WO2014035924A1 - Improved internal cyclone for fluidized bed reactor - Google Patents

Improved internal cyclone for fluidized bed reactor Download PDF

Info

Publication number
WO2014035924A1
WO2014035924A1 PCT/US2013/056723 US2013056723W WO2014035924A1 WO 2014035924 A1 WO2014035924 A1 WO 2014035924A1 US 2013056723 W US2013056723 W US 2013056723W WO 2014035924 A1 WO2014035924 A1 WO 2014035924A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction column
discharge pipe
fluidized bed
gas
bed reactor
Prior art date
Application number
PCT/US2013/056723
Other languages
French (fr)
Inventor
Terris YANG
Robert Johnson
Hsueh Sung Tung
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to EP13833246.5A priority Critical patent/EP2890484A4/en
Priority to IN1532DEN2015 priority patent/IN2015DN01532A/en
Priority to CN201380045255.3A priority patent/CN104602803B/en
Priority to CA2882749A priority patent/CA2882749A1/en
Priority to JP2015529914A priority patent/JP6385351B2/en
Publication of WO2014035924A1 publication Critical patent/WO2014035924A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • C01G43/04Halides of uranium
    • C01G43/06Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00681Agglomeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases

Definitions

  • This invention relates to an improved fluidized bed reactor equipped with an internal cyclone that is connected to a particle discharge pipe located substantially outside of the reaction column.
  • a fluidized bed reactor is a type of reactor device that can be used to carry out a variety of multiphase chemical reactions.
  • a fluid gas or liquid
  • a granular solid material usually a catalyst possibly shaped as tiny spheres
  • This process imparts many important advantages to the fluidized bed reactor.
  • the fluidized bed reactor can thus be used in many industrial applications. Fluidized bed reactors are often used to produce gasoline and other fuels, along with many other chemicals.
  • Fluidized bed reactors are used in various utilities, for example in nuclear power plants and water and waste treatment settings; fluidized bed reactors are also used for coal gasification. Fluidized bed reactors used in these applications allow for processes that are cleaner and more efficient than previous standard reactor technologies.
  • an internal cyclone is often used to separate fine particles from the gas that moves upwards in the fluidized bed reactor during its standard operation.
  • the advantage of such an internal cyclone over a cyclone that is located outside the reactor is that the internal cyclone can be heated up to the process temperature by the process gas without the need of an external heat source. Additionally, the inlet of the internal cyclone will not be easily clogged due to the high temperature of the process gas.
  • the cyclone is often connected to a discharge pipe that is located within the fluidized bed reactor and channels captured particles back towards the bottom of the reactor.
  • the drawback of this type of setup is that the up-flowing fluidizing gas may bypass the cyclone's inlet and enter the internal cyclone via its discharge pipe.
  • Another drawback is that the whole fluidized bed reactor system must be shut down in case the discharge pipe must be accessed and cleaned because it is clogged. Additionally, the removal of captured fine particles from these types of systems is often difficult.
  • the present invention provides a fluidized bed reactor comprising a reaction column having a fluid portion; gas inflow means for flowing a gas upwardly through the fluid portion of the reaction column; particle feed means for feeding particles to the fluid portion of the reaction column; and a cyclone capable of separating particles from the gas flowing upwardly from the fluid portion of the reaction column.
  • the cyclone is located within the reaction column and is in communication with the gas flowing upwardly; and the cyclone comprises a cyclone body having a gas intake opening, a gas outflow opening, and a particle drop port.
  • the cyclone also has a particle discharge pipe having an upper part connected to the particle drop port of the cyclone body, and a lower part; wherein the particle discharge pipe is located substantially outside of the reaction column.
  • the fluidized bed reactor further comprises a knock-out pot attached to the lower part of the particle discharge pipe and located outside of the reaction column, wherein the knock-out pot is capable of collecting particles discharged from the particle discharge pipe.
  • the fluidized bed reactor further comprises a vibrator attached to the particle discharge pipe and located outside of the reaction column, wherein the vibrator is capable of removing solids that have accumulated in the particle discharge pipe.
  • the fluidized bed reactor further comprises a high pressure 2 purge line attached to the particle discharge pipe and located outside of the reaction column, wherein the high pressure 2 purge line is capable of removing heavy cloggage in the particle discharge pipe.
  • the particle discharge pipe or the knock-out pot, or both comprise means for heat insulation.
  • the present invention also provides a method of producing UF 4 , comprising reacting UO 2 with HF gas in any of the fluidized bed reactors discussed above.
  • Figure 1 represents a sectional view of an improved fluidized bed reactor with an internal cyclone according to the present invention.
  • the invention relates to an improved fluidized bed reactor equipped with a cyclone that is located within the fluidized bed reactor's reaction column and that is connected to a particle discharge pipe located substantially outside of said reaction column.
  • the fluidized bed reactor of the present invention operates more efficiently because the particle discharge pipe can be cleaned while the fluidized bed reactor is still in operatioon.
  • FIG. 1 An embodiment of a fluidized bed reactor constructed in accordance with the present invention will now be described in detail with reference to the accompanying drawing (FIGURE 1).
  • a fluidized bed reactor designated by numeral 1 operates according to the fluidized bed principles generally known in the art.
  • the fluidized bed reactor has a reaction column 2, which extends substantially vertically, and which has a free board portion 3 of a relatively large-diameter cylindrical shape, a taper portion 4 of an inverted truncated conical tubular shape, and a fluid portion 5 of a relatively small-diameter cylindrical shape.
  • a lower end part of the reaction column 2 is provided with gas inflow means 6.
  • the gas inflow means 6 include a gas chamber 7 disposed at the lower end part of the reaction column 2, and a gas inflow pipe 8 in connection with the gas chamber 7.
  • the reaction column 2 is also provided with particle feed means 9.
  • the particle feed means 9 include a particle feed pipe 10 which advances into the reaction column 2 through the peripheral wall of the free board portion 4 of the reaction column 2 and extends downwardly into the fluid portion 5 of the reaction column 2.
  • the particle feed pipe 10 is connected to a particle feed source 11 which supplies particles at a predetermined rate to the particle feed pipe 10 which feeds the particles into a lower part of the reaction column 2, i.e., the fluid portion 5.
  • a main fluidized bed 12 of particles is formed in the fluid portion 5 of the reaction column 2.
  • the reaction column 2, the gas inflow means 6, including the gas chamber 7 and the gas inflow pipe 8, and the particle feed pipe 10 may be made of any suitable material, such as stainless steel or high nickel alloy.
  • the reaction column 2 is further equipped with a cyclone 13.
  • the cyclone 13 includes a cyclone body 14 that is connected to a particle discharge pipe 15.
  • the cyclone body 14 is entirely disposed within the reaction column 2, whereas the particle discharge pipe 15 is located substantially outside the reaction column 2.
  • the cyclone body 14 has a nearly cylindrical upper part 16 (wider end), and a conical lower part 17 (narrow end).
  • a gas intake opening 18 is located in the peripheral wall of the upper part 16 of the cyclone body 14, and a gas outflow opening 19 is located in the top wall of the upper part 16.
  • the cyclone body 14 is positioned in the upper part of the reaction column 2, i.e., the free board portion 3, and its gas intake opening 18 is open towards the free board portion 3 of the reaction column 2.
  • An outlet pipe 20 is connected to the gas outflow opening 19 of the cyclone body 14, and this outlet pipe 20 extends through the top wall of the reaction column 2.
  • the bottom wall of the lower part 17 of the cyclone body 14 is opened throughout to form a particle drop port 21.
  • the particle discharge pipe 15 is formed of a slenderly extending cylindrical member, and its upper end is connected to the particle drop port 21. Thus, the upper end of the particle discharge pipe 15 is in communication with the particle drop port 21 of the cyclone body 14.
  • the cyclone body, and particle discharge pipe may be made of any suitable material, such as stainless steel or high nickel alloy.
  • the fluidized bed reactor 1 is further equipped with a knock-out pot 22 connected to the lower part of the particle discharge pipe 15 outside of the reaction column 2 for collecting particles discharged from the particle discharge pipe.
  • the fluidized bed reactor 1 may also include a vibrator 23 that is attached to the particle discharge pipe 15 outside of the reaction column 2 for removing any accumulated solids in the discharge pipe.
  • the fluidized bed reactor 1 may preferably also include a high pressure 2 purge line 24 that is attached to the particle discharge pipe 15 outside of the reaction column for removing any heavy cloggage in the pipe.
  • the knock-out pot 22 may further include a 2 bump 25 for periodically freeing up space inside the knock-out pot.
  • the particle discharge pipe 15 and the knock-out pot 22 of the fluidized bed reactor outside of the reaction column can be well insulated and/or heat traced to prevent the condensation of gases and evaporation of low boiling point compounds.
  • the relatively small-diameter particles of the UO 2 and UF 4 constituting the main fluidized bed 12 accompany the ascending gas stream, and flow upwardly from the main fluidized bed 12.
  • the linear velocity of the gas gradually decreases while the gas is moving upwards across the taper portion 4 with an upwardly gradually increasing sectional area.
  • the particles other than considerably small particles are separated from the ascending gas stream, and fall back into the main fluidized bed 12.
  • the gas accompanied by small-diameter UO 2 and UF 4 particles enters the cyclone body 14 through the gas intake opening 18.
  • the small-diameter particles accompanying the gas are separated from the gas by the cyclone 13, which works based on principles that are generally known in the art and that are therefore not further described herein.
  • the gas accompanied only by fine particles is discharged through the outlet pipe 20 through the gas outflow opening 19.
  • the small-diameter particles separated from the gas in the cyclone body 14 fall through the particle drop port 21 and through to the particle discharge pipe 15 that is located substantially outside of the reaction column 2.
  • a knock-out pot 22 is attached to the lower part of the particle discharge pipe 15 outside of the reaction column 2 and used to collect the particles discharged from the particle discharge pipe; knock-out pot 22 also supplies a seal that prevents process gas from escaping from the reactor system through the cyclone.
  • the knock-out pot 22 further includes a 2 bump 25 for periodically freeing up space inside the knock-out pot.
  • the knock-out pot 22 further includes a vent line (not shown in FIG. 1) which is applied to release pressure buildup when necessary or for maintenance purposes.
  • a vibrator 23 is attached to the particle discharge pipe 15 outside of the reaction column 2 and used for removing any accumulated solids from the discharge pipe.
  • a high pressure 2 purge line 24 is attached to the particle discharge pipe 15 outside of the reaction column and is used for the purpose of removing any heavy cloggage in the pipe.
  • the particle discharge pipe 15 and the knock-out pot 22 of the cyclone outside of the reaction column are well insulated and/or heat traced to prevent the condensation of gases and evaporation of low boiling point compounds.
  • the cyclone body 14 is installed in close proximity to the wall of the reaction column 2 to reduce the leg length inside the reaction column.
  • the bottom conical section of the cyclone will be modified as follows: straight on the side against the reactor wall and angled on the other side so that the fines can flow out to the discharge pipe 15 with less obstacle.
  • a 2 purge line 24 will be installed to prevent any pluggage in the discharge leg.
  • the knock-out pot 22 will be bumped periodically to free up the space inside the knock-out pot.
  • a vent line will also be applied to release pressure buildup in case of emergency or for maintenance purpose.
  • the dimensions of the cyclone can be calculated based on the actual operating conditions, such as gas flow rate, solid holdup in the gas flow and solid capture efficiency of the cyclone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Cyclones (AREA)

Abstract

A fluidized bed reactor comprising a reaction column having a fluid portion; a gas inflow means for flowing a gas upwardly from the fluid portion of the reaction column; a particle feed means for feeding particles to the fluid portion of the reaction column; a cyclone capable of separating particles from the gas flowing upwardly from the fluid portion of the reaction column, the cyclone being located within the reaction column and being in communication with the gas flowing upwardly, wherein the cyclone comprises a cyclone body having an inlet, a gas outlet, and a particle drop port; and a particle discharge pipe having an upper part connected to the particle drop port of the cyclone body, and a lower part, wherein the particle discharge pipe is located substantially outside of the reaction column.

Description

IMPROVED INTERNAL CYCLONE FOR FLUIDIZED BED REACTOR
CROSS REFERENCE TO RELATED APPLICATION
[0001] The present application claims priority under 35 U.S.C. § 1 19(e) to
U.S. Provisional Patent Application No. 61/695, 179, filed on August 30, 2012, the disclosure of which is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
[0002] This invention relates to an improved fluidized bed reactor equipped with an internal cyclone that is connected to a particle discharge pipe located substantially outside of the reaction column.
BACKGROUND OF THE INVENTION
[0003] A fluidized bed reactor (FBR) is a type of reactor device that can be used to carry out a variety of multiphase chemical reactions. In this type of reactor, a fluid (gas or liquid) is passed through a granular solid material (usually a catalyst possibly shaped as tiny spheres) at high enough velocities to suspend the solid and cause it to behave as though it were a fluid. This process, known as fluidization, imparts many important advantages to the fluidized bed reactor. The fluidized bed reactor can thus be used in many industrial applications. Fluidized bed reactors are often used to produce gasoline and other fuels, along with many other chemicals. Many industrially produced polymers are made using fluidized bed reactor technology, such as rubber, vinyl chloride, polyethylene, styrenes, and polypropylene. Fluidized bed reactors are used in various utilities, for example in nuclear power plants and water and waste treatment settings; fluidized bed reactors are also used for coal gasification. Fluidized bed reactors used in these applications allow for processes that are cleaner and more efficient than previous standard reactor technologies.
[0004] In conventional fluidized bed reactors, an internal cyclone is often used to separate fine particles from the gas that moves upwards in the fluidized bed reactor during its standard operation. The advantage of such an internal cyclone over a cyclone that is located outside the reactor is that the internal cyclone can be heated up to the process temperature by the process gas without the need of an external heat source. Additionally, the inlet of the internal cyclone will not be easily clogged due to the high temperature of the process gas.
[0005] The cyclone is often connected to a discharge pipe that is located within the fluidized bed reactor and channels captured particles back towards the bottom of the reactor. The drawback of this type of setup is that the up-flowing fluidizing gas may bypass the cyclone's inlet and enter the internal cyclone via its discharge pipe. Another drawback is that the whole fluidized bed reactor system must be shut down in case the discharge pipe must be accessed and cleaned because it is clogged. Additionally, the removal of captured fine particles from these types of systems is often difficult.
[0006] Thus, there remains a need for a fluidized bed reactor with an improved design that allows the cleaning of a clogged discharge pipe while the fluidized bed reactor is still in operation. The present invention addresses this need.
SUMMARY OF THE INVENTION
[0007] The present invention provides a fluidized bed reactor comprising a reaction column having a fluid portion; gas inflow means for flowing a gas upwardly through the fluid portion of the reaction column; particle feed means for feeding particles to the fluid portion of the reaction column; and a cyclone capable of separating particles from the gas flowing upwardly from the fluid portion of the reaction column. The cyclone is located within the reaction column and is in communication with the gas flowing upwardly; and the cyclone comprises a cyclone body having a gas intake opening, a gas outflow opening, and a particle drop port. The cyclone also has a particle discharge pipe having an upper part connected to the particle drop port of the cyclone body, and a lower part; wherein the particle discharge pipe is located substantially outside of the reaction column.
[0008] In certain embodiments of the present invention, the fluidized bed reactor further comprises a knock-out pot attached to the lower part of the particle discharge pipe and located outside of the reaction column, wherein the knock-out pot is capable of collecting particles discharged from the particle discharge pipe.
[0009] In other embodiments of the present invention, the fluidized bed reactor further comprises a vibrator attached to the particle discharge pipe and located outside of the reaction column, wherein the vibrator is capable of removing solids that have accumulated in the particle discharge pipe.
[0010] In even other embodiments of the present invention, the fluidized bed reactor further comprises a high pressure 2 purge line attached to the particle discharge pipe and located outside of the reaction column, wherein the high pressure 2 purge line is capable of removing heavy cloggage in the particle discharge pipe.
[0011] In even other embodiments of the present invention, the particle discharge pipe or the knock-out pot, or both, comprise means for heat insulation.
[0012] The present invention also provides a method of producing UF4, comprising reacting UO2 with HF gas in any of the fluidized bed reactors discussed above.
BRIEF DESCRIPTION OF THE FIGURES
[0013] Figure 1 represents a sectional view of an improved fluidized bed reactor with an internal cyclone according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0014] The invention relates to an improved fluidized bed reactor equipped with a cyclone that is located within the fluidized bed reactor's reaction column and that is connected to a particle discharge pipe located substantially outside of said reaction column. As a result of this modification, the fluidized bed reactor of the present invention operates more efficiently because the particle discharge pipe can be cleaned while the fluidized bed reactor is still in operatioon.
[0015] An embodiment of a fluidized bed reactor constructed in accordance with the present invention will now be described in detail with reference to the accompanying drawing (FIGURE 1).
[0016] In FIG.1, a fluidized bed reactor designated by numeral 1 operates according to the fluidized bed principles generally known in the art. The fluidized bed reactor has a reaction column 2, which extends substantially vertically, and which has a free board portion 3 of a relatively large-diameter cylindrical shape, a taper portion 4 of an inverted truncated conical tubular shape, and a fluid portion 5 of a relatively small-diameter cylindrical shape. A lower end part of the reaction column 2 is provided with gas inflow means 6. The gas inflow means 6 include a gas chamber 7 disposed at the lower end part of the reaction column 2, and a gas inflow pipe 8 in connection with the gas chamber 7. Gases are fed to the gas chamber 7 through the gas inflow pipe 8, and then flow upwardly through the gas distributor 26 and inside the reaction column 2. The reaction column 2 is also provided with particle feed means 9. The particle feed means 9 include a particle feed pipe 10 which advances into the reaction column 2 through the peripheral wall of the free board portion 4 of the reaction column 2 and extends downwardly into the fluid portion 5 of the reaction column 2. The particle feed pipe 10 is connected to a particle feed source 11 which supplies particles at a predetermined rate to the particle feed pipe 10 which feeds the particles into a lower part of the reaction column 2, i.e., the fluid portion 5. Thus, a main fluidized bed 12 of particles is formed in the fluid portion 5 of the reaction column 2. The reaction column 2, the gas inflow means 6, including the gas chamber 7 and the gas inflow pipe 8, and the particle feed pipe 10 may be made of any suitable material, such as stainless steel or high nickel alloy.
[0017] The reaction column 2 is further equipped with a cyclone 13. The cyclone 13 includes a cyclone body 14 that is connected to a particle discharge pipe 15. In FIG 1, the cyclone body 14 is entirely disposed within the reaction column 2, whereas the particle discharge pipe 15 is located substantially outside the reaction column 2. The cyclone body 14 has a nearly cylindrical upper part 16 (wider end), and a conical lower part 17 (narrow end). A gas intake opening 18 is located in the peripheral wall of the upper part 16 of the cyclone body 14, and a gas outflow opening 19 is located in the top wall of the upper part 16. The cyclone body 14 is positioned in the upper part of the reaction column 2, i.e., the free board portion 3, and its gas intake opening 18 is open towards the free board portion 3 of the reaction column 2. An outlet pipe 20 is connected to the gas outflow opening 19 of the cyclone body 14, and this outlet pipe 20 extends through the top wall of the reaction column 2. The bottom wall of the lower part 17 of the cyclone body 14 is opened throughout to form a particle drop port 21. The particle discharge pipe 15 is formed of a slenderly extending cylindrical member, and its upper end is connected to the particle drop port 21. Thus, the upper end of the particle discharge pipe 15 is in communication with the particle drop port 21 of the cyclone body 14. The cyclone body, and particle discharge pipe may be made of any suitable material, such as stainless steel or high nickel alloy. [0018] The fluidized bed reactor 1 is further equipped with a knock-out pot 22 connected to the lower part of the particle discharge pipe 15 outside of the reaction column 2 for collecting particles discharged from the particle discharge pipe. The fluidized bed reactor 1 may also include a vibrator 23 that is attached to the particle discharge pipe 15 outside of the reaction column 2 for removing any accumulated solids in the discharge pipe. The fluidized bed reactor 1 may preferably also include a high pressure 2 purge line 24 that is attached to the particle discharge pipe 15 outside of the reaction column for removing any heavy cloggage in the pipe. The knock-out pot 22 may further include a 2 bump 25 for periodically freeing up space inside the knock-out pot. The particle discharge pipe 15 and the knock-out pot 22 of the fluidized bed reactor outside of the reaction column can be well insulated and/or heat traced to prevent the condensation of gases and evaporation of low boiling point compounds.
[0019] The workings of the above-described fluidized bed reactor are described using the hydro fluorination of uranium dioxide (UO2) to uranium tetrafluoride (UF4) as an example. When hydrogen fluoride gas (HF) flows into the reaction column 2 through the gas inflow pipe 8 and into the gas chamber 7, it ascends inside the reaction column 2 past the main fluidized bed 12 of UO2 particles. While the gas is ascending through the main fluidized bed 12 in the reaction column 2, solid UO2 reacts with gaseous HF to produce solid UF4 and H2O gas according to the following reaction formula: UO2 (s) + 4HF (g)→ UF4 (s) + 2H2O (g). The relatively small-diameter particles of the UO2 and UF4 constituting the main fluidized bed 12 accompany the ascending gas stream, and flow upwardly from the main fluidized bed 12. The linear velocity of the gas gradually decreases while the gas is moving upwards across the taper portion 4 with an upwardly gradually increasing sectional area. Thus, the particles other than considerably small particles are separated from the ascending gas stream, and fall back into the main fluidized bed 12. In the free board portion 3 of the reaction column 2, the gas accompanied by small-diameter UO2 and UF4 particles enters the cyclone body 14 through the gas intake opening 18. In the cyclone body 14, the small-diameter particles accompanying the gas are separated from the gas by the cyclone 13, which works based on principles that are generally known in the art and that are therefore not further described herein. The gas accompanied only by fine particles is discharged through the outlet pipe 20 through the gas outflow opening 19. The small-diameter particles separated from the gas in the cyclone body 14 fall through the particle drop port 21 and through to the particle discharge pipe 15 that is located substantially outside of the reaction column 2.
[0020] In a preferred embodiment of the present invention, a knock-out pot 22 is attached to the lower part of the particle discharge pipe 15 outside of the reaction column 2 and used to collect the particles discharged from the particle discharge pipe; knock-out pot 22 also supplies a seal that prevents process gas from escaping from the reactor system through the cyclone. In certain embodiments of the present invention, the knock-out pot 22 further includes a 2 bump 25 for periodically freeing up space inside the knock-out pot. In certain embodiments of the present invention, the knock-out pot 22 further includes a vent line (not shown in FIG. 1) which is applied to release pressure buildup when necessary or for maintenance purposes.
[0021] In certain embodiments of the present invention, a vibrator 23 is attached to the particle discharge pipe 15 outside of the reaction column 2 and used for removing any accumulated solids from the discharge pipe.
[0022] In certain embodiments of the present invention, a high pressure 2 purge line 24 is attached to the particle discharge pipe 15 outside of the reaction column and is used for the purpose of removing any heavy cloggage in the pipe.
[0023] In certain embodiments of the present invention, the particle discharge pipe 15 and the knock-out pot 22 of the cyclone outside of the reaction column are well insulated and/or heat traced to prevent the condensation of gases and evaporation of low boiling point compounds.
[0024] In a preferred embodiment of the present invention, the cyclone body 14 is installed in close proximity to the wall of the reaction column 2 to reduce the leg length inside the reaction column. The bottom conical section of the cyclone will be modified as follows: straight on the side against the reactor wall and angled on the other side so that the fines can flow out to the discharge pipe 15 with less obstacle. A 2 purge line 24 will be installed to prevent any pluggage in the discharge leg. The knock-out pot 22 will be bumped periodically to free up the space inside the knock-out pot. A vent line will also be applied to release pressure buildup in case of emergency or for maintenance purpose. [0025] In the present invention, the dimensions of the cyclone can be calculated based on the actual operating conditions, such as gas flow rate, solid holdup in the gas flow and solid capture efficiency of the cyclone

Claims

CLAIMS What is claimed is:
1. A fluidized bed reactor comprising:
a reaction column having a fluid portion;
gas inflow means for flowing a gas upwardly through the fluid portion of the reaction column;
particle feed means for feeding particles to the fluid portion of the reaction column; and
a cyclone capable of separating particles from the gas flowing upwardly from the fluid portion of the reaction column, the cyclone being located within the reaction column and being in communication with the gas flowing upwardly; wherein the cyclone comprises a cyclone body having a gas intake opening, a gas outflow opening, and a particle drop port; and
a particle discharge pipe having an upper part connected to the particle drop port of the cyclone body, and a lower part; wherein the particle discharge pipe is located substantially outside of the reaction column.
2. The fluidized bed reactor of claim 1, further comprising a knock-out pot attached to the lower part of the particle discharge pipe and located outside of the reaction column, wherein the knock-out pot is capable of collecting particles discharged from the particle discharge pipe.
3. The fluidized bed reactor of claim 1, further comprising a vibrator attached to the particle discharge pipe and located outside of the reaction column, wherein the vibrator is capable of removing solids that have accumulated in the particle discharge pipe.
4. The fluidized bed reactor of claim 1, further comprising a high pressure 2 purge line attached to the particle discharge pipe and located outside of the reaction column, wherein the high pressure 2 purge line is capable of removing heavy cloggage in the particle discharge pipe.
5. The fluidized bed reactor of claim 2, wherein the particle discharge pipe or the knockout pot, or both, comprise means for heat insulation.
6. A method of producing UF4, comprising reacting UO2 with HF gas in the fluidized bed reactor of any one of the preceding claims.
PCT/US2013/056723 2012-08-30 2013-08-27 Improved internal cyclone for fluidized bed reactor WO2014035924A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13833246.5A EP2890484A4 (en) 2012-08-30 2013-08-27 Improved internal cyclone for fluidized bed reactor
IN1532DEN2015 IN2015DN01532A (en) 2012-08-30 2013-08-27
CN201380045255.3A CN104602803B (en) 2012-08-30 2013-08-27 Improved internal cyclone for fluidized bed reactor
CA2882749A CA2882749A1 (en) 2012-08-30 2013-08-27 Improved internal cyclone for fluidized bed reactor
JP2015529914A JP6385351B2 (en) 2012-08-30 2013-08-27 Improved internal cyclone for fluidized bed reactors.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261695179P 2012-08-30 2012-08-30
US61/695,179 2012-08-30
US13/975,817 2013-08-26
US13/975,817 US8968693B2 (en) 2012-08-30 2013-08-26 Internal cyclone for fluidized bed reactor

Publications (1)

Publication Number Publication Date
WO2014035924A1 true WO2014035924A1 (en) 2014-03-06

Family

ID=50184215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/056723 WO2014035924A1 (en) 2012-08-30 2013-08-27 Improved internal cyclone for fluidized bed reactor

Country Status (7)

Country Link
US (1) US8968693B2 (en)
EP (1) EP2890484A4 (en)
JP (1) JP6385351B2 (en)
CN (1) CN104602803B (en)
CA (1) CA2882749A1 (en)
IN (1) IN2015DN01532A (en)
WO (1) WO2014035924A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11213888B2 (en) * 2016-05-03 2022-01-04 Raytheon Technologies Corporation Additive manufactured powder processing system
US10954448B2 (en) 2017-08-18 2021-03-23 Canadian Natural Resources Limited High temperature paraffinic froth treatment process
JP2019126759A (en) * 2018-01-23 2019-08-01 旭化成株式会社 Connection structure and fluid layer reaction device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0094488B1 (en) * 1982-05-17 1986-10-08 Ashland Oil, Inc. Separation of regenerated catalyst from combustion products
EP0211483A2 (en) * 1985-06-13 1987-02-25 Aalborg Ciserv International A/S Fluidized-bed reactor and its operational process
WO1990009841A1 (en) * 1986-09-03 1990-09-07 Mobil Oil Corporation Fluid catalytic cracking process and apparatus for more effective regeneration of zeolite catalyst
US20050166457A1 (en) * 1999-10-07 2005-08-04 Thomas Steer Apparatus for obtaining combustion gases of high calorific value
US7144447B2 (en) * 2001-06-19 2006-12-05 Voest-Alpine Industrieanlagenbau Gmbh & Co. Method and device for treating particulate material

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378542A (en) * 1941-08-30 1945-06-19 Standard Oil Co Method and apparatus for catalytic processes
US2596748A (en) * 1948-07-10 1952-05-13 Sinclair Refining Co Catalyst regeneration system
BE517536A (en) 1952-02-12
BE536276A (en) 1954-03-09
BE569961A (en) 1957-08-15
GB1037291A (en) * 1962-06-20 1966-07-27 Atomic Energy Authority Uk Improvements in or relating to the preparation of uranium tetrafluoride
JPS4716031Y1 (en) * 1968-12-02 1972-06-06
US3817872A (en) 1972-02-07 1974-06-18 Standard Oil Co Cyclone separation method and apparatus
US3888733A (en) * 1973-12-21 1975-06-10 Us Energy Fluidized-bed nuclear reactor
JPS5515626A (en) * 1978-07-20 1980-02-02 Babcock Hitachi Kk Drawing-out method for particle from cyclone installed in fluidized bed furnace
JPS5710688A (en) * 1980-06-24 1982-01-20 Babcock Hitachi Kk Reactor
FI62468C (en) 1981-08-24 1983-01-10 Ahlstroem Oy VIRVELBAEDDSREAKTOR
CN1009659B (en) * 1985-06-24 1990-09-19 法国石油公司 Process and equipment for fluidized bed catalytic cracking
GB8526540D0 (en) * 1985-10-28 1985-12-04 Shell Int Research Solids-fluid separation
JPS62187645U (en) * 1986-05-20 1987-11-28
JPH064198Y2 (en) * 1988-06-28 1994-02-02 三菱重工業株式会社 Chimney with dust removal device
US5271905A (en) * 1990-04-27 1993-12-21 Mobil Oil Corporation Apparatus for multi-stage fast fluidized bed regeneration of catalyst
JP2760137B2 (en) * 1990-05-31 1998-05-28 ソニー株式会社 Manufacturing method of magnetic head
US5401282A (en) * 1993-06-17 1995-03-28 Texaco Inc. Partial oxidation process for producing a stream of hot purified gas
US5776416A (en) 1995-11-14 1998-07-07 Tokuyama Corporation Cyclone and fluidized bed reactor having same
KR100321050B1 (en) 1998-12-09 2002-04-17 이구택 A fluidized-bed type reduction method and apparatus for fine iron ores
JP3981551B2 (en) * 2001-12-03 2007-09-26 株式会社荏原製作所 Reactor with particle / gas separator
US6918397B2 (en) * 2002-04-22 2005-07-19 Taiwan Semiconductor Flush system for dry film photoresist remover
US6962006B2 (en) * 2002-12-19 2005-11-08 Acusphere, Inc. Methods and apparatus for making particles using spray dryer and in-line jet mill
US7829030B2 (en) * 2004-12-30 2010-11-09 Exxonmobil Chemical Patents Inc. Fluidizing a population of catalyst particles having a low catalyst fines content
EE05544B1 (en) * 2007-09-05 2012-06-15 Aktsiaselts Narva ?Litehas Dust extraction chamber for separating solid particles from a vapor-gas mixture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0094488B1 (en) * 1982-05-17 1986-10-08 Ashland Oil, Inc. Separation of regenerated catalyst from combustion products
EP0211483A2 (en) * 1985-06-13 1987-02-25 Aalborg Ciserv International A/S Fluidized-bed reactor and its operational process
WO1990009841A1 (en) * 1986-09-03 1990-09-07 Mobil Oil Corporation Fluid catalytic cracking process and apparatus for more effective regeneration of zeolite catalyst
US20050166457A1 (en) * 1999-10-07 2005-08-04 Thomas Steer Apparatus for obtaining combustion gases of high calorific value
US7144447B2 (en) * 2001-06-19 2006-12-05 Voest-Alpine Industrieanlagenbau Gmbh & Co. Method and device for treating particulate material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2890484A4 *

Also Published As

Publication number Publication date
CA2882749A1 (en) 2014-03-06
US8968693B2 (en) 2015-03-03
JP6385351B2 (en) 2018-09-05
US20140065049A1 (en) 2014-03-06
CN104602803B (en) 2017-05-03
EP2890484A4 (en) 2016-06-29
JP2015531682A (en) 2015-11-05
CN104602803A (en) 2015-05-06
EP2890484A1 (en) 2015-07-08
IN2015DN01532A (en) 2015-07-03

Similar Documents

Publication Publication Date Title
US11542441B2 (en) FCC yield selectivity improvements in high containment riser termination systems
ES2160777T3 (en) HYDROCARBON FLUID CATALITICAL CHECK WITH INTEGRATED APPARATUS FOR THE SEPARATION AND EXTRACTION OF THE CATALYST.
TWI546500B (en) Ash and solids cooling in high temperature and high pressure environment
US8968693B2 (en) Internal cyclone for fluidized bed reactor
CN102849745B (en) Dust removal process and system for trichlorosilane production
JPH0765051B2 (en) Method for catalytic hydrogenation of hydrocarbon feedstock
JP2013500928A (en) Equipment and method for producing trichlorosilane
AU730075B2 (en) A process for producing liquid and, optionally, gaseous products from gaseous reactants
CN106554019B (en) A kind of technique of trichlorosilane synthetic tail gas purification system
CN105018129B (en) Device and method for producing gasoline from methyl alcohol by fluidized bed
CN110023460A (en) It will be used for the new equipment for being used for gas-liquid separation of such as three-phase fluid bed reactor of those used in the H-oil technique
CN1233451C (en) Contiuous industrial reactor of slurry state bed in gas, liquid and solid three phases
CN110139918A (en) It will be used for the new equipment for being used for gas-liquid separation of such as three-phase fluid bed reactor of those used in the H-oil technique
JP2015531682A5 (en)
CN103691211B (en) Rotational-flow purifying device for gaseous product in fluidized-bed residual oil hydrogenation reactor and method for purifying gaseous product by same
KR101534879B1 (en) Apparatus and method for top removal of granular and fine material from a fluidized bed deposition reactor
JP2011527625A5 (en)
CN113694841B (en) Gas-solid fluidized bed reactor with uniformly distributed gas
US7060228B2 (en) Internal device for separating a mixture that comprises at least one gaseous phase and one liquid phase
CN101564665A (en) Fluidized bed reactor
US9039841B2 (en) Cleaning and/or unblocking of process equipment
EP2646139B1 (en) Apparatus and process for the polymerisation of olefins
CN103055769B (en) Organic silicon monomer fluidized bed film reactor and technology thereof
CN209890259U (en) Polycrystalline silicon production device without generating slurry
US20080051476A1 (en) Alcohol production means

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2882749

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015529914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE