WO2014035036A1 - Apparatus including wind guide for converting building wind power to heat source - Google Patents

Apparatus including wind guide for converting building wind power to heat source Download PDF

Info

Publication number
WO2014035036A1
WO2014035036A1 PCT/KR2013/005559 KR2013005559W WO2014035036A1 WO 2014035036 A1 WO2014035036 A1 WO 2014035036A1 KR 2013005559 W KR2013005559 W KR 2013005559W WO 2014035036 A1 WO2014035036 A1 WO 2014035036A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
rotor
building
wind power
heat
Prior art date
Application number
PCT/KR2013/005559
Other languages
French (fr)
Korean (ko)
Inventor
이장호
Original Assignee
군산대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 군산대학교산학협력단 filed Critical 군산대학교산학협력단
Priority to CN201380045104.8A priority Critical patent/CN104641104B/en
Publication of WO2014035036A1 publication Critical patent/WO2014035036A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0427Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels with converging inlets, i.e. the guiding means intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/18Combinations of wind motors with apparatus storing energy storing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/22Wind motors characterised by the driven apparatus the apparatus producing heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • F05B2240/133Stators to collect or cause flow towards or away from turbines with a convergent-divergent guiding structure, e.g. a Venturi conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/911Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
    • F05B2240/9112Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose which is a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a building wind energy source having a wind guide, more specifically, the front portion and the rear portion is raised in accordance with the longitudinal ratio of the front portion and the rear portion coupled in the form of rising in the opposite direction from the top of the rotor blades
  • the present invention relates to a building wind energy source having a wind guide for adjusting the angle to increase the heat generation efficiency of the wind power source.
  • a wind power generation system using wind force converts kinetic energy of air into other energy by air flow (wind), and usually rotates a wing (propeller) using air flow (wind). It is a system to get electricity by driving a generator.
  • the wind power generation system needs to convert the kinetic energy of the wind into electrical energy and convert the electrical energy into thermal energy, which causes considerable heat loss during energy conversion. Since the system (device) according to the energy conversion must be provided, there is a disadvantage that requires a huge cost and the maintenance cost of the system (device).
  • the efficiency is reduced by being given a range that can generate electricity according to the number of revolutions of the wing. That is, the electricity has a frequency of 50Hz or 60Hz, and if you want to obtain electricity in this frequency band is affected by the number of revolutions of the blade. Therefore, when the blade rotation speed is low or high, the electrical energy can not be obtained, thereby reducing the efficiency of energy conversion.
  • the kinetic energy of wind power is converted into mechanical rotational energy to rotate the permanent magnet, and the eddy current generated by rotating the permanent magnet is converted from the heating element to Joule heat.
  • a wind power generator for acquiring thermal energy without generating electricity such as an energy converter capable of providing energy to a heat medium outside the heating element.
  • the rotor of the wind power generator is installed on the roof of the building.
  • the building wind power generator installed on the roof of the building is installed without considering the shape of the roof, and does not have a separate facility for collecting wind to the rotor of the building wind power generator. Therefore, there is a problem that the heat generation efficiency is low.
  • An object of the present invention is to increase the heat generation efficiency of the wind power generator by allowing the wind to flow into the rotor of the building wind power generator using a wind guide at a high speed.
  • Another object of the present invention is to provide a building wind energy source that can produce a lot of heat even with the same wind by optimizing the shape of the wind guide according to the environment in which the wind guide is installed.
  • the wind guide has a top part having a front part and a rear part which are joined in contact with each other in the form of rising from the top of the rotor, a fixing part for supporting and fixing the upper part to the building, and a length and an elevation angle of the front part and the rear part. It is provided with an adjustable drive unit that can be adjusted, the rising angle of the front and rear parts is adjusted according to the longitudinal ratio of the front and rear parts according to the wind traveling direction.
  • the rotor is located at the bottom of the top.
  • the wind heater heats the heating medium according to the rotation of the rotor.
  • the heat collecting tank collects the heat medium heated by the wind heater.
  • a temperature control valve is installed between the wind heater and the collecting tank to control the flow of the heating medium according to the temperature of the heating medium.
  • the wind guide may have an elliptical cross section of the fixing part, and when the longitudinal ratio of the front part and the rear part is 2: 1, the rising angle of the front part is 25-35 °, and the rising angle of the rear part is 5 ⁇ . It may be 10 °, and when the longitudinal ratio of the front part and the rear part is 1: 1, the rising angle of the front part and the rising part of the rear part may be the same, and the upper surface thereof is formed flat and the wind inflows.
  • the front end is provided with an inclined surface rising toward the upper surface, and may further include a lower end spaced apart from the upper end and attached to the building located below the rotor.
  • the rotor may be plural.
  • the plurality of rotors are each separated by a plurality of fixing parts.
  • the rotor may be connected to and fixed to the wind guide.
  • the wind heater includes a rotor having a permanent magnet that generates eddy currents as the rotor rotates, and a heating element that generates eddy currents converted to Joule heat by the rotation of the rotor, and is heated while the heating medium moves inside the heating element.
  • Permanent magnets are arranged one by one along the outer circumferential surface of the rotor by the size of the permanent magnet, forming a plurality of lines along the length of the rotor.
  • the wind heater may heat the heating medium by frictional heat generated by the rotation of the rotor, or heat the heating medium through cavitation generated between the rotating body and the heating medium rotating according to the rotation of the rotor.
  • the present invention collects the wind to the rotor of the wind power generator by adjusting the rising angle in accordance with the length of the front and rear of the upper end portion and increases the speed of wind when passing through the rotor to increase the heat generation efficiency of the wind power generator. It can increase.
  • the present invention can adjust the length and the rising angle of the front portion and the rear portion of the wind guide according to the position and the direction of the wind guide is installed can increase the heat generation efficiency of the wind power source.
  • the present invention is to form a fixed section of the wind guide of the oval cross section to prevent the deterioration of the heat generation efficiency due to the installation of the fixing portion and rather increase the heat generation efficiency, the rotor of the wind power source is connected and fixed to the wind guide It is possible to minimize the effect of vibration and noise caused by the rotation of the rotor on the building.
  • the present invention improves the energy conversion efficiency by optimizing the permanent magnets arranged in the rotor in the structure in which the eddy current is generated in the rotation of the permanent magnet to heat the heat medium.
  • FIG. 1 is a perspective view showing a building wind power source according to an embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram showing a building wind power source according to an embodiment of the present invention.
  • FIG 3 is a view showing the upper end of the wind guide of the building wind power source according to an embodiment of the present invention.
  • FIG. 4 and 5 conceptually show that the wind guide of the building wind power source according to an embodiment of the present invention is installed in a building.
  • Figure 6 is a view showing an elliptical fixing portion of the wind guide of the building wind power source according to an embodiment of the present invention.
  • FIG. 7 is a view conceptually illustrating that the front and rear portions of the upper end of the wind guide of the building wind energy source according to an embodiment of the present invention adjust the length and the rising angle.
  • FIG 8 is a view showing the building wind power source of the embodiment the rotor is fixed to the upper end of the wind guide in the present invention.
  • FIG. 9 is a perspective view showing an example of a wind heater of the building wind power source according to an embodiment of the present invention.
  • FIG. 10 is a front cross-sectional view of FIG. 9.
  • FIG. 11 is a front sectional view showing another example of the wind heater of the building wind power source according to the embodiment of the present invention.
  • FIG. 12 is a plan sectional view of FIG.
  • FIGS. 13A to 13G are views conceptually illustrating various wind heaters of a building wind heat source according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a shape in which only the front part, the rear part, and the roof (or the lower part) of the wind guide of the building wind energy source according to the embodiment of the present invention are set and analyzed.
  • 15 is a diagram showing an inspection volume and boundary conditions for grasping flow characteristics.
  • FIG. 16 is a diagram showing grid generation for an analysis shape.
  • FIG. 17 is a view showing flow distribution between the wind guide and the roof for the 16 cases described in Table 3.
  • FIG. 17 is a view showing flow distribution between the wind guide and the roof for the 16 cases described in Table 3.
  • FIG. 18 is a diagram showing that the SN ratio of the analysis results of the 16 cases described in Table 3 is analyzed by the tower characteristic.
  • FIG. 18 is a diagram showing that the SN ratio of the analysis results of the 16 cases described in Table 3 is analyzed by the tower characteristic.
  • 19 is a view showing a comparison of the flow distribution between the wind guide and the roof of case 1, case 9, case 12.
  • Equation 20 is a chart showing the performance index of the wind guide obtained from Equation 1 for 16 cases.
  • FIG. 21 is a view showing an analysis shape for determining an increase in flow rate according to a change in an elevation angle of a front part with a length ratio of 1: 1 in a front part and a rear part.
  • FIG. 23 is a view showing experimental conditions for determining a figure of merit of a wind guide according to a shape of a fixing part
  • 24 and 25 are diagrams illustrating boundary conditions and mesh information applied to an experiment for determining a figure of merit of a wind guide according to a shape of a fixing part.
  • FIG. 26 and FIG. 27 are diagrams illustrating numerical analysis results of an experiment for determining an index of performance of a wind guide according to a shape of a fixing part.
  • FIG. 28 is a diagram illustrating a figure of merit of the wind guide according to the shape of the fixing part.
  • 29 (a) to (d) are views of a magnet arrangement comparative example and a magnet arrangement embodiment for analyzing torque according to a magnet arrangement of a wind heater of a building wind energy generator according to an embodiment of the present invention.
  • FIG. 30 is a configuration diagram of a test apparatus for testing torque and heating efficiency using a wind heater according to the magnet arrangement of FIG. 29.
  • 31 (a) and 31 (b) are diagrams illustrating the formation of magnetic force lines according to the magnet arrangement of FIG. 29.
  • 32 is an operational state diagram of the building wind power source according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a building wind power source according to an embodiment of the present invention (piping and collecting tank is omitted)
  • Figure 2 is a general configuration diagram showing a building wind power source according to an embodiment of the present invention.
  • the building wind power source 1000 includes a wind guide 1100, a rotor 1200, a wind heater 1300, a collection tank 1400, a piping line 1500, a pump 1600, and temperature control. Valve 1700.
  • the wind guide 1100 collects the wind to the rotor 1200 and accelerates the speed of the wind when passing through the rotor 1200, and includes an upper end 1110, a fixing unit 1120, and an adjustment driving unit.
  • the rotor 1200 is positioned below the upper end 1110 and rotates by wind.
  • the wind heater 1300 heats the heat medium according to the rotation of the rotor 1200.
  • the heat collecting tank 1400 the heat medium heated by the wind heater 1300 is collected.
  • the pipe line 1500 and the pump 1600 allow the heat medium to circulate between the heat collecting tank 1400 and the wind heater 1300, and the pipe line 1500 includes the heat medium supply pipe 1510 and the heat medium recovery pipe 1520 and return.
  • the tube 1530 is provided.
  • the temperature control valve 1700 controls the flow of the heat medium according to the temperature of the heat medium.
  • FIG. 3 is a view showing the upper end of the wind guide of the building wind power source according to an embodiment of the present invention
  • the wind guide 1100 includes an upper end 1110 and a fixing part 1120.
  • the upper end 1110 has a front portion 1111 and a rear portion 1112.
  • the front portion 1111 and the rear portion 1112 are coupled in a form in which one end is in contact with each other and rises.
  • the front portion 1111 and the rear portion 1112 may be plate-shaped, but is not limited thereto.
  • the ends of the front portion 1111 and the rear portion 1112 are rounded to reduce wind resistance and reduce the occurrence of turbulence.
  • the upper side surface of the upper end 1110 may have a V shape while forming a predetermined inclination to a portion where the front portion 1111 and the rear portion 1112 are in contact with each other.
  • the overall weight of the upper portion 1110 is reduced, so that the load is less applied to the fixing portion 1120, and it is possible to save the material is economical.
  • the volleyball water may be formed in a portion that is in contact with each other if necessary.
  • the upper side surface of the upper end 1110 may be formed flat, as shown in FIG.
  • the upper side shape of the upper end 1110 may vary depending on the installation environment.
  • the upper end 1110 is fixed to the base B such as a roof of a building through the fixing unit 1120.
  • the fixing part 1120 may be formed in an oval shape. More precisely, the fixing part 1120 may have an elliptical cross section that is horizontal to the wind traveling direction. When the fixing part 1120 is formed in an elliptical shape, there is an effect that the wind passes faster through the rotor 1200 (shown in FIGS. 1 and 2) positioned between the fixing parts 1120.
  • a rotor 1200 (shown in FIGS. 1 and 2) of the building wind power generator is located under the upper end 1110. 5 and 6, three or more fixing parts 1120 may be installed according to the width of the upper end part 1110, and the plurality of rotors 1200 may be disposed between the plurality of fixing parts 1120. May be located. As described above, when each rotor 1200 is separated by the plurality of fixing parts 1120, one rotor may be prevented from being affected by flow disturbance and interference caused by rotation of another rotor.
  • the plurality of fixing parts 1120 may have different sizes.
  • the fixing parts (1120a, 1120b) for supporting both ends of the side surface of the upper end 1110 may be formed to be thicker than the fixing portion located in the inner side to be able to stably support the upper end (1110).
  • the wind guide 1100 is installed such that wind is introduced into the front portion 1111 and discharged to the rear portion 1112. However, since the direction of the wind is variable, the direction of the wind flowing into the wind guide 1100 may be changed, but is installed in consideration of the direction of the main wind at the position where the wind guide 1100 of the building wind heat generator is installed.
  • the rising angle ⁇ 1 of the front portion 1111 and the rising angle ⁇ 2 of the rear portion 1112 are determined according to the longitudinal ratios Lf: Lr of the front portion 1111 and the rear portion 1112. Adjust The longitudinal ratio Lf: Lr between the front portion 1111 and the rear portion 1112 is a length ratio when the length of the front portion 1111 and the length of the rear portion 1112 are projected onto the reference plane.
  • the rising angles ⁇ 1 and ⁇ 2 of the front part 1111 and the rear part 1112 are angles at which the front part 1111 and the rear part 1112 make up the reference plane.
  • the reference plane refers to a plane perpendicular to the fixing unit 1120.
  • FIG. 7 is a view conceptually illustrating that the front and rear portions of the upper end of the wind guide according to the embodiment of the present invention adjust the length and the rising angle.
  • the longitudinal ratio of the front portion 1111 and the rear portion 1112 of the wind guide 1100 of the building wind heat generator is determined according to the height of the building or the surrounding environment. Accordingly, the elevation angles ⁇ 1 and ⁇ 2 of the front part 1111 and the rear part 1112 may also be determined. That is, the lengths and elevation angles ⁇ 1 and ⁇ 2 of the front portion 1111 and the rear portion 1112 may be fixed at the time of installation. However, the length and the rising angle of the front portion 1111 and the rear portion 1112 may be varied according to a position where the wind direction is frequently changed or obstacles around.
  • the front portion 1111 and the rear portion 1112 may adjust the length.
  • the wind guide 1100 of the building wind heat generator may be provided with an adjusting driver (not shown), and the front portion 1111 and the rear portion 1112 may each have two rectangular plates. have. The two rectangular plates are slidably coupled and one of the two rectangular plates is movable by means of an adjustable drive. Therefore, the length of the front portion 1111 and the rear portion 1112 can be increased or decreased.
  • the adjustment driver may adjust the inclination angles ⁇ 1 and ⁇ 2 by changing the inclinations of the front part 1111 and the rear part 1112. Therefore, it is possible to adjust the rising angles ⁇ 1 and ⁇ 2 of the front part 1111 and the rear part 1112 according to the change in the length of the front part 1111 and the rear part 1112.
  • the front portion 1111 and the rear portion 1112 may be rotatably coupled around the central axis 1130.
  • the length and the rising angle of the front portion 1111 and the rear portion 1112 may be changed according to circumstances. For example, when the wind guide 1100 is installed in a house located on the shore, since the sea wind is strong during the day, the front portion 1111 and the front portion 1111 and the front portion 1111 and the rear portion 1112 are based on the side where the sea wind is introduced. Determine the length and elevation angle of the rear portion 1112. Since the wind is strong at night, the length of the front part 1111 and the rear part 1112 and the rising angle of the front part 1111 and the rear part 1112 are determined based on the side where the meat wind is introduced.
  • the rotor 1200 is a part that rotates by wind, and is connected to a rotating shaft 1210, a rotor described later of the wind heater 1300, and a support part 1220 supporting the rotor 1200, and the rotating shaft 1210.
  • Rotation blades 1230 are supported by the radially extending spoke at and located at the bottom of the top portion 1110.
  • the vertical axis wind power source is described as an example, but the present invention is also applicable to the horizontal axis wind power source.
  • FIG. 8 is a view showing the building wind power source of the embodiment the rotor is fixed to the upper end of the wind guide in the present invention.
  • both ends of the rotating shaft 1210 may be fixed to the wind guide 1100 by the support part 1220.
  • the rotor 1200 of the wind generator 1000 is connected to and fixed to the wind guide 1100, thereby minimizing the effects of vibration and noise caused by the rotation of the rotor 1200 on the building.
  • the rotor 1200 is stably supported, durability becomes strong.
  • the wind heater 1300 heats the heat medium according to the rotation of the rotor 1200.
  • the wind heater 1300 is installed inside the base B, but may be installed outside the base B or may be installed without the base B.
  • FIG. 9 is a perspective view showing an example of a wind heater of the building wind power source according to an embodiment of the present invention
  • Figure 10 is a front sectional view of FIG.
  • the wind heater 1300 has a permanent magnet 1311 that generates an eddy current according to the rotation of the rotor 1200, and has a rotor 1310 connected to the support part 1220 and the rotor 1310.
  • the eddy current is converted into Joule heat and includes a heating element 1320 which generates heat, and is heated while the heating medium moves to the flow space S inside the heating element 1320.
  • the heat medium flows into the flow space S through the heat medium supply pipe 1510 and is heated, and then flows out through the heat medium recovery pipe 1520.
  • the permanent magnets 1311 are arranged one by one along the outer circumferential surface of the rotor 1310 by the size of the permanent magnets, and form a plurality of rows along the longitudinal direction of the rotor 1310.
  • the heating element 1320 is spaced apart from each other to have a gap around the permanent magnet 1311, and has a double tube shape in which a flow space S is formed.
  • the heating element 1320 is usually formed of a conductive material such as aluminum (Al), copper (Cu), or the like.
  • the heat medium uses a common liquid such as water or oil.
  • FIG. 11 is a front sectional view showing another example of the wind heater of the building wind power source according to the embodiment of the present invention
  • FIG. 12 is a plan sectional view of FIG.
  • the wind heater 2300 of the present embodiment has a form in which the heating element 2320 is wound so that the tube is spaced apart to have a gap around the permanent magnet 2311.
  • the heat medium flows into the flow space S1 of the tube that is the heating element 2320 through the heat medium supply pipe 1510, is heated, and then flows out through the heat medium recovery pipe 1520. Since the arrangement form of the rotor 2310 and the permanent magnet 2311 are the same as those of FIGS. 9 and 10, detailed description thereof will be omitted.
  • FIGS. 13A to 13G are views conceptually illustrating various wind heaters of a building wind heat source according to an embodiment of the present invention.
  • the wind heater heats the heating medium by frictional heat generated by the rotation of the rotor (FIGS. 13A to 13F), or the cavitation generated between the rotating body and the heating medium rotating according to the rotation of the rotor. It is also possible to heat the heat medium through (Fig. 13g).
  • Fig. 13g Detailed description of the various wind heaters is as follows.
  • FIG. 13A illustrates a method of using solid friction to press a brake shoe to a brake drum or a brake disc driven by a windmill to absorb frictional heat generated by a friction surface into a fluid such as water.
  • Figure 13b and Figure 13c is a fluid stirring method for rotating the shaft attached to the obstacle plate in the liquid using a friction between the solid and liquid
  • Figure 13c is a rotational force of the windmill to rotate the centrifugal pump and the friction of the outlet pipe water temperature It shows how to raise.
  • FIG. 13D is a low pressure blower type heat conversion device using friction between gas and solid
  • FIG. 13E is a method using friction between liquids by combining a hydraulic pump and an orifice, and a fixed capacity hydraulic pump is directly connected by a windmill.
  • FIG. 13F illustrates a method using eddy currents, in which rotors rotate between magnetic fields excited by microcurrents flowing through an excitation coil, pulsation of magnetic flux occurs, eddy currents occur, and eddy currents provide rotational resistance to the rotor and absorb power.
  • the load control or the rotational speed control are performed electrically, the response is good and the degree of rotational control of the rotor can be increased.
  • FIG. 13G is a method of heating the heating medium through cavitation generated between the rotating body and the heating medium according to the rotation of the rotor.
  • this method since the hydraulic pressure of the surface of the object moving at high speed in the fluid is reduced, cavitation is generated between the fluid introduced into the rotating members rotating in opposite directions, thereby obtaining a high temperature fluid. to be.
  • This method has high thermal efficiency, can increase environmental problems and convenience of maintenance of the heat engine, and it is effective in ease of use, elimination of risk factors, and cost reduction.
  • the heat medium heated by the wind heater 1300 is collected in the heat collecting tank 1400, and the heat medium collected in the heat collecting tank 1400 is used in a cooling and heating system through a heat exchanger (not shown).
  • the collection tank 1400 is connected to the wind heater 1300 through a piping line 1500.
  • the piping line 1500 includes a heat medium supply pipe 1510 for supplying a heat medium to the wind heater 1300 in the heat collecting tank 1400, and a heat medium recovery pipe 1520 for recovering the heat medium heated in the wind heater 1300.
  • a heat medium supply pipe 1510 for supplying a heat medium to the wind heater 1300 in the heat collecting tank 1400
  • a heat medium recovery pipe 1520 for recovering the heat medium heated in the wind heater 1300.
  • pipes are branched from the heat medium supply pipe 1510 to each wind heater 1300, while at each wind heater 1300.
  • a pipe is branched to the heat medium recovery pipe 1520.
  • the pipe line 1500 is provided with a pump 1600 for circulating the heat medium.
  • a temperature control valve 1700 is installed between the wind heater 1300 and the heat collecting tank 1400 to control the flow of the heat medium according to the temperature of the heat medium.
  • the piping line 1500 includes a return pipe 1530 that returns the heat medium of the heat medium recovery pipe 1520 to the heat medium supply pipe 1510 as the temperature control valve 1700 opens and closes.
  • the pump 1600 is installed in the heat medium supply pipe 1510, and the temperature control valve 1700 is installed in the heat medium recovery pipe 1520.
  • the temperature control valve 1700 is controlled by the controller in accordance with the temperature detection of a temperature sensor (not shown).
  • the pipe line 1500 may further include a plurality of valves for controlling the flow of the flow path.
  • the analysis shape set only the front part and the rear part and the roof (or the lower end part) of the wind guide.
  • the variables were ascending angle A of the front part, the rising angle B of the rear part, and the inclination C of the front end of a roof.
  • Specific specifications of the analysis shape are shown in Table 1, and the width of the front part and the rear part was set to 1m.
  • Inspection volume and boundary conditions are shown in FIG. 15.
  • the inspection volume was set to 10 times in the front, 20 times in the rear, and 10 times in the upper part of the size of the wind guide. Boundary conditions are described in detail in Table 4.
  • the stationery wall is a wall to which the actual wall condition is applied, and the free slip wall is a virtual wall, and there is no viscous effect of the fluid.
  • Grid generation is as shown in FIG.
  • a prism layer was placed around the analysis shape, and the thickness thereof was set to 5 mm. It also improves the grid density around the analysis shape.
  • the grating maximum size is 2 m and the minimum size is 0.03 m.
  • the number of grids is about 190,000.
  • FIG. 17 is a view showing a flow distribution between a wind guide and a roof for the 16 cases described in Table 3.
  • FIG. The increase in flow rate is determined by the performance index of the wind guide, and is obtained by Equation 1.
  • V m is the mean velocity
  • V ⁇ is the inlet velocity.
  • the flow distribution average value is obtained from the area where the rotor of the wind power generator is installed.
  • the average value of the flow distribution between the wind guide and the roof is calculated in minitab 14.1. Entered.
  • the analysis effects for each design factor were calculated using the SN ratio. The higher the mean value of the flow distribution, the better.
  • FIG. 18 is a diagram showing that the SN ratio of the analysis results of the 16 cases described in Table 3 is analyzed by the tower characteristic.
  • FIG. The factor-by-factor analysis shows that the best results can be obtained when the elevation angle A of the front part is three, the elevation angle B of the rear part is one, and the slope C of the front end of the roof is four. That is, when the elevation angle A of the front part is 30 degrees, the elevation angle B of the rear part is 10 degrees, and the inclination C of the front end of a roof is 30 degrees. In this case, case 9 is the most similar shape, although not in the analysis case. In actual production, in consideration of manufacturing error, the elevation angle A of the front part may be 10 to 35 °, and the elevation angle B of the rear part may be 5 to 10 °.
  • 19 is a view showing a comparison of the flow distribution between the wind guide and the roof of case 1, case 9, case 12.
  • case 9 compared to case 1, it can be seen that the wind speed is further increased in the rotor part of the wind power generator. This is because the rise angle (A) of the front portion of the wind guide increases the structure that can collect more flow.
  • the flow rate is very low in the rotor section of the wind generator. This is because the rising angle B of the rear portion increases from 10 ° to 40 ° so that the flow collected by the increase of the rising angle A of the front portion cannot be maintained, and the strong wind area is pushed backward.
  • FIG. 21 is a view showing an analysis shape for determining an increase in flow rate according to a change in the elevation angle of the front part at a ratio of 1: 1 in the front part and the rear part
  • FIG. 18 is a case in which the elevation angle of the front part is changed. It is a figure which shows a flow distribution.
  • FIGS. 26 and 27 The numerical results are shown in FIGS. 26 and 27.
  • the fixed part is a rectangular pillar
  • the average speed of the wind is slower than when the fixed part is not present. Therefore, there is a problem that the heat generation efficiency of the wind power source due to the fixed portion is lowered.
  • the fixed part is an elliptical column
  • the average speed of the wind is faster than without the fixed part. Therefore, by installing the fixing portion, the heat generation efficiency of the wind power generator is increased.
  • the figure of merit is as defined in equation (1).
  • the figure of merit of the case where there is no fixed part is 1.47
  • the figure of merit when the fixed part is a rectangular column
  • the figure of merit is 1.28
  • the figure of merit when the fixed part is an elliptical column is 1.58.
  • the performance index decreased by 12.92% in the case of the fixed part of the square column than the absence of the fixed part, and the performance index increased by 7.48% in the case of the elliptical column.
  • the heating efficiency may vary depending on the shape of the fixing part, and the shape of the fixing part is found to be preferably an elliptical column rather than a rectangular column.
  • FIG. 29A illustrates a magnet arrangement comparative example 1 in which the permanent magnets 1311 are arranged without gaps on the entire outer circumferential surface of the rotor 1310
  • FIG. 29B shows the permanent magnets 1311 as the rotors.
  • a magnet array comparative example 2 showing a state of being spaced apart by the size (width) of a permanent magnet along the outer circumferential surface of 1310 is shown, and FIG.
  • FIG. 29C shows the length of the rotor 1310 in FIG. 29A.
  • the magnet array comparative example 3 which shows the state arrange
  • FIG. 29 (d) shows the state which arrange
  • a magnet array embodiment of the present invention is shown.
  • Table 7 shows the results of testing torque and heat generation efficiency using water as the wind heater 1300 using the magnet array comparative examples 1 to 3 of FIG. 29 and the rotor 1310 of the magnet array example.
  • the test apparatus is shown in FIG. The test was carried out as follows.
  • the permanent magnet arrangement according to the embodiment of the present invention has a low number of magnets, high torque and efficiency, and does not cause overload of the motor. Can be.
  • FIG 32 is an operational state diagram of the building wind power source according to an embodiment of the present invention.
  • the wind gathers while passing through the wind guide 1100 and passes through the rotor 1200, so that the rotor blades 1230 rotate at a high speed.
  • the wind heater 1300 operates.
  • the heat medium in the collecting tank 1400 circulates through the wind heater 1300 along an arrow (solid line). The heat medium is heated and circulated while passing through the wind heater 1300. If the temperature of the heat medium recovered through the heat medium recovery pipe 1520 is sensed and does not reach the set temperature, the temperature control valve 1700 operates to return the tube 1530.
  • the heat medium is changed to the heat medium supply pipe 1510 through an arrow (dotted line) instead of being collected by the heat collecting tank 1400.
  • the heat collecting tank 1400 can always be stored in the heat medium of a constant temperature.
  • the heat medium collected in the heat collecting tank 1400 is used in a cooling and heating system through a heat exchanger (not shown).
  • the building wind energy source of the present invention by adjusting the rising angle according to the length of the front and rear of the upper end of the wind guide to collect the wind to the rotor of the wind power generator and the wind speed when passing through the rotor It is possible to increase the heat generation efficiency of the wind power source by increasing the speed, and also the present invention can adjust the length and the rising angle of the front and rear parts of the wind guide according to the position and the direction of the wind guide is installed wind power The heat generation efficiency of the original apparatus can be improved.
  • the present invention is to form a column of the elliptical cross section of the wind guide fixing portion to prevent the deterioration of the heating efficiency due to the installation of the fixing portion, rather can increase the heating efficiency, the rotor of the wind power source is connected to the wind guide By being fixed, it is possible to minimize the effect of vibration and noise caused by the rotation of the rotor on the building.
  • the present invention can increase the energy conversion efficiency while reducing the number of permanent magnets by optimizing the permanent magnets arranged in the rotor in the structure in which the eddy current is generated in the rotation of the permanent magnet to heat the heat medium.
  • It can be used in various fields such as power generation system, heating and cooling system, air conditioning machine and general industrial machine.

Abstract

The present invention relates to an apparatus including a wind guide for converting building wind power to a heat source, which includes the wind guide, a rotor, a wind power heater, and a heat collection tank. The wind guide has: an upper end portion that has a front portion and a rear portion which are coupled to each other in such a manner that the respective ends thereof are in contact with each other and both extend opposite each other above the rotor; a fixing unit that supports and fixes the upper end portion to a building; and an adjustment drive that is capable of adjusting the length and the elevation angle of the front portion and the rear portion respectively. The elevation angles of the front portion and the rear portion are adjusted according to a longitudinal direction ratio between the front portion and the rear portion in accordance with the direction of the wind. The rotor is disposed below the upper end portion. The wind power heater heats a heat medium by means of the rotation of the rotor. The heat medium heated by the wind power heater is collected in the heat collection tank. The apparatus for converting building wind power to a heat source according to the present invention uses the wind guide and allows the wind to flow at a high speed into the rotor of the apparatus for converting building wind power to a heat source so that heating efficiency of the apparatus for converting wind power to a heat source is increased. Also, the shape of the wind guide is optimized according to the environment in which the wind guide is installed so that more heat can be produced using the same amount of wind. Also, an eddy current is produced following the rotation of a permanent magnet so that the permanent magnet arranged in the rotor in a heat medium heating structure is optimized and energy conversion efficiency is increased.

Description

바람 가이드를 구비하는 건물 풍력 열원화장치Building wind power generator with wind guide
본 발명은 바람 가이드를 구비하는 건물 풍력 열원화장치에 관한 것으로, 보다 구체적으로는 회전날개 상부에서 서로 대향하여 상승하는 형태로 결합된 전방부와 후방부의 길이 방향 비율에 따라 전방부와 후방부의 상승 각도를 조절하여 풍력 열원화장치의 발열 효율을 높이는 바람 가이드를 구비하는 건물 풍력 열원화장치에 관한 것이다.The present invention relates to a building wind energy source having a wind guide, more specifically, the front portion and the rear portion is raised in accordance with the longitudinal ratio of the front portion and the rear portion coupled in the form of rising in the opposite direction from the top of the rotor blades The present invention relates to a building wind energy source having a wind guide for adjusting the angle to increase the heat generation efficiency of the wind power source.
일반적으로 바람의 힘(풍력)을 이용한 풍력 발전시스템이란 공기가 유동(바람)함으로써 공기가 가지는 운동에너지를 다른 에너지로 변환시키는 것으로, 보통 공기의 유동(바람)을 이용하여 날개(프로펠러)를 회전시켜 발전기를 구동시킴으로써 전기를 얻는 시스템이다.In general, a wind power generation system using wind force (wind power) converts kinetic energy of air into other energy by air flow (wind), and usually rotates a wing (propeller) using air flow (wind). It is a system to get electricity by driving a generator.
이러한 풍력 발전시스템은 바람이 가지는 운동에너지를 난방과 같은 열에너지로 사용하고자 하는 경우에는 바람이 가지는 운동에너지를 전기에너지로 변화시키고, 전기에너지를 열에너지로 변환시켜야 하므로 에너지 변환시 상당한 열손실이 발생하고, 에너지 변환에 따른 시스템(장치)을 구비하여야 하므로 막대한 비용과 시스템(장치)의 유지비용을 필요로 하는 단점이 있다.In case of using the kinetic energy of the wind as thermal energy such as heating, the wind power generation system needs to convert the kinetic energy of the wind into electrical energy and convert the electrical energy into thermal energy, which causes considerable heat loss during energy conversion. Since the system (device) according to the energy conversion must be provided, there is a disadvantage that requires a huge cost and the maintenance cost of the system (device).
또한, 바람이 가지는 운동에너지를 전기에너지로 변화시키는 경우에는 날개의 회전수에 따라 전기를 생성할 수 있는 범위가 주어짐으로써 효율성이 저하되는 단점이 있다. 즉, 전기는 50Hz 또는 60Hz의 주파수를 가지며, 이러한 주파수대의 전기를 획득하고자 할 경우에는 날개의 회전수의 영향을 받게 된다. 그러므로 날개의 회전수가 낮거나 높을 때에는 전기에너지를 획득하지 못하게 됨으로써 에너지 변환에 따른 효율성이 저하한다.In addition, in the case of changing the kinetic energy of the wind into electrical energy has a disadvantage that the efficiency is reduced by being given a range that can generate electricity according to the number of revolutions of the wing. That is, the electricity has a frequency of 50Hz or 60Hz, and if you want to obtain electricity in this frequency band is affected by the number of revolutions of the blade. Therefore, when the blade rotation speed is low or high, the electrical energy can not be obtained, thereby reducing the efficiency of energy conversion.
이러한 단점을 보완하기 위해 국내특허 제0554218호에 제안되어 있는 바와 같이 풍력의 운동에너지를 기계적 회전에너지로 전환하여 영구자석을 회전시키고, 이 영구자석을 회전시킴으로써 생성되는 와전류가 발열체에서 주울열로 변환되어 발열체 외부의 열매체에 에너지를 제공할 수 있는 에너지 변환기 등 전기를 발생시키지 않고 열에너지를 획득하는 풍력 열원화장치가 개시되어 있다.In order to compensate for this drawback, as proposed in Korean Patent No. 0554218, the kinetic energy of wind power is converted into mechanical rotational energy to rotate the permanent magnet, and the eddy current generated by rotating the permanent magnet is converted from the heating element to Joule heat. Disclosed is a wind power generator for acquiring thermal energy without generating electricity such as an energy converter capable of providing energy to a heat medium outside the heating element.
일반적으로 풍력 열원화장치의 회전자는 건물의 지붕에 설치된다. 이와 같이 건물의 지붕에 설치되는 건물 풍력 열원화장치는 지붕의 형태를 고려하지 않고 설치되며, 건물 풍력 열원화장치의 회전자에 바람을 모아주기 위한 별도의 설비를 하지 않는다. 따라서 발열 효율이 낮다는 문제점이 있다. In general, the rotor of the wind power generator is installed on the roof of the building. Thus, the building wind power generator installed on the roof of the building is installed without considering the shape of the roof, and does not have a separate facility for collecting wind to the rotor of the building wind power generator. Therefore, there is a problem that the heat generation efficiency is low.
본 발명의 목적은 바람 가이드를 이용하여 건물 풍력 열원화장치의 회전자에 바람이 빠른 속도로 유입되도록 하여 풍력 열원화장치의 발열 효율을 높일 수 있도록 하는 것이다. An object of the present invention is to increase the heat generation efficiency of the wind power generator by allowing the wind to flow into the rotor of the building wind power generator using a wind guide at a high speed.
본 발명의 다른 목적은 바람 가이드가 설치되는 환경에 따라 바람 가이드의 형상을 최적화하여 동일한 바람으로도 많은 열을 생산할 수 있는 건물 풍력 열원화장치를 제공하는 것이다.Another object of the present invention is to provide a building wind energy source that can produce a lot of heat even with the same wind by optimizing the shape of the wind guide according to the environment in which the wind guide is installed.
본 발명의 또 다른 목적은 영구자석의 회전에 와전류가 발생되어 열매체를 가열하는 구조에서 로터에 배열되는 영구자석을 최적화함으로써 에너지 변환효율을 높이는 건물 풍력 열원화장치를 제공하는 것이다.It is another object of the present invention to provide a building wind energy source that improves energy conversion efficiency by optimizing the permanent magnets arranged in the rotor in a structure in which eddy currents are generated in the rotation of the permanent magnets to heat the heat medium.
위와 같은 목적을 달성하기 위한 본 발명에 의한 건물 풍력 열원화장치는 바람가이드와 회전자와 풍력 가열기와 집열탱크를 포함한다. 바람가이드는 회전자 상부에서 서로 대향하여 상승하는 형태로 일단이 접하여 결합된 전방부 및 후방부를 구비하는 상단부와, 상단부를 건물에 지지 고정하는 고정부와, 전방부와 후방부의 길이 및 상승 각도를 조절할 수 있는 조절 구동부를 구비하고, 바람의 진행 방향에 따른 전방부 및 후방부의 길이 방향 비율에 따라 전방부 및 후방부의 상승 각도가 조절된다. 회전자는 상단부의 하부에 위치한다. 풍력 가열기는 회전자의 회전에 따라 열매체를 가열한다. 집열탱크에는 풍력 가열기에 의해 가열된 열매체가 모인다.Building wind power source device according to the present invention for achieving the above object includes a wind guide, a rotor, a wind heater and a collecting tank. The wind guide has a top part having a front part and a rear part which are joined in contact with each other in the form of rising from the top of the rotor, a fixing part for supporting and fixing the upper part to the building, and a length and an elevation angle of the front part and the rear part. It is provided with an adjustable drive unit that can be adjusted, the rising angle of the front and rear parts is adjusted according to the longitudinal ratio of the front and rear parts according to the wind traveling direction. The rotor is located at the bottom of the top. The wind heater heats the heating medium according to the rotation of the rotor. The heat collecting tank collects the heat medium heated by the wind heater.
풍력 가열기와 집열탱크 사이에는 열매체의 온도에 따라 열매체의 흐름을 제어하는 온도 제어 밸브가 설치되는 것이 바람직하다.It is preferable that a temperature control valve is installed between the wind heater and the collecting tank to control the flow of the heating medium according to the temperature of the heating medium.
바람 가이드는 그 고정부의 단면을 타원형으로 형성할 수 있고, 그 전방부 및 후방부의 길이 방향 비율이 2:1인 경우에 전방부의 상승 각도를 25~35°로 하며 후방부의 상승 각도를 5~10°로 할 수 있으며, 그 전방부 및 후방부의 길이 방향 비율이 1:1인 경우에 전방부의 상승 각도와 후방부의 상승 각도를 동일하게 할 수 있고, 그 상부면이 평평하게 형성되며 바람이 유입되는 전단이 상부면을 향해 상승하는 경사면을 구비하고, 상단부와 이격되어 회전자 하부에 위치하여 건물에 부착되는 하단부를 더 포함할 수 있다. The wind guide may have an elliptical cross section of the fixing part, and when the longitudinal ratio of the front part and the rear part is 2: 1, the rising angle of the front part is 25-35 °, and the rising angle of the rear part is 5 ~. It may be 10 °, and when the longitudinal ratio of the front part and the rear part is 1: 1, the rising angle of the front part and the rising part of the rear part may be the same, and the upper surface thereof is formed flat and the wind inflows. The front end is provided with an inclined surface rising toward the upper surface, and may further include a lower end spaced apart from the upper end and attached to the building located below the rotor.
회전자는 복수일 수 있다. 복수의 회전자는 복수의 고정부에 의해 각각 분리된다. 그리고, 회전자는 바람 가이드에 연결되어 고정될 수 있다.The rotor may be plural. The plurality of rotors are each separated by a plurality of fixing parts. The rotor may be connected to and fixed to the wind guide.
풍력 가열기는 회전자의 회전에 따라 와전류를 발생하는 영구자석을 가지는 로터와, 로터의 회전에 따른 와전류가 주울열로 전환되어 발열되는 발열체를 구비하며, 발열체의 내부로 열매체가 이동하면서 가열된다. 영구자석은 로터의 외주면을 따라 영구자석의 크기만큼 이격되어 하나씩 배열되어 있으며, 로터의 길이방향을 따라 다수의 줄을 이룬다.The wind heater includes a rotor having a permanent magnet that generates eddy currents as the rotor rotates, and a heating element that generates eddy currents converted to Joule heat by the rotation of the rotor, and is heated while the heating medium moves inside the heating element. Permanent magnets are arranged one by one along the outer circumferential surface of the rotor by the size of the permanent magnet, forming a plurality of lines along the length of the rotor.
풍력 가열기는 회전자의 회전에 의해 발생하는 마찰열에 의해 열매체를 가열하거나, 회전자의 회전에 따라 회전하는 회전체와 열매체 사이에 발생하는 캐비테이션(cavitavion)을 통해 열매체를 가열할 수도 있다.The wind heater may heat the heating medium by frictional heat generated by the rotation of the rotor, or heat the heating medium through cavitation generated between the rotating body and the heating medium rotating according to the rotation of the rotor.
본 발명은 상단부의 전방부와 후방부의 길이에 따라 상승 각도를 조절하여 바람을 풍력 열원화장치의 회전자로 모아주며 회전자를 지날 때 바람의 속도를 빠르게 하여 풍력 열원화장치의의 발열 효율을 높일 수 있다. 또한 본 발명은 바람 가이드가 설치되는 위치 및 바람의 방향에 따라 바람 가이드의 전방부와 후방부 길이 및 상승 각도를 조절할 수 있도록 하여 풍력 열원화장치의 발열 효율을 높일 수 있다. The present invention collects the wind to the rotor of the wind power generator by adjusting the rising angle in accordance with the length of the front and rear of the upper end portion and increases the speed of wind when passing through the rotor to increase the heat generation efficiency of the wind power generator. It can increase. In addition, the present invention can adjust the length and the rising angle of the front portion and the rear portion of the wind guide according to the position and the direction of the wind guide is installed can increase the heat generation efficiency of the wind power source.
본 발명은 바람 가이드의 고정부를 단면이 타원형인 기둥으로 형성하여 고정부의 설치로 인한 발열 효율의 저하를 막고 오히려 발열 효율을 높을 수 있으며, 풍력 열원화장치의 회전자가 바람 가이드에 연결 고정됨으로써 회전자의 회전에 의한 진동 및 소음이 건물에 미치는 영향을 최소화할 수 있다.The present invention is to form a fixed section of the wind guide of the oval cross section to prevent the deterioration of the heat generation efficiency due to the installation of the fixing portion and rather increase the heat generation efficiency, the rotor of the wind power source is connected and fixed to the wind guide It is possible to minimize the effect of vibration and noise caused by the rotation of the rotor on the building.
본 발명은 영구자석의 회전에 와전류가 발생되어 열매체를 가열하는 구조에서 로터에 배열되는 영구자석을 최적화함으로써 에너지 변환효율을 높인다.The present invention improves the energy conversion efficiency by optimizing the permanent magnets arranged in the rotor in the structure in which the eddy current is generated in the rotation of the permanent magnet to heat the heat medium.
도 1은 본 발명의 실시예에 의한 건물 풍력 열원화장치를 나타내는 사시도이다.1 is a perspective view showing a building wind power source according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 의한 건물 풍력 열원화장치를 나타내는 전체 구성도이다.2 is an overall configuration diagram showing a building wind power source according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 건물 풍력 열원화장치의 바람 가이드의 상단부를 나타내는 도면이다.3 is a view showing the upper end of the wind guide of the building wind power source according to an embodiment of the present invention.
도 4 및 도 5은 본 발명의 실시예에 따른 건물 풍력 열원화장치의 바람 가이드가 건물에 설치된 것을 개념적으로 나타내는 도면이다.4 and 5 conceptually show that the wind guide of the building wind power source according to an embodiment of the present invention is installed in a building.
도 6는 본 발명의 실시예에 따른 건물 풍력 열원화장치의 바람 가이드의 타원형 고정부를 나타내는 도면이다.Figure 6 is a view showing an elliptical fixing portion of the wind guide of the building wind power source according to an embodiment of the present invention.
도 7는 본 발명의 실시예에 따른 건물 풍력 열원화장치의 바람 가이드의 상단부의 전방부와 후방부가 길이 및 상승 각도를 조절하는 것을 개념적으로 나타내는 도면이다. 7 is a view conceptually illustrating that the front and rear portions of the upper end of the wind guide of the building wind energy source according to an embodiment of the present invention adjust the length and the rising angle.
도 8은 본 발명에서 회전자가 바람 가이드의 상단부에 고정된 실시예의 건물 풍력 열원화장치를 나타내는 도면이다.8 is a view showing the building wind power source of the embodiment the rotor is fixed to the upper end of the wind guide in the present invention.
도 9는 본 발명의 실시예에 따른 건물 풍력 열원화장치의 풍력 가열기의 일예를 나타내는 사시도이다.9 is a perspective view showing an example of a wind heater of the building wind power source according to an embodiment of the present invention.
도 10은 도 9의 정단면도이다.10 is a front cross-sectional view of FIG. 9.
도 11은 본 발명의 실시예에 따른 건물 풍력 열원화장치의 풍력 가열기의 다른 예를 나타내는 정단면도이다.11 is a front sectional view showing another example of the wind heater of the building wind power source according to the embodiment of the present invention.
도 12는 도 11의 평단면도이다.12 is a plan sectional view of FIG.
도 13a 내지 도 13g는 본 발명의 실시예에 따른 건물 풍력 열원화장치의 다양한 풍력 가열기를 개념적으로 나타내는 도면이다.13A to 13G are views conceptually illustrating various wind heaters of a building wind heat source according to an embodiment of the present invention.
도 14는 본 발명의 실시예에 따른 건물 풍력 열원화장치의 바람 가이드의 전방부와 후방부 및 지붕(또는 하단부)만을 설정하여 해석하는 형상을 나타내는 도면이다. FIG. 14 is a diagram illustrating a shape in which only the front part, the rear part, and the roof (or the lower part) of the wind guide of the building wind energy source according to the embodiment of the present invention are set and analyzed.
도 15는 유동 특성을 파악하기 위한 검사체적과 경계조건을 나타내는 도면이다. 15 is a diagram showing an inspection volume and boundary conditions for grasping flow characteristics.
도 16는 해석 형상에 대한 격자 생성을 나타내는 도면이다. FIG. 16 is a diagram showing grid generation for an analysis shape. FIG.
도 17은 표 3에 기재된 16개의 case에 대한 바람 가이드와 지붕 사이의 유동 분포를 나타내는 도면이다.FIG. 17 is a view showing flow distribution between the wind guide and the roof for the 16 cases described in Table 3. FIG.
도 18는 표 3에 기재된 16개 case의 해석결과의 SN비를 망대 특성으로 분석한 것을 나타내는 도면이다.FIG. 18 is a diagram showing that the SN ratio of the analysis results of the 16 cases described in Table 3 is analyzed by the tower characteristic. FIG.
도 19는 case 1, case 9, case 12의 바람 가이드와 지붕 사이의 유동 분포를 비교하여 나타내는 도면이다. 19 is a view showing a comparison of the flow distribution between the wind guide and the roof of case 1, case 9, case 12.
도 20은 수학식 1로부터 구한 바람 가이드의 성능 지수를 16개의 case에 대해서 나타낸 차트이다.20 is a chart showing the performance index of the wind guide obtained from Equation 1 for 16 cases.
도 21은 전방부와 후방부의 길이 방향 비율을 1:1로 하고 전방부의 상승 각도의 변화에 따른 유속 증가를 알아보기 위한 해석 형상을 나타내는 도면이다.FIG. 21 is a view showing an analysis shape for determining an increase in flow rate according to a change in an elevation angle of a front part with a length ratio of 1: 1 in a front part and a rear part.
도 22은 전방부의 상승 각도를 변화시키는 경우의 유동 분포를 나타내는 도면이다. It is a figure which shows the flow distribution in the case of changing the elevation angle of a front part.
도 23는 고정부의 형상에 따른 바람 가이드의 성능 지수를 알아보기 위한 실험 조건을 나타내는 도면이다 FIG. 23 is a view showing experimental conditions for determining a figure of merit of a wind guide according to a shape of a fixing part; FIG.
도 24과 도 25은 고정부의 형상에 따른 바람 가이드의 성능 지수를 알아보기 위한 실험에 적용한 경계 조건과 Mesh 정보를 나타내는 도면이다.24 and 25 are diagrams illustrating boundary conditions and mesh information applied to an experiment for determining a figure of merit of a wind guide according to a shape of a fixing part.
도 26와 도 27은 고정부의 형상에 따른 바람 가이드의 성능 지수를 알아보기 위한 실험의 수치 해석 결과를 나타내는 도면이다.FIG. 26 and FIG. 27 are diagrams illustrating numerical analysis results of an experiment for determining an index of performance of a wind guide according to a shape of a fixing part.
도 28는 고정부의 형상에 따른 바람 가이드의 성능 지수를 나타내는 도면이다.28 is a diagram illustrating a figure of merit of the wind guide according to the shape of the fixing part.
도 29의 (a) 내지 (d)는 본 발명의 실시예에 따른 건물 풍력 열원화장치의 풍력 가열기의 자석배열에 따른 토크를 분석하기 위한 자석배열 비교예 및 자석배열 실시예의 도면이다.29 (a) to (d) are views of a magnet arrangement comparative example and a magnet arrangement embodiment for analyzing torque according to a magnet arrangement of a wind heater of a building wind energy generator according to an embodiment of the present invention.
도 30은 도 29의 자석배열에 따른 풍력 가열기를 사용하여 토크 및 발열효율을 시험한 시험장치의 구성도이다.30 is a configuration diagram of a test apparatus for testing torque and heating efficiency using a wind heater according to the magnet arrangement of FIG. 29.
도 31의 (a) 및 (b)는 도 29의 자석배열에 따른 자기력선의 형성 상태도이다.31 (a) and 31 (b) are diagrams illustrating the formation of magnetic force lines according to the magnet arrangement of FIG. 29.
도 32은 본 발명의 실시예에 따른 건물 풍력 열원화장치의 작용상태도이다.32 is an operational state diagram of the building wind power source according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. At this time, it is noted that the same components in the accompanying drawings are represented by the same reference numerals as possible. In addition, detailed descriptions of well-known functions and configurations that may blur the gist of the present invention will be omitted. For the same reason, in the accompanying drawings, some components are exaggerated, omitted or schematically illustrated.
도 1은 본 발명의 실시예에 의한 건물 풍력 열원화장치를 나타내는 사시도이고(배관 및 집열탱크는 생략), 도 2는 본 발명의 실시예에 의한 건물 풍력 열원화장치를 나타내는 전체 구성도이다. 도시한 바와 같이 건물 풍력 열원화장치(1000)는 바람 가이드(1100)와 회전자(1200)와 풍력 가열기(1300)와 집열탱크(1400)와 배관 라인(1500)와 펌프(1600) 및 온도 제어 밸브(1700)를 포함한다.1 is a perspective view showing a building wind power source according to an embodiment of the present invention (piping and collecting tank is omitted), Figure 2 is a general configuration diagram showing a building wind power source according to an embodiment of the present invention. As shown, the building wind power source 1000 includes a wind guide 1100, a rotor 1200, a wind heater 1300, a collection tank 1400, a piping line 1500, a pump 1600, and temperature control. Valve 1700.
바람가이드(1100)는 바람을 회전자(1200)로 모아 주며 회전자(1200)를 지날 때 바람의 속도를 빠르게 하며, 상단부(1110)와 고정부(1120) 및 조절 구동부를 구비한다. 회전자(1200)는 상단부(1110)의 하부에 위치하며 바람에 의해 회전한다. 풍력 가열기(1300)는 회전자(1200)의 회전에 따라 열매체를 가열한다. 집열탱크(1400)에는 풍력 가열기(1300)에 의해 가열된 열매체가 모인다. 배관 라인(1500)과 펌프(1600)는 집열탱크(1400)와 풍력 가열기(1300)사이에 열매체가 순환되게 하며, 배관 라인(1500)은 열매체 공급관(1510)과 열매체 회수관(1520) 및 리턴관(1530)을 구비한다. 온도 제어 밸브(1700)는 열매체의 온도에 따라 열매체의 흐름을 제어한다.The wind guide 1100 collects the wind to the rotor 1200 and accelerates the speed of the wind when passing through the rotor 1200, and includes an upper end 1110, a fixing unit 1120, and an adjustment driving unit. The rotor 1200 is positioned below the upper end 1110 and rotates by wind. The wind heater 1300 heats the heat medium according to the rotation of the rotor 1200. In the heat collecting tank 1400, the heat medium heated by the wind heater 1300 is collected. The pipe line 1500 and the pump 1600 allow the heat medium to circulate between the heat collecting tank 1400 and the wind heater 1300, and the pipe line 1500 includes the heat medium supply pipe 1510 and the heat medium recovery pipe 1520 and return. The tube 1530 is provided. The temperature control valve 1700 controls the flow of the heat medium according to the temperature of the heat medium.
도 3은 본 발명의 실시예에 따른 건물 풍력 열원화장치의 바람 가이드의 상단부를 나타내는 도면이고, 도 4 및 도 5은 본 발명의 실시예에 따른 건물 풍력 열원화장치의 바람 가이드가 건물에 설치된 것을 개념적으로 나타내는 도면이며, 도 6은 본 발명의 실시예에 따른 건물 풍력 열원화장치의 바람 가이드의 타원형 고정부를 나타내는 도면이다. 도 3 내지 도 5에 도시한 바와 같이 바람 가이드(1100)는 상단부(1110)와 고정부(1120)를 포함한다. 상단부(1110)는 전방부(1111)와 후방부(1112)를 구비한다. 전방부(1111)와 후방부(1112)는 일단이 접하며 서로 대향하며 상승하는 형태로 결합된다. 전방부(1111)와 후방부(1112)는 판 형상이 될 수 있으나 이에 한정되는 것은 아니다. 전방부(1111)와 후방부(1112)의 끝단은 라운드 처리하여 바람의 저항을 덜 받게하며 난류의 발생을 감소시킬 수 있다. 상단부(1110)의 상측면은, 도 3의 (a)에 도시된 바와 같이, 전방부(1111)와 후방부(1112)가 접하는 부분으로 일정한 경사를 이루면서 v자 형상이 될 수 있다. 이 경우 상단부(1110)의 전체적인 무게가 줄어들어 고정부(1120)에 하중이 덜 가해지며, 재료를 아낄 수 있어 경제적이다. 이 경우 필요에 따라서는 접하는 부분에 배구수가 형성될 수도 있다. 상단부(1110)의 상측면은, 도 3의 (b)에 도시된 바와 같이, 평평하게 형성될 수도 있다. 상단부(1110)의 상측면 형상은 설치 환경에 따라 달라질 수 있다. 3 is a view showing the upper end of the wind guide of the building wind power source according to an embodiment of the present invention, Figures 4 and 5 is a wind guide of the building wind power source according to an embodiment of the present invention is installed in a building 6 is a diagram illustrating the elliptical fixing portion of the wind guide of the building wind energy source according to an embodiment of the present invention. 3 to 5, the wind guide 1100 includes an upper end 1110 and a fixing part 1120. The upper end 1110 has a front portion 1111 and a rear portion 1112. The front portion 1111 and the rear portion 1112 are coupled in a form in which one end is in contact with each other and rises. The front portion 1111 and the rear portion 1112 may be plate-shaped, but is not limited thereto. The ends of the front portion 1111 and the rear portion 1112 are rounded to reduce wind resistance and reduce the occurrence of turbulence. As shown in (a) of FIG. 3, the upper side surface of the upper end 1110 may have a V shape while forming a predetermined inclination to a portion where the front portion 1111 and the rear portion 1112 are in contact with each other. In this case, the overall weight of the upper portion 1110 is reduced, so that the load is less applied to the fixing portion 1120, and it is possible to save the material is economical. In this case, the volleyball water may be formed in a portion that is in contact with each other if necessary. The upper side surface of the upper end 1110 may be formed flat, as shown in FIG. The upper side shape of the upper end 1110 may vary depending on the installation environment.
상단부(1110)는 고정부(1120)를 통해 건물의 지붕 등의 베이스(B)에 지지 고정된다. 고정부(1120)는 타원형으로 형성할 수 있다. 보다 정확하게는 고정부(1120)는 바람의 진행 방향에 대해 수평인 단면이 타원형이 될 수 있다. 고정부(1120)가 타원형으로 형성되면 고정부(1120) 사이에 위치하는 회전자(1200 : 도 1 및 도 2에 도시)로 바람이 더 빠르게 통과하는 효과가 있다. The upper end 1110 is fixed to the base B such as a roof of a building through the fixing unit 1120. The fixing part 1120 may be formed in an oval shape. More precisely, the fixing part 1120 may have an elliptical cross section that is horizontal to the wind traveling direction. When the fixing part 1120 is formed in an elliptical shape, there is an effect that the wind passes faster through the rotor 1200 (shown in FIGS. 1 and 2) positioned between the fixing parts 1120.
상단부(1110)의 하부에는 건물 풍력 열원화장치의 회전자(1200 : 도 1 및 도 2에 도시)가 위치한다. 도 5 및 도 6에 도시된 바와 같이, 상단부(1110)의 폭에 따라 고정부(1120)는 3개 이상이 설치될 수 있으며, 복수의 고정부(1120) 사이에는 복수의 회전자(1200)가 위치할 수도 있다. 이와 같이 복수의 고정부(1120)에 의해 각각의 회전자(1200)가 분리되면 하나의 회전자가 다른 회전자의 회전에 따른 유동 교란과 간섭의 영향을 받는 것을 방지할 수 있다. A rotor 1200 (shown in FIGS. 1 and 2) of the building wind power generator is located under the upper end 1110. 5 and 6, three or more fixing parts 1120 may be installed according to the width of the upper end part 1110, and the plurality of rotors 1200 may be disposed between the plurality of fixing parts 1120. May be located. As described above, when each rotor 1200 is separated by the plurality of fixing parts 1120, one rotor may be prevented from being affected by flow disturbance and interference caused by rotation of another rotor.
복수의 고정부(1120)는 각각 그 크기를 달리 할 수 있다. 특히 상단부(1110) 측면의 양 끝단을 지지하는 고정부(1120a, 1120b)는 내측에 위치하는 고정부보다 더욱 굵게 형성하여 상단부(1110)을 안정적으로 지지할 수 있도록 할 수 있다.The plurality of fixing parts 1120 may have different sizes. In particular, the fixing parts (1120a, 1120b) for supporting both ends of the side surface of the upper end 1110 may be formed to be thicker than the fixing portion located in the inner side to be able to stably support the upper end (1110).
바람 가이드(1100)는 전방부(1111)로 바람이 유입되어 후방부(1112)로 배출되도록 설치된다. 다만, 바람의 방향은 가변적이므로 바람 가이드(1100)로 유입되는 바람의 방향을 바뀔 수 있지만, 건물 풍력 열원화장치의 바람 가이드(1100)가 설치되는 위치에서 주된 바람의 방향을 고려하여 설치한다.The wind guide 1100 is installed such that wind is introduced into the front portion 1111 and discharged to the rear portion 1112. However, since the direction of the wind is variable, the direction of the wind flowing into the wind guide 1100 may be changed, but is installed in consideration of the direction of the main wind at the position where the wind guide 1100 of the building wind heat generator is installed.
본 실시예에서는 전방부(1111)와 후방부(1112)의 길이 방향 비율(Lf:Lr)에 따라 전방부(1111)의 상승 각도(θ1)와 후방부(1112)의 상승 각도(θ2)를 조절한다. 전방부(1111)와 후방부(1112)의 길이 방향 비율(Lf:Lr)은 전방부(1111)의 길이와 후방부(1112)의 길이를 기준면에 투영시켰을 때의 길이 비율이다. 전방부(1111)와 후방부(1112)의 상승 각도(θ1, θ2)는 전방부(1111)와 후방부(1112)가 기준면과 이루는 각도이다. 여기서 기준면이란 고정부(1120)에 대해 수직인 면을 의미한다. In this embodiment, the rising angle θ1 of the front portion 1111 and the rising angle θ2 of the rear portion 1112 are determined according to the longitudinal ratios Lf: Lr of the front portion 1111 and the rear portion 1112. Adjust The longitudinal ratio Lf: Lr between the front portion 1111 and the rear portion 1112 is a length ratio when the length of the front portion 1111 and the length of the rear portion 1112 are projected onto the reference plane. The rising angles θ1 and θ2 of the front part 1111 and the rear part 1112 are angles at which the front part 1111 and the rear part 1112 make up the reference plane. Here, the reference plane refers to a plane perpendicular to the fixing unit 1120.
도 7는 본 발명의 실시예에 따른 바람 가이드의 상단부의 전방부와 후방부가 길이 및 상승 각도를 조절하는 것을 개념적으로 나타내는 도면이다. 바람 가이드(1100)가 설치될 건물이 결정되면, 건물의 높이나 주변 환경 등에 따라 건물 풍력 열원화장치의 바람 가이드(1100)의 전방부(1111)와 후방부(1112)의 길이 방향 비율이 정해지게 되며, 따라서 전방부(1111)와 후방부(1112)의 상승 각도(θ1, θ2)도 결정될 수 있다. 즉, 전방부(1111)와 후방부(1112)의 길이 및 상승 각도(θ1, θ2)는 설치시에 고정될 수도 있다. 그러나 바람의 방향이 자주 바뀌는 위치나 주변의 장애물 등에 따라 전방부(1111)와 후방부(1112)의 길이 및 상승 각도를 가변적으로 할 수도 있다. 7 is a view conceptually illustrating that the front and rear portions of the upper end of the wind guide according to the embodiment of the present invention adjust the length and the rising angle. When the building to which the wind guide 1100 is to be installed is determined, the longitudinal ratio of the front portion 1111 and the rear portion 1112 of the wind guide 1100 of the building wind heat generator is determined according to the height of the building or the surrounding environment. Accordingly, the elevation angles θ1 and θ2 of the front part 1111 and the rear part 1112 may also be determined. That is, the lengths and elevation angles θ1 and θ2 of the front portion 1111 and the rear portion 1112 may be fixed at the time of installation. However, the length and the rising angle of the front portion 1111 and the rear portion 1112 may be varied according to a position where the wind direction is frequently changed or obstacles around.
이에 대해서 구체적으로 살펴보면, 도 7의 (a)에 도시된 바와 같이, 전방부(1111)와 후방부(1112)는 길이를 조절할 수 있다. 이를 위해 건물 풍력 열원화장치의 바람 가이드(1100)는 조절 구동부(미도시)를 구비할 수 있으며, 전방부(1111)와 후방부(1112)는 각각 두 개의 직사각형 판을 구비한 형태가 될 수 있다. 두 개의 직사각형 판은 슬라이딩 가능하게 결합되며, 조절 구동부에 의해 두 개의 직사각형 판 중 하나가 이동이 가능하다. 따라서 전방부(1111)와 후방부(1112)의 길이를 늘리거나 줄일 수 있다. Looking at this in detail, as shown in (a) of Figure 7, the front portion 1111 and the rear portion 1112 may adjust the length. To this end, the wind guide 1100 of the building wind heat generator may be provided with an adjusting driver (not shown), and the front portion 1111 and the rear portion 1112 may each have two rectangular plates. have. The two rectangular plates are slidably coupled and one of the two rectangular plates is movable by means of an adjustable drive. Therefore, the length of the front portion 1111 and the rear portion 1112 can be increased or decreased.
또한 도 7의 (b)에 도시된 바와 같이, 조절 구동부는 전방부(1111)와 후방부(1112)의 경사를 변경하여 상승 각도(θ1, θ2)를 조절할 수 있다. 따라서 전방부(1111)와 후방부(1112)의 길이 변화에 따라 전방부(1111)와 후방부(1112)의 상승 각도(θ1, θ2)를 조절하는 것이 가능하다. 이를 위해 전방부(1111)와 후방부(1112)는 중심축(1130)을 중심으로 회전 가능하게 결합될 수 있다.In addition, as shown in FIG. 7B, the adjustment driver may adjust the inclination angles θ1 and θ2 by changing the inclinations of the front part 1111 and the rear part 1112. Therefore, it is possible to adjust the rising angles θ1 and θ2 of the front part 1111 and the rear part 1112 according to the change in the length of the front part 1111 and the rear part 1112. To this end, the front portion 1111 and the rear portion 1112 may be rotatably coupled around the central axis 1130.
이와 같은 구성을 통해 전방부(1111)와 후방부(1112)의 길이 및 상승 각도를 상황에 따라 변화시킬 수 있다. 예를 들어, 해안가에 위치한 주택에 바람 가이드(1100)가 설치되는 경우 낮에는 해풍이 강하므로 전방부(1111)와 후방부(1112) 중 해풍이 유입되는 측을 기준으로 전방부(1111)와 후방부(1112)의 길이 및 상승 각도를 결정한다. 밤에는 육풍이 강하므로 전방부(1111)와 후방부(1112) 중 육풍이 유입되는 측을 기준으로 전방부(1111)와 후방부(1112)의 길이 및 상승 각도를 결정한다. Through such a configuration, the length and the rising angle of the front portion 1111 and the rear portion 1112 may be changed according to circumstances. For example, when the wind guide 1100 is installed in a house located on the shore, since the sea wind is strong during the day, the front portion 1111 and the front portion 1111 and the front portion 1111 and the rear portion 1112 are based on the side where the sea wind is introduced. Determine the length and elevation angle of the rear portion 1112. Since the wind is strong at night, the length of the front part 1111 and the rear part 1112 and the rising angle of the front part 1111 and the rear part 1112 are determined based on the side where the meat wind is introduced.
회전자(1200)는 바람에 의해 회전하는 부분으로, 회전축(1210)과, 풍력 가열기(1300)의 후술하는 로터에 연결되며 회전자(1200)을 지지하는 지지부(1220)와, 회전축(1210)에서 반경방향으로 연장된 스포크에 의해 지지되는 회전날개(1230)을 포함하고, 상단부(1110)의 하부에 위치한다. 본 실시예에서는 수직축 풍력 열원화장치를 예로 설명하지만 수평축 풍력 열원화장치에도 본 발명이 적용 가능하다. The rotor 1200 is a part that rotates by wind, and is connected to a rotating shaft 1210, a rotor described later of the wind heater 1300, and a support part 1220 supporting the rotor 1200, and the rotating shaft 1210. Rotation blades 1230 are supported by the radially extending spoke at and located at the bottom of the top portion 1110. In the present embodiment, the vertical axis wind power source is described as an example, but the present invention is also applicable to the horizontal axis wind power source.
도 8은 본 발명에서 회전자가 바람 가이드의 상단부에 고정된 실시예의 건물 풍력 열원화장치를 나타내는 도면이다. 도 8에 도시된 바와 같이, 회전자(1200)는 회전축(1210)의 양 끝단이 지지부(1220)에 의해 바람 가이드(1100)에 고정될 수 있다. 풍력 발전기(1000)의 회전자(1200)가 바람 가이드(1100)에 연결 고정됨으로써 회전자(1200)의 회전에 의한 진동 및 소음이 건물에 미치는 영향을 최소화할 수 있다. 또한 회전자(1200)가 안정적으로 지지되므로, 내구성이 강해진다. 8 is a view showing the building wind power source of the embodiment the rotor is fixed to the upper end of the wind guide in the present invention. As shown in FIG. 8, both ends of the rotating shaft 1210 may be fixed to the wind guide 1100 by the support part 1220. The rotor 1200 of the wind generator 1000 is connected to and fixed to the wind guide 1100, thereby minimizing the effects of vibration and noise caused by the rotation of the rotor 1200 on the building. In addition, since the rotor 1200 is stably supported, durability becomes strong.
풍력 가열기(1300)는 회전자(1200)의 회전에 따라 열매체를 가열한다. 풍력 가열기(1300)는 베이스(B)의 내부에 설치되어 있으나, 베이스(B)의 외부에 설치될 수 있으며 베이스(B) 없이 설치될 수도 있다.The wind heater 1300 heats the heat medium according to the rotation of the rotor 1200. The wind heater 1300 is installed inside the base B, but may be installed outside the base B or may be installed without the base B.
도 9는 본 발명의 실시예에 따른 건물 풍력 열원화장치의 풍력 가열기의 일예를 나타내는 사시도이고, 도 10은 도 9의 정단면도이다. 도시한 바와 같이 풍력 가열기(1300)는 회전자(1200)의 회전에 따라 와전류를 발생하는 영구자석(1311)을 가지며 지지부(1220)에 연결된 로터(1310)와, 로터(1310)의 회전에 따른 와전류가 주울열로 전환되어 발열되는 발열체(1320)를 구비하며, 발열체(1320) 내부의 유동공간(S)으로 열매체가 이동하면서 가열된다. 열매체는 열매체 공급관(1510)을 통해 유동 공간(S)내로 유입되어 가열된 후 열매체 회수관(1520)을 통해 유출한다.9 is a perspective view showing an example of a wind heater of the building wind power source according to an embodiment of the present invention, Figure 10 is a front sectional view of FIG. As shown, the wind heater 1300 has a permanent magnet 1311 that generates an eddy current according to the rotation of the rotor 1200, and has a rotor 1310 connected to the support part 1220 and the rotor 1310. The eddy current is converted into Joule heat and includes a heating element 1320 which generates heat, and is heated while the heating medium moves to the flow space S inside the heating element 1320. The heat medium flows into the flow space S through the heat medium supply pipe 1510 and is heated, and then flows out through the heat medium recovery pipe 1520.
영구자석(1311)은 로터(1310)의 외주면을 따라 영구자석의 크기만큼 이격되어 하나씩 배열되어 있으며, 로터(1310)의 길이방향을 따라 다수의 줄을 이룬다. 발열체(1320)는 영구자석(1311)의 둘레에 틈새를 가지도록 이격되게 설치되며, 내부에 유동공간(S)이 형성된 이중관 형태로 되어 있다. 발열체(1320)는 보통 알루미늄(Al), 구리(Cu) 등의 전도성 재질로 형성된다. 열매체는 물이나 유류와 같은 통상의 액체를 사용한다.The permanent magnets 1311 are arranged one by one along the outer circumferential surface of the rotor 1310 by the size of the permanent magnets, and form a plurality of rows along the longitudinal direction of the rotor 1310. The heating element 1320 is spaced apart from each other to have a gap around the permanent magnet 1311, and has a double tube shape in which a flow space S is formed. The heating element 1320 is usually formed of a conductive material such as aluminum (Al), copper (Cu), or the like. The heat medium uses a common liquid such as water or oil.
도 11은 본 발명의 실시예에 따른 건물 풍력 열원화장치의 풍력 가열기의 다른 예를 나타내는 정단면도이고, 도 12는 도 11의 평단면도이다. 도시한 바와 같이 본 실시예의 풍력 가열기(2300)는 발열체(2320)가 튜브를 영구자석(2311)의 둘레에 틈새를 가지도록 이격되게 감은 형태로 되어 있다. 열매체는 열매체 공급관(1510)을 통해 발열체(2320)인 튜브의 유동공간(S1)내로 유입되어 가열된 후 열매체 회수관(1520)을 통해 유출한다. 로터(2310)와 영구자석(2311)의 배치 형태 등은 도 9 및 도 10의 구성과 동일하므로 자세한 설명은 생략한다.FIG. 11 is a front sectional view showing another example of the wind heater of the building wind power source according to the embodiment of the present invention, and FIG. 12 is a plan sectional view of FIG. As shown, the wind heater 2300 of the present embodiment has a form in which the heating element 2320 is wound so that the tube is spaced apart to have a gap around the permanent magnet 2311. The heat medium flows into the flow space S1 of the tube that is the heating element 2320 through the heat medium supply pipe 1510, is heated, and then flows out through the heat medium recovery pipe 1520. Since the arrangement form of the rotor 2310 and the permanent magnet 2311 are the same as those of FIGS. 9 and 10, detailed description thereof will be omitted.
이러한 풍력 가열기(1300)(2300)에서 회전자(1200 : 도 1 및 도 2에 도시)가 회전함에 따라 로터(1310)(2310)가 회전하면, 영구자석(1311)(2311)의 주위에는 순간적이며 계속적으로 자장이 변화하게 된다. 영구자석(1311)(2311) 주위의 자장 변화에 의해 발열체(1320)(2320)에서는 와전류(eddy current)가 발생하고, 발생된 와전류가 주울열로 변환하는 유도가열에 의한 가열방식으로 발열체(1320)(2320)에 형성된 유동공간(S)(S1) 내의 열매체를 가열한다.When the rotors 1310 and 2310 rotate as the rotors 1200 (shown in FIGS. 1 and 2) rotate in the wind heaters 1300 and 2300, the permanent magnets 1311 and 2311 are momentarily surrounded by the permanent magnets 1311 and 2311. And the magnetic field continuously changes. An eddy current is generated in the heating elements 1320 and 2320 due to a change in the magnetic field around the permanent magnets 1311 and 2311, and the heating element 1320 is heated by induction heating in which the generated eddy currents are converted to Joule heat. Heat medium in the flow space (S) (S1) formed in the (2320) is heated.
도 13a 내지 도 13g는 본 발명의 실시예에 따른 건물 풍력 열원화장치의 다양한 풍력 가열기를 개념적으로 나타내는 도면이다. 도시한 바와 같이 풍력 가열기는 회전자의 회전에 의해 발생하는 마찰열에 의해 열매체를 가열하거나(도 13a 내지 도 13f), 회전자의 회전에 따라 회전하는 회전체와 열매체 사이에 발생하는 캐비테이션(cavitavion)을 통해 열매체를 가열할 수도 있다(도 13g). 다양한 풍력 가열기를 구체적으로 설명하면 다음과 같다.13A to 13G are views conceptually illustrating various wind heaters of a building wind heat source according to an embodiment of the present invention. As shown, the wind heater heats the heating medium by frictional heat generated by the rotation of the rotor (FIGS. 13A to 13F), or the cavitation generated between the rotating body and the heating medium rotating according to the rotation of the rotor. It is also possible to heat the heat medium through (Fig. 13g). Detailed description of the various wind heaters is as follows.
도 13a는 고체마찰을 이용하는 것으로 풍차로 구동되는 브레이크드럼 또는 브레이크 디스크에 브레이크슈를 눌러 닿게 하여 마찰면에 발생하는 마찰열을 물 등의 유체에 흡수시켜 이용하는 방식이다. 도 13b와 도 13c는 고체와 액체의 마찰을 이용하는 것으로 도 13b는 장애물 판이 붙은 축을 액체 중에 회전시키는 유체교반 방식이며, 도 13c는 풍차의 회전력으로 원심펌프를 회전시키고 출구 관로의 관마찰로 수온을 올리는 방식을 도시하고 있다. 도 13d는 기체와 고체의 마찰을 이용하는 방식으로 저압 블로어식 열변환 장치이며, 도 13e는 유압펌프와 오리피스를 조합하여 액체끼리의 마찰을 이용하는 방식으로서, 풍차에 의해 고정용량형의 유압펌프가 직결 구동되고, 풍차에 의해 바람에너지가 기계에너지로 변환되고 기계에너지는 유압펌프에 의해 압력에너지로 변환되며, 이는 다시 오리피스에 의해 운동에너지로 변환되어 마지막으로 출구 유로에서 열에너지로 변환된다. 도 13f는 와전류를 이용하는 방식으로서, 여자코일을 흐르는 미소전류에 의해 여자되는 자장사이를 로터가 회전하여 자속의 맥동이 일어나고 와전류가 발생하고, 와전류는 로터에 회전저항을 주고 동력을 흡수한다. 이때 부하제어 혹은 회전수 제어는 전기적으로 행해지므로 응답성이 좋고, 로터의 회전제어 정도를 높일 수 있다.FIG. 13A illustrates a method of using solid friction to press a brake shoe to a brake drum or a brake disc driven by a windmill to absorb frictional heat generated by a friction surface into a fluid such as water. Figure 13b and Figure 13c is a fluid stirring method for rotating the shaft attached to the obstacle plate in the liquid using a friction between the solid and liquid, Figure 13c is a rotational force of the windmill to rotate the centrifugal pump and the friction of the outlet pipe water temperature It shows how to raise. FIG. 13D is a low pressure blower type heat conversion device using friction between gas and solid, and FIG. 13E is a method using friction between liquids by combining a hydraulic pump and an orifice, and a fixed capacity hydraulic pump is directly connected by a windmill. Driven, wind energy is converted into mechanical energy by windmills, and mechanical energy is converted into pressure energy by a hydraulic pump, which in turn is converted into kinetic energy by an orifice and finally by thermal energy in the outlet flow path. FIG. 13F illustrates a method using eddy currents, in which rotors rotate between magnetic fields excited by microcurrents flowing through an excitation coil, pulsation of magnetic flux occurs, eddy currents occur, and eddy currents provide rotational resistance to the rotor and absorb power. At this time, since the load control or the rotational speed control are performed electrically, the response is good and the degree of rotational control of the rotor can be increased.
도 13g는 회전자의 회전에 따라 회전체와 열매체 사이에 발생하는 캐비테이션(cavitation)을 통해 열매체를 가열하는 방법이다. 이 방법은 유체 속을 고속으로 움직이는 물체의 표면의 유압은 저하되므로, 서로 반대방향으로 회전하는 회전 부재의 내측으로 유입된 유체와의 사이에 캐비테이션을 발생하게 되고, 이를 통해 고온의 유체를 얻는 방식이다. 이러한 방법은 열효율이 높고 환경 문제와 열기관의 유지 관리의 편리성을 증대시킬 수 있으며, 사용의 편의성, 위험 요소의 제거, 비용의 절감 등의 효과가 있다. FIG. 13G is a method of heating the heating medium through cavitation generated between the rotating body and the heating medium according to the rotation of the rotor. In this method, since the hydraulic pressure of the surface of the object moving at high speed in the fluid is reduced, cavitation is generated between the fluid introduced into the rotating members rotating in opposite directions, thereby obtaining a high temperature fluid. to be. This method has high thermal efficiency, can increase environmental problems and convenience of maintenance of the heat engine, and it is effective in ease of use, elimination of risk factors, and cost reduction.
풍력 가열기(1300)에 의해 가열된 열매체는 집열탱크(1400)에 모이는데, 집열탱크(1400)에 모이는 열매체는 도시하지 않는 열교환기 등을 통해 냉난방 시스템에 사용된다. 집열탱크(1400)는 배관 라인(1500)을 통해 풍력 가열기(1300)에 연결된다. The heat medium heated by the wind heater 1300 is collected in the heat collecting tank 1400, and the heat medium collected in the heat collecting tank 1400 is used in a cooling and heating system through a heat exchanger (not shown). The collection tank 1400 is connected to the wind heater 1300 through a piping line 1500.
배관 라인(1500)은 집열탱크(1400)에서 풍력 가열기(1300)에 열매체를 공급하는 열매체 공급관(1510)과, 풍력 가열기(1300)에서 가열된 열매체를 회수하는 열매체 회수관(1520)을 구비한다. 복수의 회전자(1200) 및 복수의 풍력 가열기(1300)를 구비하는 건물 풍력 열원화장치에서는 열매체 공급관(1510)에서 각 풍력 가열기(1300)로 배관이 분기 설치되는 한편 각 풍력 가열기(1300)에서 열매체 회수관(1520)으로 배관이 분기 설치된다. The piping line 1500 includes a heat medium supply pipe 1510 for supplying a heat medium to the wind heater 1300 in the heat collecting tank 1400, and a heat medium recovery pipe 1520 for recovering the heat medium heated in the wind heater 1300. . In the building wind heat source apparatus including a plurality of rotors 1200 and a plurality of wind heaters 1300, pipes are branched from the heat medium supply pipe 1510 to each wind heater 1300, while at each wind heater 1300. A pipe is branched to the heat medium recovery pipe 1520.
배관 라인(1500)에는 열매체를 순환시키기 위한 펌프(1600)가 설치된다. 또한 풍력 가열기(1300)와 집열탱크(1400) 사이에는 열매체의 온도에 따라 열매체의 흐름을 제어하는 온도 제어 밸브(1700)가 설치된다. 배관 라인(1500)은 온도 제어 밸브(1700)의 개폐에 따라 열매체 회수관(1520)의 열매체를 열매체 공급관(1510)으로 리턴시키는 리턴관(1530)을 구비한다. 펌프(1600)는 열매체 공급관(1510)에 설치되고, 온도 제어 밸브(1700)는 열매체 회수관(1520)에 설치된다. 온도 제어 밸브(1700)는 도시하지 않는 온도센서의 온도 감지에 따라 제어부에 의해 제어된다. 배관 라인(1500)에는 유로의 흐름을 제어하기 위한 다수의 밸브가 추가로 구비될 수 있다.The pipe line 1500 is provided with a pump 1600 for circulating the heat medium. In addition, a temperature control valve 1700 is installed between the wind heater 1300 and the heat collecting tank 1400 to control the flow of the heat medium according to the temperature of the heat medium. The piping line 1500 includes a return pipe 1530 that returns the heat medium of the heat medium recovery pipe 1520 to the heat medium supply pipe 1510 as the temperature control valve 1700 opens and closes. The pump 1600 is installed in the heat medium supply pipe 1510, and the temperature control valve 1700 is installed in the heat medium recovery pipe 1520. The temperature control valve 1700 is controlled by the controller in accordance with the temperature detection of a temperature sensor (not shown). The pipe line 1500 may further include a plurality of valves for controlling the flow of the flow path.
건물 풍력 열원화장치의 바람 가이드의 전방부와 후방부의 상승 각도 및 지붕(또는 하단부) 전단의 경사 변화 따라 건물 풍력 발전기의 회전자로 유입되는 유동 특성을 분석하였다. 이를 위해 상용 CFD코드인 Sc/Tetra를 사용하였다. Flow characteristics introduced into the rotor of the building wind power generator were analyzed according to the elevation angles of the front and rear portions of the wind guide of the building wind energy source and the inclination of the front end of the roof (or the bottom). For this purpose, Sc / Tetra, a commercial CFD code, was used.
해석 형상은, 도 14에 도시된 바와 같이, 바람 가이드의 전방부와 후방부 및 지붕(또는 하단부)만을 설정하였다. 변수는 전방부의 상승 각도(A), 후방부의 상승 각도(B), 지붕 전단의 경사(C)로 하였다. 해석 형상에 대한 구체적인 제원은 표 1과 같으며, 전방부와 후방부의 폭은 1m로 설정하였다.As shown in FIG. 14, the analysis shape set only the front part and the rear part and the roof (or the lower end part) of the wind guide. The variables were ascending angle A of the front part, the rising angle B of the rear part, and the inclination C of the front end of a roof. Specific specifications of the analysis shape are shown in Table 1, and the width of the front part and the rear part was set to 1m.
표 1
Figure PCTKR2013005559-appb-T000001
Table 1
Figure PCTKR2013005559-appb-T000001
여기서 표 2와 같이 전방부의 상승 각도(A), 후방부의 상승 각도(B), 하단부 전단의 경사(C)를 변수로 하여 4수준으로 변화시키면 총 81개의 해석 case가 나온다. 81개의 case를 수치 해석을 하기에는 시간과 비용이 오래 걸리므로, 실험계획법중 하나인 다구찌 기법을 사용하여 해석 횟수를 표 3과 같이 16번으로 줄였다.In this case, as shown in Table 2, if the elevation angle (A) of the front part, the elevation angle (B) of the rear part, and the slope (C) of the front end of the lower part are changed to four levels, a total of 81 analysis cases are shown. Since it takes a long time and cost to analyze 81 cases numerically, the number of analyzes is reduced to 16 as shown in Table 3 using Taguchi, one of the experimental design methods.
표 2
Figure PCTKR2013005559-appb-T000002
TABLE 2
Figure PCTKR2013005559-appb-T000002
표 3
Figure PCTKR2013005559-appb-T000003
TABLE 3
Figure PCTKR2013005559-appb-T000003
해석 대상의 유동 특성을 파악하기 위해 1) 해석내부의 공기는 비압축성이며, 2) 중력에 대한 효과는 무시하고, 3) 정상상태를 유지한다고 가정하였다. 검사체적과 경계조건은 도 15에 도시된 바와 같다. 검사체적은 바람 가이드의 크기의 전방부는 10배, 후방부는 20배, 윗부분은 10배로 설정하였다. 경계조건은 표 4에 자세히 기재되어 있다. 여기서 Stationery wall은 실제 벽 조건이 적용되는 wall이고, Free slip wall은 가상의 벽으로 유체의 점성 효과가 나타나지 않는다. In order to understand the flow characteristics of the analysis object, it is assumed that 1) the air in the analysis is incompressible, 2) the effects on gravity are ignored, and 3) the steady state is maintained. Inspection volume and boundary conditions are shown in FIG. 15. The inspection volume was set to 10 times in the front, 20 times in the rear, and 10 times in the upper part of the size of the wind guide. Boundary conditions are described in detail in Table 4. In this case, the stationery wall is a wall to which the actual wall condition is applied, and the free slip wall is a virtual wall, and there is no viscous effect of the fluid.
표 4
Figure PCTKR2013005559-appb-T000004
Table 4
Figure PCTKR2013005559-appb-T000004
격자 생성은 도 16에 도시된 바와 같다. 해석 정확도를 높이기 위해 해석형상 주변에는 프리즘 레이어(prism layer)를 넣었으며, 그 두께는 5 mm로 설정하였다. 또한 해석형상 주변에 격자 밀집도를 향상시켰다. 격자 최대 사이즈는 2 m 이고 최소 사이즈는 0.03 m이다. 격자수는 약 19만개이다.Grid generation is as shown in FIG. In order to improve the accuracy of analysis, a prism layer was placed around the analysis shape, and the thickness thereof was set to 5 mm. It also improves the grid density around the analysis shape. The grating maximum size is 2 m and the minimum size is 0.03 m. The number of grids is about 190,000.
도 17은 표 3에 기재된 16개의 case에 대한 바람 가이드와 지붕 사이의 유동 분포를 나타내는 도면이다. 유속의 증가량을 바람 가이드의 성능 지수로 정하고 수학식 1로 구한다. 여기서 Vm은 mean velocity이고 V은 inlet velocity이다. 이때 유동 분포 평균값은 풍력 열원화장치의 회전자가 설치될 면적에서 구한다.FIG. 17 is a view showing a flow distribution between a wind guide and a roof for the 16 cases described in Table 3. FIG. The increase in flow rate is determined by the performance index of the wind guide, and is obtained by Equation 1. Where V m is the mean velocity and V is the inlet velocity. At this time, the flow distribution average value is obtained from the area where the rotor of the wind power generator is installed.
수학식 1
Figure PCTKR2013005559-appb-M000001
Equation 1
Figure PCTKR2013005559-appb-M000001
설계 인자인 전방부의 상승 각도(A), 후방부의 상승 각도(B), 지붕 전단의 경사(C)가 유속 증가량에 미치는 영향을 분석하기 위하여 바람 가이드와 지붕 사이의 유동분포의 평균값을 minitab 14.1에 입력했다. 여기서 SN비를 이용하여 설계인자별 해석영향을 구하였다. 유동분포의 평균값이 높을수록 좋으므로 망대특성으로 분석하였다. In order to analyze the effects of the design factors ascending angle (A) at the front, the ascending angle (B) at the rear, and the slope (C) at the front end of the roof on the flow rate increase, the average value of the flow distribution between the wind guide and the roof is calculated in minitab 14.1. Entered. Here, the analysis effects for each design factor were calculated using the SN ratio. The higher the mean value of the flow distribution, the better.
도 18는 표 3에 기재된 16개 case의 해석결과의 SN비를 망대 특성으로 분석한 것을 나타내는 도면이다. 인자별 분석은 전방부의 상승 각도(A)는 3번일 때, 후방부의 상승 각도(B)는 1번일 때, 지붕 전단의 경사(C)는 4번일 때 가장 좋은 결과를 가져올 수 있다는 것을 나타내고 있다. 즉, 전방부의 상승 각도(A)는 30°, 후방부의 상승 각도(B)는 10°, 지붕 전단의 경사(C) 30°일 때이다. 이 경우 해석 case에는 없었지만 case 9번이 가장 비슷한 형상이다. 실제 제작시에는 제작 오차를 고려하여 전방부의 상승 각도(A)는 10~35°, 후방부의 상승 각도(B)는 5~10°로 할 수 있다.FIG. 18 is a diagram showing that the SN ratio of the analysis results of the 16 cases described in Table 3 is analyzed by the tower characteristic. FIG. The factor-by-factor analysis shows that the best results can be obtained when the elevation angle A of the front part is three, the elevation angle B of the rear part is one, and the slope C of the front end of the roof is four. That is, when the elevation angle A of the front part is 30 degrees, the elevation angle B of the rear part is 10 degrees, and the inclination C of the front end of a roof is 30 degrees. In this case, case 9 is the most similar shape, although not in the analysis case. In actual production, in consideration of manufacturing error, the elevation angle A of the front part may be 10 to 35 °, and the elevation angle B of the rear part may be 5 to 10 °.
도 19는 case 1, case 9, case 12의 바람 가이드와 지붕 사이의 유동 분포를 비교하여 나타내는 도면이다. 19 is a view showing a comparison of the flow distribution between the wind guide and the roof of case 1, case 9, case 12.
case 9는 case 1과 비교 하였을 때 풍력 열원화장치의 회전자 부분에서 바람의 속도가 더욱 증가 된 것을 확인할 수 있다. 이는 바람 가이드의 전방부의 상승 각도(A)가 증가함에 따라서 유동을 더욱 많이 모아줄 수 있는 구조가 되었기 때문이다.In case 9, compared to case 1, it can be seen that the wind speed is further increased in the rotor part of the wind power generator. This is because the rise angle (A) of the front portion of the wind guide increases the structure that can collect more flow.
case 12에서는 풍력 발전기의 회전자 부분에서 유속이 매우 낮아 진 것을 확인할 수 있다. 이는 후방부의 상승 각도(B)가 10°에서 40°로 증가하여 전방부의 상승 각도(A)의 증가에 의해 모아진 유동이 유지되지 못하고 강풍 영역이 뒤쪽으로 밀려나 나타난 형상으로 보인다.In case 12, the flow rate is very low in the rotor section of the wind generator. This is because the rising angle B of the rear portion increases from 10 ° to 40 ° so that the flow collected by the increase of the rising angle A of the front portion cannot be maintained, and the strong wind area is pushed backward.
도 20은 수학식 1로부터 구한 바람 가이드의 성능 지수를 16개의 case에 대해서 나타낸 차트이다. case 9는 1.54, case 13은 1.56으로 좋은 값을 나타내고 있다. 이는 전방부의 상승 각도(A)가 커져서 앞에서 오는 유동을 많이 모아주고 후방부의 상승 각도(B)가 작아져서 앞쪽에서 모아준 유동을 그대로 유지시켜줘서 나타난 결과로 보인다. 따라서 바람 가이드의 성능 지수를 높이기 위해선 바람이 불어오는 쪽의 각도는 높이고 그 뒤쪽의 각도는 낮아야 풍력 발전기가 설치될 곳에서의 유속이 빨라질 것이다.20 is a chart showing the performance index of the wind guide obtained from Equation 1 for 16 cases. Case 9 is good at 1.54 and case 13 at 1.56. This seems to be the result of keeping the flow collected from the front as the ascending angle (A) of the front increases and collects much of the front flow, and the ascending angle (B) of the rear becomes small. Therefore, in order to increase the performance index of the wind guide, the angle at which the wind blows should be increased and the angle at the rear of the wind guide must be low to increase the flow velocity at the place where the wind generator is installed.
도 21은 전방부와 후방부의 길이 방향 비율을 1:1로 하고 전방부의 상승 각도의 변화에 따른 유속 증가를 알아보기 위한 해석 형상을 나타내는 도면이고, 도 18은 전방부의 상승 각도를 변화시키는 경우의 유동 분포를 나타내는 도면이다. FIG. 21 is a view showing an analysis shape for determining an increase in flow rate according to a change in the elevation angle of the front part at a ratio of 1: 1 in the front part and the rear part, and FIG. 18 is a case in which the elevation angle of the front part is changed. It is a figure which shows a flow distribution.
해석 형상에 대한 구체적인 제원은 표 5와 같다. Specific specifications of the analysis shape are shown in Table 5.
표 5
Figure PCTKR2013005559-appb-T000005
Table 5
Figure PCTKR2013005559-appb-T000005
전방부의 상승 각도(A) 변화에 따른 유동 분포를 알아보기 위해, 표 6과 같은 조건에서 실험을 하였다.In order to determine the flow distribution according to the change in the elevation angle (A) of the front portion, the experiment was performed in the conditions shown in Table 6.
표 6
Figure PCTKR2013005559-appb-T000006
Table 6
Figure PCTKR2013005559-appb-T000006
도 22에 나타난 바와 같이, 전방부와 후방부의 길이 방향 비율을 1:1인 경우 전방부의 상승 각도(A)의 변화에 따른 유동의 변화가 크지 않다. 따라서 전방부의 상승 각도(A)와 후방부의 상승 각도(B)를 동일하게 하여 바람의 변화가 생겨 후방부로 바람이 유입되는 경우에도 동일한 효과가 나타나도록 하는 것이 바람직하다. 특히, 도 18에서 후방부의 상승 각도(B)가 낮을수록 효과가 좋다는 것을 알 수 있으므로, 전방부와 후방부의 길이 방향 비율을 1:1인 경우 전방부의 상승 각도(A)와 후방부의 상승 각도(B)를 낮은 수치에서 동일하게 하는 것이 바람직하다. As shown in FIG. 22, when the length ratio of the front part to the rear part is 1: 1, the change of flow according to the change of the elevation angle A of the front part is not large. Therefore, it is preferable that the same effect occurs even when the wind is introduced into the rear part by changing the wind angle (A) of the front part and the rising angle B of the rear part. In particular, in FIG. 18, the lower the elevation angle B of the rear portion is, the better the effect is. Therefore, when the longitudinal ratio of the front portion and the rear portion is 1: 1, the elevation angle A of the front portion and the elevation angle of the rear portion ( It is preferable to make B) the same at low values.
고정부의 형상에 따른 바람 가이드의 성능 지수를 알아보기 위해 도 23에 도시된 바와 같이, 고정부가 없는 경우, 고정부가 사각형 기둥인 경우, 타원형 기둥인 경우로 나누어 실험하였다. 실험에 적용한 경계 조건과 Mesh 정보는 도 24과 도 25에 도시된 바와 같다. As shown in FIG. 23 to determine the performance index of the wind guide according to the shape of the fixing part, when there is no fixing part, the fixing part is a rectangular column, an experiment was divided into an elliptical column. The boundary condition and mesh information applied to the experiment are as shown in FIGS. 24 and 25.
수치해석 결과는 도 26와 도 27에 나타나 있다. 도 26와 도 27에서 알 수 있는 바와 같이, 고정부가 사각형 기둥인 경우에는 고정부가 없는 경우보다 바람의 평균 속도가 느려진다. 따라서 고정부로 인해 풍력 열원화장치의 발열 효율이 낮아지는 문제가 있다. 그러나 고정부를 타원형 기둥으로 하는 경우에는 고정부가 없는 경우보다 바람의 평균 속도가 빨라진다. 따라서 고정부를 설치함으로써 오히려 풍력 열원화장치의 발열 효율이 높아지게 된다.The numerical results are shown in FIGS. 26 and 27. As can be seen from Fig. 26 and Fig. 27, when the fixed part is a rectangular pillar, the average speed of the wind is slower than when the fixed part is not present. Therefore, there is a problem that the heat generation efficiency of the wind power source due to the fixed portion is lowered. However, when the fixed part is an elliptical column, the average speed of the wind is faster than without the fixed part. Therefore, by installing the fixing portion, the heat generation efficiency of the wind power generator is increased.
이를 성능 지수로 비교하면 도 28에 도시된 바와 같다. 성능 지수는 수학식 1에서 정의한 바와 같다. 고정부가 없는 경우의 성능 지수는 1.47, 고정부가 사각형 기둥인 경우의 성능 지수는 1.28, 고정부가 타원형 기둥인 경우의 성능 지수는 1.58이다. 고정부가 사각형 기둥인 경우는 고정부가 없는 경우보다 성능 지수가 12.92%감소하였고, 고정부가 타원형 기둥인 경우는 고정부가 없는 경우보다 성능 지수가 7.48% 증가하였다. Comparing this with the figure of merit, it is as shown in FIG. The figure of merit is as defined in equation (1). The figure of merit of the case where there is no fixed part is 1.47, the figure of merit when the fixed part is a rectangular column, and the figure of merit is 1.28, and the figure of merit when the fixed part is an elliptical column is 1.58. The performance index decreased by 12.92% in the case of the fixed part of the square column than the absence of the fixed part, and the performance index increased by 7.48% in the case of the elliptical column.
이와 같은 실험을 통해 고정부의 형상에 따라 발열 효율이 달라질 수 있으며, 고정부의 형상은 사각형 기둥보다는 타원형 기둥인 것이 바람직하다는 것을 알 수 있었다.Through such experiments, the heating efficiency may vary depending on the shape of the fixing part, and the shape of the fixing part is found to be preferably an elliptical column rather than a rectangular column.
도 29의 (a) 내지 (d)는 도 9 및 도 10에 도시된 본 발명의 실시예에 따른 건물 풍력 열원화장치의 풍력 가열기(1300)의 로터(1310)에 영구자석(1311)이 배열된 상태에 따른 토크를 분석하기 위한 자석배열 비교예 및 자석배열 실시예의 도면이다. 도 29의 (a)는 영구자석(1311)을 로터(1310)의 전 외주면에 간격 없이 배열한 상태를 나타내는 자석배열 비교예 1을 나타내고, 도 29의 (b)는 영구자석(1311)을 로터(1310)의 외주면을 따라 영구자석의 크기(폭)만큼 이격시켜 배열한 상태를 나타내는 자석배열 비교예 2를 나타내며, 도 29의 (c)는 도 29의 (a)에서 로터(1310)의 길이방향을 따라 1줄씩 띄워 배열한 상태를 나타내는 자석배열 비교예 3을 나타내며, 도 29의 (d)는 도 29의 (c)에서 로터(1310)의 길이방향을 따라 1줄씩 띄워 배열한 상태를 나타내는 본 발명의 자석배열 실시예를 나타낸다.29 (a) to (d) is a permanent magnet 1311 is arranged in the rotor 1310 of the wind heater 1300 of the building wind power source according to the embodiment of the present invention shown in FIGS. 9 and 10 Figures of the magnet array comparative example and the magnet array embodiment for analyzing the torque according to the state. FIG. 29A illustrates a magnet arrangement comparative example 1 in which the permanent magnets 1311 are arranged without gaps on the entire outer circumferential surface of the rotor 1310, and FIG. 29B shows the permanent magnets 1311 as the rotors. A magnet array comparative example 2 showing a state of being spaced apart by the size (width) of a permanent magnet along the outer circumferential surface of 1310 is shown, and FIG. 29C shows the length of the rotor 1310 in FIG. 29A. The magnet array comparative example 3 which shows the state arrange | positioned by one line along the direction is shown, FIG. 29 (d) shows the state which arrange | positioned one line along the longitudinal direction of the rotor 1310 in FIG. 29 (c). A magnet array embodiment of the present invention is shown.
표 7은 도 29의 자석배열 비교예 1 내지 3 및 자석배열 실시예의 로터(1310)를 사용한 풍력가열기(1300)로 물을 사용하여 토크 및 발열 효율을 시험한 결과이다. 시험장치는 도 30에 도시되어 있다. 시험은 다음과 같이 실시하였다.Table 7 shows the results of testing torque and heat generation efficiency using water as the wind heater 1300 using the magnet array comparative examples 1 to 3 of FIG. 29 and the rotor 1310 of the magnet array example. The test apparatus is shown in FIG. The test was carried out as follows.
펌프를 약 30분 가량 가동시켜서 입구온도와 출구온도를 같게 한 후, 계측기(MV2000)를 통해 2시간동안 데이터를 취득하고 안정화된 마지막 30분 동안의 데이터를 이용하여 결과를 정리하였으며, 초기의 토크(T), 회전수, 유량의 값들을 기록한 후 각 데이터의 평균값에서 빼준 후 보정하였다. 효율은 입력에너지(P)와 출력에너지(Q)의 비율로 계산한 값이다. After operating the pump for about 30 minutes to get the same inlet and outlet temperature, the data was acquired for two hours through the instrument (MV2000) and the results were summarized using the last 30 minutes of stabilization. The values of (T), rotational speed, and flow rate were recorded, subtracted from the average value of each data, and corrected. Efficiency is a value calculated from the ratio of input energy P and output energy Q.
표 7
Figure PCTKR2013005559-appb-T000007
TABLE 7
Figure PCTKR2013005559-appb-T000007
표 7에 나타난 바와 같이 모두 효율의 차이는 별로 없으나 비교예 1 및 비교예 3은 토크가 현저히 적으며, 비교예 2 및 발명 실시예는 토크가 크게 나타났다.As shown in Table 7, there is little difference in efficiency, but the torque of Comparative Example 1 and Comparative Example 3 is remarkably small, and Comparative Example 2 and Inventive Example showed a large torque.
이러한 결과는 도 31의 (a)에 도시한 바와 같이 비교예 1 및 비교예 3에서는 N극에서 S극으로 가는 자기력선들이 서로 중첩되어 상쇄되므로 자력이 약하여 토크가 적은 것으로 판단되고, 도 31의 (b)에 도시한 바와 같이 비교예 2 및 발명 실시예에서는 N극에서 S극으로 가는 자기력선들이 서로 중첩되지 않기 때문에 자력이 강하여 토크가 큰 것으로 판단된다. 한편 비교예 2에서는 과부하로 인해 모터가 정지되는 결과를 초래하였다.As shown in FIG. 31A, in Comparative Example 1 and Comparative Example 3, the magnetic force lines going from the N pole to the S pole overlap each other and cancel each other, so that the magnetic force is weak and thus the torque is low. As shown in b), in the comparative example 2 and the inventive example, the magnetic force lines going from the N pole to the S pole do not overlap each other, so that the magnetic force is determined to be large and the torque is large. On the other hand, in Comparative Example 2, the motor was stopped due to overload.
표 7에 보는 바와 같이 자석의 수와 토크 및 효율을 모두 고려하여 볼 때, 자석수가 적으면서 토크 및 효율이 높고 모터의 과부하를 야기하지 않는 발명의 실시예에 따른 영구자석 배열이 가장 바람직함을 알 수 있다.Considering both the number, torque and efficiency of the magnets as shown in Table 7, it can be seen that the permanent magnet arrangement according to the embodiment of the present invention has a low number of magnets, high torque and efficiency, and does not cause overload of the motor. Can be.
도 32은 본 발명의 실시예에 따른 건물 풍력 열원화장치의 작용상태도이다. 도시한 바와 같이 바람이 바람가이드(1100)을 통과하면서 모여져 회전자(1200)를 지나므로 회전날개(1230)가 빠른 속도로 회전하고, 이에 따라 풍력가열기(1300)가 작동한다. 이와 동시에 펌프(1600)가 가동함에 따라 집열탱크(1400) 내의 열매체는 화살표(실선)를 따라 풍력가열기(1300)를 거쳐 순환한다. 열매체는 풍력가열기(1300)을 통과하면서 가열되어 순환되는데, 열매체 회수관(1520)을 통해 회수되는 열매체의 온도가 감지되어 설정온도에 달하지 않았으면 온도 제어 밸브(1700)가 작동하여 리턴관(1530)으로 유로를 변경하게 되어 열매체는 집열탱크(1400)로 회수되지 않고 화살표(점선)을 통해 열매체 공급관(1510)으로 리턴된다. 이러한 제어에 의해 집열탱크(1400)에는 항상 일정한 온도의 열매체가 저장되게 할 수 있다. 집열탱크(1400)에 모이는 열매체는 도시하지 않는 열교환기 등을 통해 냉난방 시스템에 사용된다. 32 is an operational state diagram of the building wind power source according to an embodiment of the present invention. As shown, the wind gathers while passing through the wind guide 1100 and passes through the rotor 1200, so that the rotor blades 1230 rotate at a high speed. Accordingly, the wind heater 1300 operates. At the same time, as the pump 1600 operates, the heat medium in the collecting tank 1400 circulates through the wind heater 1300 along an arrow (solid line). The heat medium is heated and circulated while passing through the wind heater 1300. If the temperature of the heat medium recovered through the heat medium recovery pipe 1520 is sensed and does not reach the set temperature, the temperature control valve 1700 operates to return the tube 1530. ), The heat medium is changed to the heat medium supply pipe 1510 through an arrow (dotted line) instead of being collected by the heat collecting tank 1400. By such control, the heat collecting tank 1400 can always be stored in the heat medium of a constant temperature. The heat medium collected in the heat collecting tank 1400 is used in a cooling and heating system through a heat exchanger (not shown).
본 발명의 건물 풍력 열원화장치에 의하면, 바람가이드의 상단부의 전방부와 후방부의 길이에 따라 상승 각도를 조절하여 바람을 풍력 열원화장치의 회전자로 모아주며 회전자를 지날 때 바람의 속도를 빠르게 하여 풍력 열원화장치의의 발열 효율을 높일 수 있고, 또한 본 발명은 바람 가이드가 설치되는 위치 및 바람의 방향에 따라 바람 가이드의 전방부와 후방부 길이 및 상승 각도를 조절할 수 있도록 하여 풍력 열원화장치의 발열 효율을 높일 수 있다. 또한, 본 발명은 바람 가이드의 고정부를 단면이 타원형인 기둥으로 형성하여 고정부의 설치로 인한 발열 효율의 저하를 막고 오히려 발열 효율을 높을 수 있으며, 풍력 열원화장치의 회전자가 바람 가이드에 연결 고정됨으로써 회전자의 회전에 의한 진동 및 소음이 건물에 미치는 영향을 최소화할 수 있다.According to the building wind energy source of the present invention, by adjusting the rising angle according to the length of the front and rear of the upper end of the wind guide to collect the wind to the rotor of the wind power generator and the wind speed when passing through the rotor It is possible to increase the heat generation efficiency of the wind power source by increasing the speed, and also the present invention can adjust the length and the rising angle of the front and rear parts of the wind guide according to the position and the direction of the wind guide is installed wind power The heat generation efficiency of the original apparatus can be improved. In addition, the present invention is to form a column of the elliptical cross section of the wind guide fixing portion to prevent the deterioration of the heating efficiency due to the installation of the fixing portion, rather can increase the heating efficiency, the rotor of the wind power source is connected to the wind guide By being fixed, it is possible to minimize the effect of vibration and noise caused by the rotation of the rotor on the building.
그리고, 본 발명은 영구자석의 회전에 와전류가 발생되어 열매체를 가열하는 구조에서 로터에 배열되는 영구자석을 최적화함으로써 영구자석의 수를 적게 하면서 에너지 변환효율을 높일 수 있다.In addition, the present invention can increase the energy conversion efficiency while reducing the number of permanent magnets by optimizing the permanent magnets arranged in the rotor in the structure in which the eddy current is generated in the rotation of the permanent magnet to heat the heat medium.
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명이 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to easily explain the technical contents and help the understanding of the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.
발전시스템, 냉난방 시스템, 공조기계 및 일반 산업기계 등 다양한 분야에 사용될 수 있다.It can be used in various fields such as power generation system, heating and cooling system, air conditioning machine and general industrial machine.

Claims (13)

  1. 회전자 상부에서 서로 대향하여 상승하는 형태로 일단이 접하여 결합된 전방부 및 후방부를 구비하는 상단부와, 상기 상단부를 건물에 지지 고정하는 고정부와, 상기 전방부와 후방부의 길이 및 상승 각도를 조절할 수 있는 조절 구동부를 구비하고, 바람의 진행 방향에 따른 상기 전방부 및 후방부의 길이 방향 비율에 따라 상기 전방부 및 후방부의 상승 각도가 조절되는 바람가이드;An upper end having a front part and a rear part joined in contact with each other in a form of rising up from the upper part of the rotor, a fixing part supporting and fixing the upper part to a building, and adjusting the length and the rising angle of the front part and the rear part A wind guide having an adjustable driving unit and adjusting an elevation angle of the front part and the rear part according to a longitudinal ratio of the front part and the rear part according to the wind traveling direction;
    상기 상단부의 하부에 위치하는 회전자; A rotor located below the upper end;
    상기 회전자의 회전에 따라 열매체를 가열하는 풍력 가열기; 및 A wind heater for heating the heat medium according to the rotation of the rotor; And
    상기 풍력 가열기에 의해 가열된 열매체가 모이는 집열탱크;를 포함하는 것을 특징으로 하는 건물 풍력 열원화장치.And a heat collecting tank in which the heat medium heated by the wind heater is collected.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 풍력 가열기와 상기 집열탱크 사이에는 열매체의 온도에 따라 열매체의 흐름을 제어하는 온도 제어 밸브가 설치되는 것을 특징으로 하는 건물 풍력 열원화장치.And a temperature control valve for controlling the flow of the heat medium according to the temperature of the heat medium between the wind heater and the heat collecting tank.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 고정부는 단면이 타원형인 것을 특징으로 하는 건물 풍력 열원화장치.The stationary wind power generator of the building, characterized in that the cross section is oval.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 전방부 및 후방부의 길이 방향 비율이 2:1인 경우, When the longitudinal ratio of the front part and the rear part is 2: 1,
    상기 전방부의 상승 각도는 25~35°이며, 상기 후방부의 상승 각도는 5~10°인 것을 특징으로 하는 건물 풍력 열원화장치.The elevation angle of the front portion is 25 ~ 35 °, the building wind heat source device, characterized in that the elevation angle of the rear portion is 5 ~ 10 °.
  5. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 전방부 및 후방부의 길이 방향 비율이 1:1인 경우,When the longitudinal ratio of the front part and the rear part is 1: 1,
    상기 전방부의 상승 각도와 상기 후방부의 상승 각도를 동일하게 하는 것을 특징으로 하는 건물 풍력 열원화장치.The building wind energy source of claim 1, wherein the elevation angle of the front portion and the elevation angle of the rear portion are the same.
  6. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상부면이 평평하게 형성되며 바람이 유입되는 전단이 상기 상부면을 향해 상승하는 경사면을 구비하고, 상기 상단부와 이격되어 상기 회전자 하부에 위치하여 상기 건물에 부착되는 하단부를 더 포함하는 것을 특징으로 하는 건물 풍력 열원화장치.It is characterized in that the top surface is formed flat and has a slope in which the front wind flows toward the upper surface, and further comprising a lower end spaced apart from the upper end and attached to the building located below the rotor. Building wind power generator.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 회전자는 복수이며,The rotor is plural,
    상기 복수의 회전자는 복수의 고정부에 의해 각각 분리되는 것을 특징으로 하는 건물 풍력 열원화장치.And the plurality of rotors are separated by a plurality of fixing units, respectively.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 회전자는 상기 바람 가이드에 연결되어 고정되는 것을 특징으로 하는 건물 풍력 열원화장치.The rotor wind power generator of the building, characterized in that the rotor is connected to and fixed to the wind guide.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 풍력 가열기는 회전자의 회전에 따라 와전류를 발생하는 영구자석을 가지는 로터와, 상기 로터의 회전에 따른 와전류가 주울열로 전환되어 발열되는 발열체를 구비하며, The wind heater includes a rotor having a permanent magnet that generates eddy currents according to the rotation of the rotor, and a heating element in which the eddy current according to the rotation of the rotor is converted to Joule heat to generate heat.
    상기 발열체의 내부로 열매체가 이동하면서 가열되는 것을 특징으로 하는 건물 풍력 열원화장치.Building wind power source, characterized in that the heating medium is heated while moving inside the heating element.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 영구자석은 상기 로터의 외주면을 따라 영구자석의 크기만큼 이격되어 하나씩 배열되어 있는 것을 특징으로 하는 건물 풍력 열원화장치.And the permanent magnets are arranged one by one along the outer circumferential surface of the rotor and spaced apart by the size of the permanent magnets.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 영구자석은 상기 로터의 길이방향을 따라 다수의 줄을 이루는 것을 특징으로 하는 건물 풍력 열원화장치.The permanent magnet is a building wind power source, characterized in that a plurality of rows forming along the longitudinal direction of the rotor.
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 풍력 가열기는 상기 회전자의 회전에 의해 발생하는 마찰열에 의해 열매체를 가열하는 것을 특징으로 하는 건물 풍력 열원화장치.The wind power heater is a building wind power source, characterized in that for heating the heat medium by the frictional heat generated by the rotation of the rotor.
  13. 청구항 1에 있어서, The method according to claim 1,
    상기 풍력 가열기는 상기 회전자의 회전에 따라 회전하는 회전체와 열매체 사이에 발생하는 캐비테이션(cavitavion)을 통해 열매체를 가열하는 것을 특징으로 하는 건물 풍력 열원화장치.The wind power heater is a building wind power source, characterized in that for heating the heating medium through the cavitation (cavitavion) generated between the rotating body and the heating medium rotating according to the rotation of the rotor.
PCT/KR2013/005559 2012-08-27 2013-06-24 Apparatus including wind guide for converting building wind power to heat source WO2014035036A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380045104.8A CN104641104B (en) 2012-08-27 2013-06-24 Building wind-force thermal source makeup with air guide member is put

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0093569 2012-08-27
KR1020120093569A KR101193271B1 (en) 2012-08-27 2012-08-27 Wind thermal apparatus for building having the wind guide

Publications (1)

Publication Number Publication Date
WO2014035036A1 true WO2014035036A1 (en) 2014-03-06

Family

ID=47288405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005559 WO2014035036A1 (en) 2012-08-27 2013-06-24 Apparatus including wind guide for converting building wind power to heat source

Country Status (3)

Country Link
KR (1) KR101193271B1 (en)
CN (1) CN104641104B (en)
WO (1) WO2014035036A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597900A1 (en) * 2018-10-22 2020-01-22 NAVIKOM Andrzej Koschel Wind turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138763A (en) * 1974-09-27 1976-03-31 Hitachi Ltd
JP2002339853A (en) * 2001-05-16 2002-11-27 Nissan Motor Co Ltd Charge station
KR101015308B1 (en) * 2010-08-31 2011-02-15 군산대학교산학협력단 Cooling and heating system and its method using wind to thermal energy transformation
US20110250069A1 (en) * 2009-04-14 2011-10-13 Quintal Rejean Horizontal wind powered turbine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010004439A1 (en) * 1999-12-15 2001-06-21 Bolcich Alejandro Juan Alfredo Energy converter
JP2003129941A (en) 2001-10-26 2003-05-08 Matsushita Electric Ind Co Ltd Wind power generator
JP3621975B2 (en) 2002-03-22 2005-02-23 株式会社産学連携機構九州 Wind power generator
KR101080124B1 (en) 2009-08-21 2011-11-07 (주)대우건설 Windpower enhancing generating system installed on the roof of flat type apartment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138763A (en) * 1974-09-27 1976-03-31 Hitachi Ltd
JP2002339853A (en) * 2001-05-16 2002-11-27 Nissan Motor Co Ltd Charge station
US20110250069A1 (en) * 2009-04-14 2011-10-13 Quintal Rejean Horizontal wind powered turbine
KR101015308B1 (en) * 2010-08-31 2011-02-15 군산대학교산학협력단 Cooling and heating system and its method using wind to thermal energy transformation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597900A1 (en) * 2018-10-22 2020-01-22 NAVIKOM Andrzej Koschel Wind turbine
WO2020083940A1 (en) * 2018-10-22 2020-04-30 Navikom Andrzej Koschel Wind turbine
US11156204B2 (en) 2018-10-22 2021-10-26 Navikom Andrzej Koschel Wind turbine

Also Published As

Publication number Publication date
KR101193271B1 (en) 2012-10-19
CN104641104A (en) 2015-05-20
CN104641104B (en) 2018-03-20

Similar Documents

Publication Publication Date Title
EP2307717B1 (en) Wind turbine
WO2005039036A2 (en) Improved belt drive system with outer rotor motor
EP2536006A1 (en) Vertical shaft disc-type outer rotor electric machine and cooling structure thereof
CN104135114A (en) High-voltage air and water cooling doubly-fed wind driven generator
CN213818549U (en) Frequency converter with good heat dissipation performance
WO2014035036A1 (en) Apparatus including wind guide for converting building wind power to heat source
CN207098813U (en) A kind of switched reluctance machines with damping and fixing function
CN101350543A (en) Low-temperature lifting wind power generator
CN110729852B (en) Closed cooling structure of wind driven generator
CN1713491A (en) Variable frequency speed-adjusting permanent magnet synchronous motor
CN201682367U (en) Cooling device for windmill generator
CN205429971U (en) Many kind of drive's of over -and -under type motor
CN103175253A (en) Household eddy current wind power heater
CN113335114B (en) Energy consumption detection and allocation system of intelligent charging pile
CN214045251U (en) Mining Variable Frequency Speed Governing (VFSG) all-in-one
CN205792350U (en) A kind of motor with cooling protection effect
WO2017207537A1 (en) A heat exchanger for an electrical machine
CN204013082U (en) High pressure air water cooling double-fed wind power generator
CN214098237U (en) Temperature control device and equipment with independent cavity
CN112787480B (en) Vertical water-cooling double-cylinder permanent magnet speed regulator
WO2011074893A2 (en) Device using solar energy of a rolling, sun-tracking type
CN214616735U (en) Cooling system and working machine
CN214101064U (en) Vertical water-cooling double-cylinder permanent magnet speed regulator
CN214955273U (en) Building power consumption monitoring and early warning device based on thing networking
CN207504741U (en) A kind of electricity generator stator coil quick-drying equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832721

Country of ref document: EP

Kind code of ref document: A1