A1 (en) Switched mode power supply compensation loop
RU2474858C1 (ru) Комбинированная адаптивная система управления для нестационарных динамических объектов с наблюдателем
JP5581528B1 (ja) 制御パラメータ決定装置、方法、及びプログラム、並びに、制御器及び最適化制御システム
CN102946189B (zh) 一种数字电源控制系统的控制方法
JP5930039B2 (ja) 電力制御装置及び電力制御方法
JP5716961B2 (ja) 無効電力補償装置の制御装置
RU2429516C1 (ru) Адаптивная система управления для динамических объектов с периодическими коэффициентами и наблюдателем
JP5023821B2 (ja) 電力制御方法および電力制御装置
CN109687711B (zh) 多单元升压网络变换器的工作模式估算方法、装置和介质
JP2016158339A (ja) 直流電源系統の特性安定化装置
JP5125190B2 (ja) 位相制御方法および位相制御装置
WO2015056293A1 (ja) 電力制御装置及び電力制御方法
JP4192444B2 (ja) 電力制御方法および電力制御装置
KR101883285B1 (ko) n차 선형 시스템 군집의 협조 추종을 위한 분산형 제어기 및 그 제어 방법
WO2017036131A1 (zh) 一种实现idc功耗控制的方法及装置
JP6504268B2 (ja) 交流電力調整器及び交流電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535299

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14421517

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157004301

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE