WO2014032594A1 - 电池 - Google Patents
电池 Download PDFInfo
- Publication number
- WO2014032594A1 WO2014032594A1 PCT/CN2013/082479 CN2013082479W WO2014032594A1 WO 2014032594 A1 WO2014032594 A1 WO 2014032594A1 CN 2013082479 W CN2013082479 W CN 2013082479W WO 2014032594 A1 WO2014032594 A1 WO 2014032594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- positive electrode
- current collector
- positive
- negative electrode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/36—Accumulators not provided for in groups H01M10/05-H01M10/34
- H01M10/38—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/668—Composites of electroconductive material and synthetic resins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention belongs to the field of electrochemical energy storage, and particularly relates to a battery.
- the widespread use of new energy by humans has led to a rapid expansion of the secondary battery market.
- the requirements for secondary batteries in the current new energy system are ubiquitous. Whether it is electric vehicles, wind energy, solar grid integration or power grid peaking, there is an urgent need for a secondary battery that is cheap, reliable, safe and long-lived.
- the secondary batteries currently in development are mainly concentrated in lithium ion batteries, high temperature sodium sulfur batteries, sodium nickel chloride batteries and vanadium flow batteries. These batteries have their own advantages, such as long life and high energy density of the ionic battery and the high temperature sodium strontium battery, and the vanadium flow battery is theoretically unlimited life. But no matter what kind of battery, it can't meet the requirements of cheap, reliable, safe and long life.
- Traditional lithium-ion batteries are too expensive and have potential safety hazards; high-temperature sodium-sulfur battery manufacturing technology has high thresholds and high prices; many technical bottlenecks in vanadium flow batteries have not yet achieved breakthroughs.
- vanadium oxide such as LiV 3 0 8 is a battery in which the negative electrode and water are electrolytes, but therefore the stability of the negative electrode in charge and discharge in water and the vanadium have certain toxicity, thereby limiting the development of such a battery.
- the present invention is directed to a battery that is simple in construction, low in cost, safe and reliable, and has a long cycle life.
- the present invention provides a battery including a housing, a positive electrode disposed in the housing, two negative electrodes, an aqueous electrolyte, and a separator, the positive electrode including a composite current collector and a positive active material, and the composite current collector includes a cathode current collector and a conductive film coated on the cathode current collector, the composite current collector having opposite first and second faces, wherein the cathode active material is disposed on the first surface and the second surface
- the positive active material is capable of reversibly extracting-embeding ions;
- the negative electrode is selected from a metal, an alloy or a carbon-based material;
- the aqueous electrolyte comprises an electrolyte, the electrolyte being capable of at least ionizing a living ion, the active ion being Deposited on the negative electrode to form a negative electrode active material during charging,
- the negative electrode active material is oxidized and dissolved in the aqueous electrolyte at the
- the present invention also provides a battery comprising a housing, two positive electrodes, a negative electrode, an aqueous electrolyte and a separator disposed in the housing, the positive electrode including a composite current collector and a positive active material, the composite current collector a positive current collector and a conductive film coated on the positive current collector, the composite current collector having opposite first and second faces, the first face being opposite to the negative electrode, at least the first
- the positive electrode active material is disposed on one side, the positive electrode active material is capable of reversibly extracting-embeding ions;
- the negative electrode is selected from a metal, an alloy or a carbon-based material;
- the aqueous electrolyte solution includes an electrolyte, and the electrolyte is at least ionizable a living ion, the active ion being reducedly deposited on the negative electrode to form a negative electrode active material upon charging, the negative active material being oxidized and dissolved in the aqueous electrolyte during discharge;
- the present invention also provides a battery comprising a housing, a positive electrode, a negative electrode, an aqueous electrolyte and a separator disposed in the housing, the positive electrode comprising a composite current collector and a positive active material, the composite current collector comprising a positive electrode a current collector and a conductive film coated on the positive current collector, the composite current collector having opposite sides, wherein at least a side of the composite current collector opposite to the negative electrode is provided with a positive active material,
- the positive active material can be reversibly desorbed-embedded ions;
- the battery includes n pairs of the positive and negative electrodes, n>2, and two adjacent positive electrodes share a negative electrode between the two positive electrodes, and the adjacent two negative electrodes share a positive electrode between the two negative electrodes;
- the negative electrode is selected from a metal, an alloy or a carbon-based material;
- the aqueous electrolyte includes an electrolyte, the electrolyte is capable of at least i
- the battery provided by the invention can solve the self-discharge problem well, the battery operation is safe, the production method is simple, the cycle performance is excellent, and the service life is long. At the same time, the battery with different output discharge capacity can be set according to the use requirement, and the battery has wide application.
- the housing is square.
- the positive electrode, the separator and the negative electrode are formed in a flat shape.
- the positive electrode, the separator and the negative electrode are wound and formed.
- the housing is cylindrical, and the positive electrode, the diaphragm, the negative electrode and the housing are coaxially arranged.
- the positive electrode, the separator and the negative electrode are cylindrically disposed in the casing by winding.
- the material of the conductive film comprises a polymer and a conductive filler.
- the polymer is selected from the group consisting of polyethylene, polypropylene, polybutene, polyvinyl chloride, polystyrene, polyamide, polycarbonate, polymethyl methacrylate, polyoxymethylene, polyphenylene ether, polysulfone. At least one of polyethersulfone, styrene butadiene rubber or fluororesin.
- the conductive filler is selected from the group consisting of a conductive polymer, a carbon-based material, or a metal oxide.
- the material of the conductive film is selected from a conductive polymer.
- the housing is provided as an aluminum plastic film.
- the housing is provided with a liquid replacement port for supplementing the water-based electrolyte.
- the battery further includes a safety barrier for controlling the pressure within the housing.
- the positive active material has a spinel structure, a layered structure or an olivine structure.
- the material of the cathode current collector is selected from the group consisting of glass carbon, graphite foil, graphite sheet, carbon cloth, carbon felt, carbon fiber, or Ni, Al, Fe, Cu, Pb, Ti, Cr, Mo, Co, Ag or one of the above metals subjected to deuteration, or stainless steel, carbon steel, Al alloy, Ni alloy, Ti alloy, Cu alloy, Co alloy, Ti-Pt alloy, Pt-Rh alloy or deuterated One of the above alloys treated.
- the material of the negative electrode is at least one selected from the group consisting of metal Zn, Ni, Cu, Ag, Pb, Sn, Fe, Al or the metal treated by deuteration, or at least one of the alloys containing the above metal.
- metal Zn metal Zn
- Ni metal Zn
- Cu metal
- Ag silver
- Pb metal
- Sn metal treated by deuteration
- the material of the negative electrode is at least one selected from the group consisting of metal Zn, Ni, Cu, Ag, Pb, Sn, Fe, Al or the metal treated by deuteration, or at least one of the alloys containing the above metal.
- the active ion comprises a metal ion, and the metal is at least one selected from the group consisting of Zn, Fe, Cr, Cu, Mn, Ni, and Sn.
- the active ion is present in the aqueous electrolyte in the form of at least one of a hydrochloride, a sulfate, an acetate, a nitrate or a formate.
- the present invention also provides a battery comprising a housing, a positive extraction electrode disposed in the housing, at least one bipolar electrode, a negative extraction electrode, and an aqueous electrolyte, the positive extraction electrode including a positive electrode a current collector and a positive electrode active material disposed on one side of the positive electrode collector, the positive electrode active material being capable of reversibly extracting-embedding ions; the bipolar electrode being disposed between the positive extraction electrode and the negative extraction electrode,
- the bipolar electrode includes a bipolar current collector and the positive active material, the bipolar current collector has opposite first and second faces, and the positive active material is disposed at the bipolar current collector The first side of the water; the aqueous electrolyte includes an electrolyte, the electrolyte is at least capable of ionizing out active ions, and the active ions are reducedly deposited on the second side of the bipolar current collector to form a negative active material upon charging.
- the negative active material is oxidized and dissolved in the aqueous electrolyte during discharge;
- the negative extraction electrode is selected from a metal, an alloy or a carbon-based material;
- the aqueous electrolyte is disposed at the positive extraction electrode and the negative extraction Between the electrodes; the positive extraction electrode, the bipolar electrode, and the negative extraction electrode are stacked in the housing.
- the battery provided by the invention has the advantages of safe operation, simple manufacturing method, excellent cycle performance and long life, and a battery having different output voltages can be set according to the use requirement, and the battery has a wide range of uses.
- the housing is arranged in a square shape.
- the positive extraction electrode, the bipolar electrode, and the negative extraction electrode are formed in a flat shape.
- the cathode current collector is coated with a conductive film.
- the outer peripheral portion of the bipolar current collector is provided with a sealing portion for sealing the aqueous electrolyte.
- the material of the bipolar current collector comprises conductive plastic, stainless steel or stainless steel which has been subjected to deuteration treatment.
- the material of the conductive plastic is selected from the group consisting of conductive polymers.
- the material of the conductive plastic comprises a polymer and a conductive agent.
- the housing is provided as an aluminum plastic film.
- the housing is provided with a fluid replacement port, and the liquid replacement port is used to supplement the electrolyte.
- the battery further includes a safety barrier for controlling the pressure within the housing.
- the positive active material has a spinel structure, a layered structure or an olivine structure.
- the material of the cathode current collector is selected from the group consisting of glass carbon, graphite foil, graphite sheet, carbon cloth, carbon felt, carbon fiber, or Ni, Al, Fe, Cu, Pb, Ti, Cr, Mo, Co, Ag or one of the above metals subjected to deuteration, or stainless steel, carbon steel, A1 alloy, Ni alloy, Ti One of an alloy, a Cu alloy, a Co alloy, a Ti-Pt alloy, a Pt-Rh alloy, or a tantalum-treated alloy.
- the material of the negative extraction electrode is selected from the group consisting of metal Zn, Ni, Cu, Ag, Pb, Sn, Fe, Al or at least one of the metals subjected to deuteration treatment, or an alloy containing the above metal. At least one of, or graphite foil, graphite flakes, carbon cloth, carbon felt, carbon fiber, or copper tin, or brass.
- the active ion comprises a metal ion, and the metal is at least one selected from the group consisting of Zn, Fe, Cr, Cu, Mn, Ni, and Sn.
- the active ion is present in the aqueous electrolyte in the form of at least one of a hydrochloride, a sulfate, an acetate, a nitrate or a formate.
- the invention also provides a battery comprising a casing, a positive electrode, a separator, a negative electrode and an aqueous electrolyte disposed in the casing, the positive electrode comprising a positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode
- the active material includes a compound capable of reversibly extracting-embeding ions;
- the negative electrode is selected from a metal, an alloy or a carbon-based material;
- the aqueous electrolyte includes an electrolyte, the electrolyte being at least capable of ionizing out active ions, and the active ions are charged Deposited on the negative electrode to form a negative electrode active material, the negative electrode active material being oxidized and dissolved in the aqueous electrolyte solution during discharge; the positive electrode, the separator and the negative electrode stacked in the shell
- the separator is located between the positive electrode and the negative electrode.
- the battery provided by the invention has the advantages of simple structure, safe operation, low production cost and considerable service life, and is suitable as an energy storage system in the field of large-scale energy storage and a substitute for lead-acid batteries.
- the housing is square.
- the positive electrode, the separator and the negative electrode are formed in a flat shape.
- the positive electrode, the separator and the negative electrode are wound and formed.
- the housing is an aluminum plastic film.
- the housing is provided with a liquid replacement port for supplementing the water-based electrolyte.
- the battery further includes a safety barrier for controlling the pressure within the housing.
- the positive active material has a spinel structure, a layered structure or an olivine structure.
- the material of the cathode current collector is selected from the group consisting of glass carbon, graphite foil, graphite sheet, carbon cloth, carbon felt, carbon fiber, or Ni, Al, Fe, Cu, Pb, Ti, Cr, Mo, Co, Ag or one of the above metals subjected to deuteration, or stainless steel, carbon steel, Al alloy, Ni alloy, Ti alloy, Cu alloy, Co alloy, Ti-Pt alloy, Pt-Rh alloy or deuterated The above processing One of the gold.
- the material of the negative electrode is at least one selected from the group consisting of metal Zn, Ni, Cu, Ag, Pb, Sn, Fe, Al or the metal treated by deuteration, or at least one of the alloys containing the above metal.
- metal Zn metal Zn
- Ni metal Zn
- Cu metal
- Ag silver
- Pb metal
- Sn metal treated by deuteration
- the material of the negative electrode is at least one selected from the group consisting of metal Zn, Ni, Cu, Ag, Pb, Sn, Fe, Al or the metal treated by deuteration, or at least one of the alloys containing the above metal.
- the active ions include metal ions, and the metal is at least one selected from the group consisting of Zn, Fe, Cr, Cu, Mn, Ni, and Sn.
- the active ion is present in the aqueous electrolyte in the form of at least one of a hydrochloride, a sulfate, an acetate, a nitrate or a formate.
- the present invention also provides a battery, comprising a casing, a positive electrode, a separator, a negative electrode and an aqueous electrolyte disposed in the casing, the positive electrode comprising a positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode active material
- the invention comprises a compound capable of reversibly extracting-embeding ions; the negative electrode is selected from a metal, an alloy or a carbon-based material; the aqueous electrolyte comprises an electrolyte, the electrolyte being capable of at least ionizing a living ion, the active ion being reduced upon charging Depositing on the negative electrode to form a negative electrode active material, wherein the negative electrode active material is oxidized and dissolved in the aqueous electrolyte solution during discharge; the positive electrode, the separator, and the negative electrode are stacked in the casing, The separator is located between the positive electrode and the negative electrode.
- the battery provided by the invention has high energy density, safety, non-toxicity, environmental protection, easy recycling and low cost.
- the battery of the invention is a new generation of green energy, and is very suitable as an energy storage system and a lead-acid battery in a large-scale energy storage field. replacement of.
- the housing is arranged in a cylindrical shape, and the positive electrode, the diaphragm and the negative electrode and the housing are coaxially arranged.
- the positive electrode, the separator and the negative electrode are cylindrically disposed in the casing by winding.
- the anode and the separator are both cylindrical
- the cathode current collector is cylindrical
- the cathode active material is disposed between the separator and the cathode current collector.
- the battery further includes a fixing ring, the fixing ring fixing the cathode current collector, the diaphragm, the anode and the casing;
- the fixing ring is made of polyvinyl chloride, the fixing ring Two are respectively disposed at both ends of the casing.
- the fixing ring includes an upper ring and a lower ring, the upper ring and the lower ring are integrally formed, the upper ring fixes the positive current collector and the diaphragm, and the lower ring fixes the diaphragm And the negative electrode.
- an outer diameter of the upper ring is the same as an inner diameter of the negative electrode
- an inner diameter of the upper ring is the same as a diameter of the positive current collector
- an outer diameter of the lower ring is the same as an inner diameter of the diaphragm.
- the inner diameter of the lower layer ring is the same as the diameter of the cathode current collector.
- the housing is an aluminum plastic film.
- the housing is provided with a liquid replacement port for supplementing the water-based electrolyte.
- the battery further includes a safety barrier for controlling the pressure within the housing.
- the positive active material has a spinel structure, a layered structure or an olivine structure.
- the material of the cathode current collector is selected from the group consisting of glass carbon, graphite foil, graphite sheet, carbon cloth, carbon felt, carbon fiber, or Ni, Al, Fe, Cu, Pb, Ti, Cr, Mo, Co, Ag or one of the above metals subjected to deuteration, or stainless steel, carbon steel, Al alloy, Ni alloy, Ti alloy, Cu alloy, Co alloy, Ti-Pt alloy, Pt-Rh alloy or deuterated One of the above alloys treated.
- the material of the negative electrode is at least one selected from the group consisting of metal Zn, Ni, Cu, Ag, Pb, Sn, Fe, Al or the metal treated by deuteration, or at least one of the alloys containing the above metal.
- metal Zn metal Zn
- Ni metal Zn
- Cu metal
- Ag silver
- Pb metal
- Sn metal treated by deuteration
- the material of the negative electrode is at least one selected from the group consisting of metal Zn, Ni, Cu, Ag, Pb, Sn, Fe, Al or the metal treated by deuteration, or at least one of the alloys containing the above metal.
- the active ions include metal ions, and the metal is at least one selected from the group consisting of Zn, Fe, Cr, Cu, Mn, Ni, and Sn.
- the active ion is present in the aqueous electrolyte in the form of at least one of a hydrochloride, a sulfate, an acetate, a nitrate or a formate.
- FIG. 1 is a schematic cross-sectional view showing the overall structure of a battery according to Embodiment 1;
- Figure 2 is a schematic view showing the structure of the composite current collector of Figure 1;
- FIG. 3 is a schematic structural view of the battery cell of FIG. 1 , wherein a battery unit is schematically shown;
- FIG. 4 is a schematic cross-sectional view showing the overall structure of the battery provided in Embodiment 2;
- FIG. 5 is a schematic cross-sectional view showing the overall structure of a battery provided in Embodiment 2, wherein positive electrode active materials are disposed on opposite sides of the composite current collector;
- FIG. 6 is a schematic cross-sectional view showing the overall structure of a battery provided in Embodiment 3, wherein the battery includes two pairs of positive and negative electrodes;
- FIG. 7 is a schematic cross-sectional view of a battery cell according to Embodiment 3, wherein a positive electrode active material is disposed on opposite sides of a positive electrode composite current collector located at an outermost layer;
- Figure 8 is a cross-sectional view showing the overall structure of the battery provided in the third embodiment, wherein the number of pairs of the positive and negative electrodes is greater than 2;
- FIG. 9 is a schematic cross-sectional view showing the overall structure of a battery provided in Embodiment 4.
- Figure 10 is a schematic structural view of the bipolar electrode of Figure 9;
- Figure 11 is a schematic view of the battery structure of Figure 9, wherein the battery unit is schematically shown;
- Figure 12 is a schematic diagram of the charging principle of the battery provided in Embodiment 4;
- FIG. 13 is a schematic cross-sectional view showing the overall structure of a battery provided in Embodiment 5;
- Figure 14 is a schematic view showing the structure of the battery of Figure 13, wherein the battery unit is schematically shown;
- Figure 15 is a schematic cross-sectional view showing the overall structure of the battery provided by the sixth embodiment;
- Figure 16 is a schematic cross-sectional view showing the overall structure of the battery provided by the seventh embodiment.
- Figure 17 is a schematic view showing the structure of a battery provided by the method of the first embodiment
- FIG. 18 is a schematic structural view of a battery provided in Embodiment 8, wherein the diaphragm film is folded in a ZZ-shaped shape:
- FIG. 19 is a schematic view showing the expanded state of the battery in FIG.
- Figure 20 is a schematic view showing the structure of the battery provided by the eighth embodiment, wherein the electric battery cell is wound and wound into a shape.
- Figure 21 is a schematic view showing the structure of the battery in the ninth embodiment;
- Figure 22 is a schematic structural view of a fixing ring in the battery of Figure 21;
- Figure 23 is a graph showing the charge and discharge cycle performance of the battery provided in Example 1.
- the battery provided by the invention has high energy density and stable cycle performance, and has considerable application prospects in fields such as portable electronic products such as mobile phones and notebook computers, electric vehicles, and electric tools.
- a battery having an internal parallel structure A battery having an internal parallel structure.
- a battery having an internal parallel structure will be described below in conjunction with the drawings and specific embodiments.
- a battery 1 includes a housing 22, a positive electrode 2 disposed in the housing 22, two negative electrodes 4, an aqueous electrolyte 6, and a diaphragm 16.
- the positive electrode 2 and the negative electrode 4 are stacked in the casing 22, the positive electrode 2 is placed between the two negative electrodes 4, the two negative electrodes 4 share the positive electrode 2, the separator 16 is located between the positive electrode 2 and the negative electrode 4, and the separator 16 holds the aqueous electrolyte. 6.
- the housing 22 may be provided as a metal, plastic or a composite film of metal and plastic such as steel, aluminum, acrylonitrile-butadiene-styrene copolymer (ABS), polypropylene (PP), nylon or aluminum plastic film, and the like.
- the housing 22 is provided as an aluminum plastic film, so that the housing is thinner, reducing the weight of the battery and increasing the space inside the battery.
- the aluminum plastic film includes a layer of aluminum sheet and a plastic sheet disposed on one side of the aluminum sheet.
- the aluminum plastic film comprises a layer of aluminum sheet and a first layer of plastic sheet and a second layer of plastic sheet disposed on both sides of the sheet of aluminum.
- the housing 22 can be provided in a square shape.
- the battery 1 can be designed as a square battery such as a rectangular parallelepiped or a cube.
- the battery has a simple structure, is convenient to manufacture, and is simple in cost.
- the negative electrode 4, the separator 16, the positive electrode 2, the separator 16, and the negative electrode 4 are laminated in the order of a flat plate, and then wound and formed to form a flat battery.
- the positive electrode 2, the separator 16 and the negative electrode 4 are each provided in an elongated shape. Winding into different turns according to battery design needs.
- the housing may also be provided in a cylindrical shape (not shown).
- the anode 4, the separator 16, the cathode 2, the separator 16 and the anode 4 are arranged in a stack to form a flat plate, and then a cylindrical core is formed by winding to be disposed in the casing, the positive electrode 2, the separator 16, the negative electrode 4, and The housings are arranged coaxially.
- the battery can be designed as a cylindrical battery, and the battery structure is simple and convenient to manufacture.
- the battery further includes a cover body 24 connected to the casing 22, the positive electrode 2 extends through the cover body 24, and the end of the positive electrode 2 extending through the cover body 24 is provided with a sealing cap 26.
- Sealing cap 26 It is required to have good electrical conductivity and chemical stability. In addition, the sealing cap 26 can also prevent the water-based electrolyte from evaporating from the hole through which the positive electrode 2 passes, thereby reducing the consumption of the aqueous electrolyte 6.
- the positive electrode 2 is connected to an external circuit.
- the negative electrode 4 also extends through the cover 24 to be connected to the external circuit. Similarly, a sealing cap (not shown) is provided at the end of the negative electrode 4 extending through the cover 24.
- the battery 1 also includes a safe wide 28 for controlling the pressure inside the casing 22.
- the safety wide 28 is opened to release the pressure, preventing the housing 22 from being deformed, thereby improving the life and safety of the battery 1.
- the safety wide 28 is closed to prevent the internal gas from leaking outward. At the same time, external air is prevented from entering the casing 22 to cause an adverse effect. It is also possible to prevent the evolved hydrogen from tempering when exposed to an open flame, thereby detonating the gas inside the casing 22.
- a fluid replacement port (not shown) for replenishing the aqueous electrolyte 6 may be provided on the casing 22.
- the electrolyte can be injected through the refill port.
- the fluid replacement port is a mounting hole (not shown) at which the safety valve 28 is mounted.
- the positive electrode 2 is disposed between the two negative electrodes 4, and the aqueous electrolyte 6 is disposed between the positive electrode 2 and the negative electrode 4.
- the positive electrode 2 includes a composite current collector 8 and a positive electrode active material 10, and the composite current collector 8 has a first surface 81 disposed opposite thereto. And the second surface 82, the positive active material 10 is disposed on the first surface 81 and the second surface 82, as shown in FIG.
- the preparation method of the positive electrode 2 is not particularly limited, and the positive electrode active material 10 may be attached to the composite current collector 8 by coating, for example, the positive electrode active material 10 is made into a slurry, and then coated on the composite current collector by a slurry method. 8; the positive electrode active material 10 may be attached to the composite current collector 8 by lamination, for example, the composite current collector 8 and the positive electrode active material 10 which are formed in a predetermined size are pressed to make the positive electrode active material 10 and the composite current collector 10 The electrical contact between 8 is good, and the positive electrode 2 is formed.
- the coating density of the positive electrode active material 10 ranges from 100 to 1000 g/m 2 .
- the positive electrode active material 10 has a spinel structure, a layered structure, or an olivine structure. Specifically, the positive electrode active material 10 can reversibly extract-embed lithium ions, sodium ions or magnesium ions.
- the positive electrode active material 10 may be a compound capable of reversibly deintercalating-intercalating lithium ion-doped spinel structure conforming to the general formula Li 1 + x Mn y M z O k , wherein - l ⁇ x ⁇ 0.5, 1 ⁇ y ⁇ 2.5, 0 ⁇ z ⁇ 0.5 , 3 ⁇ k ⁇ 6 , M is at least one selected from the group consisting of Na, Li, Co, Mg, Ti, Cr, V, Zn, Zr, Si, Al, and Ni.
- the positive electrode active material contains LiMn 2 0 4 . More preferably, the positive active material contains LiMn 2 0 4 which is doped or coated modified.
- the positive electrode active material 10 may be a compound having a layered structure capable of reversibly eluting-embedding ions in accordance with the general formula Li 1 + x M y M' z M" c 0 2+n , wherein - l ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 1 , 0 ⁇ z ⁇ 1 , 0 ⁇ c ⁇ 1 , -0.2 ⁇ n ⁇ 0.2 , M , ⁇ ' , ⁇ " are respectively selected from Ni, Mn, Co, Mg, Ti, Cr, V, Zn, At least one of Zr, Si or Al.
- the positive electrode active material contains LiCo0 2 .
- the positive electrode active material 10 may be an olivine structure compound capable of reversibly extracting-embedding ions in accordance with the general formula LixM yM' XC ⁇ , wherein 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 0.6, 1 ⁇ n ⁇ 1.5.
- M is selected from Fe, Mn, V or Co
- M' is at least one selected from the group consisting of Mg, Ti, Cr, V or Al
- X is at least one selected from the group consisting of S, P or Si.
- the positive electrode active material contains LiFePO 4 .
- LiMn 2 0 4 can not represent the general formula of "manganese manganate" which is widely used, but should be of the general formula Li 1 +x Mn y M z O k is broadly included, and variously modified LiMn 2 0 4 positive electrode active materials are widely included.
- LiFeP0 4 and LiCo0 2 should also be broadly understood to include modifications through various doping, cladding, etc., which are in accordance with Li x Mi_ y M' y (X0 4 ) n ⁇ Li 1 + x M y M' z M" c 0 2+n positive electrode active material.
- the positive electrode active material 10 is a ionic ion-intercalation compound
- a compound such as LiMn 2 0 4 , LiFeP0 4 , LiCo0 2 , LiM x P0 4 , LiM x SiO y (where M is a variable metal) may be used.
- the compound NaVP0 4 F which can be eluted-inserted with sodium ions can be extracted-embedded into the magnesium ion compound MgM x O y (where M is a metal, 0.5 ⁇ x ⁇ 3, 2 ⁇ y ⁇ 6) and has similar functions.
- M is a metal, 0.5 ⁇ x ⁇ 3, 2 ⁇ y ⁇ 6
- a compound capable of deintercalating-embedding an ion or a functional group can be used as a positive electrode active material of the battery of the present invention, and therefore, the present invention is not limited to a lithium ion battery.
- a binder in the preparation of the positive electrode, is also added to the positive electrode slurry, and the binder is advantageous for uniformly bonding the positive electrode active material 10 together.
- the weight percentage of the solid content of the binder in the positive electrode slurry ranges from 0.5 to 10%.
- the binder is selected from, but not limited to, a polymer selected from the group consisting of polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), sodium carboxymethyl cellulose (CMC), sodium carboxymethyl cellulose.
- a styrene-butadiene rubber derivative such as a hydrophilic styrene-butadiene rubber (PSBR100) obtained by chemical modification.
- a conductive agent is further added to the positive electrode slurry, and the conductive agent mainly serves to increase the conductivity of the positive electrode active material 10, and the weight percentage of the solid content of the conductive agent in the positive electrode slurry. The range is 0.5-30%.
- the conductive agent includes at least one selected from the group consisting of a conductive polymer, carbon nanotubes, activated carbon, graphene, carbon black, graphite, carbon fibers, and conductive ceramics.
- Carbon black includes, but is not limited to, acetylene black, Ketjen black (KB), and super-p carbon black.
- the conductive agent may also include a metal oxide. Metal oxides include, but are not limited to, lead oxide and tin oxide.
- FIG. 2 is a schematic view of a composite current collector 8 including a cathode current collector 12 and a conductive film 14 coated on the cathode current collector 12.
- the conductive film 14 coated on the positive electrode current collector 12 must satisfy a film which is stable in the aqueous electrolyte, insoluble in the electrolyte, does not swell, high voltage cannot be oxidized, and is easily processed into a dense, watertight, and electrically conductive film.
- the conductive film can protect the positive current collector from corrosion of the positive current collector by the aqueous electrolyte.
- it is advantageous to reduce the contact internal resistance between the positive electrode active material and the positive electrode current collector, and to increase the energy of the battery.
- the thickness of the conductive film 14 In order to effectively exert the function of the conductive film 14, the thickness of the conductive film 14 needs to be effectively controlled.
- the thickness of the conductive film 14 is too thin to be easily broken, the thickness uniformity is not good, and the aqueous electrolyte 6 is easily penetrated; the conductive film 14 is too thick to affect the electrical conductivity.
- the thickness of the conductive film 14 is 10 ⁇ -2 ⁇ , and the conductive film 14 can not only effectively protect the positive electrode current collector 12, but also reduce the contact internal resistance between the positive electrode active material 10 and the positive electrode current collector 12. .
- the cathode current collector 12 has opposite first and second faces. Preferably, the first surface and the second surface of the cathode current collector 12 are coated with a conductive film 14.
- the conductive film 14 may be coated on the positive electrode current collector 12 by adhesive bonding, hot pressing, or vacuuming.
- the positive current collector 12 is placed between the two conductive films 14 and heated and composited.
- the conductive film 14 is coated with the positive electrode current collector 12, and the portion of the conductive film 14 which is more than the positive electrode current collector 12 is sealed.
- the electroconductive film 14 contains a polymer as an essential component, and the polymer accounts for 50 to 95% by weight of the electroconductive film.
- the polymer is selected from a thermoplastic polymer.
- the conductive film there are two possible forms: (1) the polymer is a conductive polymer; (2) the conductive film further contains a conductive filler.
- Conductive polymer materials are required to be electrically conductive, but electrochemically inert, i.e., not ionically conductive as a charge transfer medium.
- the conductive polymer includes, but is not limited to, polyacetylene, polypyrrole, polythiophene, polyphenylene sulfide, polyaniline, polyacrylonitrile, polyquinoline, polyparaphenylene, and any mixture thereof.
- the conductive polymer itself is electrically conductive, but it can also be used for conductive polymers.
- the rows are doped or modified to further increase their electrical conductivity.
- the conductive polymer is preferably polyaniline, polypyrrole, polythiophene, and polyacetylene from the viewpoint of electrical conductivity and stable use in a battery.
- conductive fillers require small surface area, difficulty in oxidation, high crystallinity, conductivity, and electrochemical inertness, i.e., ion conduction that does not act as a charge transfer medium.
- Materials for the conductive filler include, but are not limited to, conductive polymers, carbon-based materials, or metal oxides.
- the percentage by mass of the conductive filler in the conductive film ranges from 5 to 50%.
- the average particle diameter of the conductive filler is not particularly limited and is usually in the range of 100 nm to 100 ⁇ m.
- the conductive filler is a carbon-based material, and the morphology or mechanical properties of the carbon-based material are not particularly required.
- the carbon-based material is selected from one of graphite, carbon nanotubes or amorphous carbon.
- Amorphous carbon includes, but is not limited to, activated carbon and carbon black.
- the carbon-based material is preferably carbon black and graphite, which has a large potential window, and is stable to a wide range of positive and negative potentials and has high conductivity.
- Metal oxides include, but are not limited to, lead oxide, tin oxide.
- the polymer in the conductive film preferably contains a non-conductive polymer that functions as a conductive filler.
- the non-conductive polymer enhances the bonding of the conductive filler and improves the reliability of the battery.
- the non-conductive polymer is a thermoplastic polymer.
- thermoplastic polymers include, but are not limited to, polyolefins such as polyethylene, polypropylene, polybutene, polyvinyl chloride, polystyrene, polyamide, polycarbonate, polydecyl methacrylate, polyfurfural, poly One or more of phenyl ether, polysulfone, polyethersulfone, styrene butadiene rubber or polyvinylidene fluoride.
- polyolefin, polyamide and polyvinylidene fluoride are preferred. These polymers are easily melted by heat, and thus are easily compounded with the cathode current collector and the positive electrode sheet. In addition, these polymers have a large potential window to stabilize the positive electrode and save weight for battery output density.
- a conductive film can be formed by preparing a slurry containing a thermoplastic polymer and coating and curing the slurry.
- the conductive filler may be additionally contained in the slurry.
- the polymer and the conductive filler are processed in a certain composite manner such as dispersion compounding and layer-level compounding to obtain a conductive film having conductivity.
- the polymer monomer and the conductive filler are mixed. Since the polymer monomer is a small molecule, the conductive filler can be well dispersed in the polymer monomer, and then the polymer monomer is polymerized under the action of the initiator. , preparing a conductive film.
- the positive current collector 12 is mainly used as a carrier for electron conduction and collection, and does not participate in the electrochemical reaction, that is, in the operating voltage range of the battery 1, the positive current collector 12 can be stably present in the aqueous electrolyte 6, thereby ensuring the stability of the battery 1. Cyclic performance.
- the cathode current collector 12 needs to meet the requirements of a large surface area, good mechanical properties, and good electrical conductivity.
- the material of the cathode current collector 12 includes a carbon-based material, a metal Or one of the alloys.
- the carbon-based material is selected from the group consisting of glassy carbon, graphite foil, graphite flakes, foamed carbon, carbon felt, carbon cloth, and carbon fiber.
- the positive current collector is graphite, such as a commercial graphite pressed foil, wherein the weight ratio of graphite ranges from 90 to 100%.
- the metal includes one of Ni, Al, Fe, Cu, Pb, Ti, Cr, Mo, Co, Ag or the above-mentioned metal which has been subjected to deuteration treatment.
- the cathode current collector 12 is foamed nickel.
- the composite current collector containing nickel foam is less likely to be corroded in the aqueous electrolyte 6, so that the performance of the positive electrode 2 containing the composite current collector 8 is more stable.
- the main purpose of deuteration treatment of metal is to form a layer of deuterated film on the surface of the metal, so as to stably collect and conduct electrons during charging and discharging of the battery, without participating in the positive electrode reaction, ensuring the battery. performance.
- the alloy includes one of stainless steel, carbon steel, Al alloy, Ni alloy, Ti alloy, Cu alloy, Co alloy, Ti-Pt alloy, Pt-Rh alloy or the above-mentioned metal which has been subjected to deuteration treatment.
- Stainless steel includes stainless steel mesh, stainless steel foil, and stainless steel models include, but are not limited to, stainless steel 304 or stainless steel 316 or stainless steel 316L.
- the deuteration of stainless steel also enables it to stably collect and conduct electrons without participating in the electrode reaction to ensure battery performance.
- the specific process of deuterated stainless steel is: placing the stainless steel into 20% nitric acid at 50 ° C for half an hour to form a layer of bismuth film on the surface of the stainless steel.
- the deuterated stainless steel is used as a current collector.
- the thickness of the cathode current collector 12 has a certain influence on the electrochemical performance of the cathode 2, and the thickness of the cathode current collector 12 is too thin, which affects the mechanical strength of the cathode current collector 12; the thickness of the cathode current collector 12 is too thick, which increases the cathode 2
- the weight, which affects the energy density of the positive electrode 2 is preferable in the present invention, in order to make the battery have a high energy density output, preferably, the positive electrode current collector 12 has a thickness of 10 ⁇ m to 100 ⁇ m.
- the positive current collector 12 is subjected to deuteration, punching, grinding or weak acid etching treatment, and the treated positive current collector 12 has a large specific surface area, which is advantageous for increasing the positive current collector 12 and The degree of recombination of the electroconductive film 14 reduces the contact internal resistance between the positive electrode active material 10 and the composite current collector 8.
- the positive electrode 2 is coated with a composite current collector 8, that is, a surface of the positive electrode current collector 12 is coated with a conductive film 14, and the conductive film 14 is made of a polymer or a composite polymer having excellent electrical conductivity, on the one hand, a conductive film.
- the conductive film 14 coated on the positive electrode current collector 12 avoids the positive electrode
- the current collector 12 is in direct contact with the aqueous electrolyte 6 to solve the potential corrosion problem of the aqueous electrolyte 6 to the positive current collector 12, to ensure the stability of the positive current collector 12, and to solve the possible self-discharge problem of the battery 1, so that the battery 1 has Stable cycle performance.
- the negative electrode 4 is selected from a metal, an alloy or a carbon-based material, and the negative electrode current collector has a thickness ranging from 20 to 500 ⁇ m.
- the anode 4 is at least one selected from the group consisting of at least one of metal Zn, Ni, Cu, Ag, Pb, Sn, Fe, Al or a deuterated metal, or an alloy containing the above metal, or graphite. At least one of foil, graphite sheet, carbon cloth, carbon felt, carbon fiber, or tin-plated copper, or brass.
- the negative electrode 4 includes only the negative electrode current collector, and the negative electrode current collector serves as a carrier for electron conduction and collection, and does not participate in the electrochemical reaction.
- the material of the anode current collector is selected from, but not limited to, at least one of the metals Cu, Ag, Pb, Sn, Fe, Al or the above-mentioned metal which has been subjected to deuteration treatment, or a carbon-based material, or stainless steel.
- carbon-based materials include graphite materials, such as commercial graphite-pressed foils, in which graphite accounts for 90-100% by weight.
- Stainless steel materials include, but are not limited to, stainless steel 304 or stainless steel 316 or stainless steel 316L.
- the negative electrode 4 may also be selected from a metal containing a plating/coating having a high hydrogen evolution potential, thereby reducing the occurrence of negative electrode side reactions.
- the plating/coating layer is selected from at least one of a simple substance, an alloy, or an oxide containing C, Sn, In, Ag, Pb, Co, and Zn.
- the thickness of the plating/coating ranges from 1 to 1000 nm.
- the surface of the negative current collector of copper is plated with lead or silver, or coated with a layer of carbon.
- the negative electrode 4 includes only the negative electrode current collector, but the material of the negative electrode current collector corresponds to the active ion in the electrolyte, that is, the material of the negative electrode current collector is a simple substance of active ions, such as active in the electrolyte.
- the ion is ⁇ 2+ and the negative electrode 4 corresponds to metal Zn.
- the anode 4 is not only a deposition carrier as a living ion but also participates in a battery reaction.
- the negative electrode 4 includes a negative electrode current collector and a negative electrode active material, and the material of the negative electrode active material corresponds to the active ion in the electrolyte, that is, the material of the negative electrode active material is a simple substance of the active ion, such as an electrolyte.
- the medium active ion is Zn 2+
- the negative electrode active material corresponds to metal Zn.
- the negative electrode 4 includes a brass foil and a zinc foil, the brass foil serves as a negative electrode current collector, and the zinc foil corresponds to the negative electrode active material, and can participate in the reaction of the negative electrode 4.
- the aqueous electrolyte 6 includes an electrolyte, and the electrolyte can at least ionize the active ions.
- the active ions are reduced and deposited on the negative electrode 4 during charging to form a negative active material (not shown), and the negative active material is oxidized and dissolved in the aqueous electrolyte 6 during discharge. in.
- the active ions include metal ions selected from at least one of Zn, Fe, Cr, Cu, Mn, Ni, and Sn.
- the reactive ion is Zn 2+ .
- the concentration range of active ions is 0.5- 15 mol/L.
- the aqueous electrolyte 6 further includes an electrolyte which can be ionized to correspond to ions capable of reversible elution-embedding on the positive electrode.
- the aqueous electrolyte solution 6 contains reversible elution-embedded ions, thereby increasing the ion exchange rate between the positive electrode active material 10 and the aqueous electrolyte solution 6.
- the positive electrode active material 10 is a compound capable of reversibly extracting-intercalating lithium ions
- the electrolyte further includes a lithium salt capable of ionizing lithium ions.
- the reversible elution-embedded ions include lithium ions or sodium ions or magnesium ions, and the reversible elution-embedded ions have a concentration in the aqueous electrolyte ranging from 0.1 to 10 mol/L.
- the active ion is present in the aqueous electrolyte in the form of at least one of a hydrochloride, a sulfate, an acetate, a nitrate or a formate.
- the concentration of active ions in the aqueous electrolyte 6 must reach a certain range.
- the aqueous electrolyte is over-alkali, it will affect the solubility of the active ions in the electrolyte; when the aqueous electrolyte is too acidic, the electrode will appear.
- the pH of the aqueous electrolyte ranges from 3 to 7.
- the separator 16 is disposed between the positive electrode 2 and the negative electrode 4.
- the separator 16 prevents the battery 1 from being short-circuited; on the other hand, the separator 16 can hold the aqueous electrolyte 6, specifically, the negative electrode 4, the separator 16, the positive electrode 2, and the separator 16
- the separator 16 After the negative electrode 4 is stacked and arranged, it is placed in the casing 22, and a certain amount of the aqueous electrolyte 6 is injected, and then the separator 16 is immersed in the aqueous electrolyte 6, that is, the separator 16 absorbs the aqueous electrolyte 6, which ensures The ion conduction path between the positive electrode 2 and the negative electrode 4; in addition, the separator 16 may be first immersed in the aqueous electrolyte 6, and then the separator 16 absorbing the aqueous electrolyte 6 may be placed on the positive electrode 2 and the negative electrode 4 between.
- the separator 16 may use a porous separator, a nonwoven fabric or a glass fiber.
- the porous membrane includes, but is not limited to, one of Polyethylene (PE), Polypropylene (PP), polyimide, or a laminated separator of PE-PP, PP-PE-PP.
- Non-woven fabrics include, but are not limited to, rayon, acetate, nylon.
- the impregnation amount of the aqueous electrolyte in the separator may be within the holding capacity of the separator or may exceed the holding range, because the battery 1 is provided with a casing to prevent leakage of the aqueous electrolyte 6.
- the positive electrode 2 is stacked between the negative electrodes 4, the negative electrode 4 shares the positive electrode 2, and the electrons are led or introduced from the positive electrode current collector 12 and the negative electrode 4, and the battery 1 corresponds to the inside of the two battery cells 20.
- each of the battery cells 20 has a positive electrode 2, a negative electrode 4, a water-based electrolyte 6 and a separator 16, and the separator 16 holds the aqueous electrolyte 6.
- the aqueous electrolyte 6 can be shuttled in any of the battery cells 20 without The battery unit 20 is short-circuited, and the battery 1 can work normally and stably.
- the charging and discharging principle of the battery provided by the present invention is as follows: In a battery unit 20, during charging, the ion can be reversibly extracted from the positive electrode active material 10, and the active ions in the aqueous electrolyte 6 are obtained at the negative electrode 4. The electrons are reduced and deposited on the negative electrode 4 to form a negative electrode active material. The discharge process is the reverse process of charging.
- the composite current collector 8 for the positive electrode 2 is used, and the conductive film 14 coated on the positive electrode current collector 12 is equivalent to the protective film, which can effectively prevent the corrosion of the positive electrode current collector 12 by the aqueous electrolyte 6, and improve the battery 1 The effect of discharge.
- the present invention only one positive electrode 2 is used to form the battery 1 having the parallel structure, and the two negative electrodes 4 share one positive electrode 2, which is sufficient.
- the first surface 81 and the second surface 82 of the composite current collector 8 are utilized, and the positive active material 10 is simultaneously disposed on the first surface 81 and the second surface 82, which not only saves the positive electrode material, but also makes the battery 1 structure more compact.
- the weight of the battery 1 is alleviated, so the battery 1 in the present invention has excellent energy density and power density.
- the battery 1 ⁇ water-based electrolyte 6 in the present invention is safer and more environmentally friendly than the lithium ion battery of the currently commercial organic electrolyte.
- the battery preparation process in the present invention is simple, and the battery can be prepared by lamination. Specifically, the negative electrode, the separator impregnated with the aqueous electrolyte, the positive electrode and the negative electrode are sequentially stacked in a casing, and then packaged.
- the battery 1 is equivalent to two battery cells 20 formed in parallel, and no special sealing member is provided between the battery cells 20 and the battery cells 20, and the battery 1 having such an internal parallel structure can operate normally and stably, and has excellent charging and discharging performance. And battery 1 can output higher capacity, and battery 1 is widely used.
- Embodiment 2 provides a battery 30 including a housing 22, two positive electrodes 2, a negative electrode 4, an aqueous electrolyte 6, and a diaphragm disposed in the housing 22.
- the positive electrode 2 and the negative electrode 4 are stacked in the casing 22, the negative electrode 4 is disposed between the two positive electrodes 2, the two positive electrodes 2 share the negative electrode 4, and the separator is disposed between the negative electrode 4 and the positive electrode 2, and the separator holds the aqueous electrolytic solution.
- the positive electrode 2 includes a composite current collector 8 and a positive electrode active material 10, and the composite current collector 8 includes a positive electrode current collector 12 and a conductive film 14 coated on the positive electrode current collector.
- the composite current collector 8 has a first surface 81 and a second surface 82 which are oppositely disposed.
- the first surface 81 is opposed to the negative electrode 4, and the positive electrode active material 10 is disposed at least on the first surface 81.
- the positive electrode active material is not particularly limited. 10 can also be placed on the second side 82 at the same time, as shown in FIG.
- the negative electrode 4 is selected from a metal, an alloy or a carbon-based material;
- the solution includes an electrolyte, and the electrolyte is capable of at least ionizing the active ions.
- the active ions are reduced and deposited on the negative electrode 4 during charging to form a negative electrode active material (not shown), and the negative electrode active material is oxidized and dissolved in the aqueous electrolyte 6 during discharge.
- the positive electrode active material 10, the composite current collector 8, the negative electrode and the aqueous electrolyte 6 have been described in the first embodiment and will not be repeated here.
- the conductive film 14 can further improve the conductivity of the positive electrode current collector 12 on the one hand, and the conductive film 14 on the other side mainly isolates the contact between the positive electrode current collector 12 and the aqueous electrolyte solution 6, thereby avoiding the water-based electrolyte solution 6 from the positive electrode current collector 12. Corrosion ensures the stability of the cathode current collector 12.
- the housing 22 may be arranged in a square or cylindrical shape, and correspondingly, the battery 30 may be designed as a square battery or a cylindrical battery.
- the positive electrode 2, the separator 16, the negative electrode 4, the separator 16 and the positive electrode 2 are arranged in a flat plate shape and placed in the casing 22 as shown in FIG.
- the battery 30 can be designed as a square battery such as a rectangular parallelepiped or a cube.
- the battery has a simple structure, is convenient to manufacture, and is simple in cost.
- the positive electrode 2, the separator 16, the negative electrode 4, the separator 16 and the positive electrode 2 are arranged in a strip shape, and then wound and formed to form a flat battery.
- the positive electrode 2, the separator 16 and the negative electrode 4 are each provided in an elongated shape. Winding into different turns according to battery design needs.
- the housing 22 can also be provided in a cylindrical shape.
- the positive electrode 2, the separator 16, the negative electrode 4, the separator 16, and the positive electrode 2 are stacked in a flat shape, and then formed into a cylindrical core by winding to be disposed in the casing 22, the positive electrode 2, the separator 16, the negative electrode 4, and the shell.
- the bodies 22 are arranged coaxially.
- the battery can be designed as a cylindrical battery, and the battery is simple in structure and easy to manufacture.
- the rest of the battery 30 in the second embodiment is the same as the first embodiment, and is not described here.
- the batteries in the first embodiment and the second embodiment are equivalent to two battery cells in parallel.
- the difference is that the battery 1 in the first embodiment has two positive electrodes 2, and the battery 30 in the second embodiment is two positive electrodes. 2
- a negative electrode 4 is shared. Therefore, the battery provided by the present invention has a flexible choice.
- the manufacturing process, the weight of the positive and negative electrodes, the material cost, and the like can be combined to select the production as in the first or second embodiment.
- the structure of the battery makes the resulting battery more cost and performance advantages.
- the composite current collector for the positive electrode is used, that is, the positive electrode current collector coated with the conductive film, and the conductive film serves as a protective film for the positive electrode current collector, preventing the corrosion of the positive electrode current collector by the aqueous electrolyte, and improving the battery.
- the potential self-discharge problem the battery has a stable cycle performance.
- a battery 40 includes a housing 22, a positive electrode 2, a negative electrode 4, a water-based electrolyte 6, and a diaphragm disposed in the housing 22.
- the battery includes n pairs of the positive electrode 2 and the negative electrode 4, n>2, the positive electrode 2 and the negative electrode 4 are alternately arranged, and the adjacent two positive electrodes 2 share the negative electrode 4 between the two positive electrodes 2, and the adjacent two negative electrodes 4 are shared.
- the battery 300 includes two pairs of the positive electrode 2 and the negative electrode 4, and the two adjacent positive electrodes 2 share the negative electrode 4 between the two positive electrodes 2, and the adjacent two negative electrodes 4 are shared by the two negative electrodes 4. Positive 2 between.
- the positive electrode 2 includes a composite current collector 8 and a positive electrode active material 10, and the composite current collector 8 includes a positive electrode current collector 12 and a conductive film 14 coated on the positive electrode current collector 12, and the composite current collector 8 has oppositely disposed sides, wherein at least the composite
- the positive electrode active material 10 is provided on the surface of the current collector 8 opposite to the negative electrode 4, and the positive electrode active material can reversibly extract-embed ions.
- the positive electrode composite current collector 8 has opposite sides.
- the positive electrode 2 is located between the two negative electrodes 4, the opposite sides of the composite current collector 8 are opposite to the negative electrode 4, so the composite set
- the positive electrode active material 10 is disposed on both sides of the fluid 8 opposite to each other; and for the positive electrode 2 located at the outermost layer, the composite current collector 8 has only one side opposite to the negative electrode 4, so at least the side of the composite current collector 8 opposite to the negative electrode 4
- the positive electrode active material 10 is provided, and the side of the composite current collector 8 opposite to the negative electrode 4 is not particularly limited, and the positive electrode active material can be selectively disposed according to an actual production process, and is schematically shown in the outermost layer of the positive electrode in FIG.
- a positive electrode active material 10 is also provided on one surface of the composite current collector opposite to the negative electrode.
- the negative electrode 4 is selected from a metal, an alloy or a carbon-based material; the aqueous electrolyte includes an electrolyte, the electrolyte is at least capable of ionizing the active ions, and the active ions are reduced and deposited on the negative electrode 4 during charging to form a negative active material (not shown), and the negative active material It is oxidized and dissolved in the aqueous electrolyte 6 at the time of discharge.
- the selection of the positive electrode and the preparation method thereof, the negative electrode and the aqueous electrolyte are the same as those in the first embodiment, and the description thereof will not be repeated here.
- the battery structure provided by the present invention can easily increase the positive electrode according to the use requirement.
- a negative electrode, or a positive electrode and a negative electrode for example, a negative electrode is superposed on the positive electrode of the outermost layer of the battery 40, or a negative electrode and a positive electrode are sequentially stacked, or a positive electrode is superposed on the negative electrode of the outermost layer of the battery 40, or a positive electrode and a negative electrode are superposed in this order, superimposed
- the positive and negative electrodes are alternately arranged.
- the number of positive and negative electrodes is determined according to the use requirements. As shown in Fig. 8, although the total output voltage of the battery 50 has not changed, the battery 50 has a higher capacity, the battery structure is flexible, and the utility model has wide application, and has an industrial application prospect.
- the battery provided by the invention can solve the problem just right.
- the positive current collector of the battery uses a composite current collector, and the composite current collector uses a positive current collector coated with a conductive film.
- the conductive film can improve the conductivity of the positive current collector, and more importantly.
- the protection of the positive current collector protects the corrosion of the positive current collector by the neutral water electrolyte, so that the positive current collector can stably collect and derive electrons during the discharge process, thereby ensuring stable cycle performance of the battery.
- the battery provided by the invention has a good commercial prospect.
- the invention also provides a battery, in particular, the battery is a water-based bipolar battery.
- the battery is a water-based bipolar battery.
- the water-based bipolar battery will be described below by way of a specific embodiment.
- a battery 100 includes a housing (not shown), a positive extraction electrode 54 disposed in the housing, at least one bipolar electrode 52, a negative extraction electrode 58, and an aqueous electrolyte. 6.
- the positive extraction electrode 54, the bipolar electrode 52 and the negative extraction electrode 58 are stacked in the casing, and the positive extraction electrode 54 and the negative extraction electrode 58 are located at the uppermost layer and the lowermost layer, respectively, and the bipolar electrode 52 and the aqueous electrolyte 6 are disposed. Between the positive extraction electrode 54 and the negative extraction electrode 58.
- battery 100 includes two bipolar electrodes 52.
- the housing can be set in a square shape.
- the positive extraction electrode 54, the bipolar electrode 52, and the negative extraction electrode 58 are stacked in a flat shape and placed in the casing.
- the battery 100 can be designed as a square battery such as a rectangular parallelepiped or a cube.
- the battery 100 is simple in structure, convenient to manufacture, and simple in cost.
- the battery 100 further includes a cover (not shown) connected to the housing, and the positive extraction electrode 54 and the negative extraction electrode 58 extend out of the cover. Connected to the external circuit, and the lead-out electrode 54 and the negative lead-out electrode 58 extend out of the cover The end portion is provided with a sealing cap which prevents the water-based electrolyte from evaporating from the hole through which the positive extraction electrode 54 and the negative extraction electrode 58 pass, thereby reducing the consumption of the aqueous electrolyte 6.
- the battery 100 further includes a safety valve and a liquid filling port (not shown) provided on the housing.
- the setting of the safety wide and the liquid filling port is referred to the first embodiment, and will not be repeated here.
- the positive extraction electrode 54 includes a positive electrode current collector 12 and a positive electrode active material 10 disposed on the surface of the positive electrode current collector 12, and the positive electrode active material 10 can reversibly escape-embed ions.
- the positive electrode active material 10 and the positive electrode current collector 12 have been described in the first embodiment, and the description thereof will not be repeated here.
- the bipolar electrode 52 is a schematic cross-sectional view of a bipolar electrode 52 constituting a battery 100.
- the bipolar electrode 52 includes a bipolar current collector 56 and a positive active material 10, and the bipolar current collector 56 has opposite first faces 61 and The second face 62, the positive active material 10 is disposed on the first face 61 of the bipolar current collector 56.
- the first face 61 and the second face 62 of the bipolar current collector 56 are of opposite polarity, the first face 61 corresponds to the positive electrode and the second face 62 corresponds to the negative electrode.
- the manner in which the bipolar electrode 52 is formed is not particularly limited, and the positive electrode active material 10 may be attached to the bipolar current collector 56 by coating, for example, the positive electrode active material 10 is made into a slurry, and then coated by a slurry method. Covering the bipolar current collector 56; the bipolar current collector 56 may also be coated on the press-formed positive active material 10; the positive active material 10 may also be attached to the bipolar current collector 56 by lamination. For example, the bipolar current collector 56 and the positive electrode active material 10 molded in a predetermined size are pressed to make electrical contact between the positive electrode active material 10 and the bipolar current collector 56 good, and the bipolar electrode 52 is formed.
- the thickness of the positive electrode active material 10 ranges from 100 to 400 ⁇ m.
- the positive electrode active material 10 in the bipolar electrode 52 and the positive electrode active material 10 in the positive electrode 54 can be specifically referred to the positive electrode active material in the first embodiment.
- the material of the bipolar current collector 56 may be a conductive plastic.
- the bipolar current collector 56 has a thickness ranging from 50 to 100 ⁇ m.
- the material of the conductive plastic is selected from the group consisting of conductive polymers.
- the conductive polymer includes, but is not limited to, at least one of polyacetylene, polypyrrole, polythiophene, polyphenylene sulfide, polyaniline, polyquinoline or polyparaphenylene.
- the conductive polymer itself is electrically conductive, but the conductive polymer can also be doped or modified to further increase its electrical conductivity.
- the conductive plastic may also be a composite conductive plastic, and the composite conductive plastic is prepared by using a polymer as a main matrix and incorporating a conductive agent therein.
- the conductivity of the polymer itself is not particularly limited, and the composite conductive plastic is Conductivity is mainly achieved by conductive agents.
- the conductive plastic includes a polymer and a conductive agent
- the polymer includes but is not limited to polyethylene, polypropylene, polybutene, At least one of polyvinyl chloride, polystyrene, polyamide, polycarbonate, polymethyl methacrylate, polyoxymethylene, polyphenylene ether, polysulfone, polyethersulfone, styrene butadiene rubber or fluororesin.
- the polymer may be polytetrafluoroethylene in a fluororesin, or may be a copolymer such as a copolymer of polytetrafluoroethylene (PTFE) and styrene-butadiene rubber (SBR).
- PTFE polytetrafluoroethylene
- SBR styrene-butadiene rubber
- the conductive agent includes a carbon-based material, a metal or a metal oxide.
- the percentage of the conductive agent in the conductive plastic ranges from 10 to 90%.
- the carbon-based material is selected from one of graphite, carbon nanotubes, or amorphous carbon.
- Amorphous carbon includes, but is not limited to, activated carbon and carbon black.
- the form of the metal is not limited and may be metal powder, metal foil, metal wire, metal fiber.
- Metal oxides include, but are not limited to, lead oxide, tin oxide.
- the conductive plastic obtained by processing the polymer and the conductive agent in a certain composite manner, such as dispersion compounding and layer-level compounding.
- the material of the bipolar current collector 56 may also be stainless steel or stainless steel which has been subjected to deuteration treatment.
- the mechanical properties of the stainless steel are superior to those of the conductive plastic. Therefore, when stainless steel is used as the bipolar current collector 56, the bipolar current collector 56
- the thickness can be thinner. Specifically, the thickness of the bipolar current collector 56 ranges from 20 to 100 ⁇ m.
- the method of deuteration treatment of stainless steel is not limited, and may be physical method deuteration, chemical deuteration or electrochemical deuteration.
- the purpose of deuteration is to improve the compatibility of the bipolar current collector 56 with the aqueous electrolyte 6, thereby reducing the occurrence of side reactions and allowing the battery to have stable cycle performance.
- the mechanical properties of the bipolar current collector 56 constituting the bipolar electrode 52 are not required to be high, that is, a light weight conductive plastic or a thinner stainless steel can be used as the bipolar current collector 56, the battery.
- the overall weight of 100 is reduced, so the energy density of the battery 100 is significantly improved.
- the negative extraction electrode 58 is selected from a metal, alloy or carbon based material.
- the negative extraction electrode 58 is at least one selected from the group consisting of at least one of metal Zn, Ni, Cu, Ag, Pb, Sn, Fe, Al or a deuterated metal, or an alloy containing the above metal, Or at least one of graphite foil, graphite sheet, carbon cloth, carbon felt, carbon fiber, or tin-plated copper, or brass.
- the negative extraction electrode 58 may also be selected from a metal containing a plating/coating having a high hydrogen evolution potential, thereby reducing the occurrence of negative side reactions.
- the plating/coating layer is selected from at least one of a simple substance, an alloy, or an oxide containing C, Sn, In, Ag, Pb, Co, and Zn.
- the thickness of the plating/coating ranges from 1 to 1000 nm.
- the surface of the negative extraction electrode 58 of copper is plated with lead or silver, or coated with a layer of carbon.
- the positive current collector 12 and the negative extraction electrode 58 have a thickness ranging from 1 to 10 mm.
- the negative extraction electrode 58 and the negative electrode 4 in the first embodiment may not participate in the electrode reaction only as a substrate for electron collection and conduction, or the negative extraction electrode 58 may include a negative current collector and a negative active material, such as a negative extraction electrode.
- 58 is a brass foil and a zinc foil, and the zinc foil is identical to the negative electrode active material.
- the aqueous electrolyte solution 6 is disposed between the positive extraction electrode 54 and the negative extraction electrode 58, and the positive extraction electrode 54, the bipolar electrode 52, and the negative extraction electrode 58 are stacked, and when the bipolar electrode 52 in the battery 100 is one, An aqueous electrolyte solution 6 is disposed between the extraction electrode 54 and the adjacent bipolar electrode 52, between the bipolar electrode 52, and the adjacent negative extraction electrode 58.
- An aqueous electrolytic solution 6 is provided between the extraction electrodes 58.
- the aqueous electrolyte 6 includes an electrolyte, and the electrolyte can at least ionize the active ions.
- the active ions are reduced and deposited on the second side of the bipolar current collector 56 to form a negative active material during charging, and the negative active material is oxidized and dissolved in the water system during discharge.
- the active ions are present in the aqueous electrolytic solution 6 in the form of at least one of a hydrochloride, a sulfate, an acetate, a nitrate or a formate.
- the aqueous electrolyte 6 further includes ions corresponding to the positive electrode active material 10 capable of reversibly extracting-embedding ions, and the ions include at least one of lithium ions, sodium ions or magnesium ions.
- the water-based electrolyte solution 6 further contains lithium ions, so that the ion exchange rate in the positive electrode active material 10 and the aqueous electrolyte solution 6 can be increased, and the ion exchange rate can be increased.
- the large-rate charge and discharge performance of the battery 100 is particularly, and discharge performance of the battery 100.
- the battery 100 of the fourth embodiment further includes a diaphragm 16 disposed between the positive extraction electrode 54 and the adjacent bipolar electrode 52 and between the bipolar electrode 52 and the adjacent negative extraction electrode 58.
- the four-cell battery 100 includes two bipolar electrodes 52, and therefore, a diaphragm 16 is also disposed between adjacent bipolar electrodes 52.
- the diaphragm 16 serves to hold the aqueous electrolyte 6 and the other membrane 16 prevents the battery 100 from being short-circuited.
- the separator 16 may use a porous separator, a nonwoven fabric or a glass fiber.
- the porous membrane includes, but is not limited to, one of Polyethylene, Polypropylene, or polyimide, or a laminated separator of ⁇ - ⁇ , ⁇ - ⁇ - ⁇ .
- Non-woven fabrics include, but are not limited to, rayon, acetate, nylon.
- the impregnation amount of the aqueous electrolyte 6 in the separator 16 may be within the holding ability of the separator 16, or may exceed the holding range, because the battery 100 is provided with the sealing portion 60 to prevent leakage of the aqueous electrolyte 6.
- the outer peripheral portion of the bipolar current collector 56 is provided with a sealing portion 60 for sealing the aqueous electrolyte 6.
- the sealing portion 60 may be a sealing cymbal, and the shape of the sealing rim is preferably rectangular, and the sealing squeegee may be selected to have an excellent sealing effect in the use environment of the battery 100.
- the rubber of the sealing portion 60 is not particularly limited, and the rubber is selected from the group consisting of silicone rubber, fluorine rubber, olefin rubber, and nitrile rubber.
- the olefin rubber includes but is not limited to butylbenzene. Rubber (SBR), neoprene (CR). These rubber-based resins for sealing have good sealing properties (liquid tightness), acid and alkali resistance, chemical resistance, durability, weather resistance, and heat resistance, and can be maintained for a long period of time in the environment in which the battery 100 is used.
- the excellent performance is not deteriorated, so that the aqueous electrolytic solution 6 can be effectively prevented from oozing out from the battery 100, thereby preventing the battery 100 from being short-circuited due to leakage of the aqueous electrolytic solution 6, and ensuring the cycle stability of the battery 100.
- the sealing portion 60 when the sealing portion 60 is sealed with a sealing jaw, the area of the diaphragm 16 is smaller than the surrounding area of the sealing jaw, and the height of the sealing jaw is not less than the sum of the thicknesses of the diaphragm 16 and the positive electrode active material 10, when the battery is assembled,
- the separator 16 impregnated with the aqueous electrolyte 6 is placed in the crucible of the sealing crucible, and the separator 16 does not participate in the sealing, so that the leakage of the aqueous electrolyte 6 which may be caused by the porous separator can be avoided.
- the area of the diaphragm 16 may be larger than the surrounding area of the sealing portion 60 provided at the outer peripheral portion of the bipolar electrode 52, as long as the diaphragm 16 and the sealing portion 60 are finally integrally formed, the water-based electrolyte 6 is not leaked.
- the bipolar electrodes 52 are stacked between the positive extraction electrode 54 and the negative extraction electrode 58.
- the electrons are only led or introduced from the positive extraction electrode 54 and the negative extraction electrode 58.
- the battery 100 is equivalent to three.
- the battery cells 64 are connected in series, and each of the battery cells 64 has a positive electrode, a negative electrode, a water-based electrolyte, and a separator.
- the aqueous electrolyte 6 is sealed by the sealing portion 60 to prevent the battery unit 64 from being leaked due to the leakage of the aqueous electrolyte 6. A short circuit between them ensures the normal operation of the battery 100.
- one of the battery cells 64 includes a positive electrode current collector 12, a positive electrode active material 10, a separator 16, an aqueous electrolyte 6, a sealing portion 60, and a second face 62 of the bipolar current collector 56 as a negative electrode.
- the sealing portion 60 is for sealing the aqueous electrolyte 6 in each of the battery cells 64 to avoid short circuit of the battery 100 due to leakage of the aqueous electrolyte 6.
- the battery 100 shown in FIG. 11 includes only two bipolar electrodes 52, but actually the number of bipolar electrodes 52 in the battery 100 can be easily set according to the use requirements, thereby preparing batteries having different output voltages. As well as batteries having a high output voltage, the battery provided by the present invention has a wide range of uses.
- the battery preparation process in the invention is simple, and the battery can be prepared by lamination. Specifically, a rectangular sealing crucible is stacked on the negative extraction electrode, and the sealing crucible is attached to the outer peripheral portion of the negative extraction electrode, and then in the crucible of the sealing crucible. The separator impregnated with the aqueous electrolyte is placed, and the bipolar electrode and the positive extraction electrode are laminated in this order, and the positive electrode active material in the positive electrode and the bipolar electrode is simultaneously placed toward the negative extraction electrode, and the aqueous electrolyte is sealed by the sealing port.
- the number of bipolar electrodes determines the final output voltage of the battery. Therefore, the number of bipolar electrodes can be set according to the use requirements, and the battery has a wide range of uses.
- the charging and discharging principle of the battery 100 provided by the present invention is as follows:
- the ion can be reversibly extracted from the positive electrode active material 10, and the aqueous electrolyte 6 is simultaneously removed.
- the active ions in the second face 62 of the bipolar current collector 56 are electron-reduced and deposited on the second face 62 to form a negative active material.
- the active ions are reduced on the negative extraction electrode 58 and deposited on the negative extraction electrode 58.
- the discharge process is the reverse process of charging.
- the bipolar electrode 52 constituting the battery 100 is provided with the positive active material 10 only on the first surface 61 of the bipolar current collector 56, and the second surface 62 of the bipolar current collector 56 corresponds to the negative electrode.
- the active ion is subjected to electron reduction-deposition to provide a carrier, and the active ion is present in the aqueous electrolyte 6, and the positive active material 10 is disposed on the first surface 61 and the second surface 62 of the bipolar current collector 56 in the prior art.
- the battery 100 of the present invention is more compact in structure, and the battery 100 has excellent energy density and power density.
- the battery 100 in the present invention is an aqueous electrolyte 6 which is safer and more environmentally friendly than the lithium ion battery which is currently commercialized with an organic electrolyte.
- the battery 100 of the present invention is equivalent to a plurality of battery cells 64 formed in series, and each of the battery cells 64 is well sealed by the sealing portion 60, thereby preventing a short circuit due to leakage of the aqueous electrolyte 6. Further, the battery of the present invention can prevent a short circuit between the battery cells without providing a special leakage preventing member or an insulating member, thereby providing a bipolar battery having excellent ion conductivity and charge and discharge performance. In addition, different numbers of bipolar electrodes 52 can be set according to the use requirements, thereby preparing batteries 100 having different output voltages, and the battery 100 is very versatile.
- Embodiment 5 provides a battery 110.
- the battery 110 includes a housing (not shown), a positive extraction electrode 54 disposed in the housing, at least one bipolar electrode 52, and a negative extraction electrode 58. And water-based electrolyte 6.
- the bipolar electrodes 52 are stacked between the positive extraction electrode 54 and the negative extraction electrode 58, and the positive extraction electrode 54 and the negative extraction electrode 58 are located at the uppermost layer and the lowermost layer, respectively.
- the positive extraction electrode 54 includes a positive electrode current collector 12 and a positive electrode active material 10 disposed on the surface of the positive electrode current collector 12, and the difference from the fifth embodiment is that the positive electrode current collector 12 is coated with the conductive film 14.
- the conductive film 14 may be coated on one side of the positive electrode current collector 12 by means of adhesive bonding, hot pressing or vacuum coating, and then the positive electrode active material 10 is disposed on the conductive film 14, and the thickness of the conductive film 14 is 0.01. -0.2mm. Specifically, in Fig. 13, the positive electrode current collector 12 is coated with a conductive film 14 on both sides.
- the material of the conductive film 14 has been described in detail in Embodiment 1, and will not be repeated here.
- the conductive film 14 coated on the positive electrode current collector avoids the positive electrode set.
- the fluid 12 is in direct contact with the aqueous electrolyte 6, which solves the potential corrosion problem of the aqueous electrolyte 6 to the positive current collector 12, ensures the stability of the positive current collector 12, and improves the possible self-discharge of the battery 10, thereby making the battery 1 10 Has a stable cycle performance.
- the battery unit 68 is sealed by a sealing portion 60 which is provided at the outer peripheral portion of the bipolar current collector 56 for sealing the aqueous electrolyte 6.
- the rest of the battery 110 and the assembly method are the same as those in the fourth embodiment, and are not described here again.
- a sixth embodiment provides a battery 120.
- the battery 120 includes a housing (not shown), a positive extraction electrode 54 disposed in the housing, at least one bipolar electrode 52, and a negative extraction electrode 58. And water-based electrolyte 6.
- the bipolar electrodes 52 are stacked between the positive extraction electrode 54 and the negative extraction electrode 58, and the positive extraction electrode 54 and the negative extraction electrode 58 are located at the uppermost layer and the lowermost layer, respectively.
- the difference from Embodiment 4 is that the battery 120 does not include a diaphragm.
- the battery unit (not shown) is sealed by the sealing portion 60, and the sealing portion 60 is provided at the outer peripheral portion of the bipolar current collector 56 for sealing the aqueous electrolytic solution 6.
- the sealing portion 60 can use a sealing ⁇ , the height of the sealing ⁇ is greater than the thickness of the positive electrode active material 10, and the bipolarity of the positive electrode 54 and the adjacent bipolar electrode 52 is caused by the sealing enthalpy having a certain height.
- a distance is maintained between the current collectors 56 and between the bipolar current collectors 56 of the bipolar electrodes 52 and the adjacent negative extraction electrodes 58 to avoid shorting of the battery 120.
- a seal portion 60 is also provided between the bipolar current collector 56 of the adjacent bipolar electrode 52 and the bipolar current collector 56.
- the positive extraction electrode 54, the bipolar electrode 52, and the negative extraction electrode 58 prepared in accordance with a predetermined specification may be first arranged and sealed. Specifically, the positive electrode active material 10 on the positive electrode 54 and the bipolar electrode 52 are simultaneously aligned toward the negative extraction electrode 58.
- the sealing portion 60 can be sealed with a rubber material having a thickness higher than that of the positive electrode active material 10, such as a sealing port.
- the crucible is disposed on the outer peripheral portion of the bipolar current collector 56, and finally injected into the aqueous electrolyte 6 by injection;
- the sealing portion 60 may also be made of a thermoplastic rubber material, and in the preliminary sealing, only in the bipolar current collector 56 A thermoplastic rubber material is disposed on the outer peripheral portion of the side, and one side of the opening is left. After the positive electrode 54 and the negative electrode 52 are arranged, the rubber is solidified by heating or heating, and then passed through the unsealed side. A predetermined amount of aqueous electrolyte 6 is injected, and finally all of the battery cells are completely sealed.
- the remaining structure and assembly manner of the battery 120 are the same as those in the fourth embodiment, and are not described here again.
- the battery 120 in the sixth embodiment does not have a diaphragm, and the battery 120 can not only provide normal and continuous operation, but also has a higher energy density and specific power due to lighter weight. Further, in the preparation of the battery 120, the sealing portion 60 can be easily formed to prevent a short circuit due to leakage of the aqueous electrolyte 6. The battery 120 can prevent short circuits between the battery cells even if no special leakage preventing member is provided, and the battery 120 has excellent cycle performance and cycle life.
- a seventh embodiment provides a battery 130.
- the battery 130 includes a housing (not shown), a positive extraction electrode 54 disposed in the housing, at least one bipolar electrode 52, and a negative extraction electrode 58. And water-based electrolyte 6.
- the bipolar electrodes 52 are stacked between the positive extraction electrode 54 and the negative extraction electrode 58, and the positive extraction electrode 54 and the negative extraction electrode 58 are located at the uppermost layer and the lowermost layer, respectively.
- the positive extraction electrode 54 includes a positive electrode current collector 12 and a positive electrode active material 10 disposed on the surface of the positive electrode current collector 12, and the difference from the sixth embodiment is that the positive electrode current collector 12 is coated with the conductive film 14.
- the material selection and molding method of the conductive film 14 are the same as those in the first embodiment, and are not described here again.
- the conductive film 14 coated on the positive electrode current collector 12 isolates the contact between the positive electrode current collector 12 and the aqueous electrolyte solution 6, thereby improving the stability of the positive electrode current collector 12, thereby ensuring stable stability of the battery 130. Cycle performance.
- the battery 130 which does not use a diaphragm, is lighter in weight and provides excellent performance while being convenient for the user to carry.
- the bipolar current collector in the bipolar electrode can be made of conductive plastic or a thin stainless steel, and the weight of the battery is lighter while ensuring the normal operation of the battery, so that the battery of the present invention is The energy density and volume have obvious advantages.
- the battery is water-based electrolyte, the water-based electrolyte has relatively higher ionic conductivity, which improves the rate performance of the battery; the battery is safe, environmentally friendly and simple in manufacturing process. In the process, batteries with different output voltages can be prepared according to the use requirements, and the battery has wide application and has industrial application prospects.
- a battery containing a bipolar electrode is provided, and only a positive electrode active material is coated on one side of the bipolar electrode, and the opposite side of the bipolar electrode is coated with the positive electrode active material without a negative active material before the battery is first charged and discharged.
- the active ion of the negative electrode is present in the aqueous electrolyte, and when the battery is charged, it is deposited on the side of the bipolar electrode not coated with the positive active material, and the battery has excellent cycle performance.
- the battery is made of an aqueous electrolyte, and the battery of the present invention is safer and more environmentally friendly than the lithium ion battery using the organic electrolyte.
- batteries with different output voltages and high output voltage can be prepared. The battery is widely used and the preparation process is simple, and the battery has commercial application potential.
- the present invention also provides a battery having a plate structure.
- a battery 140 includes a housing 70, a positive electrode 72, a negative electrode 74, a diaphragm 76, and an aqueous electrolyte 78 disposed in the housing 70. And the diaphragm 76 is disposed between the positive electrode 72 and the negative electrode 74.
- the positive electrode 72 includes a positive electrode current collector 80 and a positive electrode active material 82 participating in an electrochemical reaction, the positive electrode active material 82 includes a compound capable of reversibly extracting-embedding ions; the negative electrode 74 is selected from a metal, an alloy or a carbon-based material; the aqueous electrolyte 78 includes an electrolyte
- the electrolyte can at least ionize the active ions, and the active ions are reduced and deposited on the negative electrode 74 to form a negative electrode active material during charging, and the negative electrode active material is oxidized and dissolved in the aqueous electrolyte 78 during discharge.
- the positive electrode 72, the negative electrode 74, the aqueous electrolyte 78, and the separator 76 are the same as those in the first embodiment, and the description thereof will not be repeated here.
- the positive electrode 72, the separator 76, and the negative electrode 74 are formed in a flat plate shape, and the separator 76 is located between the positive electrode 72 and the negative electrode 74. Accordingly, the housing 70 is provided in a square shape.
- the battery can be designed as a square battery, such as a rectangular parallelepiped or a cube.
- the battery has a simple structure, is convenient to manufacture, and is simple in cost.
- the battery 140 is designed to be stacked.
- the positive electrode 72, the separator 76 and the negative electrode 74 are stacked to form a flat plate
- the diaphragm 76 is located between the positive electrode 72 and the negative electrode 74.
- the housing 70 is also arranged in a square shape. Specifically, in FIG. 17, the positive electrode 72 is set to four, the negative electrode 74 is set to five, and the closest to the housing 70 is the negative electrode 74.
- the battery can also be configured to include a number of individual battery cells, the individual battery cells including separate positive, diaphragm, and negative electrodes.
- the battery cells are connected in parallel.
- Stand-alone battery units can be set to 2 to 10 groups.
- independent battery cells can also be set to different groups according to different needs, such as 12 groups or more.
- independent battery cells can also be connected in series as needed.
- the housing 70 may be provided as a metal, plastic or a composite film of metal and plastic, such as steel, aluminum, acrylonitrile-butadiene-styrene copolymer (ABS), polypropylene (PP), nylon or aluminum plastic film, and the like.
- the housing 70 is provided as an aluminum plastic film to make the housing thin. Reducing the weight of the battery also increases the space inside the battery.
- the aluminum plastic film comprises a layer of aluminum and a first layer of plastic.
- the aluminum plastic film further comprises a second plastic sheet disposed on the other side of the aluminum sheet with respect to the first layer of plastic sheet.
- the battery also includes a cover 84 coupled to the housing 70, the positive current collector 80 extending through the cover 84, and the positive current collector 80 extending through the end of the cover 84 is provided with a sealing cap 86.
- the sealing cap 86 needs to have good electrical conductivity and chemical stability.
- the sealing cap 86 also prevents the water-based electrolyte 78 from evaporating from the holes through which the positive electrode collector 80 passes, thereby reducing the consumption of the aqueous electrolyte 78.
- the positive electrode 72 is connected to the external circuit.
- the negative electrode 74 also extends through the cover 84 to be connected to the external circuit. Similarly, a sealing cap (not shown) is provided at the end of the negative electrode 74 extending through the cover 24.
- the battery also includes a safety margin 88 for controlling the pressure within the housing 70.
- the safety wide 88 is opened to release the pressure and prevent the housing from being deformed, thereby improving the life and safety of the battery.
- the safety wide 88 is closed to prevent the internal gas from leaking outward. At the same time, external air is prevented from entering the casing 70 to cause adverse effects. It also prevents the evolved hydrogen from tempering in the event of an open flame, thereby detonating the gas inside the casing 70.
- a fluid replacement port (not shown) for replenishing the aqueous electrolyte 78 may be provided on the casing 70.
- the aqueous electrolyte 78 is small, the aqueous electrolyte 78 can be injected through the liquid replacement port.
- the positive electrode 72, the separator 76, and the negative electrode 74 are also pressed into a square flat plate shape.
- the housing 70 is also provided in a square shape, such as a rectangular parallelepiped or a cube, so that the battery can be designed as a square battery.
- the positive electrode 72, the separator 76 and the negative electrode 74 are each provided in an elongated shape. It can be wound into different numbers of turns as needed.
- the flat battery cell includes two opposite planes 90, and two arcuate portions 92 that are opposite to each other and that are opposite to each other. At least one of the positive winding end 94 and the negative winding end 96 is located at the curved portion 92 of the flat cell.
- the positive winding end 94 and the negative winding end 96 are respectively located at opposite arcuate portions 92 of the flat cells.
- the positive winding end 94 and the negative winding end 96 are located at the same curved portion 92 of the flat cell.
- the thickness of the pole piece expands, resulting in an increase in the overall thickness of the flat battery.
- the positive winding end 94 and the negative winding end 96 are disposed at the curved portion 92. Since the space between the curved portion 92 and the casing 70 is left, the space is relaxed for the expansion of the flat battery. Punching effect. Thereby, a large stress concentration is not generated at the curved portion 92, thereby avoiding the occurrence of significant wrinkles at the curved portion 92, effectively reducing the crystallization of the reversible eluting-embedded ions.
- the flat battery cell is wound by a method in which the diaphragm 76 is wound into two layers from the inner crucible, and the two layers of the diaphragm 76 are attached to each other.
- the two layers of the diaphragm 76 are attached to a certain length, Rewinding the second crucible, starting from the inner crucible, in turn, a two-layer diaphragm 76, a negative electrode 74, a diaphragm 76 wound to the second crucible, a positive electrode 72, wound to the diaphragm 76 of the second crucible, and then continuing to roll
- the anode 74, the separator 76, the cathode 72, and the separator 76 may be wound around the designed number of turns.
- there are other winding methods as long as the positive and negative electrodes are insulated.
- the invention provides a battery with high energy density (up to 60% - 80% of lithium ion battery), High power density (expected to reach 200% or even higher for lithium-ion batteries), easy to manufacture, completely non-toxic, environmentally friendly, easy to recycle and low cost (batteries of the same capacity, expected to reach 60% of lead-acid batteries, lithium
- the ion battery has 20% or even lower characteristics, and has good cycle performance.
- the battery capacity is maintained above 90% after 4000 weeks of circulation. Therefore, the battery of the present invention is a new generation of green energy, and is very suitable as a storage system for large-scale energy storage and a substitute for lead-acid batteries.
- the present invention also provides a battery having a cylindrical structure.
- a battery comprising a housing, a positive electrode, a negative electrode, a diaphragm and an aqueous electrolyte disposed in the housing, the diaphragm being disposed between the positive electrode and the negative electrode.
- the positive electrode includes a positive electrode current collector and a positive electrode active material participating in an electrochemical reaction, the positive electrode active material includes a compound capable of reversibly extracting-embeding ions; the negative electrode is selected from a metal, an alloy or a carbon-based material; the aqueous electrolyte includes an electrolyte, and the electrolyte is at least capable of being ionized
- the active ions, the active ions are reduced and deposited on the negative electrode during charging to form a negative electrode active material, and the negative electrode active material is oxidized and dissolved in the aqueous electrolyte at the time of discharge.
- the positive electrode current collector, the positive electrode active material, the negative electrode, the aqueous electrolyte solution and the separator are the same as those in the first embodiment, and are not described here.
- the setting of the negative electrode is the same as that of the first embodiment, that is, the negative electrode includes the negative electrode current collector, and the negative electrode may not participate in the electrode reaction only as a substrate for electron collection and conduction; or the negative electrode includes the negative electrode current collector and the negative electrode active material, such as the negative electrode is yellow. Copper foil and zinc foil, zinc foil is consistent with the negative electrode active material.
- the housing is arranged in a cylindrical shape, and the positive electrode, the diaphragm, the negative electrode, and the housing are coaxially arranged.
- the positive electrode, the diaphragm and the negative electrode in the battery may be disposed in the casing by winding to form a cylindrical battery core.
- the negative electrode 160 and the diaphragm 156 of the battery 150 are both cylindrical, the positive current collector 152 is cylindrical, and the positive active material 158 is disposed between the separator 156 and the positive current collector 152.
- the battery 150 also includes a retaining ring 154 that secures the positive current collector 152, the diaphragm 156, the negative electrode 160, and a housing (not shown).
- the fixing ring 154 is made of polyvinyl chloride and two fixing rings 154 are respectively disposed at two ends of the casing.
- the retaining ring 154 includes an upper ring 162 and a lower ring 164. The upper ring 162 and the lower ring 164 are integrally formed.
- the upper ring 162 fixes the positive current collector 152 and the diaphragm 156
- the lower ring 164 fixes the diaphragm 156 and the negative electrode 160.
- the outer diameter of the upper ring 162 and the negative electrode The inner diameter of 160 is the same, the inner diameter of the upper ring 162 is the same as the diameter of the positive current collector 152; the outer diameter of the lower ring 164 is the same as the inner diameter of the diaphragm 156, and the inner diameter of the lower ring 164 is the same as the diameter of the positive current collector 152.
- a battery 150 including a cathode current collector 152, a cathode active material 158, a separator 156, a cathode 160, and water electrolysis.
- a liquid (not shown), a fixing ring 154 and a casing; a positive electrode current collector 152 is arranged coaxially with the positive electrode active material 158, the separator 156, the negative electrode 160 and the casing; the negative electrode 160 and the separator 156 are both cylindrical and cylindrical;
- the active material 158 is disposed between the positive electrode current collector 152 and the separator 156;
- the separator 156 is disposed between the positive electrode active material 158 and the negative electrode 160;
- the negative electrode 160 is disposed between the separator 156 and the casing;
- the aqueous electrolyte is disposed in the casing;
- the ring 154 is disposed at one end of the housing.
- the fixing ring 154 fixes the positive current collector 152 and the diaphragm 156 and the negative electrode 160.
- the positive current collector 152 is a graphite rod.
- the fixing ring 154 is made of polyvinyl chloride and two fixing rings 154 are respectively disposed at two ends of the casing in the battery, one is disposed at the top end of the battery, and the other is disposed at the bottom end of the battery.
- the fixing ring 154 includes an upper ring 162 and a lower ring 164.
- the upper ring 162 and the lower ring 164 are integrally formed.
- the upper ring 162 fixes the positive current collector 152 and the diaphragm 156
- the lower ring 164 fixes the diaphragm 156 and the negative electrode. 160.
- the outer diameter of the upper ring 162 is the same as the inner diameter of the negative electrode 160, the inner diameter of the upper ring 162 is the same as the diameter of the positive current collector 152; the outer diameter of the lower ring 164 is the same as the inner diameter of the diaphragm 156, and the inner diameter of the lower ring 164 is opposite to the positive current collector 152.
- the diameter is the same.
- the battery further includes a positive electrode conductive agent, and the positive electrode conductive agent and the positive electrode active material 158 are mixed and disposed together between the positive electrode current collector 152 and the separator 156.
- the cylindrical positive electrode current collector 152, the cylindrical cylindrical diaphragm 156, and the fixing ring 154 disposed at the bottom end of the battery are assembled, and the positive electrode conductive agent, the positive electrode active material 158 and the solvent are uniformly mixed to form a positive electrode slurry, and then the positive electrode is further formed.
- the slurry is poured into a gap composed of the separator 156 and the cathode current collector 152, and dried, that is, a positive electrode conductive agent and a positive electrode active material 158 are formed between the cathode current collector 152 and the separator 156.
- the positive electrode conductive agent is selected from one or more of a conductive polymer, activated carbon, graphene, carbon black, carbon fiber, metal fiber, metal powder, and metal flake.
- the solvent is selected from deionized water or ethanol.
- the cylindrical cylindrical anode 160 may be a cylindrical current collector anode, a cylindrical cathode current collector 152, a cylindrical cylindrical separator 156, and a cylindrical cylindrical anode.
- the negative electrode active material is added between the cylindrical cylindrical diaphragm 156 and the cylindrical cylindrical negative current collector; or it may be After the anode active material is formed on the anode current collector by coating, plating or sputtering, a cylindrical cylindrical anode 160 is formed.
- the battery provided by the invention has the characteristics of high energy density, high power density, easy manufacture, safety, non-toxicity, environmental protection, easy recycling and low cost, and the battery has good cycle performance. Therefore, the battery in the invention is new.
- the first generation of green energy is well suited as an energy storage system for large-scale energy storage and as an alternative to lead-acid batteries.
- volume percentage refers to the weight of the solute in a 100 ml solution.
- all professional and scientific terms used herein have the same meaning as those skilled in the art.
- any methods and materials similar or equivalent to those described may be employed in the methods of the present invention.
- the preferred embodiments and materials described herein are for illustrative purposes only.
- LiMn 2 0 4 Hydrophilicity Modifier
- conductive carbon black TIMCAL, super P
- binder sodium carboxymethylcellulose Spieke, 30000
- the ratio of 1 : 50 was evenly mixed, and 3 parts of styrene-butadiene rubber emulsion (Dajin) was added, and the mixture was further mixed to prepare an active material slurry.
- An aluminum foil having a length of 80 mm, a width of 60 mm and a thickness of 20 ⁇ m is used as a positive electrode current collector, and the aluminum foil is placed in the middle of two conductive films having a thickness of 50 ⁇ m.
- the size of the conductive film is slightly larger than that of the aluminum foil, and the conductive film is coated by heating and compounding. On the aluminum foil, and ensure that the conductive film is partially sealed better than the aluminum foil.
- the active material slurry was uniformly coated on the first side and the second side of the composite current collector, the coating density was 700 g/m 2 , dried at 60 ° C, and 10 ton of pressure was applied to the roll press. The positive electrode was obtained.
- the conductive film is a composite material containing polypropylene and conductive carbon black.
- the diaphragm is a 2 mm thick AGM fiberglass diaphragm measuring 70 x 70 mm.
- the negative electrode is a 50 micron thick zinc plate that is the same size as the diaphragm.
- the electrolytic solution was a mixed aqueous solution of 2 mol/L of ZnS0 4 and 1 mol/L of Li 2 S 0 4 .
- the battery was assembled as follows: The obtained positive electrode was placed between two negative electrodes, and a separator was placed between the positive electrode and the negative electrode. After the assembly was completed, 12 ml of electrolyte was injected and allowed to stand for 3 hours to start the charge and discharge test.
- the positive current collector is a copper foil, and the remaining components of the battery and the test method are implemented. example 1.
- Example 3 the positive electrode current collector was a stainless steel foil, and the rest of the battery was constructed and tested in the same manner as in Example 1.
- Example 4 the thickness of the conductive film was 100 ⁇ m, and the remaining composition of the battery and the test method were the same as those in Example 1.
- the batteries in Examples 1 to 4 were subjected to a charge and discharge cycle test at room temperature.
- the charge and discharge cycle test conditions were as follows: charging to 2. I V at a constant current of 0.25 C, stopping for 10 minutes, discharging to 1.4 V at a constant current of 1 C, and stopping for 10 minutes as a cycle.
- Fig. 23 is a graph showing the charge and discharge cycle performance of the battery in Example 1. As can be seen from the figure, the battery can operate normally and the performance is very stable after repeated cycles. Similarly, the batteries of Embodiments 2 through 4 can operate continuously and stably.
- the positive electrode active material LiMn 2 0 4 , the conductive agent acetylene black (AB ), the binder polyvinylidene fluoride (PVDF) are mixed at a weight ratio of 80:10:10, and N-methylpyrrolidone is used as a solvent to prepare a positive electrode slurry.
- the positive electrode slurry was coated on one side of a current collector having a thickness of ⁇ ⁇ , placed in a vacuum drying oven, and dried at 60 ° C for 0.5 h to form a bipolar electrode having a thickness of 400 ⁇ m.
- the current collector is made of a conductive plastic.
- the conductive plastic is a composite material containing polypropylene and conductive carbon black.
- the material of the positive current collector and the negative extraction electrode is a stainless steel foil, which is coated on the one side of the positive current collector with a conductive film having a thickness of 50 ⁇ m by hot pressing, and the conductive film is a composite film of polyethylene and carbon black, according to the preparation of the double In the process of the polar electrode, the positive electrode active material of the same thickness is coated on the side of the positive electrode current collector coated with the conductive film.
- the positive current collector and the negative extraction electrode have a thickness of 2 mm.
- the aqueous electrolyte is an aqueous solution containing a concentration of 1 mol/L lithium sulfate and 2 mol/L zinc sulfate;
- the diaphragm is made of glass fiber (AGM), the area of the diaphragm is smaller than the surrounding area of the rectangular sealing crucible, and the thickness of the diaphragm is 600 ⁇ m; With a rectangular seal of height 1 mm, the area of the rectangular seal is slightly smaller than the area of the extraction electrode and current collector.
- a rectangular sealing crucible is laminated on the negative extraction electrode, and then a separator impregnated with an aqueous electrolyte is placed in the crucible of the sealing crucible, and the bipolar electrode and the positive extraction electrode are sequentially laminated, and the bipolar electrode and the positive extraction electrode are coated with the positive active material side.
- the seal ⁇ is used for the seal set in the positive The aqueous electrolyte between the electrode and the adjacent bipolar electrode and the bipolar electrode and the adjacent negative extraction electrode is extracted.
- the battery of Example 5 was subjected to a charge and discharge cycle test at room temperature.
- the charge and discharge cycle test conditions are as follows: charging to 4.2V at a constant current of 1 C, stopping for 10 minutes, discharging to 2.8 V at a constant current of 1 C, and stopping for 10 minutes as a cycle.
- Example 6 the number of bipolar electrodes was three, and the remaining configuration of the battery and the preparation method were the same as those in Example 5.
- the battery in Example 6 was subjected to a charge and discharge cycle test at room temperature.
- the charge and discharge cycle test conditions are as follows: charge to 8.4V at a constant current of 1 C, stop for 10 minutes, discharge to 5.6V at a constant current of 1C, and then stop for 10 minutes as a cycle.
- Example 7 the number of bipolar electrodes was five, and the remaining configuration of the battery and the preparation method were the same as those in Example 5.
- the battery of Example 7 was subjected to a charge and discharge cycle test at room temperature.
- the charge and discharge cycle test conditions are as follows: charge to 12.6V at a constant current of 1 C, stop for 10 minutes, discharge to 8.4V at a constant current of 1 C, and then stop for 10 minutes as a cycle.
- Example 8 the collector of the bipolar electrode was made of stainless steel and had a thickness of 50 ⁇ m, and the remaining composition, preparation method, and battery performance test of the battery were the same as those in Example 5.
- Example 9 one side of the positive electrode current collector was not coated with a conductive film, and the remaining composition of the battery, the preparation method, and the battery performance test were the same as those in Example 5.
- Table 1 shows the performance of the battery in Examples 5 to 9 at 1 C rate charge and discharge, and the charge and discharge cycle 100 times:
- the positive electrode active material LiMn 2 0 4 , super-p carbon black, and the binder PVDF were uniformly mixed in a weight ratio of 8:1:1, and NMP was used as a solvent to prepare a positive electrode slurry, which was coated on a positive electrode having a thickness of 80 ⁇ m.
- the current collector graphite foil is then dried and pressed to obtain a positive electrode;
- the negative electrode includes a zinc foil and a graphite foil having a thickness of 50 ⁇ m, the metal zinc is plated on the graphite foil as a negative electrode active material; and the separator is a glass felt cloth.
- the obtained positive electrode, the separator and the negative electrode are wound to form a cylindrical battery core, and are disposed in a cylindrical cylindrical casing;
- the electrolyte added in the battery is an aqueous solution containing 2 mol/L lithium acetate and 1.5 mol/L zinc acetate.
- the pH of the electrolytic solution was adjusted to 4 by dropwise addition of 0.1 mol/L of LiOH solution to the electrolytic solution.
- the battery is allowed to stand for 12 hours, it is charged and discharged at a current of 100 mA, and the voltage range is 1.5-2.35V.
- a battery was fabricated in the same manner as in Example 10 except that the graphite foil in the negative electrode of Example 10 was replaced with a deuterated type 316 stainless steel.
- a battery was fabricated in the same manner as in Example 10 except that the graphite foil in the negative electrode of Example 10 was replaced with a copper foil.
- the positive current collector is a graphite rod having a diameter of 4 mm and a length of 62 mm;
- the separator is made of a non-woven fabric,
- the diaphragm is a cylindrical cylinder, the outer diameter of the diaphragm is 11 mm, the inner diameter of the diaphragm is 10 mm, and the length of the diaphragm is 58mm;
- the negative electrode includes copper foil and zinc. Zinc is formed on the copper foil by sputtering to obtain a cylindrical cylindrical negative electrode.
- the outer diameter of the negative electrode is 17 mm, the inner diameter of the negative electrode is 16 mm, the length of the negative electrode is 58 mm, and the negative electrode is provided with 0.1 mm.
- the housing is made of polyvinyl chloride (PVC), shell
- the inner diameter of the body is 17mm
- the outer diameter of the housing is 18mm
- the length of the housing is 60mm.
- the fixing ring is made of polyvinyl chloride (PVC), and the fixing ring has two, which are respectively disposed at the two ends of the battery and placed on the battery.
- the top end is a first fixing ring
- the bottom end of the battery is a second fixing ring.
- the fixing ring includes an upper layer ring and a lower layer ring.
- the upper layer ring and the lower layer ring are integrally formed.
- the inner layer ring has an inner diameter of 4 mm
- the upper layer ring has an outer diameter of 10 mm.
- the thickness of the upper ring is 3 mm
- the inner diameter of the lower ring is 4 mm
- the outer diameter of the lower ring is 16 mm
- the thickness of the lower ring is 1 mm.
- the specific battery assembly process is as follows: LiMn 2 0 4 is used as a positive electrode active material, and the positive electrode active material and the conductive agent Should-P are mixed in deionized water according to a weight ratio of 90:10, and uniformly mixed to obtain a positive electrode slurry; After assembling the separator with the second fixing ring and the graphite rod, the positive electrode slurry is poured into the gap formed by the separator and the graphite rod, and the amount of the positive electrode slurry is 10 g, and dried at 80 ° C to obtain a positive electrode, a separator.
- the mixture of the positive electrode active material and the conductive agent is 5g; a cylindrical cylindrical negative electrode is arranged outside the cylindrical tubular diaphragm, and a cylindrical cylindrical casing is arranged outside the cylindrical cylindrical negative electrode; the electrolyte is 544g zinc chloride and 21g anhydrous chlorination Lithium, dissolved in 600g of deionized water, and then titrated 0.1mol/L lithium hydroxide into the electrolyte to adjust the pH of the electrolyte to 4.3, and then dilute to 1L with deionized water.
- the battery of this embodiment is added. 5 g of this electrolyte.
- the mixture After assembling the separator, the second fixing ring, the graphite rod, the positive electrode, the negative electrode, the casing, and the electrolyte, the mixture was allowed to stand for 12 hours, and then charged and discharged at a current of 100 mA, and the charge and discharge voltage range was 1.5-2.35 V.
- the positive current collector is a graphite rod having a diameter of 4 mm and a length of 62 mm;
- the separator is made of a non-woven fabric, the diaphragm is a cylindrical cylinder, the outer diameter of the diaphragm 3 is 11 mm, the inner diameter of the diaphragm is 10 mm, and the length of the diaphragm It is 58mm;
- the negative electrode includes copper foil and zinc, the outer diameter of the negative electrode is 17mm, the inner diameter of the negative electrode is 16mm, the length of the negative electrode is 58mm, and the copper tab of 0.1mm thick is provided on the negative electrode to lead the battery;
- the material of the casing is poly Vinyl chloride (PVC), the inner diameter of the casing is 17mm, the outer diameter of the casing is 18mm, and the length of the casing is 60mm;
- the fixing ring is made of polyvinyl chloride (PVC), and the fixing ring has two, which are respectively arranged on the battery.
- the fixing ring includes an upper ring and a lower ring.
- the upper ring and the lower ring are integrally formed, and the inner ring has an inner diameter of 4 mm.
- the upper ring has an outer diameter of 10 mm, the upper ring has a thickness of 3 mm, the lower ring has an inner diameter of 4 mm, the lower ring has an outer diameter of 16 mm, and the lower ring has a thickness of 1 mm.
- the specific battery assembly process is as follows: LiMn 2 0 4 is used as a positive electrode active material, and the positive electrode active material 22 and the conductive agent Super-P are mixed in deionized water according to a weight ratio of 90:10, and uniformly mixed to obtain a positive electrode slurry; After assembling the diaphragm with the second retaining ring and the graphite rod, the positive electrode slurry is poured into the partition. In the film, the amount of the positive electrode slurry poured into 12 g was dried at 80 ° C to obtain a positive electrode, and the mixture of the positive electrode active material and the conductive agent in the separator was 6 g; the cylindrical copper foil and the graphite rod and the cylindrical cylindrical shape were obtained.
- the electrolyte is 544 g of zinc chloride and 21 g of anhydrous chlorination Lithium, dissolved in 600g of deionized water, and then titrated into the electrolyte 0. 111101 / 1 ⁇ lithium hydroxide to adjust the 11 value of the electrolyte to 4.3, and then dilute to 1 L with deionized water, the embodiment of 6 g of this electrolyte was added to the battery.
- the separator After assembling the separator, the second fixing ring, the graphite rod, the positive electrode, the negative electrode, the casing, and the electrolyte, it was allowed to stand for 12 hours, and then charged and discharged at a current of 100 mA, and the charging and discharging voltage range was 1.5-2.35 V. .
- a battery was fabricated in the same manner as in Example 13 except that a graphite foil was used in place of the copper foil in the negative electrode.
- the batteries provided in Examples 10 to 15 have good cycle performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明揭示了一种电池,包括壳体,设置于壳体中的正极、负极、水系电解液和隔膜,所述正极包括复合集流体和正极活性物质,所述复合集流体具有相对设置的两面,其中,至少所述复合集流体与所述负极相对的一面上设置有正极活性物质;所述电池包括n对所述正极和负极,n≥2,相邻的两个正极共用位于两个正极之间的负极,相邻的两个负极共用位于两个负极之间的正极,所述正极、负极交替的层叠排列于所述壳体中。本发明提供的电池具有良好的循环性能以及较高的能量,电池有望在大型储能、电网调峰等领域获得广泛的运用。
Description
电 池 技术领域
本发明属于电化学储能领域, 具体涉及一种电池。
背景技术
人类对新能源的广泛运用, 导致了二次电池市场的急速扩大。 当前新能 源体系中对二次电池的要求无处不在。 无论是电动汽车, 风能, 太阳能并网 还是电网调峰, 都急需一种廉价, 可靠, 安全和寿命长的二次电池。 目前所 发展的二次电池主要集中在锂离子电池, 高温钠硫电池, 钠镍氯电池和钒液 流电池。 这些电池都具有各自的优点, 比如裡离子电池和高温钠 υ电池寿命 长以及能量密度高, 钒液流电池更是理论上具备无限的寿命等。 但无论哪种 电池, 都无法同时满足廉价, 可靠, 安全和寿命长的要求。 传统的锂离子电 池过于昂贵, 且有安全隐患; 高温钠硫电池制造技术门槛高, 售价昂贵; 钒 液流电池多项技术瓶颈目前都未能获得突破等。
为此很多研究者都致力于水系锂离子电池的研究, 希望以此大幅降低锂 离子电池的成本并提高安全性, 并提出了一些以 LiMn204为正极, 钒的氧化 物例如 LiV308等为负极、 水为电解液的电池, 但因此类负极在水中充放电的 稳定性差以及钒具有一定的毒性, 从而限制了此类电池的发展。 截至目前, 已经提出的水系锂离子二次电池的结构都未能摆脱基于锂离子脱出 -嵌入原 理的结构, 比如 已经有报道的 V02/LiMn204 , LiV308/LiNi。.81Co。.1902 , TiP207/LiMn204 , LiTi2(P04)3/LiMn204 , LiV308/LiCo02等。
发明 内容
本发明旨在提供一种结构简单、 低成本、 安全可靠及循环寿命较长的电 池。
本发明提供了一种电池, 包括壳体, 设置于所述壳体中的正极、 两个负 极、 水系电解液和隔膜, 所述正极包括复合集流体和正极活性物质, 所述复 合集流体包括正极集流体和包覆在所述正极集流体上的导电膜, 所述复合集 流体具有相对设置的第一面和第二面, 所述正极活性物质设置在所述第一面 和第二面上,所述正极活性物质能够可逆脱出 -嵌入离子;所述负极选自金属、 合金或碳基材料; 所述水系电解液包括电解质, 所述电解质至少能够电离出 活性离子,所述活性离子在充电时被还原沉积在所述负极形成负极活性物质,
所述负极活性物质在放电时被氧化溶解在所述水系电解液中; 所述隔膜保持 所述水系电解液; 所述正极和负极层叠排布于所述壳体中, 所述正极置于所 述两个负极之间, 所述两个负极共用所述正极, 所述隔膜位于所述正极和负 极之间。
本发明还提供了一种电池, 包括壳体, 设置于所述壳体中的两个正极、 负极、 水系电解液和隔膜, 所述正极包括复合集流体和正极活性物质, 所述 复合集流体包括正极集流体和包覆在所述正极集流体上的导电膜, 所述复合 集流体具有相对设置的第一面和第二面, 所述第一面与所述负极相对, 至少 所述第一面上设置有所述正极活性物质, 所述正极活性物质能够可逆脱出 - 嵌入离子; 所述负极选自金属、 合金或碳基材料; 所述水系电解液包括电解 质, 所述电解质至少能够电离出活性离子, 所述活性离子在充电时被还原沉 积在所述负极形成负极活性物质, 所述负极活性物质在放电时被氧化溶解在 所述水系电解液中; 所述隔膜保持所述水系电解液; 所述正极和负极层叠排 布于所述壳体中, 所述负极置于所述两个正极之间, 所述两个正极共用所述 负极, 所述隔膜位于所述正极和负极之间。
本发明还提供了一种电池, 包括壳体,设置于所述壳体中的正极、 负极、 水系电解液和隔膜, 所述正极包括复合集流体和正极活性物质, 所述复合集 流体包括正极集流体和包覆在所述正极集流体上的导电膜, 所述复合集流体 具有相对设置的两面, 其中, 至少所述复合集流体与所述负极相对的一面上 设置有正极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子; 所述电池 包括 n对所述正极和负极, n>2 , 相邻的两个正极共用位于两个正极之间的负 极, 相邻的两个负极共用位于两个负极之间的正极; 所述负极选自金属、 合 金或碳基材料; 所述水系电解液包括电解质, 所述电解质至少能够电离出活 性离子, 所述活性离子在充电时被还原沉积在所述负极形成负极活性物质, 所述负极活性物质在放电时被氧化溶解在所述水系电解液中; 所述隔膜保持 所述水系电解液; 所述正极、 负极交替的层叠排列于所述壳体中, 所述隔膜 位于所述正极和负极之间。
本发明提供的电池可以很好的解决自放电问题, 电池操作安全、 制作方 式简单、 循环性能优良并且寿命长久, 同时可以根据使用需求设置具有不同 输出放电容量的电池, 电池具有广泛的用途。
优选的, 所述壳体为方形。
优选的, 所述正极、 隔膜和负极形成平板状。
优选的, 所述正极、 隔膜和负极卷绕成形。
优选的, 所述壳体为圆柱筒形, 所述正极、 所述隔膜和所述负极以及所 述壳体同轴排列。
优选的, 所述正极、 所述隔膜与所述负极通过卷绕形成圆柱形设置于所 述壳体内。
优选的, 所述导电膜的材料包括聚合物和导电填料。
优选的, 所述聚合物选自聚乙烯, 聚丙烯, 聚丁烯, 聚氯乙烯, 聚苯乙 烯, 聚酰胺, 聚碳酸酯, 聚甲基丙烯酸甲酯, 聚甲醛, 聚苯醚, 聚砜, 聚醚 砜、 丁苯橡胶或氟树脂中的至少一种。
优选的, 所述导电填料选自导电聚合物、 碳基材料或金属氧化物。
优选的, 所述导电膜的材料选自导电聚合物。
优选的, 所述壳体设置为铝塑膜。
优选的,所述壳体上设有补液口,所述补液口用于补充所述水系电解液。 优选的, 所述电池还包括用于控制所述壳体内压力的安全阔。
优选的, 所述正极活性物质具有尖晶石结构、 层状结构或橄榄石结构。 优选的, 所述正极集流体的材料选自玻璃碳、 石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的一种, 或 Ni、 Al、 Fe、 Cu、 Pb、 Ti、 Cr、 Mo、 Co、 Ag或 经过飩化处理的上述金属中的一种, 或不锈钢、 碳钢、 A1合金、 Ni合金、 Ti 合金、 Cu合金、 Co合金、 Ti-Pt合金、 Pt-Rh合金或经过飩化处理的上述合 金中的一种。
优选的, 所述负极的材料选自金属 Zn、 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al 或经过飩化处理的所述金属中的至少一种, 或含有上述金属的合金中的至少 一种, 或石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的至少一种, 或铜镀锡, 或黄铜。
优选的, 所述活性离子包括金属离子, 金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni、 Sn中的至少一种。
优选的, 所述活性离子以盐酸盐、 硫酸盐、 醋酸盐、 硝酸盐或甲酸盐中 的至少一种形式存在于所述水系电解液中。
本发明还提供了一种电池, 包括壳体, 设于所述壳体内的正引出电极、 至少一个双极性电极、 负引出电极和水系电解液, 所述正引出电极包括正极
集流体和设置在所述正极集流体一面的正极活性物质, 所述正极活性物质能 够可逆脱出 -嵌入离子; 所述双极性电极设置在所述正引出电极和负引出电极 之间, 所述双极性电极包括双极性集流体和所述正极活性物质, 所述双极性 集流体有相对设置的第一面和第二面, 所述正极活性物质设置在所述双极性 集流体的第一面上; 所述水系电解液包括电解质, 所述电解质至少能够电离 出活性离子, 所述活性离子在充电时被还原沉积在所述双极性集流体的第二 面形成负极活性物质, 所述负极活性物质在放电时被氧化溶解在所述水系电 解液中; 所述负引出电极选自金属、 合金或碳基材料; 所述水系电解液设置 在所述正引出电极和负引出电极之间; 所述正引出电极、 双极性电极和负引 出电极层叠排布于所述壳体中。
本发明提供的一种电池操作安全、 制作方式简单、 循环性能优良并且寿 命长久, 同时可以根据使用需求设置具有不同输出电压的电池, 电池具有广 泛的用途。
优选的, 所述壳体设置为方形。
优选的, 所述正引 出电极、 所述双极性电极和所述负引出电极形成平板 状。
优选的, 所述电池还包括隔膜, 所述隔膜保持所述水系电解液。
优选的, 所述正极集流体上包覆有导电膜。
优选的, 所述双极性集流体的外周部设置有用于密封所述水系电解液的 密封部。
优选的, 所述双极性集流体的材料包括导电塑料、 不锈钢或经过飩化处 理的不锈钢。
优选的, 所述导电塑料的材料选自导电聚合物。
优选的, 所述导电塑料的材料包括聚合物和导电剂。
优选的, 所述壳体设置为铝塑膜。
优选的, 所述壳体上设有补液口, 所述补液口用于补充所述电解液。 优选的, 所述电池还包括用于控制所述壳体内压力的安全阔。
优选的, 所述正极活性物质具有尖晶石结构、 层状结构或橄榄石结构。 优选的, 所述正极集流体的材料选自玻璃碳、 石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的一种, 或 Ni、 Al、 Fe、 Cu、 Pb、 Ti、 Cr、 Mo、 Co、 Ag或 经过飩化处理的上述金属中的一种, 或不锈钢、 碳钢、 A1合金、 Ni合金、 Ti
合金、 Cu合金、 Co合金、 Ti-Pt合金、 Pt-Rh合金或经过飩化处理的上述合 金中的一种。
优选的, 所述负引 出电极的材料选自金属 Zn、 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al或经过飩化处理的所述金属中的至少一种, 或含有上述金属的合金中 的至少一种, 或石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的至少一种, 或铜 镀锡, 或黄铜。
优选的, 所述活性离子包括金属离子, 金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni、 Sn中的至少一种。
优选的, 所述活性离子以盐酸盐、 硫酸盐、 醋酸盐、 硝酸盐或甲酸盐中 的至少一种形式存在于所述水系电解液中。
本发明还提供了一种电池, 包括壳体, 设于所述壳体内的正极、 隔膜、 负极和水系电解液, 所述正极包括正极集流体和参与电化学反应的正极活性 物质, 所述正极活性物质包括能够可逆脱出 -嵌入离子的化合物; 所述负极选 自金属、 合金或碳基材料; 所述水系电解液包括电解质, 所述电解质至少能 够电离出活性离子, 所述活性离子在充电时被还原沉积在所述负极形成负极 活性物质, 所述负极活性物质在放电时被氧化溶解在所述水系电解液中; 所 述正极、 所述隔膜和所述负极层叠排布于所述壳体中, 所述隔膜位于所述正 极和所述负极之间。
本发明提供的电池, 电池结构简单、 操作安全, 生产成本低, 具有可观 的使用寿命, 适合作为大型储能领域的储能体系以及铅酸电池的替代品。
优选的, 所述壳体为方形。
优选的, 所述正极、 隔膜和负极形成平板状。
优选的, 所述正极、 隔膜和负极卷绕成形。
优选的, 所述壳体为铝塑膜。
优选的,所述壳体上设有补液口,所述补液口用于补充所述水系电解液。 优选的, 所述电池还包括用于控制所述壳体内压力的安全阔。
优选的, 所述正极活性物质具有尖晶石结构、 层状结构或橄榄石结构。 优选的, 所述正极集流体的材料选自玻璃碳、 石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的一种, 或 Ni、 Al、 Fe、 Cu、 Pb、 Ti、 Cr、 Mo、 Co、 Ag或 经过飩化处理的上述金属中的一种, 或不锈钢、 碳钢、 A1合金、 Ni合金、 Ti 合金、 Cu合金、 Co合金、 Ti-Pt合金、 Pt-Rh合金或经过飩化处理的上述合
金中的一种。
优选的, 所述负极的材料选自金属 Zn、 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al 或经过飩化处理的所述金属中的至少一种, 或含有上述金属的合金中的至少 一种, 或石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的至少一种, 或铜镀锡, 或黄铜。
优选的, 所述活性离子包括金属离子, 金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni、 Sn 中的至少一种。
优选的, 所述活性离子以盐酸盐、 硫酸盐、 醋酸盐、 硝酸盐或甲酸盐中 的至少一种形式存在于所述水系电解液中。
本发明还提供了电池, 包括壳体, 设于所述壳体内的正极、 隔膜、 负极 和水系电解液,所述正极包括正极集流体和参与电化学反应的正极活性物质, 所述正极活性物质包括能够可逆脱出-嵌入离子的化合物; 所述负极选自金属、 合金或碳基材料; 所述水系电解液包括电解质, 所述电解质至少能够电离出 活性离子,所述活性离子在充电时被还原沉积在所述负极形成负极活性物质, 所述负极活性物质在放电时被氧化溶解在所述水系电解液中; 所述正极、 所 述隔膜和所述负极层叠排布于所述壳体中, 所述隔膜位于所述正极和所述负 极之间。
本发明提供的电池, 具有能量密度高, 安全无毒, 环保, 容易回收且成 本低廉, 本发明中的电池作为新一代的绿色能源, 非常适合作为大型储能领 域的储能体系以及铅酸电池的替代品。
优选的, 所述壳体设置为圆柱筒形, 所述正极、 隔膜和所述负极以及所 述壳体同轴排列。
优选的,所述正极、隔膜与负极通过卷绕形成圆柱形设置于所述壳体内。 优选的,所述负极和所述隔膜均为圆柱筒形,所述正极集流体为圆柱形, 所述正极活性物质设置于所述隔膜与所述正极集流体之间。
优选的, 所述电池还包括固定环, 所述固定环固定所述正极集流体、 所 述隔膜、 所述负极以及所述壳体; 所述固定环的材质为聚氯乙烯, 所述固定 环为两个, 分别设置于所述壳体的两端。
优选的, 所述固定环包括上层环和下层环, 所述上层环和所述下层环为 一体成型, 所述上层环固定所述正极集流体与所述隔膜, 所述下层环固定所 述隔膜与所述负极。
优选的, 所述上层环的外径与所述负极的内径相同, 所述上层环的内径 与所述正极集流体的直径相同; 所述下层环的外径与所述隔膜的内径相同, 所述下层环的内径与所述正极集流体的直径相同。
优选的, 所述壳体为铝塑膜。
优选的,所述壳体上设有补液口,所述补液口用于补充所述水系电解液。 优选的, 所述电池还包括用于控制所述壳体内压力的安全阔。
优选的, 所述正极活性物质具有尖晶石结构、 层状结构或橄榄石结构。 优选的, 所述正极集流体的材料选自玻璃碳、 石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的一种, 或 Ni、 Al、 Fe、 Cu、 Pb、 Ti、 Cr、 Mo、 Co、 Ag或 经过飩化处理的上述金属中的一种, 或不锈钢、 碳钢、 A1合金、 Ni合金、 Ti 合金、 Cu合金、 Co合金、 Ti-Pt合金、 Pt-Rh合金或经过飩化处理的上述合 金中的一种。
优选的, 所述负极的材料选自金属 Zn、 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al 或经过飩化处理的所述金属中的至少一种, 或含有上述金属的合金中的至少 一种, 或石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的至少一种, 或铜镀锡, 或黄铜。
优选的, 所述活性离子包括金属离子, 金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni、 Sn 中的至少一种。
优选的, 所述活性离子以盐酸盐、 硫酸盐、 醋酸盐、 硝酸盐或甲酸盐中 的至少一种形式存在于所述水系电解液中。
附图说明
图 1是实施方式一提供的电池整体结构的剖面示意图;
图 2是图 1 中复合集流体的结构示意图;
图 3是图 1 中电芯的结构示意图, 其中, 概略的示出了电池单元; 图 4是实施方式二提供的电池整体结构的剖面示意图;
图 5是实施方式二提供的电池整体结构的剖面示意图, 其中, 复合集流 体相对设置的两面上均设置有正极活性物质;
图 6是实施方式三提供的电池整体结构的剖面示意图, 其中, 电池包括 两对正极和负极;
图 7是实施方式三提供的电芯的剖面示意图, 其中, 位于最外层的正极 复合集流体相对设置的两面上均设置有正极活性物质;
图 8是实施方式三提供的电池整体结构的剖面示意图, 其中, 正极和负 极的对数大于 2;
图 9是实施方式四提供的电池整体结构的剖面示意图;
图 10是图 9 中双极性电极的结构示意图;
图 11是图 9 中电池结构的示意图, 其中, 概略的示出了电池单元; 图 12是实施方式四提供的电池的充电原理示意图;
图 13是实施方式五提供的电池整体结构的剖面示意图;
图 14是图 13 中电池结构示意图, 其中, 概略的示出了电池单元; 图 15疋头施方式六提供的电池整体结构的剖面示意图;
图 16疋头施方式七提供的电池整体结构的剖面示意图;
图 17疋头施方式八提供的电池的结构示意图;
图 18是实施方式八提供的电池的结构示意图, 隔隔膜膜以以 ZZ字字型型折折叠叠:; 图 19是图 18 中电池的展开状态示意图;
图 20疋头施方式八提供的电池的结构示意图, 其其中中,, 电电池池卷卷绕绕成成形 图 21是实施方式九中电池的结构拆分示意图;
图 22是图 21 中电池中固定环的结构示意图;
图 23为实施例 1提供的电池充放电循环性能图。
其巾:
1.电池 2, 72.正极 4, 74, 160.负极
6, 78.水系电解液 8.复合集流体 10, 82.正极活性物质
12, 80, 152.正极集流体 14.导电膜 16, 76, 156.隔膜
20.电池单元 22, 70.壳体 24, 84.盖体
26, 86.密封帽 28, 88.安全阔 81.第一面
82.第二面 30, 40, 50.电池 100.电池
52.双极性电极 54.正引出电极 56.双极性集流体
61.第一面 62.第二面 58.负引出电极
60.密封部 64, 68.电池单元 90.平面
110, 120, 130.电池 140, 150.电池 92.弧形部
94.正极卷绕终止端 96.负极卷绕终止端 154.固定环
158.正极活性物质 162.上层环 164.下层环
具体实施方式
本发明提供的电池具有较高的能量密度, 稳定的循环性能, 在如手机、 笔记本电脑等便携式电子产品, 电动汽车, 电动工具等领域具有可观的应用 前景。
【具有内部并联结构的电池】
一种电池, 电池具有内部并联结构。 下面结合附图以及具体实施方式来 阐述具有内部并联结构的电池。
实施方式一
请参阅图 1所示,一种电池 1 , 包括壳体 22 ,设置于壳体 22中的正极 2、 两个负极 4、水系电解液 6和隔膜 16。正极 2和负极 4层叠排布于壳体中 22 , 正极 2置于两个负极 4之间, 两个负极 4共用正极 2 , 隔膜 16位于正极 2和 负极 4之间, 隔膜 16保持水系电解液 6。
壳体 22可设置为金属、 塑料或金属与塑料的复合膜, 如钢、 铝、 丙烯腈 -丁二烯-苯乙烯共聚物(ABS)、 聚丙烯(PP)、 尼龙或铝塑膜等。 优选的, 壳体 22设置为铝塑膜, 从而使得壳体较薄, 减少电池重量的同时, 也增加了电池 内部的空间。 铝塑膜包括一层铝片和设置于铝片一侧的塑料片。 优选的, 铝 塑膜包括一层铝片和设置于铝片两侧的第一层塑料片和第二层塑料片。
壳体 22可以设置为方形。
具体的, 按照负极 4、 隔膜 16、 正极 2、 隔膜 16和负极 4的次序层叠排 布形成平板状, 置于壳体 22中, 如图 1所示。 从而, 电池 1可设计为方形电 池, 如长方体或正方体。 该电池结构简单、 方便制造、 成本简单。
另外, 按照负极 4、 隔膜 16、 正极 2、 隔膜 16和负极 4的次序层叠排布 形成平板状, 然后卷绕成形, 从而形成平板状电芯。 优选的, 正极 2、 隔膜 16和负极 4均设置为长条状。 根据电池设计需要卷绕成不同的圏数。
壳体还可以设置为圆柱筒形(未图示)。
具体的, 按照负极 4、 隔膜 16、 正极 2、 隔膜 16和负极 4的次序层叠排 布形成平板状, 然后通过卷绕形成圆柱形电芯设置于壳体内, 正极 2、 隔膜 16、 负极 4和壳体同轴排列。 从而, 电池可设计为圆柱形电池, 电池结构简 单, 方便制造。
具体到实施方式一中, 电池还包括与壳体 22 相连接的盖体 24 , 正极 2 延伸穿出盖体 24 , 正极 2延伸穿出盖体 24的端部设有密封帽 26。 密封帽 26
需要具有较好的导电性和化学稳定性。 另外, 密封帽 26还可防止水系电解液 从正极 2穿出的孔蒸发, 从而减少水系电解液 6的消耗。 正极 2与外电路相 连接。
负极 4也延伸穿出盖体 24 , 从而与外电路连接。 同样, 负极 4延伸穿出 盖体 24的端部设有密封帽(未图示)。
另外, 电池 1在充电过程中, 尤其是快接近充电后期时, 由于水系电解 液 6 的分解, 会产生氢、 氧气体, 电池壳体内的压力也会上升, 当压力上升 到一定值, 电池壳体 22会发生变形。 因此, 电池 1 还包括用于控制壳体 22 内压力的安全阔 28。 当电池的壳体 22 内的压力到达预设的开阔压时, 安全 阔 28打开, 将压力释放, 防止壳体 22变形, 从而提高了电池 1 的寿命和安 全性。
另外, 当壳体 22 内的压力到达预设的闭阔压时, 安全阔 28 闭合, 防止 内部气体向外泄露。 同时, 也防止外部空气进入壳体 22 内造成不良影响。 且 还可以防止析出的氢气遇明火时产生回火, 从而引爆壳体 22 内部气体。
壳体 22上还可设置有用于补充水系电解液 6 的补液口(未图示)。 这样, 当水系电解液消耗时, 可通过补液口注入电解液。
优选的, 补液口为安装安全阀 28处的安装孔(未图示)。
正极 2设置在两个负极 4之间, 正极 2与负极 4之间设置有水系电解液 6 , 正极 2 包括复合集流体 8和正极活性物质 10 , 复合集流体 8具有相对设 置的第一面 81和第二面 82 , 正极活性物质 10设置在第一面 81和第二面 82 上, 如图 2所示。
正极 2的制作方式没有特别限制,正极活性物质 10可以是通过涂覆的方 式附着于复合集流体 8上, 例如将正极活性物质 10制成浆料, 然后通过拉浆 法涂覆在复合集流体 8上;还可以通过层叠的方式将正极活性物质 10附着于 复合集流体 8上, 例如将按预定大小成型的复合集流体 8和正极活性物质 10 进行压制,使正极活性物质 10与复合集流体 8之间电接触良好,形成正极 2。 正极活性物质 10的涂覆密度范围为 100- 1000g/m2。
具体的, 正极活性物质 10具有尖晶石结构、 层状结构或橄榄石结构。 具体的,正极活性物质 10能够可逆脱出 -嵌入锂离子、钠离子或镁离子。 正极活性物质 10可以是符合通式 Li1 +xMnyMzOk的能够可逆脱出 -嵌入锂 离子的尖晶石结构的化合物,其中, - l≤x≤0.5 , 1 < y <2.5 , 0< z <0.5 , 3< k <6 ,
M选自 Na、 Li、 Co、 Mg、 Ti、 Cr、 V、 Zn、 Zr、 Si、 Al、 Ni中的至少一种。 优选的, 正极活性物质含有 LiMn204。 更优选的, 正极活性物质含有经过掺 杂或包覆改性的 LiMn204。
正极活性物质 10 可以是符合通式 Li1 +xMyM'zM"c02+n 的能够可逆脱出- 嵌入裡离子的层状结构的化合物, 其中, - l < x≤0.5 , 0< y <1 , 0< z <1 , 0< c < 1 , -0.2< n <0.2 , M , Μ' , Μ"分别选自 Ni、 Mn、 Co、 Mg、 Ti、 Cr、 V、 Zn、 Zr、 Si或 Al的中至少一种。 优选的, 正极活性物质含有 LiCo02。
正极活性物质 10 可以是符合通式 LixM yM' XC^ 的能够可逆脱出-嵌 入裡离子的橄榄石结构的化合物, 其中, 0< x≤2 , 0< y <0.6 , 1 < n < 1 .5 , M 选自 Fe、 Mn、 V或 Co , M'选自 Mg、 Ti、 Cr、 V或 Al的中至少一种, X选 自 S、 P或 Si中的至少一种。 优选的, 正极活性物质含有 LiFeP04。
目前锂电池工业中, 几乎所有正极活性物质都会经过掺杂、 包覆等改性 处理。 但掺杂, 包覆改性等手段造成材料的化学通式表达复杂, 如 LiMn204 已经 不 能够代表 目 前广 泛使用 的 "锰酸锂 "的通式 , 而应该 以 通式 Li1 +xMnyMzOk为准, 广泛地包括经过各种改性的 LiMn204正极活性物质。 同 样的, LiFeP04以及 LiCo02也应该广泛地理解为包括经过各种掺杂、 包覆等 改性的, 通式分别符合 LixMi_yM'y(X04)n ^ Li1 +xMyM'zM"c02+n的正极活性物 质。
正极活性物质 10 为裡离子脱出-嵌入化合物时, 可以选用如 LiMn204、 LiFeP04、 LiCo02、 LiMxP04、 LiMxSiOy (其中 M为一种变价金属)等化合物。
此外, 可脱出-嵌入钠离子的化合物 NaVP04F , 可脱出-嵌入镁离子的化 合物 MgMxOy (其中 M为一种金属, 0.5< x <3 , 2< y <6)以及具有类似功能, 能够脱出 -嵌入离子或官能团的化合物都可以作为本发明电池的正极活性物 质, 因此, 本发明并不局限于锂离子电池。
在具体的实施方式中, 在制备正极时, 还会在正极浆料中添加粘结剂, 粘结剂有利于使正极活性物质 10均匀的粘结在一起。粘结剂在正极浆料中固 含量的重量百分比范围为 0.5- 10%。具体的, 粘结剂选自但不仅限于聚合物, 聚合物选自聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)、羧曱基纤维素钠(CMC)、 羧曱基纤维素钠衍生物(CMC derivation) , 丁苯橡胶(SBR)、 丁苯橡胶衍生物 (SBR derivation)中的至少一种。 丁苯橡胶衍生物如通过化学修饰获得的具有 亲水性的丁苯橡胶(PSBR100)。
在具体的实施方式中, 在制备正极时, 还会在正极浆料中添加导电剂, 导电剂主要起到提高正极活性物质 10的导电子能力,导电剂在正极浆料中固 含量的重量百分比范围为 0.5-30%。导电剂包括选自导电聚合物、碳纳米管、 活性碳、 石墨烯、 碳黑、 石墨、 碳纤维、 导电陶瓷中的至少一种。 碳黑包括 但不仅限于乙炔黑、 科琴碳黑(Ketjen black , KB )以及 super-p碳黑。 导电剂 还可以包括金属氧化物。 金属氧化物包括但不仅限于氧化铅和氧化锡。
图 2 为复合集流体 8 的概略示意图, 复合集流体 8 包括正极集流体 12 和包覆在正极集流体 12上的导电膜 14。
包覆在正极集流体 12上的导电膜 14必须满足在水系电解液中可以稳定 存在、 不溶于电解液、 不发生溶胀、 高电压不能被氧化、 易于加工成致密、 不透水并且导电的膜。 一方面, 导电膜对正极集流体可以起到保护作用, 避 免水系电解液对正极集流体的腐蚀。 另一方面, 有利于降低正极活性物质与 正极集流体之间的接触内阻, 提高电池的能量。
为了有效的发挥导电膜 14的作用, 导电膜 14的厚度需要有效的控制。 导电膜 14厚度太薄容易破损, 厚度均一性也不好, 并且水系电解液 6容易穿 透;导电膜 14太厚则影响导电能力。优选的,导电膜 14的厚度为 10 μηι-2ηιηι , 导电膜 14不仅能够有效的起到保护正极集流体 12的作用, 而且有利于降低 正极活性物质 10与正极集流体 12之间的接触内阻。
正极集流体 12 具有相对设置的第一面和第二面, 优选的, 正极集流体 12的第一面和第二面均包覆有导电膜 14。
导电膜 14可以通过粘结剂粘接、热压复合或抽真空的方法包覆在正极集 流体 12上, 示例的, 将正极集流体 12置于两片导电膜 14之间, 通过加热复 合, 使导电膜 14 包覆正极集流体 12 , 并保证导电膜 14 比正极集流体 12多 出的部分密封完好。
导电膜 14 包含作为必要组分的聚合物, 聚合物占导电膜的重量比重为 50-95 % , 优选的, 聚合物选自热塑性聚合物。 为了使导电膜能够导电, 有两 种可行的形式: (1 )聚合物为导电聚合物; (2)导电膜还包含导电填料。
导电聚合物选材要求为具有导电性能但电化学惰性, 即不会作为电荷转 移介质的离子导电。 具体的, 导电聚合物包括但不仅限于聚乙炔、 聚吡咯、 聚噻吩、 聚苯硫醚、 聚苯胺、 聚丙烯腈、 聚喹啉、 聚对苯撑(polyparaphenylene) 及其任意混合物。 导电聚合物本身就具有导电性, 但还可以对导电聚合物进
行掺杂或改性以进一步提高其导电能力。 从导电性能和电池中的稳定使用考 量, 导电聚合物优选聚苯胺、 聚吡咯、 聚噻吩和聚乙炔。
同样的, 导电填料的选材要求为表面积小、 难于氧化、 结晶度高、 具有 导电性但电化学惰性, 即不会作为电荷转移介质的离子导电。
导电填料的材料包括但不仅限于导电聚合物、 碳基材料或金属氧化物。 导电填料在导电膜中的质量百分比范围为 5-50%。 导电填料的平均粒径并没 有特别限定, 通常范围在 l OOnm到 100μηι。
优选的, 导电填料为碳基材料, 碳基材料的形态或机械性能没有特别要 求, 示例的, 碳基材料选自石墨、 碳纳米管或无定形碳中的一种。 无定形碳 包括但不仅限于活性炭和碳黑。 碳基材料优选碳黑和石墨, 其具有大电位窗 口, 从而对较宽范围的正负极电势稳定并具有高的导电性。 金属氧化物包括 但不仅限于氧化铅、 氧化锡。
当导电膜中包含导电填料时, 导电膜中的聚合物优选包含起到结合导电 填料作用的非导电聚合物, 非导电聚合物增强了导电填料的结合, 改善了电 池的可靠性。 优选的, 非导电聚合物为热塑性聚合物。
具体的, 热塑性聚合物包括但不仅限于聚烯烃如聚乙烯、 聚丙烯, 聚丁 烯, 聚氯乙烯, 聚苯乙烯, 聚酰胺, 聚碳酸酯, 聚曱基丙烯酸曱酯, 聚曱醛, 聚苯醚, 聚砜, 聚醚砜、 丁苯橡胶或聚偏氟乙烯中的一种或多种。 其中, 优 选为聚烯烃、 聚酰胺和聚偏氟乙烯。 这些聚合物容易通过热而熔化, 因此容 易与正极集流体和正极片复合在一起。 此外, 这些聚合物具有大电位窗口, 从而使正极稳定并为电池输出密度节省重量。
具体的, 可以通过制备含有热塑性聚合物的浆料并涂布和固化浆料来形 成导电膜。 当然, 导电填料可以额外的包含于浆料中, 具体的, 将聚合物和 导电填料以一定的复合方式如分散复合、 层级复合进行加工获得具有导电性 能的导电膜。 优选的, 将聚合物单体和导电填料混合, 由于聚合物单体为小 分子, 导电填料能够很好的分散在聚合物单体中, 然后在引发剂的作用下使 聚合物单体发生聚合, 制备导电膜。
正极集流体 12主要是作为电子传导和收集的载体, 不参与电化学反应, 即在电池 1工作电压范围内, 正极集流体 12能够稳定的存在于水系电解液 6 中,从而保证电池 1具有稳定的循环性能。正极集流体 12需要满足表面积大、 机械性能好、 导电性能好等要求。 正极集流体 12的材料包括碳基材料、 金属
或合金中的一种。
碳基材料选自玻璃碳、 石墨箔、 石墨片、 泡沫碳、 碳毡、 碳布、 碳纤维 中的一种。 在具体的实施方式中, 正极集流体为石墨, 如商业化的石墨压制 的箔, 其中石墨所占的重量比例范围为 90- 100%。
金属包括 Ni、 Al、 Fe、 Cu、 Pb、 Ti、 Cr、 Mo、 Co、 Ag或经过飩化处理 的上述金属中的一种。 在具体的实施方式中, 正极集流体 12为泡沫镍。 含有 泡沫镍的复合集流体, 在水系电解液 6 中不易被腐蚀, 从而使得含有这种复 合集流体 8的正极 2性能更加稳定。
将金属进行飩化处理的主要目 的是使金属的表面形成一层飩化膜, 从而 在电池充放电过程中, 能起到稳定的收集和传导电子的作用, 而不会参与正 极反应, 保证电池性能。
合金包括不锈钢、 碳钢、 A1合金、 Ni合金、 Ti合金、 Cu合金、 Co合金、 Ti-Pt合金、 Pt-Rh合金或经过飩化处理的上述金属中的一种。
不锈钢包括不锈钢网、 不锈钢箔, 不锈钢的型号包括但不仅限于不锈钢 304或者不锈钢 316或者不锈钢 316L中的一种。
同样的, 将不锈钢进行飩化处理也是使其能够稳定的起到收集和传导电 子的作用, 而不会参与电极反应, 保证电池性能。 在具体实施方式中, 飩化 不锈钢的具体过程为: 在 50 °C下, 将不锈钢置入 20%的硝酸中半小时, 使不 锈钢表面形成一层飩化膜。 飩化后的不锈钢作为集流体使用。
正极集流体 12 的厚度对正极 2 的电化学性能有一定影响, 正极集流体 12的厚度太薄, 会影响正极集流体 12的机械强度; 正极集流体 12的厚度太 厚, 会增加正极 2的重量, 从而影响正极 2的能量密度, 在本发明中, 为了 使电池具有高的能量密度输出,优选的,正极集流体 12的厚度为 10μηι- 100μηι。
优选的, 在使用正极集流体 12之前, 正极集流体 12经过飩化、 冲孔、 打磨或弱酸腐蚀处理, 经过处理的正极集流体 12具有较大的比表面积, 有利 于提高正极集流体 12 和导电膜 14 的复合程度, 从而降低正极活性物质 10 和复合集流体 8之间的接触内阻。
在本发明中, 正极 2釆用复合集流体 8 , 即在正极集流体 12的表面包覆 导电膜 14 , 导电膜 14 釆用具有优异导电性能的聚合物或复合聚合物, 一方 面, 导电膜 14能够进一步提高正极集流体 12的导电子能力, 从而提高电池 大倍率性能; 另一方面, 包覆在正极集流体 12 上的导电膜 14 , 避免了正极
集流体 12与水系电解液 6直接接触, 解决了水系电解液 6对正极集流体 12 潜在的腐蚀问题, 保证正极集流体 12的稳定性, 解决电池 1可能的自放电问 题, 从而使电池 1具有稳定的循环性能。
负极 4选自金属、合金或碳基材料,负极集流体的厚度范围为 20至 500μηι。 具体的, 负极 4选自金属 Zn、 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al或经过飩 化处理的金属中的至少一种, 或含有上述金属的合金中的至少一种, 或石墨 箔、 石墨片、 碳布、 碳毡、 碳纤维中的至少一种, 或铜镀锡, 或黄铜。
在一个负极 4的实施方式中, 负极 4仅包括负极集流体, 负极集流体作 为电子传导和收集的载体, 不参与电化学反应。 负极集流体的材料选自但不 仅限于金属 Cu、 Ag、 Pb、 Sn、 Fe、 Al或经过飩化处理的上述金属中的至少 一种, 或者碳基材料, 或者不锈钢。 其中, 碳基材料包括石墨材料, 比如商 业化的石墨压制的箔, 其中石墨所占的重量比例范围为 90- 100%。 不锈钢材 料包括但不仅限于不锈钢 304或者不锈钢 316或者不锈钢 316L。
负极 4还可以选自含有析氢电位高的镀 /涂层的金属, 从而降低负极副反 应的发生。 镀 /涂层选自含有 C、 Sn、 In、 Ag、 Pb、 Co、 Zn 的单质, 合金, 或者氧化物中至少一种。 镀 /涂层的厚度范围为 l - 1000nm。 例如: 在铜的负 极集流体表面镀上铅或银, 或者以涂覆的形式覆盖一层碳。
在另一个负极 4的实施方式中, 负极 4仅包括负极集流体, 但是负极集 流体的选材与电解液中活性离子的对应, 即负极集流体的材料为活性离子的 单质, 如电解液中活性离子为 Ζη2+ , 负极 4对应为金属 Zn。 此时, 负极 4不 仅是作为活性离子的沉积载体, 同时也可以参与电池反应。
在另一个负极 4的实施方式中,负极 4包括负极集流体和负极活性物质, 负极活性物质的选材与电解液中活性离子的对应, 即负极活性物质的材料为 活性离子的单质,如电解液中活性离子为 Zn2+ ,负极活性物质对应为金属 Zn。 示例的, 负极 4 包括黄铜箔和锌箔, 黄铜箔作为负极集流体, 锌箔对应负极 活性物质, 可参与负极 4反应。
水系电解液 6 包括电解质, 电解质至少能够电离出活性离子, 活性离子 在充电时被还原沉积在负极 4 形成负极活性物质(未图示), 负极活性物质在 放电时被氧化溶解在水系电解液 6 中。
活性离子包括金属离子, 金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni、 Sn中的 至少一种。 在优选的实施方式中, 活性离子为 Zn2+。 活性离子的浓度范围为
0.5- 15mol/L。
更优选的, 水系电解液 6 中还包括一种电解质, 这种电解质可以电离出 对应在正极能够发生可逆脱出-嵌入的离子。
水系电解液 6中含有能够可逆脱出-嵌入的离子, 从而可以提高正极活性 物质 10与水系电解液 6 中离子交换速度。 具体的, 正极活性物质 10为能够 可逆脱出-嵌入锂离子的化合物, 电解质中对应的还包括能够电离出锂离子的 锂盐。 可逆脱出-嵌入的离子包括锂离子或钠离子或镁离子, 可逆脱出 -嵌入 的离子在水系电解液中的浓度范围为 0.1 - 10mol/L。
活性离子以盐酸盐、 硫酸盐、 醋酸盐、 硝酸盐或甲酸盐中的至少一种形 式存在于水系电解液中。
为了保证电池容量, 水系电解液 6 中的活性离子的浓度必须达到一定范 围, 当水系电解液过碱时, 会影响电解液中活性离子的溶解度; 当水系电解 液过酸时,则会出现电极材料腐蚀和充放电过程中质子共嵌入等问题,因此, 水系电解液的 pH值范围为 3-7。
隔膜 16设置在正极 2与负极 4之间,一方面,隔膜 16防止电池 1短路; 另一方面, 隔膜 16可以保持水系电解液 6 , 具体的, 将负极 4、 隔膜 16、 正 极 2、 隔膜 16和负极 4层叠排列好后, 将其置于壳体 22 , 注入一定量的水系 电解液 6后封装, 隔膜 16浸泡在水系电解液 6 中, 即隔膜 16 中吸收了水系 电解液 6 , 保证了正极 2和负极 4之间的离子传导路径; 除此之外, 也可以 先将隔膜 16 浸泡在水系电解液 6 中, 然后再将吸收了水系电解液 6 的隔膜 16放置在正极 2和负极 4之间。
隔膜 16可以使用多孔隔膜、 无纺织布或玻璃纤维。 多孔隔膜包括但不仅 限于聚乙婦(PE)、 聚丙婦(PP) , 聚酰亚胺中的一种, 或 PE-PP、 PP-PE-PP 的 叠层隔膜。 无纺织布包括但不仅限于人造丝、 醋酸纤维、 尼龙。 水系电解液 在隔膜中的含浸量可以在隔膜的保持能力范围内, 也可以超过保持范围, 因 为电池 1设置有壳体, 可以防止水系电解液 6泄漏。
请参阅图 1和图 3所示, 正极 2层叠地设置在负极 4之间, 负极 4共用 正极 2 , 电子从正极集流体 12和负极 4导出或导入, 电池 1相当于 2个电池 单元 20 内部并联, 在每个电池单元 20中都有正极 2、 负极 4、 水系电解液 6 和隔膜 16 , 隔膜 16保持水系电解液 6。 在本发明提供的电池结构中, 由于电 池单元 20之间是并联的, 水系电解液 6可以在任意电池单元 20 中穿梭而不
会造成电池单元 20短路, 电池 1 能够正常、 稳定的工作。
本发明提供的电池的充放电原理为: 在一个电池单元 20中, 充电时, 能 够可逆脱出 -嵌入离子的正极活性物质 10 中脱出该离子, 同时水系电解液 6 中的活性离子在负极 4得到电子被还原, 并沉积在负极 4上, 形成负极活性 物质。 放电过程则为充电的逆过程。
本发明中, 正极 2釆用复合集流体 8 , 包覆在正极集流体 12上的导电膜 14相当于保护膜, 可以有效的防止水系电解液 6对正极集流体 12 的腐蚀, 改善电池 1 自放电的影响。 除此之外, 相对于现有技术中以独立电池单元并 联构成的电池, 本发明中巧妙的仅釆用一个正极 2构成具有并联结构的电池 1 , 两个负极 4共用一个正极 2 , 充分的利用了复合集流体 8 的第一面 81 和 第二面 82 , 并在第一面 81和第二面 82上同时设置正极活性物质 10 , 不仅节 约了正极材料, 而且使电池 1 结构更加紧凑, 减轻了电池 1 的重量, 因此本 发明中的电池 1 具有优异的能量密度和功率密度。 除此之外, 本发明中的电 池 1 釆用水系电解液 6 , 相对于目前商业化的釆用有机系电解液的锂离子电 池更加安全、 环保。
本发明中的电池制备工艺简单,可以通过层叠的方式制备电池,具体的, 负极、 浸有水系电解液的隔膜、 正极和负极依次层叠排布置于壳体中, 然后 对其进行封装即可。 电池 1相当于 2个电池单元 20并联形成, 电池单元 20 与电池单元 20之间不用特别设置密封部件, 具有这种内部并联结构的电池 1 能够正常、 稳定的工作, 具有优异的充放电性能, 并且电池 1 能够输出更高 的容量, 电池 1应用广泛。
实施方式二
请参阅图 4所示, 实施方式二提供了一种电池 30 , 包括壳体 22 , 设置于 壳体 22中的两个正极 2、 负极 4、 水系电解液 6和隔膜。 正极 2和负极 4层 叠排布于壳体 22中,负极 4设置在两个正极 2之间,两个正极 2共用负极 4 , 负极 4与正极 2之间设置有隔膜, 隔膜保持水系电解液。
正极 2包括复合集流体 8和正极活性物质 10 , 复合集流体 8 包括正极集 流体 12和包覆在正极集流体上的导电膜 14。 复合集流体 8具有相对设置的 第一面 81 和第二面 82 , 第一面 81 与负极 4相对, 正极活性物质 10至少设 置在第一面 81上, 当然, 没有特别限定的, 正极活性物质 10也可以同时设 置在第二面 82上, 如图 5所示。 负极 4选自金属、 合金或碳基材料; 水系电
解液包括电解质, 电解质至少能够电离出活性离子, 活性离子在充电时被还 原沉积在负极 4 形成负极活性物质(未图示), 负极活性物质在放电时被氧化 溶解在水系电解液 6中。
正极活性物质 10、 复合集流体 8、 负极和水系电解液 6在实施方式一中 已经介绍, 这里就不再重复。
同样的, 导电膜 14一方面可以进一步提高正极集流体 12的导电能力, 另一面导电膜 14主要隔绝正极集流体 12与水系电解液 6的接触, 从而避免 水系电解液 6对正极集流体 12的腐蚀, 保证正极集流体 12的稳定性。
壳体 22可以设置成方形或圆柱筒形, 对应的, 电池 30可设计为方形电 池或圆柱形电池。
具体的, 正极 2、 隔膜 16、 负极 4、 隔膜 16和正极 2层叠排布形成平板 状, 置于壳体 22中, 如图 4所示。 从而, 电池 30可设计为方形电池, 如长 方体或正方体。 该电池结构简单、 方便制造、 成本简单。
另外, 正极 2、 隔膜 16、 负极 4、 隔膜 16和正极 2层叠排布形成平板状, 然后卷绕成形, 从而形成平板状电芯。 优选的, 正极 2、 隔膜 16和负极 4均 设置为长条状。 根据电池设计需要卷绕成不同的圏数。
壳体 22还可以设置为圆柱筒形。
具体的, 正极 2、 隔膜 16、 负极 4、 隔膜 16和正极 2层叠排布形成平板 状, 然后通过卷绕形成圆柱形电芯设置于壳体 22 内, 正极 2、 隔膜 16、 负极 4和壳体 22同轴排列。 从而, 电池可设计为圆柱形电池, 电池结构简单, 方 便制造。
实施方式二中电池 30其余构成同实施方式一, 这里不再——赘述。 实施方式一、 二中的电池都是相当于两个电池单元并联, 区别是, 实施 方式一中的电池 1是两个负极 4共用一个正极 2 , 而实施方式二中的电池 30 是两个正极 2共用一个负极 4 , 因此, 本发明提供的电池具有灵活的选择, 在实际制造电池时, 可以结合制作工艺、 正负极的重量、 材料成本等因素, 选择制作如实施方式一或二中所示结构的电池, 使最终获得的电池更具有成 本和性能优势。
本发明中的电池, 正极釆用复合集流体, 即釆用具有导电膜包覆的正极 集流体, 导电膜作为正极集流体的保护膜, 防止水系电解液对正极集流体的 腐蚀, 改善了电池潜在的自放电问题, 电池具有稳定的循环性能。 电池具有
内部并联结构, 相比于现有技术中的并联结构电池, 本发明中的电池更加节 省材料并且结构紧凑、 轻便, 使得本发明中的电池在能量密度和体积上具有 明显的优势; 其次, 电池釆用水系电解液, 水系电解液具有相对更高的离子 传导率, 改善了电池的倍率性能; 电池使用安全、 环保并且制作工艺简单, 在制备过程中, 可以根据使用需求制备具有不同输出容量的电池, 电池用途 广泛, 具有产业化应用前景。
实施方式三
请参阅图 6所示, 一种电池 40 , 包括壳体 22 , 设置于壳体 22中的正极 2、 负极 4、 水系电解液 6和隔膜。
电池包括 n对正极 2和负极 4 , n>2 , 正极 2、 负极 4交替设置, 相邻的 两个正极 2共用位于两个正极 2之间的负极 4 , 相邻的两个负极 4共用位于 两个负极 4之间的正极 2。具体到图 6中,电池 300包括两对正极 2和负极 4 , 相邻的两个正极 2共用位于两个正极 2之间的负极 4 , 相邻的两个负极 4共 用位于两个负极 4之间的正极 2。
正极 2包括复合集流体 8和正极活性物质 10 , 复合集流体 8 包括正极集 流体 12和包覆在正极集流体 12上的导电膜 14 , 复合集流体 8具有相对设置 的两面, 其中, 至少复合集流体 8与负极 4相对的一面上设置有正极活性物 质 10 , 正极活性物质能够可逆脱出 -嵌入离子。
具体的, 请参阅图 6所示, 正极复合集流体 8具有相对设置的两面, 当 正极 2位于两个负极 4之间时, 复合集流体 8相对设置的两面均与负极 4相 对, 因此复合集流体 8相对设置的两面上均需设置正极活性物质 10 ; 而对于 位于最外层的正极 2 , 复合集流体 8仅有一面与负极 4相对, 因此至少复合 集流体 8与负极 4相对的一面上设置正极活性物质 10 , 复合集流体 8与负极 4 相背的一面没有特别限定, 可以根据实际制作工艺选择性的设置正极活性 物质, 图 7 中概略的示出了位于最外层正极中, 与负极相背的复合集流体的 一面上也设置有正极活性物质 10。
负极 4选自金属、 合金或碳基材料; 水系电解液包括电解质, 电解质至 少能够电离出活性离子, 活性离子在充电时被还原沉积在负极 4形成负极活 性物质(未图示), 负极活性物质在放电时被氧化溶解在水系电解液 6 中。 实 施方式三中正极的选材以及制作方法, 负极和水系电解液同实施方式一, 这 里不再重复介绍。
图 6 中示出的电池 40含有两对正极和负极, 相当于 3个电池单元(未示 出)并联, 但是在实际制作电池时, 本发明提供的电池结构可以容易的根据使 用需求来增加正极、 或负极、 或正极和负极, 例如在电池 40最外层的正极处 叠加负极、或依次叠加负极和正极,或者在电池 40最外层的负极处叠加正极、 或依次叠加正极和负极, 叠加的正极和负极交替排列。 正极和负极的个数根 据使用需求确定, 如图 8 所示, 虽然电池 50 总的输出电压没变, 但是电池 50具有更高的容量, 电池结构灵活, 用途广泛, 具有产业化应用前景。
在含有中性水系电解液的电池体系中, 很难找到同时满足既有一定机械 性能、 优良的导电性能, 又能在中性水系电解液中稳定存在的正极集流体, 因此水系电池的商业化进程一直停滞不前。 本发明提供的电池正好能够解决 这一问题, 电池的正极釆用复合集流体, 复合集流体釆用导电膜包覆的正极 集流体, 导电膜一方面可以提高正极集流体的导电性能, 更重要的是对正极 集流体起到保护作用, 隔绝中性水系电解液对正极集流体的腐蚀, 使正极集 流体在放电过程中可以稳定的收集并导出电子, 从而保证电池具有稳定的循 环性能, 本发明提供的电池具有很好的商业化前景。
【双极性电池】
本发明还提供了一种电池, 具体的, 电池为水系双极性电池。 下面通过 具体的实施方式来介绍水系双极性电池。
实施方式四
请参阅图 9和图 10所示, 一种电池 100 , 包括壳体(未图示), 设于壳体 内的正引出电极 54、 至少一个双极性电极 52、 负引出电极 58和水系电解液 6。 正引出电极 54、 双极性电极 52和负引出电极 58层叠排布于壳体内, 正 引出电极 54和负引出电极 58分别位于最上层和最下层,双极性电极 52和水 系电解液 6设置在正引出电极 54和负引出电极 58之间。 具体到图 9 中, 电 池 100 包括两个双极性电极 52。
壳体可以设置为方形。 具体的, 正引出电极 54、 双极性电极 52 和负引 出电极 58层叠排布形成平板状, 置于壳体中。 从而, 电池 100可设计为方形 电池, 如长方体或正方体。 该电池 100结构简单、 方便制造、 成本简单。
壳体的选材同设置同实施方式一, 同样的, 实施方式四中电池 100还包 括与壳体相连接的盖体(未图示), 正引出电极 54和负引出电极 58 延伸穿出 盖体, 与外电路连接, 并且正引出电极 54和负引出电极 58延伸穿出盖体的
端部设有密封帽,密封帽可以防止水系电解液从正引出电极 54和负引出电极 58穿出的孔蒸发, 从而减少水系电解液 6的消耗。
同样的, 电池 100 还包括安全阀和设置在壳体上的补液口(未图示), 安 全阔和补液口的设置参照实施方式一, 这里就不再重复介绍。
正引出电极 54包括正极集流体 12和设置在正极集流体 12—面的正极活 性物质 10 , 正极活性物质 10能够可逆脱出 -嵌入离子。 在实施方式一中已经 介绍了正极活性物质 10和正极集流体 12 , 这里就不再重复介绍。
图 10 为构成电池 100 的双极性电极 52 的概略剖面图, 双极性电极 52 包括双极性集流体 56和正极活性物质 10 , 双极性集流体 56有相对设置的第 一面 61和第二面 62 , 正极活性物质 10设置在双极性集流体 56的第一面 61 上。 双极性集流体 56的第一面 61和第二面 62极性相反, 第一面 61相当于 正极, 而第二面 62相当于负极。
双极性电极 52的制作方式没有特别限制, 正极活性物质 10可以是通过 涂覆的方式附着于双极性集流体 56上, 例如将正极活性物质 10制成浆料, 然后通过拉浆法涂覆在双极性集流体 56上;也可以在压制成型的正极活性物 质 10上涂覆双极性集流体 56 ; 还可以通过层叠的方式将正极活性物质 10附 着于双极性集流体 56上, 例如将按预定大小成型的双极性集流体 56和正极 活性物质 10进行压制,使正极活性物质 10与双极性集流体 56之间电接触良 好, 形成双极性电极 52。 正极活性物质 10 的厚度范围为 100-400μηι。 双极 性电极 52中的正极活性物质 10和正引出电极 54中的正极活性物质 10具体 可参照实施方式一中正极活性物质。
双极性集流体 56的材料可以是导电塑料, 优选的, 双极性集流体 56的 厚度范围为 50至 100μηι。
导电塑料的材料选自导电聚合物, 具体的, 导电聚合物包括但不仅限于 聚乙炔、 聚吡咯、 聚噻吩、 聚苯硫醚、 聚苯胺、 聚喹啉或聚对苯撑中的至少 一种。 导电聚合物本身就具有导电性, 但还可以对导电聚合物进行掺杂或改 性以进一步提高其导电能力。
导电塑料还可以是复合型的导电塑料, 复合型导电塑料以聚合物为主要 基质, 并在其中掺入导电剂配制而成, 这里, 聚合物本身是否导电没有特别 限制, 复合型的导电塑料的导电能力主要是靠导电剂实现。 具体的, 导电塑 料包括聚合物和导电剂, 聚合物包括但不仅限于聚乙烯, 聚丙烯, 聚丁烯,
聚氯乙烯, 聚苯乙烯, 聚酰胺, 聚碳酸酯, 聚甲基丙烯酸甲酯, 聚甲醛, 聚 苯醚, 聚砜, 聚醚砜、 丁苯橡胶或氟树脂中的至少一种。 具体的, 聚合物可 以是氟树脂中的聚四氟乙烯, 还可以是共聚物, 如聚四氟乙烯(PTFE)和丁苯 橡胶(SBR)的共聚物。
导电剂包括碳基材料、 金属或金属氧化物。 导电剂在导电塑料中的质量 百分比范围为 10-90%。
碳基材料选自石墨、 碳纳米管或无定形碳中的一种。 无定形碳包括但不 仅限于活性炭和碳黑。
金属的形式不限, 可以是金属粉、 金属薄片、 金属丝条、 金属纤维。 金 属氧化物包括但不仅限于氧化铅、 氧化锡。
具体的, 将聚合物和导电剂以一定的复合方式如分散复合、 层级复合进 行加工获得的具有导电性能的塑料。
双极性集流体 56的材料还可以是不锈钢或经过飩化处理的不锈钢,不锈 钢的机械性能优于导电塑料, 因此, 当使用不锈钢作为双极性集流体 56 时, 双极性集流体 56的厚度可以更薄, 具体的, 双极性集流体 56的厚度范围为 20- 100μηι。
不锈钢飩化处理的方法没有限制, 可以是物理方法飩化、 化学方法飩化 或电化学方法飩化。 飩化的目 的是为了提高双极性集流体 56与水系电解液 6 的相容性, 从而减少副反应的发生, 使电池具有稳定的循环性能。
本发明中, 对于构成双极性电极 52的双极性集流体 56的机械性能要求 不高, 即可以釆用重量较轻的导电塑料或厚度较薄的不锈钢作为双极性集流 体 56 ,电池 100整体重量得到降低,因此电池 100的能量密度得到显著提高。
负引出电极 58选自选自金属、 合金或碳基材料。
具体的, 负引出电极 58 选自金属 Zn、 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al 或经过飩化处理的金属中的至少一种,或含有上述金属的合金中的至少一种, 或石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的至少一种, 或铜镀锡, 或黄铜。
负引出电极 58 还可以选自含有析氢电位高的镀 /涂层的金属, 从而降低 负极副反应的发生。 镀 /涂层选自含有 C、 Sn、 In、 Ag、 Pb、 Co、 Zn的单质, 合金, 或者氧化物中至少一种。 镀 /涂层的厚度范围为 l - 1000nm。 例如: 在 铜的负引出电极 58表面镀上铅或银, 或者以涂覆的形式覆盖一层碳。 正极集 流体 12和负引出电极 58的厚度范围为 l - 10mm。
负引出电极 58 同实施方式一中的负极 4 , 即负引出电极 58 可以仅作为 电子收集和传导的基体不参与电极反应,或负引出电极 58 包括负极集流体和 负极活性物质,如负引出电极 58为黄铜箔和锌箔,锌箔与负极活性物质一致。
水系电解液 6设置在正引出电极 54和负引出电极 58之间, 正引出电极 54、 双极性电极 52和负引出电极 58层叠设置, 当电池 100中双极性电极 52 为一个时, 正引出电极 54和相邻的双极性电极 52之间、 双极性电极 52和相 邻的负引出电极 58之间均设置有水系电解液 6。当电池 100中双极性电极 52 不止一个时, 正引出电极 54和相邻的双极性电极 52之间、 相邻的双极性电 极 52之间、双极性电极 52和相邻的负引出电极 58之间均设置有水系电解液 6。
水系电解液 6 包括电解质, 电解质至少能够电离出活性离子, 活性离子 在充电时被还原沉积在双极性集流体 56的第二面形成负极活性物质,负极活 性物质在放电时被氧化溶解在水系电解液 6中,活性离子以盐酸盐、硫酸盐、 醋酸盐、 硝酸盐或甲酸盐中的至少一种形式存在于水系电解液 6 中。
水系电解液 6和活性离子在实施方式一中已经介绍, 这里就不再赘述。 优选的, 水系电解液 6 中还包括与正极活性物质 10 能够可逆脱出 -嵌入 离子相对应的离子, 离子包括锂离子、 钠离子或镁离子中的至少一种。 具体 的, 如正极活性物质 10 能够可逆脱出-嵌入锂离子时, 那么水系电解液 6 中 对应的还含有锂离子, 这样, 可以提高正极活性物质 10与水系电解液 6中的 离子交换速度, 提高电池 100的大倍率充放电性能。
实施方式四中的电池 100还包括隔膜 16 , 隔膜 16设置在正引出电极 54 与相邻的双极性电极 52之间、 双极性电极 52与相邻的负引出电极 58之间, 实施方式四中电池 100 包括两个双极性电极 52 , 因此, 在相邻的双极性电极 52之间也设置有隔膜 16。 一方面, 隔膜 16 用于保持水系电解液 6 , 另一方 面隔膜 16防止电池 100短路。
隔膜 16可以使用多孔隔膜、 无纺织布或玻璃纤维。 多孔隔膜包括但不仅 限于聚乙婦(ΡΕ)、 聚丙婦(ΡΡ) , 聚酰亚胺中的一种, 或 ΡΕ-ΡΡ、 ΡΡ-ΡΕ-ΡΡ 的 叠层隔膜。 无纺织布包括但不仅限于人造丝、 醋酸纤维、 尼龙。 水系电解液 6在隔膜 16 中的含浸量可以在隔膜 16 的保持能力范围内, 也可以超过保持 范围, 因为电池 100设置有密封部 60 , 可以防止水系电解液 6泄漏。
双极性集流体 56 的外周部设置有用于密封水系电解液 6 的密封部 60 ,
没有特别限定的, 密封部 60可以釆用密封圏, 密封圏的形状优选为矩形, 密 封圏的选材只要是在电池 100的使用环境下可以实现优异的密封效果即可。
没有特别限定的, 密封部 60的材料为橡胶, 橡胶选自但不仅限于硅类橡 胶、 氟类橡胶、 烯烃类橡胶、 腈类橡胶中的一种, 其中, 烯烃类橡胶包括但 不仅限于丁苯橡胶(SBR) , 氯丁橡胶(CR)。 这些密封用的橡胶类树脂具有良好 的密封性(液密性)、 耐酸碱性、 耐药品性、 耐久性、 耐候性和耐热性, 并且 可以在电池 100 的使用环境下长期保持这些优异的性能而不会劣化, 因此可 以有效地防止水系电解液 6从电池 100 中渗出, 从而防止由于水系电解液 6 的泄漏而引起的电池 100短路, 保证电池 100的循环稳定性能。
此外, 只要是可以有效的实现本发明的作用效果的, 如具有耐酸性和密 封性的各种橡胶均可作为本发明密封部 60的材料。
没有特别限制的, 当密封部 60釆用密封圏时, 隔膜 16的面积小于密封 圏的包围面积, 并且密封圏的高度不小于隔膜 16和正极活性物质 10的厚度 之和, 在组装电池时, 将浸有水系电解液 6的隔膜 16放置在密封圏的圏内, 隔膜 16不参与密封,这样可以避免因釆用多孔隔膜而可能造成的水系电解液 6 的泄露。 当然, 隔膜 16 的面积也可以大于设置在双极性电极 52外周部的 密封部 60的包围面积, 只要隔膜 16与密封部 60最终一体成型, 不会导致水 系电解液 6泄露就行。
请参阅图 11所示,双极性电极 52层叠地设置在正引出电极 54和负引出 电极 58 之间, 电子仅从正引出电极 54和负引出电极 58 导出或导入, 电池 100相当于 3 个电池单元 64 内部串联, 在每个电池单元 64 中都有正极、 负 极、 水系电解液和隔膜, 水系电解液 6通过密封部 60密封, 避免由于水系电 解液 6的泄露而造成的电池单元 64之间的短路,从而保证电池 100的正常工 作。
例如, 其中一个电池单元 64 包括正极集流体 12、 正极活性物质 10、 隔 膜 16、水系电解液 6、密封部 60和作为负极的双极性集流体 56的第二面 62。 密封部 60 用于密封每个电池单元 64 中的水系电解液 6 , 以避免因水系电解 液 6的泄露而造成电池 100的短路。图 11 中示出的电池 100仅包括二个双极 性电极 52 , 但实际上可以很容易的根据使用需求来设置电池 100中双极性电 极 52的个数,从而制备具有不同输出电压的电池以及具有高输出电压的电池, 本发明提供的电池具有广泛的用途。
本发明中的电池制备工艺简单,可以通过层叠的方式制备电池,具体的, 在负引出电极上层叠地放置矩形密封圏,密封圏与负引出电极的外周部贴合, 然后在密封圏的圏内放置浸有水系电解液的隔膜, 再依次层叠双极性电极和 正引出电极, 正引出电极和双极性电极中的正极活性物质同时朝向负引出电 极放置, 水系电解液通过密封圏密封。 双极性电极的个数决定电池最后的输 出电压, 因此, 可以根据使用需求来设置双极性电极的个数, 电池具有广泛 的用途。
请参照图 12所示, 本发明提供的电池 100的充放电原理为: 在一个电池 单元 64中, 充电时, 能够可逆脱出 -嵌入离子的正极活性物质 10 中脱出该离 子, 同时水系电解液 6 中的活性离子在双极性集流体 56的第二面 62得到电 子被还原, 并沉积在第二面 62 上, 形成负极活性物质。 在含有负引出电极 58的电池单元 64中, 活性离子在负引出电极 58上得到电子被还原, 沉积在 负引出电极 58上。 放电过程则为充电的逆过程。
本发明中, 构成电池 100的双极性电极 52仅在双极性集流体 56的第一 面 61设置正极活性物质 10 ,而双极性集流体 56的第二面 62则相当于负极, 为活性离子得电子还原-沉积提供载体, 活性离子存在于水系电解液 6中, 相 对于现有技术中在双极性集流体 56的第一面 61和第二面 62均设置正极活性 物质 10 , 本发明中的电池 100结构更加紧凑, 电池 100具有优异的能量密度 和功率密度。 除此之外, 本发明中的电池 100 釆用水系电解液 6 , 相对于目 前商业化的釆用有机系电解液的锂离子电池更加安全、 环保。
本发明中的电池 100 , 相当于若干个电池单元 64 串联形成, 每一个电池 单元 64都通过密封部 60得到很好的密封, 从而防止由于水系电解液 6的泄 漏而引起的短路。 另外, 本发明的电池即使不设置特殊的防漏部件或绝缘部 件, 也可防止电池单元间的短路, 从而提供具有优异离子传导率、 充放电性 能的双极性电池。 除此之外, 可以根据使用需求设置不同数量的双极性电极 52 , 从而制备具有不同输出电压的电池 100 , 电池 100用途非常广泛。
实施方式五
请参阅图 13所示, 实施方式五提供了一种电池 110 , 电池 110 包括壳体 (未示出), 设于壳体内的正引出电极 54、 至少一个双极性电极 52、 负引出电 极 58和水系电解液 6。 双极性电极 52层叠的设置在正引出电极 54和负引出 电极 58之间, 正引出电极 54和负引出电极 58分别位于最上层和最下层。
正引出电极 54包括正极集流体 12和设置在正极集流体 12—面的正极活 性物质 10 , 与实施方式五的区别是, 正极集流体 12包覆有导电膜 14。
导电膜 14可以通过粘结剂粘接、热压复合或真空覆膜的方法包覆在正极 集流体 12 的一面, 然后再在导电膜 14上设置正极活性物质 10 , 导电膜 14 的厚度为 0.01 -0.2mm。 具体到图 13 中, 正极集流体 12的两面上均包覆有导 电膜 14。
导电膜 14的材料在实施方式一中已经详细介绍, 这里就不再重复。
一方面,釆用导电聚合物或含有导电剂的复合物作为导电膜 14能够提高 正极集流体 12的导电子能力; 另一方面, 包覆在正极集流体上的导电膜 14 , 避免了正极集流体 12与水系电解液 6直接接触,解决了水系电解液 6对正极 集流体 12潜在的腐蚀问题, 保证正极集流体 12的稳定性, 改善电池 1 10可 能的自放电问题, 从而使电池 1 10具有稳定的循环性能。
请参阅图 14所示, 电池单元 68通过密封部 60密封, 密封部 60设置在 双极性集流体 56的外周部, 用于密封水系电解液 6。
实施方式五中电池 110其余构成以及组装方式同实施方式四, 这里不再 ——赘述。
实施方式五中提供的电池, 釆用导电膜包覆的正极集流体, 杜绝了水系 电解液对正极集流体潜在的腐蚀问题, 使电池除了具有高输出电压、 安全、 环保等特点之外, 进一步提高了电池的循环稳定性能。
实施方式六
请参阅图 15所示, 实施方式六提供了一种电池 120 , 电池 120 包括壳体 (未示出), 设于壳体内的正引出电极 54、 至少一个双极性电极 52、 负引出电 极 58和水系电解液 6。 双极性电极 52层叠的设置在正引出电极 54和负引出 电极 58之间, 正引出电极 54和负引出电极 58分别位于最上层和最下层。 与 实施方式四的区别是, 电池 120不包括隔膜。
同样的, 电池单元(未示出)通过密封部 60 密封, 密封部 60设置在双极 性集流体 56 的外周部, 用于密封水系电解液 6。 示例的, 密封部 60可以釆 用密封圏, 密封圏的高度大于正极活性物质 10的厚度, 通过具有一定高度的 密封圏,使得正引出电极 54与相邻的双极性电极 52的双极性集流体 56之间 和双极性电极 52的双极性集流体 56与相邻的负引出电极 58之间保持一定距 离, 以避免电池 120短路。 当电池 120 中双极性电极 52的个数不止一个时、
相邻的双极性电极 52的双极性集流体 56与双极性集流体 56之间同样设置有 密封部 60。
制备实施方式六中的电池时, 可以先将按预定规格制备好的正引出电极 54、 双极性电极 52和负引出电极 58进行排列并密封。 具体的, 正引出电极 54和双极性电极 52上的正极活性物质 10 同时朝向负引出电极 58排列, 密 封部 60可以釆用具有高出正极活性物质 10厚度的橡胶材料如密封圏, 将密 封圏设置在双极性集流体 56的外周部,最后通过注射的方式注入水系电解液 6 ; 密封部 60还可以釆用热塑性橡胶材料, 在初步密封时, 可以仅在双极性 集流体 56三边的外周部设置热塑性橡胶材料, 保留一边开口, 将正引出电极 54、 双极性电极 52和负引出电极 58排列好后, 通过加热或加热加压使橡胶 固化成型, 再通过未密封的一边处注入预定量的水系电解液 6 , 最后再将所 有电池单元完全密封。
实施方式六中电池 120其余构成以及组装方式同实施方式四, 这里不再 ——赘述。
实施方式六中的电池 120没有釆用隔膜, 电池 120不仅能够给正常、 持 续的工作, 而且由于重量更轻, 因此电池 120具有更优异的能量密度和比功 率。 另外, 在制备电池 120时, 可以很容易的形成密封部 60 , 防止由于水系 电解液 6的泄漏而引起的短路。 电池 120即使不设置特殊的防漏部件, 即可 防止电池单元间的短路, 电池 120具有具有优异的循环性能以及循环寿命。
实施方式七
请参阅图 16所示, 实施方式七提供了一种电池 130 , 电池 130 包括壳体 (未示出), 设于壳体内的正引出电极 54、 至少一个双极性电极 52、 负引出电 极 58和水系电解液 6。 双极性电极 52层叠的设置在正引出电极 54和负引出 电极 58之间, 正引出电极 54和负引出电极 58分别位于最上层和最下层。
正引出电极 54包括正极集流体 12和设置在正极集流体 12—面的正极活 性物质 10 , 与实施方式六的区别是, 正极集流体 12包覆有导电膜 14。
导电膜 14的选材、 成型方式同实施方式一, 这里就不再——赘述。 实施方式七中的电池 130 , 包覆在正极集流体 12上的导电膜 14 隔绝了 正极集流体 12与水系电解液 6的接触, 提高了正极集流体 12的稳定, 从而 保证电池 130具有稳定的循环性能。没有使用隔膜的电池 130重量更加轻便, 在便于使用者携带的同时, 提供优异的性能。
本发明中的电池, 双极性电极中的双极性集流体可以釆用导电塑料或厚 度较薄的不锈钢, 在保证电池正常工作的同时, 电池的重量更加轻便, 使得 本发明中的电池在能量密度和体积上具有明显的优势; 其次, 电池釆用水系 电解液, 水系电解液具有相对更高的离子传导率, 改善了电池的倍率性能; 电池使用安全、 环保并且制作工艺简单, 在制备过程中, 可以根据使用需求 制备具有不同输出电压的电池, 电池用途广泛, 具有产业化应用前景。
本发明中提供含有双极性电极的电池, 仅在双极性电极的一面涂覆正极 活性物质, 双极性电极同涂有正极活性物质相对的一面上在电池首次充放电 前没有负极活性材料, 负极的活性离子存在于水系电解液中, 在对电池进行 充电时, 沉积在双极性电极未涂覆正极活性物质的一面, 电池具有优异的循 环性能。 同时, 电池釆用的是水系电解液, 相对于釆用有机系电解液的锂离 子电池, 本发明中的电池更加安全、 环保。 除此之外, 通过设置双极性电极 的个数可以制备具有不同输出电压、 具有高输出电压的电池, 电池用途广泛 并且制备工艺简单, 电池具有商业化应用潜力。
【板式结构电池】
本发明还提供了一种电池, 电池具有板式结构。
实施方式八
如图 17所示, 一种电池 140 , 电池 140 包括壳体 70 , 设于壳体 70 内的 正极 72、 负极 74、 隔膜 76和水系电解液 78。 且隔膜 76设置于正极 72和负 极 74之间。
正极 72 包括正极集流体 80和参与电化学反应的正极活性物质 82 , 正极 活性物质 82 包括能够可逆脱出-嵌入离子的化合物; 负极 74选自金属、 合金 或碳基材料; 水系电解液 78 包括电解质, 电解质至少能够电离出活性离子, 活性离子在充电时被还原沉积在负极 74形成负极活性物质,负极活性物质在 放电时被氧化溶解在水系电解液 78 中。
正极 72、 负极 74、 水系电解液 78和隔膜 76 同实施方式一, 这里就不再 重复介绍。
正极 72、 隔膜 76和负极 74形成平板状, 且隔膜 76位于正极 72和负极 74之间。 相应的, 壳体 70设置为方形。 从而, 电池可设计为方形电池, 如 长方体或正方体。 该电池结构简单、 方便制造、 成本简单。
电池 140设计为层叠式。 正极 72、 隔膜 76和负极 74层叠排布形成平板
状, 且隔膜 76位于正极 72和负极 74之间。相应的, 壳体 70也设置为方形。 具体到图 17 中, 正极 72设置为 4个, 负极 74设置为 5个, 最靠近壳体 70的为负极 74。
电池还可设置为包括若干独立的电池单元, 独立的电池单元包括独立的 正极、 隔膜和负极。 其中电池单元以并联方式连接。 独立的电池单元可设置 为 2~ 10组。 当然, 也可根据不同需要把独立的电池单元设置成不同组数, 如 12组或以上等。 另外, 独立的电池单元也可根据需要以串联方式连接。
壳体 70可设置为金属、 塑料或金属与塑料的复合膜, 如钢、 铝、 丙烯腈 -丁二烯-苯乙烯共聚物(ABS)、 聚丙烯(PP)、 尼龙或铝塑膜等。 优选的, 壳体 70设置为铝塑膜, 从而使得壳体较薄。 减少电池重量的同时, 也增加了电池 内部的空间。 铝塑膜包括一层铝片和第一层塑料片。 优选的, 铝塑膜还包括 相对于第一层塑料片设置于上述铝片另一侧的第二层塑料片。
电池还包括与壳体 70相连接的盖体 84 ,正极集流体 80延伸穿出盖体 84 , 正极集流体 80延伸穿出盖体 84 的端部设有密封帽 86。 密封帽 86需要具有 较好的导电性和化学稳定性。 另外, 密封帽 86还可防止水系电解液 78从正 极集流体 80穿出的孔蒸发, 从而减少水系电解液 78的消耗。 正极 72与外电 路相连接。
负极 74也延伸穿出盖体 84 , 从而与外电路连接。 同样, 负极 74延伸穿 出盖体 24的端部设有密封帽(未图示)。
另外, 电池在充电过程中, 尤其是快接近充电后期时, 由于充电电流将 水分解, 会释放出大量氢、 氧气体。 随着产生的氢气和氧气越来越多, 电池 壳体内的压力也在不断上升, 当压力上升到一定值, 电池壳体会发生变形。 因此, 电池还包括用于控制壳体 70 内压力的安全阔 88。 当电池的壳体 70 内 的压力到达预设的开阔压时, 安全阔 88打开, 将压力释放, 防止壳体变形, 从而提高了电池的寿命和安全性。
另外, 当壳体 70 内的压力到达预设的闭阔压时, 安全阔 88 闭合, 防止 内部气体向外泄露。 同时, 也防止外部空气进入壳体 70 内造成不良影响。 且 还可以防止析出的氢气遇明火时产生回火, 从而引爆壳体 70 内部气体。
壳体 70上还可设置有用于补充水系电解液 78的补液口(未图示)。这样, 当水系电解液 78较少时, 可通过补液口注入水系电解液 78。
优选的, 补液口为安装安全阀 88处的安装孔(未图示)。
请参阅图 18和 19所示, 电池为层叠式。 具体的, 隔膜 76为整体式的带 状结构, 且隔膜 76以 Z字型折叠。 正极 72和负极 74层叠排布于隔膜 76的 叠缝处。 此时, 隔膜 76位于正极 72和负极 74之间, 从而使正极 72和负极 74之间彼此绝缘。
正极 72、 隔膜 76和负极 74 同样被压制成方形平板状。 相应的, 壳体 70 也设置为方形, 如长方体或正方体, 从而, 电池可设计为方形电池。
请参阅 20所示, 电池为卷绕式, 电池包括正极 72、 负极 74和隔膜 76。 正极 72、 隔膜 76和负极 74卷绕成形, 从而形成平板状电芯, 且隔膜 76位 于正极 72和负极 74之间。 相应的, 壳体 70也设置为方形, 如长方体或正方 体, 从而, 本实施例中的电池可设计为方形电池。
优选的, 正极 72、 隔膜 76和负极 74均设置为长条状。 可根据需要卷绕 成不同的圏数。
具体的, 平板状电芯包括相对的两平面 90 , 连接上述两平面 90 且相对 设置的两弧形部 92。 正极卷绕终止端 94和负极卷绕终止端 96中的至少一个 位于平板状电芯的弧形部 92处。
优选的, 正极卷绕终止端 94和负极卷绕终止端 96分别位于平板状电芯 相对设置的两弧形部 92处。
优选的, 正极卷绕终止端 94和负极卷绕终止端 96位于平板状电芯的同 一弧形部 92处。
当电池在充放电过程中, 极片厚度会膨胀, 从而导致平板状电芯整体厚 度增加。 而把正极卷绕终止端 94和负极卷绕终止端 96设置在弧形部 92处, 由于弧形部 92与壳体 70之间留有空间, 该空间为平板状电芯的膨胀起到了 緩冲作用。 从而使得不会在弧形部 92处产生较大的应力集中, 进而避免了弧 形部 92处出现明显的褶皱, 有效减少了可逆脱出-嵌入的离子的结晶。
图 20中, 平板状电芯的卷绕方法为,从内圏开始, 隔膜 76卷绕为两层, 且两层隔膜 76相互贴合, 根据设计要求, 当两层隔膜 76贴合一定长度后再 卷绕第二圏, 此时从内圏开始, 依次为两层隔膜 76 , 负极 74 , 卷绕到第二圏 的隔膜 76 , 正极 72 , 卷绕到第二圏的隔膜 76 , 然后继续卷绕负极 74 , 隔膜 76 , 正极 72 , 隔膜 76到所设计的圏数即可。 当然, 如本领域技术人员所知, 还有其它的卷绕方法, 只要保证正极和负极绝缘即可。
本发明提供的一种电池, 具有能量密度高(可达锂离子电池的 60% - 80 % ) ,
功率密度大(可望达到锂离子电池的 200% ,甚至更高), 易于制造,完全无毒, 环保, 容易回收且成本低廉(同样容量的电池, 可望达到铅酸电池的 60% , 锂 离子电池的 20% , 甚至更低)等特点, 并且具有很好的循环性能, 在具体实施 方式中, 电池在循环 4000周后容量仍维持在 90%以上。 因此, 本发明中的电 池作为新一代的绿色能源, 非常适合作为大型储能领域的储能体系以及铅酸 电池的替代品。
【柱式结构电池】
本发明还提供了一种电池, 电池具有圆柱式结构。
实施方式九
一种电池, 电池包括壳体, 设于壳体内的正极、 负极、 隔膜和水系电解 液, 隔膜设置于正极和负极之间。
正极包括正极集流体和参与电化学反应的正极活性物质, 正极活性物质 包括能够可逆脱出-嵌入离子的化合物; 负极选自金属、 合金或碳基材料; 水 系电解液包括电解质, 电解质至少能够电离出活性离子, 活性离子在充电时 被还原沉积在负极形成负极活性物质, 负极活性物质在放电时被氧化溶解在 水系电解液中。
正极集流体、 正极活性物质、 负极、 水系电解液和隔膜同实施方式一, 这里就不再——赘述。
同样的, 负极的设置同实施方式一, 即负极包括负极集流体, 此时负极 可以仅作为电子收集和传导的基体不参与电极反应; 或负极包括负极集流体 和负极活性物质, 如负极为黄铜箔和锌箔, 锌箔与负极活性物质一致。
壳体设置为圆柱筒形, 正极、 隔膜、 负极以及壳体同轴排列。
具体的, 电池中的正极、 隔膜与负极可通过卷绕形成圆柱形电芯设置于 壳体内。
请参阅图 21和 22所示,电池 150的负极 160和隔膜 156均为圆柱筒形, 正极集流体 152为圆柱形, 正极活性物质 158设置于隔膜 156与正极集流体 152之间。 电池 150还包括固定环 154 , 固定环 154 固定正极集流体 152、 隔 膜 156、 负极 160以及壳体(未示出)。 固定环 154的材质为聚氯乙烯, 固定环 154为两个, 分别设置于壳体的两端。 固定环 154 包括上层环 162和下层环 164 , 上层环 162和下层环 164为一体成型, 上层环 162 固定正极集流体 152 与隔膜 156 , 下层环 164 固定隔膜 156与负极 160。 上层环 162的外径与负极
160 的内径相同, 上层环 162 的内径与正极集流体 152 的直径相同; 下层环 164的外径与隔膜 156 的内径相同, 下层环 164的内径与正极集流体 152的 直径相同。
在正极集流体 152为圆柱形的实施方式中, 具体的, 如图 21和图 22中 所示: 一种电池 150 , 包括正极集流体 152、 正极活性物质 158、 隔膜 156、 负极 160、 水系电解液(图中未示出)、 固定环 154 和壳体; 正极集流体 152 与正极活性物质 158、 隔膜 156、 负极 160以及壳体同轴排列; 负极 160和隔 膜 156均为圆柱筒形; 正极活性物质 158设置于正极集流体 152与隔膜 156 之间; 隔膜 156设置于正极活性物质 158与负极 160之间; 负极 160设置于 隔膜 156与壳体之间; 水系电解液设置于壳体内; 固定环 154设置于壳体的 一端, 固定环 154 固定正极集流体 152与隔膜 156 以及负极 160 ; 优选的, 正极集流体 152为石墨棒。
具体的, 固定环 154的材质为聚氯乙烯, 固定环 154为两个, 分别设置 于电池中壳体的两端, 一个设置于电池的顶端, 另一个设置于电池的底端。 如图 22中所示: 固定环 154 包括上层环 162和下层环 164 , 上层环 162和下 层环 164为一体成型, 上层环 162 固定正极集流体 152与隔膜 156 , 下层环 164 固定隔膜 156与负极 160。 上层环 162的外径与负极 160的内径相同, 上 层环 162的内径与正极集流体 152的直径相同;下层环 164的外径与隔膜 156 的内径相同, 下层环 164的内径与正极集流体 152的直径相同。
在正极集流体为圆柱形的实施方式中, 电池还包括正极导电剂, 正极导 电剂与正极活性物质 158混合均勾后一起设置于正极集流体 152与隔膜 156之 间。 具体的, 先将圆柱形正极集流体 152、 圆柱筒形隔膜 156以及设置于电池 底端的固定环 154组装好, 正极导电剂、 正极活性物质 158和溶剂一起混合均 匀形成正极浆料,再将正极浆料倒入隔膜 156与正极集流体 152组成的间隙中, 干燥,即在正极集流体 152与隔膜 156之间形成正极导电剂与正极活性物质 158。 正极导电剂选自导电聚合物、 活性碳、 石墨烯、 碳黑、 碳纤维、 金属纤维、 金属粉末、 以及金属薄片中的一种或多种。 溶剂选自去离子水或乙醇。
在正极集流体为圆柱形的实施方式中,圆柱筒形的负极 160可以是先形成 圆柱筒形的负极集流体, 将圆柱形正极集流体 152、 圆柱筒形的隔膜 156、 圆 柱筒形的负极集流体以及设置于电池底端的固定环固定后, 再将负极活性物 质加入到圆柱筒形的隔膜 156与圆柱筒形的负极集流体之间得到;也可以是先
将负极活性物质通过涂覆、 电镀或溅射的方法形成于负极集流体上后, 再形 成圆柱筒形的负极 160。
本发明提供的电池, 具有能量密度高, 功率密度大, 易于制造, 安全无 毒, 环保, 容易回收且成本低廉等特点, 并且电池具有很好的循环性能, 因 此, 本发明中的电池作为新一代的绿色能源, 非常适合作为大型储能领域的 储能体系以及铅酸电池的替代品。
本发明中的重量、 体积百分比中的单位是本领域技术人员所熟知的, 例 如体积百分比是指在 100毫升的溶液中溶质的重量。 除非另行定义, 文中所 使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。 此外, 任 何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。 文中所 述的较佳实施方法与材料仅作示范之用。
下面结合实施例, 更具体地说明本发明的内容。 应当理解, 本发明的实 施并不局限于下面的实施例。
实施例 1
将 LiMn204(湖南杉杉, LMO021型)、 导电炭黑(TIMCAL , super P)、 粘 接剂羧甲基纤维素钠(斯比凯可, 30000)和水按照质量比 90:6 : 1 : 50 的比例混 合均匀, 加入 3份丁苯橡胶乳液(韩国大金), 继续混合 l Omin制成活性物质 浆料。 以长 80毫米、 宽 60毫米、 厚 20微米的铝箔作为正极集流体, 将铝箔 置于 2片厚 50微米的导电膜中间, 导电膜尺寸比铝箔稍大, 通过加热复合使 导电膜包覆在铝箔上, 并保证导电膜比铝箔多出部分密封完好。 将活性物质 浆料均匀涂覆在复合集流体的第一面和第二面,涂覆密度为 700g/m2 ,在 60 °C 下烘干, 与辊压机上施加 10吨压力碾压, 得到正极。
具体的, 导电膜为含有聚丙烯和导电炭黑的复合材料。
隔膜为厚度 2毫米的 AGM玻璃纤维隔膜, 尺寸为 70x70 毫米。 负极为 厚 50 微米的锌板, 尺寸与隔膜相当。 电解液为 2mol/L 的 ZnS04和 l mol/L 的 Li2 S 04的混合水溶液。
电池按照以下方式组装: 将得到的正极置入两个负极之间, 正极与负极 之间各设置一片隔膜, 组装完成后, 注入 12毫升电解液, 静止 3小时, 即可 开始充放电测试。
实施例 2
在实施例 2 中, 正极集流体为铜箔, 电池其余构成以及测试方法同实施
例 1。
实施例 3
在实施例 3 中, 正极集流体为不锈钢箔, 电池其余构成以及测试方法同 实施例 1。
实施例 4
在实施例 4中, 导电膜厚度为 100 ^敫米, 电池其余构成以及测试方法同 实施例 1。
电池性能测试
将实施例 1至 4 中的电池在室温下进行充放电循环测试。 充放电循环测 试的条件为: 以 0.25C恒定电流下充电到 2. I V , 停止 10分钟, 再在 1 C恒定 电流下放电到 1 .4V , 再停止 10分钟, 作为一个循环。
图 23为实施例 1 中电池充放电循环性能图, 从图中可以看出, 电池能够 正常工作, 并且在多次循环后性能非常稳定。 同样的, 实施例 2至 4 中的电 池可以持续、 稳定的工作。
实施例 5
将正极活性物质 LiMn204、导电剂乙炔黑( AB )、粘结剂聚偏氟乙烯(PVDF) 按照重量比 80: 10 : 10混合, 以 N-甲基吡咯烷酮作为溶剂, 制作正极浆料, 在 厚度为 Ι ΟΟμηι的集流体的一面上涂布正极浆料, 放入到真空干燥箱中, 在 60 °C 下干燥 0.5h , 形成厚度为 400μηι的双极性电极。 集流体釆用导电塑料, 具体 的, 导电塑料为含有的聚丙烯和导电炭黑的复合材料。
正极集流体和负引出电极的材料为不锈钢 .箔, 通过热压复合在正极集流 体的一面包覆一层厚度为 50μηι的导电膜,导电膜为聚乙烯和碳黑的复合膜, 按照制备双极性电极的过程, 在正极集流体涂有导电膜的一面涂覆相同厚度 的正极活性物质。 正极集流体和负引出电极的厚度为 2mm。
水系电解液为含有浓度为 1 mol/L硫酸锂和 2mol/L硫酸锌的水溶液; 隔 膜釆用玻璃纤维(AGM) , 隔膜的面积小于矩形密封圏的包围面积, 隔膜的厚 度为 600μηι; 密封部釆用高度为 1 mm的矩形密封圏, 矩形密封圏的面积略小 于引出电极和集流体的面积。
在负引出电极上层叠矩形密封圏, 然后在密封圏的圏内放置浸有水系电 解液的隔膜, 再依次层叠双极性电极和正引出电极, 双极性电极和正引出电 极涂有正极活性物质的一面面向负引出电极放置, 密封圏用于密封设置在正
引出电极与相邻的双极性电极和双极性电极与相邻的负引出电极之间的水系 电解液。
电池性能测试
将实施例 5 中的电池在室温下进行充放电循环测试。 充放电循环测试的 条件为: 在 1 C恒定电流下充电到 4.2V , 停止 10分钟, 再在 1C恒定电流下 放电到 2.8V , 再停止 10分钟, 作为一个循环。
实施例 6
在实施例 6 中, 双极性电极的个数为 3个, 电池其余构成以及制备方法 同实施例 5。
电池性能测试
将实施例 6 中的电池在室温下进行充放电循环测试。 充放电循环测试的 条件为: 在 1 C恒定电流下充电到 8.4V , 停止 10分钟, 再在 1C恒定电流下 放电到 5.6V , 再停止 10分钟, 作为一个循环。
实施例 7
在实施例 7 中, 双极性电极的个数为 5个, 电池其余构成以及制备方法 同实施例 5。
电池性能测试
将实施例 7 中的电池在室温下进行充放电循环测试。 充放电循环测试的 条件为: 在 1 C恒定电流下充电到 12.6V , 停止 10分钟, 再在 1 C恒定电流下 放电到 8.4V , 再停止 10分钟, 作为一个循环。
实施例 8
在实施例 8 中, 双极性电极的集流体釆用不锈钢, 厚度为 50μηι , 电池其 余构成、 制备方法以及电池性能测试同实施例 5。
实施例 9
在实施例 9 中, 正极集流体的一面没有包覆导电膜, 电池其余构成、 制 备方法以及电池性能测试同实施例 5。
表 1 为实施例 5到 9 中的电池在 1C倍率下充放电, 充放电循环 100次 的电池性能:
表 1
实 双 极 正 极 导 双极性
正 极 活 容量保 库 伦 放电平 施 性 集 集 流 电 电解液 电极个
性物质 持率 效率 均电压 例 流体 体 数
5 1 80% 98% 3.6V 导 电
6 3 81% 98% 7.2V 塑料
7 有 5 84% 98% 10.8V 不 锈 Li2S04
LiMn204 不 锈
8 钢 ZnS04 1 78% 97% 3.6V 钢
导 电
9 无 1 77% 97% 3.6V 塑料
实施例 10
将正极活性物质 LiMn204、 super-p碳黑、 粘接剂 PVDF按照重量比例 8: 1: 1 混合均匀 , 以 NMP作为溶剂, 制得正极浆料, 均勾涂覆在厚度 80μηι的正极集 流体石墨箔上, 随后干燥、 压制得到正极; 负极包括锌箔和厚度 50μηι的石墨 箔, 金属锌镀在石墨箔上作为负极活性物质; 隔膜为玻璃毡布。
将所得正极、 隔膜及负极通过卷绕形成圆柱形电芯, 设置于圆柱筒形的 壳体中; 电池中加入的电解液为含有 2 mol/L醋酸锂和 1.5 mol/L醋酸锌的水溶 液,通过向电解液中滴加 0.1 mol/L的 LiOH溶液调节电解液的 pH为 4。室温下, 电池静置 12h后, 以 100mA的电流充电和放电, 电压范围为 1.5-2.35V。
实施例 11
与实施例 10相同的方式制造电池, 所不同的是: 用经过飩化的 316型不锈 钢代替实施例 10负极中的石墨箔。
实施例 12
与实施例 10相同的方式制造电池, 所不同的是: 用铜箔代替实施例 10负 极中的石墨箔。
实施例 13
一种电池, 正极集流体为石墨棒, 直径为 4mm, 长度为 62mm; 隔膜的材 质为无纺布, 隔膜为圆柱筒形, 隔膜的外径为 11mm, 隔膜的内径为 10mm, 隔膜的长度为 58mm; 负极包括铜箔和锌, 锌通过溅射形成于铜箔上, 得到圆 柱筒形负极,负极的外径为 17mm,负极的内径为 16mm,负极的长度为 58mm, 负极上设有 0.1mm厚的铜极耳, 引出电池; 壳体的材质为聚氯乙烯(PVC), 壳
体的内径为 17mm, 壳体的外径为 18mm, 壳体的长度为 60mm; 固定环的材质 为聚氯乙烯(PVC), 固定环有两个, 分别设置于电池的两端, 置于电池顶端 的为第一固定环, 至于电池底端的为第二固定环, 固定环包括上层环和下层 环,上层环和下层环为一体成型,上层环的内径为 4mm,上层环的外径为 10mm, 上层环的厚度为 3mm, 下层环的内径为 4mm, 下层环的外径为 16mm, 下层环 的厚度为 lmm。
具体电池的装配过程为: 以 LiMn204为正极活性物质, 将正极活性物质、 导电剂 S uper- P、 按照 90: 10的重量比例混合在去离子水中, 混合均匀制得正极 浆料; 先将隔膜与第二固定环以及石墨棒组装好后, 将正极浆料倒入隔膜与 石墨棒形成的间隙中, 倒入正极浆料量为 10g, 在 80°C下干燥, 得到正极, 隔 膜内正极活性物质与导电剂的混合物为 5g; 再在圆柱筒形隔膜外设置圆柱筒 形负极, 圆柱筒形负极外设置圆柱筒形壳体; 电解液为 544g氯化锌和 21g无水 氯化锂, 溶于 600g去离子水, 再往电解液中滴定 0.1mol/L氢氧化锂将电解液 的 pH值调为 4.3, 再用去离子水定容至 1L得到, 本实施例的电池中加入 5g该电 解液。 将隔膜、 第二固定环、 石墨棒、 正极、 负极、 壳体以及电解液组装好 后, 静置 12小时, 随后开始以 100mA的电流充电和放电, 充放电电压区间为 1.5-2.35V。
实施例 14
一种电池, 正极集流体为石墨棒, 直径为 4mm, 长度为 62mm; 隔膜的材 质为无纺布, 隔膜为圆柱筒形, 隔膜 3的外径为 11mm, 隔膜的内径为 10mm, 隔膜的长度为 58mm; 负极包括铜箔和锌, 负极的外径为 17mm, 负极的内径 为 16mm, 负极的长度为 58mm, 负极上设有 0.1mm厚的铜极耳, 引出电池; 壳体的材质为聚氯乙烯(PVC), 壳体的内径为 17mm, 壳体的外径为 18mm, 壳 体的长度为 60mm; 固定环的材质为聚氯乙烯(PVC), 固定环有两个, 分别设 置于电池的两端, 置于电池顶端的为第一固定环, 至于电池底端的为第二固 定环, 固定环包括上层环和下层环, 上层环和下层环为一体成型, 上层环的 内径为 4mm, 上层环的外径为 10mm, 上层环的厚度为 3mm, 下层环的内径为 4mm, 下层环的外径为 16mm, 下层环的厚度为 lmm。
具体电池的装配过程为: 以 LiMn204为正极活性物质, 将正极活性物质 22、 导电剂 Super-P、 按照 90: 10的重量比例混合在去离子水中, 混合均匀制得 正极浆料; 先将隔膜与第二固定环以及石墨棒组装好后, 将正极浆料倒入隔
膜中, 倒入正极浆料量为 12g , 在 80 °C下干燥, 得到正极, 隔膜内正极活性物 质与导电剂的混合物为 6g ; 将圆柱筒形的铜箔与石墨棒、 圆柱筒形的隔膜以 及第二的固定环固定好后, 再将锌加入到圆柱筒形的隔膜与圆柱筒形的铜箔 之间得到圆柱筒形负极; 电解液为 544g氯化锌和 21 g无水氯化锂, 溶于 600g 去离子水, 再往电解液中滴定0. 111101/1^氢氧化锂将电解液的 11值调为4.3 , 再 用去离子水定容至 1 L得到, 本实施例的电池中加入 6g该电解液。 将隔膜、 第 二固定环、 石墨棒、 正极、 负极、 壳体以及电解液组装好后, 静置 12小时, 随后开始以 100mA的电流充电和放电, 充放电电压区间为 1 .5-2.35V。
实施例 15
与实施例 13相同的方式制造电池, 所不同的是: 用石墨箔代替负极中的 铜箔。
实施例 10到 15 中所提供的电池, 电池具有良好的循环性能。
尽管发明人已经对本发明的技术方案做了较详细的阐述和列举, 应当理 解, 对于本领域技术人员来说, 对上述实施例作出修改和 /或变通或者釆用等 同的替代方案是显然的, 都不能脱离本发明精神的实质, 本发明中出现的术 语用于对本发明技术方案的阐述和理解, 并不能构成对本发明的限制。
Claims
1. 一种电池, 包括壳体, 设置于所述壳体中的正极、 两个负极、 水系电解液 和隔膜,
所述正极包括复合集流体和正极活性物质,所述复合集流体包括正极集流 体和包覆在所述正极集流体上的导电膜,所述复合集流体具有相对设置的 第一面和第二面, 所述正极活性物质设置在所述第一面和第二面上, 所述 正极活性物质能够可逆脱出 -嵌入离子;
所述负极选自金属、 合金或碳基材料;
所述水系电解液包括电解质, 所述电解质至少能够电离出活性离子, 所述 活性离子在充电时被还原沉积在所述负极形成负极活性物质,所述负极活 性物质在放电时被氧化溶解在所述水系电解液中;
所述隔膜保持所述水系电解液;
所述正极和负极层叠排布于所述壳体中,所述正极置于所述两个负极之间, 所述两个负极共用所述正极, 所述隔膜位于所述正极和负极之间。
2. —种电池, 包括壳体, 设置于所述壳体中的两个正极、 负极、 水系电解液 和隔膜,
所述正极包括复合集流体和正极活性物质,所述复合集流体包括正极集流 体和包覆在所述正极集流体上的导电膜,所述复合集流体具有相对设置的 第一面和第二面, 所述第一面与所述负极相对, 至少所述第一面上设置有 所述正极活性物质, 所述正极活性物质能够可逆脱出 -嵌入离子;
所述负极选自金属、 合金或碳基材料;
所述水系电解液包括电解质, 所述电解质至少能够电离出活性离子, 所述 活性离子在充电时被还原沉积在所述负极形成负极活性物质,所述负极活 性物质在放电时被氧化溶解在所述水系电解液中;
所述隔膜保持所述水系电解液;
所述正极和负极层叠排布于所述壳体中,所述负极置于所述两个正极之间, 所述两个正极共用所述负极, 所述隔膜位于所述正极和负极之间。
3. —种电池, 包括壳体, 设置于所述壳体中的正极、 负极、 水系电解液和隔 膜,
所述正极包括复合集流体和正极活性物质,所述复合集流体包括正极集流 体和包覆在所述正极集流体上的导电膜,所述复合集流体具有相对设置的
两面, 其中, 至少所述复合集流体与所述负极相对的一面上设置有正极活 性物质, 所述正极活性物质能够可逆脱出 -嵌入离子;
所述电池包括 n对所述正极和负极, n>2 , 相邻的两个正极共用位于两个 正极之间的负极, 相邻的两个负极共用位于两个负极之间的正极; 所述负极选自金属、 合金或碳基材料;
所述水系电解液包括电解质, 所述电解质至少能够电离出活性离子, 所述 活性离子在充电时被还原沉积在所述负极形成负极活性物质,所述负极活 性物质在放电时被氧化溶解在所述水系电解液中;
所述隔膜保持所述水系电解液;
所述正极、 负极交替的层叠排列于所述壳体中, 所述隔膜位于所述正极和 负极之间。
据权利要求 1 -3 中任意一项所述的电池,其特征在于:所述壳体为方形。 据权利要求 4所述的电池, 其特征在于: 所述正极、 隔膜和负极形成平 板状。
据权利要求 5所述的电池, 其特征在于: 所述正极、 隔膜和负极卷绕成 形。
据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述壳体为圆柱 筒形, 所述正极、 所述隔膜、 所述负极以及所述壳体同轴排列。
据权利要求 7所述的电池, 其特征在于: 所述正极、 隔膜与负极通过卷 绕形成圆柱形设置于所述壳体中。
据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述导电膜的材 料包括聚合物和导电填料。
根据权利要求 9 所述的电池, 其特征在于: 所述聚合物选自聚乙烯, 聚 丙烯, 聚丁烯, 聚氯乙烯, 聚苯乙烯, 聚酰胺, 聚碳酸酯, 聚曱基丙烯酸 曱酯, 聚曱醛, 聚苯醚, 聚砜, 聚醚砜、 丁苯橡胶或氟树脂中的至少一种。 根据权利要求 9 所述的电池, 其特征在于: 所述导电填料选自导电聚合 物、 碳基材料或金属氧化物。
根据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述导电膜的材 料选自导电聚合物。
根据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述壳体设置为 铝塑膜。
根据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述壳体上设有 补液口, 所述补液口用于补充所述水系电解液。
根据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述电池还包括 用于控制所述壳体内压力的安全阔。
根据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述正极活性物 质具有尖晶石结构、 层状结构或橄榄石结构。
根据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述正极集流体 的材料选自玻璃碳、 石墨箔、 石墨片、 碳布、 碳毡、 碳纤维中的一种, 或 Ni、 Al、 Fe、 Cu、 Pb、 Ti、 Cr、 Mo、 Co、 Ag或经过飩化处理的上述金属 中的一种, 或不锈钢、 碳钢、 A1合金、 Ni合金、 Ti合金、 Cu合金、 Co 合金、 Ti-Pt合金、 Pt-Rh合金或经过飩化处理的上述合金中的一种。
根据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述负极的材料 选自金属 Zn、 Ni、 Cu、 Ag、 Pb、 Sn、 Fe、 Al或经过飩化处理的所述金属 中的至少一种,或含有上述金属的合金中的至少一种,或石墨箔、石墨片、 碳布、 碳毡、 碳纤维中的至少一种, 或铜镀锡, 或黄铜。
根据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述活性离子包 括金属离子, 金属选自 Zn、 Fe、 Cr、 Cu、 Mn、 Ni、 Sn中的至少一种。 根据权利要求 1 -3 中任意一项所述的电池, 其特征在于: 所述活性离子以 盐酸盐、 硫酸盐、 醋酸盐、 硝酸盐或甲酸盐中的至少一种形式存在于所述 水系电解液中。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210309917.0 | 2012-08-28 | ||
CN201210309917 | 2012-08-28 | ||
CN201210461927 | 2012-11-16 | ||
CN201210461927.6 | 2012-11-16 | ||
CN201210579369.3 | 2012-12-27 | ||
CN201210579369 | 2012-12-27 | ||
CN201310040743 | 2013-02-01 | ||
CN201310040743.7 | 2013-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014032594A1 true WO2014032594A1 (zh) | 2014-03-06 |
Family
ID=50182524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/082479 WO2014032594A1 (zh) | 2012-08-28 | 2013-08-28 | 电池 |
Country Status (2)
Country | Link |
---|---|
CN (3) | CN107293811B (zh) |
WO (1) | WO2014032594A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109390614A (zh) * | 2018-10-25 | 2019-02-26 | 中盐金坛盐化有限责任公司 | 基于盐穴的对称型液流电池、控制方法及其应用 |
CN112018405A (zh) * | 2020-09-24 | 2020-12-01 | 贲安能源科技(上海)有限公司 | 一种低阻抗复合型双极板盐水电池及其制备方法 |
CN112993413A (zh) * | 2021-03-26 | 2021-06-18 | 厦门海辰新能源科技有限公司 | 一种叠层结构、极片组件及卷绕电芯 |
WO2021253129A1 (en) * | 2020-06-17 | 2021-12-23 | Salient Energy Inc. | Positive electrode compositions and architectures for aqueous rechargeable zinc batteries, and aqueous rechargeable zinc batteries using the same |
CN113904036A (zh) * | 2021-10-08 | 2022-01-07 | 陕西奥林波斯电力能源有限责任公司 | 一种大容量单体电池及组装方法 |
CN114583179A (zh) * | 2022-03-04 | 2022-06-03 | 远景动力技术(江苏)有限公司 | 一种柔性锂离子电池及其制作方法 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3016199B1 (en) | 2013-06-28 | 2019-01-09 | Positec Power Tools (Suzhou) Co., Ltd | Electrolytic solution and battery |
CN105006528A (zh) * | 2014-04-17 | 2015-10-28 | 中国科学院上海硅酸盐研究所 | 一种绿色低成本水系钠离子电池 |
CN105336993A (zh) * | 2014-06-30 | 2016-02-17 | 苏州宝时得电动工具有限公司 | 电解液和电池 |
CN104157916B (zh) * | 2014-07-27 | 2017-09-08 | 长兴诺力电源有限公司 | 一种以铅为负极的无酸蓄电池 |
US11069891B2 (en) | 2014-09-26 | 2021-07-20 | Positec Power Tools (Suzhou) Co., Ltd. | Battery, battery pack and continuous power supply |
CN105576302B (zh) * | 2014-10-08 | 2018-02-23 | 苏州宝时得电动工具有限公司 | 电解液、电池、电池制备方法以及微生物育种方法 |
CN105742637A (zh) * | 2014-12-12 | 2016-07-06 | 苏州宝时得电动工具有限公司 | 正极材料、含有该正极材料的电池 |
CN106299493B (zh) * | 2015-05-18 | 2019-07-12 | 恩力能源科技(南通)有限公司 | 一种可修复的电化学储能器件 |
CN106328950A (zh) * | 2015-06-18 | 2017-01-11 | 苏州宝时得电动工具有限公司 | 正极材料及电池 |
WO2016202276A1 (zh) * | 2015-06-18 | 2016-12-22 | 苏州宝时得电动工具有限公司 | 正极材料及电池 |
CN107154490A (zh) * | 2016-03-04 | 2017-09-12 | 苏州宝时得电动工具有限公司 | 锰酸锂改性材料、电池及电池组 |
CN107154482A (zh) * | 2016-03-04 | 2017-09-12 | 苏州宝时得电动工具有限公司 | 复合正极材料、电池及电池组 |
EP3496199A4 (en) * | 2016-08-04 | 2020-06-03 | Showa Denko K.K. | REDOX FLOW CELL |
JP6873767B2 (ja) * | 2017-03-17 | 2021-05-19 | 株式会社東芝 | 二次電池、電池パック及び車両 |
KR101997428B1 (ko) * | 2017-03-17 | 2019-07-05 | 히타치 긴조쿠 가부시키가이샤 | 이차 전지의 부극 집전체용 박 및 그 제조 방법 |
CN109004255A (zh) * | 2018-07-06 | 2018-12-14 | 南通沃德材料科技有限公司 | 一种电化学储能电池 |
CN108987814A (zh) * | 2018-07-28 | 2018-12-11 | 江西睿达新能源科技有限公司 | 一种锂离子电池用镍钴锰三元正极材料 |
CN109494377B (zh) * | 2018-11-13 | 2021-11-16 | 中南大学 | 一种一体化双极性电极及其制备方法、应用 |
CN111224115B (zh) * | 2018-11-27 | 2021-06-11 | 中国科学院大连化学物理研究所 | 一种锌基电池负极及其制备和应用 |
CN109888296B (zh) * | 2019-03-19 | 2020-11-10 | 合肥国轩高科动力能源有限公司 | 一种锂离子电池正极涂碳集流体的制备方法 |
WO2020214604A1 (en) * | 2019-04-18 | 2020-10-22 | The Board Of Trustees Of The Leland Stanford Junior University | Membrane-free zn/mno2 flow battery for large-scale energy storage |
CN111916777B (zh) * | 2020-08-04 | 2022-02-15 | 太仓中科赛诺新能源科技有限公司 | 一种轻量化贫液结构的盐水电池 |
CN113991193B (zh) * | 2021-10-28 | 2023-10-03 | 华北电力大学 | 一种二次电池及其制备方法 |
US12051801B1 (en) * | 2023-09-15 | 2024-07-30 | AEsir Technologies, Inc. | Lithium and zinc ion battery containing polyethylene oxide and acetate layered electrodes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101783416A (zh) * | 2010-01-28 | 2010-07-21 | 深圳市创明电池技术有限公司 | 一种锂离子电池的制造方法 |
CN102110839A (zh) * | 2009-12-29 | 2011-06-29 | 万向电动汽车有限公司 | 一种电池 |
CN102292849A (zh) * | 2010-01-22 | 2011-12-21 | 丰田自动车株式会社 | 水系电解液电池的负极结构及具备该负极结构的水系电解液电池 |
WO2012042696A1 (ja) * | 2010-09-30 | 2012-04-05 | 川崎重工業株式会社 | 二次電池用負極及びこれを備える二次電池 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1325146A (zh) * | 2000-05-24 | 2001-12-05 | 洪进亷 | 电力储存器 |
CN101853964B (zh) * | 2009-03-31 | 2013-01-30 | 比亚迪股份有限公司 | 一种非水电解液锂离子二次电池及其制备方法 |
CN102055029A (zh) * | 2010-12-17 | 2011-05-11 | 复旦大学 | 一种高安全性水系有机系混合型锂离子电池 |
-
2013
- 2013-08-28 CN CN201710381918.9A patent/CN107293811B/zh not_active Expired - Fee Related
- 2013-08-28 WO PCT/CN2013/082479 patent/WO2014032594A1/zh active Application Filing
- 2013-08-28 CN CN201710395324.3A patent/CN107093773B/zh not_active Expired - Fee Related
- 2013-08-28 CN CN201310381682.0A patent/CN103682476B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102110839A (zh) * | 2009-12-29 | 2011-06-29 | 万向电动汽车有限公司 | 一种电池 |
CN102292849A (zh) * | 2010-01-22 | 2011-12-21 | 丰田自动车株式会社 | 水系电解液电池的负极结构及具备该负极结构的水系电解液电池 |
CN101783416A (zh) * | 2010-01-28 | 2010-07-21 | 深圳市创明电池技术有限公司 | 一种锂离子电池的制造方法 |
WO2012042696A1 (ja) * | 2010-09-30 | 2012-04-05 | 川崎重工業株式会社 | 二次電池用負極及びこれを備える二次電池 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109390614A (zh) * | 2018-10-25 | 2019-02-26 | 中盐金坛盐化有限责任公司 | 基于盐穴的对称型液流电池、控制方法及其应用 |
WO2021253129A1 (en) * | 2020-06-17 | 2021-12-23 | Salient Energy Inc. | Positive electrode compositions and architectures for aqueous rechargeable zinc batteries, and aqueous rechargeable zinc batteries using the same |
CN112018405A (zh) * | 2020-09-24 | 2020-12-01 | 贲安能源科技(上海)有限公司 | 一种低阻抗复合型双极板盐水电池及其制备方法 |
CN112993413A (zh) * | 2021-03-26 | 2021-06-18 | 厦门海辰新能源科技有限公司 | 一种叠层结构、极片组件及卷绕电芯 |
CN113904036A (zh) * | 2021-10-08 | 2022-01-07 | 陕西奥林波斯电力能源有限责任公司 | 一种大容量单体电池及组装方法 |
CN113904036B (zh) * | 2021-10-08 | 2024-04-30 | 陕西奥林波斯电力能源有限责任公司 | 一种大容量单体电池及组装方法 |
CN114583179A (zh) * | 2022-03-04 | 2022-06-03 | 远景动力技术(江苏)有限公司 | 一种柔性锂离子电池及其制作方法 |
CN114583179B (zh) * | 2022-03-04 | 2024-04-26 | 远景动力技术(江苏)有限公司 | 一种柔性锂离子电池及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103682476A (zh) | 2014-03-26 |
CN107293811B (zh) | 2019-11-26 |
CN107293811A (zh) | 2017-10-24 |
CN107093773B (zh) | 2020-04-14 |
CN107093773A (zh) | 2017-08-25 |
CN103682476B (zh) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107093773B (zh) | 电池 | |
TWI258235B (en) | Device for storing electrical energy | |
CN111785923B (zh) | 锂离子电池阳极及其制备方法和应用与锂离子电池 | |
CN101901907B (zh) | 锂离子二次电池及其正极材料 | |
TW200913348A (en) | Lithium secondary battery | |
WO2014206352A1 (zh) | 电解液及电池 | |
CN104766971B (zh) | 正极材料,含有正极材料的水系电池 | |
WO2004059672A1 (ja) | 蓄電装置および蓄電装置の製造方法 | |
WO2017020860A1 (zh) | 电池、电池组以及不间断电源 | |
CN103187551A (zh) | 一种锂离子液流电池 | |
WO2008037154A1 (fr) | Accumulateur lithium-ion secondaire utilisant du métal en mousse en tant que collecteur de courant et ensemble d'accumulateur l'utilisant | |
CN101154750A (zh) | 高倍率凝胶聚合物锂离子动力电池及其制造方法 | |
WO2019080689A1 (zh) | 一种混合型超级电容器 | |
CN103762335B (zh) | 钛酸锂电极片及锂离子电池 | |
KR20230113788A (ko) | 리튬 이온 배터리 및 전기 차량 | |
CN112038632A (zh) | 一种碳嗪复合水系负极材料及其应用 | |
CN104882637A (zh) | 电解液和电化学储能装置 | |
JP2014007117A (ja) | Li系二次電池 | |
CN106384674A (zh) | 一种基于钛磷氧化物负极材料的水系可充钠离子电容电池 | |
CN104733787B (zh) | 电池 | |
CN109119635B (zh) | 电池 | |
WO2016202276A1 (zh) | 正极材料及电池 | |
CN103427119B (zh) | 电池 | |
CN104112846A (zh) | 一种高容量电动工具用锂离子动力电池及其制造方法 | |
JP2022063855A (ja) | 全固体電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13832249 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13832249 Country of ref document: EP Kind code of ref document: A1 |