WO2014036774A1 - 互联式多功能定位测量仪 - Google Patents

互联式多功能定位测量仪 Download PDF

Info

Publication number
WO2014036774A1
WO2014036774A1 PCT/CN2012/082781 CN2012082781W WO2014036774A1 WO 2014036774 A1 WO2014036774 A1 WO 2014036774A1 CN 2012082781 W CN2012082781 W CN 2012082781W WO 2014036774 A1 WO2014036774 A1 WO 2014036774A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
module
sleeve
shaft
control module
Prior art date
Application number
PCT/CN2012/082781
Other languages
English (en)
French (fr)
Inventor
刘雁春
Original Assignee
付建国
王海亭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 付建国, 王海亭 filed Critical 付建国
Publication of WO2014036774A1 publication Critical patent/WO2014036774A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers

Definitions

  • the invention relates to a geographical position measuring device, in particular to a precise positioning by using a satellite locator, and a spatial position transmission through accurate measurement of a slant distance, a horizontal angle and a high and low angle, and real-time real-time measurement of regional measurement data.
  • Processing capability, connected multi-function positioning measuring instrument that can improve measurement accuracy and work efficiency.
  • CORS Continuous Operational Reference System
  • satellite locators can only passively give positional coordinate information, without autonomous angle measurement, ranging and autonomous position transmission capability. In particular, it does not have the orientation function, and can not obtain the position coordinate information of the blind spot measurement point, which restricts the application in the engineering support measurement;
  • the present invention is to solve the above problems existing in the prior art, and to provide a It can use the satellite locator for precise positioning, and can realize the spatial position transmission through the accurate measurement of the slant range, the horizontal angle and the high and low angles, and has the real-time processing capability of the regional measurement data, which can improve the measurement accuracy and work efficiency.
  • Functional positioning gauge is to solve the above problems existing in the prior art, and to provide a It can use the satellite locator for precise positioning, and can realize the spatial position transmission through the accurate measurement of the slant range, the horizontal angle and the high and low angles, and has the real-time processing capability of the regional measurement data, which can improve the measurement accuracy and work efficiency.
  • Functional positioning gauge is to solve the above problems existing in the prior art, and to provide a It can use the satellite locator for precise positioning, and can realize the spatial position transmission through the accurate measurement of the slant range, the horizontal angle and the high and low angles, and has the real-time processing capability of the regional measurement data, which can improve the measurement accuracy and work efficiency.
  • the technical solution of the invention is: an interconnected multi-function positioning measuring instrument with a measuring pole and a leveling device, in the measuring pole
  • the top is provided with a satellite positioning receiving module, and a control module connected to the satellite positioning receiving module is arranged on the measuring pole, and a wireless network communication module and a data recording module are connected with the control module, and the wireless network communication module
  • a wireless measuring terminal is arranged; a sleeve coaxial with the measuring pole is slidably connected in the middle of the measuring pole, and the lower end of the sleeve is connected with the first shaft angle encoder, and the output of the first shaft angle encoder is connected with the control module.
  • the sleeve is further provided with a radial rotating shaft passing through the axis, and the radial shaft is connected with a second shaft angle encoder and a turret outside the sleeve, and the output of the second shaft angle encoder is connected with the control module.
  • a distance measuring module having a sight axis perpendicular to the radial axis is fixed on the turret.
  • the ranging module is a laser range finder, and a reflection prism is arranged on the measurement pole.
  • the measuring pole is placed in a jacket type fixing frame, and the jacket type fixing frame There is a ring base and a leg connected to the ring base, and at least three transverse top wires which can bear against the measuring rod are arranged on the ring base.
  • the turret has two transverse frames connected to the axial end of the radial rotating shaft, one end of the two transverse frames is connected with the semicircular frame with the opening upward, and the other end of the two transverse frames is connected with the semicircular frame with the opening downward, and the opening is upward.
  • the inner diameter of the semicircular frame and the downwardly extending semicircular frame are matched with the outer diameter of the sleeve.
  • the invention is to
  • the control module, the satellite positioning receiving module, the wireless network communication module, the data recording module, the shaft angle encoder, the ranging module, etc. are integrated on the measuring pole to form a column measuring device, and the satellite signal is directly used in the measuring point where the satellite signal is not blocked.
  • the locator performs precise positioning; at the measuring point where the signal is blocked, the spatial position transmission is realized by the accurate measurement of the slant distance, the horizontal angle and the high and low angle; the number of the column measuring device and the measuring terminal in the invention can be flexibly configured (such as one-to-one , one-to-many, many-to-one, many-to-many), using wireless network to form a regional measurement system, with real-time processing of regional measurement data, integrated mapping capabilities, can effectively improve measurement accuracy and work efficiency.
  • Fig. 5 is a block diagram showing the circuit principle of the embodiment 1 of the present invention.
  • Figure 6 is a schematic view showing the structure of Embodiment 2 of the present invention.
  • Figure 7 is the A-A view of Figure 6.
  • Figure 8 is a view showing the state of use of Embodiment 2 of the present invention.
  • Figure 1 Figure 2, Figure 3, Figure 4, Figure 5
  • a cylindrical measuring rod 1 made of carbon fiber, alloy or the like is used, and a level 2 is fixed on the measuring rod 1, and the surface of the measuring rod 1 is marked with a scale, and the level 2 A circular level is used, and a radome is arranged at the top of the measuring pole 1 , and a satellite positioning receiving module 3 using a GPS receiver is integrated in the radome, and the satellite positioning receiving module 3 is connected to the ARM.
  • the processor is a core control module 4, a wireless network communication module 5 connected to the control module 4, and a data recording module 6 using FLASH RAM, and
  • the wireless network communication module 5 is provided with a wireless measurement terminal 7 which can be a smart phone, a palmtop computer or a general-purpose portable computer.
  • the sleeve is slidably connected with a sleeve 8 coaxial with the measuring rod 1 , and a needle bearing with a flange is connected at the lower end of the sleeve 8 , and the sleeve 8 is slidably connected to the measuring rod 1 by a needle bearing, that is, Sleeve 8 It can be rotated around the measuring pole 1.
  • the flange at the lower end of the sleeve 8 is connected to the first shaft encoder 9 and the output of the first shaft encoder 9 is connected to the control module 4 at the sleeve 8
  • a radial shaft 10 is also provided through the axis, and a sleeve or bearing can be arranged between the radial shaft 10 and the sleeve 8, i.e., the radial shaft 10 is rotatable relative to the sleeve 8.
  • a second shaft encoder 11 and a turret 12 outside the sleeve 8 are connected to each other, and the output of the second shaft encoder 11 is connected to the control module 4 at the turret 12
  • a distance measuring module 13 having a collimation axis perpendicular to the radial axis 10 is fixed thereon.
  • the first shaft encoder 9 and the second shaft encoder 11 are available with Renishaw absolute encoders and distance measuring modules 11 With a laser ranging sensor, the entire circuit is powered by a lithium battery pack placed on the measuring pole 1.
  • the turret 12 is rotatable with the radial shaft 10, and the structure can be in various forms, preferably as shown in Figures 2 and 3.
  • the satellite positioning receiving module 3 is directly used for precise positioning measurement, and the measured data is controlled by the control module 4
  • the processing is performed, and is transmitted to the wireless measurement terminal 7 through the wireless network communication module 5, and the data recording module 6 stores the measured data; the wireless measurement terminal 7 such as a smart phone passes through GSM.
  • the network uses GPRS to realize remote data exchange, especially the code phase/carrier phase differential correction information data provided by the CORS system, which can realize high-precision real-time dynamic positioning;
  • the satellite positioning receiver module cannot be directly used. 3 Performing precise positioning measurement, at this time, the embodiment 1 of the present invention is placed in a place where the signal is not blocked and is closest to the point to be measured, the level 2 is observed, the leveling rod 1 is leveled, and the rotating sleeve 8 and the rotating frame 12 are rotated.
  • the distance measuring module 13 is aligned with the point to be measured, and the distance measuring module 13 and the first shaft angle encoder 9 and the second shaft angle encoder 11 are used for joint measurement of the slant distance, the horizontal angle and the high and low angle of the measuring point, and the distance measuring is performed.
  • the first shaft encoder 9 and the second shaft encoder 11 transmit the measured data to the control module 4 and are processed by the control module 4, According to the measured slant distance, horizontal angle and high and low angle between the two points, the geographical position of the point to be measured is derived from the position of the measuring point where the signal is not occluded, and is the same as the above a step, through the wireless network communication module 5 The data is transmitted to the wireless measurement terminal 7 while the data recording module 6 stores the measured data.
  • the basic structure and circuit principle are the same as in the first embodiment. Different from the embodiment 1 is in the measurement benchmark 1 There is a reflective prism 14 with a 360° reflecting prism.
  • the measuring pole 1 is placed in a jacketed mounting frame 15 having an annular base 16 and a ring base 16
  • the connecting legs 17 are provided with at least three transverse top wires 18 which can support the measuring rod 1 on the annular base 16 for facilitating the fixing and leveling of the measuring rod 1.
  • FIG. 8 There are two cylindrical measuring devices and three wireless measuring terminals 7 , two of which are wireless measuring terminals 7 Using a handheld computer (PDA) with dedicated software and a third wireless measurement terminal 7 using a laptop with dedicated software, using Wi-Fi
  • PDA handheld computer
  • the network builds a local area wireless measurement work network, which uses a laptop to implement remote data exchange over a 3G network.
  • the satellite positioning receiving module 3 is directly used for precise positioning measurement, and the specific working process is the same as that in the embodiment 1 ;
  • the embodiment 2 of the present invention Two columnar measuring devices are respectively placed at the point to be measured and the signal is unobstructed and closest to the point to be measured, and the distance measuring module and the shaft angle encoder on the two column measuring devices are used for peer-to-peer two-way joint testing (equal Two-way observation can improve the measurement accuracy and reliability).
  • the position of the signal occlusion point can be accurately derived from the position of the unobstructed signal point.
  • the specific operation process of data processing is the same as the embodiment. 1 , then send all measured position information to the handheld computer in real time ( PDA On the terminal of the notebook computer, special software is used to optimize the area measurement operation process, and the regional measurement data is synchronously and real-time processed to realize regional integration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种互联式多功能定位测量仪,有测量标杆(1)及水准器(2),在测量标杆(1)的顶端设有卫星定位接收模块(3),在测量标杆(1)上设有与卫星定位接收模块(3)相接的控制模块(4),与控制模块(4)相接有无线网络通信模块(5)和数据记录模块(6),与无线网络通信模块(5)对应设置有无线测量终端(7);在测量标杆(1)中部滑动连接有与测量标杆(1)同轴的套筒(8),套筒(8)下端与第一轴角编码器(9)相接,第一轴角编码器(9)的输出与控制模块(4)相接,在套筒(8)上还设有穿过轴线的径向转轴(10),与径向转轴(10)相接有第二轴角编码器(11)及位于套筒(8)外的转动架(12),第二轴角编码器(11)的输出与控制模块(4)相接,在转动架(12)上固定有视准轴垂直于径向转轴(10)的测距模块(13)。

Description

互联式多功能定位测量仪
技术领域:
本发明涉及一种地理位置测量装置,尤其是一种即可利用卫星定位仪进行精密定位,又可通过斜距、水平角和高低角的精确测量实现空间位置传递,且具备区域测量数据同步实时处理能力,可提高测量精度和工作效率的互联式多功能定位测量仪。
背景技术:
目前,利用多基站网络 RTK 技术建立的连续运行卫星定位服务综合系统( Continuous Operational Reference System ,缩写为 CORS )已成为城市卫星定位应用的发展热点, CORS 的建立和应用有力地推动了城市数字化、信息化的建设。按照应用的精度不同, CORS 系统的用户可以分为测绘与工程用户( 厘米 、 分米级 )、车辆导航与定位用户(米级)、高精度用户(事后处理)及气象用户等几类。作为直接的高精度应用领域, CORS 彻底改变了传统大地测量及工程测量的作业方式,如传统的三角网、边角网测量方法逐渐被卫星定位测边网取代,传统的经纬仪、平板仪、全站仪、测距仪也逐渐被卫星定位仪取代。然而,基于 CORS 的精密定位在实际测量应用过程中还存在着如下不足:
( 1 )在树林、隧道和高楼附近等地带,卫星信号受到遮挡,卫星定位测量存在盲区,由于卫星定位仪只能被动给出位置坐标信息,而不具备自主式测角、测距及自主位置传递能力,特别是不具备定向功能,无法获取盲区测点的位置坐标信息,制约了在工程保障测量中的应用;
( 2 )为了完成一幅地形、地籍测图或工程保障测量任务,常采用多个卫星定位仪同时作业,由于每个定位仪只能与 CORS 系统通讯联系,各卫星定位仪之间不能实现通讯,不具备区域测量数据同步实时处理及一体化测图能力,限制了测量作业过程的优化和作业效率的提高。
发明内容:
本发明是为了解决现有技术所存在的上述问题,提供一种 即可利用卫星定位仪进行精密定位,又可通过斜距、水平角和高低角的精确测量实现空间位置传递,且具备区域测量数据同步实时处理能力,可提高测量精度和工作效率的互联式多功能定位测量仪。
本发明的技术解决方案是: 一种 互联式多功能定位测量仪,有测量标杆 及水准器 ,在测量标杆 的 顶端设有卫星定位接收模块,在测量标杆 上设有与 卫星定位接收模块相接的控制模块 ,与 控制模块 相接有 无线网络通信模块和数据记录模块 ,与 无线网络通信模块 对应设置有 无线测量终端; 在测量标杆 中 部滑动连接有与测量标杆 同轴的 套筒,套筒下端与第一轴角编码器相接,第一轴角编码器的输出与控制模块 相接,在 套筒上还设有穿过轴线的径向转轴,与径向转轴相接有第二轴角编码器及位于套筒外的转动架,第二轴角编码器的输出与控制模块 相接, 在转动架上固定有视准轴垂直于径向转轴的测距模块。
所述测距模块是激光测距仪,在测量标杆 上设有 反射棱镜。
所述测量标杆 置于夹套式固定架内,所述夹套式固定架 有环形基座及与环形基座相接的支脚,在环状基座上均布有至少三个可顶住测量标杆 的 横向顶丝。
所述转动架有两根接于径向转轴轴端的横架,两根横架一端与开口向上的半圆架相接,两根横架的另一端与开口向下的半圆架相接,开口向上的半圆架及开口向下的半圆架的内径均与套筒的外径吻合。
本发明是将 控制模块、卫星定位接收模块、无线网络通信模块、数据记录模块、轴角编码器、测距模块等集成在测量标杆上构成一柱状测量装置,在卫星信号不受遮挡的测点,直接利用卫星定位仪进行精密定位;在信号受遮挡的测点,通过斜距、水平角和高低角的精确测量实现空间位置传递;本发明中的柱状测量装置和测量终端的数量可灵活配置(如一对一、一对多、多对一、多对多),利用无线网络构成区域测量系统,具备了区域测量数据同步实时处理、一体化测图能力,可有效提高测量精度和工作效率。
附图说明:
图 1 、图 2 、图 3 、图 4 是本发明实施例 1 的 结构示意图。
图 5 是本发明实施例 1 的 电路原理框图。
图 6 是本发明实施例 2 的 结构示意图。
图 7 是图 6 的 A-A 视图。
图 8 是本发明实施例 2 的使用状态图。
具体实施方式:
实施例 1 :
如图 1 、图 2 、图 3 、图 4 、 图 5 所示:与现有技术相同,有用碳纤维、合金等制成的圆柱状测量标杆 1 ,在 测量标杆 1 上固定有水准器 2 ,测量标杆 1 表面标有刻度, 水准器 2 选用圆水准器,在测量标杆 1 的 顶端设有天线罩,在天线罩内集成有采用 GPS 接收机的卫星定位接收模块 3 , 与 卫星定位接收模块 3 相接的以 ARM 处理器为核心的控制模块 4 ,与 控制模块 4 相接的 采用蓝牙适配器的无线网络通信模块 5 和采用 FLASH RAM 的数据记录模块 6 ,与 无线网络通信模块 5 对应设置有 无线测量终端 7 ,无线测量终端 7 可以是 智能手机、掌上电脑或通用便携式计算机等。在测量标杆 1 中 部滑动连接有与测量标杆 1 同轴的 套筒 8 ,可在套筒 8 的下端相接一个带法兰盘的滚针轴承,套筒 8 通过滚针轴承与测量标杆 1 滑动相接,即 套筒 8 可以绕测量标杆 1 转动。套筒 8 下端的法兰盘与第一轴角编码器 9 相接,第一轴角编码器 9 的输出与控制模块 4 相接,在 套筒 8 上还设有穿过轴线的径向转轴 10 ,径向转轴 10 与套筒 8 之间可设置轴套或轴承,即径向转轴 10 可相对套筒 8 转动。与径向转轴 10 相接有第二轴角编码器 11 及位于套筒 8 外的转动架 12 ,第二轴角编码器 11 的输出与控制模块 4 相接, 在转动架 12 上固定有视准轴垂直于径向转轴 10 的测距模块 13 。第一轴角编码器 9 和第二轴角编码器 11 可 选用雷尼绍绝对式圆光栅,测距模块 11 采用激光测距传感器,整个电路均由设置在测量标杆 1 上的锂电池组供电。转动架 12 可随径向转轴 10 转动,结构可以是多种形式,最好是如图 2 、 3 、 4 所示,有两根接于径向转轴 10 轴端的横架 19 ,两根横架 19 一端与开口向上的半圆架 20 相接,两根横架 19 的另一端与开口向下的半圆架 21 相接,开口向上的半圆架 20 及开口向下的半圆架 21 的内径均与套筒 8 的外径吻合,第二轴角编码器 11 和测距模块 13 分别置于两根横架 19 上。携带时,可将转动架 12 扣合在套筒 8 上,占用空间小,便于携带。
使用方法:
a. 在卫星信号不受遮挡的测点,直接利用卫星定位接收模块 3 进行精密定位测量,所测得的数据由控制模块 4 进行处理,通过 无线网络通信模块 5 外传至无线测量终端 7 ,同时 数据记录模块 6 对所测数据进行存储 ; 智能手机等无线测量终端 7 , 通过 GSM 网络利用 GPRS 实现远程数据交换,特别是获取 CORS 系统提供的码相位 / 载波相位差分修正信息数据,可实现高精度实时动态定位;
b. 在树林、隧道和高楼附近等信号受到遮挡的待测点,不能直接利用卫星定位接收模块 3 进行精密定位测量,此时将本发明实施例 1 安置在信号不受遮挡且离待测点最近的地方,观察 水准器 2 ,整平测量标杆 1 并 将转动套筒 8 及转动架 12 使测距模块 13 对准待测点,利用测距模块 13 和第一轴角编码器 9 、第二轴角编码器 11 对待测点的斜距、水平角和高低角进行联测,测距模块 13 和第一轴角编码器 9 、第二轴角编码器 11 将所测数据传至控制模块 4 并 由控制模块 4 进行处理, 根据所测得的两点之间的斜距、水平角和高低角,由信号不受遮挡的测点位置推算出待测点的地理位置,与上述 a 步骤相同, 通过 无线网络通信模块 5 外传至无线测量终端 7 ,同时 数据记录模块 6 对所测数据进行存储等。
实施例 2 :
如图 6 、 7 所示:基本结构及电路原理均同实施例 1 。与实施例 1 所不同的是 在测量标杆 1 上设有 反射棱镜 14 ,采用 360° 反射棱镜。测量标杆 1 置于夹套式固定架 15 内,所述夹套式固定架 15 有环形基座 16 及与环形基座 16 相接的支脚 17 ,在环状基座 16 上均布有至少三个可顶住测量标杆 1 的 横向顶丝 18 ,便于测量标杆 1 的固定及整平。
如图 8 所示:配置有两个柱状测量装置和三个无线测量终端 7 ,其中两个无线测量终端 7 采用安装有专用软件的掌上电脑( PDA )、第三个无线测量终端 7 则采用配有专用软件的笔记本电脑,利用 Wi-Fi 网络构建本地区域无线测量工作网,利用笔记本电脑通过 3G 网络实现远程数据交换。
使用方法:
a. 在卫星信号不受遮挡的测点,直接利用卫星定位接收模块 3 进行精密定位测量,具体工作过程同实施例 1 ;
b. 在树林、隧道和高楼附近等信号受到遮挡的测点,不能直接利用卫星定位接收模块 3 进行精密定位测量,此时将本发明实施例 2 两个柱状测量装置分别安置在待测点和信号不受遮挡且离待测点最近的地方,利用两个柱状测量装置上的测距模块和轴角编码器进行对等双向联测(对等双向观测可提高测量精度和可靠性),利用两个柱状测量装置之间的斜距、水平角和高低角由信号不受遮挡的测点位置精确推算出信号遮挡测点的位置,上述测量及数据处理的具体操作过程同实施例 1 ,之后将所有测量的位置信息均实时发送至掌上电脑( PDA )和笔记本电脑的终端上,采用专用软件对区域测量作业过程进行优化控制,并对区域测量数据进行同步实时处理,实现区域一体化成图。

Claims (4)

  1. 一种 互联式多功能定位测量仪,有测量标杆( 1 )及水准器( 2 ) ,其特征在于:在测量标杆( 1 )的 顶端设有卫星定位接收模块( 3 ),在测量标杆( 1 )上设有与 卫星定位接收模块( 3 )相接的控制模块 ( 4 ),与 控制模块 ( 4 )相接有 无线网络通信模块( 5 ) 和数据记录模块( 6 ),与 无线网络通信模块( 5 )对应设置有 无线测量终端( 7 ); 在测量标杆( 1 )中 部滑动连接有与测量标杆( 1 )同轴的 套筒( 8 ),套筒( 8 )下端与第一轴角编码器( 9 )相接,第一轴角编码器( 9 )的输出与控制模块 ( 4 )相接,在 套筒( 8 )上还设有穿过轴线的径向转轴( 10 ),与径向转轴( 10 )相接有第二轴角编码器( 11 )及位于套筒( 8 )外的转动架( 12 ),第二轴角编码器( 11 )的输出与控制模块 ( 4 )相接, 在转动架( 12 )上固定有视准轴垂直于径向转轴( 10 )的测距模块( 13 )。
  2. 根据权利要求 1 所述的互联式多功能定位测量仪,其特征在于:所述测距模块( 13 )是激光测距仪,在测量标杆( 1 )上设有 反射棱镜( 14 )。
  3. 根据权利要求 1 或 2 所述的互联式多功能定位测量仪,其特征在于:所述测量标杆( 1 )置于夹套式固定架( 15 )内,所述夹套式固定架( 15 ) 有环状基座( 16 )及与环形基座( 16 )相接的支脚( 17 ),在环状基座( 16 )上均布有至少三个可顶住测量标杆( 1 )的 横向顶丝( 18 )。
  4. 根据权利要求 1 或 2 所述的互联式多功能定位测量仪,其特征在于:所述转动架( 12 )有两根接于径向转轴( 9 )轴端的横架( 19 ),两根横架( 19 )一端与开口向上的半圆架( 20 )相接,两根横架( 19 )的另一端与开口向下的半圆架( 21 )相接,开口向上的半圆架( 20 )及开口向下的半圆架( 21 )的内径均与套筒( 8 )的外径吻合。
PCT/CN2012/082781 2012-09-06 2012-10-11 互联式多功能定位测量仪 WO2014036774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210326858.8 2012-09-06
CN201210326858 2012-09-06

Publications (1)

Publication Number Publication Date
WO2014036774A1 true WO2014036774A1 (zh) 2014-03-13

Family

ID=48061375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082781 WO2014036774A1 (zh) 2012-09-06 2012-10-11 互联式多功能定位测量仪

Country Status (2)

Country Link
CN (2) CN202995046U (zh)
WO (1) WO2014036774A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036774A1 (zh) * 2012-09-06 2014-03-13 付建国 互联式多功能定位测量仪
WO2014063328A1 (zh) * 2012-10-25 2014-05-01 付建国 互联式多功能定位测量仪
CN109581454B (zh) * 2018-12-03 2022-10-21 大连圣博尔测绘仪器科技有限公司 对偶式双复合定位仪测量方法
CN111536392A (zh) * 2020-06-11 2020-08-14 大连圣博尔测绘仪器科技有限公司 用于复合定位仪的脚架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077557A (en) * 1988-07-06 1991-12-31 Wild Leitz Ag Surveying instrument with receiver for satellite position-measuring system and method of operation
US5760748A (en) * 1996-05-28 1998-06-02 Trimble Navigation Limited Pivoting support bracket to mount a GPS antenna above a theodolite or a total station mounted on a tripod
WO2005028999A2 (en) * 2003-09-17 2005-03-31 Geoscan Technologies Llc Measurement methods and apparatus
US7062305B1 (en) * 2000-09-15 2006-06-13 Trimble Navigation Limited Location identifying apparatus and method of identifying the location of a user
CN1856692A (zh) * 2003-09-22 2006-11-01 莱卡地球系统公开股份有限公司 用于对大地测量仪器的实际位置进行确定的方法和装置
WO2012088413A1 (en) * 2010-12-23 2012-06-28 Trimble Navigation Limited Enhanced position measurement systems and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791609A (en) * 1996-04-12 1998-08-11 Trimble Navigation Limited Range pole data collector holder
US6633256B2 (en) * 2001-08-24 2003-10-14 Topcon Gps Llc Methods and systems for improvement of measurement efficiency in surveying
JP2004212058A (ja) * 2002-12-26 2004-07-29 Topcon Corp 作業位置測定装置
WO2014036774A1 (zh) * 2012-09-06 2014-03-13 付建国 互联式多功能定位测量仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077557A (en) * 1988-07-06 1991-12-31 Wild Leitz Ag Surveying instrument with receiver for satellite position-measuring system and method of operation
US5760748A (en) * 1996-05-28 1998-06-02 Trimble Navigation Limited Pivoting support bracket to mount a GPS antenna above a theodolite or a total station mounted on a tripod
US7062305B1 (en) * 2000-09-15 2006-06-13 Trimble Navigation Limited Location identifying apparatus and method of identifying the location of a user
WO2005028999A2 (en) * 2003-09-17 2005-03-31 Geoscan Technologies Llc Measurement methods and apparatus
CN1856692A (zh) * 2003-09-22 2006-11-01 莱卡地球系统公开股份有限公司 用于对大地测量仪器的实际位置进行确定的方法和装置
WO2012088413A1 (en) * 2010-12-23 2012-06-28 Trimble Navigation Limited Enhanced position measurement systems and methods

Also Published As

Publication number Publication date
CN103048669A (zh) 2013-04-17
CN202995046U (zh) 2013-06-12
CN103048669B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
CN204142253U (zh) 复合测量仪
CN112964252B (zh) 基于惯性测量单元的定位方法、系统及rtk接收机
WO2014036774A1 (zh) 互联式多功能定位测量仪
CN102338616A (zh) 三维测量系统及方法
CN106595608B (zh) 分布交互通用测绘仪
CN105589076A (zh) 一种远端两点测距装置及其测量方法
CN102620710A (zh) 测算数据的方法和系统
CN112526483A (zh) 一种融合空间定位的三维激光扫描设备及其定位定向方法
CN108152838B (zh) 一种基于观瞄测定目标位置的装置和方法
CN107462264B (zh) 一种动态陀螺寻北校准装置
KR20180054321A (ko) Gnss 측량 모듈과 연계한 토탈측량시스템, 토탈측량방법 및 이를 기록한 기록매체
WO2014036776A1 (zh) 组合式卫星定位测量仪
WO2014036775A1 (zh) 微型管状全站仪
CN219589625U (zh) 一种避障测量的垂直距离测量装置
CN104792321A (zh) 一种基于辅助定位的土地信息采集系统及方法
CN202904023U (zh) 互联式多功能定位测量仪
CN113945960A (zh) 一种无人机查找定位方法及系统
CN102928862A (zh) 互联式多功能定位测量仪
CN109029495B (zh) 一种反向校准仪、校准点坐标的反向校准系统和方法
CN207689674U (zh) 一种基于观瞄测定目标位置的装置
CN203250029U (zh) 一种新型高精度gis测距手持机
CN204925404U (zh) 目标定位装置
CN206321246U (zh) 分布交互通用测绘仪
CN202794544U (zh) 组合式卫星定位测量仪
WO2014063328A1 (zh) 互联式多功能定位测量仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884006

Country of ref document: EP

Kind code of ref document: A1