WO2014028996A1 - Process for obtaining a fertilizer from the solid phase of an effluent, and fertilizer - Google Patents

Process for obtaining a fertilizer from the solid phase of an effluent, and fertilizer Download PDF

Info

Publication number
WO2014028996A1
WO2014028996A1 PCT/BR2013/000318 BR2013000318W WO2014028996A1 WO 2014028996 A1 WO2014028996 A1 WO 2014028996A1 BR 2013000318 W BR2013000318 W BR 2013000318W WO 2014028996 A1 WO2014028996 A1 WO 2014028996A1
Authority
WO
WIPO (PCT)
Prior art keywords
fertilizer
sludge
waste
production process
process according
Prior art date
Application number
PCT/BR2013/000318
Other languages
French (fr)
Portuguese (pt)
Inventor
Ivan BERGIER TAVARES DE LIMA
Carlos Alberto SHIMATA
Hernandes DE CAMPOS MONTEIRO
Antonio ARANTES BUENO SOBRINHO
Luis Alberto DE OLIVEIRA RIEGER
José Anibal COMASTRI FILHO
Jair Antonio BORGMANN
José Alberto PINESSO
Original Assignee
Empresa Brasileira De Pesquisa Agropecuária - Embrapa
Cooperativa Agropecuária São Gabriel Do Oeste Ltda - Cooasgo
Rieger Irrigação Ltda. - Epp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Empresa Brasileira De Pesquisa Agropecuária - Embrapa, Cooperativa Agropecuária São Gabriel Do Oeste Ltda - Cooasgo, Rieger Irrigação Ltda. - Epp filed Critical Empresa Brasileira De Pesquisa Agropecuária - Embrapa
Publication of WO2014028996A1 publication Critical patent/WO2014028996A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F1/00Fertilisers made from animal corpses, or parts thereof
    • C05F1/005Fertilisers made from animal corpses, or parts thereof from meat-wastes or from other wastes of animal origin, e.g. skins, hair, hoofs, feathers, blood
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B7/00Fertilisers based essentially on alkali or ammonium orthophosphates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F7/00Fertilisers from waste water, sewage sludge, sea slime, ooze or similar masses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/22Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to the field of wastewater treatment and the development of an organic fertilizer from the solid phase of fresh or biodigested effluents by pyrolysis. More specifically, the present invention relates to the process of treating swine effluent in which organic matter is removed and biogas is used. The sludge is pyrolised, resulting in a product with agronomic properties, and classified as a fertilizer or soil conditioner. The process of the invention is also applicable to solid phase transformation of organic effluents resulting from industrial, agro-industrial and general urban processes. BACKGROUND OF THE INVENTION
  • Soil organic matter plays an important role in increasing nutrient retention capacity, structuring and moisture retention in tropical soils, and represents an important compartment for the fixation of atmospheric carbon.
  • these compounds can be degraded, losing their function as a conditioner of physical and chemical properties, in addition to releasing greenhouse gases. Therefore the stability and reactivity of organic matter are fundamental factors in the choice of an organic fertilizer, both from an agricultural and global climate change point of view.
  • the pyrolysis solid product is usually produced with the function of reducing the volume and mass of a given raw material at temperatures from 300 to 600 ° C. This thermally altered material degrades much more slowly, creating a large stock of long-term soil carbon, which is about 1500 to 2000 times more stable than unpolyzed organic matter. From the pyrolysis of agricultural residues such as wood, plant residues, animal residues and their By-products, as well as industrial and urban waste, it is possible to synthesize highly stable and highly reactive humic substances that can act as soil conditioners, improving physical and nutritional properties.
  • Pyrolysis products can be derived from plant, animal and human byproducts and have been shown to have nitrogenous and mineral compounds such as calcium, magnesium, potassium and phosphorus. Harmful substances such as heavy metals are generally present in very small concentrations.
  • Animal waste is usually processed by aerobic (composting) or anaerobic (biodigestion) processes, with the final product (aerobic compost or anaerobic liquid effluent) subsequently distributed in the soil.
  • aerobic composting
  • anaerobic biodigestion
  • ponds have a reasonable removal of carbonaceous organic material, nitrogen remains in the effluent at very high concentrations and further treatment steps are required. meet the wastewater emission standards set forth in environmental legislation.
  • sewage sludge which is a waste characterized by having a large amount of organic charge and pathogens in the effluent, having a very strong odor.
  • This material must be treated, resulting in a product with potential fertilizer that can be used in soils.
  • sewage sludge treatment thickening, dehydration and drying, stabilization, conditioning, decontamination, liming, composting, pasteurization, incineration, pyrolysis, gasification, etc. Usually these treatments are performed specialized treatment plants, which generates high cost of storage and transportation.
  • US6171499 dated 06/01/1997 discloses a method for treating sewage sludge, combining anaerobic digestion and incineration in a few steps: anaerobic digestion with biogas production, mechanical dehydration of digested sludge. , the combustion of natural gas-enriched biogas for the appliance to operate in at least 88% yield, for drying the dehydrated sludge there are two apparatus connected in series, where the first operates with an oil circulation boiler and the second a dryer. fluid bed and cooler, connected to a cyclone.
  • the method according to this invention is applicable to the treatment and transformation of agricultural effluents such as manure into granular and bagged fertilizer.
  • Shinogi et al. described the production of pyrolyzed manure through the temperature range 250-800 ° C in closed containers, and at this temperature the specific surface was low ( ⁇ 20 m2 g-1) in this temperature range.
  • the pyrolyzed manure also had a high ash content (up to 60%), a high pH (> 10) and a total carbon content of less than 40%.
  • Bilitewski in an article entitled "Production and Possible Applications of Activated Carbon from Waste” (Recycling Berlin, 79 Int. Recycling Cong. Thome-Kozimiensky, Ed, Berlin V1, 1979, 714-721), reported a pyrolyzed product from bed. chicken in a fluidized bed reactor. He reported that bird droppings produced a product with a specific surface area of 60.5 m2 g-1, 27.5% elemental carbon and 52.4% ash content.
  • Patent Application RU2447045 dated 10/26/2010 concerns the transformation of chicken litter by pyrolysis at 500-550 ° C for the purpose of obtaining a high carbon mineral residue and gas phase. .
  • the chicken litter was mixed with waste containing cellulose in the ratio 1: 1 or 1: 0.7 by weight.
  • thermochemical conversion after digestion which promotes the utilization of the phase solid (sludge) from swine effluent, highly rich in nutrients essential for plant growth and development, such as nitrogen, phosphorus, potassium, calcium, magnesium and micronutrients, not containing heavy metals, and enhancing the waste by resulting in a new type of slow release nutrient fertilizer.
  • the process can be done on the property of the pig farmer, thus avoiding transportation and storage costs, proving to be technically and economically viable.
  • the present invention relates to effluent processing to produce useful materials and compositions at an acceptable cost, without producing smelly odors, and with high energy efficiency.
  • the invention relates to a multi-step process for the production of sludge-based fertilizer from swine wastewater: the biodigested effluent has its solid phase separated and subjected to thermochemical conversion at 600 ° C in a rotary drum. The final product has slow release of nutrients because it contains struvite crystals.
  • Raw materials that have little commercial value are converted into a fertilizer with high added value and differentiated characteristics, having a high content of nitrogen, phosphorus, potassium.
  • Figure 1 Visual characteristics of the fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C (A: 15 rpm for 5 hours; B: 22 rpm for 7 hours; C: 25 rpm for 4 hours; D: 40 rpm for 5 hours).
  • FIG. 1 Hydrogenionic potential (pH) of fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C.
  • Figure 3 Electrical conductivity of fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C.
  • Figure 4 Nitrate (NO3-) released in deionized water by fertilizers obtained from biodigested and pyrolyzed swine effluent sludge at 600 ° C.
  • Figure 5 Phosphate (P04-3) released in deionized water by fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C.
  • FIG. 6 Potassium (K +) released in deionized water by fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C.
  • Figure 7 Scanning electron microscopy image indicating the presence of struvite crystal.
  • Figure 8 X-ray analysis of the crystal electron microscopy indicating the main elements that make up struvite (P, Mg, O). DETAILED DESCRIPTION OF THE INVENTION
  • effluent can be defined as wastewater resulting from industrial, agro-industrial processes, confined animal production systems and domestic sewage that are discharged into the environment.
  • effluent refers to wastewater from swine confined animal production systems (SPACs).
  • the effluent is subjected to the commonly performed treatment which is prior digestion of the waste, such as digestion, which can be carried out in stabilizing ponds or anaerobic digesters, which digest organic matter under anaerobic conditions (ie in absence of oxygen).
  • the liquid effluent resulting from biodigestion is subjected to a separation step from the solid phase contained in the effluent, sludge, which may be carried out by one or more separation processes, such as screening, flotation, decantation, filtration, centrifugation, sedimentation. . Remaining liquid effluent after this low solids separation can be reused in the crop as fertigation.
  • thermochemical conversion treatment which may be by combustion, incineration, and more specifically, thermochemical conversion by pyrolysis.
  • the temperature for thermochemical conversion may range from 300-1200 ° C, but is preferably performed at 600 ° C.
  • the conversion drum Thermochemistry is preferably rotary, ranging from 10 to 50 rpm.
  • the residence time varies between 2-10 hours, depending on the waste to be processed and the desired characteristics of the product.
  • the final product has fertilizing characteristics because it has high levels of essential plant macronutrients such as nitrogen, phosphorus, potassium, calcium, magnesium, and micronutrients such as iron, manganese, zinc and copper.
  • the final product is characterized by slow release nutrients to the soil solution because it contains struvite crystals. Heavy metals, if any, are trapped in the fertilizer matrix.
  • Other types of waste may be added to this solid phase, such as slaughterhouse and refrigerator waste, algal biomass or other terrestrial or aquatic feedstock.
  • Synthetic fertilizers may also be added to balance the chemical formula of the fertilizer produced.
  • the fertilizer can be used in fresh or granulated soil.
  • Pig waste is digested by anaerobic processes (digestion), with the final product being anaerobic liquid effluent.
  • the effluent obtained from the digestion of swine manure passes through an inlet pipe and is pumped into a separation unit consisting of a series of rotary sieves in series, with a 4 mm double-sided cylindrical mesh stainless steel mesh. engines up to 15 hp each, both at low rpm, with horizontal working angle.
  • the pilot system has a 20 hp vacuum hydraulic pump that allows a flow of 40 cubic meters per hour of biodigested effluent in the system, separating approximately 500 kg of sludge per working hour.
  • the yield of the separation process on rotating screens is in the range of 10 to 20% of the separated wet effluent (wet solid phase, or sludge).
  • the liquid phase can be applied as fertigation, and sludge is used for fertilizer production.
  • the separation unit has a scraping blade to distribute the sludge in a movable reservoir, coupled to a conveyor tube with holes in its lower part, so that a greater separation efficiency of the liquid part occurs, with the aim that the Sludge that is transported to the thermochemical conversion drum contains less liquid, increasing process efficiency.
  • the drum for the thermochemical conversion to the sludge pyrolysis that has been used is rotatable and with adjustable working inclination.
  • the sludge was pyrolyzed using three residence times of 4, 5 and 7 hours and four rotation rates of the thermochemical conversion drum which were 15, 22, 25, 40 rpm under atmospheric pressure and a pyrolysis temperature at around 600 ° C.
  • the drum rotation rate defines the grain size of the product, and can be adjusted up to 50 cycles per minute. The higher the rotation rate, the smaller the final product grain size will be.
  • the working inclination of the thermochemical conversion rotary drum was 10 ° with an internal axis of 50 mm. Thus, just under half of the drum volume, about 400 liters, was filled with sludge, which allowed the processing of about 500 to 600 kg of wet solids per thermochemical conversion step.
  • the final product is obtained by adjusting the operating time, temperature ramp, final process temperature and rotational rate of the thermochemical conversion drum.
  • the residence time of the material within the drum 6 generally depends on the type of biomass, and may remain for as long as the mass preheat and water evaporate.
  • the flexibility of the system's operation control allows a fine adjustment between rotation rate, temperature rise and end temperature which reduces volatile carbon losses, ie increases the thermochemical conversion rate of volatile carbon and therefore increases the amount of volatile carbon. carbon and yield and quality of the final product.
  • the drum rotation rate should also be adjusted to achieve standardization of product granulation.
  • Table 1 shows the data on the analyzed characteristics of each fertilizer produced at four combinations of pyrolysis drum rotation and residence time tested (A: 15 rpm for 5 hours; B: 22 rpm for 7 hours; C: 25 rpm for 4 hours). hours: D: 40 rpm for 5 hours), and its comparison with air-dried swine sludge without thermochemical treatment (Control).
  • the drum / charger rotation rate and residence time combinations can be seen in Figure 1, detailing the physical characteristics of each product tested (A: 5 rpm for 5 hours; B: 22 rpm for 7 hours; C: 25 rpm for 4 hours; D: 40 rpm for 5 hours).
  • Table 1 shows the data of the analyzed characteristics of each fertilizer produced in four combinations of pyrolysis drum rotation and residence time, and their comparison with air-dried swine sludge without thermochemical treatment (Control).
  • Drum / charger rotation rate and residence time combinations can be seen in Figure 1, detailing the physical characteristics of each product tested.
  • Figure 2 shows the pH graph and Figure 3 shows the electrical conductivity graph of the fertilizer when released in water.
  • Figures 4, 5, and 6 show respectively the cumulative levels of nitrate, potassium and phosphorus released in water for each of the fertilizers produced (A, B, C and D).
  • the different particle sizes for products A, B, C and D are mainly due to the drum rotation rate, so that smaller grain size is obtained for higher rotation rates (Figure 1).
  • Figures 2 and 3 show respectively the pH and electrical conductivity graphs of 150 ml of solvent water for 1 g of products A, B, C and D. pH values converge to around 8 along of the twenty days analyzed, with no visible differences between each product ( Figure 2).
  • Figures 4, 5 and 6 show respectively the cumulative levels of nitrate, potassium and phosphate released cumulatively in water over 20 days for each of the fertilizers produced (A, B, C and D). From the joint analysis of figures 1, 3, 4, 5 and 6 it appears that the product B represents a low particle size fertilizer and with slow release properties of nutrient ions to plants.
  • Figure 7 shows that carbon dioxide release, ie the occurrence of carbon degradation is lower for product B, indicating that the carbon remaining in product B is more stable and less susceptible to physical, chemical and decomposition. / or biological. Therefore, the fertilizer product B obtained by the process described here, with longer residence time and relatively higher rotation rate, brings together unique characteristics of agronomic and environmental application, turning the sludge into a high added value product.
  • thermochemical conversion of the resulting material in this example indicated that, unlike biochar derived from plant biomass, the biodigested manure from pyrolyzed swine showed an increase in the amount of oxygen with increasing pyrolysis temperature (Bergier et al., 2013, Low vacuum thermochemical conversion of anaerobically digested swine solids (Chemosphere, v. 92, p.714-720).
  • a more detailed study of the biochar structure and composition obtained from the pyrolysis of pig biodigested manure provides evidence of the presence of struvite crystals.

Abstract

The process specifically targets the treatment of pig-rearing waste, consisting in the pre-digestion of the waste, comprising the solid and liquid phases, post-digestion phase separation (e.g. by: screening, floatation, settling, filtration, centrifugation and sedimentation), thermochemical treatment of the sludge (solid phase), optionally with the addition of other nutrients and granulation. Biomass such as algae, abattoir or chiller plant waste, in addition to all types of organic plant material, may be added prior to the step of thermal treatment which is carried out (preferably in a rotary drum) at temperatures of 300 to 1200°C. The fertilizer, the composition of which includes struvite crystals, obtained by means of the process is applied for.

Description

PROCESSO DE OBTENÇÃO DE FERTILIZANTE A PARTIR DE FASE SÓLIDA SOLID PHASE FERTILIZER PROCESS
DE EFLUENTE E FERTILIZANTE WASTE AND FERTILIZER
A presente invenção refere-se ao campo de tratamento de águas residuárias e o desenvolvimento de um fertilizante orgânico a partir da fase sólida de efluentes in natura ou biodigeridos, por pirólise. Mais especificamente, a presente invenção diz respeito ao processo de tratamento de efluentes da suinocultura em que há remoção de matéria orgânica e aproveitamento de biogás. O lodo é submetido à pirólise, resultando em um produto com propriedades agronómicas, e classificado como fertilizante ou condicionador de solos. O processo da invenção também é aplicável à transformação da fase sólida de efluentes orgânicos resultantes de processos industriais, agroindustriais e urbanos em geral. FUNDAMENTOS DA INVENÇÃO The present invention relates to the field of wastewater treatment and the development of an organic fertilizer from the solid phase of fresh or biodigested effluents by pyrolysis. More specifically, the present invention relates to the process of treating swine effluent in which organic matter is removed and biogas is used. The sludge is pyrolised, resulting in a product with agronomic properties, and classified as a fertilizer or soil conditioner. The process of the invention is also applicable to solid phase transformation of organic effluents resulting from industrial, agro-industrial and general urban processes. BACKGROUND OF THE INVENTION
A matéria orgânica do solo apresenta um importante papel no incremento da capacidade de retenção de nutrientes, estruturação e retenção de umidade em solos tropicais, além de representar um importante compartimento para a fixação do carbono atmosférico. Porém, devido ao manejo agrícola, esses compostos podem ser degradados, perdendo sua função como condicionador das propriedades físicas e químicas, além de liberar gases causadores do efeito estufa. Portanto a estabilidade e a reatividade da matéria orgânica são fatores fundamentais na escolha de um adubo orgânico, tanto sob o ponto de vista agrícola quanto sob o ponto de vista das mudanças climáticas globais.  Soil organic matter plays an important role in increasing nutrient retention capacity, structuring and moisture retention in tropical soils, and represents an important compartment for the fixation of atmospheric carbon. However, due to agricultural management, these compounds can be degraded, losing their function as a conditioner of physical and chemical properties, in addition to releasing greenhouse gases. Therefore the stability and reactivity of organic matter are fundamental factors in the choice of an organic fertilizer, both from an agricultural and global climate change point of view.
O produto sólido resultante da pirólise é normalmente produzido com a função de reduzir o volume e massa de determinada matéria-prima, a temperaturas de 300 a 600 °C. Esse material termicamente alterado se degrada muito mais lentamente, criando um grande estoque de carbono no solo de longo prazo, sendo cerca de 1500 a 2000 vezes mais estável do que a matéria orgânica não pirolisada. A partir da pirólise dos resíduos da agricultura como madeira, restos de plantas, resíduos de animais e seus subprodutos e também resíduos industriais e urbanos, é possível sintetizar substâncias húmicas de alta estabilidade e de alta reatividade, capazes de agirem como condicionadores de solos, melhorando as propriedades físicas e nutricionais. The pyrolysis solid product is usually produced with the function of reducing the volume and mass of a given raw material at temperatures from 300 to 600 ° C. This thermally altered material degrades much more slowly, creating a large stock of long-term soil carbon, which is about 1500 to 2000 times more stable than unpolyzed organic matter. From the pyrolysis of agricultural residues such as wood, plant residues, animal residues and their By-products, as well as industrial and urban waste, it is possible to synthesize highly stable and highly reactive humic substances that can act as soil conditioners, improving physical and nutritional properties.
Os produtos de pirólise podem ser derivados de subprodutos de origem vegetal, animal e humano e demonstraram possuir compostos nitrogenados e minerais como cálcio, magnésio, potássio e fósforo. As substâncias nocivas, como metais pesados geralmente mostram-se presentes em concentrações muito pequenas. Pyrolysis products can be derived from plant, animal and human byproducts and have been shown to have nitrogenous and mineral compounds such as calcium, magnesium, potassium and phosphorus. Harmful substances such as heavy metals are generally present in very small concentrations.
O lançamento de efluentes não tratados de suínos no solo, rios e lagos, constituem riscos potenciais para o aparecimento ou recrudescimento de doenças, proliferação de insetos, mau cheiro e degradação dos recursos naturais com a morte de peixes e animais, toxicidade em plantas, eutrofização de recursos hídricos. As perdas e os desperdícios de água na granja aumentam o volume dos efluentes produzidos, agravando o problema da poluição e elevando os custos de armazenamento, tratamento, transporte e distribuição dos dejetos. O volume de dejetos líquidos depende do manejo, mas de uma forma geral, Oliveira em seu artigo intitulado "Uso racional da água na suinocultura" (EMBRAPA-CNPSA. Documentos, 27, 1993. 188p.) relata uma estimativa de produção de dejetos em 100 litros por matriz por dia em ciclo completo e 60 litros por matriz por dia para as unidades de produção de leitões e 7,0 litros por terminado por dia. A composição química dos dejetos também está associada ao sistema de manejo adotado e apresenta grandes variações na concentração dos elementos componentes, dependendo da diluição a qual foram submetidos e do sistema de armazenamento. The release of untreated swine effluent into soil, rivers and lakes pose potential risks for disease onset or resurgence, insect proliferation, odor and degradation of natural resources with fish and animal death, plant toxicity, eutrophication. of water resources. Water losses and wastes on the farm increase the volume of effluents produced, aggravating the pollution problem and increasing the costs of storage, treatment, transportation and distribution of waste. The volume of liquid waste depends on management, but generally, Oliveira in his article entitled "Rational use of water in pig farming" (EMBRAPA-CNPSA. Documents, 27, 1993. 188p.) Reports an estimate of waste production in 100 liters per matrix per day in full cycle and 60 liters per matrix per day for piglet production units and 7.0 liters per finished per day. The chemical composition of the waste is also associated with the management system adopted and presents large variations in the concentration of the component elements, depending on the dilution to which they were submitted and the storage system.
Os resíduos animais geralmente são processados por processos aeróbios (compostagem) ou anaeróbios (biodigestão), sendo o produto final (composto aeróbio ou efluente líquido anaeróbio) posteriormente distribuído no solo. Apesar das lagoas apresentarem uma remoção razoável de material orgânico carbonáceo, o nitrogénio permanece no efluente em concentrações bastante elevadas, sendo necessárias outras etapas de tratamento de modo a atender aos padrões de emissão de efluentes líquidos previstos em legislações ambientais. Animal waste is usually processed by aerobic (composting) or anaerobic (biodigestion) processes, with the final product (aerobic compost or anaerobic liquid effluent) subsequently distributed in the soil. Although ponds have a reasonable removal of carbonaceous organic material, nitrogen remains in the effluent at very high concentrations and further treatment steps are required. meet the wastewater emission standards set forth in environmental legislation.
A maioria dos documentos existentes no estado da arte diz respeito ao tratamento do lodo de esgoto, que é um resíduo caracterizado por possuir uma grande quantidade de carga orgânica e patógenos no efluente, possuindo odor muito forte. Esse material deve ser tratado, resultando em produto com potencial fertilizante podendo ser utilizado em solos. São várias as técnicas disponíveis para o tratamento do lodo de esgoto: espessamento, desidratação e secagem, estabilização, condicionamento, descontaminação, calagem, compostagem, pasteurização, incineração, pirólise, gaseificação, etc. Geralmente esses tratamentos são realizados estações de tratamento especializadas, o que gera alto custo de armazenamento e transporte.  Most of the state-of-the-art documents concern the treatment of sewage sludge, which is a waste characterized by having a large amount of organic charge and pathogens in the effluent, having a very strong odor. This material must be treated, resulting in a product with potential fertilizer that can be used in soils. There are several techniques available for sewage sludge treatment: thickening, dehydration and drying, stabilization, conditioning, decontamination, liming, composting, pasteurization, incineration, pyrolysis, gasification, etc. Usually these treatments are performed specialized treatment plants, which generates high cost of storage and transportation.
A patente US6171499 com data de prioridade de 06/01/1997 relata um método para o tratamento do lodo de esgoto, associando a digestão anaeróbica e a incineração, em alguns passos: a digestão anaeróbica com produção de biogás, a desidratação mecânica do lodo digerido, a combustão do biogás enriquecido com gás natural para o aparelho operar em pelo menos 88% de rendimento, para a secagem do lodo desidratado há dois aparatos ligados em série, onde o primeiro funciona com uma caldeira de circulação de óleo e o segundo um secador de leito fluidizado e refrigerador, ligado a um ciclone. O método de acordo com esta invenção é aplicável ao tratamento e transformação de efluentes agrícolas como os estercos, em fertilizantes granulados e ensacados. US6171499 dated 06/01/1997 discloses a method for treating sewage sludge, combining anaerobic digestion and incineration in a few steps: anaerobic digestion with biogas production, mechanical dehydration of digested sludge. , the combustion of natural gas-enriched biogas for the appliance to operate in at least 88% yield, for drying the dehydrated sludge there are two apparatus connected in series, where the first operates with an oil circulation boiler and the second a dryer. fluid bed and cooler, connected to a cyclone. The method according to this invention is applicable to the treatment and transformation of agricultural effluents such as manure into granular and bagged fertilizer.
Alguns estudos sobre a pirólise de resíduos animais são relatados. Shinogi et al., em seu artigo intitulado "Basic Characteristics of Low-Temperature Carbon Products from Waste Sludge" (Adv. Environ. Res., 2003, 7, 661 -665) prepararam um produto de pirólise de esterco bovino por aquecimento a 380°C numa atmosfera de ar limitada e relataram as propriedades do produto, que possuía baixa superfície específica de 2,2 m2 g-1 , 25,6% de cinzas e 49,2% de carbono elementar. Os autores descreveram a utilização principal para o produto de pirólise como condicionador de solo devido ao alto conteúdo de íons nitrato, fosfato e potássio. Em um segundo estudo, intitulado "Pyrolysis of Plant, Animal and Human Waste: Physical and Chemical Characterization of the Pyrolytic Products" (Bioresource Technol. 2003, 90, 241 -247), Shinogi et al. descreveram a produção de esterco pirolisado através da faixa de temperatura de 250-800°C em recipientes fechados, sendo que nessa temperatura a superfície específica foi baixa (<20 m2 g-1 ), neste intervalo de temperatura. O esterco pirolisado também tinha elevado teor de cinzas (até 60%), um pH elevado (> 10) e um conteúdo total de carbono de menos de 40%. Some studies on pyrolysis of animal waste are reported. Shinogi et al., In their article entitled "Basic Characteristics of Low-Temperature Carbon Products from Waste Sludge" (Adv. Environ. Res., 2003, 7, 661-665) prepared a 380-manure pyrolysis product by heating to ° C in a limited air atmosphere and reported the properties of the product, which had a low specific surface area of 2.2 m2 g-1, 25.6% ash and 49.2% elemental carbon. The authors described the main use for pyrolysis as a soil conditioner due to the high nitrate, phosphate and potassium ions content. In a second study, entitled "Pyrolysis of Plant, Animal and Human Waste: Physical and Chemical Characterization of the Pyrolytic Products" (Bioresource Technol. 2003, 90, 241-247), Shinogi et al. described the production of pyrolyzed manure through the temperature range 250-800 ° C in closed containers, and at this temperature the specific surface was low (<20 m2 g-1) in this temperature range. The pyrolyzed manure also had a high ash content (up to 60%), a high pH (> 10) and a total carbon content of less than 40%.
Bilitewski em um artigo intitulado "Production and Possible Applications of Activated Carbon from Waste" (Recycling Berlin, 79 Int. Recycling Cong. Thome-Kozimiensky, Ed, Berlin V1 , 1979, 714-721 ), relatou um produto pirolisado a partir de cama-de-frango em um reator de leito fluidizado. Ele relatou que os excrementos de aves produziram um produto com uma superfície específica de 60,5 m2 g-1 , 27,5% de carbono elementar e 52,4% de teor de cinzas.  Bilitewski in an article entitled "Production and Possible Applications of Activated Carbon from Waste" (Recycling Berlin, 79 Int. Recycling Cong. Thome-Kozimiensky, Ed, Berlin V1, 1979, 714-721), reported a pyrolyzed product from bed. chicken in a fluidized bed reactor. He reported that bird droppings produced a product with a specific surface area of 60.5 m2 g-1, 27.5% elemental carbon and 52.4% ash content.
O pedido de patente RU2447045 com data de prioridade de 26/10/2010 diz respeito à transformação de cama de frango por pirólise a 500-550°C, com o objetivo de se obter um resíduo mineral com alto teor de carbono e a fase gasosa. Neste caso a cama de frango foi misturada a resíduos contendo celulose na proporção de 1 : 1 ou 1 :0,7 em peso.  Patent Application RU2447045 dated 10/26/2010 concerns the transformation of chicken litter by pyrolysis at 500-550 ° C for the purpose of obtaining a high carbon mineral residue and gas phase. . In this case the chicken litter was mixed with waste containing cellulose in the ratio 1: 1 or 1: 0.7 by weight.
Embora várias metodologias existam para a produção de fertilizantes por pirólise a partir de resíduos de plantas, animais e industriais, torna-se necessário aproveitar o potencial representado pela grande quantidade de efluente produzido na suinocultura de modo geral, a fim de se produzir um produto com alto valor agregado a partir de uma fonte alternativa. Dessa forma, um produto fertilizante com propriedades agronómicas e ambientais potencializadas e diferenciadas pode ser produzido com baixo custo, produzindo energia e reduzindo a carga orgânica do efluente, resultando em biomassa rica em nutrientes e com elevado teor de matéria orgânica, altamente estabilizada.  Although several methodologies exist for the production of pyrolysis fertilizers from plant, animal and industrial residues, it is necessary to take advantage of the potential represented by the large amount of effluent produced in swine production in order to produce a product with high added value from an alternative source. Thus, a fertilizer product with enhanced and differentiated agronomic and environmental properties can be produced at low cost, producing energy and reducing the effluent's organic load, resulting in nutrient-rich biomass with high stabilized organic matter content.
Assim, uma das vantagens do processo reside em uma etapa de conversão termoquímica após a biodigestão, o que promove o aproveitamento da fase sólida (lodo) proveniente do efluente suinícola, altamente rico em nutrientes essenciais para o crescimento e desenvolvimento das plantas, como nitrogénio, fósforo, potássio, cálcio, magnésio, e micronutrientes, não contendo metais pesados, além de valorizar o resíduo por resultar em um novo tipo de fertilizante de liberação lenta de nutrientes. O processo pode ser feito na propriedade do suinocultor, evitando assim custos com transporte e armazenamento, demonstrando ser viável técnica e economicamente. SUMÁRIO DA INVENÇÃO Thus, one of the advantages of the process lies in a step of thermochemical conversion after digestion, which promotes the utilization of the phase solid (sludge) from swine effluent, highly rich in nutrients essential for plant growth and development, such as nitrogen, phosphorus, potassium, calcium, magnesium and micronutrients, not containing heavy metals, and enhancing the waste by resulting in a new type of slow release nutrient fertilizer. The process can be done on the property of the pig farmer, thus avoiding transportation and storage costs, proving to be technically and economically viable. SUMMARY OF THE INVENTION
A presente invenção diz respeito ao processamento de efluentes para produzir materiais e composições úteis, a um custo aceitável, sem a produção de odores malcheirosos, e com alta eficiência energética. Em particular, a invenção diz respeito a um processo multi-etapas para a produção de fertilizante com base no lodo oriundo de águas residuárias suinícolas: o efluente biodigerido tem sua fase sólida separada e submetida à conversão termoquímica a 600°C em tambor rotativo. O produto final possui liberação lenta de nutrientes por conter cristais de estruvita. As matérias-primas que têm pouco valor comercial são convertidas em um fertilizante com alto valor agregado e com características diferenciadas, possuindo alto teor de nitrogénio, fósforo, potássio.  The present invention relates to effluent processing to produce useful materials and compositions at an acceptable cost, without producing smelly odors, and with high energy efficiency. In particular, the invention relates to a multi-step process for the production of sludge-based fertilizer from swine wastewater: the biodigested effluent has its solid phase separated and subjected to thermochemical conversion at 600 ° C in a rotary drum. The final product has slow release of nutrients because it contains struvite crystals. Raw materials that have little commercial value are converted into a fertilizer with high added value and differentiated characteristics, having a high content of nitrogen, phosphorus, potassium.
BREVE DESCRIÇÃO DAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Características visuais dos fertilizantes obtidos a partir do lodo suíno biodigerido e pirolisado a 600°C (A: 15 rpm por 5 horas; B: 22 rpm por 7 horas; C: 25 rpm por 4 horas; D: 40 rpm por 5 horas).  Figure 1: Visual characteristics of the fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C (A: 15 rpm for 5 hours; B: 22 rpm for 7 hours; C: 25 rpm for 4 hours; D: 40 rpm for 5 hours).
Figura 2: Potencial hidrogeniônico (pH) dos fertilizantes obtidos a partir do lodo suíno biodigerido e pirolisado a 600°C. Figure 2: Hydrogenionic potential (pH) of fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C.
Figura 3: Condutividade elétrica dos fertilizantes obtidos a partir do lodo suíno biodigerido e pirolisado a 600°C.  Figure 3: Electrical conductivity of fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C.
Figura 4: Nitrato (NO3-) liberado em água deionizada pelos fertilizantes obtidos a partir do lodo do efluente suíno biodigerido e pirolisado a 600°C. Figura 5: Fosfato (P04-3) liberado em água deionizada pelos fertilizantes obtidos a partir do lodo suíno biodigerido e pirolisado a 600°C. Figure 4: Nitrate (NO3-) released in deionized water by fertilizers obtained from biodigested and pyrolyzed swine effluent sludge at 600 ° C. Figure 5: Phosphate (P04-3) released in deionized water by fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C.
Figura 6: Potássio (K+) liberado em água deionizada pelos fertilizantes obtidos a partir do lodo suíno biodigerido e pirolisado a 600°C. Figure 6: Potassium (K +) released in deionized water by fertilizers obtained from biodigested and pyrolyzed swine sludge at 600 ° C.
Figura 7: Imagem em microscopia eletrônica de varredura indicando a presença de cristal de estruvita. Figure 7: Scanning electron microscopy image indicating the presence of struvite crystal.
Figura 8: Análise de raios X em microscopia eletrônica do cristal indicando elementos principais que compõem a estruvita (P, Mg, O). DESCRIÇÃO DETALHADA DA INVENÇÃO  Figure 8: X-ray analysis of the crystal electron microscopy indicating the main elements that make up struvite (P, Mg, O). DETAILED DESCRIPTION OF THE INVENTION
O termo "efluente" pode ser definido como águas residuárias resultante de processos industriais, agroindustriais, de sistemas produtivos de animais confinados e esgotos domésticos, que são lançados no meio ambiente. Preferencialmente para a presente invenção o termo "efluente" diz respeito a águas residuárias oriundas de sistemas produtivos de animais confinados suinícolas (SPACs).  The term "effluent" can be defined as wastewater resulting from industrial, agro-industrial processes, confined animal production systems and domestic sewage that are discharged into the environment. Preferably for the present invention the term "effluent" refers to wastewater from swine confined animal production systems (SPACs).
O efluente, especialmente de SPACs suinícolas é submetido ao tratamento comumente realizado que é a digestão prévia do resíduo, como a biodigestão, que pode ser realizada em lagoas de estabilização ou biodigestores anaeróbicos, que digerem a matéria orgânica em condições anaeróbicas (isto é, em ausência de oxigénio).  The effluent, especially from swine SPACs, is subjected to the commonly performed treatment which is prior digestion of the waste, such as digestion, which can be carried out in stabilizing ponds or anaerobic digesters, which digest organic matter under anaerobic conditions (ie in absence of oxygen).
O efluente líquido resultante da biodigestão é submetido a uma etapa de separação da fase sólida contida no efluente, o lodo, que pode ser realizado por um ou mais processos de separação, como por exemplo, peneiramento, flotação, decantação, filtração, centrifugação, sedimentação. O efluente líquido que sobra após esta separação com baixo teor de sólidos pode ser reutilizado na lavoura, como fertirrigação.  The liquid effluent resulting from biodigestion is subjected to a separation step from the solid phase contained in the effluent, sludge, which may be carried out by one or more separation processes, such as screening, flotation, decantation, filtration, centrifugation, sedimentation. . Remaining liquid effluent after this low solids separation can be reused in the crop as fertigation.
O lodo que foi separado da parte líquida do efluente é submetido ao tratamento de conversão termoquímica, o qual pode ser por combustão, incineração, e mais especificamente, à conversão termoquímica por pirólise. A temperatura para a conversão termoquímica pode variar entre 300- 1200°C, mas é preferencialmente realizada a 600°C. O tambor de conversão termoquímica é preferencialmente rotativo, variando de 10 a 50 rpm. O tempo de residência varia entre 2-10 horas, dependendo do resíduo a ser processado e das características desejadas do produto. Sludge that has been separated from the liquid part of the effluent is subjected to thermochemical conversion treatment, which may be by combustion, incineration, and more specifically, thermochemical conversion by pyrolysis. The temperature for thermochemical conversion may range from 300-1200 ° C, but is preferably performed at 600 ° C. The conversion drum Thermochemistry is preferably rotary, ranging from 10 to 50 rpm. The residence time varies between 2-10 hours, depending on the waste to be processed and the desired characteristics of the product.
O produto final possui características fertilizantes por possuir altos teores de macronutrientes essenciais às plantas como nitrogénio, fósforo, potássio, cálcio, magnésio, e micronutrientes como ferro, manganês, zinco e cobre. O produto final se caracteriza por possuir nutrientes de liberação lenta para a solução do solo por conter cristais de estruvita. Os metais pesados se existirem, ficam retidos na matriz do fertilizante. A esta fase sólida podem ser adicionados outros tipos de resíduos, como resíduos de matadouros e frigoríficos, biomassa algal ou outro tipo de matéria prima de origem terrestre ou aquática. Também podem ser adicionados fertilizantes sintéticos, visando o equilíbrio da fórmula química do fertilizante produzido. O fertilizante pode ser utilizado no solo in natura ou granulado. The final product has fertilizing characteristics because it has high levels of essential plant macronutrients such as nitrogen, phosphorus, potassium, calcium, magnesium, and micronutrients such as iron, manganese, zinc and copper. The final product is characterized by slow release nutrients to the soil solution because it contains struvite crystals. Heavy metals, if any, are trapped in the fertilizer matrix. Other types of waste may be added to this solid phase, such as slaughterhouse and refrigerator waste, algal biomass or other terrestrial or aquatic feedstock. Synthetic fertilizers may also be added to balance the chemical formula of the fertilizer produced. The fertilizer can be used in fresh or granulated soil.
O exemplo a seguir é descrito apenas para melhor entender a invenção, não estando a mesma limitada às características colocadas nos exemplos. The following example is described only to better understand the invention and is not limited to the features set forth in the examples.
EXEMPLO EXAMPLE
Os dejetos suinícolas é digerido por processos anaeróbios (biodigestão), sendo o produto final o efluente líquido anaeróbio. O efluente obtido da digestão dos dejetos suínos passa por um tubo de entrada e é bombeado para uma unidade de separação constituído por um conjunto de peneiras rotativas em série, com tela de aço inox com malha cilíndrica de abertura de 4 mm, com rotação de dois motores de até 15 cv cada, ambos em baixa rotação, com angulação de trabalho horizontal. O sistema piloto possui uma bomba hidráulica à vácuo de 20 cv que admite no sistema uma vazão de 40 metros cúbicos por hora de efluente biodigerido, separando aproximadamente 500 kg de lodo por hora de trabalho. O rendimento do processo de separação em peneiras rotativas é na faixa de 10 a 20 % do efluente úmido separado (fase sólida úmida, ou lodo). A fase líquida pode ser aplicada como fertirrigação, e o lodo é utilizado para a produção do fertilizante. A unidade de separação possui uma lâmina de raspagem para distribuir o lodo em um reservatório móvel, acoplado a um tubo transportador com furos em sua parte inferior, de modo que ocorra uma maior eficiência de separação da parte líquida, objetivando-se com isso que o lodo que é transportado para o tambor de conversão termoquímica contenha menor quantidade de líquidos, aumentando a eficiência do processo. Pig waste is digested by anaerobic processes (digestion), with the final product being anaerobic liquid effluent. The effluent obtained from the digestion of swine manure passes through an inlet pipe and is pumped into a separation unit consisting of a series of rotary sieves in series, with a 4 mm double-sided cylindrical mesh stainless steel mesh. engines up to 15 hp each, both at low rpm, with horizontal working angle. The pilot system has a 20 hp vacuum hydraulic pump that allows a flow of 40 cubic meters per hour of biodigested effluent in the system, separating approximately 500 kg of sludge per working hour. The yield of the separation process on rotating screens is in the range of 10 to 20% of the separated wet effluent (wet solid phase, or sludge). The liquid phase can be applied as fertigation, and sludge is used for fertilizer production. The separation unit has a scraping blade to distribute the sludge in a movable reservoir, coupled to a conveyor tube with holes in its lower part, so that a greater separation efficiency of the liquid part occurs, with the aim that the Sludge that is transported to the thermochemical conversion drum contains less liquid, increasing process efficiency.
O tambor para a conversão termoquímica para a pirólise do lodo que foi utilizado é rotativo e com inclinação de trabalho regulável. O lodo foi pirolisado utilizando-se três tempos de residência de 4, 5 e 7 horas e quatro taxas de rotação do tambor de conversão termoquímica que foram de 15, 22, 25, 40 rpm, sob pressão atmosférica e a uma temperatura de pirólise ao redor de 600°C. A taxa de rotação do tambor define a granulometria do produto, e pode ser ajustada até 50 ciclos por minuto. Quanto maior a taxa de rotação menor será a granulometria do produto final. A inclinação de trabalho do tambor rotativo de conversão termoquímica foi de 10° com um eixo interno de 50 mm. Com isso, pouco menos da metade do volume do tambor, cerca de 400 litros, foi preenchido com o lodo, o que conferiu o processamento de cerca de 500 a 600 kg de sólidos úmidos por etapa de conversão termoquímica.  The drum for the thermochemical conversion to the sludge pyrolysis that has been used is rotatable and with adjustable working inclination. The sludge was pyrolyzed using three residence times of 4, 5 and 7 hours and four rotation rates of the thermochemical conversion drum which were 15, 22, 25, 40 rpm under atmospheric pressure and a pyrolysis temperature at around 600 ° C. The drum rotation rate defines the grain size of the product, and can be adjusted up to 50 cycles per minute. The higher the rotation rate, the smaller the final product grain size will be. The working inclination of the thermochemical conversion rotary drum was 10 ° with an internal axis of 50 mm. Thus, just under half of the drum volume, about 400 liters, was filled with sludge, which allowed the processing of about 500 to 600 kg of wet solids per thermochemical conversion step.
O produto final é obtido a partir de ajustes do tempo de funcionamento, da rampa de temperatura, da temperatura final de processo e da taxa de rotação do tambor rotativo de conversão termoquímica. O tempo de residência do material dentro do tambor (6) geralmente depende do tipo de biomassa, e pode permanecer pelo tempo necessário para o preaquecimento da massa e a evaporação da água. A flexibilidade do controle de funcionamento do sistema permite um ajuste fino entre taxa de rotação, elevação da temperatura e temperatura final que reduz as perdas de carbono voláteis, isto é, aumenta a taxa de conversão termoquímica de carbonos voláteis e, consequentemente, aumenta a quantidade de carbono fixo e rendimento e qualidade do produto final. A taxa de rotação do tambor também deve ser ajustada de modo a obter padronização na granulação do produto. A Tabela 1 mostra os dados das características analisadas de cada fertilizante produzido em quatro combinações de rotação do tambor de pirólise e tempo de residência testados (A: 15 rpm por 5 horas; B: 22 rpm por 7 horas; C: 25 rpm por 4 horas; D: 40 rpm por 5 horas), e sua comparação com o dejeto de lodo suíno seco ao ar, sem tratamento termoquímico (Controle). The final product is obtained by adjusting the operating time, temperature ramp, final process temperature and rotational rate of the thermochemical conversion drum. The residence time of the material within the drum 6 generally depends on the type of biomass, and may remain for as long as the mass preheat and water evaporate. The flexibility of the system's operation control allows a fine adjustment between rotation rate, temperature rise and end temperature which reduces volatile carbon losses, ie increases the thermochemical conversion rate of volatile carbon and therefore increases the amount of volatile carbon. carbon and yield and quality of the final product. The drum rotation rate should also be adjusted to achieve standardization of product granulation. Table 1 shows the data on the analyzed characteristics of each fertilizer produced at four combinations of pyrolysis drum rotation and residence time tested (A: 15 rpm for 5 hours; B: 22 rpm for 7 hours; C: 25 rpm for 4 hours). hours: D: 40 rpm for 5 hours), and its comparison with air-dried swine sludge without thermochemical treatment (Control).
As combinações de taxa de rotação do tambor/carbonizador e de tempo de residência podem ser verificadas na Figura 1 , com detalhe das características físicas de cada produto testado (A: 5 rpm por 5 horas; B: 22 rpm por 7 horas; C: 25 rpm por 4 horas; D: 40 rpm por 5 horas). A Tabela 1 mostra os dados das características analisadas de cada fertilizante produzido em quatro combinações de rotação do tambor de pirólise e tempo de residência, e sua comparação com o dejeto de lodo suíno seco ao ar, sem tratamento termoquímico (Controle).  The drum / charger rotation rate and residence time combinations can be seen in Figure 1, detailing the physical characteristics of each product tested (A: 5 rpm for 5 hours; B: 22 rpm for 7 hours; C: 25 rpm for 4 hours; D: 40 rpm for 5 hours). Table 1 shows the data of the analyzed characteristics of each fertilizer produced in four combinations of pyrolysis drum rotation and residence time, and their comparison with air-dried swine sludge without thermochemical treatment (Control).
Tabela 1 . Caracterização dos fertilizantes produzidos, submetidos a diferentes rotações e tempos de residência no tambor rotativo de pirólise a 600°C (A: 15 rpm por 5 horas; B: 22 rpm por 7 horas; C: 25 rpm por 4 horas; Table 1 Characterization of the fertilizers produced, submitted to different rotations and residence times in the pyrolysis rotary drum at 600 ° C (A: 15 rpm for 5 hours; B: 22 rpm for 7 hours; C: 25 rpm for 4 hours;
Características Controle* A B C DControl Features * A B C D
Matéria Seca (%) 82 89 98 86 91Dry Matter (%) 82 89 98 86 91
Matéria orgânica total (%) 62 65 62 66 54Total Organic Matter (%) 62 65 62 66 54
Cinzas (%) 20 24 36 20 36Ashes (%) 20 24 36 20 36
Carbono orgânico total (%) 36 38 36 38 32Total Organic Carbon (%) 36 38 36 38 32
Nitrogénio (%) 4,54 2,26 3,07 3,28 2,97Nitrogen (%) 4.54 2.26 3.07 3.28 2.97
Fósforo (g kg-1 ) 41 ,45 17,32 42,55 35,87 34,39Phosphorus (g kg-1) 41, 45 17.32 42.55 35.87 34.39
Potássio (g kg-1 ) 2,61 22,79 8,91 1 1 ,35 13,08Potassium (g kg-1) 2.61 22.79 8.91 1 1, 35 13.08
Cálcio (g kg-1 ) 29, 17 33,78 78,35 44,89 65,61Calcium (g kg-1) 29, 17 33.78 78.35 44.89 65.61
Magnésio (g kg-1 ) 13,30 9,84 24,40 12,36 17,79Magnesium (g kg-1) 13.30 9.84 24.40 12.36 17.79
Ferro (g kg-1 ) 3,22 16,14 16,28 16,92 24,38Iron (g kg-1) 3.22 16.14 16.28 16.92 24.38
Zinco (g kg-1 ) 2,181 0,713 2,491 1 ,794 1 ,605Zinc (g kg -1) 2.181 0.713 2.491 1, 794 1, 605
Manganês (g kg-1 ) 0,61 1 0,520 1 ,29 0,99 0,80 Cobre (g kg-1 ) 1 ,55 0,38 0,99 1 ,23 1 , 17 Sódio (g kg-1 ) 0,56 6,98 2,40 2,73 3,36Manganese (g kg-1) 0.61 1 0.520 1.29 0.99 0.80 Copper (g kg-1) 1.55 0.38 0.99 1.23 1.17 Sodium (g kg-1) 0.56 6.98 2.40 2.73 3.36
* Lodo seco ao ar, sem tratamento termoquímico. * Air-dried sludge without thermochemical treatment.
As combinações de taxa de rotação do tambor/carbonizador e de tempo de residência podem ser verificadas na Figura 1 , com detalhe das características físicas de cada produto testado. Na Figura 2 tem-se o gráfico de pH e na Figura 3 o gráfico de condutividade elétrica do fertilizante quando sua liberação foi feita em água. Nas Figuras 4, 5, e 6 têm-se respectivamente os teores acumulados de Nitrato, Potássio e Fósforo liberado em água para cada um dos fertilizantes produzidos (A, B, C e D). As diferentes granulometrias para os produtos A, B, C e D se devem especialmente à taxa de rotação do tambor, de modo que uma menor granulometria é obtida para maiores taxas de rotação (Figura 1 ). Nas Figuras 2 e 3 têm-se respectivamente os gráficos de pH e de condutividade elétrica de 150 ml_ de água usada como solvente para 1 g de produtos A, B, C e D. Os valores de pH convergem para em torno de 8 ao longo dos vinte dias analisados, sem diferenças visíveis entre cada produto (Figura 2). Por outro lado, a evolução diária da condutividade elétrica do produto B foi diferente dos demais, evidenciando processo de liberação lenta de íons, muitos dos quais são fertilizantes importantes para as plantas como Nitrato (NO3-), Potássio (K+) e Fosfato (PO4-3). Drum / charger rotation rate and residence time combinations can be seen in Figure 1, detailing the physical characteristics of each product tested. Figure 2 shows the pH graph and Figure 3 shows the electrical conductivity graph of the fertilizer when released in water. Figures 4, 5, and 6 show respectively the cumulative levels of nitrate, potassium and phosphorus released in water for each of the fertilizers produced (A, B, C and D). The different particle sizes for products A, B, C and D are mainly due to the drum rotation rate, so that smaller grain size is obtained for higher rotation rates (Figure 1). Figures 2 and 3 show respectively the pH and electrical conductivity graphs of 150 ml of solvent water for 1 g of products A, B, C and D. pH values converge to around 8 along of the twenty days analyzed, with no visible differences between each product (Figure 2). On the other hand, the daily evolution of electrical conductivity of product B was different from the others, showing a slow release process of ions, many of which are important fertilizers for plants such as Nitrate (NO3-), Potassium (K +) and Phosphate (PO4). -3).
Nas Figuras 4, 5 e 6 têm-se respectivamente os teores acumulados de Nitrato, Potássio e Fosfato liberados acumuladamente em água ao longo de 20 dias para cada um dos fertilizantes produzidos (A, B, C e D). A partir da análise conjunta das figuras 1 , 3, 4, 5 e 6 verifica-se que o produto B representa um fertilizante de baixa granulometria e com propriedades de liberação lenta de íons nutrientes para as plantas. Complementarmente, a Figura 7 mostra que a liberação de dióxido de carbono, ou seja, a ocorrência de degradação do carbono é menor para o produto B, indicando que o carbono remanescente no produto B é mais estável e menos susceptível à decomposição física, química e/ou biológica. Portanto, o produto fertilizante B obtido pelo processo aqui descrito, com maior tempo de residência e relativamente maior taxa de rotação, reúne características singulares de aplicação agronómica e ambiental, transformando o lodo em produto de elevado valor agregado. Figures 4, 5 and 6 show respectively the cumulative levels of nitrate, potassium and phosphate released cumulatively in water over 20 days for each of the fertilizers produced (A, B, C and D). From the joint analysis of figures 1, 3, 4, 5 and 6 it appears that the product B represents a low particle size fertilizer and with slow release properties of nutrient ions to plants. In addition, Figure 7 shows that carbon dioxide release, ie the occurrence of carbon degradation is lower for product B, indicating that the carbon remaining in product B is more stable and less susceptible to physical, chemical and decomposition. / or biological. Therefore, the fertilizer product B obtained by the process described here, with longer residence time and relatively higher rotation rate, brings together unique characteristics of agronomic and environmental application, turning the sludge into a high added value product.
A conversão termoquímica do material resultante neste exemplo indicou que, diferentemente de biochar derivados de biomassas vegetais, os dejetos biodigeridos de suínos pirolisados apresentaram um aumento da quantidade de oxigénio com o aumento da temperatura de pirólise (Bergier et al. , 2013, Low vacuum thermochemical conversion of anaerobically digested swine solids. Chemosphere, v. 92, p.714-720). Um estudo mais detalhado da estrutura e composição do biochar obtido a partir da pirólise de dejetos biodigeridos de suínos fornece a evidência da presença de cristais de estruvita. Este cristais são formados em lagoas de efluente de biodigestores, através da reação química entre água (H2O), Amónio (NH4+), Fósforo (P) e Magnésio (Mg), mais favorecida em pH elevado (de 9,0 a 10,0) e para uma razão Mg:P de 1 ,2: 1 (Nelson et al., 2003, Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg.P ratio and determination of rate constant. Bioresource Technology, v. 89, p. 229-236.). A reação pode ser descrita como: The thermochemical conversion of the resulting material in this example indicated that, unlike biochar derived from plant biomass, the biodigested manure from pyrolyzed swine showed an increase in the amount of oxygen with increasing pyrolysis temperature (Bergier et al., 2013, Low vacuum thermochemical conversion of anaerobically digested swine solids (Chemosphere, v. 92, p.714-720). A more detailed study of the biochar structure and composition obtained from the pyrolysis of pig biodigested manure provides evidence of the presence of struvite crystals. These crystals are formed in biodigester effluent ponds by the chemical reaction between water (H2O), Ammonium (NH4 +), Phosphorus (P) and Magnesium (Mg), most favored at high pH (9.0 to 10.0 ) and for a Mg: P ratio of 1.2: 1 (Nelson et al., 2003, Struvite precipitation in anaerobic swine lagoon liquid: effect of pH and Mg.P ratio and determination of constant rate. Bioresource Technology, v. 89 , pp. 229-236.). The reaction can be described as:
Mg2+ + NH4+ + P043- + 6H20 <-> MgNH4 . P04 . 6H20 Mg2 + + NH4 + + P043- + 6H2 O- MgNH4. P04. 6H20
Por essa perspectiva, o aumento do oxigénio na composição do biocarvão de dejetos de suínos biodigeridos (Bergier et al., 2013. Low vacuum thermochemical conversion of anaerobically digested swine solids. Chemosphere, v. 92, p.714-720) deve estar associado, em boa medida, à presença de cristais de estruvitas. Para confirmar essa hipótese, a identificação e caracterização química desses cristais foram feitas em microscopia eletrônica de varredura equipada a um analisador elementar de raios X. A Figura 7 demonstra uma imagem em microscopia eletrônica de varredura indicando a presença de cristal entremeado na matriz carbonácea do dejeto pirolisado. A análise de raios X desses mesmos cristais permitiu identificar que estes são compostos pelos principais elementos da estruvita, O, Mg e P (Figura 8). Assim, parte da propriedade de liberação lenta de nutrientes obtida pelo produto da pirólise pode ser devido, em grande parte, pela presença de cristais de estruvita. A maximização da cristalização de estruvita nas lagoas de efluentes de biodigestores pode ser, portanto, importante para obter fertilizantes ainda mais concentrados com propriedades de liberação lenta, especialmente de P e N. Outros nutrientes também são liberados lentamente, como potássio, portanto, outros processos e conformações estruturais do produto também estão envolvidos na liberação lenta de nutrientes. From this perspective, increased oxygen in the biochar composition of biodigested swine manure (Bergier et al., 2013. Low vacuum thermochemical conversion of anaerobically digested swine solids. Chemosphere, v. 92, p.714-720) must be associated. largely to the presence of struvite crystals. To confirm this hypothesis, the identification and chemical characterization of these crystals were done by scanning electron microscopy equipped with an elemental X-ray analyzer. Figure 7 shows a scanning electron microscopy image indicating the presence of stranded crystal in the carbonaceous matrix of the manure. pyrolysate. X-ray analysis of these same crystals showed that they are composed of the main elements of struvite, O, Mg and P (Figure 8). So part of the slow release property of The nutrients obtained from the pyrolysis product may be due in large part to the presence of struvite crystals. Maximizing struvite crystallization in biodigester effluent ponds may therefore be important to obtain even more concentrated fertilizers with slow release properties, especially of P and N. Other nutrients are also slowly released, such as potassium, so other processes. and structural conformations of the product are also involved in slow nutrient release.

Claims

REIVINDICAÇÕES
1. Processo de obtenção de fertilizante compreendendo as etapas de: 1. Process of obtaining fertilizer comprising the steps of:
i) digestão prévia do resíduo; (i) prior digestion of the waste;
ii) separação do lodo do efluente resultante da fase i); ii) separation of the sludge from the effluent resulting from step i);
iii) tratamento termoquímico do lodo; iii) thermochemical treatment of sludge;
iv) opcionalmente, formulação da mistura com a adição de nutrientes; iv) optionally formulating the mixture with the addition of nutrients;
v) opcionalmente, granulação do fertilizante; v) optionally, fertilizer granulation;
caracterizado pelo fato do resíduo ser originário de sistemas de produção de animais confinados suinícolas. characterized by the fact that the residue originates from confined swine production systems.
2. Processo de obtenção de fertilizante de acordo com a reivindicação 1 , caracterizado pela digestão prévia do resíduo (etapa i) ocorrer por biodigestão.  Fertilizer production process according to claim 1, characterized in that the previous digestion of the residue (step i) takes place by biodigestion.
2. Processo de obtenção de fertilizante de acordo com a reivindicação 1 , caracterizado pelo tratamento termoquímico opcionalmente envolver a adição de biomassa algal, resíduos de matadouros ou frigoríficos ou qualquer outro tipo de matéria orgânica de origem vegetal.  Fertilizer production process according to claim 1, characterized in that the thermochemical treatment optionally involves the addition of algal biomass, slaughterhouse or refrigerator waste or any other type of organic material of plant origin.
3. Processo de obtenção de fertilizante de acordo com a reivindicação 1 , caracterizado pela separação do lodo do efluente (etapa ii) compreender pelo menos um processo de separação selecionado dentre: peneiramento, flotação, decantação, filtração, centrifugação, sedimentação.  Fertilizer production process according to Claim 1, characterized in that the sewage sludge separation (step ii) comprises at least one separation process selected from: sieving, flotation, decantation, filtration, centrifugation, sedimentation.
5. Processo de obtenção de fertilizante de acordo com a reivindicação 1 , caracterizado pelo tratamento termoquímico (etapa iii) empregar pelo menos um dos seguintes processos: combustão, incineração e pirólise. Fertilizer production process according to Claim 1, characterized in that the thermochemical treatment (step iii) employs at least one of the following processes: combustion, incineration and pyrolysis.
6. Processo de obtenção de fertilizante de acordo com a reivindicação 1 , caracterizado pelo tratamento termoquímico empregar temperaturas de 300 a 1200 °C, preferencialmente 600 °C. Fertilizer production process according to claim 1, characterized in that the thermochemical treatment employs temperatures from 300 to 1200 ° C, preferably 600 ° C.
7. Processo de obtenção de fertilizante de acordo com a reivindicação 6, caracterizado pelo tratamento termoquímico ser feito em tambor rotativo. 8. Fertilizante orgânico obtido de acordo com o processo descrito em qualquer uma das reivindicações 1 a 7, caracterizado por possuir em sua composição cristais de estruvita. Fertilizer production process according to Claim 6, characterized in that the thermochemical treatment is carried out by rotary drum. Organic fertilizer obtained according to the process described in any one of claims 1 to 7, characterized in that it has struvite crystals in its composition.
9. Fertilizante orgânico obtido de acordo com qualquer uma das reivindicações 1 a 8, caracterizado por possuir em sua composição 1 a 5% de nitrogénio total, 10 a 50% de fósforo, 5 a 30% de potássio, relação cálcio:magnésio de 2:1 a 4:1 , e 40 a 70% de matéria orgânica total. Organic fertilizer obtained according to any one of claims 1 to 8, characterized in that it has 1 to 5% total nitrogen, 10 to 50% phosphorus, 5 to 30% potassium, calcium to magnesium ratio of 2 to 10%. : 1 to 4: 1, and 40 to 70% total organic matter.
10. Fertilizante orgânico obtido de acordo com o processo descrito em qualquer uma das reivindicações 1 a 9, caracterizado por apresentar liberação lenta de nutrientes. Organic fertilizer obtained according to the process described in any one of claims 1 to 9, characterized in that it has slow release of nutrients.
PCT/BR2013/000318 2012-08-23 2013-08-23 Process for obtaining a fertilizer from the solid phase of an effluent, and fertilizer WO2014028996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102012021219-6A BR102012021219B1 (en) 2012-08-23 2012-08-23 process of obtaining fertilizer from the solid phase of effluents
BRBR102012021219-6 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014028996A1 true WO2014028996A1 (en) 2014-02-27

Family

ID=50149300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000318 WO2014028996A1 (en) 2012-08-23 2013-08-23 Process for obtaining a fertilizer from the solid phase of an effluent, and fertilizer

Country Status (2)

Country Link
BR (1) BR102012021219B1 (en)
WO (1) WO2014028996A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2157779A1 (en) * 1999-04-13 2001-08-16 Servicios De Gestion Tecnologi Purines purification and drying technique consists of anaerobic biological digestion, centrifugation decomposition and concentration with thermoelectric heat cogeneration
US20020114866A1 (en) * 2001-02-16 2002-08-22 Food Development Corporation Process for recovering feed-grade protein from animal manure
WO2006020253A1 (en) * 2004-07-19 2006-02-23 Earthrenew Ip Holdings Llc Process and apparatus of feedstock drying fertilizer
CN102351395A (en) * 2011-06-23 2012-02-15 杭州职业技术学院 System and method for treating pig manure and cultivation sewage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2157779A1 (en) * 1999-04-13 2001-08-16 Servicios De Gestion Tecnologi Purines purification and drying technique consists of anaerobic biological digestion, centrifugation decomposition and concentration with thermoelectric heat cogeneration
US20020114866A1 (en) * 2001-02-16 2002-08-22 Food Development Corporation Process for recovering feed-grade protein from animal manure
WO2006020253A1 (en) * 2004-07-19 2006-02-23 Earthrenew Ip Holdings Llc Process and apparatus of feedstock drying fertilizer
CN102351395A (en) * 2011-06-23 2012-02-15 杭州职业技术学院 System and method for treating pig manure and cultivation sewage

Also Published As

Publication number Publication date
BR102012021219A2 (en) 2015-06-23
BR102012021219A8 (en) 2018-06-05
BR102012021219B1 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
Li et al. Effects of external additives: biochar, bentonite, phosphate, on co-composting for swine manure and corn straw
Liu et al. Performance of black soldier fly larvae (Diptera: Stratiomyidae) for manure composting and production of cleaner compost
Li et al. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals
Lang et al. Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization
Szogi et al. Methods for treatment of animal manures to reduce nutrient pollution prior to soil application
Li et al. Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung
US6682578B2 (en) Methods for producing fertilizers and feed supplements from agricultural and industrial wastes
Razali et al. Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter
Czekała et al. The use of biochar for the production of organic fertilizers
Ozdemir et al. Composting of sewage sludge with mole cricket: stability, maturity and sanitation aspects
US9919976B1 (en) Soil conditioners and method of making them
Wierzbowska et al. Sewage sludge as source of nitrogen and phosphorus for Virginia fanpetals.
Liu et al. Humic acid and phosphorus fractions transformation regulated by carbon-based materials in composting steered its potential for phosphorus mobilization in soil
Zuo et al. Evaluation of the bioavailability of heavy metals and phosphorus in biochar derived from manure and manure digestate
Li et al. Comparative study of vermicomposting of garden waste and cow dung using Eisenia fetida
Dhadse et al. Development of nutrient rich biofertilizer by co-vermistabilization of aquatic weeds using herbal pharmaceutical wastewater along with sediment of lake
Dutta et al. Synergistic effect of biochar amendment in milk processing industry sludge and cattle dung during the vermiremediation
Jensen Animal manure residue upgrading and nutrient recovery in biofertilisers
Noori et al. Reclamation of a calcareous sodic soil with combined amendments: interactive effects of chemical and organic materials on soil chemical properties
Heviánková et al. Study and research on cleaning procedures of anaerobic digestion products
DK2657212T3 (en) METHOD FOR THE TREATMENT OF ORGANIC WASTE MATERIAL AND COMPOST, SPECIAL yeast residues from biogas plants.
Vakili et al. Effect of Manual Turning Frequency on Physico-Chemical Parameters During the Oil Palm Frond and Cow Dung Composting.
EP3834593B1 (en) Method of animal liquid manure processing
WO2014028996A1 (en) Process for obtaining a fertilizer from the solid phase of an effluent, and fertilizer
Rahman 11. Production and evaluation of vermicompost from different types of livestock manures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831204

Country of ref document: EP

Kind code of ref document: A1