WO2014018957A1 - Apparatus and method for using radar to evaluate wind flow fields for wind energy applications - Google Patents

Apparatus and method for using radar to evaluate wind flow fields for wind energy applications Download PDF

Info

Publication number
WO2014018957A1
WO2014018957A1 PCT/US2013/052435 US2013052435W WO2014018957A1 WO 2014018957 A1 WO2014018957 A1 WO 2014018957A1 US 2013052435 W US2013052435 W US 2013052435W WO 2014018957 A1 WO2014018957 A1 WO 2014018957A1
Authority
WO
WIPO (PCT)
Prior art keywords
radars
wind
flow field
recited
data
Prior art date
Application number
PCT/US2013/052435
Other languages
French (fr)
Inventor
John Schroeder
Brian HIRTH
Jerry GUYNES
Original Assignee
Texas Tech University System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Tech University System filed Critical Texas Tech University System
Priority to EP13822416.7A priority Critical patent/EP2877875A4/en
Publication of WO2014018957A1 publication Critical patent/WO2014018957A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/001Full-field flow measurement, e.g. determining flow velocity and direction in a whole region at the same time, flow visualisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/589Velocity or trajectory determination systems; Sense-of-movement determination systems measuring the velocity vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/951Radar or analogous systems specially adapted for specific applications for meteorological use ground based
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • G01S13/956Radar or analogous systems specially adapted for specific applications for meteorological use mounted on ship or other platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates generally to the field of radars and, more particularly, to an apparatus and method for using radar to evaluate wind flow within and nearby wind farms.
  • Turbine wakes maintain wind speed deficits relative to the free stream flow and enhanced turbulence capable of providing higher dynamic loads to downwind turbines.
  • initial findings suggest power output decreases for individual wake-influenced turbines can reach 40%.
  • Total power output loss due to wake influences across a large wind farm can be as large as 20%.
  • the character of turbine wakes directly relates to appropriate turbine spacing and associated infrastructure costs. Accurately forecasting the expected total power output of a large wind park on short temporal scales requires a full understanding of the complex modulated flow fields within the wind farm itself.
  • the present invention provides an apparatus and method to better evaluate wind flow upstream, downstream and/or within wind farms to provide better optimization of wind farm layouts and operations.
  • the present invention uses, as an example, a specific Doppler radar technology to document the inflow and wake flow measurements surrounding a single wind turbine.
  • the same technology can be employed to document the upstream, downstream and modulated flow fields surrounding and within large portions of the entirety of a wind farm. Note that other suitable types of radar may also be used.
  • mesoscale and microscale meteorological phenomena e.g., thunderstorm outflows, fronts and drylines
  • the present invention provides a method for obtaining data to determine one or more characteristics of a wind flow field by providing one or more radars, collecting data from the one or more radars, and determining the one or more
  • the one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.
  • the present invention provides a method for determining one or more characteristics of a wind flow field by providing a data from one or more radars positioned to scan a portion of the wind flow field, and determining the one or more characteristics of the portion of the wind flow field by analyzing the data using one or more processors.
  • the present invention provides an apparatus for obtaining data to determine one or more characteristics of a wind flow field that includes one or more radars, and one or more processors that collect a data from the one or more radars, and determine the one or more characteristics of a portion of the wind flow field by analyzing the data using one or more processors.
  • the one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.
  • FIGURES 1 A and IB are various views of a Doppler radar deployment with respect to a wind turbine in accordance with one embodiment of the present invention
  • FIGURES 2A-2D show a plan-position indicator (PPI) sector scan of radial velocity and spectrum width from both radars at a 1.2° beam elevation in accordance with one embodiment of the present invention
  • FIGURES 3A and 3B correspond to FIGURES 2A and 2B respectively, but show the scans for a larger area in accordance with one embodiment of the present invention
  • FIGURE 4 shows a PPI sector scan of radial velocity from TTUKa2 radar at a 1.8° beam elevation on 9 January 2013 in accordance with one embodiment of the present invention
  • FIGURES 5A and 5B are various views of a Doppler radar deployment with respect to a wind turbine in accordance with one embodiment of the present invention
  • FIGURES 6A and 6B show a plan-position indicator (PPI) sector scan of radial velocity and spectrum width from TTUKa2 radar at a 1.2° beam elevation in accordance with one embodiment of the present invention
  • FIGURES 7A and 7B are various views of a Doppler radar deployment with respect to a wind turbine in accordance with one embodiment of the present invention.
  • FIGURES 8A and 8B show a range-height indicator (RHI) sector scan of radial velocity and spectrum width between 0° and 30° elevation at a constant azimuth oriented through the turbine from the TTUKal radar in accordance with one embodiment of the present invention
  • FIGURES 9A and 9B are various views of a Doppler radar deployment with respect to a wind turbine in accordance with one embodiment of the present invention.
  • FIGURE 10A shows a plan view of the radial velocity gridded analysis at 80 m (hub height) along with gridded vertical cross sections upwind of and through the wake at various rotor diameter (D) distances downwind in accordance with one embodiment of the present invention
  • FIGURES 1 OB- 101 shows various cross sections of FIGURE 10A viewed from downwind looking back toward the turbine in accordance with one embodiment of the present invention
  • FIGURE 11 A shows a plan view of the spectrum width gridded analysis at 80 m (hub height) along with gridded vertical cross sections upwind of and through the wake at various downwind D distances in accordance with one embodiment of the present invention
  • FIGURES 1 lB-1 II shows various cross sections of FIGURE 11A viewed from downwind looking back toward the turbine in accordance with one embodiment of the present invention
  • FIGURE 12 shows a plan view of a single radial velocity sector using a 1.2° tilt in accordance with another embodiment of the present invention
  • FIGURE 13 shows the dual Doppler horizontal wind speed at 80 m AGL with a mean WD of 16.4° in accordance with one embodiment of the present invention
  • FIGURE 14 shows the wind streaks and modulation of wake behavior in accordance with one embodiment of the present invention
  • FIGURES 15A-15F are vertical slices of the reduction (%) in horizontal wind speed within the wake composited from 72 dual-Doppler volumes at (A) ID, (B) 2D, (C) 5D, (D) 7D, (E) 10D, and (F) 12D downwind in accordance with one embodiment of the present invention;
  • FIGURE 16 shows horizontal wind speed reductions (%) within the wake at various downwind distances from the turbine relative to the free-stream flow field in accordance with one embodiment of the present invention
  • FIGURES 17A and 17B are various views of a Doppler radar deployment in which a single radar (TTUKa2) was used document the structure and evolution of a single utility- scale turbine wake on January 9, 2013 in accordance with one embodiment of the present invention;
  • TTUKa2 single radar
  • FIGURE 18 shows the radial velocity at 1.8° in accordance with one embodiment of the present invention
  • FIGURE 19 shows the 10 minute VR mean in accordance with one embodiment of the present invention
  • FIGURE 20 shows an assessment of the wake width and meandering (150 scans over 10 minutes) in accordance with one embodiment of the present invention
  • FIGURE 21 shows a graph assessing wake width and meandering for 1 scan (4 s) and 149 scans (10 min) in accordance with one embodiment of the present invention
  • FIGURE 22 is a flow chart of a method for obtaining data to determine one or more characteristics of a wake of one or more turbines in accordance with one embodiment of the present invention.
  • FIGURE 23 is a flow chart for a method for determining one or more
  • suitable microwave frequency bands include: W-band (75 to 110 GHz); V-band (50 to 75 GHz); Ka-band (26.5 to 40 GHz); K-band (18 to 26.5 GHz); Ku-band (12 to 18 GHz); X-band (8 to 12 GHz); C-band (4 to 8 GHz); and S-band (2 to 4 GHz).
  • the present invention provides a wind flow field defined with sufficient resolution to document flow field perturbations of importance to wind turbine and wind farm response. From the generated fields, modulated flow fields within a wind farm can be documented, available power can be estimated, information about the vertical profile of horizontal wind across the rotor sweep can be identified, areas of enhanced turbulence can be tracked in time, and localized events (such as a thunderstorm outflow) can be proactively recognized. As a result, the present invention can be used to document wind turbine wakes, perform enhanced power performance testing (i.e. more comprehensive documentation of inflow conditions relative to turbine power generation), enhance wind farm turbine layout (existing commercial codes are based on assumptions which this technology can validate in full scale), and conduct site specific resource assessment (defining localized wind flow prior to or after turbine deployment).
  • enhanced power performance testing i.e. more comprehensive documentation of inflow conditions relative to turbine power generation
  • enhance wind farm turbine layout existing commercial codes are based on assumptions which this technology can validate in full scale
  • conduct site specific resource assessment defining localized wind flow prior to or after turbine deployment.
  • wind turbine and wind farm performance optimization including the development of "smart" wind farms based on integrating the generated flow and power fields into turbine and wind farm controls, mitigation of turbine loads through anticipatory control based on the remotely sensed flow and turbulence fields.
  • the techniques described herein can be used to help lower the cost of wind energy through optimized wind turbine/farm performance and enhanced reliability.
  • the present invention can provide a more general usage toward documenting "complex flows," such as those induced by local terrain.
  • the wind mapping capabilities will also allow for a wind farm operator to make anticipatory control decisions. For instance, if a thunderstorm outflow is pushing into the wind farm from a given direction, the wind mapping capability will reveal the outflow and allow the wind farm to make smart decisions proactively, instead of reactively.
  • LIDAR utilizes the Doppler effect to obtain a remotely sensed along-beam measurement of the wind velocity vector.
  • the advantages of research-grade LIDAR systems include their compact size and narrow beamwidths, which are generally less than 0.5 m.
  • Recent full-scale measurements using scanning LIDAR technology have proven effective when observing wind turbine wakes. [4,6] These measurements have shown the effects of turbine wakes to extend beyond 10-15 rotor diameters (D) downwind.
  • Research-grade Doppler radar systems provide the opportunity to expand the LIDAR coverage footprint with increased range resolution while utilizing adaptive scanning strategies. Here, an introduction to using research radar for wake detection and monitoring will be presented.
  • TTU Texas Tech University
  • TTUKa two mobile Ka-band (35 GHz) Doppler radar systems
  • TTU Texas Tech University
  • TTUKa two mobile Ka-band
  • the TTUKa radars represent the first research-grade mobile Doppler systems to use a nonlinear pulse-compression frequency modulation technique in the Ka band.
  • the transmitted signal is generated using a fully coherent traveling wave tube amplifier; thus, no velocity noise (error) is present.
  • the pulse-compression technique allows for accurate radial velocity measurements using a relatively long pulse width while maintaining improved range resolution when compared to traditional radar systems.
  • the half-power beamwidth is 0.49°.
  • the along-beam range gate spacing is 15 m and is a function of modulation bandwidth. Additional technical specifications for the TTUKa radar units can be found in Table 1.
  • each radar is truck mounted, which allows for mobility to and around a desired scanning location.
  • the radar systems are designed to operate during extreme meteorological environments including thunderstorms and hurricanes.
  • a radome protects the antenna from wind loading, wind-borne debris, hail, and miscellaneous hazards during transit.
  • a hydraulic leveling system levels the radar during deployment and the radar is operated from within the truck cab.
  • Each radar utilizes a Sigmet RVP-9000 signal processor and is capable of performing sector or full 360° horizontal plan-position indicator (PPI) sweeps (outside of the influence of the truck cab).
  • Vertical range-height indicator (RHI) scanning from 0° to 90° along a single azimuth is also possible. Spatial oversampling is accomplished by collecting data every 0.352° (0.1°) for PPI (RHI) scanning strategies.
  • the TTUKa radars generally provide continuous coherent measurements out to the maximum range when distributed meteorological targets (water droplets, ice crystals, insects, aerosols, etc.) are present. To date, coherent radial measurements are often observed when scanning non-precipitating atmospheres, but coverage is intermittent in low relative humidity environments.
  • An antenna upgrade is planned for both radars, and the net result will be an increase in clear-air sensitivity and azimuthal resolution.
  • a limitation of Doppler radar measurements when compared to LIDAR is the effect of beam spread at large ranges. A beamwidth of 0.49° results in a beam spread of 17.1 m at 2-km range and 85.5 m at 10-km range. Following the scheduled upgrade, a beamwidth of 0.33° will reduce the azimuthal beam spread 33% to 11.5 m and 57.6 m at 2-km and 10-km ranges, respectively.
  • one or more radars are positioned to have a portion of the wind flow field disposed within a scanning sector of the one or more radars.
  • One or more processors e.g., instruments, computers, etc.
  • the one or more radars can be a Doppler radar or other suitable types of radar technologies.
  • suitable microwave frequency bands include: W-band (75 to 110 GHz); V-band (50 to 75 GHz); Ka-band (26.5 to 40 GHz); K-band (18 to 26.5 GHz); Ku-band (12 to 18 GHz); X- band (8 to 12 GHz); C-band (4 to 8 GHz); and S-band (2 to 4 GHz).
  • one or more additional radars can be positioned to have the portion of the wind flow field or another portion of the wind flow field within an additional scanning sector for the additional radars.
  • the data may include a vertical range-height indicator, a horizontal plan-position indicator, or interpolated (e.g., gridded) horizontal wind flows describing a wake of one or more turbines and a free- stream radial velocity field surrounding the wake.
  • the same type of deployment as shown here could be used to simply map the wind flow field over a large spatial area, and be advantageous for providing enhanced resource assessment and investigating the impact of local terrain.
  • the results can also be used for anticipatory control if an abrupt change in wind speed/direction was approaching a wind farm or turbine.
  • One main advantage of these Doppler radar analyses employing radar data is that a continuous horizontal and/or vertical wind flow field can be mapped over a relatively large spatial area.
  • the vast majority of current operational turbines are only capable of sensing the wind features that are already passing through them. They have no awareness and no proactive response to prepare for a coming change in the flow regime.
  • FIGURES 1 A and IB are various views of a Doppler radar deployment in which a single radar (TTUKal) was used document the structure and evolution of a single utility- scale turbine wake on October 27, 2011.
  • a pulse length of 12.5 ms was used along with a pulse repetition frequency of 7500 Hz, yielding a maximum range of 20 km. Repetitive 20° PPI sector scans were collected. Data were collected during continuous light to moderate rainfall.
  • the turbine hub height was 80 m and the turbine rotor diameter was 86 m.
  • TTUKal was positioned at a distance of 2713 m north-northeast of the turbine. At this bearing, the turbine was oriented closely parallel to the mean wind direction (from the north through northeast) downwind of TTUKal .
  • TTUKal performed 208 sector scans at an elevation angle of 1.2° for 30 minute collection period. This elevation angle was chosen to maximize beam residence within the wake.
  • the beam height was 56.8 and 125.7 m AGL, respectively.
  • radial velocity measurements will generally reflect values less than the actual wind speed. For example, a radial velocity measurement will be 1.5% less than the true wind speed for a beam misaligned by 10° and 13.4% for a beam misaligned by 30°. Because of the 0.49° beamwidth, the azimuthal beam spread at the location of the turbine was 23 m.
  • the sector revisit time was 3 s, allowing for a high temporal depiction of wake evolution.
  • FIGURES 2A-2D a PPI sector scan of radial velocity and spectrum width from both TTUKa radars at a 1.2° beam elevation are shown in accordance with one embodiment of the present invention.
  • FIGURE 2A shows the PPI sector scan of radial velocity (m s "1 ) for TTUKal .
  • FIGURE 2B shows the PPI sector scan of spectrum width (m s "1 ) for TTUKal .
  • FIGURE 2C shows the PPI sector scan of radial velocity (m s " l ) for TTUKa2.
  • FIGURE 2D shows the PPI sector scan of spectrum width (m s "1 ) for TTUKa2.
  • the location of the turbine is denoted by the black dot.
  • FIGURE 2C shows the wake influence extending in excess of 30D downwind of the turbine, extending across the entire sector sampled.
  • the spectrum width fields from both radars also show enhanced turbulence associated with the wake. Enhanced spectrum width can be seen at the interface between the turbine wake and the adjacent flow, where turbulence between these two regions is maximized, and where blade tip vortices are expected to reside [8]. Spectrum width provides an additional tool for tracking downwind wake length.
  • FIGURES 3 A and 3B correspond to FIGURES 2A and 2B respectively, but show the scans for a larger area.
  • FIGURE 4 shows a PPI sector scan of radial velocity from TTUKa2 radar at a 1.8° beam elevation on 9 January 2013.
  • FIGURES 5A and 5B are various views of a Doppler radar deployment in which a single radar (TTUKa2) was used document the structure and evolution of a single utility-scale turbine wake on October 27, 2011.
  • a pulse length of 12.5 ms was used along with a pulse repetition frequency of 7500 Hz, yielding a maximum range of 20 km.
  • Repetitive 50° PPI sector scans were collected.
  • the turbine hub height was 80 m and the turbine rotor diameter was 86 m.
  • TTUKa2 was positioned 2563 m west- northwest of the turbine. At the location of the turbine and at 6-km range, the beam height was 53.7.
  • TTUKa2 performed 308 sector scans at the 1.2° elevation angle with a sector revisit time of 4.7 s.
  • Azimuthal beam spread at the location of the turbine from TTUKa2 was 22 m and the beam height was 53.7 m.
  • FIGURES 6A and 6B show a plan-position indicator (PPI) sector scan of radial velocity and spectrum width from TTUKa2 radar at a 1.2° beam elevation.
  • the radial velocities are not representative of the wind field given the perpendicular look angle, but the wake is easily evident.
  • the enhanced spectrum can be seen at the interface between the turbine wake and the adjacent flow, where turbulence between these two regions is maximized and were blade tip vortices are expected to reside.
  • FIGURES 7A and 7B are various views of a Doppler radar deployment in which a single radar (TTUKal) was used document the structure and evolution of a single utility-scale turbine wake on October 27, 2011.
  • a pulse length of 12.5 ms was used along with a pulse repetition frequency of 7500 Hz, yielding a maximum range of 20 km. Repetitive 30° RHI sector scans were collected.
  • the turbine hub height was 80 m and the turbine rotor diameter was 86 m.
  • TTUKal was positioned at a distance of 2713 m north-northeast of the turbine. At this bearing, the turbine was oriented closely parallel to the mean wind direction (from the north through northeast) downwind of TTUKal .
  • TTUKal performed sector scans at an elevation angles from 0° to 30°. The sector revisit time was 7 s.
  • FIGURES 8A and 8B a RHI sector scan of radial velocity and spectrum width between 0° and 30° elevation at a constant azimuth oriented through the turbine from the TTUKal radar are shown in accordance with one embodiment of the present invention.
  • FIGURE 8A shows the RHI sector scan of radial velocity (m s "1 ) for TTUKal .
  • FIGURE 8B shows the RHI sector scan of spectrum width (m s "1 ) for TTUKal .
  • the data was collection using long-duration, consecutive RHI scans.
  • the scan revisit interval was 7 s, emphasizing a high temporal resolution to capture wake evolution in the vertical dimension.
  • the influence of the turbine is denoted by the black vertical box.
  • the prevailing wind direction is also shown.
  • this cross section is not perfectly aligned with the downwind wake, wake effects in this RHI snapshot are evident in excess of 1 ID downstream of the turbine.
  • spectrum width (and therefore turbulence) in the RHI scan is maximized on the wake periphery.
  • FIGURES 9A and 9B are various views of a dual Doppler radar deployment in which a both radars (TTUKal and TTUKa2) were used document the structure and evolution of a single utility-scale turbine wake on October 27, 2011.
  • a pulse length of 12.5 ms was used along with a pulse repetition frequency of 7500 Hz, yielding a maximum range of 20 km. Coordinated 30° sector volumes were collected.
  • the turbine hub height was 80 m and the turbine rotor diameter was 86 m.
  • TTUKal was positioned at a distance of 2713 m north-northeast of the turbine. Note that the wind direction has changed from the previous analysis period shown and described above. Both the wind direction and speed changed significantly during the collection time period.
  • TTUKa2 was positioned 2563 m west-northwest of the turbine. Each radar scanned 10 elevation angles between 0.6° to 2.4° in 0.2° increments over a 30° sector. Each complete set of 10 scans, or volume, took approximately 45 seconds to complete. Both radars performed
  • the sector revisit time was 45 s.
  • FIGURE 10A a plan view of the radial velocity gridded analysis at 80 m (hub height) along with gridded vertical cross sections upwind of and through the wake at various downwind D distances are shown in accordance with one embodiment of the present invention.
  • a single volume of data collected by TTUKal was interpolated to a three-dimensional grid to analyze the mean wake structure.
  • the volume comprised 30° sector scans for 10 elevation angles taken every 0.2° between 0.6° and 2.4°. Data collection for the volume took approximately 45 s to complete.
  • the turbine is located at the origin, denoted by the magenta dot.
  • FIGURES 1 OB- 101 various cross sections of FIGURE 10A are viewed from downwind looking back toward the turbine in accordance with one embodiment of the present invention.
  • the vertical cross sections oriented normal to the wake are shown at ID upstream (FIGURE 10B), ID downstream (FIGURE IOC), 2D downstream (FIGURE 10D), 3D downstream (FIGURE 10E), 5D downstream (FIGURE 10F), 7D downstream (FIGURE 10G), 10D downstream (FIGURE 10H), and 15D downstream (FIGURE 101).
  • Cross-section x axis is horizontal distance (m) and y axis is height (m). The color bar is shared for all panels.
  • FIGURE 11A a plan view of the spectrum width gridded analysis at 80 m (hub height) along with gridded vertical cross sections upwind of and through the wake at various downwind D distances are shown in accordance with one embodiment of the present invention.
  • the turbine is located at the origin, denoted by the magenta dot.
  • FIGURES 1 lB-1 II various cross sections of FIGURE 11A are viewed from downwind looking back toward the turbine in accordance with one embodiment of the present invention.
  • the vertical cross sections oriented normal to the wake are shown at ID upstream (FIGURE 1 IB), ID downstream (FIGURE 11C), 2D downstream (FIGURE 1 ID), 3D downstream (FIGURE 1 IE), 5D downstream (FIGURE 11F), 7D downstream (FIGURE 11G), 10D downstream (FIGURE 11H), and 15D downstream (FIGURE 111).
  • Cross-section x axis is horizontal distance (m) and y axis is height (m). The color bar is shared for all panels.
  • FIGURE 12 shows a plan view of a single radial velocity sector using a 1.2° tilt within a wind farm in accordance with another embodiment of the present invention.
  • FIGURE 13 shows the dual Doppler horizontal wind speed at 80 m AGL with a mean WD of 16.4°. The 54 minute period yielded 72 consecutive volumes.
  • the complete grid used for this study was 3 km x 3 km x 150 m, with 10 m gird spacing in both the horizontal and vertical directions.
  • Data were interpolated using the Barnes (exponential) weighting scheme with a radius of influence of 25 m in the horizontal direction and 15 m in the vertical direction.
  • the REORDER Barnes weighting function was set to -2.3.
  • FIGURE 14 shows the wind streaks and modulation of wake behavior.
  • Data collected from all 72 volumes are composited using a wake-relative orientation to assess the ensemble averaged wake structure as a deficit from the free-stream flow field.
  • a mean free-stream wind profile is developed for each dual-Doppler volume by averaging a 1 km x 1 km section of the dual-Doppler domain not impacted by the turbine wake.
  • vertical cross-sections are developed through the wake at various downwind distances +/- 50 m horizontally from the identified wake center. Vertical cross-sections from all 72 dual- Doppler volumes are then composited at each downwind increment. Each composited cross-section is presented as a percent reduction/deficit from the derived free-stream wind profile.
  • FIGURES 15A-15F show vertical slices of the reduction (%) in horizontal wind speed within the wake composited from 72 dual-Doppler volumes at ID (FIGURE 15 A), 2D (FIGURE 15B), 5D (FIGURE 15C), 7D (FIGURE 15D), 10D (FIGURE 15E), and 12D (FIGURE 15F) downwind in accordance with the present invention.
  • Domain grid points are shown, and magenta grid points represent those contained by the wake-relevant rotor sweep (solid black circle). The black plus sign represents the center of the turbine hub.
  • the maximum and mean reduction values from the contributing rotor sweep grid points are annotated.
  • a mean and maximum wind speed deficit (i.e., reduction in wind speed relative to the free- stream) is assessed for each downwind composite cross-section.
  • the mean (maximum) wind speed deficit within the wake at 1 D is 27.7% (38.5%), at 7 D is 17.4% (23.5%), at 10 D is 14.8% (19.1%), and at 15 D is 1 1.5% (15.5%).
  • the difference between the maximum and mean wind speed deficit converges with increasing distance and is 10.8% at 1 D, 6.1% at 7 D, and 4.3%) at 10 D.
  • the analyzed wind speed deficits in the wake are linked to the potential power deficits that a downwind turbine located within the wake might experience.
  • the wind speed reduction corresponds to a potential power reduction for a turbine centered within this wake of 61.6% relative to the power output from a turbine experiencing the free stream flow.
  • the composite mean wind speed reduction is 17.4%, corresponding to a 43.6% decrease in potential power output.
  • the composite mean wind speed reduction is 14.8%), which is proportional to a potential decrease in power output of 38.2%.
  • a mean wind speed reduction of 11.5% is observed, which yields a 30.6%> decrease in potential power output. It is important to note that the turbulent character of the wake can vary significantly with downwind distance, which can affect the relationship between wind speed and power output.
  • Meteorological tower data collected over a 5-yr period at the Energy Research Center of the Netherlands Wind Turbine Test Site in Wieringermeer showed maximum velocity deficits within a wake to be 45% at 2.5 D and 35% at 3.5 D.
  • Maximum power loss between the first turbine and the second turbine (separated by 3.8 D) reached 67%.
  • FIGURE 16 horizontal wind speed reductions (%) within the wake at various downwind distances from the turbine relative to the free-stream flow field in accordance with the present invention are shown.
  • Thin lines represent individual volume maximum and mean values.
  • Bold lines indicate maximum and mean reduction composites from all 72 contributing dual-Doppler volumes.
  • the collected data also reveal considerable variability between individual dual-Doppler synthesized deficits of horizontal wind speed within the wake.
  • Maximum wind speed reductions in the wake within 4 D of the turbine exceeded 50%> on several occasions during the collection period.
  • the range in mean wind speed reduction behind the rotor sweep over the 72 contributing volumes is 32%.
  • the spread reduces at 6 D to 20%.
  • FIGURES 17A and 17B are various views of a Doppler radar deployment in which a single radar (TTUKa2) was used document the structure and evolution of a single utility-scale turbine wake on January 9, 2013.
  • a pulse length of 12.5 ms was used along with a pulse repetition frequency of 12,000 Hz, yielding a maximum range of 15 km.
  • Repetitive 45° PPI sector scans were collected (500 scans over 34 minutes).
  • the turbine hub height was 80 m and the turbine rotor diameter was 86 m.
  • TTUKa2 was positioned at a distance of 2480 m north-northeast of the turbine. At this bearing, the turbine was oriented closely parallel to the mean wind direction (from the north through northeast) downwind of TTUKa2.
  • FIGURE 18 shows the radial velocity at 1.8°.
  • FIGURE 19 shows the 10 minute VR mean.
  • FIGURE 20 shows an assessment of the wake width and meandering (150 scans over 10 minutes).
  • FIGURE 21 shows a graph assessing wake width and meandering for 1 scan (4 s) and 149 scans (10 min).
  • FIGURE 22 a flow chart for a method 2200 for obtaining data to determine one or more characteristics of a wind flow field in accordance with the present invention is shown.
  • One or more radars are positioned to have a portion of the wind flow field (e.g., one or more locations of interest) disposed within a scanning sector of the one or more radars in block 2202.
  • a data is collected from the one or more radars in block 2204.
  • the data includes at least a radial velocity and a spectrum width.
  • One or more characteristics of the portion of the wind flow field are determined by analyzing the data using one or more processors in block 2206.
  • the one or more characteristics may include the mean and variable structure of the portion of the wind flow field, locating and tracking enhanced turbulence within the portion of the wind flow field, a plurality of center points for one or more turbine wake(s), a length of the one or more turbine wake(s), a set of horizontal wind speed deficits or surpluses within the portion of the wind flow field relative to a free-stream flow, a forecast power output for one or more turbines within the portion of the wind flow field, recognition of a localized event of interest (e.g., thunderstorm outflow) which may contain significant changes in wind speed and/or direction, information about the vertical profile of horizontal wind speed and direction within the wind flow field, or a combination thereof.
  • a localized event of interest e.g., thunderstorm outflow
  • the one or more radars can be one or more Doppler radars or other suitable types of radar technologies. These permutations include the use of fixed and mobile platforms, the use of different transmitters (e.g., magnetron, klystron, traveling wave tubes, etc.) and receiver technologies (e.g., different amplifiers and filters) concepts, the use of different wavelengths of radiation, the use of different processors, the use of different hardware components (e.g., antennas, pedestals, etc.), and/or the ability to provide or not provide pulse compression technologies.
  • transmitters e.g., magnetron, klystron, traveling wave tubes, etc.
  • receiver technologies e.g., different amplifiers and filters
  • suitable microwave frequency bands include: W-band (75 to 110 GHz); V-band (50 to 75 GHz); Ka-band (26.5 to 40 GHz); K- band (18 to 26.5 GHz); Ku-band (12 to 18 GHz); X-band (8 to 12 GHz); C-band (4 to 8 GHz); and S-band (2 to 4 GHz).
  • fixed radars will typically be installed at a height approximately equal to or near hub height of the wind turbines within and adjacent to the portion of the wind flow field of interest.
  • the radar network can also have multiple nodes. Multiple tilt angles can be used to determine what is happening vertically above the hub of the wind turbines.
  • the radar can be set for continuous scanning, "on-demand" scanning, scanning at predefined time periods, scanning upon occurrence of a trigger event, or other desired operational mode.
  • the scanning range of the present invention is not limited to any sector.
  • the scanning sector can be a full 360 degrees.
  • one or more additional radars can be positioned to have the portion of the wind flow field or another portion of the wind flow field within an additional scanning sector for the additional radars.
  • multiple radars can be positioned such that they have scanning sectors that progressively overlap one another (i.e., "leap frog" one another).
  • a second scanning sector overlaps a portion of first scanning sector
  • a third scanning overlaps a portion of the second scanning sector and may or may not include a portion of the first scanning sector
  • a fourth scanning sector overlaps a portion of the third scanning sector and may or may not include a portion of the first or second scanning sectors, and so on.
  • the only limitation on the size of the portion of the wind flow field is that the return signals have to be coherent enough to obtain usable data.
  • an individual radar can be positioned upstream or downstream or both from the portion of the wind flow field being analyzed.
  • the step of collecting the data from the one or more radars may include the steps of collecting a raw data from the one or more radars, and processing the raw data to generate a data.
  • the step of processing the raw data may include various conversion and interpolation processes.
  • Additional steps may include compositing the data using a wake-relative orientation to assess an ensemble averaged wake structure as a deficit from a free-stream radial velocity field or developing a mean free-stream radial velocity profile by averaging a section of the data not impacted by a wake of one or more turbines.
  • Other steps may include accessing variability about the mean, developing a plurality of vertical cross- sections through a wake of one or more turbines at various distances downwind from the one or more turbines, compositing the vertical cross-sections at each distance downwind from the one or more turbines, and presenting each composited vertical cross-section as a percent reduction/deficit from a derived free-stream radial velocity profile.
  • FIGURE 23 a flow chart for a method 2300 for determining one or more characteristics of a wind flow field in accordance with the present invention is shown.
  • a data is provided from one or more radars positioned to scan a portion of the wind flow field in block 2302.
  • the data includes at least a radial velocity and a spectrum width.
  • the one or more characteristics of the portion of the wind flow field are determined by analyzing the data using one or more processors in block 2304.
  • TTUKa mobile radar systems are well equipped to explore the full length of turbine wakes, including wake width expansion, wake meandering, lateral wake merging [2], and wind farm to wind farm interaction with range resolution and coverage that exceeds current LIDAR technologies.
  • Various techniques can be used to analyze this and other TTUKa wake datasets.
  • Composites of several long-duration PPI and RHI scan periods can be constructed to assess mean wake structure using mean radial velocity deficit and mean spectrum width signatures. At greater D, the magnitude and frequency of wake meandering can be analyzed.
  • the present invention provides comprehensive information about the modulated flows within a wind field or farm. These technologies and techniques will enhance wind farm design, layout practices and operation. Documenting the structure and evolution of complex flows within and surrounding wind farms will lead to increased efficiency as turbine wakes are fully characterized, turbine-to-turbine interactions are defined, transient wind events are proactively identified, the effects of local terrain are documented, and turbine inflows are adequately characterized allowing intelligent control of individual wind turbines and entire wind farms. Utilizing adaptive scanning strategies, the variability of the flow surrounding a turbine can be documented in real time. Individual turbine wakes can be tracked at multiple downstream locations both in the horizontal and vertical dimensions. Inflow- relative radial velocity reductions can be constructed across the rotor sweep, along with power output deficits for a hypothetical downstream turbine located within the wake. These same principles also can be expanded to multiple turbines in a wind farm setting where turbine-to-turbine interactions exist.
  • a general purpose processor e.g., microprocessor, conventional processor, controller, microcontroller, state machine or combination of computing devices
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • steps of a method or process described herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The present invention provides an apparatus and method for obtaining data to determine one or more characteristics of a wind flow field using one or more radars. Data is collected from the one or more radars, and analyzed to determine the one or more characteristics of the wind flow field. The one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.

Description

APPARATUS AND METHOD FOR USING RADAR TO EVALUATE WIND FLOW FIELDS FOR WIND ENERGY APPLICATIONS
Field of Invention
The present invention relates generally to the field of radars and, more particularly, to an apparatus and method for using radar to evaluate wind flow within and nearby wind farms.
Statement of Federally Funded Research
This invention was made with government support under Grant No. DE-FG-06- GO86092 awarded by the United States Department of Energy Congressionally Directed Project: Great Plains Wind Power Test Facility. The United States government has certain rights in the invention.
Background Art
Understanding the structure and evolution of flow fields within wind farms is essential to properly plan wind farms and estimate wind turbine and farm efficiency.
Turbine wakes maintain wind speed deficits relative to the free stream flow and enhanced turbulence capable of providing higher dynamic loads to downwind turbines. Although only a few observational studies on the impact of turbine wakes exist, initial findings suggest power output decreases for individual wake-influenced turbines can reach 40%. Total power output loss due to wake influences across a large wind farm can be as large as 20%. [1] The character of turbine wakes directly relates to appropriate turbine spacing and associated infrastructure costs. Accurately forecasting the expected total power output of a large wind park on short temporal scales requires a full understanding of the complex modulated flow fields within the wind farm itself.
A multitude of numeric simulations (LES, CFD, etc.) has been conducted in an attempt to quantify the structure and effect of turbine wakes. Reference [1] (Barthelmie et. al.) listed below provides a detailed list of concerns when applying these simulation results to the real atmosphere and full-scale turbine systems. Among other limitations, current numeric simulations are not yet capable of accurately handling the natural variability of atmospheric stability and turbulence as well as complex underlying terrain. The net result is a systematic underprediction of wake losses within a large wind farm. Additionally, the computational expense of accurately incorporating turbine and blade geometry into simulations remains large, requiring the employment of simplified approaches that do not exactly represent reality. [3] Despite these limitations, wake modeling efforts are necessary as current observational capabilities are not yet able to provide the spatial and temporal resolution needed to document the full range of scales within a turbine wake in the real atmosphere. However, to validate the simulation results, expansion of existing observational capabilities and coverage is vital.
To date, observational studies of the horizontal influence of turbine wakes are limited to sparse tower, sodar, and/or LIDAR measurements. Fixed meteorological tower measurements provide valuable "ground truth" data but are inherently limited in their horizontal and vertical coverage. Sodar is limited in its ability to document flow fields beyond time averaged vertical wind profiles of horizontal wind speeds. Scanning and staring LIDAR systems can provide for quantification of the flow fields (including inflow and wake flow) but are limited with respect to range, range resolution and temporal revisit times relative to radar technology. Existing LIDAR technologies also do not provide information during periods of precipitation, and have exhibited less reliability for long- term field deployments.
Existing published wake studies indicate that current LIDAR technology is handcuffed by the inverse relationship between maximum range and along-beam range resolution. This limitation precludes the ability to fully observe wakes of significant length or wake interaction over the footprint of a large wind farm using current LIDAR technology. The maximum presented along-beam range gate spacing from scanning LIDAR wake studies is 30 m [4] using the National Oceanic and Atmospheric
Administration (NOAA) High-Resolution Doppler LIDAR [5].
Accordingly there is a need for an apparatus and method to more accurately evaluate wind flow upstream, downstream and/or within wind farms to provide better optimization of wind farm layouts and operations.
Summary of the Invention
The present invention provides an apparatus and method to better evaluate wind flow upstream, downstream and/or within wind farms to provide better optimization of wind farm layouts and operations. The present invention uses, as an example, a specific Doppler radar technology to document the inflow and wake flow measurements surrounding a single wind turbine. The same technology can be employed to document the upstream, downstream and modulated flow fields surrounding and within large portions of the entirety of a wind farm. Note that other suitable types of radar may also be used.
These data and subsequent analysis results are expected to serve as a catalyst for future wake observations and simulation improvements, leading to optimized wind turbine layouts, refined design of control systems, and the development of "smart" wind farms to help reduce the cost of energy.
Remotely sensed turbine wake observations using LIDAR technology have proven effective; however, the presented radar capabilities provide a larger observational footprint and greater along-beam resolution than current scanning LIDAR systems. Plan-position indicator and range-height indicator scanning techniques are utilized to produce various wake analyses. Preliminary analyses confirm radial velocity and wind speed deficits immediately downwind of the turbine hub to be on the order of 50%. The present invention allows for a more comprehensive analysis of the modulated flow field within and surrounding a wind farm using one or more strategically placed radars. This includes the documentation and evolution of wake structure and meandering characteristics, the influence of local terrain on wind flow, identification of abrupt flow changes due to mesoscale and microscale meteorological phenomena (e.g., thunderstorm outflows, fronts and drylines), documentation of vertical profiles of wind speed and direction to better define inflow, and identification of turbine -turbine induced interactions.
More specifically, the present invention provides a method for obtaining data to determine one or more characteristics of a wind flow field by providing one or more radars, collecting data from the one or more radars, and determining the one or more
characteristics of the portion of the wind flow field by analyzing the data using one or more processors. The one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.
In addition, the present invention provides a method for determining one or more characteristics of a wind flow field by providing a data from one or more radars positioned to scan a portion of the wind flow field, and determining the one or more characteristics of the portion of the wind flow field by analyzing the data using one or more processors.
Moreover, the present invention provides an apparatus for obtaining data to determine one or more characteristics of a wind flow field that includes one or more radars, and one or more processors that collect a data from the one or more radars, and determine the one or more characteristics of a portion of the wind flow field by analyzing the data using one or more processors. The one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.
The present invention is described in detail below with reference to the
accompanying drawings. Brief Description of the Drawings
Further benefits and advantages of the present invention will become more apparent from the following description of various embodiments that are given by way of example with reference to the accompanying drawings:
FIGURES 1 A and IB are various views of a Doppler radar deployment with respect to a wind turbine in accordance with one embodiment of the present invention;
FIGURES 2A-2D show a plan-position indicator (PPI) sector scan of radial velocity and spectrum width from both radars at a 1.2° beam elevation in accordance with one embodiment of the present invention;
FIGURES 3A and 3B correspond to FIGURES 2A and 2B respectively, but show the scans for a larger area in accordance with one embodiment of the present invention;
FIGURE 4 shows a PPI sector scan of radial velocity from TTUKa2 radar at a 1.8° beam elevation on 9 January 2013 in accordance with one embodiment of the present invention;
FIGURES 5A and 5B are various views of a Doppler radar deployment with respect to a wind turbine in accordance with one embodiment of the present invention;
FIGURES 6A and 6B show a plan-position indicator (PPI) sector scan of radial velocity and spectrum width from TTUKa2 radar at a 1.2° beam elevation in accordance with one embodiment of the present invention;
FIGURES 7A and 7B are various views of a Doppler radar deployment with respect to a wind turbine in accordance with one embodiment of the present invention;
FIGURES 8A and 8B show a range-height indicator (RHI) sector scan of radial velocity and spectrum width between 0° and 30° elevation at a constant azimuth oriented through the turbine from the TTUKal radar in accordance with one embodiment of the present invention;
FIGURES 9A and 9B are various views of a Doppler radar deployment with respect to a wind turbine in accordance with one embodiment of the present invention;
FIGURE 10A shows a plan view of the radial velocity gridded analysis at 80 m (hub height) along with gridded vertical cross sections upwind of and through the wake at various rotor diameter (D) distances downwind in accordance with one embodiment of the present invention;
FIGURES 1 OB- 101 shows various cross sections of FIGURE 10A viewed from downwind looking back toward the turbine in accordance with one embodiment of the present invention;
FIGURE 11 A shows a plan view of the spectrum width gridded analysis at 80 m (hub height) along with gridded vertical cross sections upwind of and through the wake at various downwind D distances in accordance with one embodiment of the present invention;
FIGURES 1 lB-1 II shows various cross sections of FIGURE 11A viewed from downwind looking back toward the turbine in accordance with one embodiment of the present invention;
FIGURE 12 shows a plan view of a single radial velocity sector using a 1.2° tilt in accordance with another embodiment of the present invention;
FIGURE 13 shows the dual Doppler horizontal wind speed at 80 m AGL with a mean WD of 16.4° in accordance with one embodiment of the present invention;
FIGURE 14 shows the wind streaks and modulation of wake behavior in accordance with one embodiment of the present invention;
FIGURES 15A-15F are vertical slices of the reduction (%) in horizontal wind speed within the wake composited from 72 dual-Doppler volumes at (A) ID, (B) 2D, (C) 5D, (D) 7D, (E) 10D, and (F) 12D downwind in accordance with one embodiment of the present invention;
FIGURE 16 shows horizontal wind speed reductions (%) within the wake at various downwind distances from the turbine relative to the free-stream flow field in accordance with one embodiment of the present invention;
FIGURES 17A and 17B are various views of a Doppler radar deployment in which a single radar (TTUKa2) was used document the structure and evolution of a single utility- scale turbine wake on January 9, 2013 in accordance with one embodiment of the present invention;
FIGURE 18 shows the radial velocity at 1.8° in accordance with one embodiment of the present invention;
FIGURE 19 shows the 10 minute VR mean in accordance with one embodiment of the present invention; FIGURE 20 shows an assessment of the wake width and meandering (150 scans over 10 minutes) in accordance with one embodiment of the present invention;
FIGURE 21 shows a graph assessing wake width and meandering for 1 scan (4 s) and 149 scans (10 min) in accordance with one embodiment of the present invention;
FIGURE 22 is a flow chart of a method for obtaining data to determine one or more characteristics of a wake of one or more turbines in accordance with one embodiment of the present invention; and
FIGURE 23 is a flow chart for a method for determining one or more
characteristics of a wake of one or more turbines in accordance with the present invention. Description of the Invention
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention. The discussion herein relates primarily to wind flows in the vicinity of wind farms, but it will be understood that the concepts of the present invention are applicable to evaluating wind flows in and around other areas of interest. Moreover, the discussion relates to examples using specific mobile Doppler radar units, but it will be understood that the concepts of the present invention are applicable to other types of radar technologies. These permutations include the use of fixed and mobile platforms, the use of different transmitters (magnetron, klystron, traveling wave tubes, etc.) and receiver technologies (e.g. different amplifiers and filters), the use of different wavelengths of radiation, the use of different processors, the use of different hardware components (antennas, pedestals, etc.), and/or the ability to provide or not provide pulse compression technologies. For example, suitable microwave frequency bands include: W-band (75 to 110 GHz); V-band (50 to 75 GHz); Ka-band (26.5 to 40 GHz); K-band (18 to 26.5 GHz); Ku-band (12 to 18 GHz); X-band (8 to 12 GHz); C-band (4 to 8 GHz); and S-band (2 to 4 GHz).
The present invention provides a wind flow field defined with sufficient resolution to document flow field perturbations of importance to wind turbine and wind farm response. From the generated fields, modulated flow fields within a wind farm can be documented, available power can be estimated, information about the vertical profile of horizontal wind across the rotor sweep can be identified, areas of enhanced turbulence can be tracked in time, and localized events (such as a thunderstorm outflow) can be proactively recognized. As a result, the present invention can be used to document wind turbine wakes, perform enhanced power performance testing (i.e. more comprehensive documentation of inflow conditions relative to turbine power generation), enhance wind farm turbine layout (existing commercial codes are based on assumptions which this technology can validate in full scale), and conduct site specific resource assessment (defining localized wind flow prior to or after turbine deployment). Other uses may include wind turbine and wind farm performance optimization including the development of "smart" wind farms based on integrating the generated flow and power fields into turbine and wind farm controls, mitigation of turbine loads through anticipatory control based on the remotely sensed flow and turbulence fields. The techniques described herein can be used to help lower the cost of wind energy through optimized wind turbine/farm performance and enhanced reliability.
Note, however, that the present invention can provide a more general usage toward documenting "complex flows," such as those induced by local terrain. The wind mapping capabilities will also allow for a wind farm operator to make anticipatory control decisions. For instance, if a thunderstorm outflow is pushing into the wind farm from a given direction, the wind mapping capability will reveal the outflow and allow the wind farm to make smart decisions proactively, instead of reactively. Some specific examples of how the present invention can be implemented and used with respect to wind farms will now be described to better illustrate the present invention without limiting the scope of the present invention.
High spatial and temporal resolution radial velocity measurements surrounding a single utility-scale wind turbine were collected using the Texas Tech University Ka-band mobile research radars. LIDAR utilizes the Doppler effect to obtain a remotely sensed along-beam measurement of the wind velocity vector. The advantages of research-grade LIDAR systems include their compact size and narrow beamwidths, which are generally less than 0.5 m. Recent full-scale measurements using scanning LIDAR technology have proven effective when observing wind turbine wakes. [4,6] These measurements have shown the effects of turbine wakes to extend beyond 10-15 rotor diameters (D) downwind. Research-grade Doppler radar systems provide the opportunity to expand the LIDAR coverage footprint with increased range resolution while utilizing adaptive scanning strategies. Here, an introduction to using research radar for wake detection and monitoring will be presented.
For example and without limiting the present invention, Texas Tech University (TTU) designed and constructed two mobile Ka-band (35 GHz) Doppler radar systems (hereafter referred to as "TTUKa"). These systems were developed to observe various aspects of the atmospheric boundary layer with a high level of sensitivity and spatial resolution. The TTUKa radars represent the first research-grade mobile Doppler systems to use a nonlinear pulse-compression frequency modulation technique in the Ka band. [7] The transmitted signal is generated using a fully coherent traveling wave tube amplifier; thus, no velocity noise (error) is present. The pulse-compression technique allows for accurate radial velocity measurements using a relatively long pulse width while maintaining improved range resolution when compared to traditional radar systems. The half-power beamwidth is 0.49°. The along-beam range gate spacing is 15 m and is a function of modulation bandwidth. Additional technical specifications for the TTUKa radar units can be found in Table 1.
Table 1
Parameter Specifications
Peak transmit power 212.5 W
Transmit frequency 35 GHz
Wavelength 8.6 mm
Antenna diameter 1.22 m
Half-power beamwidth 0.49°
dBZo -38.5 dBZ
Pulse length 12.5, 20, 30 urn
Range gate spacing 15 m
Pulse repetition frequency 5000-15,000 Hz
Maximum range 10-30 km
Azimuthal (PPI) resolution 0.352°
Elevation (RHI) resolution 0.1°
Horizontal scan speed 24° s"1 to 30° s"1
Vertical scan speed 6° s"1 In the mobile units, each radar is truck mounted, which allows for mobility to and around a desired scanning location. The radar systems are designed to operate during extreme meteorological environments including thunderstorms and hurricanes. A radome protects the antenna from wind loading, wind-borne debris, hail, and miscellaneous hazards during transit. A hydraulic leveling system levels the radar during deployment and the radar is operated from within the truck cab. Each radar utilizes a Sigmet RVP-9000 signal processor and is capable of performing sector or full 360° horizontal plan-position indicator (PPI) sweeps (outside of the influence of the truck cab). Vertical range-height indicator (RHI) scanning from 0° to 90° along a single azimuth is also possible. Spatial oversampling is accomplished by collecting data every 0.352° (0.1°) for PPI (RHI) scanning strategies.
Multiple custom scanning strategies can be interwoven to satisfy a variety of scanning goals. The TTUKa radars generally provide continuous coherent measurements out to the maximum range when distributed meteorological targets (water droplets, ice crystals, insects, aerosols, etc.) are present. To date, coherent radial measurements are often observed when scanning non-precipitating atmospheres, but coverage is intermittent in low relative humidity environments. An antenna upgrade is planned for both radars, and the net result will be an increase in clear-air sensitivity and azimuthal resolution. A limitation of Doppler radar measurements when compared to LIDAR is the effect of beam spread at large ranges. A beamwidth of 0.49° results in a beam spread of 17.1 m at 2-km range and 85.5 m at 10-km range. Following the scheduled upgrade, a beamwidth of 0.33° will reduce the azimuthal beam spread 33% to 11.5 m and 57.6 m at 2-km and 10-km ranges, respectively.
More specifically, one or more radars (e.g., TTUKal) are positioned to have a portion of the wind flow field disposed within a scanning sector of the one or more radars. One or more processors (e.g., instruments, computers, etc.) collect a data from the one or more radars and determine the one or more characteristics of the portion of the wind flow field by analyzing the data using the one or more processors. The one or more radars can be a Doppler radar or other suitable types of radar technologies. These permutations include the use of fixed and mobile platforms, the use of different transmitters (e.g., magnetron, klystron, traveling wave tubes, etc.) and receiver technologies (e.g., different amplifiers and filters), the use of different wavelengths of radiation, the use of different processors, the use of different hardware components (e.g., antennas, pedestals, etc.), and/or the ability to provide or not provide pulse compression technologies. For example, suitable microwave frequency bands include: W-band (75 to 110 GHz); V-band (50 to 75 GHz); Ka-band (26.5 to 40 GHz); K-band (18 to 26.5 GHz); Ku-band (12 to 18 GHz); X- band (8 to 12 GHz); C-band (4 to 8 GHz); and S-band (2 to 4 GHz). Moreover, one or more additional radars can be positioned to have the portion of the wind flow field or another portion of the wind flow field within an additional scanning sector for the additional radars. As will be described in more detail below, the data may include a vertical range-height indicator, a horizontal plan-position indicator, or interpolated (e.g., gridded) horizontal wind flows describing a wake of one or more turbines and a free- stream radial velocity field surrounding the wake.
In the absence of turbines, the same type of deployment as shown here could be used to simply map the wind flow field over a large spatial area, and be advantageous for providing enhanced resource assessment and investigating the impact of local terrain. The results can also be used for anticipatory control if an abrupt change in wind speed/direction was approaching a wind farm or turbine. One main advantage of these Doppler radar analyses employing radar data is that a continuous horizontal and/or vertical wind flow field can be mapped over a relatively large spatial area. The vast majority of current operational turbines are only capable of sensing the wind features that are already passing through them. They have no awareness and no proactive response to prepare for a coming change in the flow regime.
In one example, six hours of radar data were acquired by both TTUKa radars (TTUKal and TTUKa2) of the flow surrounding a single utility-scale turbine in West Texas. FIGURES 1 A and IB are various views of a Doppler radar deployment in which a single radar (TTUKal) was used document the structure and evolution of a single utility- scale turbine wake on October 27, 2011. A pulse length of 12.5 ms was used along with a pulse repetition frequency of 7500 Hz, yielding a maximum range of 20 km. Repetitive 20° PPI sector scans were collected. Data were collected during continuous light to moderate rainfall. The turbine hub height was 80 m and the turbine rotor diameter was 86 m. TTUKal was positioned at a distance of 2713 m north-northeast of the turbine. At this bearing, the turbine was oriented closely parallel to the mean wind direction (from the north through northeast) downwind of TTUKal .
TTUKal performed 208 sector scans at an elevation angle of 1.2° for 30 minute collection period. This elevation angle was chosen to maximize beam residence within the wake. At the location of the turbine and at 6-km range, the beam height was 56.8 and 125.7 m AGL, respectively. Because of beam misalignment with the true wind vector, radial velocity measurements will generally reflect values less than the actual wind speed. For example, a radial velocity measurement will be 1.5% less than the true wind speed for a beam misaligned by 10° and 13.4% for a beam misaligned by 30°. Because of the 0.49° beamwidth, the azimuthal beam spread at the location of the turbine was 23 m. The sector revisit time was 3 s, allowing for a high temporal depiction of wake evolution.
Now referring to FIGURES 2A-2D, a PPI sector scan of radial velocity and spectrum width from both TTUKa radars at a 1.2° beam elevation are shown in accordance with one embodiment of the present invention. FIGURE 2A shows the PPI sector scan of radial velocity (m s"1) for TTUKal . FIGURE 2B shows the PPI sector scan of spectrum width (m s"1) for TTUKal . FIGURE 2C shows the PPI sector scan of radial velocity (m s" l) for TTUKa2. FIGURE 2D shows the PPI sector scan of spectrum width (m s"1) for TTUKa2. The location of the turbine is denoted by the black dot. The prevailing wind direction is also shown. An area of ground targets has been removed from the TTUKa2 analyses. Assuming a conservative upwind radial velocity of 9 m s"1 from TTUKal, radial velocity deficits in excess of 50%> can be seen immediately downwind of the turbine (FIGURE 2A). Similar LIDAR analyses from Kasler et al. [6] from the wake of a megawatt turbine in comparable wind speed conditions show radial velocity deficits at hub height of 66% ID downstream. The influence of the turbine wake in the TTUKal snapshot can be seen in excess of 15D downstream. Though the beam of TTUKa2 was not aligned with the mean wind direction, a radial velocity snapshot (FIGURE 2C) shows the wake influence extending in excess of 30D downwind of the turbine, extending across the entire sector sampled. The spectrum width fields from both radars also show enhanced turbulence associated with the wake. Enhanced spectrum width can be seen at the interface between the turbine wake and the adjacent flow, where turbulence between these two regions is maximized, and where blade tip vortices are expected to reside [8]. Spectrum width provides an additional tool for tracking downwind wake length. FIGURES 3 A and 3B correspond to FIGURES 2A and 2B respectively, but show the scans for a larger area. FIGURE 4 shows a PPI sector scan of radial velocity from TTUKa2 radar at a 1.8° beam elevation on 9 January 2013.
In another example, FIGURES 5A and 5B are various views of a Doppler radar deployment in which a single radar (TTUKa2) was used document the structure and evolution of a single utility-scale turbine wake on October 27, 2011. A pulse length of 12.5 ms was used along with a pulse repetition frequency of 7500 Hz, yielding a maximum range of 20 km. Repetitive 50° PPI sector scans were collected. The turbine hub height was 80 m and the turbine rotor diameter was 86 m. TTUKa2 was positioned 2563 m west- northwest of the turbine. At the location of the turbine and at 6-km range, the beam height was 53.7. TTUKa2 performed 308 sector scans at the 1.2° elevation angle with a sector revisit time of 4.7 s. Azimuthal beam spread at the location of the turbine from TTUKa2 was 22 m and the beam height was 53.7 m.
FIGURES 6A and 6B show a plan-position indicator (PPI) sector scan of radial velocity and spectrum width from TTUKa2 radar at a 1.2° beam elevation. The radial velocities are not representative of the wind field given the perpendicular look angle, but the wake is easily evident. The enhanced spectrum can be seen at the interface between the turbine wake and the adjacent flow, where turbulence between these two regions is maximized and were blade tip vortices are expected to reside.
In yet another example, FIGURES 7A and 7B are various views of a Doppler radar deployment in which a single radar (TTUKal) was used document the structure and evolution of a single utility-scale turbine wake on October 27, 2011. A pulse length of 12.5 ms was used along with a pulse repetition frequency of 7500 Hz, yielding a maximum range of 20 km. Repetitive 30° RHI sector scans were collected. The turbine hub height was 80 m and the turbine rotor diameter was 86 m. TTUKal was positioned at a distance of 2713 m north-northeast of the turbine. At this bearing, the turbine was oriented closely parallel to the mean wind direction (from the north through northeast) downwind of TTUKal . TTUKal performed sector scans at an elevation angles from 0° to 30°. The sector revisit time was 7 s.
Now referring to FIGURES 8A and 8B, a RHI sector scan of radial velocity and spectrum width between 0° and 30° elevation at a constant azimuth oriented through the turbine from the TTUKal radar are shown in accordance with one embodiment of the present invention. FIGURE 8A shows the RHI sector scan of radial velocity (m s"1) for TTUKal . FIGURE 8B shows the RHI sector scan of spectrum width (m s"1) for TTUKal . The data was collection using long-duration, consecutive RHI scans. The scan revisit interval was 7 s, emphasizing a high temporal resolution to capture wake evolution in the vertical dimension. The influence of the turbine is denoted by the black vertical box. The thin vertical black lines indicate a distance of 5D and 10D downstream of the turbine (D = 86 m). The prevailing wind direction is also shown. Using a conservative upwind radial velocity of 8 m s"1 near hub height, wake deficits in excess of 50% are evident within 2D downwind of the turbine while farther downwind (beyond 6D) the effects of wake meandering become more evident. Though this cross section is not perfectly aligned with the downwind wake, wake effects in this RHI snapshot are evident in excess of 1 ID downstream of the turbine. Similar to the signature in the PPI scan presented, spectrum width (and therefore turbulence) in the RHI scan is maximized on the wake periphery. These analyses suggest a ring of maximized turbulence separates the wake from the ambient free stream flow immediately downstream of the turbine. The shape of this ring becomes highly variable and collapses with increased range as turbulent mixing and wake meandering complicate the wake structure.
In another example, FIGURES 9A and 9B are various views of a dual Doppler radar deployment in which a both radars (TTUKal and TTUKa2) were used document the structure and evolution of a single utility-scale turbine wake on October 27, 2011. A pulse length of 12.5 ms was used along with a pulse repetition frequency of 7500 Hz, yielding a maximum range of 20 km. Coordinated 30° sector volumes were collected. The turbine hub height was 80 m and the turbine rotor diameter was 86 m. TTUKal was positioned at a distance of 2713 m north-northeast of the turbine. Note that the wind direction has changed from the previous analysis period shown and described above. Both the wind direction and speed changed significantly during the collection time period. TTUKa2 was positioned 2563 m west-northwest of the turbine. Each radar scanned 10 elevation angles between 0.6° to 2.4° in 0.2° increments over a 30° sector. Each complete set of 10 scans, or volume, took approximately 45 seconds to complete. Both radars performed
coordinated data collection. The sector revisit time was 45 s.
Referring now to FIGURE 10A, a plan view of the radial velocity gridded analysis at 80 m (hub height) along with gridded vertical cross sections upwind of and through the wake at various downwind D distances are shown in accordance with one embodiment of the present invention. A single volume of data collected by TTUKal was interpolated to a three-dimensional grid to analyze the mean wake structure. The volume comprised 30° sector scans for 10 elevation angles taken every 0.2° between 0.6° and 2.4°. Data collection for the volume took approximately 45 s to complete. The turbine is located at the origin, denoted by the magenta dot. Now referring to FIGURES 1 OB- 101, various cross sections of FIGURE 10A are viewed from downwind looking back toward the turbine in accordance with one embodiment of the present invention. The vertical cross sections oriented normal to the wake are shown at ID upstream (FIGURE 10B), ID downstream (FIGURE IOC), 2D downstream (FIGURE 10D), 3D downstream (FIGURE 10E), 5D downstream (FIGURE 10F), 7D downstream (FIGURE 10G), 10D downstream (FIGURE 10H), and 15D downstream (FIGURE 101). Cross-section x axis is horizontal distance (m) and y axis is height (m). The color bar is shared for all panels. At ID (FIGURE IOC), the radial velocity deficit centered on the hub (x = 0, y = 80 m) is in excess of 40% of what is observed upstream (FIGURE 10A). The 5D cross section shows a less defined wake structure; however, the influence of the wake is still evident at 10D. Beyond 10 D, the wake scales with the surrounding wind streaks in the ambient flow, and it is difficult to discern the wake from the variability in the surrounding flow field. How these wind streak features interact with a turbine wake is currently unknown.
Referring now to FIGURE 11A, a plan view of the spectrum width gridded analysis at 80 m (hub height) along with gridded vertical cross sections upwind of and through the wake at various downwind D distances are shown in accordance with one embodiment of the present invention. The turbine is located at the origin, denoted by the magenta dot.
Now referring to FIGURES 1 lB-1 II, various cross sections of FIGURE 11A are viewed from downwind looking back toward the turbine in accordance with one embodiment of the present invention. The vertical cross sections oriented normal to the wake are shown at ID upstream (FIGURE 1 IB), ID downstream (FIGURE 11C), 2D downstream (FIGURE 1 ID), 3D downstream (FIGURE 1 IE), 5D downstream (FIGURE 11F), 7D downstream (FIGURE 11G), 10D downstream (FIGURE 11H), and 15D downstream (FIGURE 111). Cross-section x axis is horizontal distance (m) and y axis is height (m). The color bar is shared for all panels. This analysis shows a ring of higher turbulence surrounding the hub, associated with the interface between the faster adjacent flow and the slower wake flow. The ring of spectrum width is consistent with the PPI and RHI analyses previously presented. This ring structure is traceable through about 5D, after which the wake turbulence is no longer as significant as mixing promotes the ring structure to collapse. [3] FIGURE 12 shows a plan view of a single radial velocity sector using a 1.2° tilt within a wind farm in accordance with another embodiment of the present invention. FIGURE 13 shows the dual Doppler horizontal wind speed at 80 m AGL with a mean WD of 16.4°. The 54 minute period yielded 72 consecutive volumes. The complete grid used for this study was 3 km x 3 km x 150 m, with 10 m gird spacing in both the horizontal and vertical directions. Data were interpolated using the Barnes (exponential) weighting scheme with a radius of influence of 25 m in the horizontal direction and 15 m in the vertical direction. The REORDER Barnes weighting function was set to -2.3.
FIGURE 14 shows the wind streaks and modulation of wake behavior.
Data collected from all 72 volumes are composited using a wake-relative orientation to assess the ensemble averaged wake structure as a deficit from the free-stream flow field. A mean free-stream wind profile is developed for each dual-Doppler volume by averaging a 1 km x 1 km section of the dual-Doppler domain not impacted by the turbine wake. Using the algorithm determined wake center for each dual-Doppler volume, vertical cross-sections are developed through the wake at various downwind distances +/- 50 m horizontally from the identified wake center. Vertical cross-sections from all 72 dual- Doppler volumes are then composited at each downwind increment. Each composited cross-section is presented as a percent reduction/deficit from the derived free-stream wind profile. FIGURES 15A-15F show vertical slices of the reduction (%) in horizontal wind speed within the wake composited from 72 dual-Doppler volumes at ID (FIGURE 15 A), 2D (FIGURE 15B), 5D (FIGURE 15C), 7D (FIGURE 15D), 10D (FIGURE 15E), and 12D (FIGURE 15F) downwind in accordance with the present invention. Domain grid points are shown, and magenta grid points represent those contained by the wake-relevant rotor sweep (solid black circle). The black plus sign represents the center of the turbine hub. The maximum and mean reduction values from the contributing rotor sweep grid points are annotated.
Using the grid points contained within the wake -relevant rotor sweep (black circle), a mean and maximum wind speed deficit (i.e., reduction in wind speed relative to the free- stream) is assessed for each downwind composite cross-section. The mean (maximum) wind speed deficit within the wake at 1 D is 27.7% (38.5%), at 7 D is 17.4% (23.5%), at 10 D is 14.8% (19.1%), and at 15 D is 1 1.5% (15.5%). For the first 10 D of distance immediately downwind of the turbine, the difference between the maximum and mean wind speed deficit converges with increasing distance and is 10.8% at 1 D, 6.1% at 7 D, and 4.3%) at 10 D. For downwind distances beyond 10 D, this difference changes little, and is 4.0% at 15 D (FIGURE 16) as mixing and entrainment reduce the peak wake deficits. The higher wind speed reductions associated with the wake are stretched upward in the gridded data fields, particularly where the reductions are most significant. This upward stretching is due to a lack of data above the 120 m level, such that larger deficit values are interpolated upwards during the coordinate space conversion process. This effect does not have a significant impact on the constructed analysis, and is estimated to induce a positive bias to the mean wind speed reduction behind the rotor sweep of no more than 0.5 %.
The analyzed wind speed deficits in the wake are linked to the potential power deficits that a downwind turbine located within the wake might experience. To explore this impact, we focus on the mean wind speed deficit values within the wake-relevant rotor sweep. Within region two of a power curve, power output is proportional to the inflow mean wind speed cubed. Note that the coefficient of power for the turbine studied was not available for use. All calculated power reductions are considered to be estimates that assume a constant coefficient of power across the range of documented wind speeds but are still believed to provide meaningful perspective. For example, at a downwind distance of 2 D, the composite mean wind speed reduction behind the rotor sweep is 27.3% relative to the free stream flow. The wind speed reduction corresponds to a potential power reduction for a turbine centered within this wake of 61.6% relative to the power output from a turbine experiencing the free stream flow. At a downwind distance of 7 D, the composite mean wind speed reduction is 17.4%, corresponding to a 43.6% decrease in potential power output. At 10 D downwind, the composite mean wind speed reduction is 14.8%), which is proportional to a potential decrease in power output of 38.2%. At 15 D, a mean wind speed reduction of 11.5% is observed, which yields a 30.6%> decrease in potential power output. It is important to note that the turbulent character of the wake can vary significantly with downwind distance, which can affect the relationship between wind speed and power output.
These initial results agree well with independent analyses using Supervisory Control and Data Acquisition (SCAD A) data collected at the Middelgrunden offshore wind farm in Denmark. This study compared data collected from the nacelles of a leading turbine and another turbine located 2.4 D downwind. For a well-aligned wind direction, the SCAD A data showed a wind speed reduction within the wake center of roughly 30%> at the location of the downwind turbine. Similar analysis from SCADA data at the Horns Rev offshore wind farm in Denmark showed a decrease in normalized power output of roughly 38% between a leading row turbine, and a turbine located 7 D downwind for a well aligned wind direction. Meteorological tower data collected over a 5-yr period at the Energy Research Center of the Netherlands Wind Turbine Test Site in Wieringermeer showed maximum velocity deficits within a wake to be 45% at 2.5 D and 35% at 3.5 D. Maximum power loss between the first turbine and the second turbine (separated by 3.8 D) reached 67%. Although there are differences in turbine specifications, surface roughness, and atmospheric conditions associated with data collected from these previous studies and the single turbine examined herein, similar findings are shown using vastly different analysis methods.
Now referring to FIGURE 16, horizontal wind speed reductions (%) within the wake at various downwind distances from the turbine relative to the free-stream flow field in accordance with the present invention are shown. Thin lines represent individual volume maximum and mean values. Bold lines indicate maximum and mean reduction composites from all 72 contributing dual-Doppler volumes. The collected data also reveal considerable variability between individual dual-Doppler synthesized deficits of horizontal wind speed within the wake. Maximum wind speed reductions in the wake within 4 D of the turbine exceeded 50%> on several occasions during the collection period. At 2 D, the range in mean wind speed reduction behind the rotor sweep over the 72 contributing volumes is 32%. The spread reduces at 6 D to 20%. At 14 D, the spread increases again to 31%, which is speculated to be attributed to the effect of wake meandering. The mean range for all calculated downwind distances from 1 to 15 D is 26%. The net result to a downwind turbine could be a large variability in potential power output on very short time scales (within minutes).
Referring now to FIGURES 17A and 17B are various views of a Doppler radar deployment in which a single radar (TTUKa2) was used document the structure and evolution of a single utility-scale turbine wake on January 9, 2013. A pulse length of 12.5 ms was used along with a pulse repetition frequency of 12,000 Hz, yielding a maximum range of 15 km. Repetitive 45° PPI sector scans were collected (500 scans over 34 minutes). The turbine hub height was 80 m and the turbine rotor diameter was 86 m. TTUKa2 was positioned at a distance of 2480 m north-northeast of the turbine. At this bearing, the turbine was oriented closely parallel to the mean wind direction (from the north through northeast) downwind of TTUKa2. TTUKa2 performed sector scans at an elevation angle of 1.8°. The sector revisit time was 4.1 s. FIGURE 18 shows the radial velocity at 1.8°. FIGURE 19 shows the 10 minute VR mean. FIGURE 20 shows an assessment of the wake width and meandering (150 scans over 10 minutes). FIGURE 21 shows a graph assessing wake width and meandering for 1 scan (4 s) and 149 scans (10 min).
Referring now to FIGURE 22, a flow chart for a method 2200 for obtaining data to determine one or more characteristics of a wind flow field in accordance with the present invention is shown. One or more radars are positioned to have a portion of the wind flow field (e.g., one or more locations of interest) disposed within a scanning sector of the one or more radars in block 2202. A data is collected from the one or more radars in block 2204. The data includes at least a radial velocity and a spectrum width. One or more characteristics of the portion of the wind flow field are determined by analyzing the data using one or more processors in block 2206. The one or more characteristics may include the mean and variable structure of the portion of the wind flow field, locating and tracking enhanced turbulence within the portion of the wind flow field, a plurality of center points for one or more turbine wake(s), a length of the one or more turbine wake(s), a set of horizontal wind speed deficits or surpluses within the portion of the wind flow field relative to a free-stream flow, a forecast power output for one or more turbines within the portion of the wind flow field, recognition of a localized event of interest (e.g., thunderstorm outflow) which may contain significant changes in wind speed and/or direction, information about the vertical profile of horizontal wind speed and direction within the wind flow field, or a combination thereof.
The one or more radars can be one or more Doppler radars or other suitable types of radar technologies. These permutations include the use of fixed and mobile platforms, the use of different transmitters (e.g., magnetron, klystron, traveling wave tubes, etc.) and receiver technologies (e.g., different amplifiers and filters) concepts, the use of different wavelengths of radiation, the use of different processors, the use of different hardware components (e.g., antennas, pedestals, etc.), and/or the ability to provide or not provide pulse compression technologies. For example, suitable microwave frequency bands include: W-band (75 to 110 GHz); V-band (50 to 75 GHz); Ka-band (26.5 to 40 GHz); K- band (18 to 26.5 GHz); Ku-band (12 to 18 GHz); X-band (8 to 12 GHz); C-band (4 to 8 GHz); and S-band (2 to 4 GHz). Note that fixed radars will typically be installed at a height approximately equal to or near hub height of the wind turbines within and adjacent to the portion of the wind flow field of interest. The radar network can also have multiple nodes. Multiple tilt angles can be used to determine what is happening vertically above the hub of the wind turbines. The radar can be set for continuous scanning, "on-demand" scanning, scanning at predefined time periods, scanning upon occurrence of a trigger event, or other desired operational mode.
The scanning range of the present invention is not limited to any sector. For example, the scanning sector can be a full 360 degrees. Furthermore, one or more additional radars can be positioned to have the portion of the wind flow field or another portion of the wind flow field within an additional scanning sector for the additional radars. For example, multiple radars can be positioned such that they have scanning sectors that progressively overlap one another (i.e., "leap frog" one another). In other words, a second scanning sector overlaps a portion of first scanning sector, a third scanning overlaps a portion of the second scanning sector and may or may not include a portion of the first scanning sector, a fourth scanning sector overlaps a portion of the third scanning sector and may or may not include a portion of the first or second scanning sectors, and so on. The only limitation on the size of the portion of the wind flow field is that the return signals have to be coherent enough to obtain usable data. Note also that an individual radar can be positioned upstream or downstream or both from the portion of the wind flow field being analyzed.
The step of collecting the data from the one or more radars may include the steps of collecting a raw data from the one or more radars, and processing the raw data to generate a data. The step of processing the raw data may include various conversion and interpolation processes.
Additional steps may include compositing the data using a wake-relative orientation to assess an ensemble averaged wake structure as a deficit from a free-stream radial velocity field or developing a mean free-stream radial velocity profile by averaging a section of the data not impacted by a wake of one or more turbines. Other steps may include accessing variability about the mean, developing a plurality of vertical cross- sections through a wake of one or more turbines at various distances downwind from the one or more turbines, compositing the vertical cross-sections at each distance downwind from the one or more turbines, and presenting each composited vertical cross-section as a percent reduction/deficit from a derived free-stream radial velocity profile. An estimate of the wind speed deficit may also be assessed for each downwind composite cross-section. Now referring to FIGURE 23, a flow chart for a method 2300 for determining one or more characteristics of a wind flow field in accordance with the present invention is shown. A data is provided from one or more radars positioned to scan a portion of the wind flow field in block 2302. The data includes at least a radial velocity and a spectrum width. The one or more characteristics of the portion of the wind flow field are determined by analyzing the data using one or more processors in block 2304.
Note that the conversion of the radar data through different data translations and the subsequent processes described herein will vary depending on the equipment being used and the objective of the project. As a result, the present invention is not limited to the specific conversion, calculation and processing methods described herein. Custom applications may be coded to allow for enhanced performance.
Various scales must be considered when investigating turbine wake structure, ranging from small blade tip vortices to broad wake widening and meandering as a function of surrounding atmospheric conditions and wind turbine and farm design. As observational capabilities improve, the ability to observe the full spectrum of wake scales will help validate numerical simulations, ultimately providing better power output forecasts. The TTUKa mobile radar systems are well equipped to explore the full length of turbine wakes, including wake width expansion, wake meandering, lateral wake merging [2], and wind farm to wind farm interaction with range resolution and coverage that exceeds current LIDAR technologies. Various techniques can be used to analyze this and other TTUKa wake datasets. Composites of several long-duration PPI and RHI scan periods can be constructed to assess mean wake structure using mean radial velocity deficit and mean spectrum width signatures. At greater D, the magnitude and frequency of wake meandering can be analyzed.
The present invention provides comprehensive information about the modulated flows within a wind field or farm. These technologies and techniques will enhance wind farm design, layout practices and operation. Documenting the structure and evolution of complex flows within and surrounding wind farms will lead to increased efficiency as turbine wakes are fully characterized, turbine-to-turbine interactions are defined, transient wind events are proactively identified, the effects of local terrain are documented, and turbine inflows are adequately characterized allowing intelligent control of individual wind turbines and entire wind farms. Utilizing adaptive scanning strategies, the variability of the flow surrounding a turbine can be documented in real time. Individual turbine wakes can be tracked at multiple downstream locations both in the horizontal and vertical dimensions. Inflow- relative radial velocity reductions can be constructed across the rotor sweep, along with power output deficits for a hypothetical downstream turbine located within the wake. These same principles also can be expanded to multiple turbines in a wind farm setting where turbine-to-turbine interactions exist.
Integration of these technologies and techniques will lead to "smarter" wind farms by improving individual turbine and wind farm awareness and efficiency. The deployment of multiple radars can document the modulated wind flow field of an entire wind farm, leading to an advanced controls opportunity to optimize the wind farm for enhanced performance and loads mitigation, reducing the cost of energy. Moreover the data derived from such measurements can be used to model wind farms and provide optimized wind turbine layouts for new turbines or new wind farms.
It will be understood by those of skill in the art that information and signals may be represented using any of a variety of different technologies and techniques (e.g., data, instructions, commands, information, signals, bits, symbols, and chips may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof). Likewise, the various illustrative logical blocks, modules, circuits, and algorithm steps described herein may be implemented as electronic hardware, computer software, or combinations of both, depending on the application and functionality. Moreover, the various logical blocks, modules, and circuits described herein may be implemented or performed with a general purpose processor (e.g., microprocessor, conventional processor, controller, microcontroller, state machine or combination of computing devices), a digital signal processor ("DSP"), an application specific integrated circuit ("ASIC"), a field programmable gate array ("FPGA") or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. Similarly, steps of a method or process described herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. Although preferred embodiments of the present invention have been described in detail, it will be understood by those skilled in the art that various
modifications can be made therein without departing from the spirit and scope of the invention as set forth in the appended claims.
References:
1. R. J. Barthelmie, and Coauthors, 2009: Modelling and measuring flow and wind turbine wakes in large wind farms offshore. Wind Energy, 12, 431-444.
2. R. J. Barthelmie, and Coauthors, 2010: Quantifying the impact of wind turbine wakes on power output and offshore wind farms. J. Atmos. Oceanic TechnoL, 27, 1302- 1317.
3. B. Sanderse, S. P. van der Pijl, and B. Koren, 2011 : Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy, 14, 799-819.
4. Y. L. Pichugina, and Coauthors, 2011 : Wind turbine wake study by the NOAA high-resolution Doppler LIDAR. Proc. 16th Coherent Laser Radar Conf., Long Beach, CA.
5. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001 : High-resolution Doppler LIDAR for boundary layer and cloud research. J. Atmos. Oceanic TechnoL, 18, 376-393.
6. Y. Kasler, S. Rahm, R. Simmet, and M. Ku" hn, 2010: Wake measurements of a multi-MW wind turbine with coherent long range pulsed Doppler wind LIDAR. J. Atmos. Oceanic TechnoL, 27, 1529-1532.
7. C. C. Weiss, J. L. Schroeder, J. Guynes, P. S. Skinner, and J. Beck, 2009: The TTUKa mobile Doppler radar: Coordinated radar and in situ measurements of supercell thunderstorms during Project VORTEX2. Proc. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer.Meteor. Soc. 11B.2. [Available online
http://ams.confex.com/ams/34Radar/techprogram/paper_155425.htm.]
8. N. J. Vermeer, J. N. Sorensen, and A. Crespo, 2003: Wind turbine wake aerodynamics. Prog. Aerosp. Sci., 39, 467-510.
Other References:
1. R. J. Barthelmie, S. T. Frandsen, M. N. Nielsen, S. C. Pryor, P. E. Rethore, and H. E. Jorgensen, 2007: Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at Middelgrunden offshore wind farm. Wind Energy, 10, 517-528.
2. R. J. Barthelmie, and L. E. Jensen, 2010: Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy, 13, 573-586. 3. A. Crespo, J. Hernandez, and S. Frandsen, 1999: Survey of modeling methods for wind turbine wakes and wind farms. Wind Energy, 2, 1-24.
4. N. Troldborg, G. C. Larsen, H. A. Madsen, K. S. Hansen, J. N. Sorensen, and R. Mikkelsen, 2011 : Numerical simulations of wake interaction between two wind turbines at various inflow conditions. Wind Energy, 14, 859-876
5. J. S. Gonzalez A. G. G. Rodriguez, J. C. Mora, J. R. Santos, and M. B. Payan, 2010: Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy, 35, 1671-1681.
6. A. Kusiak, and Z. Song, 2010: Design of wind farm layout for maximum wind energy capture. Renewable Energy, 35, 685-694.
7. T. Knudsen, T. Bak, and M. Soltani, 2011 : Prediction models for wind speed at turbine locations in a wind farm. Wind Energy, 14, 877-894.
8. J. Meyers, and C. Meneveau, 2012: Optimal turbine spacing in fully developed wind farm boundary layers. Wind Energy, 15, 305-317.
9. S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, 2012: Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation. Renewable Energy, 38, 16-30.
10. G. C. Larsen, H. A. Madsen, K. Thomsen, and T. J. Larsen, 2008: Wake meandering: A pragmatic approach. Wind Energy, 11, 377-395.
11. G. Espana, S. Aubrun, S. Loyer, and P. Devinant, 2011 : Spatial study of the wake meandering using modelled wind turbines in a wind tunnel. Wind Energy, 14, 923-937.
12. B. D. Hirth, J. L. Schroeder, W. S. Gunter, and J. G. Guynes, 2012: Measuring a utility-scale turbine wake using the TTUKa mobile research radars. J. Atmos. Oceanic
Technol., 29, 766-771.
13. F. Bingol, J. Mann, and G. Larsen, 2010: Light detection and ranging
measurements of wake dynamics. Part I: One-dimensional scanning. Wind Energy, 13, 51-
61.
14. J. Trujillo, F. Bingol, G. C. Larsen, J. Mann, and M. Kiihn, 2011 : Light detection and ranging measurements of wake dynamics. Part II: Two-dimensional scanning. Wind Energy, 14, 61-75.
15. E. C. Farnett, and G. H. Stevens, 1990: Pulse compression radar. Radar Handbook, M. I. Skolnik, Ed., McGraw-Hill, 10.1-10.39. 16. F. O'Hora, and J. Bech, 2007: Improving weather radar observations using pulse- compression techniques. Meteor. Appl., 14, 389-401.
17. S. Khanna, J. G. Brasseur, J. Atmos. Sci. 55, 710 (1998).
18. G. S. Young, D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc, 83, 997-1001.
19. P. Drobinski, and R. C. Foster, 2003: On the origin of near-surface streaks in the neutrally-stratified planentary boundary layer. Bound.-Layer Meteor., 108, 247-256.
20. M. Hansen, 2000: Aerodynamics of Wind Turbines. James and James, 144 pp. 21. S. L. Barnes, 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396-409.
22. J. G. Schepers, T. S. Obdam, and J. Prospathopoulos, 2012: Analysis of wake measurements from the ECN Wind turbine Test Site Wieringermeer, EWTW. Wind Energy, 15, 575-591.
23. G. C. Larsen, and Coauthors, 2007: Dynamic wake meandering modeling. Riso Rep. Ris0-R-16O7(EN), 83 pp.
24. R. J. Barthelmie, S. C. Pryor., 2013: An overview of data for wake model evaluation in the Virtual Wakes Laboratory. Appl. Energy, 104: 834-844.
25 P. McKay, R. Carriveau, D. S. Ting., 2013: Wake impacts on downstream wind turbine performance and yaw alignment. Wind Energy, 16; 221-234.
26. M. Gaumond, and Coauthors, 2013: Evaluation of the wind direction uncertainty and its impact on wake modelling at the Horns Rev offshore wind farm. Wind Energy, in press.
27. E. S. Politi, and Coauthors, 2012: Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues. Wind Energy, 15: 161-182.
28. G. V. Iungo, Y. Wu, F. Porte-Agel, 2013: Field measurements of wind turbine wakes with lidars. J. Atmos. Oceanic Technol, 30: 274-287.
29. I. N. Smalikho, and Coauthors, 2013: Lidar investigation of atmosphere effect on a wind turbine wake. J. Atmos. Oceanic. Technol, in press.
30. B. D. Hirth, J. L. Schroeder, 2013: Documenting wind speed and power deficits behind a utilityscale wind turbine. J. Appl. Meteor. Climatol., 52: 39-52.
31. S. Wharton, J. K. Lundquist, 2013: Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy, 15: 525-546. 32. P. Moriarty, T. Kogaki, 2007: Modeling of flow acceleration around wind farms. Proc. 5th Joint Fluids Engineering Conf., San Diego, CA.

Claims

1. A method for determining one or more characteristics of a wind flow field using one or more radars, the method comprising the steps of:
providing the one or more radars positioned to have a portion of the wind flow field disposed within a scanning sector of the one or more radars;
collecting a data from the one or more radars, wherein the data comprises at least a radial velocity and a spectrum width; and
determining the one or more characteristics of the portion of the wind flow field by analyzing the data using one or more processors.
2. The method as recited in claim 1, wherein the one or more characteristics comprise a mean and variable structure of the portion of the wind flow field, locating and tracking enhanced turbulence within the portion of the wind flow field, a plurality of center points for one or more turbine wake(s), a length of the one or more turbine wake(s), a set of horizontal wind speed deficits or surpluses within the portion of the wind flow field relative to a free-stream radial velocity field, a forecast power output for one or more turbines within the portion of the wind flow field, recognition of a localized event of interest containing changes in wind speed and/or direction, a vertical profile of horizontal wind speeds within the wind flow field, or a combination thereof.
3. The method as recited in claim 1, wherein the one or more radars comprise one or more Doppler radars.
4. The method as recited in claim 1 , wherein the one or more radars are mobile or fixed.
5. The method as recited in claim 1, wherein the one or more radars have a magnetron transmitter, a klystron transmitter or a traveling wave tube transmitter.
6. The method as recited in claim 1 , wherein the one or more radars have a microwave frequency selected within the group of microwave frequency bands consisting essentially of W-band (75 to 110 GHz), V-band (50 to 75 GHz), Ka-band (26.5 to 40 GHz), K-band (18 to 26.5 GHz), Ku-band (12 to 18 GHz), X-band (8 to 12 GHz), C-band (4 to 8 GHz), and S-band (2 to 4 GHz).
7. The method as recited in claim 1, further comprising the step of providing one or more additional radars positioned to have the portion of the wind flow field or another portion of the wind flow field within an additional scanning sector for the additional radars.
8. The method as recited in claim 1, wherein the step of collecting the data from the one or more radars comprises the steps of:
collecting a raw data from the one or more radars; and
processing the raw data to generate the data.
9. The method as recited in claim 1, further comprising the step of adjusting the data based on a beam misalignment with a true wind vector.
10. The method as recited in claim 1, wherein the data further comprises a vertical range-height indicator and a horizontal plan-position indicator
11. The method as recited in claim 1 , wherein the data further comprises interpolated horizontal wind flows describing a wake of one or more turbines and a free-stream radial velocity field surrounding the wake.
12. A method for determining one or more characteristics of a wind flow field using one or more radars, the method comprising the steps of:
providing a data from the one or more radars positioned to scan a portion of the wind flow field, wherein the data comprises at least a radial velocity and a spectrum width; and
determining the one or more characteristics of the portion of the wind flow field by analyzing the data using one or more processors.
13. The method as recited in claim 12, wherein the one or more characteristics comprise a mean and variable structure of the portion of the wind flow field, locating and tracking enhanced turbulence within the portion of the wind flow field, a plurality of center points for one or more turbine wake(s), a length of the one or more turbine wake(s), a set of horizontal wind speed deficits or surpluses within the portion of the wind flow field relative to a free-stream radial velocity field, a forecast power output for one or more turbines within the portion of the wind flow field, recognition of a localized event of interest containing changes in wind speed and/or direction, a vertical profile of horizontal wind speeds within the wind flow field, or a combination thereof.
14. The method as recited in claim 12, wherein the one or more radars are positioned to have the portion of the wind flow field disposed within a scanning sector of the one or more radars.
15. The method as recited in claim 12, wherein the one or more radars comprise one or more Doppler radars.
16. The method as recited in claim 12, wherein the one or more radars are mobile or fixed.
17. The method as recited in claim 12, wherein the one or more radars have a magnetron transmitter, a klystron transmitter or a traveling wave tube transmitter.
18. The method as recited in claim 12, wherein the one or more radars have a microwave frequency selected within the group of microwave frequency bands consisting essentially of W-band (75 to 110 GHz), V-band (50 to 75 GHz), Ka-band (26.5 to 40 GHz), K-band (18 to 26.5 GHz), Ku-band (12 to 18 GHz), X-band (8 to 12 GHz), C-band (4 to 8 GHz), and S-band (2 to 4 GHz).
19. The method as recited in claim 12, further comprising the step of providing one or more additional radars positioned to have the portion of the wind flow field or another portion of the wind flow field within an additional scanning sector for the additional radars.
20. The method as recited in claim 12, wherein the step of collecting the data from the one or more radars comprise the steps of:
collecting a raw data from the one or more radars; and
processing the raw data to generate the data.
21. The method as recited in claim 12, further comprising the step of adjusting the data based on a beam misalignment with a true wind vector.
22. The method as recited in claim 12, wherein the data further comprises a vertical range-height indicator and a horizontal plan-position indicator
23. The method as recited in claim 12, wherein the data further comprises interpolated horizontal wind flows describing a wake of one or more turbines and a free-stream radial velocity field surrounding the wake.
24. An apparatus for obtaining data to determine one or more characteristics of a wind flow field, the method comprising the steps of:
one or more radars positioned to have a portion of the wind flow field disposed within a scanning sector of the one or more radars; and
one or more processors that collect a data from the one or more radars and determine the one or more characteristics of the portion of the wind flow field by analyzing the data using one or more processors, wherein the data comprises at least radial velocity and a spectrum width.
25. The apparatus as recited in claim 24, wherein the one or more characteristics comprise a mean and variable structure of the portion of the wind flow field, locating and tracking enhanced turbulence within the portion of the wind flow field, a plurality of center points for one or more turbine wake(s), a length of the one or more turbine wake(s), a set of horizontal wind speed deficits or surpluses within the portion of the wind flow field relative to a free-stream radial velocity field, a forecast power output for one or more turbines within the portion of the wind flow field, recognition of a localized event of interest containing changes in wind speed and/or direction, a vertical profile of horizontal wind speeds within the wind flow field, or a combination thereof.
26. The apparatus as recited in claim 24, wherein the one or more radars comprise one or more Doppler radars.
27. The apparatus as recited in claim 24, wherein the one or more radars are mobile or fixed.
28. The apparatus as recited in claim 24, wherein the one or more radars have a magnetron transmitter, a klystron transmitter or a traveling wave tube transmitter.
29. The apparatus as recited in claim 24, wherein the one or more radars have a microwave frequency selected within the group of microwave frequency bands consisting essentially of W-band (75 to 110 GHz), V-band (50 to 75 GHz), Ka-band (26.5 to 40 GHz), K-band (18 to 26.5 GHz), Ku-band (12 to 18 GHz), X-band (8 to 12 GHz), C-band (4 to 8 GHz), and S-band (2 to 4 GHz).
30. The apparatus as recited in claim 24, further comprising one or more additional radars positioned to have the portion of the wind flow field or another portion of the wind flow field within an additional scanning sector for the additional radars.
31. The apparatus as recited in claim 24, wherein the one or more processors collect the data from the one or more radars by:
collecting a raw data from the one or more radars; and
processing the raw data to generate the data.
32. The apparatus as recited in claim 24, wherein the one or more processors adjust the data based on a beam misalignment with a true wind vector.
33. The apparatus as recited in claim 24, wherein the data further comprises a vertical range-height indicator and a horizontal plan-position indicator
34. The apparatus as recited in claim 24, wherein the data further comprises interpolated horizontal wind flows describing a wake of one or more turbines and a free- stream radial velocity field surrounding the wake.
PCT/US2013/052435 2012-07-27 2013-07-27 Apparatus and method for using radar to evaluate wind flow fields for wind energy applications WO2014018957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13822416.7A EP2877875A4 (en) 2012-07-27 2013-07-27 Apparatus and method for using radar to evaluate wind flow fields for wind energy applications

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201261676394P 2012-07-27 2012-07-27
US61/676,394 2012-07-27
US201261683022P 2012-08-14 2012-08-14
US61/683,022 2012-08-14
US13/952,611 2013-07-27
US13/952,611 US9575177B2 (en) 2012-07-27 2013-07-27 Apparatus and method for using radar to evaluate wind flow fields for wind energy applications
US13/952,606 2013-07-27
US13/952,606 US9519056B2 (en) 2012-07-27 2013-07-27 System and method for evaluating wind flow fields using remote sensing devices

Publications (1)

Publication Number Publication Date
WO2014018957A1 true WO2014018957A1 (en) 2014-01-30

Family

ID=49994341

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2013/052435 WO2014018957A1 (en) 2012-07-27 2013-07-27 Apparatus and method for using radar to evaluate wind flow fields for wind energy applications
PCT/US2013/052434 WO2014018956A1 (en) 2012-07-27 2013-07-27 System and method for evaluating wind flow fields using remote sensing devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2013/052434 WO2014018956A1 (en) 2012-07-27 2013-07-27 System and method for evaluating wind flow fields using remote sensing devices

Country Status (4)

Country Link
US (2) US9519056B2 (en)
EP (2) EP2877875A4 (en)
DK (1) DK2877741T3 (en)
WO (2) WO2014018957A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585793C1 (en) * 2015-04-06 2016-06-10 Виктор Вячеславович Стерлядкин Method for determining vertical wind profile in atmosphere
CN110532918A (en) * 2019-08-21 2019-12-03 南京大学 Method is determined based on the offshore wind electric field time-space attribute of time series remote sensing image

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9864099B2 (en) * 2012-11-20 2018-01-09 Kyungpook National University Industry-Academic Cooperation Apparatus and method for calculating wind load
WO2014165266A1 (en) * 2013-03-12 2014-10-09 LogLinear Group, LLC Single beam wind speed and direction determination
WO2015039665A1 (en) * 2013-09-17 2015-03-26 Vestas Wind Systems A/S Control method for a wind turbine
WO2015058209A1 (en) 2013-10-18 2015-04-23 Tramontane Technologies, Inc. Amplified optical circuit
US9551322B2 (en) 2014-04-29 2017-01-24 General Electric Company Systems and methods for optimizing operation of a wind farm
US10138873B2 (en) 2014-05-30 2018-11-27 General Electric Company Systems and methods for wind turbine nacelle-position recalibration and wind direction estimation
US10100813B2 (en) 2014-11-24 2018-10-16 General Electric Company Systems and methods for optimizing operation of a wind farm
US10114035B2 (en) * 2015-01-08 2018-10-30 Nec Corporation Remote wind turbulence sensing
US10024304B2 (en) 2015-05-21 2018-07-17 General Electric Company System and methods for controlling noise propagation of wind turbines
US10385829B2 (en) 2016-05-11 2019-08-20 General Electric Company System and method for validating optimization of a wind farm
US10539116B2 (en) 2016-07-13 2020-01-21 General Electric Company Systems and methods to correct induction for LIDAR-assisted wind turbine control
CN109983362B (en) * 2016-11-28 2023-05-09 三菱电机株式会社 Data processing device, laser radar device, and wind measurement system
CN107315855B (en) * 2017-05-27 2020-11-10 中国大唐集团科学技术研究院有限公司 Wind power plant turbulence optimization method and system
CN107153894B (en) 2017-06-02 2018-11-27 北京金风科创风电设备有限公司 Method and device for correcting predicted wind speed of wind power plant
DE102017009838A1 (en) 2017-10-23 2019-04-25 Senvion Gmbh Control system and method for operating multiple wind turbines
CN108364561B (en) * 2018-03-09 2023-08-04 华电电力科学研究院有限公司 Test device and test method for optimizing micro-topography to change wind conditions
US10795054B2 (en) * 2018-03-20 2020-10-06 Mitsubishi Electric Research Laboratories, Inc. System and method for sensing wind flow passing over complex terrain
CN109190187B (en) * 2018-08-10 2023-08-08 国电联合动力技术有限公司 Wind farm wake flow calculation method and system based on multiple physical models
CN109283535B (en) * 2018-11-16 2022-12-20 北京无线电测量研究所 Detection method of non-uniform wind field
CN109946765B (en) * 2019-04-02 2021-05-07 上海电气风电集团股份有限公司 Prediction method and system for flow field of wind power plant
DE102019116753A1 (en) 2019-06-20 2020-12-24 Wobben Properties Gmbh Process for performing an energy yield forecast and wind farm
CN110321632B (en) * 2019-07-02 2021-03-16 华北电力大学 Method for calculating equivalent roughness of fully developed wind power plant
EP3816885A1 (en) * 2019-10-28 2021-05-05 Siemens Gamesa Renewable Energy Innovation & Technology, S.L. Method for computer-implemented forecasting of wind phenomena with impact on a wind turbine
CN110824585B (en) * 2019-11-07 2021-01-26 中国科学院西北生态环境资源研究院 Method for measuring gale wind-rising mechanism of complex terrain area
CN111120205B (en) * 2019-12-30 2021-01-26 明阳智慧能源集团股份公司 Wind power plant regionalization control method based on laser radar
DE102020202498A1 (en) * 2020-02-27 2021-09-02 Robert Bosch Gmbh MIMO radar system
CN111537956B (en) * 2020-04-02 2022-09-23 北京电子工程总体研究所 Single radar responsibility sector determination method and system based on real-time and spatial situations
KR102428330B1 (en) * 2020-06-25 2022-08-02 부경대학교 산학협력단 System and Method for Retrieving Typhoon Horizontal Wind Components Using Windprofiler and Dual Doppler Radar Wind Field
US11408396B2 (en) * 2021-01-08 2022-08-09 General Electric Renovables Espana, S.L. Thrust control for wind turbines using active sensing of wind turbulence
CN113536609B (en) * 2021-09-16 2021-11-30 武汉理工大学 Radar shielding area model construction method for offshore wind power engineering
EP4276303A1 (en) * 2022-05-12 2023-11-15 Vestas Wind Systems A/S A method for controlling noise generated by a wind farm
CN115017822B (en) * 2022-06-23 2023-05-02 珠江水利委员会珠江水利科学研究院 Marine wind power pile foundation and submarine cable integrated monitoring method
CN116449381B (en) * 2023-06-09 2023-09-12 南京信息工程大学 Rapid identifying method and device for wake vortexes of airplane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024652A1 (en) * 2000-08-31 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Wake turbulence detecting system
US20100117892A1 (en) * 2007-05-15 2010-05-13 Thales Method for radar monitoring of wake turbulence
US20120179376A1 (en) * 2011-01-11 2012-07-12 Ophir Corporation Methods And Apparatus For Monitoring Complex Flow Fields For Wind Turbine Applications

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649388A (en) 1985-11-08 1987-03-10 David Atlas Radar detection of hazardous small scale weather disturbances
US5523759A (en) 1992-04-14 1996-06-04 Honeywell Inc. In flight doppler weather radar wind shear detection system
US6462699B2 (en) 1999-12-13 2002-10-08 University Corporation For Atomspheric Research Bistatic radar system for centralized, near-real-time synchronized, processing of data to identify scatterers
US7821448B2 (en) 2005-03-10 2010-10-26 Honeywell International Inc. Constant altitude plan position indicator display for multiple radars
GB0710209D0 (en) * 2007-05-29 2007-07-04 Cambridge Consultants Radar system
US8665138B2 (en) * 2007-07-17 2014-03-04 Laufer Wind Group Llc Method and system for reducing light pollution
US8077074B2 (en) * 2008-05-07 2011-12-13 Colorado State University Research Foundation Networked waveform system
GB2497003B (en) 2008-05-29 2013-08-07 Cambridge Consultants Radar system and method
US9274250B2 (en) 2008-11-13 2016-03-01 Saint Louis University Apparatus and method for providing environmental predictive indicators to emergency response managers
GB0822468D0 (en) 2008-12-10 2009-01-14 Qinetiq Ltd Method for mitigating the effects of clutter and interference on a radar system
US20100187828A1 (en) 2009-01-29 2010-07-29 Michael T. Reidy Wind energy harnessing apparatuses, systems, methods, and improvements
ES2634111T3 (en) * 2009-04-17 2017-09-26 Raytheon Company Method and apparatus for integration of distributed sensors and surveillance radar in airports to mitigate blind spots
GB2481461A (en) 2010-06-21 2011-12-28 Vestas Wind Sys As Control of a downstream wind turbine in a wind park by sensing the wake turbulence of an upstream turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024652A1 (en) * 2000-08-31 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Wake turbulence detecting system
US20100117892A1 (en) * 2007-05-15 2010-05-13 Thales Method for radar monitoring of wake turbulence
US20120179376A1 (en) * 2011-01-11 2012-07-12 Ophir Corporation Methods And Apparatus For Monitoring Complex Flow Fields For Wind Turbine Applications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BARTHELMIE, R. J. ET AL.: "Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms", JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY., vol. 27, no. 8, August 2010 (2010-08-01), pages 1302 - 1317, XP055183295 *
BRIAN D. HIRTH ET AL.: "Measuring a Utility-Scale Turbine Wake Using the TTUKa Mobile Research Radars", JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, vol. 29, no. 6, June 2012 (2012-06-01), pages 765 - 771, XP055183291 *
See also references of EP2877875A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585793C1 (en) * 2015-04-06 2016-06-10 Виктор Вячеславович Стерлядкин Method for determining vertical wind profile in atmosphere
CN110532918A (en) * 2019-08-21 2019-12-03 南京大学 Method is determined based on the offshore wind electric field time-space attribute of time series remote sensing image
CN110532918B (en) * 2019-08-21 2022-02-25 南京大学 Off-shore wind farm space-time attribute determination method based on time series remote sensing images

Also Published As

Publication number Publication date
US9575177B2 (en) 2017-02-21
EP2877875A4 (en) 2016-01-27
US9519056B2 (en) 2016-12-13
EP2877741A4 (en) 2016-03-02
WO2014018956A1 (en) 2014-01-30
EP2877741B1 (en) 2019-04-24
EP2877741A1 (en) 2015-06-03
EP2877875A1 (en) 2015-06-03
US20140028496A1 (en) 2014-01-30
DK2877741T3 (en) 2019-05-20
US20140028495A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
US9575177B2 (en) Apparatus and method for using radar to evaluate wind flow fields for wind energy applications
Hirth et al. Measuring a utility-scale turbine wake using the TTUKa mobile research radars
Snook et al. Analysis of a tornadic mesoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data
Dowell et al. Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses
Gao et al. A real-time weather-adaptive 3DVAR analysis system for severe weather detections and warnings
Kollias et al. Development and applications of ARM millimeter-wavelength cloud radars
Hirth et al. Coupling Doppler radar‐derived wind maps with operational turbine data to document wind farm complex flows
Hirth et al. Documenting wind speed and power deficits behind a utility-scale wind turbine
Barthelmie et al. 3D wind and turbulence characteristics of the atmospheric boundary layer
Letson et al. Characterizing wind gusts in complex terrain
JP2009138523A (en) Method of estimating output of wind power generation
Suomi et al. On the vertical structure of wind gusts
Draxl et al. Mountain waves can impact wind power generation
Hirth et al. Research radar analyses of the internal boundary layer over Cape Canaveral, Florida, during the landfall of Hurricane Frances (2004)
Byrne et al. An assessment of the mesoscale to microscale influences on wind turbine energy performance at a peri-urban coastal location from the Irish wind atlas and onsite LiDAR measurements
CN106845018A (en) The analysis that wind power plant influences on weather radar rainfall and quantitative evaluation method
Frehlich Scanning doppler lidar for input into short-term wind power forecasts
Potvin et al. Comparison between dual-Doppler and EnKF storm-scale wind analyses: Observing system simulation experiments with a supercell thunderstorm
Zhang et al. The influence of airborne Doppler radar data quality on numerical simulations of a tropical cyclone
Supinie et al. Impact of VORTEX2 observations on analyses and forecasts of the 5 June 2009 Goshen County, Wyoming, supercell
Srivastava et al. Assimilation of doppler weather radar data in WRF model for simulation of tropical cyclone Aila
Tapiador et al. Precipitation estimates for hydroelectricity
Mahale et al. The advantages of a mixed-band radar network for severe weather operations: A case study of 13 May 2009
Smith et al. Impact of large neighbouring wind farms on energy yield of offshore wind farms
Mehner Extrapolating surface winds from an elevated dual-doppler wind profile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822416

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013822416

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013822416

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE