WO2014030657A1 - Resin composition for electrical insulation and sheet material - Google Patents

Resin composition for electrical insulation and sheet material Download PDF

Info

Publication number
WO2014030657A1
WO2014030657A1 PCT/JP2013/072230 JP2013072230W WO2014030657A1 WO 2014030657 A1 WO2014030657 A1 WO 2014030657A1 JP 2013072230 W JP2013072230 W JP 2013072230W WO 2014030657 A1 WO2014030657 A1 WO 2014030657A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
electrical insulation
resin composition
inorganic filler
sheet material
Prior art date
Application number
PCT/JP2013/072230
Other languages
French (fr)
Japanese (ja)
Inventor
佳子 吉良
請井 博一
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2014030657A1 publication Critical patent/WO2014030657A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins

Definitions

  • the present invention relates to a resin composition for electrical insulation and a sheet material provided with a resin layer in which the resin composition is formed into a sheet shape.
  • resin compositions for electrical insulation are known.
  • what is used as a resin composition for electrical insulation is used as a material for coating copper wires in motor enamel wires.
  • a resin composition for electrical insulation containing a polyimide resin and silica has an insulation deterioration resistance that keeps electrical insulation for a relatively long time when a voltage is applied. There is a problem that it is not necessarily excellent in strength.
  • an electrically insulating resin composition containing an epoxy resin and a layered silicate also has a problem that it is not necessarily excellent in mechanical strength, although it has resistance to insulation deterioration. That is, the resin composition for electrical insulation as described above has a problem that it is relatively difficult to simultaneously satisfy excellent insulation deterioration resistance and excellent mechanical strength.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a resin composition for electrical insulation that has excellent resistance to insulation deterioration and excellent mechanical strength. It is another object of the present invention to provide a sheet material having excellent insulation deterioration resistance and excellent mechanical strength.
  • the resin composition for electrical insulation of the present invention comprises at least one selected from the group consisting of a polysulfone resin, a polyarylene sulfide resin, a polyimide resin, and an epoxy group-containing phenoxy resin, a polyamide resin, and an inorganic filler.
  • the inorganic filler contains a metal hydroxide or a metal carbonate, and the average particle size of the inorganic filler is 500 nm or less.
  • the isoelectric point of the inorganic filler is preferably 7 or more.
  • the metal hydroxide or the metal carbonate preferably undergoes an endothermic decomposition reaction at a temperature exceeding 330 ° C.
  • the inorganic filler contains the metal hydroxide or metal carbonate, and the metal hydroxide is magnesium hydroxide, calcium hydroxide, or barium hydroxide. It is preferable. In the resin composition for electrical insulation according to the present invention, it is preferable that the inorganic filler contains the metal carbonate, and the metal carbonate is calcium carbonate or magnesium carbonate.
  • the content of the inorganic filler is preferably 1 to 20 parts by mass.
  • the polysulfone resin is preferably a polyethersulfone resin having a plurality of ether bonds in the molecule.
  • the polysulfone resin is preferably a polyphenylsulfone resin having a plurality of aromatic hydrocarbons in the molecule.
  • the polyarylene sulfide resin is preferably a polyphenylene sulfide resin.
  • the polyimide resin is preferably a polyetherimide resin or a polyamideimide resin.
  • the polyamide resin is preferably a polyamide resin having an aromatic hydrocarbon in the molecule.
  • the sheet material of the present invention is characterized in that the resin composition for electrical insulation is provided with a resin layer formed in a sheet shape.
  • the sheet material according to the present invention preferably further includes a sheet-like protective layer for protecting the resin layer, and the protective layer is preferably disposed on at least one side of the resin layer.
  • the protective layer preferably contains a wholly aromatic polyamide resin.
  • the sheet material according to the present invention is preferably used for electrical insulation.
  • Sectional drawing which showed typically the cross section which cut
  • the resin composition for electrical insulation of this embodiment comprises at least one selected from the group consisting of a polysulfone resin, a polyarylene sulfide resin, a polyimide resin, and an epoxy group-containing phenoxy resin, a polyamide resin, and an inorganic filler.
  • the inorganic filler contains a metal hydroxide or a metal carbonate, and the average particle size of the inorganic filler is 500 nm or less.
  • the resin composition for electrical insulation of this embodiment has the effect of being excellent in insulation deterioration resistance and excellent in mechanical strength.
  • the polysulfone resin is a thermoplastic resin having a molecular structure including a plurality of sulfonyl groups (—SO 2 —).
  • the polysulfone resin include a polyethersulfone resin further including a plurality of ether bonds (—O—) in the molecule, and a polyphenylsulfone resin further including a plurality of aromatic hydrocarbons in the molecule.
  • the polyether polyphenyl sulfone resin which further contains a some ether bond and a some aromatic hydrocarbon in a molecule
  • the moldability of the resin composition becomes better, the heat resistance of the resin composition becomes better, and the insulation resistance of the resin composition deteriorates.
  • the polyethersulfone resin or the polyphenylsulfone resin is preferable, and the polyether polyphenylsulfone (PES) resin is more preferable.
  • the polyether polyphenylsulfone (PES) resin preferably has a molecular structure represented by the following formula (1).
  • polyether polyphenylsulfone resin a commercially available product can be used.
  • commercially available polyether polyphenylsulfone resins include “Ultrazone E series” manufactured by BASF, “Radel A series” manufactured by Solvay, “Sumika Excel series” manufactured by Sumitomo Chemical, and the like. .
  • the polyarylene sulfide resin is a thermoplastic resin having a plurality of arylene groups and a plurality of sulfide bonds in the molecule.
  • the arylene group is a divalent group of arene (monocyclic or polycyclic aromatic hydrocarbon). Specific examples of the arylene group include a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, and a pyrenylene group.
  • the polyarylene sulfide resin is preferably a polyphenylene sulfide (PPS) resin having a plurality of phenylene groups and a plurality of sulfide bonds (—S—) in the molecule.
  • PPS polyphenylene sulfide
  • the insulation deterioration resistance of the resin composition is further improved.
  • the polyimide resin is a thermoplastic resin having a plurality of imide bonds in the molecule.
  • a polyetherimide (PEI) resin having a plurality of aromatic hydrocarbons, imide bonds and ether bonds in the molecule, or a thermoplastic having a plurality of imide bonds and a plurality of amide bonds in the molecule.
  • Polyamideimide resin is preferred.
  • the epoxy group-containing phenoxy resin is an epoxy group-containing thermoplastic resin formed by a reaction between a bisphenol compound and epichlorohydrin.
  • the epoxy group-containing phenoxy resin usually has epoxy groups at both ends of the molecular chain.
  • the polyamide resin is a thermoplastic resin obtained by polymerizing at least a polyamine compound and a polycarboxylic acid compound by dehydration condensation.
  • the polyamide resin examples include a polyamide resin having an aromatic hydrocarbon in the molecule and an aliphatic polyamide resin having only an aliphatic hydrocarbon as a hydrocarbon in the molecule.
  • numerator is preferable at the point that the said resin composition can become what was excellent in heat resistance, while being excellent in insulation deterioration resistance.
  • the polyamide resin having an aromatic hydrocarbon in the molecule includes an aromatic polyamide resin having only an aromatic hydrocarbon as a hydrocarbon in the molecule, an aliphatic hydrocarbon and an aromatic hydrocarbon as a hydrocarbon in the molecule. Examples thereof include semi-aromatic polyamide resins having both.
  • the semi-aromatic polyamide resin is preferable in that the resin composition can be excellent in mechanical strength while being excellent in insulation deterioration resistance.
  • polyamine compound used in the polymerization of the polyamide resin include a diamine compound.
  • diamine compound include aliphatic diamines containing linear or branched hydrocarbon groups, alicyclic diamines containing cyclic saturated hydrocarbon groups, and aromatic diamines containing aromatic hydrocarbon groups. .
  • Examples of the aliphatic diamine, the alicyclic diamine, or the aromatic diamine include those represented by the following formula (2).
  • R 1 in the following formula (2) represents an aliphatic hydrocarbon group having 4 to 12 carbon atoms, or an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, or Represents a hydrocarbon group containing an aromatic ring.
  • nonanediamine having 9 carbon atoms in R 1 in formula (2) is preferable in that the resin composition can be more excellent in mechanical strength, and 1,9-nonanediamine and A mixture of 2-methyl-1,8-octanediamine is more preferable.
  • aromatic diamine include phenylenediamine and xylylenediamine.
  • polycarboxylic acid compound used in the polymerization of the polyamide resin include a dicarboxylic acid compound.
  • dicarboxylic acid compound examples include an aliphatic dicarboxylic acid containing a linear or branched hydrocarbon group, an alicyclic dicarboxylic acid containing a cyclic saturated hydrocarbon group, and an aromatic dicarboxylic acid containing an aromatic hydrocarbon group. Etc.
  • R 2 in the following formula (3) represents an aliphatic hydrocarbon group having 4 to 25 carbon atoms, or an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, or Represents a hydrocarbon group containing an aromatic ring.
  • R 2 in the following formula (3) represents an aliphatic hydrocarbon group having 4 to 25 carbon atoms, or an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, or Represents a hydrocarbon group containing an aromatic ring.
  • Examples of the aliphatic dicarboxylic acid include adipic acid and sebacic acid.
  • Examples of the aromatic dicarboxylic acid include terephthalic acid, methyl terephthalic acid, and naphthalene dicarboxylic acid.
  • terephthalic acid can be used because the heat resistance of the polyamide resin can be further improved. Acid is preferred.
  • the polyamide resin may be one obtained by polymerizing one kind of diamine compound and one kind of dicarboxylic acid compound, or may be one obtained by polymerizing a combination of plural kinds of each compound. Good. Further, if necessary, a material obtained by further polymerizing a compound other than the diamine compound and the dicarboxylic acid compound may be used.
  • the polyamide resin is preferably the semi-aromatic polyamide resin.
  • the semi-aromatic polyamide resin an aliphatic diamine as a diamine compound and an aromatic dicarboxylic acid as a dicarboxylic acid compound are polymerized. More preferred are those obtained by polymerizing nonanediamine as an aliphatic diamine and terephthalic acid as an aromatic dicarboxylic acid (PA9T).
  • polyamide resins examples include “Genester” series manufactured by Kuraray Co., Ltd.
  • the resin composition for electrical insulation preferably contains 50% by mass or more of at least one thermoplastic resin selected from the group consisting of a polysulfone resin, a polyarylene sulfide resin, a polyimide resin, and an epoxy group-containing phenoxy resin. More preferably, the content is 60% by mass or more.
  • the resin composition for electrical insulation contains 50% by mass or more of such a thermoplastic resin, there is an advantage that the insulation deterioration resistance of the resin composition for electrical insulation becomes more excellent.
  • the resin composition for electrical insulation contains 90% by mass or less of at least one thermoplastic resin selected from the group consisting of a polysulfone resin, a polyarylene sulfide resin, a polyimide resin, and an epoxy group-containing phenoxy resin.
  • the resin composition for electrical insulation contains such a thermoplastic resin in an amount of 90% by mass or less, the mechanical strength of the resin composition for electrical insulation is further improved, and insulation deterioration due to discharge in the resin composition for electrical insulation is caused. There is an advantage that it is more suppressed.
  • the electrical insulating resin composition preferably contains 5% by mass or more of the polyamide resin, more preferably 10% by mass or more.
  • the resin composition for electrical insulation contains 5% by mass or more of the polyamide resin, there is an advantage that the mechanical strength and creeping insulation of the resin composition for electrical insulation can be further improved.
  • the resin composition for electrical insulation preferably contains 50% by mass or less of the polyamide resin, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the resin composition for electrical insulation contains a polyamide resin in an amount of 50% by mass or less, there is an advantage that the discharge deterioration of the resin composition for electrical insulation is further suppressed, and as described later, the protective layer 3 and the resin layer There exists an advantage that the delamination between 2 can be suppressed more.
  • the resin composition for electrical insulation may contain other thermoplastic resins in addition to the above-described thermoplastic resins.
  • the other thermoplastic resin for example, a polyacetal (POM) resin having a plurality of oxymethylene (—CH 2 O—) groups in the molecule; a basic structure of an aromatic hydrocarbon-ether bond is repeated in the molecule
  • PPO polyphenylene oxide
  • PPE polyphenylene ether
  • PEK aromatic polyether ketone
  • PEEK aromatic polyetherketone
  • the inorganic filler is an inorganic compound that, when blended in the resin composition for electrical insulation, enhances the insulation deterioration resistance of the resin composition for electrical insulation, compared to those that do not contain an inorganic filler.
  • thermoplastic resin described above and the inorganic filler are included, and the average particle diameter of the inorganic filler is 500 nm or less, and the inorganic filler is At least one of a metal hydroxide and a metal carbonate is contained.
  • a discharge phenomenon (hereinafter also referred to as partial discharge) may occur in a part of the resin composition for electrical insulation.
  • the charged particles generated by the partial discharge can collide with the molecular chains of the resin contained in the resin composition to break the molecular chains, or thermally decompose the molecular chains by heat accompanying the collision.
  • ozone is generated by partial discharge, and the ozone can cause deterioration of the resin contained in the resin composition. With such a phenomenon, it is considered that a fracture path extends in the resin composition, and the electrical insulation of the resin composition can be lowered.
  • the resin composition for electrical insulation of this embodiment since the average particle diameter of an inorganic filler is 500 nm or less, the number of inorganic fillers per unit mass of the inorganic filler is relatively large. As the number of inorganic fillers increases, it is considered that the elongation of the fracture path described above is likely to be hindered by individual inorganic fillers. Therefore, the resin composition for electrical insulation of this embodiment can have excellent insulation deterioration resistance. That is, the resin composition for electrical insulation of this embodiment can have a relatively long electrical insulation life.
  • the average particle diameter of the inorganic filler exceeds 500 nm, the elongation of the fracture path as described above is difficult to be hindered, and the insulation deterioration resistance of the resin composition for electrical insulation may be insufficient. Moreover, when the average particle diameter of an inorganic filler exceeds 500 nm, there exists a possibility that the mechanical strength of the resin composition for electrical insulation may become inadequate.
  • the average particle diameter of the inorganic filler is preferably 100 nm or less.
  • the average particle diameter is 100 nm or less, the number of inorganic fillers is increased for the same reason as described above, so that the insulation deterioration resistance of the resin composition for electrical insulation can be further improved.
  • the average particle diameter of the said inorganic filler is 10 nm or more.
  • the average particle size is 10 nm or more, there is an advantage that the aggregation of the inorganic filler in the electrically insulating resin composition is further suppressed and the inorganic filler is more easily dispersed in the electrically insulating resin composition.
  • the average particle diameter of the inorganic filler is a value determined by the following method. That is, the average particle diameter of the inorganic filler is the primary particle diameter of 1000 inorganic fillers in an observed image (magnification: 10,000 times) obtained with a scanning electron microscope (Hitachi High-Tech, product name “S-3400N”). Calculate by averaging. Specifically, the observation image is obtained by analyzing the horizontal ferret diameter by image analysis software (product name “A image kun” manufactured by Asahi Kasei Engineers), and determining and averaging the horizontal ferret diameter of each inorganic filler.
  • image analysis software product name “A image kun” manufactured by Asahi Kasei Engineers
  • an inorganic filler is dispersed in acetone so as to have a concentration of 0.1% by mass, and a dispersion is prepared. After the dispersion is dropped onto a glass plate, the acetone is evaporated and dried. A sample is prepared. And the average particle diameter of an inorganic filler is calculated
  • the shape of the inorganic filler is a needle shape, the inorganic filler in a state where the longitudinal direction of the inorganic filler is substantially parallel to the glass plate surface is set as the analysis target.
  • the shape of an inorganic filler is plate shape, let the inorganic filler of the state which the plate
  • the inorganic filler contains at least one of a metal hydroxide and a metal carbonate. Therefore, deterioration of the resin composition for electrical insulation is suppressed even under high temperature conditions due to application of voltage.
  • the metal hydroxide decomposes by releasing water molecules while absorbing heat when the temperature exceeds a predetermined temperature.
  • the metal carbonate reaches a predetermined temperature or higher, it releases carbon dioxide and decomposes while absorbing heat.
  • the metal hydroxide and the metal carbonate reach a predetermined temperature or higher, they undergo an endothermic decomposition reaction that decomposes while absorbing heat.
  • the temperature of the resin composition increases due to an endothermic decomposition reaction of the metal hydroxide or metal carbonate under high temperature conditions. Is suppressed. Thereby, deterioration by the heat
  • At least one of the metal hydroxide and the metal carbonate preferably undergoes an endothermic decomposition reaction at a temperature exceeding 330 ° C.
  • the metal hydroxide or the metal carbonate undergoes an endothermic decomposition reaction at a temperature exceeding 330 ° C.
  • the insulation deterioration resistance of the resin composition for electrical insulation is further improved.
  • the electrical insulation life of the resin composition for electrical insulation becomes longer.
  • each of the above-described blending components is usually heated and mixed at a temperature of 280 to 320 ° C.
  • a metal hydroxide or metal carbonate that undergoes an endothermic decomposition reaction at a temperature exceeding 330 ° C. does not cause an endothermic decomposition reaction even in the above temperature range in production.
  • the metal hydroxide or metal carbonate undergoes an endothermic decomposition reaction, thereby suppressing the temperature rise. It is done. That is, as the endothermic decomposition reaction occurs, the temperature increase of the resin composition for electrical insulation is suppressed, and the thermal deterioration of the resin composition for electrical insulation is suppressed. Thus, the insulation deterioration resistance of the resin composition for electrical insulation becomes more excellent.
  • the metal hydroxide or the metal carbonate usually undergoes an endothermic decomposition reaction at a temperature of 800 ° C. or lower.
  • the temperature at which the endothermic decomposition reaction occurs is determined by measurement by differential thermal-thermogravimetric analysis (TG-DTA). Specifically, differential thermal-thermogravimetric analysis is performed on metal hydroxide or metal carbonate while heating at a rate of temperature increase of 10 ° C./min under an inert gas stream. Then, the temperature at which an endothermic peak begins to occur in the differential thermal analysis is observed, and the temperature at which weight reduction starts in the thermogravimetric analysis is observed. From the results, the temperature at which weight loss starts in thermogravimetric analysis is defined as the temperature at which the endothermic decomposition reaction occurs.
  • TG-DTA differential thermal-thermogravimetric analysis
  • magnesium hydroxide as a metal hydroxide starts to generate an endothermic peak at 340 ° C. in a differential thermal-thermogravimetric analysis (TG-DTA) under the above conditions, and has an endothermic peak at about 400 ° C. A vertex appears.
  • TG-DTA differential thermal-thermogravimetric analysis
  • Magnesium hydroxide begins to lose weight at 340 ° C. Therefore, the temperature at which magnesium hydroxide undergoes an endothermic decomposition reaction is 340 ° C.
  • magnesium hydroxide begins to undergo an endothermic decomposition reaction from 340 ° C., decomposes while absorbing heat, and releases water molecules having a relatively large heat capacity.
  • the metal hydroxide or the metal carbonate is a hydrate, in the differential thermal-thermogravimetric analysis (TG-DTA), the weight loss due to desorption of hydrated water molecules is regarded as an endothermic decomposition reaction. Not considered.
  • the isoelectric point of the inorganic filler is preferably 7 or more, more preferably 8 or more, and still more preferably 9 or more. When the isoelectric point is 7 or more, there is an advantage that the dispersibility of the inorganic filler in the resin composition for electrical insulation is further improved.
  • the isoelectric point of the inorganic filler is preferably 12 or less. When the isoelectric point is 12 or less, there is an advantage that the dispersibility of the inorganic filler in the resin composition for electrical insulation is further improved.
  • the surface charge state of the inorganic filler using the isoelectric point of the inorganic filler as an index, and the resin composition for electrical insulation This can be explained based on the interaction with the amide bond of the polyamide resin contained in the product.
  • the inorganic filler usually has a hydroxyl group that is a polar group on the surface. And the aspect of a hydroxyl group changes according to the surrounding pH environment in an inorganic filler.
  • the inorganic filler when the pH of the water is lower than the isoelectric point of the inorganic filler, the form of the hydroxyl group on the surface of the inorganic filler changes and the surface charge becomes positive.
  • the pH of water when the pH of water is higher than the isoelectric point of the inorganic filler, the surface charge of the inorganic filler becomes negative.
  • the surface charge of the inorganic filler can vary depending on the surrounding pH environment.
  • the resin composition for electrical insulation not only inorganic fillers but also polyamide resins are present in a dispersed state. Since the polyamide resin has an amide bond, it has a relatively high polarity and exhibits neutral to weak basicity.
  • the inorganic filler exists in a neutral to weakly basic environment due to the polyamide resin, and the surface of the inorganic filler is positively charged by the isoelectric point of the inorganic filler. It can be negatively charged or uncharged. Therefore, an inorganic filler having an isoelectric point of about 2 is positively charged in the presence of a neutral to weakly basic polyamide resin, while an inorganic filler having an isoelectric point of about 8 is neutral to In the presence of a polyamide resin exhibiting weak basicity, the surface may be hardly charged.
  • An inorganic filler having an isoelectric point of about 11 can be negatively charged on the surface in the presence of a polyamide resin, but the difference between the weak basicity exhibited by the polyamide resin and the isoelectric point is relatively small. Therefore, an inorganic filler having an isoelectric point of about 11 is considered to be in a relatively weak charged state even when charged. From this, when the isoelectric point of the inorganic filler is 7 or more (alkali side), the inorganic filler in the coexistence with the polyamide resin can have a relatively small surface charge.
  • the polarity of the inorganic filler due to the surface charge becomes relatively small, and the interaction (hydrogen bond or the like) caused by the polarity of the inorganic filler and the polarity of the polyamide resin can be further reduced. That is, the ionic bond between the inorganic filler and the polyamide resin can be suppressed. Therefore, adsorption of the inorganic filler to the polyamide resin in the resin composition for electrical insulation is suppressed, and as a result, the dispersibility of the inorganic filler becomes better.
  • the isoelectric point of the inorganic filler is measured according to JIS R1638 "4.1 Electrophoresis method b) Electrophoretic laser / Doppler method.
  • the hardness of the inorganic filler is not particularly limited, but is preferably 7 or less in Mohs hardness.
  • the Mohs hardness is determined by evaluating using 10 kinds of standard minerals. Specifically, the standard mineral is scratched with an inorganic filler to check whether the standard mineral is damaged. That is, the standard mineral is sequentially changed from the standard mineral having the lowest hardness to the standard mineral having the highest hardness, and the hardness of the standard mineral causing the scratch is defined as the Mohs hardness.
  • the metal hydroxide is preferably at least one selected from the group consisting of magnesium hydroxide, calcium hydroxide, and barium hydroxide.
  • the metal hydroxide is at least one selected from the group consisting of magnesium hydroxide, calcium hydroxide, and barium hydroxide, so that the resin composition for electrical insulation has better insulation deterioration resistance There is an advantage that can be.
  • the temperature at which the endothermic decomposition reaction of magnesium hydroxide occurs is 340 ° C.
  • the temperature at which the endothermic decomposition reaction of calcium hydroxide occurs is 580 ° C.
  • the temperature at which the endothermic decomposition reaction of barium hydroxide occurs is 780 ° C. It is.
  • the metal carbonate is preferably at least one of calcium carbonate and magnesium carbonate.
  • the metal carbonate is at least one of calcium carbonate and magnesium carbonate, there is an advantage that the electrical insulation resin composition can be more excellent in insulation deterioration resistance.
  • the temperature at which the endothermic decomposition reaction of calcium carbonate occurs is 600 ° C.
  • the temperature at which the endothermic decomposition reaction of magnesium carbonate (anhydride) occurs is 500 ° C.
  • the content of the inorganic filler in the resin composition for electrical insulation is preferably 1% by mass or more, and more preferably 4% by mass or more.
  • the content of the inorganic filler in the resin composition for electrical insulation is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 6% by mass or less.
  • the content ratio of the inorganic filler is 1% by mass or more, there is an advantage that the insulating deterioration resistance of the resin composition for electrical insulation can be further improved.
  • the content rate of an inorganic filler is 20 mass% or less, there exists an advantage that the mechanical strength of the resin composition for electrical insulation can become more excellent.
  • the aggregation degree of the aggregated particles of the inorganic filler in the resin composition for electrical insulation is preferably 500 nm or less, and more preferably 350 nm or less.
  • the aggregation degree of the aggregated particles of the inorganic filler is 500 nm or less, the elongation of the breakdown path due to the voltage as described above is further suppressed, and the insulation deterioration resistance of the resin composition for electrical insulation is more excellent.
  • the aggregation degree of the aggregated particle of an inorganic filler is 500 nm or less, the aggregated particle becomes relatively small. Therefore, there is an advantage that the resin composition starting from the aggregated particle is hardly broken. That is, there is an advantage that the mechanical strength of the resin composition for electrical insulation, specifically, the tear resistance of the resin composition for electrical insulation is improved.
  • the degree of aggregation of the above-mentioned inorganic filler aggregated particles in the electrical insulating resin composition is determined by the following method. That is, a sheet-shaped resin composition for electrical insulation was cut in the thickness direction along the MD direction, and the cross section was scanned with a scanning electron microscope (product name “S-3400N” manufactured by Hitachi High-Tech). Observe to obtain image data (magnification 10,000 times). Further, the image data is analyzed by image analysis software (product name “A Image-kun”, manufactured by Asahi Kasei Engineers). Specifically, the degree of aggregation of the aggregated particles of the inorganic filler is measured by the method described in the examples.
  • the aggregation degree of the inorganic filler aggregate particles in the resin composition for electrical insulation is not necessarily the average particle diameter (average primary particle diameter) of the inorganic filler. That's not necessarily the case.
  • the inorganic filler may be subjected to a surface treatment.
  • the surface treatment agent for the surface treatment include organic silane compounds.
  • the organic silane compound include vinyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, p-styryltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, Examples include 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and the like.
  • the surface treatment agent can be used in an amount of, for example, 0.01 to 5 parts by weight with respect to 100 parts by weight of the inorganic filler that has not been surface-treated.
  • additives may be blended in the resin composition for electrical insulation.
  • additives include alkylphenol resins, alkylphenol-acetylene resins, xylene resins, coumarone-indene resins, terpene resins, rosin and other tackifiers, brominated flame retardants such as polybromodiphenyl oxide and tetrabromobisphenol A, Chlorinated flame retardants such as chlorinated paraffin and perchlorocyclodecane, phosphorus flame retardants such as phosphate esters and halogenated phosphate esters, boron flame retardants, oxide flame retardants such as antimony trioxide, phenolic, Inorganic fillers including phosphorous and sulfur antioxidants, silica, clay, aluminum oxide, magnesium oxide, boron nitride, silicon nitride, or aluminum nitride, heat stabilizers, light stabilizers, ultraviolet absorbers, lubricants, pigments , Crosslinking agent, crosslinking
  • aromatic polyamide fibers montmorillonite having a particle size of several nm to several hundred nm, and the like can be mentioned.
  • These additives may be contained, for example, in an amount of 0.1 to 5% by mass in the resin composition for electrical insulation.
  • the resin composition for electrical insulation can be produced by mixing the above-described thermoplastic resin, inorganic filler, and if necessary, an additive while appropriately heating by a general method.
  • the resin composition for electrical insulation can be produced, for example, by mixing using a general mixing means such as a kneader, a pressure kneader, a kneading roll, a Banbury mixer, or a twin screw extruder. it can.
  • FIG. 1 and 2 are cross-sectional views schematically showing a cross section obtained by cutting the sheet material of the present embodiment in the thickness direction.
  • the sheet material 1 of this embodiment is provided with a resin layer 2 in which the resin composition for electrical insulation is formed into a sheet shape as shown in FIG.
  • the sheet material 1 further includes a sheet-like protective layer 3 that protects the resin layer 2, and the protective layer 3 is disposed on at least one side of the resin layer 2.
  • the sheet material 1 includes a resin layer 2 and two protective layers 3 disposed on both sides of the resin layer 2.
  • the protective layer 3 is disposed so as to contact both surfaces of the resin layer 2.
  • the thickness of the sheet material 1 is usually 1 ⁇ m to 1000 ⁇ m.
  • the shape of the resin layer 2 is not particularly limited as long as the resin composition for electrical insulation is formed in a sheet shape.
  • the thickness of the resin layer 2 is not particularly limited, and is usually 1 ⁇ m to 500 ⁇ m.
  • the protective layer 3 is not particularly limited as long as it is a sheet.
  • the thickness of the protective layer 3 is not particularly limited, and is usually 10 to 500 ⁇ m.
  • the protective layer 3 examples include paper, nonwoven fabric, and film.
  • the protective layer 3 is preferably paper or non-woven fabric in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed.
  • Examples of the protective layer 3 include those prepared by a wet papermaking method and those prepared by a dry method in the air.
  • the protective layer 3 is preferably paper produced by a wet papermaking method in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed.
  • Examples of the material of the protective layer 3 include synthetic polymer compounds such as polyamide resin and polyester resin, and natural polymer compounds such as cellulose.
  • the material is preferably a polyamide resin in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed.
  • the polyamide resin of the protective layer 3 is a wholly aromatic polyamide resin in which all of the constituent monomers have aromatic hydrocarbons, an aliphatic polyamide resin in which all of the constituent monomers have only aliphatic hydrocarbons as hydrocarbons, Examples thereof include semi-aromatic polyamide resins partially having aromatic hydrocarbons.
  • the polyamide resin is preferably a wholly aromatic polyamide resin in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed. That is, it is preferable that the protective layer 3 contains the wholly aromatic polyamide resin.
  • the protective layer 3 includes fibers of wholly aromatic polyamide resin in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed, and that the flame retardancy is excellent.
  • a wholly aromatic polyamide paper is more preferred, and a wholly aromatic polyamide paper produced by wet papermaking using fibers of wholly aromatic polyamide resin is more preferred.
  • the wholly aromatic polyamide paper for example, a wholly aromatic polyamide obtained by fiberizing a condensation polymerization product (fully aromatic polyamide resin) of phenylenediamine and phthalic acid having a benzene ring other than an amide group.
  • the thing formed as a main component material is mentioned.
  • the wholly aromatic polyamide paper is excellent in mechanical properties and preferably has a basis weight of 5 g / m 2 or more in terms of good handling in the production process of the sheet material 1. When the basis weight is 5 g / m 2 or more, there is an advantage that insufficient mechanical strength is suppressed and the sheet material 1 is not easily broken during production.
  • other components can be added to the wholly aromatic polyamide paper as long as the effects of the present invention are not impaired.
  • the other components include polyphenylene sulfide fibers, polyether ether ketone fibers, polyester fibers, and arylates.
  • organic fibers such as fibers, liquid crystal polyester fibers, and polyethylene naphthalate fibers, or inorganic fibers such as glass fibers, rock wool, asbestos, boron fibers, and alumina fibers.
  • wholly aromatic polyamide paper for example, those commercially available from DuPont under the trade name “NOMEX” can be used.
  • the protective layer 3 is preferably subjected to a corona treatment on the resin layer 2 side.
  • the corona treatment is advantageous in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed.
  • one surface of the protective layer 3 in contact with the resin layer 2 is subjected to a discharge treatment to generate a polar carboxyl group or hydroxyl group on one surface of the protective layer 3. This is a process for roughening the surface.
  • a conventionally known general method can be employed as the corona treatment.
  • the agglomeration degree of the agglomerated particles of the inorganic filler is 500 nm or less, like the resin composition for electrical insulation described above. That is, the aggregation degree of the aggregated particles of the inorganic filler in the resin layer 2 is preferably 500 nm or less.
  • the sheet material 1 includes a resin layer 2 and a protective layer 3 that are in contact with each other, and layer indirect between the resin layer 2 and the protective layer 3 due to the cohesive failure force of the resin layer 2 and the protective layer 3. It is preferable to be configured to increase the wearing force. With such a configuration, delamination between the resin layer 2 and the protective layer 3 is suppressed.
  • the sheet material 1 can be manufactured by a general method.
  • the sheet material 1 having only the resin layer 2 can be produced by extruding the resin composition for electrical insulation mixed as described above into a sheet shape by an extruder equipped with a T-die.
  • seat material 1 provided only with the resin layer 2 can be manufactured by shape
  • the sheet material 1 can be used for electrical insulation by utilizing the point of electrical insulation.
  • the sheet material 1 can be used in an electrical insulation sheet for a motor, an electrical insulation sheet for a transformer (transformer), an electrical insulation sheet for a bus bar, and the like in an automobile or the like.
  • the resin composition for electrical insulation and the sheet material of the present embodiment are as illustrated above, but the present invention is not limited to the resin composition for electrical insulation and the sheet material illustrated above. Moreover, the various aspects used in the resin composition for electrical insulation and a sheet
  • a resin composition for electrical insulation was produced using the raw materials shown below.
  • Polysulfone resin Polyether polyphenylsulfone resin (PES) resin containing a plurality of sulfonyl groups and further containing a plurality of ether bonds and a plurality of aromatic hydrocarbons (product name “Ultrazone E2000” manufactured by BASF)
  • Polyamide resin Polyamide (PA) resin containing terephthalic acid units and nonanediamine units (PA9T Kuraray Co., Ltd., trade name “Genesta N1000A”)
  • Inorganic filler (Material: Magnesium hydroxide, Shape: Plate) (Product name “MGZ-3” manufactured by Sakai Chemical Industry Co., Ltd.) Average particle size: 100 nm Isoelectric point -12, endothermic decomposition start temperature -340 ° C
  • Inorganic filler (Material: Magnesium hydroxide, Shape: Plate) (Product name “MGZ-1” manufactured by Sakium
  • a sheet material was produced in the same manner as described above.
  • Example 1 A resin composition for electrical insulation was prepared in the same manner as in Example 1 except that the inorganic filler was not blended, and a resin layer having a thickness of 100 ⁇ m was formed using this resin composition for electrical insulation.
  • Example 2 A resin layer having a thickness of 100 ⁇ m was formed in the same manner as in Example 1 except that silica was used instead of magnesium hydroxide as the inorganic filler.
  • Example 4 A resin composition for electrical insulation was prepared in the same manner as in Example 1 except that the inorganic filler was not blended, and a resin layer having a thickness of 100 ⁇ m was formed using this resin composition for electrical insulation. Further, in the same manner as in Example 4, a sheet material (200 ⁇ m thickness) provided with this resin layer and a protective layer was produced.
  • the aggregation degree of the aggregated particles in the samples (resin layers) of Examples 1 to 4 and Comparative Examples 2 and 3 was measured as follows. Each sample was cut along the MD direction, and the cross section was observed with a scanning electron microscope (manufactured by Hitachi High-Tech, device name “S-3400N”) to obtain image data (magnification 10,000 times). Furthermore, this image data was subjected to image processing, and then image analysis was performed using image analysis software (product name “A Image-kun”, manufactured by Asahi Kasei Engineers).
  • Image processing an image obtained by observation with a scanning electron microscope (SEM) was binarized using image analysis software (National Institutes of Health [NIH] open source, name “Image J”). . Since the inorganic filler is displayed in the bright part on the SEM image, in binarization, first, light / dark reversal was performed so that the inorganic filler was displayed in the dark part. After that, by correcting the brightness and contrast, the inorganic filler was made to stand out, and only the inorganic filler was selected by setting the threshold value to obtain a binarized image. -Image analysis Next, the obtained binarized image was analyzed using image analysis software (product name "A image kun", manufactured by Asahi Kasei Engineers).
  • the dark part in a binarized image was made into the inorganic filler, and the inorganic filler which overlaps with the outer edge of a rectangular analysis range (8.5 micrometers x 12.7 micrometers) was excluded from the analysis object.
  • the process of filling the voids is not performed, and the process of separating the inorganic fillers that are in contact with each other is not performed in the binarized image It was.
  • the area displayed in the image may differ depending on the cutting direction of the sheet molded product of the resin composition.
  • the diameter (equivalent circle diameter) when the aggregated particles are assumed to be a perfect circle is calculated from the area of each aggregated particle obtained by image analysis under the condition setting as described above, and the diameter is represented by a frequency distribution. did. Then, the median diameter (that is, the cumulative frequency 50% diameter) that is the median value of the frequency distribution is obtained, and further, the equivalent of the aggregated particles that are the target of those having a circle equivalent diameter that is twice or more the median diameter. The degree of aggregation of the aggregated particles was calculated by averaging the diameters.
  • Tables 1 and 2 show the configurations of the sheet materials of each Example and each Comparative Example and the above evaluation results.
  • the image data in Example 1 and Comparative Example 2 are shown in FIGS. 3 and 4, respectively.
  • Example 1 to 4 referring to the degree of aggregation of the aggregated particles, the aggregation of the inorganic filler was suppressed and the dispersibility was good. On the other hand, in Comparative Examples 2 and 3, aggregation of the inorganic filler was confirmed. In addition, in the frequency distribution in Comparative Examples 2 and 3 (see “Measurement of the degree of aggregation of aggregated particles” above), the distribution of aggregated particles was also present at a circle equivalent diameter of, for example, 800 nm. That is, in Comparative Examples 2 and 3, relatively large aggregated particles existed.
  • the insulation deterioration resistance (electrical insulation life) is excellent and the mechanical strength (tearing resistance) is also excellent.
  • the sheet material containing the resin composition for electrical insulation of the present invention can be suitably used as an electrical insulation sheet that requires electrical insulation, mechanical strength, and workability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulating Bodies (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Provided is a resin composition for electrical insulation, which contains: at least one resin that is selected from the group consisting of polysulfone resins, polyarylene sulfide resins, polyimide resins and epoxy group-containing phenoxy resins; a polyamide resin; and an inorganic filler. The inorganic filler contains a metal hydroxide or a metal carbonate, and has an average particle diameter of 500 nm or less. Also provided is a sheet material which is provided with a resin layer that is obtained by forming the resin composition for electrical insulation into a sheet-like shape.

Description

電気絶縁用樹脂組成物及びシート材Resin composition for electrical insulation and sheet material 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2012-183604号の優先権を主張し、該出願が引用によって本願明細書の記載に組み込まれる。 This application claims the priority of Japanese Patent Application No. 2012-183604, which is incorporated herein by reference.
 本発明は、電気絶縁用樹脂組成物、及び、該樹脂組成物がシート状に形成された樹脂層を備えているシート材に関する。 The present invention relates to a resin composition for electrical insulation and a sheet material provided with a resin layer in which the resin composition is formed into a sheet shape.
 従来、電気絶縁用樹脂組成物としては、様々なものが知られている。例えば、電気絶縁用樹脂組成物としては、モーター用エナメル線における銅線を皮膜する材料として用いられるものなどが知られている。 Conventionally, various types of resin compositions for electrical insulation are known. For example, what is used as a resin composition for electrical insulation is used as a material for coating copper wires in motor enamel wires.
 この種の電気絶縁用樹脂組成物としては、具体的には例えば、ポリイミド樹脂とシリカ(二酸化ケイ素)とを含むものが提案されている(特許文献1)。また、この種の電気絶縁用樹脂組成物としては、例えば、エポキシ樹脂と層状シリケート(層状ケイ酸塩)とを含むものが提案されている(非特許文献1)。 As this kind of resin composition for electrical insulation, specifically, for example, a composition containing a polyimide resin and silica (silicon dioxide) has been proposed (Patent Document 1). Moreover, as this kind of resin composition for electrical insulation, the thing containing an epoxy resin and layered silicate (layered silicate) is proposed, for example (nonpatent literature 1).
 しかしながら、特許文献1に記載のごとくポリイミド樹脂とシリカとを含む電気絶縁用樹脂組成物は、電圧が加えられた状態にて比較的長く電気絶縁性を保つ耐絶縁劣化性を有するものの、力学的強度において必ずしも優れていないという問題を有する。また、非特許文献1に記載のごとくエポキシ樹脂と層状シリケートとを含む電気絶縁用樹脂組成物も、同様に、耐絶縁劣化性を有するものの、必ずしも力学的強度に優れないという問題を有する。
 即ち、上記のごとき電気絶縁用樹脂組成物においては、優れた耐絶縁劣化性と、優れた力学的強度とを同時に満足することが比較的困難であるという問題がある。
However, as described in Patent Document 1, a resin composition for electrical insulation containing a polyimide resin and silica has an insulation deterioration resistance that keeps electrical insulation for a relatively long time when a voltage is applied. There is a problem that it is not necessarily excellent in strength. In addition, as described in Non-Patent Document 1, an electrically insulating resin composition containing an epoxy resin and a layered silicate also has a problem that it is not necessarily excellent in mechanical strength, although it has resistance to insulation deterioration.
That is, the resin composition for electrical insulation as described above has a problem that it is relatively difficult to simultaneously satisfy excellent insulation deterioration resistance and excellent mechanical strength.
日本国特開2001-307557号公報Japanese Unexamined Patent Publication No. 2001-307557
 本発明は、上記問題点等に鑑みてなされたものであり、耐絶縁劣化性に優れ且つ力学的強度に優れた電気絶縁用樹脂組成物を提供することを課題とする。また、耐絶縁劣化性に優れ且つ力学的強度に優れたシート材を提供することを課題とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a resin composition for electrical insulation that has excellent resistance to insulation deterioration and excellent mechanical strength. It is another object of the present invention to provide a sheet material having excellent insulation deterioration resistance and excellent mechanical strength.
 本発明の電気絶縁用樹脂組成物は、ポリスルホン樹脂、ポリアリーレンスルフィド樹脂、ポリイミド樹脂、及び、エポキシ基含有フェノキシ樹脂からなる群より選択された少なくとも1種と、ポリアミド樹脂と、無機フィラーとを含み、前記無機フィラーが金属水酸化物又は金属炭酸塩を含有し、前記無機フィラーの平均粒子径が500nm以下であることを特徴とする。 The resin composition for electrical insulation of the present invention comprises at least one selected from the group consisting of a polysulfone resin, a polyarylene sulfide resin, a polyimide resin, and an epoxy group-containing phenoxy resin, a polyamide resin, and an inorganic filler. The inorganic filler contains a metal hydroxide or a metal carbonate, and the average particle size of the inorganic filler is 500 nm or less.
 本発明に係る電気絶縁用樹脂組成物においては、前記無機フィラーの等電点が7以上であることが好ましい。 In the resin composition for electrical insulation according to the present invention, the isoelectric point of the inorganic filler is preferably 7 or more.
 本発明に係る電気絶縁用樹脂組成物においては、前記金属水酸化物又は前記金属炭酸塩が330℃を超える温度で吸熱分解反応を起こすものであることが好ましい。 In the electrically insulating resin composition according to the present invention, the metal hydroxide or the metal carbonate preferably undergoes an endothermic decomposition reaction at a temperature exceeding 330 ° C.
 本発明に係る電気絶縁用樹脂組成物においては、前記無機フィラーが前記金属水酸化物又は金属炭酸塩を含有し、該金属水酸化物が水酸化マグネシウム、水酸化カルシウム、又は水酸化バリウムであることが好ましい。また、本発明に係る電気絶縁用樹脂組成物においては、前記無機フィラーが前記金属炭酸塩を含有し、該金属炭酸塩が炭酸カルシウム、又は、炭酸マグネシウムであることが好ましい。 In the resin composition for electrical insulation according to the present invention, the inorganic filler contains the metal hydroxide or metal carbonate, and the metal hydroxide is magnesium hydroxide, calcium hydroxide, or barium hydroxide. It is preferable. In the resin composition for electrical insulation according to the present invention, it is preferable that the inorganic filler contains the metal carbonate, and the metal carbonate is calcium carbonate or magnesium carbonate.
 本発明に係る電気絶縁用樹脂組成物は、前記無機フィラーの含有割合が1~20質量部であることが好ましい。 In the resin composition for electrical insulation according to the present invention, the content of the inorganic filler is preferably 1 to 20 parts by mass.
 本発明に係る電気絶縁用樹脂組成物においては、前記ポリスルホン樹脂が、分子中に複数のエーテル結合を有するポリエーテルスルホン樹脂であることが好ましい。また、前記ポリスルホン樹脂が、分子中に複数の芳香族炭化水素を有するポリフェニルスルホン樹脂であることが好ましい。 In the resin composition for electrical insulation according to the present invention, the polysulfone resin is preferably a polyethersulfone resin having a plurality of ether bonds in the molecule. The polysulfone resin is preferably a polyphenylsulfone resin having a plurality of aromatic hydrocarbons in the molecule.
 本発明に係る電気絶縁用樹脂組成物においては、前記ポリアリーレンスルフィド樹脂が、ポリフェニレンスルフィド樹脂であることが好ましい。 In the resin composition for electrical insulation according to the present invention, the polyarylene sulfide resin is preferably a polyphenylene sulfide resin.
 本発明に係る電気絶縁用樹脂組成物においては、前記ポリイミド樹脂が、ポリエーテルイミド樹脂又はポリアミドイミド樹脂であることが好ましい。 In the resin composition for electrical insulation according to the present invention, the polyimide resin is preferably a polyetherimide resin or a polyamideimide resin.
 本発明に係る電気絶縁用樹脂組成物においては、前記ポリアミド樹脂が、分子中に芳香族炭化水素を有するポリアミド樹脂であることが好ましい。 In the resin composition for electrical insulation according to the present invention, the polyamide resin is preferably a polyamide resin having an aromatic hydrocarbon in the molecule.
 本発明のシート材は、前記電気絶縁用樹脂組成物がシート状に形成された樹脂層を備えていることを特徴とする。 The sheet material of the present invention is characterized in that the resin composition for electrical insulation is provided with a resin layer formed in a sheet shape.
 本発明に係るシート材は、前記樹脂層を保護するシート状の保護層をさらに備え、該保護層が前記樹脂層の少なくとも片面側に配されていることが好ましい。 The sheet material according to the present invention preferably further includes a sheet-like protective layer for protecting the resin layer, and the protective layer is preferably disposed on at least one side of the resin layer.
 本発明に係るシート材においては、前記保護層が全芳香族ポリアミド樹脂を含むことが好ましい。 In the sheet material according to the present invention, the protective layer preferably contains a wholly aromatic polyamide resin.
 本発明に係るシート材は、電気絶縁用途で使用することが好ましい。 The sheet material according to the present invention is preferably used for electrical insulation.
樹脂層のみを備えたシート材を厚さ方向に切断した断面を模式的に示した断面図。Sectional drawing which showed typically the cross section which cut | disconnected the sheet material provided only with the resin layer in the thickness direction. 樹脂層と保護層とを備えたシート材を厚さ方向に切断した断面を模式的に示した断面図。Sectional drawing which showed typically the cross section which cut | disconnected the sheet material provided with the resin layer and the protective layer in the thickness direction. 実施例の電気絶縁用樹脂組成物(樹脂層)の切断面における電子顕微鏡写真。The electron micrograph in the cut surface of the resin composition for electrical insulation (resin layer) of an Example. 比較例の電気絶縁用樹脂組成物(樹脂層)の切断面における電子顕微鏡写真。The electron micrograph in the cut surface of the resin composition for electrical insulation (resin layer) of a comparative example.
 以下、本発明に係るシート材の一実施形態について図面を参照しつつ説明する。 Hereinafter, an embodiment of a sheet material according to the present invention will be described with reference to the drawings.
 本実施形態の電気絶縁用樹脂組成物は、ポリスルホン樹脂、ポリアリーレンスルフィド樹脂、ポリイミド樹脂、及び、エポキシ基含有フェノキシ樹脂からなる群より選択された少なくとも1種と、ポリアミド樹脂と、無機フィラーとを含み、前記無機フィラーが金属水酸化物又は金属炭酸塩を含有し、前記無機フィラーの平均粒子径が500nm以下であるものである。
 本実施形態の電気絶縁用樹脂組成物は、耐絶縁劣化性に優れ且つ力学的強度に優れているという効果を奏する。
The resin composition for electrical insulation of this embodiment comprises at least one selected from the group consisting of a polysulfone resin, a polyarylene sulfide resin, a polyimide resin, and an epoxy group-containing phenoxy resin, a polyamide resin, and an inorganic filler. And the inorganic filler contains a metal hydroxide or a metal carbonate, and the average particle size of the inorganic filler is 500 nm or less.
The resin composition for electrical insulation of this embodiment has the effect of being excellent in insulation deterioration resistance and excellent in mechanical strength.
 前記ポリスルホン樹脂は、スルホニル基(-SO-)を複数含む分子構造を有する熱可塑性樹脂である。
 該ポリスルホン樹脂としては、分子中に複数のエーテル結合(-O-)をさらに含むポリエーテルスルホン樹脂、又は、分子中に複数の芳香族炭化水素をさらに含むポリフェニルスルホン樹脂などが挙げられる。また、該ポリスルホン樹脂としては、分子中に複数のエーテル結合と複数の芳香族炭化水素とをさらに含むポリエーテルポリフェニルスルホン樹脂が挙げられる。
The polysulfone resin is a thermoplastic resin having a molecular structure including a plurality of sulfonyl groups (—SO 2 —).
Examples of the polysulfone resin include a polyethersulfone resin further including a plurality of ether bonds (—O—) in the molecule, and a polyphenylsulfone resin further including a plurality of aromatic hydrocarbons in the molecule. Moreover, as this polysulfone resin, the polyether polyphenyl sulfone resin which further contains a some ether bond and a some aromatic hydrocarbon in a molecule | numerator is mentioned.
 前記ポリスルホン樹脂としては、前記樹脂組成物の成形性がより良好なものになるという点、前記樹脂組成物の耐熱性がより優れたものになるという点、また、前記樹脂組成物の耐絶縁劣化性がより優れたものになるという点で、前記ポリエーテルスルホン樹脂、又は、前記ポリフェニルスルホン樹脂が好ましく、前記ポリエーテルポリフェニルスルホン(PES)樹脂がより好ましい。 As the polysulfone resin, the moldability of the resin composition becomes better, the heat resistance of the resin composition becomes better, and the insulation resistance of the resin composition deteriorates. From the standpoint of better properties, the polyethersulfone resin or the polyphenylsulfone resin is preferable, and the polyether polyphenylsulfone (PES) resin is more preferable.
 前記ポリエーテルポリフェニルスルホン(PES)樹脂としては、下記式(1)の分子構造を有するものが好ましい。 The polyether polyphenylsulfone (PES) resin preferably has a molecular structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記ポリエーテルポリフェニルスルホン樹脂としては、市販されているものを用いることができる。例えば、市販されているポリエーテルポリフェニルスルホン樹脂としては、BASF社製の「ウルトラゾーンEシリーズ」、ソルベイ社製の「レーデルAシリーズ」、住友化学社製の「スミカエクセルシリーズ」等が挙げられる。 As the polyether polyphenylsulfone resin, a commercially available product can be used. For example, commercially available polyether polyphenylsulfone resins include “Ultrazone E series” manufactured by BASF, “Radel A series” manufactured by Solvay, “Sumika Excel series” manufactured by Sumitomo Chemical, and the like. .
 前記ポリアリーレンスルフィド樹脂は、分子中に複数のアリーレン基と複数のスルフィド結合とを有する熱可塑性樹脂である。なお、アリーレン基は、アレーン(単環式または多環式の芳香族炭化水素)の二価基である。アリーレン基としては、具体的には例えば、フェニレン基、ナフチレン基、アントリレン基、フェナントリレン基、又はピレニレン基などが挙げられる。 The polyarylene sulfide resin is a thermoplastic resin having a plurality of arylene groups and a plurality of sulfide bonds in the molecule. The arylene group is a divalent group of arene (monocyclic or polycyclic aromatic hydrocarbon). Specific examples of the arylene group include a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, and a pyrenylene group.
 前記ポリアリーレンスルフィド樹脂としては、分子中に複数のフェニレン基と複数のスルフィド結合(-S-)とを有するポリフェニレンスルフィド(PPS)樹脂が好ましい。ポリアリーレンスルフィド樹脂がポリフェニレンスルフィド(PPS)樹脂であることにより、前記樹脂組成物の耐絶縁劣化性がより優れたものになるという利点がある。 The polyarylene sulfide resin is preferably a polyphenylene sulfide (PPS) resin having a plurality of phenylene groups and a plurality of sulfide bonds (—S—) in the molecule. When the polyarylene sulfide resin is a polyphenylene sulfide (PPS) resin, there is an advantage that the insulation deterioration resistance of the resin composition is further improved.
 前記ポリイミド樹脂は、分子中に複数のイミド結合を有する熱可塑性樹脂である。
 前記ポリイミド樹脂としては、分子中に複数の芳香族炭化水素とイミド結合とエーテル結合とを有するポリエーテルイミド(PEI)樹脂、又は、分子中に複数のイミド結合及び複数のアミド結合を有する熱可塑性ポリアミドイミド樹脂が好ましい。
The polyimide resin is a thermoplastic resin having a plurality of imide bonds in the molecule.
As the polyimide resin, a polyetherimide (PEI) resin having a plurality of aromatic hydrocarbons, imide bonds and ether bonds in the molecule, or a thermoplastic having a plurality of imide bonds and a plurality of amide bonds in the molecule. Polyamideimide resin is preferred.
 前記エポキシ基含有フェノキシ樹脂は、ビスフェノール化合物とエピクロルヒドリンとが反応してなるエポキシ基含有の熱可塑性樹脂である。
 前記エポキシ基含有フェノキシ樹脂は、通常、分子鎖の両末端にそれぞれエポキシ基を有している。
The epoxy group-containing phenoxy resin is an epoxy group-containing thermoplastic resin formed by a reaction between a bisphenol compound and epichlorohydrin.
The epoxy group-containing phenoxy resin usually has epoxy groups at both ends of the molecular chain.
 前記ポリアミド樹脂は、少なくともポリアミン化合物とポリカルボン酸化合物とが脱水縮合により重合されてなる熱可塑性樹脂である。 The polyamide resin is a thermoplastic resin obtained by polymerizing at least a polyamine compound and a polycarboxylic acid compound by dehydration condensation.
 前記ポリアミド樹脂としては、分子中に芳香族炭化水素を有するポリアミド樹脂、分子中に炭化水素として脂肪族炭化水素のみを有する脂肪族ポリアミド樹脂が挙げられる。なかでも、前記樹脂組成物が耐絶縁劣化性に優れつつより耐熱性に優れたものになり得るという点で、分子中に芳香族炭化水素を有するポリアミド樹脂が好ましい。 Examples of the polyamide resin include a polyamide resin having an aromatic hydrocarbon in the molecule and an aliphatic polyamide resin having only an aliphatic hydrocarbon as a hydrocarbon in the molecule. Especially, the polyamide resin which has an aromatic hydrocarbon in a molecule | numerator is preferable at the point that the said resin composition can become what was excellent in heat resistance, while being excellent in insulation deterioration resistance.
 また、分子中に芳香族炭化水素を有するポリアミド樹脂としては、分子中に炭化水素として芳香族炭化水素のみを有する芳香族ポリアミド樹脂、分子中に炭化水素として脂肪族炭化水素及び芳香族炭化水素の両方を有する半芳香族ポリアミド樹脂等が挙げられる。
 分子中に芳香族炭化水素を有するポリアミド樹脂としては、前記樹脂組成物が耐絶縁劣化性に優れつつより力学的強度に優れたものになり得るという点で、前記半芳香族ポリアミド樹脂が好ましい。
The polyamide resin having an aromatic hydrocarbon in the molecule includes an aromatic polyamide resin having only an aromatic hydrocarbon as a hydrocarbon in the molecule, an aliphatic hydrocarbon and an aromatic hydrocarbon as a hydrocarbon in the molecule. Examples thereof include semi-aromatic polyamide resins having both.
As the polyamide resin having an aromatic hydrocarbon in the molecule, the semi-aromatic polyamide resin is preferable in that the resin composition can be excellent in mechanical strength while being excellent in insulation deterioration resistance.
 前記ポリアミド樹脂の重合において用いられる前記ポリアミン化合物としては、具体的には、例えば、ジアミン化合物が挙げられる。
 該ジアミン化合物としては、直鎖状又は分岐鎖状の炭化水素基を含む脂肪族ジアミン、環状の飽和炭化水素基を含む脂環族ジアミン、芳香族炭化水素基を含む芳香族ジアミンなどが挙げられる。
Specific examples of the polyamine compound used in the polymerization of the polyamide resin include a diamine compound.
Examples of the diamine compound include aliphatic diamines containing linear or branched hydrocarbon groups, alicyclic diamines containing cyclic saturated hydrocarbon groups, and aromatic diamines containing aromatic hydrocarbon groups. .
 前記脂肪族ジアミン、前記脂環族ジアミン、又は前記芳香族ジアミンとしては、例えば、下記式(2)で表されるものが挙げられる。なお、下記式(2)中のRは、炭素数4~12の脂肪族炭化水素基、若しくは環状飽和炭化水素を含む炭素数4~12の脂環族炭化水素基を表しているか、又は、芳香族環を含む炭化水素基を表している。
       HN-R-NH   ・・・(2)
Examples of the aliphatic diamine, the alicyclic diamine, or the aromatic diamine include those represented by the following formula (2). R 1 in the following formula (2) represents an aliphatic hydrocarbon group having 4 to 12 carbon atoms, or an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, or Represents a hydrocarbon group containing an aromatic ring.
H 2 N—R 1 —NH 2 (2)
 前記脂肪族ジアミンとしては、前記樹脂組成物がより力学的強度に優れたものになり得るという点で、式(2)においてRの炭素数が9のノナンジアミンが好ましく、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンを混合したものがより好ましい。
 前記芳香族ジアミンとしては、フェニレンジアミン、キシリレンジアミンなどが挙げられる。
As the aliphatic diamine, nonanediamine having 9 carbon atoms in R 1 in formula (2) is preferable in that the resin composition can be more excellent in mechanical strength, and 1,9-nonanediamine and A mixture of 2-methyl-1,8-octanediamine is more preferable.
Examples of the aromatic diamine include phenylenediamine and xylylenediamine.
 前記ポリアミド樹脂の重合において用いられる前記ポリカルボン酸化合物としては、具体的には、例えば、ジカルボン酸化合物が挙げられる。
 該ジカルボン酸化合物としては、直鎖状又は分岐鎖状の炭化水素基を含む脂肪族ジカルボン酸、環状の飽和炭化水素基を含む脂環族ジカルボン酸、芳香族炭化水素基を含む芳香族ジカルボン酸などが挙げられる。
Specific examples of the polycarboxylic acid compound used in the polymerization of the polyamide resin include a dicarboxylic acid compound.
Examples of the dicarboxylic acid compound include an aliphatic dicarboxylic acid containing a linear or branched hydrocarbon group, an alicyclic dicarboxylic acid containing a cyclic saturated hydrocarbon group, and an aromatic dicarboxylic acid containing an aromatic hydrocarbon group. Etc.
 前記脂肪族ジカルボン酸、前記脂環族ジカルボン酸、又は前記芳香族ジカルボン酸としては、例えば、下記式(3)で表されるものが挙げられる。なお、下記式(3)中のRは、炭素数4~25の脂肪族炭化水素基、若しくは環状飽和炭化水素を含む炭素数4~12の脂環族炭化水素基を表しているか、又は、芳香族環を含む炭化水素基を表している。
       HOOC-R-COOH   ・・・(3)
Examples of the aliphatic dicarboxylic acid, the alicyclic dicarboxylic acid, or the aromatic dicarboxylic acid include those represented by the following formula (3). R 2 in the following formula (3) represents an aliphatic hydrocarbon group having 4 to 25 carbon atoms, or an alicyclic hydrocarbon group having 4 to 12 carbon atoms including a cyclic saturated hydrocarbon, or Represents a hydrocarbon group containing an aromatic ring.
HOOC-R 2 -COOH (3)
 前記脂肪族ジカルボン酸としては、アジピン酸、セバシン酸などが挙げられる。
 前記芳香族ジカルボン酸としては、テレフタル酸、メチルテレフタル酸、ナフタレンジカルボン酸などが挙げられ、該芳香族ジカルボン酸としては、前記ポリアミド樹脂の耐熱性がより優れたものになり得るという点で、テレフタル酸が好ましい。
Examples of the aliphatic dicarboxylic acid include adipic acid and sebacic acid.
Examples of the aromatic dicarboxylic acid include terephthalic acid, methyl terephthalic acid, and naphthalene dicarboxylic acid. As the aromatic dicarboxylic acid, terephthalic acid can be used because the heat resistance of the polyamide resin can be further improved. Acid is preferred.
 前記ポリアミド樹脂は、上述したジアミン化合物の1種とジカルボン酸化合物の1種とが重合してなるものであってもよく、それぞれの化合物の複数種を組み合わせて重合してなるものであってもよい。また、要すれば、ジアミン化合物とジカルボン酸化合物以外のものがさらに重合されてなるものであってもよい。 The polyamide resin may be one obtained by polymerizing one kind of diamine compound and one kind of dicarboxylic acid compound, or may be one obtained by polymerizing a combination of plural kinds of each compound. Good. Further, if necessary, a material obtained by further polymerizing a compound other than the diamine compound and the dicarboxylic acid compound may be used.
 前記ポリアミド樹脂としては、上述したように前記半芳香族ポリアミド樹脂が好ましく、該半芳香族ポリアミド樹脂としては、ジアミン化合物としての脂肪族ジアミンと、ジカルボン酸化合物としての芳香族ジカルボン酸とが重合してなるものがより好ましく、脂肪族ジアミンとしてのノナンジアミンと、芳香族ジカルボン酸としてのテレフタル酸とが重合してなるもの(PA9T)が特に好ましい。 As described above, the polyamide resin is preferably the semi-aromatic polyamide resin. As the semi-aromatic polyamide resin, an aliphatic diamine as a diamine compound and an aromatic dicarboxylic acid as a dicarboxylic acid compound are polymerized. More preferred are those obtained by polymerizing nonanediamine as an aliphatic diamine and terephthalic acid as an aromatic dicarboxylic acid (PA9T).
 前記ポリアミド樹脂としては、市販されているものを用いることができる。具体的には、市販されているポリアミド樹脂としては、例えば、クラレ社製の「Genester」シリーズ等が挙げられる。 Commercially available products can be used as the polyamide resin. Specifically, examples of commercially available polyamide resins include “Genester” series manufactured by Kuraray Co., Ltd.
 前記電気絶縁用樹脂組成物は、ポリスルホン樹脂、ポリアリーレンスルフィド樹脂、ポリイミド樹脂、及び、エポキシ基含有フェノキシ樹脂からなる群より選択された少なくとも1種の熱可塑性樹脂を50質量%以上含むことが好ましく、60質量%以上含むことがより好ましい。斯かる熱可塑性樹脂を電気絶縁用樹脂組成物が50質量%以上含むことにより、電気絶縁用樹脂組成物の耐絶縁劣化性がより優れたものになるという利点がある。
 また、前記電気絶縁用樹脂組成物は、ポリスルホン樹脂、ポリアリーレンスルフィド樹脂、ポリイミド樹脂、及び、エポキシ基含有フェノキシ樹脂からなる群より選択された少なくとも1種の熱可塑性樹脂を90質量%以下含むことが好ましく、85質量%以下含むことがより好ましい。斯かる熱可塑性樹脂を電気絶縁用樹脂組成物が90質量%以下含むことにより、電気絶縁用樹脂組成物の力学的強度がより優れたものとなり、電気絶縁用樹脂組成物における放電による絶縁劣化がより抑制されるという利点がある。
The resin composition for electrical insulation preferably contains 50% by mass or more of at least one thermoplastic resin selected from the group consisting of a polysulfone resin, a polyarylene sulfide resin, a polyimide resin, and an epoxy group-containing phenoxy resin. More preferably, the content is 60% by mass or more. When the resin composition for electrical insulation contains 50% by mass or more of such a thermoplastic resin, there is an advantage that the insulation deterioration resistance of the resin composition for electrical insulation becomes more excellent.
The resin composition for electrical insulation contains 90% by mass or less of at least one thermoplastic resin selected from the group consisting of a polysulfone resin, a polyarylene sulfide resin, a polyimide resin, and an epoxy group-containing phenoxy resin. Is preferable, and it is more preferable to contain 85 mass% or less. When the resin composition for electrical insulation contains such a thermoplastic resin in an amount of 90% by mass or less, the mechanical strength of the resin composition for electrical insulation is further improved, and insulation deterioration due to discharge in the resin composition for electrical insulation is caused. There is an advantage that it is more suppressed.
 前記電気絶縁用樹脂組成物は、前記ポリアミド樹脂を5質量%以上含むことが好ましく、10質量%以上含むことがより好ましい。電気絶縁用樹脂組成物がポリアミド樹脂を5質量%以上含むことにより、電気絶縁用樹脂組成物の力学的強度や沿面絶縁性がより優れたものになり得るという利点がある。
 また、前記電気絶縁用樹脂組成物は、前記ポリアミド樹脂を50質量%以下含むことが好ましく、40質量%以下含むことがより好ましく、30質量%以下含むことがさらに好ましい。電気絶縁用樹脂組成物がポリアミド樹脂を50質量%以下含むことにより、電気絶縁用樹脂組成物の放電劣化がより抑制されるという利点があり、また、後述するように、保護層3と樹脂層2との間における層間剥離がより抑制され得るという利点がある。
The electrical insulating resin composition preferably contains 5% by mass or more of the polyamide resin, more preferably 10% by mass or more. When the resin composition for electrical insulation contains 5% by mass or more of the polyamide resin, there is an advantage that the mechanical strength and creeping insulation of the resin composition for electrical insulation can be further improved.
Moreover, the resin composition for electrical insulation preferably contains 50% by mass or less of the polyamide resin, more preferably 40% by mass or less, and further preferably 30% by mass or less. When the resin composition for electrical insulation contains a polyamide resin in an amount of 50% by mass or less, there is an advantage that the discharge deterioration of the resin composition for electrical insulation is further suppressed, and as described later, the protective layer 3 and the resin layer There exists an advantage that the delamination between 2 can be suppressed more.
 前記電気絶縁用樹脂組成物は、前記ポリスルホン樹脂と前記ポリアミド樹脂とをポリスルホン樹脂/ポリアミド樹脂=60/40~90/10の質量比で含んでいることが好ましい。ポリスルホン樹脂とポリアミド樹脂とを斯かる範囲の質量比で含んでいることにより、電気絶縁用樹脂組成物の力学的強度や耐熱性がより優れたものになるという利点がある。 The resin composition for electrical insulation preferably contains the polysulfone resin and the polyamide resin in a mass ratio of polysulfone resin / polyamide resin = 60/40 to 90/10. By including the polysulfone resin and the polyamide resin at a mass ratio in such a range, there is an advantage that the mechanical strength and heat resistance of the resin composition for electrical insulation are further improved.
 前記電気絶縁用樹脂組成物は、上述した熱可塑性樹脂以外にも、他の熱可塑性樹脂を含み得る。
 該他の熱可塑性樹脂としては、例えば、分子中に複数のオキシメチレン(-CH2O-)基を有するポリアセタール(POM)樹脂;分子中で芳香族炭化水素-エーテル結合の基本構造が繰り返されてなるポリフェニレンエーテル(PPE)樹脂などのポリフェニレンオキシド(PPO)樹脂;分子中で芳香族炭化水素-エーテル結合-芳香族炭化水素-ケトン結合の基本構造が繰り返されてなる芳香族ポリエーテルケトン(PEK)樹脂;分子中で芳香族炭化水素-エーテル結合-芳香族炭化水素-エーテル結合-芳香族炭化水素-ケトン結合の基本構造が繰り返されてなる芳香族ポリエーテルケトン(PEEK)樹脂;ポリエチレン、ポリプロピレン、ポリシクロオレフィンなどのポリオレフィン樹脂;アクリロニトリルとブタジエンとスチレンとの共重合体(ABS樹脂)などの芳香族含有ビニル系樹脂;ポリエチレンナフタレート(PEN)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリエチレンテレフタレート(PET)樹脂などのポリエステル樹脂;ポリカーボネート(PC)樹脂;液晶ポリマー(LCP);熱可塑性エラストマー樹脂等が挙げられる。
The resin composition for electrical insulation may contain other thermoplastic resins in addition to the above-described thermoplastic resins.
As the other thermoplastic resin, for example, a polyacetal (POM) resin having a plurality of oxymethylene (—CH 2 O—) groups in the molecule; a basic structure of an aromatic hydrocarbon-ether bond is repeated in the molecule Polyphenylene oxide (PPO) resin such as polyphenylene ether (PPE) resin; aromatic polyether ketone (PEK) resin in which the basic structure of aromatic hydrocarbon-ether bond-aromatic hydrocarbon-ketone bond is repeated in the molecule An aromatic polyetherketone (PEEK) resin in which the basic structure of aromatic hydrocarbon-ether bond-aromatic hydrocarbon-ether bond-aromatic hydrocarbon-ketone bond is repeated in the molecule; polyethylene, polypropylene, poly Polyolefin resins such as cycloolefin; acrylonitrile, butadiene and Aromatic-containing vinyl resins such as copolymers with ABS (ABS resin); Polyester resins such as polyethylene naphthalate (PEN) resin, polybutylene terephthalate (PBT) resin, polyethylene terephthalate (PET) resin; Polycarbonate (PC) Resin; liquid crystal polymer (LCP); thermoplastic elastomer resin and the like.
 前記無機フィラーは、前記電気絶縁用樹脂組成物に配合されることにより、無機フィラーを含まないものよりも、前記電気絶縁用樹脂組成物の耐絶縁劣化性を高める無機化合物である。 The inorganic filler is an inorganic compound that, when blended in the resin composition for electrical insulation, enhances the insulation deterioration resistance of the resin composition for electrical insulation, compared to those that do not contain an inorganic filler.
 本実施形態の電気絶縁用樹脂組成物においては、上述した熱可塑性樹脂と前記無機フィラーとが含まれており、しかも、前記無機フィラーの平均粒子径が500nm以下であり、且つ、前記無機フィラーが金属水酸化物及び金属炭酸塩のうちの少なくとも一方を含有している。 In the resin composition for electrical insulation of this embodiment, the thermoplastic resin described above and the inorganic filler are included, and the average particle diameter of the inorganic filler is 500 nm or less, and the inorganic filler is At least one of a metal hydroxide and a metal carbonate is contained.
 電気絶縁用樹脂組成物に高い電圧が加えられると、電気絶縁用樹脂組成物の一部において放電現象(以下、部分放電ともいう)が発生し得る。部分放電によって発生した荷電粒子は、樹脂組成物に含まれる樹脂の分子鎖に衝突してその分子鎖を切断したり、衝突に伴う熱により分子鎖を熱分解したりし得る。また、部分放電によってオゾンが生じ、そのオゾンが樹脂組成物に含まれる樹脂の劣化を引き起こし得る。このような現象に伴い、樹脂組成物中に破壊路が伸長し、樹脂組成物の電気絶縁性が低下し得ると考えられる。 When a high voltage is applied to the resin composition for electrical insulation, a discharge phenomenon (hereinafter also referred to as partial discharge) may occur in a part of the resin composition for electrical insulation. The charged particles generated by the partial discharge can collide with the molecular chains of the resin contained in the resin composition to break the molecular chains, or thermally decompose the molecular chains by heat accompanying the collision. Moreover, ozone is generated by partial discharge, and the ozone can cause deterioration of the resin contained in the resin composition. With such a phenomenon, it is considered that a fracture path extends in the resin composition, and the electrical insulation of the resin composition can be lowered.
 本実施形態の電気絶縁用樹脂組成物においては、無機フィラーの平均粒子径が500nm以下であるため、無機フィラーの単位質量あたりにおける無機フィラーの個数が比較的多くなる。無機フィラーの個数が多くなる分、上述した破壊路の伸長が個々の無機フィラーによって妨げられやすくなると考えられる。
 従って、本実施形態の電気絶縁用樹脂組成物は、優れた耐絶縁劣化性を有し得る。即ち、本実施形態の電気絶縁用樹脂組成物は、電気絶縁寿命が比較的長いものとなり得る。
In the resin composition for electrical insulation of this embodiment, since the average particle diameter of an inorganic filler is 500 nm or less, the number of inorganic fillers per unit mass of the inorganic filler is relatively large. As the number of inorganic fillers increases, it is considered that the elongation of the fracture path described above is likely to be hindered by individual inorganic fillers.
Therefore, the resin composition for electrical insulation of this embodiment can have excellent insulation deterioration resistance. That is, the resin composition for electrical insulation of this embodiment can have a relatively long electrical insulation life.
 一方で、無機フィラーの平均粒子径が500nmを超えると、上記のごとき破壊路の伸長が妨げられにくくなり、電気絶縁用樹脂組成物の耐絶縁劣化性が不十分なものになるおそれがある。また、無機フィラーの平均粒子径が500nmを超えると、電気絶縁用樹脂組成物の力学的強度が不十分なものになるおそれがある。 On the other hand, if the average particle diameter of the inorganic filler exceeds 500 nm, the elongation of the fracture path as described above is difficult to be hindered, and the insulation deterioration resistance of the resin composition for electrical insulation may be insufficient. Moreover, when the average particle diameter of an inorganic filler exceeds 500 nm, there exists a possibility that the mechanical strength of the resin composition for electrical insulation may become inadequate.
 前記無機フィラーの平均粒子径は、100nm以下であることが好ましい。平均粒子径が100nm以下であることにより、上述した理由と同様な理由により無機フィラーの個数がより多くなることから、電気絶縁用樹脂組成物の耐絶縁劣化性がより優れたものになり得るという利点がある。
 また、前記無機フィラーの平均粒子径は、10nm以上であることが好ましい。平均粒子径が10nm以上であることにより、電気絶縁用樹脂組成物における無機フィラーの凝集がより抑制され、無機フィラーが電気絶縁用樹脂組成物においてより分散しやすくなるという利点がある。
The average particle diameter of the inorganic filler is preferably 100 nm or less. When the average particle diameter is 100 nm or less, the number of inorganic fillers is increased for the same reason as described above, so that the insulation deterioration resistance of the resin composition for electrical insulation can be further improved. There are advantages.
Moreover, it is preferable that the average particle diameter of the said inorganic filler is 10 nm or more. When the average particle size is 10 nm or more, there is an advantage that the aggregation of the inorganic filler in the electrically insulating resin composition is further suppressed and the inorganic filler is more easily dispersed in the electrically insulating resin composition.
 前記無機フィラーの平均粒子径は、下記の方法によって求めた値である。
 即ち、前記無機フィラーの平均粒子径は、走査型電子顕微鏡(日立ハイテク社製 機器名「S-3400N」)で得られた観察像(倍率10000倍)において、無機フィラー1000個の一次粒子径を平均して算出することにより求める。詳しくは、観察像を画像解析ソフトウェア(旭化成エンジニア社製 製品名「A像くん」)によって水平方向フェレ径を解析し、各無機フィラーの水平フェレ径を決定して平均することにより求める。
 観察像を得るためには、0.1質量%濃度となるように無機フィラーをアセトンに分散させて分散液を作り、該分散液をガラス板に滴下後、アセトンを揮発乾燥させることにより、観察用試料を作製する。そして、この観察用試料を観察することにより無機フィラーの平均粒子径を求める。
 無機フィラーの形状が針状であれば、無機フィラーの長手方向がガラス板面と略平行になった状態の無機フィラーを解析対象とする。また、無機フィラーの形状が板状であれば、無機フィラーの板面がガラス板面と対向した状態の無機フィラーを解析対象とする。
The average particle diameter of the inorganic filler is a value determined by the following method.
That is, the average particle diameter of the inorganic filler is the primary particle diameter of 1000 inorganic fillers in an observed image (magnification: 10,000 times) obtained with a scanning electron microscope (Hitachi High-Tech, product name “S-3400N”). Calculate by averaging. Specifically, the observation image is obtained by analyzing the horizontal ferret diameter by image analysis software (product name “A image kun” manufactured by Asahi Kasei Engineers), and determining and averaging the horizontal ferret diameter of each inorganic filler.
In order to obtain an observation image, an inorganic filler is dispersed in acetone so as to have a concentration of 0.1% by mass, and a dispersion is prepared. After the dispersion is dropped onto a glass plate, the acetone is evaporated and dried. A sample is prepared. And the average particle diameter of an inorganic filler is calculated | required by observing this sample for observation.
If the shape of the inorganic filler is a needle shape, the inorganic filler in a state where the longitudinal direction of the inorganic filler is substantially parallel to the glass plate surface is set as the analysis target. Moreover, if the shape of an inorganic filler is plate shape, let the inorganic filler of the state which the plate | board surface of the inorganic filler opposed the glass plate surface be analysis object.
 また、本実施形態の電気絶縁用樹脂組成物においては、前記無機フィラーが金属水酸化物及び金属炭酸塩の少なくとも一方を含有している。従って、電気絶縁用樹脂組成物の劣化は、電圧が加えられることによる高温条件下においても抑制される。
 詳しくは、金属水酸化物は、所定の温度以上になると吸熱しつつ水分子を放出して分解する。同様に、金属炭酸塩は、所定の温度以上になると吸熱しつつ炭酸ガスを放出して分解する。このように金属水酸化物及び金属炭酸塩は、所定温度以上になると、吸熱しつつ分解する吸熱分解反応を起こす。従って、金属水酸化物又は金属炭酸塩を含む無機フィラーが樹脂組成物中に存在することにより、高温条件下において、金属水酸化物又は金属炭酸塩の吸熱分解反応によって、樹脂組成物の温度上昇が抑えられる。これにより、樹脂組成物の熱による劣化が抑制され、熱劣化に伴う樹脂組成物の電気絶縁性の低下が抑制される。従って、本実施形態の電気絶縁用樹脂組成物は、耐絶縁劣化性に優れている。
In the resin composition for electrical insulation of the present embodiment, the inorganic filler contains at least one of a metal hydroxide and a metal carbonate. Therefore, deterioration of the resin composition for electrical insulation is suppressed even under high temperature conditions due to application of voltage.
Specifically, the metal hydroxide decomposes by releasing water molecules while absorbing heat when the temperature exceeds a predetermined temperature. Similarly, when the metal carbonate reaches a predetermined temperature or higher, it releases carbon dioxide and decomposes while absorbing heat. As described above, when the metal hydroxide and the metal carbonate reach a predetermined temperature or higher, they undergo an endothermic decomposition reaction that decomposes while absorbing heat. Therefore, when an inorganic filler containing a metal hydroxide or metal carbonate is present in the resin composition, the temperature of the resin composition increases due to an endothermic decomposition reaction of the metal hydroxide or metal carbonate under high temperature conditions. Is suppressed. Thereby, deterioration by the heat | fever of a resin composition is suppressed and the fall of the electrical insulation of the resin composition accompanying heat deterioration is suppressed. Therefore, the resin composition for electrical insulation of this embodiment is excellent in resistance to insulation deterioration.
 前記金属水酸化物及び前記金属炭酸塩の少なくとも一方は、330℃を超える温度で吸熱分解反応を起こすものであることが好ましい。前記金属水酸化物又は前記金属炭酸塩が330℃を超える温度で吸熱分解反応を起こすものであることにより、電気絶縁用樹脂組成物の耐絶縁劣化性がより優れたものになるという利点がある。即ち、電気絶縁用樹脂組成物の電気絶縁寿命がより長いものになるという利点がある。
 詳しくは、前記電気絶縁用樹脂組成物の製造においては、通常、上述した各配合成分を280~320℃の温度に加熱して混合する。従って、330℃を超える温度で吸熱分解反応を起こす金属水酸化物又は金属炭酸塩は、製造における上記の温度範囲においても吸熱分解反応を起こさない。これにより、電圧が加わることにより電気絶縁用樹脂組成物の一部が330℃を超える温度になったとしても、金属水酸化物又は金属炭酸塩が吸熱分解反応を起こすことにより、温度上昇が抑えられる。即ち、吸熱分解反応が起きる分、電気絶縁用樹脂組成物の温度上昇が抑えられ、電気絶縁用樹脂組成物の熱劣化が抑制される。このように、電気絶縁用樹脂組成物の耐絶縁劣化性がより優れたものとなる。
At least one of the metal hydroxide and the metal carbonate preferably undergoes an endothermic decomposition reaction at a temperature exceeding 330 ° C. When the metal hydroxide or the metal carbonate undergoes an endothermic decomposition reaction at a temperature exceeding 330 ° C., there is an advantage that the insulation deterioration resistance of the resin composition for electrical insulation is further improved. . That is, there is an advantage that the electrical insulation life of the resin composition for electrical insulation becomes longer.
Specifically, in the production of the resin composition for electrical insulation, each of the above-described blending components is usually heated and mixed at a temperature of 280 to 320 ° C. Therefore, a metal hydroxide or metal carbonate that undergoes an endothermic decomposition reaction at a temperature exceeding 330 ° C. does not cause an endothermic decomposition reaction even in the above temperature range in production. As a result, even if a part of the resin composition for electrical insulation reaches a temperature exceeding 330 ° C. due to the application of voltage, the metal hydroxide or metal carbonate undergoes an endothermic decomposition reaction, thereby suppressing the temperature rise. It is done. That is, as the endothermic decomposition reaction occurs, the temperature increase of the resin composition for electrical insulation is suppressed, and the thermal deterioration of the resin composition for electrical insulation is suppressed. Thus, the insulation deterioration resistance of the resin composition for electrical insulation becomes more excellent.
 なお、前記金属水酸化物又は前記金属炭酸塩は、通常、800℃以下の温度で吸熱分解反応を起こすものである。 The metal hydroxide or the metal carbonate usually undergoes an endothermic decomposition reaction at a temperature of 800 ° C. or lower.
 前記吸熱分解反応が起きる温度は、示差熱-熱重量分析(TG-DTA)による測定によって決定する。
 具体的には、不活性ガスの気流下において10℃/分の昇温速度で加熱しつつ、金属水酸化物又は金属炭酸塩について示差熱-熱重量分析を実施する。そして、示差熱分析において吸熱ピークが生じ始める温度を観察するとともに、熱重量分析において重量減少が始まる温度を観察する。その結果から、熱重量分析において重量減少が始まる温度を吸熱分解反応が起きる温度とする。
The temperature at which the endothermic decomposition reaction occurs is determined by measurement by differential thermal-thermogravimetric analysis (TG-DTA).
Specifically, differential thermal-thermogravimetric analysis is performed on metal hydroxide or metal carbonate while heating at a rate of temperature increase of 10 ° C./min under an inert gas stream. Then, the temperature at which an endothermic peak begins to occur in the differential thermal analysis is observed, and the temperature at which weight reduction starts in the thermogravimetric analysis is observed. From the results, the temperature at which weight loss starts in thermogravimetric analysis is defined as the temperature at which the endothermic decomposition reaction occurs.
 より具体的には、例えば、金属水酸化物としての水酸化マグネシウムは、上記条件による示差熱-熱重量分析(TG-DTA)において、340℃から吸熱ピークが生じ始め約400℃に吸熱ピークの頂点が現れる。また、水酸化マグネシウムは、340℃から重量減少が始まる。従って、水酸化マグネシウムが吸熱分解反応を起こす温度は、340℃とする。
 このように、水酸化マグネシウムは、340℃から吸熱分解反応を起こし始め、吸熱しつつ分解して熱容量の比較的大きい水分子を放出する。
More specifically, for example, magnesium hydroxide as a metal hydroxide starts to generate an endothermic peak at 340 ° C. in a differential thermal-thermogravimetric analysis (TG-DTA) under the above conditions, and has an endothermic peak at about 400 ° C. A vertex appears. Magnesium hydroxide begins to lose weight at 340 ° C. Therefore, the temperature at which magnesium hydroxide undergoes an endothermic decomposition reaction is 340 ° C.
Thus, magnesium hydroxide begins to undergo an endothermic decomposition reaction from 340 ° C., decomposes while absorbing heat, and releases water molecules having a relatively large heat capacity.
 なお、前記金属水酸化物又は前記金属炭酸塩が水和物であれば、示差熱-熱重量分析(TG-DTA)においては、水和した水分子の脱離による重量減少を吸熱分解反応としてみなさない。 If the metal hydroxide or the metal carbonate is a hydrate, in the differential thermal-thermogravimetric analysis (TG-DTA), the weight loss due to desorption of hydrated water molecules is regarded as an endothermic decomposition reaction. Not considered.
 前記無機フィラーの等電点は、7以上であることが好ましく、8以上であることがより好ましく、9以上であることがさらに好ましい。等電点が7以上であることにより、前記電気絶縁用樹脂組成物における無機フィラーの分散性がより優れたものになるという利点がある。
 また、前記無機フィラーの等電点は、12以下であることが好ましい。等電点が12以下であることにより、前記電気絶縁用樹脂組成物における無機フィラーの分散性がより優れたものになるという利点がある。
 無機フィラーの等電点と、電気絶縁用樹脂組成物における無機フィラーの分散性との関連性については、無機フィラーの等電点を指標とした無機フィラーの表面電荷状態と、電気絶縁用樹脂組成物に含まれるポリアミド樹脂のアミド結合との相互作用に基づいて説明することができる。
 詳しくは、無機フィラーは、通常、表面に極性基である水酸基を有する。しかも、無機フィラーは、周囲のpH環境に応じて水酸基の態様が変化する。具体的には、無機フィラーが水中に存在すると仮定すると、水のpHが無機フィラーの等電点より低いときに、無機フィラーの表面における水酸基の態様が変化して表面電荷が正になる。一方、水のpHが無機フィラーの等電点より高いときに、無機フィラーの表面電荷が負になる。このように、無機フィラーの表面電荷は、周囲のpH環境に応じて変化し得る。
 また、電気絶縁用樹脂組成物中には、無機フィラーだけでなく、ポリアミド樹脂が分散した状態で存在している。ポリアミド樹脂は、アミド結合を有していることから、比較的極性が高いものであり、中性~弱塩基性を呈している。
 ポリアミド樹脂と無機フィラーとが共存した状態においては、ポリアミド樹脂による中性~弱塩基性の環境下に無機フィラーが存在することとなり、無機フィラーの等電点によって、無機フィラーの表面が正電荷、負電荷、又は無電荷になり得る。従って、等電点が2程度の無機フィラーは、中性~弱塩基性を呈するポリアミド樹脂の存在下において表面が正に帯電し、一方、等電点が8程度の無機フィラーは、中性~弱塩基性を呈しているポリアミド樹脂の存在下において表面がほとんど帯電しないこともあり得る。また、等電点が11程度の無機フィラーは、ポリアミド樹脂の存在下において表面が負に帯電し得るが、ポリアミド樹脂が呈する弱塩基性と等電点との差が、比較的小さい。従って、等電点が11程度の無機フィラーは、帯電したとしても比較的弱い帯電状態になると考えられる。
 このことから、無機フィラーの等電点が7以上(アルカリ側)であることにより、ポリアミド樹脂との共存下における無機フィラーは、表面電荷が比較的小さいものとなり得る。従って、表面電荷に起因する無機フィラーの極性が比較的小さいものとなり、無機フィラーの極性と、ポリアミド樹脂の極性とによって生じる相互作用(水素結合等)がより小さくなり得る。即ち、無機フィラーとポリアミド樹脂とのイオン的な結合が抑制され得る。従って、電気絶縁用樹脂組成物において無機フィラーがポリアミド樹脂に吸着されることが抑制され、その結果、無機フィラーの分散性がより優れたものになる。
The isoelectric point of the inorganic filler is preferably 7 or more, more preferably 8 or more, and still more preferably 9 or more. When the isoelectric point is 7 or more, there is an advantage that the dispersibility of the inorganic filler in the resin composition for electrical insulation is further improved.
The isoelectric point of the inorganic filler is preferably 12 or less. When the isoelectric point is 12 or less, there is an advantage that the dispersibility of the inorganic filler in the resin composition for electrical insulation is further improved.
Regarding the relationship between the isoelectric point of the inorganic filler and the dispersibility of the inorganic filler in the resin composition for electrical insulation, the surface charge state of the inorganic filler using the isoelectric point of the inorganic filler as an index, and the resin composition for electrical insulation This can be explained based on the interaction with the amide bond of the polyamide resin contained in the product.
Specifically, the inorganic filler usually has a hydroxyl group that is a polar group on the surface. And the aspect of a hydroxyl group changes according to the surrounding pH environment in an inorganic filler. Specifically, assuming that the inorganic filler is present in water, when the pH of the water is lower than the isoelectric point of the inorganic filler, the form of the hydroxyl group on the surface of the inorganic filler changes and the surface charge becomes positive. On the other hand, when the pH of water is higher than the isoelectric point of the inorganic filler, the surface charge of the inorganic filler becomes negative. Thus, the surface charge of the inorganic filler can vary depending on the surrounding pH environment.
Further, in the resin composition for electrical insulation, not only inorganic fillers but also polyamide resins are present in a dispersed state. Since the polyamide resin has an amide bond, it has a relatively high polarity and exhibits neutral to weak basicity.
In the state where the polyamide resin and the inorganic filler coexist, the inorganic filler exists in a neutral to weakly basic environment due to the polyamide resin, and the surface of the inorganic filler is positively charged by the isoelectric point of the inorganic filler. It can be negatively charged or uncharged. Therefore, an inorganic filler having an isoelectric point of about 2 is positively charged in the presence of a neutral to weakly basic polyamide resin, while an inorganic filler having an isoelectric point of about 8 is neutral to In the presence of a polyamide resin exhibiting weak basicity, the surface may be hardly charged. An inorganic filler having an isoelectric point of about 11 can be negatively charged on the surface in the presence of a polyamide resin, but the difference between the weak basicity exhibited by the polyamide resin and the isoelectric point is relatively small. Therefore, an inorganic filler having an isoelectric point of about 11 is considered to be in a relatively weak charged state even when charged.
From this, when the isoelectric point of the inorganic filler is 7 or more (alkali side), the inorganic filler in the coexistence with the polyamide resin can have a relatively small surface charge. Therefore, the polarity of the inorganic filler due to the surface charge becomes relatively small, and the interaction (hydrogen bond or the like) caused by the polarity of the inorganic filler and the polarity of the polyamide resin can be further reduced. That is, the ionic bond between the inorganic filler and the polyamide resin can be suppressed. Therefore, adsorption of the inorganic filler to the polyamide resin in the resin composition for electrical insulation is suppressed, and as a result, the dispersibility of the inorganic filler becomes better.
 前記無機フィラーの等電点は、JIS R1638「4.1 電気泳動法 b)電気泳動レーザー・ドップラー法」に従って測定する。 The isoelectric point of the inorganic filler is measured according to JIS R1638 "4.1 Electrophoresis method b) Electrophoretic laser / Doppler method".
 前記無機フィラーの硬さは、特に限定されるものではないが、モース硬度において7以下であることが好ましい。
 なお、モース硬度は、10種類の標準鉱物を用いて評価することにより決定される。詳しくは、無機フィラーによって標準鉱物を引っ掻き、標準鉱物に傷が生じるか否かを確認する。即ち、最低硬度の標準鉱物から最高硬度の標準鉱物へと順次標準鉱物を変え、傷が生じる標準鉱物の硬度をモース硬度とする。
The hardness of the inorganic filler is not particularly limited, but is preferably 7 or less in Mohs hardness.
The Mohs hardness is determined by evaluating using 10 kinds of standard minerals. Specifically, the standard mineral is scratched with an inorganic filler to check whether the standard mineral is damaged. That is, the standard mineral is sequentially changed from the standard mineral having the lowest hardness to the standard mineral having the highest hardness, and the hardness of the standard mineral causing the scratch is defined as the Mohs hardness.
 前記金属水酸化物は、水酸化マグネシウム、水酸化カルシウム、及び水酸化バリウムからなる群より選択された少なくとも1種であることが好ましい。前記金属水酸化物が、水酸化マグネシウム、水酸化カルシウム、及び水酸化バリウムからなる群より選択された少なくとも1種であることにより、電気絶縁用樹脂組成物の耐絶縁劣化性がより優れたものになり得るという利点がある。
 なお、水酸化マグネシウムの吸熱分解反応が起きる温度は、340℃であり、水酸化カルシウムの吸熱分解反応が起きる温度は、580℃であり、水酸化バリウムの吸熱分解反応が起きる温度は、780℃である。
The metal hydroxide is preferably at least one selected from the group consisting of magnesium hydroxide, calcium hydroxide, and barium hydroxide. The metal hydroxide is at least one selected from the group consisting of magnesium hydroxide, calcium hydroxide, and barium hydroxide, so that the resin composition for electrical insulation has better insulation deterioration resistance There is an advantage that can be.
The temperature at which the endothermic decomposition reaction of magnesium hydroxide occurs is 340 ° C., the temperature at which the endothermic decomposition reaction of calcium hydroxide occurs is 580 ° C., and the temperature at which the endothermic decomposition reaction of barium hydroxide occurs is 780 ° C. It is.
 前記金属炭酸塩は、炭酸カルシウム、及び、炭酸マグネシウムのうちの少なくとも一方であることが好ましい。前記金属炭酸塩が、炭酸カルシウム、及び、炭酸マグネシウムのうちの少なくとも一方であることにより、電気絶縁用樹脂組成物の耐絶縁劣化性がより優れたものになり得るという利点がある。
 なお、炭酸カルシウムの吸熱分解反応が起きる温度は、600℃であり、また、炭酸マグネシウム(無水物)の吸熱分解反応が起きる温度は、500℃である。
The metal carbonate is preferably at least one of calcium carbonate and magnesium carbonate. When the metal carbonate is at least one of calcium carbonate and magnesium carbonate, there is an advantage that the electrical insulation resin composition can be more excellent in insulation deterioration resistance.
The temperature at which the endothermic decomposition reaction of calcium carbonate occurs is 600 ° C., and the temperature at which the endothermic decomposition reaction of magnesium carbonate (anhydride) occurs is 500 ° C.
 前記無機フィラーの電気絶縁用樹脂組成物における含有割合は、1質量%以上であることが好ましく、4質量%以上であることがより好ましい。また、前記無機フィラーの電気絶縁用樹脂組成物における含有割合は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、6質量%以下であることがさらに好ましい。
 前記無機フィラーの含有割合が1質量%以上であることにより、電気絶縁用樹脂組成物の耐絶縁劣化性がより優れたものになり得るという利点がある。また、無機フィラーの含有割合が20質量%以下であることにより、電気絶縁用樹脂組成物の力学的強度がより優れたものになり得るという利点がある。
The content of the inorganic filler in the resin composition for electrical insulation is preferably 1% by mass or more, and more preferably 4% by mass or more. The content of the inorganic filler in the resin composition for electrical insulation is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 6% by mass or less.
When the content ratio of the inorganic filler is 1% by mass or more, there is an advantage that the insulating deterioration resistance of the resin composition for electrical insulation can be further improved. Moreover, when the content rate of an inorganic filler is 20 mass% or less, there exists an advantage that the mechanical strength of the resin composition for electrical insulation can become more excellent.
 前記電気絶縁用樹脂組成物においては、無機フィラーの凝集が抑制されていることが好ましい。即ち、電気絶縁用樹脂組成物における無機フィラーの凝集粒子の凝集度は、500nm以下であることが好ましく、350nm以下であることがより好ましい。
 無機フィラーの凝集粒子の凝集度が500nm以下であることにより、上述したような電圧による破壊路の伸長がより抑制され、電気絶縁用樹脂組成物の耐絶縁劣化性がより優れたものになるという利点がある。また、無機フィラーの凝集粒子の凝集度が500nm以下であることにより、凝集粒子が比較的小さいものとなるため、凝集粒子を起点とする樹脂組成物の破壊が生じにくくなるという利点がある。即ち、電気絶縁用樹脂組成物の力学的強度、具体的には電気絶縁用樹脂組成物の耐裂け性がより優れたものになるという利点がある。
In the resin composition for electrical insulation, it is preferable that aggregation of inorganic fillers is suppressed. That is, the aggregation degree of the aggregated particles of the inorganic filler in the resin composition for electrical insulation is preferably 500 nm or less, and more preferably 350 nm or less.
When the aggregation degree of the aggregated particles of the inorganic filler is 500 nm or less, the elongation of the breakdown path due to the voltage as described above is further suppressed, and the insulation deterioration resistance of the resin composition for electrical insulation is more excellent. There are advantages. Moreover, since the aggregation degree of the aggregated particle of an inorganic filler is 500 nm or less, the aggregated particle becomes relatively small. Therefore, there is an advantage that the resin composition starting from the aggregated particle is hardly broken. That is, there is an advantage that the mechanical strength of the resin composition for electrical insulation, specifically, the tear resistance of the resin composition for electrical insulation is improved.
 前記電気絶縁用樹脂組成物における、上述した無機フィラーの凝集粒子の凝集度は、下記の方法によって求めたものである。
 即ち、電気絶縁用樹脂組成物をシート状に成形したものをMD方向に沿って厚さ方向に切断し、その断面を走査型電子顕微鏡(日立ハイテク社製、機器名「S-3400N」)で観察し、画像データ(倍率10000倍)を得る。さらに、この画像データを画像解析ソフト(製品名「A像くん」、旭化成エンジニア社製)によって解析する。
 詳しくは、無機フィラーの凝集粒子の凝集度は、実施例に記載された方法によって測定する。
 なお、前記電気絶縁用樹脂組成物における無機フィラーの凝集粒子の凝集度は、測定方法が無機フィラーの平均粒子径の測定方法と異なることから、必ずしも無機フィラーの平均粒子径(平均一次粒子径)以上になるとは限らない。
The degree of aggregation of the above-mentioned inorganic filler aggregated particles in the electrical insulating resin composition is determined by the following method.
That is, a sheet-shaped resin composition for electrical insulation was cut in the thickness direction along the MD direction, and the cross section was scanned with a scanning electron microscope (product name “S-3400N” manufactured by Hitachi High-Tech). Observe to obtain image data (magnification 10,000 times). Further, the image data is analyzed by image analysis software (product name “A Image-kun”, manufactured by Asahi Kasei Engineers).
Specifically, the degree of aggregation of the aggregated particles of the inorganic filler is measured by the method described in the examples.
In addition, since the measurement method differs from the measurement method of the average particle diameter of the inorganic filler, the aggregation degree of the inorganic filler aggregate particles in the resin composition for electrical insulation is not necessarily the average particle diameter (average primary particle diameter) of the inorganic filler. That's not necessarily the case.
 前記無機フィラーは、表面処理が施されたものであってもよい。
 表面処理のための表面処理剤としては、例えば、有機シラン系化合物が挙げられる。該有機シラン系化合物としては、例えば、ビニルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、p-スチリルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどが挙げられる。前記表面処理剤は、表面処理されていない無機フィラー100重量部に対して、例えば、0.01~5重量部用いることができる。
The inorganic filler may be subjected to a surface treatment.
Examples of the surface treatment agent for the surface treatment include organic silane compounds. Examples of the organic silane compound include vinyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, p-styryltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, Examples include 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and the like. The surface treatment agent can be used in an amount of, for example, 0.01 to 5 parts by weight with respect to 100 parts by weight of the inorganic filler that has not been surface-treated.
 前記電気絶縁用樹脂組成物には、種々の添加剤が配合されていても良い。
 該添加剤としては、例えば、アルキルフェノール樹脂、アルキルフェノール-アセチレン樹脂、キシレン樹脂、クマロン-インデン樹脂、テルペン樹脂、ロジンなどの粘着付与剤、ポリブロモジフェニルオキサイド、テトラブロモビスフェノールAなどの臭素系難燃剤、塩素化パラフィン、パークロロシクロデカンなどの塩素系難燃剤、リン酸エステル、含ハロゲンリン酸エステルなどのリン系難燃剤、ホウ素系難燃剤、三酸化アンチモンなどの酸化物系難燃剤、フェノール系、リン系、硫黄系の酸化防止剤、シリカ、クレー、酸化アルミ、酸化マグネシウム、窒化硼素、窒化珪素、又は窒化アルミニウムなどを含む無機フィラー、熱安定剤、光安定剤、紫外線吸収剤、滑剤、顔料、架橋剤、架橋助剤、シランカップリング剤、チタネートカップリング剤などの一般的なプラスチック用配合成分などが挙げられる。また、芳香族ポリアミド繊維、数nm~数百nmの粒径のモンモリロナイトなどが挙げられる。これら添加剤は、電気絶縁用樹脂組成物に、例えば0.1~5質量%含まれ得る。
Various additives may be blended in the resin composition for electrical insulation.
Examples of such additives include alkylphenol resins, alkylphenol-acetylene resins, xylene resins, coumarone-indene resins, terpene resins, rosin and other tackifiers, brominated flame retardants such as polybromodiphenyl oxide and tetrabromobisphenol A, Chlorinated flame retardants such as chlorinated paraffin and perchlorocyclodecane, phosphorus flame retardants such as phosphate esters and halogenated phosphate esters, boron flame retardants, oxide flame retardants such as antimony trioxide, phenolic, Inorganic fillers including phosphorous and sulfur antioxidants, silica, clay, aluminum oxide, magnesium oxide, boron nitride, silicon nitride, or aluminum nitride, heat stabilizers, light stabilizers, ultraviolet absorbers, lubricants, pigments , Crosslinking agent, crosslinking aid, silane coupling agent, titanate Including general plastic compounding ingredients such as coupling agents and the like. Moreover, aromatic polyamide fibers, montmorillonite having a particle size of several nm to several hundred nm, and the like can be mentioned. These additives may be contained, for example, in an amount of 0.1 to 5% by mass in the resin composition for electrical insulation.
 前記電気絶縁用樹脂組成物は、上述した熱可塑性樹脂、無機フィラー、及び必要に応じて添加剤を一般的な方法によって適宜加熱しながら混合することによって製造することができる。具体的には、前記電気絶縁用樹脂組成物は、例えば、ニーダー、加圧ニーダー、混練ロール、バンバリーミキサー、二軸押し出し機などの一般的な混合手段を用いて混合することにより製造することができる。 The resin composition for electrical insulation can be produced by mixing the above-described thermoplastic resin, inorganic filler, and if necessary, an additive while appropriately heating by a general method. Specifically, the resin composition for electrical insulation can be produced, for example, by mixing using a general mixing means such as a kneader, a pressure kneader, a kneading roll, a Banbury mixer, or a twin screw extruder. it can.
 次に、本発明に係るシート材の一実施形態について図面を参照しつつ説明する。図1及び図2は、本実施形態のシート材を厚さ方向に切断した断面を模式的に示した断面図である。 Next, an embodiment of the sheet material according to the present invention will be described with reference to the drawings. 1 and 2 are cross-sectional views schematically showing a cross section obtained by cutting the sheet material of the present embodiment in the thickness direction.
 本実施形態のシート材1は、図1に示すように、上記の電気絶縁用樹脂組成物がシート状に形成された樹脂層2を備えているものである。 The sheet material 1 of this embodiment is provided with a resin layer 2 in which the resin composition for electrical insulation is formed into a sheet shape as shown in FIG.
 前記シート材1は、図2に示すように、前記樹脂層2を保護するシート状の保護層3をさらに備え、該保護層3が前記樹脂層2の少なくとも片面側に配されていることが好ましい。
 斯かる前記シート材1は、例えば図2に示すように、樹脂層2と該樹脂層2の両面側にそれぞれ配された2枚の保護層3とを備えている。また、斯かるシート材1においては、樹脂層2の両面に接するように保護層3が配されている。
 なお、前記シート材1の厚さは、通常、1μm~1000μmである。
As shown in FIG. 2, the sheet material 1 further includes a sheet-like protective layer 3 that protects the resin layer 2, and the protective layer 3 is disposed on at least one side of the resin layer 2. preferable.
For example, as shown in FIG. 2, the sheet material 1 includes a resin layer 2 and two protective layers 3 disposed on both sides of the resin layer 2. Further, in such a sheet material 1, the protective layer 3 is disposed so as to contact both surfaces of the resin layer 2.
The thickness of the sheet material 1 is usually 1 μm to 1000 μm.
 前記樹脂層2の形状は、前記電気絶縁用樹脂組成物がシート状に形成されたものであれば、特に限定されるものではない。
 前記樹脂層2の厚さは、特に限定されるものではなく、通常、1μm~500μmである。
The shape of the resin layer 2 is not particularly limited as long as the resin composition for electrical insulation is formed in a sheet shape.
The thickness of the resin layer 2 is not particularly limited, and is usually 1 μm to 500 μm.
 前記保護層3は、シート状のものであれば特に限定されない。また、前記保護層3の厚さは、特に限定されるものではなく、通常、10~500μmである。 The protective layer 3 is not particularly limited as long as it is a sheet. The thickness of the protective layer 3 is not particularly limited, and is usually 10 to 500 μm.
 前記保護層3としては、例えば、紙、不織布、フィルム等が挙げられる。前記保護層3としては、保護層3と樹脂層2との間における層間剥離がより抑制され得るという点で、紙又は不織布が好ましい。 Examples of the protective layer 3 include paper, nonwoven fabric, and film. The protective layer 3 is preferably paper or non-woven fabric in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed.
 前記保護層3としては、湿式抄紙法により作製されたもの、大気中で乾式法により作製されたものなどが挙げられる。
 前記保護層3としては、保護層3と樹脂層2との間における層間剥離がより抑制され得るという点で、湿式抄紙法により作製された紙が好ましい。
Examples of the protective layer 3 include those prepared by a wet papermaking method and those prepared by a dry method in the air.
The protective layer 3 is preferably paper produced by a wet papermaking method in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed.
 前記保護層3の材質としては、ポリアミド樹脂、ポリエステル樹脂などの合成高分子化合物、セルロースなどの天然高分子化合物等が挙げられる。該材質としては、保護層3と樹脂層2との間における層間剥離がより抑制され得るという点で、ポリアミド樹脂が好ましい。 Examples of the material of the protective layer 3 include synthetic polymer compounds such as polyamide resin and polyester resin, and natural polymer compounds such as cellulose. The material is preferably a polyamide resin in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed.
 前記保護層3のポリアミド樹脂としては、構成モノマーの全てが芳香族炭化水素を有する全芳香族ポリアミド樹脂、構成モノマーの全てが炭化水素として脂肪族炭化水素のみを有する脂肪族ポリアミド樹脂、構成モノマーの一部が芳香族炭化水素を有する半芳香族ポリアミド樹脂などが挙げられる。前記ポリアミド樹脂としては、保護層3と樹脂層2との間における層間剥離がより抑制され得るという点で、全芳香族ポリアミド樹脂が好ましい。即ち、前記保護層3は、前記全芳香族ポリアミド樹脂を含んでいることが好ましい。 The polyamide resin of the protective layer 3 is a wholly aromatic polyamide resin in which all of the constituent monomers have aromatic hydrocarbons, an aliphatic polyamide resin in which all of the constituent monomers have only aliphatic hydrocarbons as hydrocarbons, Examples thereof include semi-aromatic polyamide resins partially having aromatic hydrocarbons. The polyamide resin is preferably a wholly aromatic polyamide resin in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed. That is, it is preferable that the protective layer 3 contains the wholly aromatic polyamide resin.
 また、前記保護層3としては、保護層3と樹脂層2との間における層間剥離がさらに抑制され得るという点、また、難燃性に優れるという点で、全芳香族ポリアミド樹脂の繊維を含む全芳香族ポリアミド紙がより好ましく、全芳香族ポリアミド樹脂の繊維を用いて湿式抄紙法により作製された全芳香族ポリアミド紙がさらに好ましい。 Further, the protective layer 3 includes fibers of wholly aromatic polyamide resin in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed, and that the flame retardancy is excellent. A wholly aromatic polyamide paper is more preferred, and a wholly aromatic polyamide paper produced by wet papermaking using fibers of wholly aromatic polyamide resin is more preferred.
 前記全芳香族ポリアミド紙としては、例えば、アミド基以外がベンゼン環で構成された、フェニレンジアミンとフタル酸との縮合重合物(全芳香族ポリアミド樹脂)を繊維化し、繊維化した全芳香族ポリアミド繊維を主たる構成材として形成されたものが挙げられる。
 前記全芳香族ポリアミド紙は、力学的特性に優れ、シート材1の製造工程におけるハンドリングが良好であるという点で、坪量が5g/m以上であることが好ましい。坪量が5g/m以上であることにより、力学的強度の不足が抑制されシート材1の製造中に破断しにくいという利点がある。
As the wholly aromatic polyamide paper, for example, a wholly aromatic polyamide obtained by fiberizing a condensation polymerization product (fully aromatic polyamide resin) of phenylenediamine and phthalic acid having a benzene ring other than an amide group. The thing formed as a main component material is mentioned.
The wholly aromatic polyamide paper is excellent in mechanical properties and preferably has a basis weight of 5 g / m 2 or more in terms of good handling in the production process of the sheet material 1. When the basis weight is 5 g / m 2 or more, there is an advantage that insufficient mechanical strength is suppressed and the sheet material 1 is not easily broken during production.
 なお、前記全芳香族ポリアミド紙には、本発明の効果を損なわない範囲において他の成分を加えることができ、該他の成分としては、ポリフェニレンスルフィド繊維、ポリエーテルエーテルケトン繊維、ポリエステル繊維、アリレート繊維、液晶ポリエステル繊維、ポリエチレンナフタレート繊維などの有機繊維、又は、ガラス繊維、ロックウール、アスベスト、ボロン繊維、アルミナ繊維などの無機繊維が挙げられる。 In addition, other components can be added to the wholly aromatic polyamide paper as long as the effects of the present invention are not impaired. Examples of the other components include polyphenylene sulfide fibers, polyether ether ketone fibers, polyester fibers, and arylates. Examples thereof include organic fibers such as fibers, liquid crystal polyester fibers, and polyethylene naphthalate fibers, or inorganic fibers such as glass fibers, rock wool, asbestos, boron fibers, and alumina fibers.
 前記全芳香族ポリアミド紙としては、例えば、デュポン社より商品名「ノーメックス」で市販されているもの等を用いることができる。 As the wholly aromatic polyamide paper, for example, those commercially available from DuPont under the trade name “NOMEX” can be used.
 前記保護層3の樹脂層2側には、コロナ処理が施されていることが好ましい。該コロナ処理が施されていることにより、保護層3と樹脂層2との間における層間剥離がより抑制され得るという利点がある。
 前記コロナ処理は、樹脂層2と接する保護層3の一方の面に放電処理を行うことにより、極性を持つカルボキシル基や水酸基を保護層3の一方の面に生成させ、保護層3の一方の面を粗面化する処理である。前記コロナ処理としては、従来公知の一般的な方法を採用することができる。
The protective layer 3 is preferably subjected to a corona treatment on the resin layer 2 side. The corona treatment is advantageous in that delamination between the protective layer 3 and the resin layer 2 can be further suppressed.
In the corona treatment, one surface of the protective layer 3 in contact with the resin layer 2 is subjected to a discharge treatment to generate a polar carboxyl group or hydroxyl group on one surface of the protective layer 3. This is a process for roughening the surface. As the corona treatment, a conventionally known general method can be employed.
 前記シート材1においては、上述した電気絶縁用樹脂組成物と同様に、無機フィラーの凝集粒子の凝集度が500nm以下であることが好ましい。即ち、前記樹脂層2中の無機フィラーの凝集粒子の凝集度は、500nm以下であることが好ましい。 In the sheet material 1, it is preferable that the agglomeration degree of the agglomerated particles of the inorganic filler is 500 nm or less, like the resin composition for electrical insulation described above. That is, the aggregation degree of the aggregated particles of the inorganic filler in the resin layer 2 is preferably 500 nm or less.
 前記シート材1は、互いに接した樹脂層2及び保護層3を備え、前記樹脂層2及び前記保護層3の各凝集破壊力より、前記樹脂層2と前記保護層3との間の層間接着力が大きくなるように構成されていることが好ましい。斯かる構成により、前記樹脂層2と前記保護層3との間における層間剥離が抑制される。 The sheet material 1 includes a resin layer 2 and a protective layer 3 that are in contact with each other, and layer indirect between the resin layer 2 and the protective layer 3 due to the cohesive failure force of the resin layer 2 and the protective layer 3. It is preferable to be configured to increase the wearing force. With such a configuration, delamination between the resin layer 2 and the protective layer 3 is suppressed.
 前記シート材1は、一般的な方法によって製造することができる。
 例えば、樹脂層2のみを備えたシート材1は、上述したように混合した電気絶縁用樹脂組成物をT-ダイを取り付けた押出成形機によってシート状に押し出すことよって製造することができる。又は、樹脂層2のみを備えたシート材1は、電気絶縁用樹脂組成物を射出成形機によってシート状に成形することよって製造することができる。
 また、樹脂層2と該樹脂層2の両側に配された2層の保護層とを備えたシート材1は、例えば、2枚の保護層3で樹脂層2を挟み込んだものを両側から押圧することなどにより製造することができる。
The sheet material 1 can be manufactured by a general method.
For example, the sheet material 1 having only the resin layer 2 can be produced by extruding the resin composition for electrical insulation mixed as described above into a sheet shape by an extruder equipped with a T-die. Or the sheet | seat material 1 provided only with the resin layer 2 can be manufactured by shape | molding the resin composition for electrical insulation in a sheet form with an injection molding machine.
Moreover, the sheet material 1 provided with the resin layer 2 and the two protective layers arranged on both sides of the resin layer 2 presses, for example, a material in which the resin layer 2 is sandwiched between two protective layers 3 from both sides. Can be manufactured.
 前記シート材1は、電気絶縁性を有する点を利用して、電気絶縁用途で使用することができる。例えば、前記シート材1は、自動車などにおけるモーター用の電気絶縁用シート、変圧器(トランス)用の電気絶縁用シート、バスバー用の電気絶縁用シートなどにおいて使用することができる。 The sheet material 1 can be used for electrical insulation by utilizing the point of electrical insulation. For example, the sheet material 1 can be used in an electrical insulation sheet for a motor, an electrical insulation sheet for a transformer (transformer), an electrical insulation sheet for a bus bar, and the like in an automobile or the like.
 本実施形態の電気絶縁用樹脂組成物及びシート材は、上記例示の通りであるが、本発明は、上記例示の電気絶縁用樹脂組成物及びシート材に限定されるものではない。
 また、一般の電気絶縁用樹脂組成物及びシート材において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
The resin composition for electrical insulation and the sheet material of the present embodiment are as illustrated above, but the present invention is not limited to the resin composition for electrical insulation and the sheet material illustrated above.
Moreover, the various aspects used in the resin composition for electrical insulation and a sheet | seat material are employable in the range which does not impair the effect of this invention.
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 下記に示す原料を用いて、電気絶縁用樹脂組成物を製造した。
・ポリスルホン樹脂:
 スルホニル基を複数含み複数のエーテル結合と複数の芳香族炭化水素とをさらに含むポリエーテルポリフェニルスルホン樹脂(PES)樹脂
 (BASF社製 製品名「ウルトラゾーンE2000」)
・ポリアミド樹脂:
 テレフタル酸単位とノナンジアミン単位とを含むポリアミド(PA)樹脂
 (PA9T クラレ社製 商品名「ジェネスタN1000A」)
・無機フィラー(材質:水酸化マグネシウム 形状:板状)
 (堺化学工業社製 製品名「MGZ-3」)平均粒子径100nm
 等電点-12、吸熱分解反応の開始温度-340℃
・無機フィラー(材質:水酸化マグネシウム 形状:板状)
 (堺化学工業社製 製品名「MGZ-1」)平均粒子径800nm
 等電点-12、吸熱分解反応の開始温度-340℃
・無機フィラー(材質:炭酸カルシウム 形状:直方体状)
 (神島化学工業社製 製品名「カルシーズ」)平均粒子径60nm
 等電点-9、吸熱分解反応の開始温度-600℃
・無機フィラー(材質:シリカ 形状:球状)
 (堺化学社製 製品名「Sperical」)平均粒子径100nm
 等電点-2、吸熱分解反応の開始温度-なし(吸熱分解反応が起こらない)
A resin composition for electrical insulation was produced using the raw materials shown below.
・ Polysulfone resin:
Polyether polyphenylsulfone resin (PES) resin containing a plurality of sulfonyl groups and further containing a plurality of ether bonds and a plurality of aromatic hydrocarbons (product name “Ultrazone E2000” manufactured by BASF)
・ Polyamide resin:
Polyamide (PA) resin containing terephthalic acid units and nonanediamine units (PA9T Kuraray Co., Ltd., trade name “Genesta N1000A”)
・ Inorganic filler (Material: Magnesium hydroxide, Shape: Plate)
(Product name “MGZ-3” manufactured by Sakai Chemical Industry Co., Ltd.) Average particle size: 100 nm
Isoelectric point -12, endothermic decomposition start temperature -340 ° C
・ Inorganic filler (Material: Magnesium hydroxide, Shape: Plate)
(Product name “MGZ-1” manufactured by Sakai Chemical Industry Co., Ltd.) Average particle size 800 nm
Isoelectric point -12, endothermic decomposition start temperature -340 ° C
・ Inorganic filler (material: calcium carbonate, shape: rectangular parallelepiped)
(Product name “CALCIES” manufactured by Kamishima Chemical Co., Ltd.) Average particle size 60 nm
Isoelectric point-9, endothermic decomposition reaction start temperature-600 ° C
・ Inorganic filler (Material: Silica, Shape: Spherical)
(Product name “Special” manufactured by Sakai Chemical Co., Ltd.)
Isoelectric point -2, endothermic decomposition reaction start temperature-none (no endothermic decomposition reaction occurs)
 また、保護層として、下記のものを用いた。
・全芳香族ポリアミド紙(2枚)
 (デュポン社製 商品名「ノーメックスT410」 厚さ50μm)
 樹脂層に接する面に下記条件でコロナ処理が施されている
 コロナ処理条件:
  機器-PILLAR TECHNOLOGIES社製 「500シリーズ」
  圧力-大気圧、出力-500W、処理速度-4m/分、試料幅-0.4m
Moreover, the following were used as a protective layer.
・ Fully aromatic polyamide paper (2 sheets)
(DuPont brand name "NOMEX T410" thickness 50μm)
Corona treatment is applied to the surface in contact with the resin layer under the following conditions.
Equipment-PILLAR TECHNOLOGIES "500 Series"
Pressure-atmospheric pressure, output-500W, processing speed-4m / min, sample width-0.4m
(実施例1)
 2軸混練機(テクノベル社製)を用いて、PES樹脂とPA樹脂とをPES/PA=80/20の質量比になるように300℃で混合(ドライブレンド)した。次に、この樹脂混合物と水酸化マグネシウムとを樹脂混合物/水酸化マグネシウム=96/4の質量比になるようにさらに混合し、電気絶縁用樹脂組成物を調製した。
 続いて、電気絶縁用樹脂組成物を押出成形により300℃で100μm厚のシート状に成形して樹脂層を形成した。
 このようにして、樹脂層のみを備えたシート材(幅15cm×長さ10m)を製造した。
(Example 1)
Using a biaxial kneader (manufactured by Technobel), PES resin and PA resin were mixed (dry blended) at 300 ° C. so that the mass ratio of PES / PA = 80/20. Next, this resin mixture and magnesium hydroxide were further mixed at a mass ratio of resin mixture / magnesium hydroxide = 96/4 to prepare a resin composition for electrical insulation.
Subsequently, the resin composition for electrical insulation was molded into a sheet having a thickness of 100 μm at 300 ° C. by extrusion molding to form a resin layer.
In this way, a sheet material (width 15 cm × length 10 m) having only the resin layer was produced.
(実施例2)
 樹脂混合物と水酸化マグネシウムとを樹脂混合物/水酸化マグネシウム=94/6の質量比になるように混合した点以外は、実施例1と同様にしてシート材を製造した。
(Example 2)
A sheet material was produced in the same manner as in Example 1 except that the resin mixture and magnesium hydroxide were mixed so that the mass ratio of resin mixture / magnesium hydroxide = 94/6.
(実施例3)
 無機フィラーとして水酸化マグネシウムの代わりに炭酸カルシウムを用いた点、樹脂混合物と水酸化マグネシウムとを樹脂混合物/水酸化マグネシウム=94/6の質量比になるように混合した点以外は、実施例1と同様にしてシート材を製造した。
(Example 3)
Example 1 except that calcium carbonate is used in place of magnesium hydroxide as the inorganic filler, and the resin mixture and magnesium hydroxide are mixed so that the mass ratio of resin mixture / magnesium hydroxide = 94/6. A sheet material was produced in the same manner as described above.
(実施例4)
 樹脂混合物と水酸化マグネシウムとを樹脂混合物/水酸化マグネシウム=94/6の質量比になるように混合した点以外は、実施例1と同様にして樹脂層を形成した。
 さらに、樹脂層の両面側にそれぞれ全芳香族ポリアミド紙を配置した。さらに、2枚の金属板で挟み250℃に加熱した熱プレス機によって圧力4MPaで5分間プレスすることにより、樹脂層と保護層とを備えたシート材(200μm厚)を製造した。
Example 4
A resin layer was formed in the same manner as in Example 1 except that the resin mixture and magnesium hydroxide were mixed at a mass ratio of resin mixture / magnesium hydroxide = 94/6.
Furthermore, wholly aromatic polyamide paper was disposed on each side of the resin layer. Furthermore, the sheet | seat material (200 micrometers thickness) provided with the resin layer and the protective layer was manufactured by pressing for 5 minutes by pressure 4MPa with the hot press machine which was pinched | interposed between two metal plates and heated to 250 degreeC.
(比較例1)
 無機フィラーを配合しなかった点以外は、実施例1と同様にして電気絶縁用樹脂組成物を調製し、この電気絶縁用樹脂組成物を用いて100μm厚の樹脂層を形成した。
(Comparative Example 1)
A resin composition for electrical insulation was prepared in the same manner as in Example 1 except that the inorganic filler was not blended, and a resin layer having a thickness of 100 μm was formed using this resin composition for electrical insulation.
(比較例2)
 無機フィラーとして水酸化マグネシウムの代わりにシリカを用いた点以外は、実施例1と同様にして100μm厚の樹脂層を形成した。
(Comparative Example 2)
A resin layer having a thickness of 100 μm was formed in the same manner as in Example 1 except that silica was used instead of magnesium hydroxide as the inorganic filler.
(比較例3)
 無機フィラーとして平均粒子径100nmの水酸化マグネシウムの代わりに、上記の平均粒子径800nmの水酸化マグネシウムを用いた点、また、樹脂混合物と水酸化マグネシウムとを樹脂混合物/水酸化マグネシウム=94/6の質量比になるように混合した点以外は、実施例1と同様にして100μm厚の樹脂層を形成した。
(Comparative Example 3)
Instead of magnesium hydroxide having an average particle diameter of 100 nm as the inorganic filler, the above-mentioned magnesium hydroxide having an average particle diameter of 800 nm was used, and the resin mixture and magnesium hydroxide were mixed with resin mixture / magnesium hydroxide = 94/6. A resin layer having a thickness of 100 μm was formed in the same manner as in Example 1 except that the mixing was performed so that the mass ratio became.
(比較例4)
 無機フィラーを配合しなかった点以外は、実施例1と同様にして電気絶縁用樹脂組成物を調製し、この電気絶縁用樹脂組成物を用いて100μm厚の樹脂層を形成した。
 さらに、実施例4と同様にして、この樹脂層と保護層とを備えたシート材(200μm厚)を製造した。
(Comparative Example 4)
A resin composition for electrical insulation was prepared in the same manner as in Example 1 except that the inorganic filler was not blended, and a resin layer having a thickness of 100 μm was formed using this resin composition for electrical insulation.
Further, in the same manner as in Example 4, a sheet material (200 μm thickness) provided with this resin layer and a protective layer was produced.
<耐絶縁劣化性(電気絶縁寿命)の評価>
 各実施例及び各比較例で製造したシート状サンプルについて、耐圧試験機(東京精密社製、高周波耐圧試験機「TSH-510」)を用いて、常温気中下で絶縁破壊に至る時間を測定した。詳しくは、実施例1~3および比較例1~3については、印加電圧を25kV/mmとし、実施例4及び比較例4については、印加電圧を20kV/mmとした。また、電極としては、直径25mmの円柱電極を用いた。測定サンプル上の10点を測定後、破壊時間のワイブル分布を作成し、累積発生確率が63.2%になる時間を平均絶縁寿命時間とした。
<Evaluation of insulation deterioration resistance (electrical insulation life)>
For the sheet-like samples manufactured in each Example and each Comparative Example, the time until dielectric breakdown was measured in a normal temperature atmosphere using a pressure tester (Tokyo Seimitsu Co., Ltd., high frequency pressure tester “TSH-510”). did. Specifically, the applied voltage was set to 25 kV / mm for Examples 1 to 3 and Comparative Examples 1 to 3, and the applied voltage was set to 20 kV / mm for Example 4 and Comparative Example 4. In addition, a cylindrical electrode having a diameter of 25 mm was used as the electrode. After measuring 10 points on the measurement sample, a Weibull distribution of breakdown time was created, and the time when the cumulative occurrence probability was 63.2% was defined as the average insulation life time.
<力学的強度の評価(耐引き裂き性試験)>
 JIS C2151における「端裂抵抗(B法)」に準じて、23℃において、電気絶縁性シートを縦(MD)方向に沿って裂くときの端裂抵抗値をそれぞれ測定した。
<Evaluation of mechanical strength (tear resistance test)>
In accordance with “end tear resistance (Method B)” in JIS C2151, the end tear resistance values when the electrical insulating sheet was torn along the longitudinal (MD) direction were measured at 23 ° C., respectively.
<凝集粒子の凝集度の測定>
 実施例1~4及び比較例2、3のサンプル(樹脂層)における凝集粒子の凝集度を以下に示すようにして測定した。
 各サンプルをMD方向に沿って切断し、その断面を走査型電子顕微鏡(日立ハイテク社製、機器名「S-3400N」)で観察し画像データ(倍率10000倍)を得た。さらに、この画像データを画像処理し、続いて画像解析ソフト(製品名「A像くん」、旭化成エンジニア社製)によって画像解析した。
・画像処理
 まず、走査型電子顕微鏡(SEM)観察により得られた画像を、画像解析ソフトウェア(アメリカ国立衛生研究所[NIH]オープンソース、名称「Image J」)を用いて2値化を行った。無機フィラーがSEM画像上で明部で表示されるため、2値化においては、まず明暗反転を実施し、無機フィラーが暗部で表示されるようにした。その後、明るさ及びコントラストを補正することにより、無機フィラーを際だたせ、閾値設定によって無機フィラーのみを選択し、2値化画像を得た。
・画像解析
 次に、得られた2値化画像を、画像解析ソフトウェア(製品名「A像くん」、旭化成エンジニア社製)を用いて解析した。なお、2値化画像における暗部を無機フィラーとし、矩形状の解析範囲(8.5μm×12.7μm)の外縁辺と重なる無機フィラーを解析対象から除いた。また、2値化画像において寄り集まっている無機フィラーの内側に空隙がある場合に空隙を埋める処理は行わず、また、2値化画像において互いに接触している無機フィラーを分離させる処理は行わなかった。針状や板状などの無機フィラーについては、樹脂組成物のシート成形物の切断方向によって画像において表示される面積が異なり得ると考えられる。しかしながら、本方法においては、無機フィラーの形状にかかわらず、上記の操作により一律に解析した。
 上記のように条件設定して画像解析により求めた各凝集粒子の面積から、該凝集粒子が真円であると仮定したときの直径(円相当直径)を算出し、該直径を度数分布により表した。
 そして、度数分布の中央値であるメジアン径(即ち、累積度数50%径)を求め、さらに、メジアン径の2倍以上の円相当直径を有するものを対象として、対象とした凝集粒子の円相当直径を平均することにより、凝集粒子の凝集度を算出した。
<Measurement of aggregation degree of aggregated particles>
The aggregation degree of the aggregated particles in the samples (resin layers) of Examples 1 to 4 and Comparative Examples 2 and 3 was measured as follows.
Each sample was cut along the MD direction, and the cross section was observed with a scanning electron microscope (manufactured by Hitachi High-Tech, device name “S-3400N”) to obtain image data (magnification 10,000 times). Furthermore, this image data was subjected to image processing, and then image analysis was performed using image analysis software (product name “A Image-kun”, manufactured by Asahi Kasei Engineers).
Image processing First, an image obtained by observation with a scanning electron microscope (SEM) was binarized using image analysis software (National Institutes of Health [NIH] open source, name “Image J”). . Since the inorganic filler is displayed in the bright part on the SEM image, in binarization, first, light / dark reversal was performed so that the inorganic filler was displayed in the dark part. After that, by correcting the brightness and contrast, the inorganic filler was made to stand out, and only the inorganic filler was selected by setting the threshold value to obtain a binarized image.
-Image analysis Next, the obtained binarized image was analyzed using image analysis software (product name "A image kun", manufactured by Asahi Kasei Engineers). In addition, the dark part in a binarized image was made into the inorganic filler, and the inorganic filler which overlaps with the outer edge of a rectangular analysis range (8.5 micrometers x 12.7 micrometers) was excluded from the analysis object. In addition, when there are voids inside the inorganic fillers that are gathered together in the binarized image, the process of filling the voids is not performed, and the process of separating the inorganic fillers that are in contact with each other is not performed in the binarized image It was. For inorganic fillers such as needles and plates, the area displayed in the image may differ depending on the cutting direction of the sheet molded product of the resin composition. However, in this method, it analyzed uniformly by said operation irrespective of the shape of an inorganic filler.
The diameter (equivalent circle diameter) when the aggregated particles are assumed to be a perfect circle is calculated from the area of each aggregated particle obtained by image analysis under the condition setting as described above, and the diameter is represented by a frequency distribution. did.
Then, the median diameter (that is, the cumulative frequency 50% diameter) that is the median value of the frequency distribution is obtained, and further, the equivalent of the aggregated particles that are the target of those having a circle equivalent diameter that is twice or more the median diameter. The degree of aggregation of the aggregated particles was calculated by averaging the diameters.
 各実施例及び各比較例のシート材の構成、及び、上記の評価結果を表1及び表2に示す。また、実施例1及び比較例2における画像データをそれぞれ図3及び図4に示す。 Tables 1 and 2 show the configurations of the sheet materials of each Example and each Comparative Example and the above evaluation results. The image data in Example 1 and Comparative Example 2 are shown in FIGS. 3 and 4, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~4では、凝集粒子の凝集度を参照すると、無機フィラーの凝集が抑制されており、分散性が良好であった。一方、比較例2、3では、無機フィラーの凝集が確認された。
 なお、比較例2、3における度数分布(上記の「凝集粒子の凝集度の測定」を参照)においては、円相当直径が例えば800nmのところにも凝集粒子の分布があった。即ち、比較例2、3においては、比較的大きい凝集粒子が存在していた。
 一方、各実施例における度数分布においては、例えば、800nm程度の円相当直径のところに凝集粒子の分布がなく、比較例2、3のような比較的大きい凝集粒子は、存在していなかった。
 また、画像データを観察すると、図4に示すように、比較例2における無機フィラーの凝集は、樹脂組成物中のポリアミド樹脂部分に沿って顕著に生じていた。
In Examples 1 to 4, referring to the degree of aggregation of the aggregated particles, the aggregation of the inorganic filler was suppressed and the dispersibility was good. On the other hand, in Comparative Examples 2 and 3, aggregation of the inorganic filler was confirmed.
In addition, in the frequency distribution in Comparative Examples 2 and 3 (see “Measurement of the degree of aggregation of aggregated particles” above), the distribution of aggregated particles was also present at a circle equivalent diameter of, for example, 800 nm. That is, in Comparative Examples 2 and 3, relatively large aggregated particles existed.
On the other hand, in the frequency distribution in each example, for example, there was no distribution of aggregated particles at a circle-equivalent diameter of about 800 nm, and relatively large aggregated particles as in Comparative Examples 2 and 3 did not exist.
Further, when observing the image data, as shown in FIG. 4, the aggregation of the inorganic filler in Comparative Example 2 was remarkably generated along the polyamide resin portion in the resin composition.
 以上の結果から把握できるように、実施例においては、比較例に比べ、耐絶縁劣化性(電気絶縁寿命)に優れ、しかも力学的強度(耐引き裂き性)にも優れている。 As can be seen from the above results, in the examples, compared with the comparative examples, the insulation deterioration resistance (electrical insulation life) is excellent and the mechanical strength (tearing resistance) is also excellent.
 本発明の電気絶縁用樹脂組成物を含むシート材は、電気絶縁性、力学的強度、加工性を要する電気絶縁用シートとして、好適に用いられ得る。具体的には、例えば、モーターコイル線の周辺に配される電気絶縁用部材、トランス、バスパー、コンデンサ、ケーブル用の電気絶縁用部材、又は、電子回路基板、IGBTなどモジュール端子の電気絶縁用シートなどの用途に好適である。 The sheet material containing the resin composition for electrical insulation of the present invention can be suitably used as an electrical insulation sheet that requires electrical insulation, mechanical strength, and workability. Specifically, for example, an electrical insulation member disposed around the motor coil wire, an electrical insulation member for a transformer, a busper, a capacitor, a cable, or an electrical insulation sheet for a module terminal such as an electronic circuit board or IGBT It is suitable for such applications.
1:シート材、 2:樹脂層、 3:保護層。
 
1: Sheet material, 2: Resin layer, 3: Protective layer.

Claims (15)

  1.  ポリスルホン樹脂、ポリアリーレンスルフィド樹脂、ポリイミド樹脂、及び、エポキシ基含有フェノキシ樹脂からなる群より選択された少なくとも1種と、ポリアミド樹脂と、無機フィラーとを含み、
     前記無機フィラーが金属水酸化物又は金属炭酸塩を含有し、
     前記無機フィラーの平均粒子径が500nm以下である電気絶縁用樹脂組成物。
    Including at least one selected from the group consisting of a polysulfone resin, a polyarylene sulfide resin, a polyimide resin, and an epoxy group-containing phenoxy resin, a polyamide resin, and an inorganic filler,
    The inorganic filler contains a metal hydroxide or a metal carbonate;
    The resin composition for electrical insulation whose average particle diameter of the said inorganic filler is 500 nm or less.
  2.  前記無機フィラーの等電点が7以上である請求項1記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to claim 1, wherein the inorganic filler has an isoelectric point of 7 or more.
  3.  前記金属水酸化物又は前記金属炭酸塩が330℃を超える温度で吸熱分解反応を起こすものである請求項1又は2に電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to claim 1 or 2, wherein the metal hydroxide or the metal carbonate undergoes an endothermic decomposition reaction at a temperature exceeding 330 ° C.
  4.  前記無機フィラーが前記金属水酸化物を含有し、該金属水酸化物が水酸化マグネシウム、水酸化カルシウム、又は水酸化バリウムである請求項1~3のいずれか1項に記載の電気絶縁用樹脂組成物。 The resin for electrical insulation according to any one of claims 1 to 3, wherein the inorganic filler contains the metal hydroxide, and the metal hydroxide is magnesium hydroxide, calcium hydroxide, or barium hydroxide. Composition.
  5.  前記無機フィラーが前記金属炭酸塩を含有し、該金属炭酸塩が炭酸カルシウム、又は、炭酸マグネシウムである請求項1~3のいずれか1項に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to any one of claims 1 to 3, wherein the inorganic filler contains the metal carbonate, and the metal carbonate is calcium carbonate or magnesium carbonate.
  6.  前記無機フィラーの含有割合が1~20質量%である請求項1~5のいずれか1項に記載の電気絶縁用樹脂組成物。 6. The resin composition for electrical insulation according to claim 1, wherein the content of the inorganic filler is 1 to 20% by mass.
  7.  前記ポリスルホン樹脂が、分子中に複数のエーテル結合を有するポリエーテルスルホン樹脂である請求項1~6のいずれか1項に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to any one of claims 1 to 6, wherein the polysulfone resin is a polyethersulfone resin having a plurality of ether bonds in a molecule.
  8.  前記ポリスルホン樹脂が、分子中に複数の芳香族炭化水素を有するポリフェニルスルホン樹脂である請求項1~7のいずれか1項に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to any one of claims 1 to 7, wherein the polysulfone resin is a polyphenylsulfone resin having a plurality of aromatic hydrocarbons in a molecule.
  9.  前記ポリアリーレンスルフィド樹脂が、ポリフェニレンスルフィド樹脂である請求項1~8のいずれか1項に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to any one of claims 1 to 8, wherein the polyarylene sulfide resin is a polyphenylene sulfide resin.
  10.  前記ポリイミド樹脂が、ポリエーテルイミド樹脂又はポリアミドイミド樹脂である請求項1~9のいずれか1項に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to any one of claims 1 to 9, wherein the polyimide resin is a polyetherimide resin or a polyamideimide resin.
  11.  前記ポリアミド樹脂が、分子中に芳香族炭化水素を有するポリアミド樹脂である請求項1~10のいずれか1項に記載の電気絶縁用樹脂組成物。 The resin composition for electrical insulation according to any one of claims 1 to 10, wherein the polyamide resin is a polyamide resin having an aromatic hydrocarbon in a molecule.
  12.  請求項1~11のいずれか1項に記載された電気絶縁用樹脂組成物がシート状に形成された樹脂層を備えているシート材。 A sheet material provided with a resin layer in which the resin composition for electrical insulation according to any one of claims 1 to 11 is formed into a sheet shape.
  13.  前記樹脂層を保護するシート状の保護層をさらに備え、該保護層が前記樹脂層の少なくとも片面側に配されている請求項12記載のシート材。 The sheet material according to claim 12, further comprising a sheet-like protective layer for protecting the resin layer, wherein the protective layer is disposed on at least one side of the resin layer.
  14.  前記保護層が全芳香族ポリアミド樹脂を含む請求項13記載のシート材。 The sheet material according to claim 13, wherein the protective layer contains a wholly aromatic polyamide resin.
  15.  電気絶縁用途で使用する請求項12~14のいずれか1項に記載のシート材。 The sheet material according to any one of claims 12 to 14, which is used for electrical insulation.
PCT/JP2013/072230 2012-08-22 2013-08-21 Resin composition for electrical insulation and sheet material WO2014030657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-183604 2012-08-22
JP2012183604A JP2014040528A (en) 2012-08-22 2012-08-22 Resin composition for electrical insulation and sheet material

Publications (1)

Publication Number Publication Date
WO2014030657A1 true WO2014030657A1 (en) 2014-02-27

Family

ID=50149963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072230 WO2014030657A1 (en) 2012-08-22 2013-08-21 Resin composition for electrical insulation and sheet material

Country Status (2)

Country Link
JP (1) JP2014040528A (en)
WO (1) WO2014030657A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531989A (en) * 2015-11-24 2018-01-02 日东新兴有限公司 Resin combination and electrical insulation sheet
WO2018141552A1 (en) * 2017-02-01 2018-08-09 Basf Se Polyarylene ether sulfone comprising naphthalic acid anhydride endgroups
WO2019219368A1 (en) * 2018-05-18 2019-11-21 Solvay Specialty Polymers Usa, Llc Compatibilized polymer composition comprising a polyamide
CN111002656A (en) * 2019-12-08 2020-04-14 国网江苏省电力有限公司滨海县供电分公司 High heat-resistant insulating film for oil-immersed transformer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710339B (en) 2015-07-09 2020-10-16 住友精化株式会社 Partial discharge resistant electrically insulating resin composition
KR102102682B1 (en) * 2017-10-25 2020-04-22 한국생산기술연구원 Highly insulated surface treatment of automobile electric parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126464A (en) * 1983-01-10 1984-07-21 Toray Ind Inc Polyamide-imide resin composition
JPH05271542A (en) * 1992-02-05 1993-10-19 Solvay & Cie Composition based on polyphenylene sulfide
JP2007002221A (en) * 2005-05-26 2007-01-11 Toray Ind Inc Biaxially oriented polyarylene sulfide film
WO2007049571A1 (en) * 2005-10-27 2007-05-03 Toray Industries, Inc. Polyarylene sulfide film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126464A (en) * 1983-01-10 1984-07-21 Toray Ind Inc Polyamide-imide resin composition
JPH05271542A (en) * 1992-02-05 1993-10-19 Solvay & Cie Composition based on polyphenylene sulfide
JP2007002221A (en) * 2005-05-26 2007-01-11 Toray Ind Inc Biaxially oriented polyarylene sulfide film
WO2007049571A1 (en) * 2005-10-27 2007-05-03 Toray Industries, Inc. Polyarylene sulfide film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531989A (en) * 2015-11-24 2018-01-02 日东新兴有限公司 Resin combination and electrical insulation sheet
CN107531989B (en) * 2015-11-24 2021-06-15 日东新兴有限公司 Resin composition and electrical insulating sheet
WO2018141552A1 (en) * 2017-02-01 2018-08-09 Basf Se Polyarylene ether sulfone comprising naphthalic acid anhydride endgroups
JP2020506269A (en) * 2017-02-01 2020-02-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polyarylene ether sulfone containing naphthalic anhydride end groups
US11193020B2 (en) 2017-02-01 2021-12-07 Basf Se Polyarylene ether sulfone comprising naphthalic acid anhydride endgroups
JP7114608B2 (en) 2017-02-01 2022-08-08 ビーエーエスエフ ソシエタス・ヨーロピア Polyarylene ether sulfone containing naphthalic anhydride end groups
WO2019219368A1 (en) * 2018-05-18 2019-11-21 Solvay Specialty Polymers Usa, Llc Compatibilized polymer composition comprising a polyamide
CN111002656A (en) * 2019-12-08 2020-04-14 国网江苏省电力有限公司滨海县供电分公司 High heat-resistant insulating film for oil-immersed transformer
CN111002656B (en) * 2019-12-08 2022-05-20 国网江苏省电力有限公司滨海县供电分公司 High heat-resistant insulating film for oil-immersed transformer

Also Published As

Publication number Publication date
JP2014040528A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
WO2014030657A1 (en) Resin composition for electrical insulation and sheet material
JP4875855B2 (en) Laminated sheet
JP5405104B2 (en) Resin composition and molded product thereof
EP2594610B1 (en) Electrically insulating resin composition, and laminate sheet
Amin Methods for preparation of nano-composites for outdoor insulation applications
EP2701162A1 (en) Three-dimensional object for electrical insulation, and electrically insulating sheet material
JP5695927B2 (en) Electrical insulating resin sheet
JP2014157783A (en) Electrical insulation sheet
JP5690606B2 (en) Electrical insulating resin sheet
WO2014065377A1 (en) Corona resistant member, corona resistant resin composition, and method of developing corona resistance of resin molded article
WO2013035652A1 (en) Electrical insulation sheet
EP2190926B1 (en) Injection molded article and composition for the preparation thereof
JP2008119999A (en) Laminated sheet
WO2013111635A1 (en) Electrically insulating sheet
JP6059500B2 (en) Three-dimensional object for electrical insulation
JP3821212B2 (en) Non-halogen flame retardant wire / cable
JP5568401B2 (en) Electrical insulating resin composition
JP2009199818A (en) Insulated wire and wire harness
EP3851482A1 (en) High strength and electrically conductive nylon nanocomposites for fuel conveyance system
JP2023073601A (en) Polyarylene sulfide composition
JP2016173882A (en) Insulation sheet
JP2014220123A (en) Electric insulation sheet and rotary electric machine
CN118507108A (en) Insulated wire and method for maintaining insulation film of high-voltage insulated wire with low dielectric constant and high elastic modulus
JP2012035621A (en) Laminate sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831076

Country of ref document: EP

Kind code of ref document: A1