WO2014040657A1 - A filter frame - Google Patents
A filter frame Download PDFInfo
- Publication number
- WO2014040657A1 WO2014040657A1 PCT/EP2012/074545 EP2012074545W WO2014040657A1 WO 2014040657 A1 WO2014040657 A1 WO 2014040657A1 EP 2012074545 W EP2012074545 W EP 2012074545W WO 2014040657 A1 WO2014040657 A1 WO 2014040657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- gable
- filter frame
- front plate
- edge portion
- Prior art date
Links
- 230000000295 complement effect Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 6
- 238000007789 sealing Methods 0.000 description 20
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- DOSMHBDKKKMIEF-UHFFFAOYSA-N 2-[3-(diethylamino)-6-diethylazaniumylidenexanthen-9-yl]-5-[3-[3-[4-(1-methylindol-3-yl)-2,5-dioxopyrrol-3-yl]indol-1-yl]propylsulfamoyl]benzenesulfonate Chemical compound C1=CC(=[N+](CC)CC)C=C2OC3=CC(N(CC)CC)=CC=C3C(C=3C(=CC(=CC=3)S(=O)(=O)NCCCN3C4=CC=CC=C4C(C=4C(NC(=O)C=4C=4C5=CC=CC=C5N(C)C=4)=O)=C3)S([O-])(=O)=O)=C21 DOSMHBDKKKMIEF-UHFFFAOYSA-N 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/10—Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
- B01D46/12—Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
- B01D46/121—V-type arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0002—Casings; Housings; Frame constructions
- B01D46/0005—Mounting of filtering elements within casings, housings or frames
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0002—Casings; Housings; Frame constructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0039—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
- B01D46/0047—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for discharging the filtered gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/52—Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
- B01D46/521—Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/56—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/56—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
- B01D46/62—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/56—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
- B01D46/62—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
- B01D46/645—Protecting screens at filter inlet or outlet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2201/00—Details relating to filtering apparatus
- B01D2201/04—Supports for the filtering elements
- B01D2201/0415—Details of supporting structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2265/00—Casings, housings or mounting for filters specially adapted for separating dispersed particles from gases or vapours
- B01D2265/02—Non-permanent measures for connecting different parts of the filter
- B01D2265/028—Snap, latch or clip connecting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2265/00—Casings, housings or mounting for filters specially adapted for separating dispersed particles from gases or vapours
- B01D2265/06—Details of supporting structures for filtering material, e.g. cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2271/00—Sealings for filters specially adapted for separating dispersed particles from gases or vapours
- B01D2271/02—Gaskets, sealings
- B01D2271/022—Axial sealings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Definitions
- the present invention relates to filter assemblies for removing particles from an air flow, and more particularly to a filter frame for receiving a media pack, a filter assembly comprising such a filter frame, and a method of assembling such a filter frame.
- Filter assemblies comprising media packs disposed in a frame structure are known.
- a media pack is typically formed from a sheet of filter media, e.g. a fiberglass sheet, or a nonwoven polyester sheet or membrane media or combinations thereof or the like, which is pleated to increase the effective filtering area of the filter body, and provided with cover plates.
- the media pack is typically arranged in a frame structure.
- a prior art filter frame for receiving several media packs is shown in US-6955696, which discloses a filter frame comprising two gable plates, which have male connection elements, and two frame beams having female connection elements, which are interconnected with the male connection elements of the gable plates. Thereby a square frame is formed which supports the media packs. In other words, the media packs rest on the frame beams and on support structures of the gable plates. However, that structure requires a high rigidity of the two frame beams and a high stiffness of the media pack due to the small contact area with the frame. It would be desired to be able to mitigate these requirements.
- the object is achieved by a filter frame according to the present invention as defined in claim 1 of the appended claims.
- the object is also achieved by a filter assembly as defined in claim 1 1 and a method of assembling a filter frame as defined in claim 12 of the appended claims.
- a filter frame for receiving a media pack, the filter frame comprising a front plate, and first and second gable plates arranged at opposite ends of the front plate and extending perpendicular or at an angle to the front plate.
- the front plate comprises a groove at each of said ends. A front edge portion of each gable plate has been received in a respective one of the grooves, and each gable plate comprises a retainment member arranged at the front edge portion. The retainment member has been engaged with a complementary retainment member of the front frame.
- the retainment member comprises a snap-lock element.
- the snap-lock element comprises a resilient tongue extending perpendicular or at an angle to a front edge of the gable plate, and having a shoulder; wherein the complementary retainment member comprises a recess; and wherein the shoulder has been received in the recess.
- the resilient tongue is arranged at a side edge of the gable plate, and wherein the recess is arranged at a rim of the front plate.
- the retainment member comprises a protrusion protruding from the edge portion
- the complementary retainment member comprises a notch arranged at a rim of the front plate; and wherein the protrusion has been received in the notch.
- the protrusion-notch pair is simple to manufacture and can be provided with a substantial strength at small dimensions. It should be noted that several protrusions, and complementary notches can be arranged, such as
- the protrusion is wedge-shaped and the notch is V-shaped. Thereby, the protrusion is guided into the notch at assembly.
- each gable plate has at least one V-shaped plate portion extending between the front edge portion and an opposite rear edge portion of the gable plate, with the top of the V facing the front edge portion, said at least one V-shaped portion being defined by a channel arranged to receive a gable of the media pack.
- the filter frame further comprises a rear plate engaged with rear edge portions of the first and second gable plates.
- the rear plate stabilizes the filter frame structure.
- - providing a front plate, which comprises a groove at each one of two opposite ends thereof;
- Fig. 1 a is a schematic exploded view of an embodiment of a filter assembly according to the invention.
- Fig. 1 b is a perspective view of the filter assembly of Fig. 1 a;
- Figs. 2a-2f are schematic views of filter frame parts of the filter assembly.
- Fig. 3 is a schematic cross-section of filter frame parts according to the invention.
- the filter assembly 100 comprises an embodiment of the filter frame 102, and several, in this embodiment six, media packs 104, carried by the filter frame 102, whereby the media packs 104 have been shown separately in figure 1 a for reasons of clarity.
- the media packs 104 can be of any suitable kind, but typically each media pack 104 comprises a sheet of filter media 106, which has been pleated to an accordion shape in order to increase the effective filtering area of the filter body, and backing nets 108 containing the pleated sheet of filter media 106. Backing nets 108 are arranged to let air pass through the filter media 106, or even arranged to guide the passing air in a preferred direction and optimized for low pressure drop thereover.
- the filter frame 102 comprises a front plate 1 10, two gable plates 1 12, and a rear plate 1 14, embodied by three separate plate elements 1 16.
- the front plate 1 10 is rectangular and comprises a peripherally extending rim 1 18, and parallel ribs 120 extending between opposite ends 122, 124 of the front plate 1 10.
- the front plate 1 10 has a groove 126 at each of the ends 122, 124. Each groove 126 extends along a respective portion of the rim 1 18 at an inside thereof, and adjacent thereto.
- the gable plates 1 12 are arranged at the opposite ends 122, 124 of the front plate 1 10. Each gable plate 1 12 has a front edge portion 128, which has been received in the groove 126.
- Each gable plate 1 12 extends perpendicular to the front plate 1 10, and rearwards therefrom.
- the media packs 104 are plate shaped and extend obliquely substantially in the direction of the air flow from the front plate 1 10, although they extend close to perpendicular to the front plate 1 10.
- the media packs 104 are arranged side by side, leaning alternately to one side and to the other side, thereby forming a zigzag structure. More particularly, they are arranged in pairs, each pair forming a V shape, such that the mouth of the V shape faces the front plate 1 10.
- a front edge 132 of each media pack 104 abuts against one of the ribs 120, and apertures 130 between the ribs 120 are aligned with the mouths of the V shapes.
- Each gable plate 1 12 has three V- shaped portions 134 extending between the front edge portion 128 and an opposite rear edge portion 136 of the gable plate 1 12, with the mouth of each V-shaped portion 134 facing the front edge portion 128.
- the V-shaped portions 134 are joined along a minor fraction of their length, extending from the mouth towards the other end, while there are gaps between them along a major part of their length.
- Reinforcing elements 154 may be provided extending between two adjacent V-shaped portions to further increase the structural rigidity of the gable plate 1 12. These reinforcing elements 154 can also serve as grips when handling the gable plates 1 12 or (semi-) assembled filter frame assemblies 100.
- Each V-shaped portion 134 is defined by a channel, having side walls 138. Each V-shaped channel has received gable portions, or side edge portions, 140 of two media packs 104.
- the gable plates 1 12 may have additional or less than three V-shaped prortions, such as one, two, four or more.
- the gable plates 1 12 may not have V-shaped portions at all but may for example be provided in the form of covering having a trapezoid shape or similar without openings between adjacent pairs of media packs.
- Each plate element 1 16 of the rear plate 1 14 covers rear edge portions 142 of two media packs 104 forming a V-shape.
- the plate elements 1 16 each extend between, and are attached to, a respective fraction of the rear edge portion 136 of each gable plate 1 12. Consequently, the front plate 1 10, the gable plates 1 12, and the rear plate 1 14 support each other to form a strong filter frame 102, which carries the media packs 104.
- An important part of the filter frame structure is the engagement between the gable plates 1 12 and the front plate 1 10. As mentioned above, each one of the gable plates 1 12 has been received in a respective groove 126 of the front plate 1 10.
- each gable plate is provided with a retainment member 144, and the front plate 1 10 is provided with a complementary retainment member 146 for each gable plate 1 12.
- the retainment member 144 of each gable plate 1 12 comprises a snap-lock element 148 at either side of the gable 1 12, and more particularly at each end of the front edge portion 128, at a side edge 129, 131 of the gable plate 1 12.
- the snap-lock element 148 comprises a resilient tongue 152, which extends perpendicular or at an angle to a front edge of the gable plate, and which has a shoulder 156.
- the complementary retainment member 146 comprises a recess 158, which is arranged at the rim 1 18 of the front plate 1 10.
- the shoulder 156 has been received in the recess 158.
- the retainment member 144 further comprises three protrusions 160, which protrude from the front edge portion 128 perpendicular to the primary extension of the gable plate 1 12.
- the protrusions 160 are distributed along the length of the front edge portion 128.
- the complementary retainment member 146 further comprises three notches 162, which are arranged at the rim 1 18 of the front plate 1 10, one notch at each respective protrusion.
- the protrusions 160 have been received in the notches 162.
- Each protrusion 160 is wedge-shaped, and each notch 162 is V- shaped.
- the sizes of the protrusions 160 and the notches 162 are such that they are connected to each other in a press fit when the gable plate 1 12 is inserted into engagement with the front plate 1 10.
- the snap-lock elements 148 and the press fit connection between the protrusions 160 and notches 162 ensure a reliable coupling between the gable plates 1 12 and the front plate 1 10 even without the use of any adhesives such that the filter frame can be handled, e.g. lifted and moved around, without the need of any temporary securing means or similar.
- the number of protrusions 160 can range from zero to several, and the number of snap-lock elements 148 can range from zero to several as well. It is desired to have at least one snap-lock element or protrusion, and it is preferred to have two snap in elements with the shown placement and at least one protrusion.
- the gable plates 1 12 each comprises an abutment surface 184 near the front edge portion 128.
- This abutment surface 184 is intended to bear against a filter bank grid 200, made for example from steel beams, when mounted thereto.
- the front plate 1 10 is provided with a sealing surface 186 having a sealing member 188, here in the form of a sealing strip made from polyurethane or similar.
- the sealing surface 186 is flush with the abutment surface 184 when the gable plates 1 12 are mounted to the front plate 1 10 such that both surfaces will bear against the filter bank grid when mounted thereto.
- FIG 3 shows a position where the sealing member 188 barely touches the grid 200. It is also possible, and sometimes preferable, to arrange the sealing surface 186 of the front plate 1 10 forwardly displaced relative the abutment surface 184. If, for example, a thick and/or less compressible sealing member 188 is used, too much load may be transferred to the front plate 1 10 if the sealing surface 186 and abutment surface 184 are arranged flush with each other.
- the sealing surface 186 By arranging the sealing surface 186 somewhat forwardly displaced relative the abutment surface 184, the abutment surface 186 will reach the front surface of grid 200 earlier, thus not requiring excessive compression of the sealing member 188.
- the filter frame assembly is to be fastened by means of clamps or similar that firmly squeeze the filter frame assembly 100 against the filter bank grid 200. When this is done the sealing member 188 will be compressed and the abutment surface 184 of the gable plate will bare against the filter bank grid 200 in a load absorbing manner.
- the abutment surface 184 is here executed in the form of a flange running the whole width of a front part of an outer side of the gable plate 1 12 as well as on the side edges 129, 131 . This ensures uniform load transfer and good sealing properties between sealing surface 186 and the filter bank grid 200.
- Other forms of execution of the flange are of course possible, for example in order to increase structural stability of the flange.
- the filter frame is assembled as follows.
- the front plate 1 10, comprising the grooves 126 at the two opposite ends 122, 124 thereof is provided.
- the first and second gable plates 1 12 are provided and mounted at the front plate 1 10.
- the mounting includes inserting a front edge portion 128 of the gable plate 1 12 into a respective groove 126, and forcing the retainment member 144 into engagement with the
- the filter frame 102 which is ready to receive the media packs 104 has been assembled.
- the next step thus is to mount the media packs 104 including backing nets 108, and then the plate elements 1 16 of the rear plate 1 14 are mounted, wherein they are forced into engagement with the rear edge portions 136 such that snap-lock elements 192 of the gable plates 1 12 snaps into a locking position in the corresponding part in each rear plate 1 16.
- the filter assembly is now ready to be handled and could for example be transported to a different location without the necessity of any temporary securing means or similar.
- an adhesive is used to seal and fixate the filter frame 102.
- the mere presence of adhesive in the spaces between the different constructional details will prevent the snap-lock elements from leaving their locked position, which adds rigidity to the structure even before the adhesive has cured. Obviously, curing will further increase rigidity and stability of the structure by bonding the gable plates 1 12 and the front plate 1 10 together. Since the retainment member 144 will be glued into
- the filter frame assembly is inserted and secured to the filter bank grid 200, typically the filter frame assembly is clamped to the filter bank grid 200 by means of a plastic or metal clamp which is fixed to the filter bank grid by means of a bolt and a fly nut or similar.
- the filter frame assembly can be tightly squeezed between the clamp and the grid 200 without the use of through bolts or similar that would jeopardize tightness of the construction.
- both the abutment surface 184 of the gable plate 1 12 and the sealing surface 186 of the front plate 1 10 are pressed against the filter bank grid 200 such that sealing is assured.
- the forces acting on the filter media 106 due to the air flow there through will be transmitted directly from the gable plates 1 12 to the filter bank grid 200 and no major forces will be transmitted from the gable plates 1 12 to the front plate 1 10 such that the sealing properties between the gable plates 1 12 and the front plate 1 10 can be maintained at all times.
- complimentary retainment member could be altered, e.g. the snap-lock could just as well be arranged on the front edge of the gable plate and the protrusion on the side edge of the gable plate and the corresponding goes for the complimentary parts of the front plate.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Overhead Projectors And Projection Screens (AREA)
- Filtering Materials (AREA)
Abstract
The present invention relates to a filter frame (102) for receiving a media pack (104), the filter frame (102) comprising a front plate (110), and first and second gable plates (112) arranged at opposite ends (122, 124) of the front plate (110). The front plate (110) comprises a groove (126) at each of the ends (122, 124) and a front edge portion (128) of each gable plate (112) is received in a respective one of the grooves (126). Each gable plate (112) comprises a retainment member (144) arranged at the front edge portion (128), which retainment member (144) has been engaged with a complementary retainment member (146) of the front plate (110). The invention also relates to a filter assembly and a method for assembling a filter frame (102).
Description
A FILTER FRAME
FIELD OF THE INVENTION
The present invention relates to filter assemblies for removing particles from an air flow, and more particularly to a filter frame for receiving a media pack, a filter assembly comprising such a filter frame, and a method of assembling such a filter frame.
BACKGROUND OF THE INVENTION
Filter assemblies comprising media packs disposed in a frame structure are known. A media pack is typically formed from a sheet of filter media, e.g. a fiberglass sheet, or a nonwoven polyester sheet or membrane media or combinations thereof or the like, which is pleated to increase the effective filtering area of the filter body, and provided with cover plates. To provide mechanical support and/or to combine a plurality of media packs, the media pack is typically arranged in a frame structure.
A prior art filter frame for receiving several media packs is shown in US-6955696, which discloses a filter frame comprising two gable plates, which have male connection elements, and two frame beams having female connection elements, which are interconnected with the male connection elements of the gable plates. Thereby a square frame is formed which supports the media packs. In other words, the media packs rest on the frame beams and on support structures of the gable plates. However, that structure requires a high rigidity of the two frame beams and a high stiffness of the media pack due to the small contact area with the frame. It would be desired to be able to mitigate these requirements.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a filter frame that eliminates, or at least reduces the drawbacks mentioned above.
The object is achieved by a filter frame according to the present invention as defined in claim 1 of the appended claims. The object is also achieved by a filter assembly as defined in claim 1 1 and a method of assembling a filter frame as defined in claim 12 of the appended claims.
Thus, in accordance with a first aspect of the present invention there is provided a filter frame for receiving a media pack, the filter frame comprising a front plate, and first and second gable plates arranged at opposite ends of the front plate and extending perpendicular or at an angle to the front plate. The front plate comprises a groove at each of said ends. A front edge portion of each gable plate has been received in a respective one of the grooves, and each gable plate comprises a retainment member arranged at the front edge portion. The retainment member has been engaged with a complementary retainment member of the front frame. By providing a full front plate and engage the gable plates with the front plate, a structure being more rigid in itself is obtained.
In accordance with an embodiment of the filter frame, the retainment member comprises a snap-lock element. Thereby a fast and precise assembly is obtained.
In accordance with an embodiment of the filter frame, the snap-lock element comprises a resilient tongue extending perpendicular or at an angle to a front edge of the gable plate, and having a shoulder; wherein the complementary retainment member comprises a recess; and wherein the shoulder has been received in the recess.
In accordance with an embodiment of the filter frame, the resilient tongue is arranged at a side edge of the gable plate, and wherein the recess is arranged at a rim of the front plate. Thereby the manufacturing of the gable plates including its snap-lock element is facilitated. It should be noted that more than one resilient tongue can be arranged, such as a second tongue at the opposite side edge of the gable plate.
In accordance with an embodiment of the filter frame, the retainment member comprises a protrusion protruding from the edge portion
perpendicular to the primary extension of the gable plate; wherein the complementary retainment member comprises a notch arranged at a rim of the front plate; and wherein the protrusion has been received in the notch. The protrusion-notch pair is simple to manufacture and can be provided with a substantial strength at small dimensions. It should be noted that several protrusions, and complementary notches can be arranged, such as
distributed along the length of the front edge portion.
In accordance with an embodiment of the filter frame, the protrusion is wedge-shaped and the notch is V-shaped. Thereby, the protrusion is guided into the notch at assembly.
In accordance with an embodiment of the filter frame, each gable plate has at least one V-shaped plate portion extending between the front edge portion and an opposite rear edge portion of the gable plate, with the top of the V facing the front edge portion, said at least one V-shaped portion being defined by a channel arranged to receive a gable of the media pack.
In accordance with an embodiment of the filter frame, it further comprises a rear plate engaged with rear edge portions of the first and second gable plates. The rear plate stabilizes the filter frame structure.
In accordance with a second aspect of the present invention there is provided a method of assembling a filter frame comprising:
- providing a front plate, which comprises a groove at each one of two opposite ends thereof;
- providing first and second gable plates, and mounting them at the front plate, including for each gable plate; inserting a front edge portion of the gable plate into a respective groove, and forcing a retainment member provided at the front edge portion into engagement with a corresponding retainment member of the front plate.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described in more detail and with reference to the appended drawings in which:
Fig. 1 a is a schematic exploded view of an embodiment of a filter assembly according to the invention;
Fig. 1 b is a perspective view of the filter assembly of Fig. 1 a;
Figs. 2a-2f are schematic views of filter frame parts of the filter assembly.
Fig. 3 is a schematic cross-section of filter frame parts according to the invention.
DESCRIPTION OF PREFERRED EMBODIMENTS
According to an embodiment of the filter assembly 100, it comprises an embodiment of the filter frame 102, and several, in this embodiment six, media packs 104, carried by the filter frame 102, whereby the media packs 104 have been shown separately in figure 1 a for reasons of clarity. The media packs 104 can be of any suitable kind, but typically each media pack 104 comprises a sheet of filter media 106, which has been pleated to an accordion shape in order to increase the effective filtering area of the filter body, and backing nets 108 containing the pleated sheet of filter media 106. Backing nets 108 are arranged to let air pass through the filter media 106, or even arranged to guide the passing air in a preferred direction and optimized for low pressure drop thereover. The filter frame 102 comprises a front plate 1 10, two gable plates 1 12, and a rear plate 1 14, embodied by three separate plate elements 1 16. The front plate 1 10 is rectangular and comprises a peripherally extending rim 1 18, and parallel ribs 120 extending between opposite ends 122, 124 of the front plate 1 10. The front plate 1 10 has a groove 126 at each of the ends 122, 124. Each groove 126 extends along a respective portion of the rim 1 18 at an inside thereof, and adjacent thereto. The gable plates 1 12 are arranged at the opposite ends 122, 124 of the front plate 1 10. Each gable plate 1 12 has a front edge portion 128, which has been received in the groove 126. Each
gable plate 1 12 extends perpendicular to the front plate 1 10, and rearwards therefrom. The media packs 104 are plate shaped and extend obliquely substantially in the direction of the air flow from the front plate 1 10, although they extend close to perpendicular to the front plate 1 10. The media packs 104 are arranged side by side, leaning alternately to one side and to the other side, thereby forming a zigzag structure. More particularly, they are arranged in pairs, each pair forming a V shape, such that the mouth of the V shape faces the front plate 1 10. A front edge 132 of each media pack 104 abuts against one of the ribs 120, and apertures 130 between the ribs 120 are aligned with the mouths of the V shapes. Each gable plate 1 12 has three V- shaped portions 134 extending between the front edge portion 128 and an opposite rear edge portion 136 of the gable plate 1 12, with the mouth of each V-shaped portion 134 facing the front edge portion 128. The V-shaped portions 134 are joined along a minor fraction of their length, extending from the mouth towards the other end, while there are gaps between them along a major part of their length. Reinforcing elements 154 may be provided extending between two adjacent V-shaped portions to further increase the structural rigidity of the gable plate 1 12. These reinforcing elements 154 can also serve as grips when handling the gable plates 1 12 or (semi-) assembled filter frame assemblies 100. Each V-shaped portion 134 is defined by a channel, having side walls 138. Each V-shaped channel has received gable portions, or side edge portions, 140 of two media packs 104. Of course, it is also possible within the scope of the appended claims for the gable plates 1 12 to have additional or less than three V-shaped prortions, such as one, two, four or more. Also, the gable plates 1 12 may not have V-shaped portions at all but may for example be provided in the form of covering having a trapezoid shape or similar without openings between adjacent pairs of media packs. Each plate element 1 16 of the rear plate 1 14 covers rear edge portions 142 of two media packs 104 forming a V-shape. The plate elements 1 16 each extend between, and are attached to, a respective fraction of the rear edge portion 136 of each gable plate 1 12. Consequently, the front plate 1 10, the gable plates 1 12, and the rear plate 1 14 support each other to form a strong filter frame 102, which carries the media packs 104.
An important part of the filter frame structure is the engagement between the gable plates 1 12 and the front plate 1 10. As mentioned above, each one of the gable plates 1 12 has been received in a respective groove 126 of the front plate 1 10. In order to secure a proper engagement between the front plate 1 10 and the gable plates 1 12, each gable plate is provided with a retainment member 144, and the front plate 1 10 is provided with a complementary retainment member 146 for each gable plate 1 12. The retainment member 144 of each gable plate 1 12 comprises a snap-lock element 148 at either side of the gable 1 12, and more particularly at each end of the front edge portion 128, at a side edge 129, 131 of the gable plate 1 12. The snap-lock element 148 comprises a resilient tongue 152, which extends perpendicular or at an angle to a front edge of the gable plate, and which has a shoulder 156. The complementary retainment member 146 comprises a recess 158, which is arranged at the rim 1 18 of the front plate 1 10. The shoulder 156 has been received in the recess 158. Thereby the gable plate 1 12 is in fixed engagement with the front plate 1 10. However, in order to further enhance the stability of the engagement, the retainment member 144 further comprises three protrusions 160, which protrude from the front edge portion 128 perpendicular to the primary extension of the gable plate 1 12. The protrusions 160 are distributed along the length of the front edge portion 128. The complementary retainment member 146 further comprises three notches 162, which are arranged at the rim 1 18 of the front plate 1 10, one notch at each respective protrusion. The protrusions 160 have been received in the notches 162. Each protrusion 160 is wedge-shaped, and each notch 162 is V- shaped. The sizes of the protrusions 160 and the notches 162 are such that they are connected to each other in a press fit when the gable plate 1 12 is inserted into engagement with the front plate 1 10. The snap-lock elements 148 and the press fit connection between the protrusions 160 and notches 162 ensure a reliable coupling between the gable plates 1 12 and the front plate 1 10 even without the use of any adhesives such that the filter frame can be handled, e.g. lifted and moved around, without the need of any temporary securing means or similar. It should be noted that as regards the retainment member 144, the number of protrusions 160 can range from zero to several,
and the number of snap-lock elements 148 can range from zero to several as well. It is desired to have at least one snap-lock element or protrusion, and it is preferred to have two snap in elements with the shown placement and at least one protrusion.
In figure 3 it is shown that the gable plates 1 12 each comprises an abutment surface 184 near the front edge portion 128. This abutment surface 184 is intended to bear against a filter bank grid 200, made for example from steel beams, when mounted thereto. The front plate 1 10 is provided with a sealing surface 186 having a sealing member 188, here in the form of a sealing strip made from polyurethane or similar. The sealing surface 186 is flush with the abutment surface 184 when the gable plates 1 12 are mounted to the front plate 1 10 such that both surfaces will bear against the filter bank grid when mounted thereto. It should be noted that in figure 3, for reasons of clarity, the abutment surface 184 of the gable plate 1 12 and sealing surface 186 of the front plate 1 10 are not yet in contact with the filter bank grid 200. Instead, figure 3 shows a position where the sealing member 188 barely touches the grid 200. It is also possible, and sometimes preferable, to arrange the sealing surface 186 of the front plate 1 10 forwardly displaced relative the abutment surface 184. If, for example, a thick and/or less compressible sealing member 188 is used, too much load may be transferred to the front plate 1 10 if the sealing surface 186 and abutment surface 184 are arranged flush with each other. By arranging the sealing surface 186 somewhat forwardly displaced relative the abutment surface 184, the abutment surface 186 will reach the front surface of grid 200 earlier, thus not requiring excessive compression of the sealing member 188. As will be described below, the filter frame assembly is to be fastened by means of clamps or similar that firmly squeeze the filter frame assembly 100 against the filter bank grid 200. When this is done the sealing member 188 will be compressed and the abutment surface 184 of the gable plate will bare against the filter bank grid 200 in a load absorbing manner. This results in that the forces originating from the air flowing through the filter media will be transmitted directly from the media pack 104 to the gable plates 1 12 and thereafter to the filter bank
grid and only a minor part of these forces, if any at all, will be transmitted to the filter bank grid by the front plate 1 10. This is favorable since the connection and sealing between the front plate 1 10 and gable plates 1 12 will not be exposed to any substantial stress, thereby avoiding air leakage between them. The abutment surface 184 is here executed in the form of a flange running the whole width of a front part of an outer side of the gable plate 1 12 as well as on the side edges 129, 131 . This ensures uniform load transfer and good sealing properties between sealing surface 186 and the filter bank grid 200. Other forms of execution of the flange are of course possible, for example in order to increase structural stability of the flange.
The filter frame is assembled as follows. The front plate 1 10, comprising the grooves 126 at the two opposite ends 122, 124 thereof is provided. The first and second gable plates 1 12 are provided and mounted at the front plate 1 10. For each gable plate 1 12 the mounting includes inserting a front edge portion 128 of the gable plate 1 12 into a respective groove 126, and forcing the retainment member 144 into engagement with the
corresponding retainment member 146 of the front plate 1 10. Thereby a part of the filter frame 102 which is ready to receive the media packs 104 has been assembled. In order to complete the assembling process to a complete filter assembly 100, the next step thus is to mount the media packs 104 including backing nets 108, and then the plate elements 1 16 of the rear plate 1 14 are mounted, wherein they are forced into engagement with the rear edge portions 136 such that snap-lock elements 192 of the gable plates 1 12 snaps into a locking position in the corresponding part in each rear plate 1 16. As mentioned earlier, the filter assembly is now ready to be handled and could for example be transported to a different location without the necessity of any temporary securing means or similar. And then, in a last step of assembling the filter frame, an adhesive is used to seal and fixate the filter frame 102. The mere presence of adhesive in the spaces between the different constructional details will prevent the snap-lock elements from leaving their locked position, which adds rigidity to the structure even before the adhesive has cured. Obviously, curing will further increase rigidity and
stability of the structure by bonding the gable plates 1 12 and the front plate 1 10 together. Since the retainment member 144 will be glued into
engagement with the corresponding retainment member 146 the snap-lock connection and the press fit connection respectively will become even stronger. Other modes of mounting are obviously also possible, such as intermediate supply of adhesive.
Thereafter, the filter frame assembly is inserted and secured to the filter bank grid 200, typically the filter frame assembly is clamped to the filter bank grid 200 by means of a plastic or metal clamp which is fixed to the filter bank grid by means of a bolt and a fly nut or similar. Thereby, the filter frame assembly can be tightly squeezed between the clamp and the grid 200 without the use of through bolts or similar that would jeopardize tightness of the construction. When doing so, both the abutment surface 184 of the gable plate 1 12 and the sealing surface 186 of the front plate 1 10 are pressed against the filter bank grid 200 such that sealing is assured. When in use, the forces acting on the filter media 106 due to the air flow there through will be transmitted directly from the gable plates 1 12 to the filter bank grid 200 and no major forces will be transmitted from the gable plates 1 12 to the front plate 1 10 such that the sealing properties between the gable plates 1 12 and the front plate 1 10 can be maintained at all times.
Finally, it is realized that the use of structure of the present invention with retainment members 144, 146 is a more user-oriented solution than known prior art constructions since it allows for a user to handle the frame assembly without the need of any temporary securing means or similar before the adhesive has been added and allowed to cure. Further, the provision of an abutment surface on the gable plate and a sealing surface on the front plate provides a construction with increased load bearing capacity while at same time improving sealing properties of the filter frame assembly. It should also be noted that the positions of the retainment member and the
complimentary retainment member could be altered, e.g. the snap-lock could just as well be arranged on the front edge of the gable plate and the
protrusion on the side edge of the gable plate and the corresponding goes for the complimentary parts of the front plate.
Claims
A filter frame (102) for receiving a media pack (104), the filter frame (102) comprising a front plate (1 10), and first and second gable plates (1 12) arranged at opposite ends (122, 124) of the front plate (1 10) and primarily extending perpendicular to the front plate (1 10),
wherein the front plate (1 10) comprises a groove (126) at each of said ends (122, 124), wherein a front edge portion (128) of each gable plate (1 12) has been received in a respective one of the grooves (126), and wherein each gable plate (1 12) comprises a retainment member (144) arranged at the front edge portion (128), which retainment member (144) has been engaged with a complementary retainment member (146) of the front plate (1 10).
The filter frame (102) according to claim 1 , wherein the retainment member (144) comprises a snap-lock element (148).
The filter frame (102) according to claim 2, wherein the snap-lock element (148) comprises a resilient tongue (152) extending
perpendicular to a front edge (128) of the gable plate (1 12), and having a shoulder (156); wherein the complementary retainment member (146) comprises a recess (158); and wherein the shoulder (156) has been received in the recess (158).
The filter frame (102) according to claim 3, wherein the resilient tongue (152) is arranged at a side edge (129, 131 ) of the gable plate (1 12), and wherein the recess (158) is arranged at a rim (1 18) of the front plate (1 10).
The filter frame (102) according to any one of the preceding claims, wherein the retainment member (144) comprises a protrusion (160) protruding from the front edge portion (128) perpendicular to the primary extension of the gable plate (1 12); wherein the complementary retainment member (146) comprises a notch (162) arranged at a rim (1 18) of the front plate (1 10); and wherein the protrusion (160) has been received in the notch (162).
6. The filter frame (102) according to claim 5, wherein the protrusion (160) is wedge-shaped and the notch (162) is V-shaped.
7. The filter frame (102) according to any one of the preceding claims, wherein each gable plate (1 12) has at least one V-shaped plate portion (134) extending between the front edge portion (128) and an opposite rear edge portion (136) of the gable plate (1 12), with the mouth of the V-shaped portion (134) facing the front edge portion (128), said at least one V-shaped portion (134) being defined by a channel arranged to receive a gable (140) of the media pack (104).
8. The filter frame (102) according to any one of the preceding claims, further comprising a rear plate (1 14) engaged with rear edge portions (136) of the first and second gable plates (1 12).
9. The filter frame (102) according to claim 8, wherein the rear plate (1 14) is engaged to the gable plate (1 12) by means of a snap lock element (192).
10. The filter frame (102) according to claim 9, wherein the snap lock
element (192) comprises a resilient tongue provided on the gable plate (1 12) and a recess provided at said rear plate (1 14) and wherein the resilient tongue extend perpendicular to said rear edge of the gable plate, and having a shoulder; and wherein the shoulder of the resilient tongue has been received in the recess.
1 1 .The filter frame (102) according to claim 9, wherein the snap lock
element (192) comprises a protrusion provided on the gable plate and extending perpendicular to said rear edge of the gable plate (1 12) and a recess provided at said rear plate (1 14) and wherein the recess is resilient such that the protrusion of the snap-lock element can be introduced into and received within the recess in locking position.
12. A filter assembly comprising a filter frame (102) according to any one of the preceding claims, and a media pack (104) arranged in the filter frame (102).
13. A method of assembling a filter frame (102) comprising:
- providing a front plate (1 10), which comprises a groove (126) at each one of two opposite ends (122, 124) thereof;
- providing first and second gable plates (1 12), and mounting them at the front plate (1 10), including for each gable plate (1 12); inserting a front edge portion (128) of the gable plate (1 12) into a respective groove (126), and forcing a retainment member (144) provided at the front edge portion (128) into engagement with a corresponding retainment member (146) of the front plate (1 10).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/427,605 US10369507B2 (en) | 2012-09-12 | 2012-12-05 | Filter frame |
EP12805647.0A EP2895253B1 (en) | 2012-09-12 | 2012-12-05 | A filter frame |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPPCT/EP2012/067746 | 2012-09-12 | ||
PCT/EP2012/067746 WO2014040615A1 (en) | 2012-09-12 | 2012-09-12 | Filter assembly and filter assembly manufacturing method |
EPPCT/EP2012/068707 | 2012-09-21 | ||
PCT/EP2012/068707 WO2014044324A1 (en) | 2012-09-21 | 2012-09-21 | Backing net structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014040657A1 true WO2014040657A1 (en) | 2014-03-20 |
Family
ID=47278876
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/074548 WO2014040659A1 (en) | 2012-09-12 | 2012-12-05 | A filter frame |
PCT/EP2012/074546 WO2014040658A1 (en) | 2012-09-12 | 2012-12-05 | Backing net structure |
PCT/EP2012/074545 WO2014040657A1 (en) | 2012-09-12 | 2012-12-05 | A filter frame |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/074548 WO2014040659A1 (en) | 2012-09-12 | 2012-12-05 | A filter frame |
PCT/EP2012/074546 WO2014040658A1 (en) | 2012-09-12 | 2012-12-05 | Backing net structure |
Country Status (5)
Country | Link |
---|---|
US (3) | US10071331B2 (en) |
CN (1) | CN104755150B (en) |
BR (1) | BR112015005591B8 (en) |
IN (1) | IN2015DN02490A (en) |
WO (3) | WO2014040659A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016045731A1 (en) * | 2014-09-25 | 2016-03-31 | Camfil Ab | V-type filter frame |
WO2016170461A1 (en) * | 2015-04-20 | 2016-10-27 | Gvs S.P.A. | Fully demountable pocket filter with rigid filter panels |
US10507420B2 (en) | 2014-09-25 | 2019-12-17 | Camfil Ab | V-type filter frame |
WO2022109017A1 (en) * | 2020-11-20 | 2022-05-27 | Baldwin Filters, Inc. | Filter with shield features |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014040659A1 (en) * | 2012-09-12 | 2014-03-20 | Camfil Ab | A filter frame |
US10092870B2 (en) * | 2015-05-22 | 2018-10-09 | Trane International Inc. | Filter assembly |
BR112018000732B1 (en) * | 2015-07-15 | 2022-09-20 | Baldwin Filters, Inc. | FILTER ELEMENT AND FRAME TO SUPPORT THE FIRST AND SECOND FILTER HALF PANELS |
US20210069629A1 (en) * | 2015-07-15 | 2021-03-11 | Baldwin Filters, Inc. | Filter with shield features |
DE102015112113A1 (en) * | 2015-07-24 | 2017-01-26 | Dürr Systems Ag | Filter structure body and filter module for separating impurities from a raw gas stream |
JP6314118B2 (en) * | 2015-09-30 | 2018-04-18 | 本田技研工業株式会社 | Air cleaner device |
JP6674025B2 (en) | 2015-11-13 | 2020-04-01 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated | Support member for filter pleated media |
JP2019528166A (en) * | 2016-08-29 | 2019-10-10 | イー・エム・デイー・ミリポア・コーポレイシヨン | Fixed rigid wall device for compressed pleated configuration filters |
USD864370S1 (en) * | 2017-05-29 | 2019-10-22 | Camfil Ab | Air filter |
USD864369S1 (en) * | 2017-05-29 | 2019-10-22 | Camfil Ab | Air filter |
CN107198922A (en) * | 2017-06-07 | 2017-09-26 | 粟越 | A kind of airhandling equipment screen pack |
KR20190029881A (en) * | 2017-09-13 | 2019-03-21 | 삼성전자주식회사 | Filter assembly and air cleaner having the same |
CA3078556A1 (en) * | 2017-10-06 | 2019-04-11 | Candu Energy Inc. | Method and apparatus for filtering fluid in nuclear power generation |
CN109806687A (en) * | 2019-01-25 | 2019-05-28 | 惠州德赛信息科技有限公司 | Regional atmospheric purification system |
CN112957835B (en) * | 2021-03-22 | 2022-04-01 | 美埃(中国)环境科技股份有限公司 | But filter core substitution arc V type filter |
DE102022117650A1 (en) * | 2022-07-14 | 2024-01-25 | Carl Freudenberg Kg | Filter with filter media packages arranged in a V-shape and a four-element frame |
WO2024056222A1 (en) * | 2022-09-16 | 2024-03-21 | Smits Emmen Vastgoed B.V. | Housing for a pleated filter and method for manufacturing thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3494113A (en) * | 1968-05-22 | 1970-02-10 | Microtron Corp | Air filter assembly and sub-assemblies |
DE2739815A1 (en) * | 1977-09-03 | 1978-09-28 | Ceag Filter Entstaubung | Air filter cell - with frame locating trapezoidal walls and free ends of pleated V=shaped filter medium |
WO2001097946A1 (en) * | 2000-06-21 | 2001-12-27 | Freudenberg Nonwovens Limited Partnership | Air filtration system with recessed filter and edge banding |
EP1582248A1 (en) * | 2004-03-30 | 2005-10-05 | Nichias Corporation | Adsorption filter and manufacturing method thereof |
US6955696B1 (en) | 2003-07-31 | 2005-10-18 | Filtration Group, Inc. | Filter frame and assembly |
US20090193773A1 (en) * | 2008-01-31 | 2009-08-06 | Anders Sundvik | High flow V-bank filter |
WO2010151580A1 (en) * | 2009-06-24 | 2010-12-29 | Donaldson Company, Inc. | Filter arrangement and methods |
US20120011817A1 (en) * | 2010-07-19 | 2012-01-19 | Fais Inc. | Atmospheric air filtration unit, air pre-filtration unit, and associated air filtration system for removeable attachment thereof |
Family Cites Families (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2197120A (en) * | 1938-03-21 | 1940-04-16 | Walter D Mann | Filter |
US2602548A (en) | 1945-09-13 | 1952-07-08 | Edgar J Griffiths | Unit type filter |
US2808237A (en) | 1953-02-16 | 1957-10-01 | Kenneth E Fosnes | Wall mounted air circulating heat exchangers |
US2857017A (en) | 1955-11-14 | 1958-10-21 | American Air Filter Co | Corrugated web filter |
US2965933A (en) * | 1956-12-06 | 1960-12-27 | Bendix Corp | Method of molding endcaps on filter elements |
US3470680A (en) * | 1966-06-10 | 1969-10-07 | Bahnson Co | Air filter |
US4364751A (en) | 1980-10-10 | 1982-12-21 | Donaldson Company, Inc. | Self-cleaning pulsed air cleaner |
DE3150392A1 (en) | 1981-12-16 | 1983-06-23 | Delbag-Luftfilter Gmbh, 1000 Berlin | COMPACT UNIVERSAL LARGE AREA FILTER SYSTEM ACCORDING TO THE MODULE-BASED PRINCIPLE FOR AIR PURIFICATION |
US4732675A (en) | 1983-01-10 | 1988-03-22 | Mcneilab, Inc. | Density gradient filtration media |
US4483769A (en) * | 1983-01-13 | 1984-11-20 | Aquaria, Inc. | Filter cartridge |
US5240487A (en) | 1992-10-14 | 1993-08-31 | Metro-Pacific Holdings (Canada) Inc. | Warm air register filter and scent dispenser |
JP3284652B2 (en) | 1993-03-11 | 2002-05-20 | 松下電器産業株式会社 | air purifier |
US5487767A (en) | 1993-09-30 | 1996-01-30 | Dana Corporation | Radially sealed air filters |
US5584988A (en) | 1993-11-11 | 1996-12-17 | Nissan Motor Co., Ltd. | Filter for in-tank fuel pump |
US5525145A (en) * | 1993-12-17 | 1996-06-11 | Hodge; Joseph | Filtering apparatus for a forced air duct grill |
US5618419A (en) | 1994-05-24 | 1997-04-08 | Aquaria, Inc. | Filter cartridge with back structure defining a weir |
US5512074A (en) * | 1994-09-19 | 1996-04-30 | Farr Company | Air filter assembly |
US5597392A (en) * | 1994-12-20 | 1997-01-28 | Hawkins & Loridas, Inc. | Register filter |
FR2774925B3 (en) | 1998-02-17 | 2000-04-14 | Filtrauto | FILTRATION CARTRIDGE, ESPECIALLY FOR AN INTERNAL COMBUSTION ENGINE |
US6110260A (en) * | 1998-07-14 | 2000-08-29 | 3M Innovative Properties Company | Filter having a change indicator |
US6279570B1 (en) | 1999-03-02 | 2001-08-28 | 3M Innovative Properties Company | Filter support, assembly and system |
US6485538B1 (en) | 1999-03-31 | 2002-11-26 | Yugen Caisha Infinity Kenkyusho | Air-conditioning air filter |
US6248155B1 (en) | 1999-08-13 | 2001-06-19 | Bemis Manufacturing Company | Combination humidifier and air purifier |
US6294004B1 (en) * | 1999-12-21 | 2001-09-25 | Engineering Dynamics Ltd. | Structures for electrostatic V-bank air filters |
DE20002124U1 (en) * | 2000-02-07 | 2000-04-13 | Otto Pfannenberg Elektro-Spezialgerätebau GmbH, 21035 Hamburg | Air passage device |
GB2364256B (en) | 2000-05-16 | 2003-06-25 | Walker Filtration Ltd | Filter assembly |
FR2822393B1 (en) * | 2001-03-23 | 2003-05-09 | Fleetguard | CYLINDER ELEMENT WITH INCLINED FINS FOR FILTER ELEMENT AND CORRESPONDING FILTER ASSEMBLY |
GB0119523D0 (en) | 2001-08-10 | 2001-10-03 | Ever 1529 Ltd | Screen system |
US6692637B2 (en) | 2001-11-07 | 2004-02-17 | Tetra Holding (Us), Inc. | Dual density filter cartridge |
US6656243B2 (en) | 2002-02-06 | 2003-12-02 | Joseph Hodge | Filtered air vent |
US6955702B2 (en) | 2002-06-14 | 2005-10-18 | 3M Innovative Properties Company | Filter frame |
US7156898B2 (en) | 2002-07-12 | 2007-01-02 | Jaisinghani Rajan A | Low pressure drop deep electrically enhanced filter |
WO2004009216A1 (en) | 2002-07-18 | 2004-01-29 | Freudenberg Nonwovens Limited Partnership | Filter pack having nonwoven filter media and nonwoven edge banding frame |
US7048035B2 (en) * | 2003-01-23 | 2006-05-23 | Delphi Technologies, Inc. | Casing for a heat exchange system |
GB0302927D0 (en) | 2003-02-08 | 2003-03-12 | Axiom Process Ltd | Screen mounting system |
ES2285520T3 (en) | 2003-08-01 | 2007-11-16 | Parker-Hannifin Corporation | FILTER ASSEMBLY WITH VENTILATED FILTER ELEMENT. |
US7255723B2 (en) | 2004-01-09 | 2007-08-14 | Aaf Mcquay, Inc. | Crest supported filter frame assembly and method |
US7425274B1 (en) * | 2004-12-09 | 2008-09-16 | Leon Helfet | Aquarium filter unit |
CA2597294C (en) | 2005-02-22 | 2018-01-23 | Baldwin Filters, Inc. | A filter cartridge having a filter element key |
FR2883487B1 (en) | 2005-03-25 | 2008-02-22 | Fleetguard Snc | HOLLOW ELEMENT FOR THE SUPPORT OF A FILTRATION MEDIUM, INCLUDING MEANS OF SUPPORT IN THE FORM OF SUBSTANTIALLY CONSTANT SLOPE SPIRAL PORTIONS, AND CORRESPONDING FILTER ASSEMBLY |
US7588629B2 (en) * | 2006-01-20 | 2009-09-15 | Aaf-Mcquay Inc. | Filter cassette |
US7938927B2 (en) | 2006-03-01 | 2011-05-10 | Camfil Ab | Method of making a filter assembly |
US7947101B2 (en) | 2006-03-01 | 2011-05-24 | Camfil Ab | Reduced adhesive filter assembly |
WO2008001396A1 (en) * | 2006-06-28 | 2008-01-03 | Gianus S.P.A. | Filter-holder case |
EP1878484B1 (en) | 2006-07-13 | 2009-12-02 | Pfannenberg GmbH | Air passing device |
DE202006010888U1 (en) | 2006-07-13 | 2006-09-28 | Pfannenberg Gmbh | Air passage device e.g. air filter, for use with e.g. housings of computer systems, has top lamella unit or grill lamella unit that is swivellably arranged in fan grill and actuated for opening of design cover |
CN102635421B (en) * | 2006-09-28 | 2014-12-31 | 大协西川株式会社 | Oil strainer |
JP4699340B2 (en) | 2006-11-16 | 2011-06-08 | 日東電工株式会社 | Filter unit |
US7789928B2 (en) * | 2007-03-22 | 2010-09-07 | Randall Stepp | Forced air duct end filter assembly |
JP4834594B2 (en) | 2007-04-02 | 2011-12-14 | ニッタ株式会社 | Air filter |
US8110099B2 (en) | 2007-05-09 | 2012-02-07 | Contech Stormwater Solutions Inc. | Stormwater filter assembly |
JP5106999B2 (en) | 2007-11-16 | 2012-12-26 | 日東電工株式会社 | Filter unit panel |
JP2009154150A (en) | 2007-12-06 | 2009-07-16 | Nitto Denko Corp | Air filter |
US8142537B2 (en) | 2009-03-17 | 2012-03-27 | Mann + Hummel Gmbh | Support grid and alignment appartus for a filter element and housing |
CN201461157U (en) | 2009-05-31 | 2010-05-12 | 重庆宗申技术开发研究有限公司 | Filter member structure of air filter of motorcycle |
RU2537617C2 (en) * | 2009-06-12 | 2015-01-10 | Кларкор Эр Филтрейшн Продактс, Инк. | Air cooling system with built-in no-diaphragm filter and/or solid filter frame |
US8231700B2 (en) | 2009-06-25 | 2012-07-31 | 3M Innovative Properties Company | Pleated filter with tridirectional scrim |
US8366922B2 (en) * | 2009-09-15 | 2013-02-05 | Watkins Manufacturing Corporation | Exchangeable media filter |
US20110252759A1 (en) * | 2010-04-15 | 2011-10-20 | General Electric Company | Filter |
DE102010016504B4 (en) | 2010-04-19 | 2014-05-15 | Rittal Gmbh & Co. Kg | Filter unit for a control cabinet |
US8852310B2 (en) * | 2010-09-07 | 2014-10-07 | Cummins Filtration Ip Inc. | Filter and filter media having reduced restriction |
US8764870B2 (en) | 2010-09-16 | 2014-07-01 | Cummins Filtration Ip, Inc. | V-shaped filter and fixture |
US9610528B2 (en) | 2011-09-14 | 2017-04-04 | 3M Innovative Properties Company | Filter frame assembly with seal |
US8887719B2 (en) * | 2011-12-15 | 2014-11-18 | 3M Innovative Properties Company | Air filtration device having tuned air distribution system |
JP5404758B2 (en) * | 2011-12-20 | 2014-02-05 | 三菱電機株式会社 | Air conditioner indoor unit |
CN202398240U (en) | 2012-01-14 | 2012-08-29 | 苏州市恩威特环境技术有限公司 | Seal structure of high-efficiency filter |
US8926725B2 (en) | 2012-07-31 | 2015-01-06 | Cummins Filtration Ip, Inc. | V-shaped filter with serviceable frames and cartridges |
CA2824142A1 (en) * | 2012-08-20 | 2014-02-20 | Camfil Farr, Inc. | Alternate inlet field testing apparatus |
EP2895251B1 (en) * | 2012-09-12 | 2018-12-26 | Camfil AB | Filter assembly and filter assembly manufacturing method |
WO2014040659A1 (en) * | 2012-09-12 | 2014-03-20 | Camfil Ab | A filter frame |
TR201802909T4 (en) * | 2012-09-21 | 2018-03-21 | Camfil Ab | V-type filter with support net structure. |
US9205359B2 (en) | 2012-10-09 | 2015-12-08 | W.L. Gore & Associates, Inc. | V-panel filters |
EP3004620B1 (en) * | 2013-05-28 | 2017-08-02 | Mann + Hummel GmbH | Filter element |
US9011565B2 (en) * | 2013-06-20 | 2015-04-21 | Joshua Cannon | Attachable air filter for an air vent register |
US20150202560A1 (en) * | 2014-01-22 | 2015-07-23 | Bha Altair, Llc | Filter bag assembly with rigid mesh for reducing filter pressure loss |
US9782702B2 (en) * | 2014-05-22 | 2017-10-10 | Pall Corporation | Filter assemblies, filter elements, and methods for filtering liquids |
EP3197583B1 (en) | 2014-09-25 | 2018-11-21 | Camfil AB | V-type filter frame |
MY193416A (en) | 2014-09-25 | 2022-10-12 | Camfil Ab | V-type filter frame |
US10967317B2 (en) * | 2015-08-18 | 2021-04-06 | W. L. Gore & Associates, Inc. | Filter assembly with curved inlet guide |
-
2012
- 2012-12-05 WO PCT/EP2012/074548 patent/WO2014040659A1/en active Application Filing
- 2012-12-05 WO PCT/EP2012/074546 patent/WO2014040658A1/en active Application Filing
- 2012-12-05 CN CN201280075771.6A patent/CN104755150B/en active Active
- 2012-12-05 US US14/427,609 patent/US10071331B2/en active Active
- 2012-12-05 US US14/427,605 patent/US10369507B2/en active Active
- 2012-12-05 US US14/427,392 patent/US9737838B2/en active Active
- 2012-12-05 WO PCT/EP2012/074545 patent/WO2014040657A1/en active Application Filing
- 2012-12-05 BR BR112015005591A patent/BR112015005591B8/en active IP Right Grant
-
2015
- 2015-03-26 IN IN2490DEN2015 patent/IN2015DN02490A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3494113A (en) * | 1968-05-22 | 1970-02-10 | Microtron Corp | Air filter assembly and sub-assemblies |
DE2739815A1 (en) * | 1977-09-03 | 1978-09-28 | Ceag Filter Entstaubung | Air filter cell - with frame locating trapezoidal walls and free ends of pleated V=shaped filter medium |
WO2001097946A1 (en) * | 2000-06-21 | 2001-12-27 | Freudenberg Nonwovens Limited Partnership | Air filtration system with recessed filter and edge banding |
US6955696B1 (en) | 2003-07-31 | 2005-10-18 | Filtration Group, Inc. | Filter frame and assembly |
EP1582248A1 (en) * | 2004-03-30 | 2005-10-05 | Nichias Corporation | Adsorption filter and manufacturing method thereof |
US20090193773A1 (en) * | 2008-01-31 | 2009-08-06 | Anders Sundvik | High flow V-bank filter |
WO2010151580A1 (en) * | 2009-06-24 | 2010-12-29 | Donaldson Company, Inc. | Filter arrangement and methods |
US20120011817A1 (en) * | 2010-07-19 | 2012-01-19 | Fais Inc. | Atmospheric air filtration unit, air pre-filtration unit, and associated air filtration system for removeable attachment thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016045731A1 (en) * | 2014-09-25 | 2016-03-31 | Camfil Ab | V-type filter frame |
US10441911B2 (en) | 2014-09-25 | 2019-10-15 | Camfil Ab | V-type filter frame |
US10507420B2 (en) | 2014-09-25 | 2019-12-17 | Camfil Ab | V-type filter frame |
WO2016170461A1 (en) * | 2015-04-20 | 2016-10-27 | Gvs S.P.A. | Fully demountable pocket filter with rigid filter panels |
WO2022109017A1 (en) * | 2020-11-20 | 2022-05-27 | Baldwin Filters, Inc. | Filter with shield features |
Also Published As
Publication number | Publication date |
---|---|
BR112015005591B8 (en) | 2022-08-02 |
US20150224433A1 (en) | 2015-08-13 |
IN2015DN02490A (en) | 2015-09-11 |
WO2014040658A1 (en) | 2014-03-20 |
US10071331B2 (en) | 2018-09-11 |
BR112015005591B1 (en) | 2021-07-06 |
US10369507B2 (en) | 2019-08-06 |
CN104755150B (en) | 2016-12-21 |
US20150238891A1 (en) | 2015-08-27 |
WO2014040659A1 (en) | 2014-03-20 |
CN104755150A (en) | 2015-07-01 |
BR112015005591A2 (en) | 2017-07-04 |
US9737838B2 (en) | 2017-08-22 |
US20150224434A1 (en) | 2015-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10369507B2 (en) | Filter frame | |
US20050039427A1 (en) | Filter assembly with compressed media edge seal | |
KR101738286B1 (en) | Attachment means, gasket arrangement and assembly | |
US10507420B2 (en) | V-type filter frame | |
US9403106B2 (en) | Inertial filter | |
US11131513B2 (en) | Attachment means, gasket arrangement, heat exchanger plate and assembly | |
CA2962295C (en) | V-type filter frame | |
EP2895251A1 (en) | Filter assembly and filter assembly manufacturing method | |
EP2895253B1 (en) | A filter frame | |
CN201257345Y (en) | Improved gas filter | |
US7562421B2 (en) | Connecting clasp | |
EP2895252B1 (en) | A filter frame | |
TWM500989U (en) | Solar module assembly frame | |
CN212663238U (en) | Flat membrane assembly capable of forming water outlet and circulation channel after splicing | |
JPH0842988A (en) | Heat exchanging element | |
KR101179754B1 (en) | Euroform System for Pouring Slab Concrete | |
CN210489737U (en) | Flow frame and flow battery | |
JP2001307756A (en) | Gasket for frames of fuel cell | |
KR20170115163A (en) | Air filter apparatus | |
KR101511064B1 (en) | Method for manufacturing a coner bracket of a filter frame and filter frame having the coner bracket | |
CN220565497U (en) | Single-sided hanging plate partition wall connection structure | |
CN215137847U (en) | Air filter without partition board | |
CN218076977U (en) | PU who is convenient for installation is strained to industrial dust removal | |
CN216744877U (en) | Box-type filtering device and air conditioning unit | |
CN115888323A (en) | Rotating wheel assembly and air treatment equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12805647 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14427605 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012805647 Country of ref document: EP |