WO2014023265A1 - 小区间多天线协作系统干扰信道码本匹配方法和用户设备 - Google Patents

小区间多天线协作系统干扰信道码本匹配方法和用户设备 Download PDF

Info

Publication number
WO2014023265A1
WO2014023265A1 PCT/CN2013/081167 CN2013081167W WO2014023265A1 WO 2014023265 A1 WO2014023265 A1 WO 2014023265A1 CN 2013081167 W CN2013081167 W CN 2013081167W WO 2014023265 A1 WO2014023265 A1 WO 2014023265A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
sinr
interference
user equipment
channel
Prior art date
Application number
PCT/CN2013/081167
Other languages
English (en)
French (fr)
Inventor
陈诗军
姚珂
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13828722.2A priority Critical patent/EP2858448B1/en
Priority to US14/411,992 priority patent/US9686799B2/en
Publication of WO2014023265A1 publication Critical patent/WO2014023265A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • Inter-channel multi-antenna cooperative system interference channel codebook matching method and user equipment Inter-channel multi-antenna cooperative system interference channel codebook matching method and user equipment
  • the present invention relates to an inter-cell multi-antenna cooperative system interference channel codebook matching technology, and in particular, to an inter-cell multi-antenna cooperative system interference channel codebook matching method and user equipment.
  • Coordinated multi-point transmission/reception is a technology that improves high-rate transmission coverage, cell edge service quality and throughput, and system throughput. It is an important technology to improve system spectrum utilization. Therefore, it has received extensive attention.
  • the so-called coordinated multi-point transmission that is, multiple base stations cooperatively transmit and serve one or more user terminals (UE, User Equipment).
  • the COMP defined by 3GPP includes two scenarios, one is multi-point cooperative scheduling, that is, through the interaction scheduling information between adjacent nodes, the interference coordination between the transmission signals of each cell is achieved; the other is multi-point joint processing, that is, A plurality of cooperative nodes jointly provide services to target users by sharing data and channel state information (CSI, Channel State Integration), scheduling information, and the like.
  • Advantages of multi-point cooperative scheduling There is no need to exchange too much information between nodes, and the wireless interface has no effect.
  • the disadvantage is that the cooperative transmission gain cannot be obtained, and the spectrum utilization efficiency is not improved.
  • the multi-point joint processing can obtain macro diversity and cooperative transmission gain, and the processing gain of the high-order antenna can be obtained.
  • the disadvantage is that it requires a large amount of interaction between data information and CSI information, and the complexity is high.
  • the comp code typical codebook matching method is as shown in FIG. 1. Multiply the dry 4 channel and all the codebooks separately, calculate the norm of the multiplied matrix, and then traverse all the calculation results, and take the codebook with the largest norm. As the worst codebook index (WCI, Worst Codeword Index), or the codebook with the smallest norm as the best codebook index (BCI, Best Codeword Index), but not adaptive selection feedback.
  • WCI Worst Codeword Index
  • BCI Best Codeword Index
  • This method only considers the correlation between the interference channel itself and the codebook. In the case of comp, this method has the following problems:
  • the codec itself is only coded and cannot guarantee that the codebook result is a complete and correct codebook. For example, in the case of feedback WCI, precoding is the worst under the channel, but it is not guaranteed to be the worst under the detection algorithm.
  • the technical problem to be solved by the embodiments of the present invention is to provide an inter-cell multi-antenna cooperative system interference channel codebook matching method and user equipment, which reduces distortion and stabilizes gain.
  • An inter-cell multi-antenna cooperative system interference channel codebook matching method includes:
  • the user equipment acquires a signal to interference plus noise ratio SINR, or obtains an SINR and a signal to noise ratio SNR, compares the SINR, or the SINR and the SNR with a preset threshold, and generates a coordinated multipoint transmission COMP policy information according to the comparison result.
  • the COMP policy information is sent to the base station.
  • the step of acquiring, by the user equipment, the SINR includes:
  • the method further includes: using the first flag to carry the COMP policy information; the comparing the SINR, or the SINR and the SNR with a preset threshold, and generating the COMP policy information according to the comparison result includes:
  • the first flag is a first specified value, indicating that the user equipment can respond to the cooperation request of other base stations;
  • the first flag is a second specified value, indicating that the user equipment does not request cooperation of other base stations when not requesting cooperation of other base stations;
  • the user equipment requests cooperation with other base stations, and the user equipment can respond to the cooperation request of other base stations;
  • the SINR is less than or equal to the second threshold, comparing the SNR with a sixth threshold, If the SNR is greater than the sixth threshold, the first flag is a third specified value, indicating that the user equipment can participate in cooperation; if the SNR is less than or equal to the sixth threshold, the first A flag value is a fourth specified value, indicating that the user equipment does not participate in the collaboration.
  • the method further includes:
  • Determining whether the WCI or the BCI meets the preset condition includes: determining, for each interference channel that acquires the WCI or the BCI, whether the pre-gain of the cooperation is greater than a fifth threshold, and if the SNR is greater than the sixth threshold, The WCI or BCI meets a preset condition,
  • the user equipment also feeds back the BCI or WCI that meets the preset condition to the base station.
  • the step of obtaining the WCI or BCI of each interference channel includes:
  • the minimum interference space of the G1* interference channel is obtained, and for each vector in the minimum interference space, each codeword in the codebook is The vector is projected to obtain a codeword with a maximum norm after projection and greater than a specified threshold. If at least one codeword can be obtained, the obtained codeword is used as a BCI;
  • the G1 is a detection factor of a detection algorithm currently used by the user equipment.
  • the step of acquiring the maximum interference space of the G1* interference channel includes:
  • the minimum interference space is obtained as follows: The Gl* interference channel is subjected to SVD decomposition, and the V vector corresponding to the non-singular value is taken as a vector in the minimum interference space.
  • the step of determining whether the pre-gain of the cooperation is greater than the fifth threshold for each interference channel that acquires the WCI or the BCI includes:
  • the pre-gain of the interference channel cooperation is greater than the fifth threshold. Otherwise, The pre-gain of the interfering channel cooperation is less than or equal to the fifth threshold.
  • a user equipment includes a policy information generating unit and a feedback unit, where:
  • the policy information generating unit is configured to: acquire a signal to interference plus noise ratio SINR, or obtain an SINR and a signal to noise ratio SNR, compare the SINR, or SINR and SNR with a preset threshold, and generate COMP policy information according to the comparison result. ;
  • the feedback unit is configured to: send the COMP policy information to a base station.
  • the policy information generating unit is configured to acquire the SINR according to the following manner: acquiring a serving cell signal energy of the user equipment, and an average interference energy of each interference channel of the user equipment, where the service is The SINR is obtained by dividing the cell signal energy by the sum of the average interference energy and noise of each interference channel.
  • the policy information generating unit is further configured to: use the first flag to represent the COMP policy information;
  • the policy information generating unit is configured to generate the COMP policy information according to the following manner: if the SINR is greater than the first threshold, the first flag is a first specified value, indicating that the user equipment can respond to other base stations Collaboration request;
  • the first flag is a second specified value, indicating that the user equipment does not request cooperation of other base stations when not requesting cooperation of other base stations;
  • the user equipment requests cooperation from other base stations, and the user equipment can ring Collaboration requests from other base stations;
  • the SINR is less than or equal to the second threshold, comparing the SNR with a sixth threshold, if the SNR is greater than the sixth threshold, the first flag is a third specified value, indicating The user equipment can participate in the collaboration; if the SNR is less than or equal to the sixth threshold, the first flag is a fourth specified value, indicating that the user equipment does not participate in the collaboration.
  • the user equipment further includes a codebook matching unit and a determining unit, where: the codebook matching unit is configured to: obtain the worst of each interference channel when the SINR is less than or equal to the second threshold Codebook index WCI or best codebook index BCI;
  • the determining unit is configured to: determine whether the WCI or the BCI meets the preset condition: including: determining, for each interference channel that acquires the WCI or the BCI, whether the pre-gain of the cooperation is greater than a fifth threshold, if greater than, and If the SNR is greater than the sixth threshold, the WCI or the BCI meets the preset condition;
  • the feedback unit is further configured to: feed back the BCI or WCI that meets the preset condition to the base station.
  • the codebook matching unit is configured to acquire a WCI or a BCI of each interference channel as follows:
  • the minimum interference space of the G1* interference channel is obtained, and for each vector in the minimum interference space, each codeword in the codebook is The vector is projected to obtain a codeword with a maximum norm after projection and greater than a specified threshold. If at least one codeword can be obtained, the obtained codeword is used as a BCI;
  • the G1 is a detection factor of a detection algorithm currently used by the user equipment.
  • the codebook matching unit is configured to obtain the maximum interference space by: Performing SVD decomposition on the Gl* interference channel, taking a subset from all singular values, the sum of the singular values in the subset and the sum of all singular values is greater than the third threshold, and the V vector corresponding to the singular value in the subset is maximized Interfering with vectors in space;
  • the codebook matching unit is configured to obtain the minimum interference space by: performing SVD decomposition on the G1* interference channel, and using the V vector corresponding to the non-singular value as a vector in the minimum interference space.
  • the determining unit is configured to determine whether the pre-gain of the cooperation is greater than a fifth threshold by:
  • the pre-gain of the interference channel cooperation is greater than the fifth threshold. Otherwise, The pre-gain of the interfering channel cooperation is less than or equal to the fifth threshold.
  • 1 is a schematic diagram of a typical codebook matching method
  • FIG. 2 is a schematic diagram of a method for matching an interference channel codebook according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a scenario of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a scenario of Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram of a user equipment according to an embodiment of the present invention. Preferred embodiment of the invention
  • An embodiment of the present invention provides an inter-cell multi-antenna cooperative system interference channel codebook matching method, including:
  • the user equipment acquires a signal to interference plus noise ratio (SINR), or obtains an SINR and a signal to noise ratio SNR, compares the SINR, or the SINR and the SNR with a preset threshold, and generates a collaboration according to the comparison result.
  • SINR signal to interference plus noise ratio
  • the COMP policy information is transmitted in multiple points, and the COMP policy information is sent to the base station.
  • the SINR is obtained according to the following manner:
  • the COMP policy information is carried by using the first flag
  • the comparing the SINR, or the SINR and the SNR with a preset threshold, and generating the COMP policy information according to the comparison result includes one or a combination of the following:
  • the first flag is a first specified value, indicating that the user equipment can respond to the cooperation request of other base stations;
  • the first flag is a second specified value, indicating that the user equipment does not request cooperation of other base stations when not requesting cooperation of other base stations;
  • the user equipment requests cooperation with other base stations, and the user equipment can respond to the cooperation request of other base stations;
  • the SINR is less than or equal to the second threshold, comparing the SNR with a sixth threshold, if the SNR is greater than the sixth threshold, the first flag is a third specified value, indicating The user equipment can participate in the collaboration; if the SNR is less than or equal to the sixth threshold, the first flag is a fourth specified value, indicating that the user equipment does not participate in the collaboration.
  • the value of the first flag may be 0-3. The value of the first flag is not limited, and different COMP policies can be distinguished.
  • Determining whether the WCI or the BCI meets the preset condition includes: determining, for each interference channel that acquires the WCI or the BCI, whether the pre-gain of the cooperation is greater than a fifth threshold, if greater than, and the SNR is greater than the sixth threshold The time limit, the WCI or BCI meets a preset condition,
  • the user equipment also feeds back the BCI or WCI that meets the preset condition to the base station.
  • the WCI or BCI of each interference channel is obtained as follows:
  • the minimum interference space of the G1* interference channel is obtained, and for each vector in the minimum interference space, each codeword in the codebook is The vector is projected to obtain a codeword with a maximum norm after projection and greater than a specified threshold. If at least one codeword can be obtained, the obtained codeword is used as a BCI;
  • the G1 is a detection factor of a detection algorithm currently used by the user equipment.
  • the value of G1 is only an example, and may be a matrix obtained by F performing other transformations.
  • the maximum interference space is obtained by:
  • the minimum interference space is obtained as follows:
  • the pre-gain of the interference channel cooperation is greater than the fifth threshold. Otherwise, The pre-gain of the interfering channel cooperation is less than or equal to the fifth threshold.
  • the number of interferences is also fed back, corresponding to the WCI or the BCI, and the feedback service cell signal energy is divided by the sum of the energy and the noise energy of each interference channel except the interference channel corresponding to the current WCI or BCI.
  • SINR - max The SINR-max is fed back in the SINR level, and the SINR is divided into multiple levels in advance to determine the level of feedback after the SINR-max belongs.
  • the SINR level can also be fed back. At this time, the SINR level is the level to which the SINR belongs.
  • the method for matching a codepad includes:
  • step 202 for each channel interference, the maximum interference and the minimum interference direction are jointly solved by the detection algorithm and the interference channel, and then the direction is coded.
  • Step 203 The UE performs pre-gain judgment on the interference of the codebookization success, and if it is greater than the fifth threshold, the pre-gain meets the condition;
  • the SNR parameter mainly identifies whether the factor causing low SINR is interference or noise. If the SNR is low, the main factor is noise, then comp is not requested. Otherwise, the main factor is interference, and comp can be requested.
  • Step 205 The UE sends, to the base station, all the WCIs or BCIs, the first flag, the SINR level, and the number of interferences that meet the conditions. If there is no WCI or BCI that satisfies the condition, the first flag and the SINR level are fed back.
  • the SINR is greater than the first threshold, indicating that the UE has high performance and can respond to comp requests of other base stations (which can be self-destructive); if between the first and second thresholds, the UE performance can basically meet its own requirements. However, the performance is not particularly high. For this case, if the UE does not request cooperation of other base stations, the UE does not participate in the comp of other base stations. If the UE requests cooperation from other base stations, the UE may respond to other base stations. Collaboration request.
  • cells 1 ⁇ 3 Three cells (cells 1 ⁇ 3), one UE per cell, and three UEs (UE1 ⁇ 3) are served by cells 1 ⁇ 3.
  • Interference situation UE1 can see the interference of cell 2, 3, UE2 can only see the interference of cell 3,
  • UE3 does not see interference from other cells.
  • the base station BBU1 has UE1, the base station BBU2 has UE2, and the base station BBU3 has UE3.
  • the channel from BBU1 to UE1 is HS1
  • the channel from BBU2 to UE2 is HS2
  • BBU3 is
  • the channel of UE3 is HS3.
  • the channel from BBU2 to UE1 is H21
  • the channel from BBU3 to UE1 is H31
  • the channel from BBU3 to UE2 is H32.
  • the first threshold is taken as 17 (linear SINR value);
  • the second threshold is 8 (linear SINR value);
  • the third threshold takes 90% of the sum of all singular values
  • the fourth threshold is a cosine of 20 degrees
  • Threshold 4-1 takes a cosine of 85 degrees
  • the fifth threshold is 5 (the threshold of the difference between the maximum SINR and the average SINR);
  • the sixth threshold is 20 (linear SINR value).
  • Step 300 The UE calculates the SINR, where:
  • the comp request is not initiated and the WCI of all interfering channels is not fed back.
  • Set the first flag 3.
  • step 301 is performed;
  • the SINR calculation method is: the serving cell signal uses the serving cell channel and the codebook of the serving cell to calculate the serving cell signal energy; calculates the interference energy for each interference channel using the interference channel and all the codebooks, and then averages the interference channel to obtain the interference channel.
  • the average interference energy is finally obtained by dividing the signal density of the serving cell by the sum of the energy and noise of each interference channel to obtain SINR ⁇ .
  • the SINR is equal to 3.2123, which is less than or equal to the first threshold.
  • step 301 the S earns an average of 3.2123, which is less than the second threshold, and step 302 is performed.
  • Step 302 The UE processes each channel interference: jointly solves (G1* interference channel) its maximum interference space V, and the vector in V satisfies the energy of (G1*interference channel)*v and is greater than the third threshold. Where V is the vector in V.
  • a solution method after multiplying G1 and the interference channel h, performing svd decomposition, taking a subset, the sum of the singular values of the subset divided by the sum of all the singular values is greater than the third threshold, and each of the subsets
  • the V vector corresponding to the singular value forms a V vector space.
  • Gl serving cell channel multiplied by PMI, then transposed; or
  • G ⁇ fF F', F serving cell channel multiplied by PMI.
  • the above processing is performed for each channel of interference.
  • Step 303 codebook processing; for each vector in the maximum interference space, project each codeword (also called a codebook vector) in the codebook to the vector, and obtain a maximum norm after the projection and greater than a specified threshold.
  • Codebook vector including:
  • the projection vector is obtained by projecting all the codebook vectors into the first V vector of the V vector space, and taking the codebook vector with the largest ratio between the projection vector norm and the codebook vector norm, and the ratio is greater than the fourth. Threshold. If there are multiple similar codebooks, the codebook with the largest norm is projected to the other V vectors. Since each codebook vector norm is the same, it is actually a codebook vector with the largest projection vector norm and greater than the specified threshold.
  • the projection vector is obtained by projecting all the codebook vectors into the second V vector of the V vector space, and taking the codebook vector with the largest ratio between the projection vector norm and the codebook vector norm, and the ratio is greater than the threshold 4-1. If there are multiple similar codebooks, the codebook with the largest norm is projected to the other V vectors.
  • the fourth threshold is set to: cos ( a ) , a is the artificial setting.
  • Threshold 4-1 is set to: cos(min ( k* ( al/a2 ) ⁇ , 90' ) ), a1, a2 are singular values, k is set.
  • each codeword in the codebook For each vector in the minimum interference space, project each codeword in the codebook to the vector, and obtain a codeword with a maximum norm after projection and greater than a specified threshold. If at least one codeword can be obtained, The acquired codeword is used as the BCI; a mode: the codebook having the largest ratio of the vector norm before and after the projection and larger than the specified threshold B forms the set B. If the set B is not empty, the set B is taken as the BCI. Threshold B can be set as needed.
  • the above processing is performed for each interfering channel to obtain the WCI or BCI of each interfering channel.
  • the singular value and the ratio of all singular value sums are greater than the third threshold of 0.9, including a singular value of 4.8844, and the corresponding V vector forms the V vector space.
  • the projection vector is obtained by projecting all the codebook vectors into the first V vector of the V vector space.
  • the ratio between the projection vector norm and the codebook vector norm is 0.8551, which is smaller than the fourth threshold. Therefore, WCI does not meet the preset conditions.
  • the svd decomposition is performed on the (G1* interference channel), and the vector corresponding to the non-singular value is obtained as the zero space A. Since the ratio of the norms of all codebook vectors to the zero space A projection before and after the vector is less than the specified threshold B, the set B is empty. Therefore, BCI is not satisfied with the conditions.
  • the singular value and the ratio of all singular value sums are greater than 0.9, including a singular value of 4.5659, and the corresponding V vector forms a V vector space, and the included singular value and the corresponding V vector are multiplied as the interference vector space.
  • the projection vector is obtained by projecting all the codebook vectors into the first v vector of the V vector space, and the ratio between the projection vector norm and the codebook vector norm is at most 0.9432, which is greater than the fourth threshold. Therefore WCI meets the conditions.
  • Step 304 UE1 calculates SINR_max for each interfering channel of the codebook, and the calculation method is as follows:
  • SINR_max is obtained by dividing the serving cell signal energy by the sum of the energy and noise energy of each interfering channel except the current interfering channel.
  • the SINR_max-SINR average is the fifth threshold, so the WCI after the h31 codebook satisfies the condition.
  • CELL1 initiates a cooperation request to UE1 to the neighboring station (i.e., the interference source base station), UE1 may also participate in the comp pairing of CELL1.
  • the SINR level and the number of interferences are sent to the base station.
  • the number of interferences and the number of WCIs are corresponding.
  • the celll signal energy is divided by the sum of the interference channel energy and the noise energy except h31, and the result is SINR ( 12.87 ), and the corresponding SINR level is obtained.
  • Embodiment 2 BCI code localization process
  • UE2 is taken as an example to illustrate the BCI code localization control process.
  • Step 400 The UE2 estimates the channel HS2, and the UE side matches the serving cell signal channel to obtain the PMI.
  • the UE2 calculates that the SINR is 3.2768, and the first threshold is less than or equal to the first step 401.
  • the SINR calculation method is: the serving cell signal calculates the serving cell signal energy by using the serving cell channel and the code of the serving cell; calculating the interference energy for each interfering channel using the interference channel and all the codebooks, and then taking the average value. Finally, the SINR is obtained by dividing the signal density of the serving cell by the sum of the energy and noise of each interference channel.
  • Step 401 in this embodiment, the SINR is less than the second threshold, step 402 is performed;
  • Step 402 UE2 processes H32: performs svd decomposition on (G1*H32), takes a singular value and divides the sum of all singular value sums by a third threshold, and the included V vector forms a V vector space.
  • Step 403 Projecting all the codebook vectors to the first V vector of the V vector space to obtain a projection vector, and taking the ratio between the projection vector norm and the codebook vector norm to be 0.7843 is smaller than the fourth threshold. Therefore, WCI does not meet the conditions;
  • the projection vector is obtained by projecting all the codebook vectors into the zero space A.
  • the ratio of the norm of the vector before and after the projection is the largest and the codebooks larger than the specified threshold B have two, respectively, the number 10 and the 13 number book, forming the set B.
  • Set B is the BCI of the interference channel.
  • Step 404 UE2 calculates SINR_max for H32, which is 198.23;
  • Step 405 because SINR_max-SINR-average> fifth threshold, BCI satisfies the condition.
  • the UE initiates a cooperation request, the UE can also participate in the comp.
  • Step 407 The UE sends, to the base station, all the WCIs or BCIs, the first flag, the SINR level, and the number of interferences that meet the conditions.
  • the SINR level is calculated by dividing the serving cell signal energy by the sum of the interference channel energy and the noise energy other than the BCI or WCI.
  • An embodiment of the present invention further provides a user equipment, as shown in FIG. 5, including:
  • the policy information generating unit 501 is configured to: obtain a signal to interference plus noise ratio SINR, or obtain an SINR and a signal to noise ratio SNR, compare the SINR, or SINR and SNR with a preset threshold, and generate COMP policy information according to the comparison result;
  • the feedback unit 502 is configured to: send the COMP policy information to the base station.
  • the policy information generating unit is configured to acquire the SINR according to the following manner: acquiring a serving cell signal energy of the user equipment, and an average interference energy of each interference channel of the user equipment, and using the serving cell signal
  • the SINR is obtained by dividing the energy by the sum of the average interference energy and noise of each interference channel.
  • the policy information generating unit uses the first flag to represent the COMP policy information; the policy information generating unit generates COMP policy information, including one or a combination thereof: if the SINR is greater than the first threshold, the first The value of the flag is a first specified value, indicating that the user equipment can respond to the cooperation request of other base stations;
  • the first flag is a second specified value, indicating that the user equipment does not request cooperation of other base stations when not requesting cooperation of other base stations;
  • the user equipment requests cooperation with other base stations, and the user equipment can respond to the cooperation request of other base stations;
  • the SINR is less than or equal to the second threshold, comparing the SNR with a sixth threshold, if the SNR is greater than the sixth threshold, the first flag is a third specified value, indicating The user equipment can participate in the collaboration; if the SNR is less than or equal to the sixth threshold, the first flag is a fourth specified value, indicating that the user equipment does not participate in the collaboration.
  • the user equipment further includes a codebook matching unit 503 and a determining unit 504, where: the codebook matching unit 503 is configured to: obtain a worst code of each interference channel when the SINR is less than or equal to a second threshold This index WCI or best codebook index BCI;
  • the determining unit 504 is configured to: determine whether the WCI or the BCI meets the preset condition: including: determining, for each interference channel that acquires the WCI or the BCI, whether the pre-gain of the cooperation is greater than a fifth threshold, if greater than, and If the SNR is greater than the sixth threshold, the WCI or BCI meets a preset condition;
  • the feedback unit 502 is further configured to: feed back the BCI or WCI that meets the preset condition to the base station.
  • the codebook matching unit 503 is configured to acquire the WCI or BCI of each interference channel as follows: Obtaining a maximum interference space of the G1* interference channel for each interference channel of the user equipment, and for each vector in the maximum interference space, projecting each codeword in the codebook to the vector to obtain a post-projection norm a codeword that is the largest and larger than the specified threshold; if the same number of codewords as the maximum number of interference space vectors are found, the codewords are used as WCIs;
  • the G1 is a detection factor of a detection algorithm currently used by the user equipment.
  • F serving cell channel multiplied by PMI. F, is the transposition of F.
  • the codebook matching unit 503 is configured to obtain the maximum interference space by:
  • the codebook matching unit obtains the minimum interference space by:
  • the G1* interference channel is subjected to SVD decomposition, and the V vector corresponding to the non-singular value is used as the vector in the minimum interference space.
  • the determining unit 504 is configured to determine whether the pre-gain of the cooperation is greater than the fifth threshold by:
  • the pre-gain of the interference channel cooperation is greater than the fifth threshold. Otherwise, The pre-gain of the interfering channel cooperation is less than or equal to the fifth threshold.
  • the SINR may also be replaced with other channel quality parameters.
  • a program to instruct the associated hardware such as a read only memory, a magnetic disk, or an optical disk.
  • all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, or may be implemented in the form of a software function module. The invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution has the following advantages: 1) It is possible to control the channel quantization loss of the codebook, and if the codebook distortion is too large, the cooperation requirement for the channel interference is not performed; 2) Pre-judging the synergy effect, if the best effect is not much different from the average, indirectly indicating that the channel is not ideal for all codebooks at this time; 3) It is possible to distinguish different SINR conditions for the comp condition, and implement different Strategy. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种小区间多天线协作系统干扰信道码本匹配方法,包括:用户设备获取信号与干扰加噪声比SINR,或者,获取SINR和信噪比SNR,将所述SINR,或者SINR和SNR与预设门限比较,根据比较结果生成协作多点传输COMP策略信息,将所述COMP策略信息发送给所述基站。本发明还提供一种用户设备。

Description

小区间多天线协作系统干扰信道码本匹配方法和用户设备
技术领域
本发明涉及小区间多天线协作系统干扰信道码本匹配技术, 尤其涉及一 种小区间多天线协作系统干扰信道码本匹配方法和用户设备。
背景技术
作为第四代通信系统(4G ) 的标准, IMT-Advanced对于系统的性能提 出了更高的要求, 尤其是对上下行的频率效率有更高的要求。 协作多点传输 ( COMP, Coordinated multi-point transmission/reception )是一种提高高速率 传输覆盖范围、 小区边缘服务质量和吞吐量, 以及系统吞吐量的技术, 成为 提高系统频谱利用率的重要技术, 因此得到了广泛的关注。 所谓协作多点传 输,即多个基站协作传输,服务于一个或多个用户终端( UE, User Equipment )。 3GPP定义的 COMP包括 2种场景, 一种是多点协作调度, 即通过相邻节点 之间交互调度信息, 达到各个小区传输信号之间干扰得道协调; 另一种是多 点联合处理, 即多个协作节点之间通过共享数据及信道状态信息 (CSI , Channel Statelnformation )、 调度信息等, 联合为目标用户提供服务。 多点协 作调度的优点各个节点间不需要交互太多的信息, 无线接口没有影响, 其缺 点是无法获得协作传输增益, 对频谱利用效率的提高没有贡献。 多点联合处 理可以获得宏分集及协作传输增益, 可以获得高阶天线的处理增益。 其缺点 是需要大量的数据信息和 CSI信息的交互, 复杂度高。
目前 comp典型码本匹配方法如图 1所示, 对干 4尤信道和所有的码本分 别进行相乘, 计算相乘后矩阵的范数, 然后遍历所有计算结果, 取范数最大 的码本作为最差码本索引 (WCI, Worst Codeword Index ) , 或者取范数最小 的码本作为最佳码本索引 ( BCI, Best Codeword Index ) , 但不自适应的选择 反馈。
这种方法只考虑了干扰信道本身和码本之间相关性, 在 comp情况下, 这种方法具有如下几个问题:
1、 并不能衡量码本和信道之间的准确程度, 尤其是对干扰信道的匹配, 如果差异很大, 则 comp算法结果就会失真。
2、 仅对干扰信道本身码本化, 不能保证码本化结果是完整正确的码本, 如在反馈 WCI情况下,预编码在信道下最差,但不能保证在检测算法下最差。
3、 目前算法对不同场景没有区分, 也导致增益情况不稳定。
发明内容
本发明实施例要解决的技术问题是提供一种小区间多天线协作系统干扰 信道码本匹配方法和用户设备, 减少失真, 稳定增益。
为了解决上述问题, 釆用如下技术方案:
一种小区间多天线协作系统干扰信道码本匹配方法, 包括:
用户设备获取信号与干扰加噪声比 SINR, 或者, 获取 SINR和信噪比 SNR, 将所述 SINR, 或者 SINR和 SNR与预设门限比较, 根据比较结果生 成协作多点传输 COMP策略信息, 将所述 COMP策略信息发送给基站。
可选地, 用户设备获取 SINR的步骤包括:
获取所述用户设备的服务小区信号能量, 以及, 所述用户设备每个干扰 信道的平均干扰能量, 将所述服务小区信号能量与各干扰信道的平均干扰能 量和噪声的总和相除得到所述 SINR。 可选地, 该方法还包括: 使用第一标志携带所述 COMP策略信息; 所述将所述 SINR, 或者 SINR和 SNR与预设门限比较, 根据比较结果 生成 COMP策略信息的步骤包括:
如果所述 SINR大于第一门限, 所述第一标志取值为第一指定值, 指示 所述用户设备能响应其他基站的协作请求;
如果所述 SINR小于等于所述第一门限, 大于第二门限, 则所述第一标 志取值为第二指定值, 指示所述用户设备未请求其他基站协作时, 不参加其 他基站的协作; 如果所述用户设备向其他基站请求协作, 则该用户设备能响 应其他基站的协作请求;
如果所述 SINR小于等于所述第二门限,则将所述 SNR与第六门限比较, 如果所述 SNR大于所述第六门限,则所述第一标志取值为第三指定值,指示 所述用户设备能参加协作; 如果所述 SNR小于等于所述第六门限, 则所述第 一标志取值为第四指定值, 指示所述用户设备不参加协作。
可选地, 该方法还包括:
如果所述 SINR小于等于所述第二门限, 则执行以下步骤:
获取每个干扰信道的最差码本索引 WCI或最佳码本索引 BCI;
判断 WCI或 BCI是否满足预设条件: 包括: 对获取到 WCI或 BCI的每 个干扰信道,判断其协作的预增益是否大于第五门限,如果大于,且所述 SNR 大于第六门限, 则所述 WCI或 BCI满足预设条件,
所述用户设备还反馈所述满足预设条件的 BCI或 WCI给所述基站。 可选地, 获取每个干扰信道的 WCI或 BCI的步骤包括:
对所述用户设备的每路干扰信道, 获取 G1*干扰信道的最大干扰空间, 对所述最大干扰空间中每个向量, 将码本中各码字向该向量进行投影, 获取 投影后范数最大且大于指定门限的码字; 如果查找到与所述最大干扰空间向 量个数相同数目的码字, 则将这些码字作为 WCI;
如果未查找到与所述最大干扰空间向量个数相同数目的码字, 则获取 G1*干扰信道的最小干扰空间, 对所述最小干扰空间中每个向量, 将码本中 的各码字向该向量进行投影, 获取投影后范数最大且大于指定门限的码字, 如果能获取到至少一个码字, 则将获取的码字作为 BCI;
其中, 所述 G1为所述用户设备当前使用的检测算法的检测因子。
可选地, 所述 Gl=月良务小区信道乘以预编码矩阵指示 PMI, 然后转置; 或者 G1= (F, F)-1 F, , F=服务小区信道乘以 ΡΜΙ。
可选地, 获取 G1 *干扰信道的最大干扰空间的步骤包括:
将 G1*干扰信道进行 SVD分解,从全部奇异值中取子集,该子集中的奇 异值之和与全部奇异值之和大于第三门限, 将该子集中的奇异值对应的 V向 量作为最大干扰空间中的向量;
所述最小干扰空间通过如下方式获得: 将 Gl*干扰信道进行 SVD分解,将非奇异值对应的 V向量作为最小干扰 空间中的向量。
可选地, 对获取到 WCI或 BCI的每个干扰信道, 判断其协作的预增益 是否大于第五门限的步骤包括:
对任一干扰信道, 获取服务小区信号能量除以除该干扰信道之外的各个 干扰信道能量和噪声能量总和得到 SINR— max;
将所述 SINR— max与所述 SINR相减得到的值和所述第五门限进行比较, 如果大于所述第五门限, 则该干扰信道协作的预增益大于所述第五门限, 否 则, 该干扰信道协作的预增益小于等于所述第五门限。
一种用户设备, 包括策略信息生成单元和反馈单元, 其中:
所述策略信息生成单元设置成: 获取信号与干扰加噪声比 SINR,或者, 获取 SINR和信噪比 SNR, 将所述 SINR, 或者 SINR和 SNR与预设门限比 较, 根据比较结果生成 COMP策略信息;
所述反馈单元设置成: 将所述 COMP策略信息发送给基站。
可选地, 所述策略信息生成单元设置成根据如下方式获取所述 SINR: 获取所述用户设备的服务小区信号能量, 以及, 所述用户设备每个干扰 信道的平均干扰能量, 将所述服务小区信号能量与各干扰信道的平均干扰能 量和噪声的总和相除得到所述 SINR。 可选地,所述策略信息生成单元还设置成:使用第一标志表示所述 COMP 策略信息;
所述策略信息生成单元设置成按照如下方式生成所述 COMP策略信息: 如果所述 SINR大于第一门限, 所述第一标志取值为第一指定值, 指示 所述用户设备能响应其他基站的协作请求;
如果所述 SINR小于等于所述第一门限, 大于第二门限, 则所述第一标 志取值为第二指定值, 指示所述用户设备未请求其他基站协作时, 不参加其 他基站的协作; 如果所述用户设备向其他基站请求协作, 则该用户设备能响 应其他基站的协作请求;
如果所述 SINR小于等于所述第二门限,则将所述 SNR与第六门限比较, 如果所述 SNR大于所述第六门限,则所述第一标志取值为第三指定值,指示 所述用户设备能参加协作; 如果所述 SNR小于等于所述第六门限, 则所述第 一标志取值为第四指定值, 指示所述用户设备不参加协作。
可选地, 所述用户设备还包括码本匹配单元和判断单元, 其中: 所述码本匹配单元设置成: 在所述 SINR小于等于所述第二门限时, 获 取每个干扰信道的最差码本索引 WCI或最佳码本索引 BCI;
所述判断单元设置成: 判断 WCI或 BCI是否满足预设条件: 包括: 对 获取到 WCI或 BCI的每个干扰信道, 判断其协作的预增益是否大于第五门 限, 如果大于, 且所述 SNR大于第六门限, 则所述 WCI或 BCI满足预设条 件;
所述反馈单元还设置成: 反馈所述满足预设条件的 BCI或 WCI给所述 基站。
可选地, 所述码本匹配单元设置成按如下方式获取每个干扰信道的 WCI 或 BCI:
对所述用户设备的每路干扰信道, 获取 G1 *干扰信道的最大干扰空间, 对所述最大干扰空间中每个向量, 将码本中各码字向该向量进行投影, 获取 投影后范数最大且大于指定门限的码字; 如果查找到与所述最大干扰空间向 量个数相同数目的码字, 则将这些码字作为 WCI;
如果未查找到与所述最大干扰空间向量个数相同数目的码字, 则获取 G1 *干扰信道的最小干扰空间, 对所述最小干扰空间中每个向量, 将码本中 的各码字向该向量进行投影, 获取投影后范数最大且大于指定门限的码字, 如果能获取到至少一个码字, 则将获取的码字作为 BCI;
其中, 所述 G1为所述用户设备当前使用的检测算法的检测因子。
可选地,所述 Gl=月良务小区信道乘以 PMI,然后转置; 或者 G1= (F, F)-l F, , F=服务小区信道乘以 PML
可选地,所述码本匹配单元设置成通过如下方式获得所述最大干扰空间: 将 Gl*干扰信道进行 SVD分解,从全部奇异值中取子集,该子集中的奇 异值之和与全部奇异值之和大于第三门限, 将该子集中的奇异值对应的 V向 量作为最大干扰空间中的向量;
所述码本匹配单元设置成通过如下方式获得所述最小干扰空间: 将 G1*干扰信道进行 SVD分解,将非奇异值对应的 V向量作为最小干扰 空间中的向量。
可选地, 所述判断单元设置成通过如下方式判断协作的预增益是否大于 第五门限:
对任一干扰信道, 获取服务小区信号能量除以除该干扰信道之外的各个 干扰信道能量和噪声能量总和得到 SINR— max;
将所述 SINR— max与所述 SINR相减得到的值和所述第五门限进行比较, 如果大于所述第五门限, 则该干扰信道协作的预增益大于所述第五门限, 否 则, 该干扰信道协作的预增益小于等于所述第五门限。
釆用上述技术方案, 与相关技术相比, 具有以下优势:
1 )能够对码本对信道量化损失进行控制, 如果码本失真过大, 则不做针 对此路干扰进行协作要求;
2 )能够对协作效果进行预判断, 如果最佳效果相比平均相差不大, 间接 说明此时信道相对所有的码本效果均不理想;
3 ) 能够区分不同 SINR情况适合做 comp条件, 以此实施不同的策略。 附图概述
图 1是目前典型的码本匹配方法示意图;
图 2是本发明实施例的干扰信道码本匹配方法示意图;
图 3是本发明实施例 1的场景示意图图;
图 4是本发明实施例 2的场景示意图图;
图 5是本发明实施例的用户设备框图。 本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供一种小区间多天线协作系统干扰信道码本匹配方法, 包括:
用户设备获取信号与干扰加噪声比(SINR , Signal to Interference plus Noise Ratio), 或者, 获取 SINR和信噪比 SNR, 将所述 SINR, 或者 SINR和 SNR与预设门限比较, 根据比较结果生成协作多点传输 COMP策略信息, 将所述 COMP策略信息发送给所述基站。
其中, 根据如下方式获取所述 SINR:
获取所述用户设备的服务小区信号能量, 以及, 所述用户设备每个干扰 信道的平均干扰能量, 将所述服务小区信号能量与各干扰信道的平均干扰能 量和噪声的总和相除得到所述 SINR。 后续实施例中, 以 SINR 表示。
其中, 所述 COMP策略信息使用第一标志携带;
所述将所述 SINR, 或者 SINR和 SNR与预设门限比较, 根据比较结果 生成 COMP策略信息包括如下之一或其组合:
如果所述 SINR大于第一门限, 所述第一标志取值为第一指定值, 指示 所述用户设备能响应其他基站的协作请求;
如果所述 SINR小于等于所述第一门限, 大于第二门限, 则所述第一标 志取值为第二指定值, 指示所述用户设备未请求其他基站协作时, 不参加其 他基站的协作; 如果所述用户设备向其他基站请求协作, 则该用户设备能响 应其他基站的协作请求;
如果所述 SINR小于等于所述第二门限,则将所述 SNR与第六门限比较, 如果所述 SNR大于所述第六门限,则所述第一标志取值为第三指定值,指示 所述用户设备能参加协作; 如果所述 SNR小于等于所述第六门限, 则所述第 一标志取值为第四指定值, 指示所述用户设备不参加协作。 第一标志取值可以是 0-3 , 本发明实施例对其取值不作限定, 能区分不 同 COMP策略即可。
其中, 如果所述 SINR小于等于第二门限, 还执行:
获取每个干扰信道的最差码本索引 WCI或最佳码本索引 BCI;
判断所述 WCI或 BCI是否满足预设条件: 包括: 对获取到 WCI或 BCI 的每个干扰信道, 判断其协作的预增益是否大于第五门限, 如果大于, 且所 述 SNR大于第六门限时, 所述 WCI或 BCI满足预设条件,
所述用户设备还反馈所述满足预设条件的 BCI或 WCI给基站。
其中, 按如下方式获取每个干扰信道的 WCI或 BCI:
对所述用户设备的每路干扰信道, 获取 G1*干扰信道的最大干扰空间, 对所述最大干扰空间中每个向量, 将码本中各码字向该向量进行投影, 获取 投影后范数最大且大于指定门限的码字; 如果查找到与所述最大干扰空间向 量个数相同数目的码字, 则将这些码字作为 WCI;
如果未查找到与所述最大干扰空间向量个数相同数目的码字, 则获取 G1*干扰信道的最小干扰空间, 对所述最小干扰空间中每个向量, 将码本中 的各码字向该向量进行投影, 获取投影后范数最大且大于指定门限的码字, 如果能获取到至少一个码字, 则将获取的码字作为 BCI;
其中, 所述 G1为所述用户设备当前使用的检测算法的检测因子。
其中, 所述 Gl=服务小区信道乘以 PMI ( recoding matrix indicator, 预 编码矩阵指示),然后转置;或者 Gl= (FT)-1 F,, F=服务小区信道乘以 PMI。 此处 G1的取值仅为示例, 也可以是 F进行其他变换后得到的矩阵。
其中, 所述最大干扰空间通过如下方式获得:
将 G1*干扰信道进行 SVD分解,从全部奇异值中取子集,该子集中的奇 异值之和与全部奇异值之和大于第三门限, 将该子集中的奇异值对应的 V向 量作为最大干扰空间中的向量;
所述最小干扰空间通过如下方式获得:
将 G1*干扰信道进行 SVD分解,将非奇异值对应的 V向量作为最小干扰 空间中的向量。
其中, 对获取到 WCI或 BCI的每个干扰信道, 通过如下方式判断其协 作的预增益是否大于第五门限:
对任一干扰信道, 获取服务小区信号能量除以除该干扰信道之外的各个 干扰信道能量和噪声能量总和得到 SINR— max;
将所述 SINR— max与所述 SINR相减得到的值和所述第五门限进行比较, 如果大于所述第五门限, 则该干扰信道协作的预增益大于所述第五门限, 否 则, 该干扰信道协作的预增益小于等于所述第五门限。
其中, 反馈 WCI或 BCI时, 还反馈干扰数目, 与 WCI或 BCI对应, 以 及, 反馈服务小区信号能量除以除当前 WCI或 BCI对应的干扰信道之外的 各个干扰信道能量和噪声能量总和得到的 SINR— max。 该 SINR— max使用 SINR等级的方式反馈, 事先将 SINR划分为多个等级, 确定 SINR— max所属 的等级后反馈。 不反馈 WCI和 BCI时, 也可反馈 SINR等级, 此时 SINR等 级为 SINR 所属的等级。
下面通过实施例进一步说明本发明。 如图 2所示, 本发明实施例提供的 干 4尤信道码本匹配方法包括:
步骤 200, UE估计信道 h, UE对服务小区信号信道匹配得到 PMI并计 算 SINR。 如果 SINR大于第一门限, 则第一标志 =3 , 不做码本化, 直接执行 步骤 205。
步骤 201 , 如果 SINR在第一门限和第二门限之间, 则不做码本化, 设 定第一标志 =1 ; 直接执行步骤 205, 否则, 如果 SINR小于等于第二门限, 则执行步骤 202。
步骤 202, 对每路干扰, 通过检测算法和干扰信道联合求解最大干扰和 最小干扰方向, 然后对方向进行码本化。
步骤 203 , UE对码本化成功的干扰进行预增益判断,如果大于第五门限, 则预增益满足条件;
步骤 204, 如果 SINR 小于等于第二门限, 则获取 SNR。 如果 SNR 大于第六门限, 则设置第一标志 =0。 在基站侧, 如果此 UE 如果发起协作请求, 则此 UE也可以参加 comp配对。
如果 SNR小于等于第六门限, 则把所有 WCI或者 BCI置为不满足预设 条件, 设置第一标志 =2。
SNR参量主要识别导致 SINR低的因素是干扰还是噪声,如果 SNR低说 明主要因素是噪声,则不请求 comp,否则主要因素是干扰,可以请求 comp。
步骤 205 , UE把通过上述判决出来的所有满足条件的 WCI或者 BCI、 第一标志、 SINR等级、干扰数目发给基站。如果没有满足条件的 WCI或 BCI, 则反馈第一标志、 SINR等级。
其中, SINR大于第一门限, 说明此 UE性能较高, 可以响应其他基站的 comp请求(可以自损一些); 如果在第一和第二门限之间, 说明该 UE性能 基本能够满足自己的要求,但性能也不是特别高,对于这种情况,如果该 UE 没有请求其他基站协作, 则该 UE也不参加其他基站的 comp, 如果该 UE向 其他基站请求了协作, 则该 UE可以响应其他基站的协作请求。
下面通过具体实施例进一步说明本发明。
实施例 1 极值反馈, 多干扰反馈
场景如图 3所示:
3个小区 (小区 1~3 ) , 每个小区一个 UE, 3个 UE ( UE1~3 )分别以小 区 1~3为其服务小区。
干扰情况: UE1能看到小区 2、 3的干扰, UE2只能看到小区 3的干扰、
UE3看不到其他小区的干扰。
信噪比: 20 dB
信干比: O dB
基站 BBU1下有 UE1 , 基站 BBU2下有 UE2, 基站 BBU3下有 UE3。
BBU1到 UE1的信道为 HS1 , BBU2到 UE2的信道为 HS2, BBU3到
UE3的信道为 HS3。
BBU2到 UE1的信道为 H21 , BBU3到 UE1的信道为 H31 , BBU3到 UE2 的信道为 H32。 本实施例中:
第一门限取 17 (线性 SINR值) ;
第二门限取 8 (线性 SINR值) ;
第三门限取所有奇异值和的 90%;
第四门限取值为 20度的余弦值;
门限 4—1 取值为 85度的余弦值;
第五门限取值为 5 (最大 SINR与平均 SINR之差的门限) ;
第六门限取值为 20 (线性 SINR值) 。
实例 1: WCI码本化过程
下面以 UE1为例说明码本化后为 WCI的处理过程:
步骤 300, UE计算 SINR 乎均, 其中:
如果 SINR 大于第一门限,则不发起 comp请求,不反馈所有干扰信道 的 WCI。 设置第一标志 =3。 直接执行步骤 307;
如果 SINR 乎均小于等于第一门限, 执行步骤 301 ;
SINR 计算方法是: 服务小区信号用服务小区信道以及服务小区的码 本计算服务小区信号能量; 对每个干扰信道用干扰信道与所有码本计算干扰 能量, 然后取平均值, 得到该干扰信道的平均干扰能量, 最后用服务小区信 号能量除以各个干扰信道能量和噪声的总和得到 SINR ^。
本实施例中,
UE1估计信道 HS1 =:
-0.7712 - 0.5188Ϊ -0.9206 - 1.2039Ϊ 0.0528 + 0.4222Ϊ -1.1336 + 1.4030Ϊ
0.0475 - 1.1845Ϊ -1.7066 - 0.3378Ϊ 0.5887 + 0.5373Ϊ 0.4872 -
0.5189Ϊ 估计的 H21为:
H21 =
0.7331 - 1.3260Ϊ 0.2025 - 1.3355Ϊ 0.4702 + 1.0146Ϊ 0.9260 + 1.1683Ϊ 0.8876 - 0.3845Ϊ -0.0708 + 0.5709Ϊ -0.4170 + 0.4493Ϊ -0.4157 + 1.0397Ϊ 估计的 H31为:
H31=
-0.7953 + 0.0466Ϊ -0.8210圍 0.9246Ϊ -0.7735 + 0.2218Ϊ 0.2708 + 0.1692Ϊ
-0.3449 + 0.6925Ϊ 0.4431 + 1.0908Ϊ -0.9205 + 0.0923Ϊ -1.2330 + 0.3248Ϊ
本实施例中, SINR乎均等于 3.2123 , 小于等于第一门限。 UE1对服务小 区信号信道 HS1码本匹配得到 PMI1 = 9。
步骤 301 , S賺平均为 3.2123 , 小于第二门限, 执行步骤 302。
步骤 302, UE对每路干扰进行处理: 对(G1*干扰信道)联合求解其最 大干扰空间 V, V中的向量满足(G1*干扰信道) *v 的能量和大于第三门限。 其中, V是 V中的向量。
一种求解方法: G1和干扰信道 h相乘之后, 再进行 svd分解, 取一子 集, 该子集的奇异值之和除以所有奇异值之和的比值大于第三门限, 该子集 中各奇异值对应的 V向量形成 V向量空间。 Gl=服务小区信道乘以 PMI, 然 后转置; 或者 G^ fF F' , F=服务小区信道乘以 PMI。
对每路干扰信道做上述处理。
步骤 303 , 码本化处理; 对所述最大干扰空间中每个向量, 将码本中各 码字 (也称码本向量) 向该向量进行投影, 获取投影后范数最大且大于指定 门限的码本向量, 包括:
对所有的码本向量向 V向量空间第一个 V向量投影得到投影向量,并取 投影向量范数和码本向量范数之间比值最大的码本向量, 且该比值大于第四 门限。如果存在多个相近的码本,则选择向其他 V向量投影范数最大的码本。 由于各码本向量范数一样, 实际就是取投影向量范数最大且大于指定门限的 码本向量。
对所有的码本向量向 V向量空间第二个 V向量投影得到投影向量,并取 投影向量范数和码本向量范数之间比值最大的码本向量, 且该比值大于门限 4—1。 如果存在多个相近的码本, 则选择向其他 V向量投影范数最大的码本。
第四门限的设置为: cos ( a ) , a为人为设定。 门限 4—1设置为: cos(min ( k* ( al/a2 ) α, 90' ) ),a1,a2为奇异值, k人为设定。
其中, 如果 V向量空间存在更多个 V向量, 则类似处理。
如果找到和 V向量空间向量个数相同数目的码本向量,则这些码本向量 形成集合 A, 作为 WCI; 否则, 则对(G1*干扰信道)联合求解其最小干扰 空间, 使得(G1*干扰信道) *w的范数最小, 最小干扰空间作为零空间 A。
对所述最小干扰空间中每个向量,将码本中的各码字向该向量进行投影, 获取投影后范数最大且大于指定门限的码字, 如果能获取到至少一个码字, 则将获取的码字作为 BCI; —种方式: 对投影前后向量范数的比值最大且大 于指定门限 B的码本形成集合 B。如果集合 B不为空,则将集合 B作为 BCI。 门限 B可根据需要设定。
对每路干扰信道做上述处理, 得到每路干扰信道的 WCI或者 BCI。
本实施例中, 具体码本化处理如下:
UE1对 H21的码本化处理:
UE1 对(HS1乘以 PMI1 )转置然后和 H21相乘得到结果如下:
(HS1* PMI1)'*H21 =
1.2107 + 2.9151Ϊ 1.9643 - 0.0680Ϊ -1.7193 - 0.4116Ϊ -2.5878 - 0.4562Ϊ 对上式进行 svd分解得到的奇异值和 V向量空间如下:
奇异值 =4.8844
V向量空间 =
0.2479 - 0.5968Ϊ 0.4022 + 0.0139Ϊ
-0.3520 + 0.0843Ϊ
-0.5298 + 0.0934Ϊ
取奇异值和除以所有奇异值和的比值大于第三门限 0.9,包含一个奇异值 4.8844 , 其对应的 V向量形成 V向量空间。
对所有的码本向量向 V向量空间第一个 V向量投影得到投影向量,投影 向量范数和码本向量范数之间的比值最大为 0.8551 , 都小于第四门限。 因此 WCI不满足预设条件。
因为 WCI不满足预设条件, 则对(G1*干扰信道)进行 svd分解, 得到 非奇异值对应的向量组成零空间 A。 由于所有的码本向量向零空间 A投影前 后向量的范数的比值均小于指定门限 B, 因此集合 B为空。 所以 BCI也不满 足条件。
UE1对 h31的码本化处理:
UE1 对( HS1乘以 PMI1 )转置然后和 H31相乘得到结果如下:
(HS1* PMI1)'*H31 =
0.0984 - 2.6378Ϊ 0.4448 - 2.3244Ϊ 1.0305 - 2.2752Ϊ 1.0531 - 0.9653Ϊ 对上式进行 svd分解得到的奇异值和 V向量空间如下:
奇异值 =4.5659;
V向量空间 =
0.0216 + 0.5777Ϊ
0.0974 + 0.5091Ϊ
0.2257 + 0.4983Ϊ
0.2306 + 0.2114Ϊ
取奇异值和除以所有奇异值和的比值大于 0.9, 包含一个奇异值 4.5659 , 其对应的 V向量形成 V向量空间, 所包含的奇异值和对应的 V向量相乘作为 干扰向量空间。 对所有的码本向量向 V向量空间第一个 v向量投影得到投影向量,投影 向量范数和码本向量范数之间的比值最大为 0.9432 , 大于第四门限。 因此 WCI满足条件。
步骤 304, UE1对码本化的每个干扰信道计算 SINR— max, 计算方法如 下:
用服务小区信号能量除以除当前干扰信道之外的各个干扰信道能量和噪 声能量总和得到 SINR— max。
本实施例中,对于 UE1 ,只有 h31找到了码本,因此计算 h31的 SINR— max 为 12.8731。
步骤 305, SINR— max- SINR 平均 >第五门限, 因此 h31码本化后的 WCI 满足条件。
步骤 306, 由于 Sinr乎均小于第二门限, 且 SNR (为 27.5617 ) 大于第六 门限, 所以第一标志 =0。 在基站侧 CELL1如果决策对 UE1向邻站(即干扰 源基站)发起协作请求, 则 UE1也可以参加 CELL1的 comp配对。
步骤 307 , UE1 4巴通过上述判决出来 h31码本化的 WCI、 第一标志 =0、
SINR等级、 干扰数目发给基站。
其中, 干扰数目和 WCI个数是对应的。
用 celll信号能量除以除 h31之外的干扰信道能量和噪声能量总和,其结 果为 SINR ( 12.87 ) , 获取其对应的 SINR等级。
实施例 2 BCI码本化过程
如图 4所示, 以 UE2为例说明 BCI码本化控制过程。
步骤 400 , UE2估计信道 HS2 , UE侧对服务小区信号信道匹配得到 PMI。
HS2 =
-0.2176 - 1.0324Ϊ -0.1312 - 0.3420Ϊ 0.3248 + 0.5327Ϊ -0.4561 -
0.5054Ϊ
-0.2900 - 0.4744Ϊ -0.4233 + 0.2024Ϊ -0.2476 + 0.2949Ϊ -0.4397 + 0.750Π
H32 =
-0.0836 + 0.5493Ϊ -0.5266 - 1.4763Ϊ -0.6017 + 0.0298Ϊ -1.1231 + 0.1479Ϊ
0.4595 - 0.1970Ϊ 1.4379 - 0.1654Ϊ 1.6584 + 0.2242Ϊ 0.6431 +
0.0285Ϊ
UE2对服务小区信号信道 HS2码本匹配得到 PMI2 = 14 。
UE2计算 SINR乎均为 3.2768, 小于等于第一门限执行步骤 401。
SINR 计算方法是: 服务小区信号用服务小区信道以及服务小区的码 本计算服务小区信号能量; 对每个干扰信道用干扰信道与所有码本计算干扰 能量, 然后取平均值。 最后用服务小区信号能量除以各个干扰信道能量和噪 声的总和得到 SINR 均。
步骤 401 , 本实施例中, SINR乎均小于第二门限, 执行步骤 402;
步骤 402, UE2对 H32进行处理: 对( G1*H32 )进行 svd分解, 取奇异 值和除以所有奇异值和的比值大于第三门限, 所包含的 V向量形成 V向量空 间。 Gl=服务小区信道乘以 PMI, 然后转置; 或者
Figure imgf000017_0001
F' , F=服务小 区信道乘以 PML
(HS2*PMI2)'*H32 =
-0.8415 - 0.3640Ϊ 1.4122 + 0.1417Ϊ -0.4265 - 0.996Π 0.1673 - 1.510H
Svd分解后得到:
奇异值 =2.5174;
V向量空间=
-0.3343 + 0.1446Ϊ
0.5610 - 0.0563Ϊ
-0.1694 + 0.3957Ϊ
0.0665 + 0.5999Ϊ 步骤 403 , 对所有的码本向量向 V向量空间第一个 V向量投影得到投影 向量,并取投影向量范数和码本向量范数之间比值最大的为 0.7843 小于第四 门限。 因此 WCI不满足条件;
因为 WCI不满足条件, 则对(G1*干扰信道)进行 svd分解, 非奇异值 对应的向量空间为零空间 A。
A=
{0.5600 - 0.0652Ϊ -0.2502 - 0.3502Ϊ -0.0636 - 0.6002Ϊ
0.7645 + 0.0255Ϊ 0.1040 + 0.1479Ϊ 0.0247 + 0.2523Ϊ
0.0698 - 0.1668Ϊ 0.8628 + 0.0149Ϊ -0.1778 - 0.0766Ϊ
-0.0299 - 0.2518Ϊ -0.1572 + 0.1129Ϊ 0.7302 + 0.0292Ϊ }
对所有的码本向量向零空间 A投影得到投影向量,对投影前后向量的范 数的比值最大且大于指定门限 B的码本有两个, 分别为 10号和 13号码本, 形成集合 B。 集合 B作为干扰信道的 BCI。
步骤 404, UE2对 H32计算 SINR— max, 为 198.23;
步骤 405 , 因为 SINR— max- SINR—平均 >第五门限, 所以 BCI 满足条件。 步骤 406, 因为 SINR乎均小于第二门限, SNR为 22.98 大于第六门限, 所以第一标志 =0。 在基站侧, 如果此 UE发起协作请求, 则此 UE也可以参 力口 comp西己对。
步骤 407 , UE把通过上述判决出来的所有满足条件的 WCI或者 BCI、 第一标志、 SINR等级、 干扰数目发给基站。
用服务小区信号能量除以除反馈了 BCI或者 WCI之外的干扰信道能量 和噪声能量总和, 得到的 SINR计算其 SINR等级。
本发明实施例还提供一种用户设备, 如图 5所示, 包括:
策略信息生成单元 501设置成: 获取信号与干扰加噪声比 SINR,或者, 获取 SINR和信噪比 SNR, 将所述 SINR, 或者 SINR和 SNR与预设门限比 较, 根据比较结果生成 COMP策略信息; 反馈单元 502设置成: 将所述 COMP策略信息发送给所述基站。
其中, 所述策略信息生成单元设置成根据如下方式获取所述 SINR: 获取所述用户设备的服务小区信号能量, 以及, 所述用户设备每个干扰 信道的平均干扰能量, 将所述服务小区信号能量与各干扰信道的平均干扰能 量和噪声的总和相除得到所述 SINR。
其中, 所述策略信息生成单元使用第一标志表示所述 COMP策略信息; 所述策略信息生成单元生成 COMP策略信息包括如下之一或其组合: 如果所述 SINR大于第一门限, 所述第一标志取值为第一指定值, 指示 所述用户设备能响应其他基站的协作请求;
如果所述 SINR小于等于所述第一门限, 大于第二门限, 则所述第一标 志取值为第二指定值, 指示所述用户设备未请求其他基站协作时, 不参加其 他基站的协作; 如果所述用户设备向其他基站请求协作, 则该用户设备能响 应其他基站的协作请求;
如果所述 SINR小于等于所述第二门限,则将所述 SNR与第六门限比较, 如果所述 SNR大于所述第六门限,则所述第一标志取值为第三指定值,指示 所述用户设备能参加协作; 如果所述 SNR小于等于所述第六门限, 则所述第 一标志取值为第四指定值, 指示所述用户设备不参加协作。
其中, 所述用户设备还包括码本匹配单元 503和判断单元 504 , 其中: 所述码本匹配单元 503设置成: 在所述 SINR小于等于第二门限时, 获 取每个干扰信道的最差码本索引 WCI或最佳码本索引 BCI;
所述判断单元 504设置成:判断 WCI或 BCI是否满足预设条件: 包括: 对获取到 WCI或 BCI的每个干扰信道, 判断其协作的预增益是否大于第五 门限, 如果大于, 且所述 SNR大于第六门限, 则所述 WCI或 BCI满足预设 条件;
所述反馈单元 502还设置成: 反馈所述满足预设条件的 BCI或 WCI给 基站。
其中, 所述码本匹配单元 503 设置成按如下方式获取每个干扰信道的 WCI或 BCI: 对所述用户设备的每路干扰信道, 获取 G1*干扰信道的最大干扰空间, 对所述最大干扰空间中每个向量, 将码本中各码字向该向量进行投影, 获取 投影后范数最大且大于指定门限的码字; 如果查找到与所述最大干扰空间向 量个数相同数目的码字, 则将这些码字作为 WCI;
如果未查找到与所述最大干扰空间向量个数相同数目的码字, 则获取
G1*干扰信道的最小干扰空间, 对所述最小干扰空间中每个向量, 将码本中 的各码字向该向量进行投影, 获取投影后范数最大且大于指定门限的码字, 如果能获取到至少一个码字, 则将获取的码字作为 BCI;
其中, 所述 G1为所述用户设备当前使用的检测算法的检测因子。
其中,所述 Gl=月良务小区信道乘以 PMI,然后转置;或者 Gl= (FT)"1 F,,
F=服务小区信道乘以 PMI。 F,是 F的转置。
其中, 所述码本匹配单元 503设置成通过如下方式获得所述最大干扰空 间:
将 G1*干扰信道进行 SVD分解,从全部奇异值中取子集,该子集中的奇 异值之和与全部奇异值之和大于第三门限, 将该子集中的奇异值对应的 V向 量作为最大干扰空间中的向量;
所述码本匹配单元通过如下方式获得所述最小干扰空间:
将 G1*干扰信道进行 SVD分解,将非奇异值对应的 V向量作为最小干扰 空间中的向量。
其中, 所述判断单元 504设置成通过如下方式判断协作的预增益是否大 于第五门限:
对任一干扰信道, 获取服务小区信号能量除以除该干扰信道之外的各个 干扰信道能量和噪声能量总和得到 SINR— max;
将所述 SINR— max与所述 SINR相减得到的值和所述第五门限进行比较, 如果大于所述第五门限, 则该干扰信道协作的预增益大于所述第五门限, 否 则, 该干扰信道协作的预增益小于等于所述第五门限。
上述实施例中, SINR也可以使用其他信道质量参数进行替换。 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
釆用上述技术方案, 与相关技术相比, 具有以下优势: 1 )能够对码本对 信道量化损失进行控制, 如果码本失真过大, 则不做针对此路干扰进行协作 要求; 2 )能够对协作效果进行预判断, 如果最佳效果相比平均相差不大, 间 接说明此时信道相对所有的码本效果均不理想; 3 )能够区分不同 SINR情况 适合做 comp条件, 以此实施不同的策略。 因此本发明具有很强的工业实用 性。

Claims

权利要求书
1、 一种小区间多天线协作系统干扰信道码本匹配方法, 包括: 用户设备获取信号与干扰加噪声比 SINR, 或者, 获取 SINR和信噪比 SNR, 将所述 SINR, 或者 SINR和 SNR与预设门限比较, 根据比较结果生 成协作多点传输 COMP策略信息, 将所述 COMP策略信息发送给基站。
2、 如权利要求 1所述的方法, 其中, 用户设备获取 SINR的步骤包括: 获取所述用户设备的服务小区信号能量, 以及, 所述用户设备每个干扰 信道的平均干扰能量, 将所述服务小区信号能量与各干扰信道的平均干扰能 量和噪声的总和相除得到所述 SINR。
3、 如权利要求 1所述的方法, 其中:
该方法还包括: 使用第一标志携带所述 COMP策略信息;
所述将所述 SINR, 或者 SINR和 SNR与预设门限比较, 根据比较结果 生成 COMP策略信息的步骤包括:
如果所述 SINR大于第一门限, 所述第一标志取值为第一指定值, 指示 所述用户设备能响应其他基站的协作请求;
如果所述 SINR小于等于所述第一门限, 大于第二门限, 则所述第一标 志取值为第二指定值, 指示所述用户设备未请求其他基站协作时, 不参加其 他基站的协作; 如果所述用户设备向其他基站请求协作, 则该用户设备能响 应其他基站的协作请求;
如果所述 SINR小于等于所述第二门限,则将所述 SNR与第六门限比较, 如果所述 SNR大于所述第六门限,则所述第一标志取值为第三指定值,指示 所述用户设备能参加协作; 如果所述 SNR小于等于所述第六门限, 则所述第 一标志取值为第四指定值, 指示所述用户设备不参加协作。
4、 如权利要求 1、 2或 3所述的方法, 该方法还包括:
如果所述 SINR小于等于所述第二门限, 则执行以下步骤:
获取每个干扰信道的最差码本索引 WCI或最佳码本索引 BCI;
判断 WCI或 BCI是否满足预设条件: 包括: 对获取到 WCI或 BCI的每 个干扰信道,判断其协作的预增益是否大于第五门限,如果大于,且所述 SNR 大于第六门限, 则所述 WCI或 BCI满足预设条件,
所述用户设备还反馈所述满足预设条件的 BCI或 WCI给所述基站。
5、 如权利要求 4所述的方法, 其中, 获取每个干扰信道的 WCI或 BCI 的步骤包括:
对所述用户设备的每路干扰信道, 获取 G1*干扰信道的最大干扰空间, 对所述最大干扰空间中每个向量, 将码本中各码字向该向量进行投影, 获取 投影后范数最大且大于指定门限的码字; 如果查找到与所述最大干扰空间向 量个数相同数目的码字, 则将这些码字作为 WCI;
如果未查找到与所述最大干扰空间向量个数相同数目的码字, 则获取
G1*干扰信道的最小干扰空间, 对所述最小干扰空间中每个向量, 将码本中 的各码字向该向量进行投影, 获取投影后范数最大且大于指定门限的码字, 如果能获取到至少一个码字, 则将获取的码字作为 BCI;
其中, 所述 G1为所述用户设备当前使用的检测算法的检测因子。
6、 如权利要求 5所述的方法, 其中, 所述 Gl=服务小区信道乘以预编 码矩阵指示 PMI,然后转置;或者 Gl= (FT)-1 F,, F=良务小区信道乘以 PMI。
7、如权利要求 5所述的方法, 其中, 获取 G1*干扰信道的最大干扰空间 的步骤包括:
将 G1*干扰信道进行 SVD分解,从全部奇异值中取子集,该子集中的奇 异值之和与全部奇异值之和大于第三门限, 将该子集中的奇异值对应的 V向 量作为最大干扰空间中的向量;
所述最小干扰空间通过如下方式获得:
将 G1*干扰信道进行 SVD分解,将非奇异值对应的 V向量作为最小干扰 空间中的向量。
8、 如权利要求 5所述的方法, 其中, 对获取到 WCI或 BCI的每个干扰 信道, 判断其协作的预增益是否大于第五门限的步骤包括:
对任一干扰信道, 获取服务小区信号能量除以除该干扰信道之外的各个 干扰信道能量和噪声能量总和得到 SINR— max; 将所述 SINR— max与所述 SINR相减得到的值和所述第五门限进行比较, 如果大于所述第五门限, 则该干扰信道协作的预增益大于所述第五门限, 否 则, 该干扰信道协作的预增益小于等于所述第五门限。
9、 一种用户设备, 包括策略信息生成单元和反馈单元, 其中: 所述策略信息生成单元设置成: 获取信号与干扰加噪声比 SINR,或者, 获取 SINR和信噪比 SNR, 将所述 SINR, 或者 SINR和 SNR与预设门限比 较, 根据比较结果生成 COMP策略信息;
所述反馈单元设置成: 将所述 COMP策略信息发送给基站。
10、 如权利要求 9所述的用户设备, 其中, 所述策略信息生成单元设置 成根据如下方式获取所述 SINR:
获取所述用户设备的服务小区信号能量, 以及, 所述用户设备每个干扰 信道的平均干扰能量, 将所述服务小区信号能量与各干扰信道的平均干扰能 量和噪声的总和相除得到所述 SINR。
11、 如权利要求 9所述的用户设备, 其中:
所述策略信息生成单元还设置成:使用第一标志表示所述 COMP策略信 息;
所述策略信息生成单元设置成按照如下方式生成所述 COMP策略信息: 如果所述 SINR大于第一门限, 所述第一标志取值为第一指定值, 指示 所述用户设备能响应其他基站的协作请求;
如果所述 SINR小于等于所述第一门限, 大于第二门限, 则所述第一标 志取值为第二指定值, 指示所述用户设备未请求其他基站协作时, 不参加其 他基站的协作; 如果所述用户设备向其他基站请求协作, 则该用户设备能响 应其他基站的协作请求;
如果所述 SINR小于等于所述第二门限,则将所述 SNR与第六门限比较, 如果所述 SNR大于所述第六门限,则所述第一标志取值为第三指定值,指示 所述用户设备能参加协作; 如果所述 SNR小于等于所述第六门限, 则所述第 一标志取值为第四指定值, 指示所述用户设备不参加协作。
12、 如权利要求 9、 10或 11所述的用户设备, 其中, 所述用户设备还包 括码本匹配单元和判断单元, 其中:
所述码本匹配单元设置成: 在所述 SINR小于等于所述第二门限时, 获 取每个干扰信道的最差码本索引 WCI或最佳码本索引 BCI;
所述判断单元设置成: 判断 WCI或 BCI是否满足预设条件: 包括: 对 获取到 WCI或 BCI的每个干扰信道, 判断其协作的预增益是否大于第五门 限, 如果大于, 且所述 SNR大于第六门限, 则所述 WCI或 BCI满足预设条 件;
所述反馈单元还设置成: 反馈所述满足预设条件的 BCI或 WCI给所述 基站。
13、如权利要求 12所述的用户设备, 其中, 所述码本匹配单元设置成按 如下方式获取每个干扰信道的 WCI或 BCI:
对所述用户设备的每路干扰信道, 获取 G1*干扰信道的最大干扰空间, 对所述最大干扰空间中每个向量, 将码本中各码字向该向量进行投影, 获取 投影后范数最大且大于指定门限的码字; 如果查找到与所述最大干扰空间向 量个数相同数目的码字, 则将这些码字作为 WCI;
如果未查找到与所述最大干扰空间向量个数相同数目的码字, 则获取 G1*干扰信道的最小干扰空间, 对所述最小干扰空间中每个向量, 将码本中 的各码字向该向量进行投影, 获取投影后范数最大且大于指定门限的码字, 如果能获取到至少一个码字, 则将获取的码字作为 BCI;
其中, 所述 G1为所述用户设备当前使用的检测算法的检测因子。
14、 如权利要求 13所述的用户设备, 其中, 所述 Gl=服务小区信道乘 以 PMI, 然后转置; 或者 Gl fF)-1 F,, F=服务小区信道乘以 PMI。
15、如权利要求 13所述的用户设备, 其中, 所述码本匹配单元设置成通 过如下方式获得所述最大干扰空间:
将 G1*干扰信道进行 SVD分解,从全部奇异值中取子集,该子集中的奇 异值之和与全部奇异值之和大于第三门限, 将该子集中的奇异值对应的 V向 量作为最大干扰空间中的向量;
所述码本匹配单元设置成通过如下方式获得所述最小干扰空间: 将 Gl*干扰信道进行 SVD分解,将非奇异值对应的 V向量作为最小干扰 空间中的向量。
16、如权利要求 13所述的用户设备, 其中, 所述判断单元设置成通过如 下方式判断协作的预增益是否大于第五门限:
对任一干扰信道, 获取服务小区信号能量除以除该干扰信道之外的各个 干扰信道能量和噪声能量总和得到 SINR— max;
将所述 SINR— max与所述 SINR相减得到的值和所述第五门限进行比较, 如果大于所述第五门限, 则该干扰信道协作的预增益大于所述第五门限, 否 则, 该干扰信道协作的预增益小于等于所述第五门限。
PCT/CN2013/081167 2012-08-10 2013-08-09 小区间多天线协作系统干扰信道码本匹配方法和用户设备 WO2014023265A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13828722.2A EP2858448B1 (en) 2012-08-10 2013-08-09 User equipment and method for matching interference channel codeword in inter-cell multi-aerial coordinated system
US14/411,992 US9686799B2 (en) 2012-08-10 2013-08-09 User equipment and method for matching interference channel codeword in inter-cell multi-aerial coordinated system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210284884.9A CN103580743B (zh) 2012-08-10 2012-08-10 小区间多天线协作系统干扰信道码本匹配方法和用户设备
CN201210284884.9 2012-08-10

Publications (1)

Publication Number Publication Date
WO2014023265A1 true WO2014023265A1 (zh) 2014-02-13

Family

ID=50051781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081167 WO2014023265A1 (zh) 2012-08-10 2013-08-09 小区间多天线协作系统干扰信道码本匹配方法和用户设备

Country Status (5)

Country Link
US (1) US9686799B2 (zh)
EP (1) EP2858448B1 (zh)
CN (1) CN103580743B (zh)
HU (1) HUE034478T2 (zh)
WO (1) WO2014023265A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106255219B (zh) * 2016-08-10 2017-05-24 西安科技大学 干扰网络中基于分集与复用增益折中的动态模式切换方法
CN113824541A (zh) * 2020-06-18 2021-12-21 中兴通讯股份有限公司 信道空间配置方法、装置、计算机设备和计算机可读介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868017A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 一种实现CoMP下行通信的方法和装置
US20110149877A1 (en) * 2009-12-23 2011-06-23 Abdulrauf Hafeez Rate allocation scheme for coordinated multipoint transmission
CN102342032A (zh) * 2009-03-04 2012-02-01 Lg电子株式会社 用于在无线通信系统中执行comp操作和发送反馈信息的方法
CN102598525A (zh) * 2009-10-25 2012-07-18 Lg电子株式会社 在使用CoMP传输的无线通信系统中终端传输反馈信息的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101475816B1 (ko) * 2008-07-07 2014-12-23 삼성전자주식회사 다중 입출력 무선통신 시스템에서 셀 간 간섭 제거 장치 및방법
KR101204627B1 (ko) * 2008-08-11 2012-11-23 한국전자통신연구원 다중 입력 다중 출력 시스템에서 다중 기지국 협력 통신을 위한 프리코딩 행렬 설계 방법
CN101925183A (zh) 2009-06-15 2010-12-22 中兴通讯股份有限公司 一种基于协作多点传输的数据传输方法及装置
JP5516721B2 (ja) * 2010-04-09 2014-06-11 株式会社日立製作所 無線通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102342032A (zh) * 2009-03-04 2012-02-01 Lg电子株式会社 用于在无线通信系统中执行comp操作和发送反馈信息的方法
CN102598525A (zh) * 2009-10-25 2012-07-18 Lg电子株式会社 在使用CoMP传输的无线通信系统中终端传输反馈信息的方法和装置
US20110149877A1 (en) * 2009-12-23 2011-06-23 Abdulrauf Hafeez Rate allocation scheme for coordinated multipoint transmission
CN101868017A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 一种实现CoMP下行通信的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858448A4 *

Also Published As

Publication number Publication date
EP2858448A4 (en) 2015-07-22
CN103580743B (zh) 2018-10-26
EP2858448A1 (en) 2015-04-08
CN103580743A (zh) 2014-02-12
US9686799B2 (en) 2017-06-20
US20150156784A1 (en) 2015-06-04
HUE034478T2 (en) 2018-02-28
EP2858448B1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
Qamar et al. A comprehensive review on coordinated multi-point operation for LTE-A
US9961579B2 (en) Scalable channel feedback for wireless communication
Choi et al. The capacity gain from intercell scheduling in multi-antenna systems
EP2665200B1 (en) Reporting of channel information to support coordinated multi-point data transmission
US9337906B2 (en) Feedback and scheduling for coordinated multi-point (CoMP) joint transmission (JT) in orthogonal frequency division multiple access (OFDMA)
US9467273B2 (en) Apparatus and method for reducing inter-cell interference in multiple input multiple output system
WO2013163859A1 (zh) Mimo 无线通信系统、传输方法和装置
EP2612533A1 (en) Scheduling for coordinated multi-cell mimo systems
JP2010045783A (ja) マルチセル協調送信方法
JP2010246113A (ja) 無線通信における適応協調伝送方法、システムおよび送信機
CN105392200B (zh) 干扰协调方法及装置
WO2010105549A1 (zh) 多输入多输出系统中用于多小区协作通信的方法及装置
Liu et al. D2D enhanced co-ordinated multipoint in cloud radio access networks
WO2014023265A1 (zh) 小区间多天线协作系统干扰信道码本匹配方法和用户设备
Cirik et al. Robust fairness transceiver design for a full-duplex MIMO multi-cell system
Xu et al. Robust beamforming with pilot reuse scheduling in a heterogeneous cloud radio access network
Chen et al. Interference-aware resource control in multi-antenna cognitive ad hoc networks with heterogeneous delay constraints
Ma et al. QoS-constrained weighted sum-rate maximization in multi-cell multi-user MIMO systems: An ADMM approach
CN115706608A (zh) 一种通信方法和通信装置
Jamal et al. Performance tradeoffs offered by beamforming in cognitive radio systems: An analytic approach
Feng et al. Random caching design for multi-user multi-antenna HetNets with interference nulling
Su et al. Sinr estimation in limited feedback coordinated multipoint systems
Wu et al. Limited feedback for cooperative multicell MIMO systems with multiple receive antennas
Sun et al. An enhanced coherent joint transmission algorithm for multi-cell downlink transmission
Li et al. Multi-cell hybrid channel information feedback for downlink multi-cell precoding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828722

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013828722

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14411992

Country of ref document: US

Ref document number: 2013828722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE