WO2014017544A1 - Element analyzing device - Google Patents

Element analyzing device Download PDF

Info

Publication number
WO2014017544A1
WO2014017544A1 PCT/JP2013/070066 JP2013070066W WO2014017544A1 WO 2014017544 A1 WO2014017544 A1 WO 2014017544A1 JP 2013070066 W JP2013070066 W JP 2013070066W WO 2014017544 A1 WO2014017544 A1 WO 2014017544A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
pyroelectric crystal
characteristic
spectrum
fluorescence
Prior art date
Application number
PCT/JP2013/070066
Other languages
French (fr)
Japanese (ja)
Inventor
晋 今宿
直人 冬野
潤 河合
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2014526977A priority Critical patent/JPWO2014017544A1/en
Publication of WO2014017544A1 publication Critical patent/WO2014017544A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2445Photon detectors for X-rays, light, e.g. photomultipliers

Definitions

  • the present invention relates to an element analyzer capable of detecting various elements contained in a sample, particularly rare earth elements.
  • the rare earth element is a general term for a group consisting of a total of 17 elements in which two elements of scandium (Sc) and yttrium (Y) are added to 15 elements of the lanthanoid series from lanthanum (La) to lutetium (Lu).
  • Rare earth elements are indispensable for cutting-edge technology because they can improve their performance by adding a very small amount to steel materials, magnetic materials, phosphor materials, superconducting materials, etc. .
  • EPMA electron beam microanalyzer
  • Non-Patent Document 1 is an apparatus that detects an element contained in a sample from a spectrum of characteristic X-rays generated by irradiating the sample (object to be measured) with an electron beam.
  • the apparatus of Non-Patent Document 1 uses a pyroelectric crystal and a Peltier element as the electron beam generating means.
  • a pyroelectric crystal is a crystal having spontaneous polarization, and in an equilibrium state, the charged particles floating around it adhere to the surface, so that the electric charge on the surface of the pyroelectric crystal due to polarization is canceled, and an electric field does not appear outside.
  • the sexual state is maintained (the middle figure in FIG. 5).
  • the polarization in the pyroelectric crystal is reduced and the surface charge of the pyroelectric crystal is reduced. Therefore, the charge of the attached charged particles is relatively increased, and the surface is positively polarized (hereinafter referred to as “polarized surface”).
  • polarized surface hereinafter referred to as “polarized surface”.
  • + Z plane” positive charged plane
  • ⁇ z plane negatively charged plane
  • the pyroelectric crystal If the pyroelectric crystal is kept at the temperature after cooling, the increase in polarization stops, but the floating charged particles adhere to the + z plane and the ⁇ z plane of the pyroelectric crystal, so that the pyroelectric crystal returns to the equilibrium state again. While there are many floating charged particles in the atmosphere and the pyroelectric crystal quickly returns to an equilibrium state, there are few floating charged particles in a vacuum and the state gradually returns to an equilibrium state (not shown).
  • the Peltier element is for changing the temperature of the pyroelectric crystal.
  • a sample is placed on a conductive sample stage, and a pyroelectric crystal is arranged so that one surface faces the surface of the sample.
  • the other surface of the pyroelectric crystal is electrically connected to the sample stage and grounded.
  • a Peltier element not shown
  • an electric field is generated between the pyroelectric crystal and the sample stage (left diagram in FIG. 6).
  • the surface of the pyroelectric crystal facing the sample stage the + z plane in the example of FIG.
  • the power source used in the above configuration may be a small battery, such as a dry cell used for driving and controlling the Peltier element, and the overall size of the device may be smaller than the trunk case, so it is excellent in portability.
  • Rare earth elements are often mined in a mixed state, and among the rare earth elements, lanthanoid series elements are adjacent in atomic number.
  • lanthanoid series elements are adjacent in atomic number.
  • the peaks of adjacent rare earth elements cannot be sufficiently separated, and it is difficult to accurately identify and quantify these individually.
  • the problem to be solved by the present invention is to provide an elemental analyzer that is excellent in portability and that can separate and correctly identify various lanthanoid rare earth elements.
  • An elemental analyzer which has been made to solve the above problems, A vacuum vessel; A pyroelectric crystal disposed in the vacuum vessel; In the vacuum vessel, the surface on which the sample is placed is opposed to one surface of the pyroelectric crystal, and is disposed so as to be electrically connected to the other surface of the pyroelectric crystal and grounded.
  • Conductive sample stage A Peltier element for heating or cooling the pyroelectric crystal; Characteristic X-ray spectrum detection means for detecting a spectrum of characteristic X-rays emitted from the sample placed on the sample stage; Fluorescence spectrum detection means for detecting a spectrum of fluorescence emitted from the sample; It is characterized by having.
  • opposite is not limited to the state where the two surfaces are facing each other, but may be the state where the two surfaces are inclined and face each other.
  • the inventor of the present invention has conceived that cathodoluminescence analysis is used in combination in order to separate rare earth element peaks that overlap in the characteristic X-ray spectrum.
  • the cathodoluminescence analysis is a method for identifying elements contained in a sample from the spectrum of fluorescence emitted from the sample when the sample is irradiated with electrons.
  • the electrons in the inner orbit of the atom are ejected by the incident electrons, and the characteristic X-ray generated by the electrons in the outer orbit dropping into the orbit is used.
  • the principle is different between the characteristic X-ray analysis and the cathodoluminescence analysis, there is a possibility that the rare earth element peak that cannot be separated in the characteristic X-ray spectrum can be separated and identified in the fluorescence spectrum.
  • the present inventor detected rare earth elements that could not be separated in the characteristic X-ray spectrum by cathodoluminescence analysis using an electron beam of a scanning electron microscope (SEM) (a normal tungsten electron gun was used for electron beam irradiation). Preliminary experiments were conducted to see if this was possible. Then, it was confirmed that this was possible, and an elemental analyzer according to the present invention capable of both characteristic X-ray analysis and cathodoluminescence analysis using a pyroelectric crystal and a Peltier element as electron beam generation means was produced. did.
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray detector
  • WDX wavelength dispersive X-ray detector
  • a spectroscope such as a polychromator can be used as the fluorescence spectrum detecting means.
  • the intensity of fluorescence emitted from the sample by electron irradiation is weaker than the intensity of characteristic X-rays emitted from the sample by the irradiation.
  • the detection sensitivity of the spectrometer is generally lower than that of EDX. For this reason, in order to efficiently collect the fluorescence, an input end of an optical fiber is arranged near the sample surface, and the fluorescence collected immediately near the sample surface is sent to the spectroscope at the subsequent stage through the optical fiber. It is desirable.
  • the intensity of the fluorescence emitted from the sample can be increased by increasing the number of electrons irradiated to the sample per unit time (irradiation current amount).
  • irradiation current amount it is desirable to provide a conductive needle on the surface facing the pyroelectric crystal sample.
  • the current generated between the pyroelectric crystal and the sample has the shortest path along the straight line connecting the needle and the portion of the sample facing the needle, so that the resistance is reduced and flows in a concentrated manner on the straight line. Therefore, the amount of irradiation current to the sample increases locally.
  • the material of the needle it is desirable to use a highly conductive material, for example, gold or silver can be suitably used. Note that tungsten, molybdenum, or the like may be used when importance is attached to strength or the like.
  • the elemental analyzer according to the present invention has a configuration using a pyroelectric crystal and a Peltier element, similar to the EPMA of Non-Patent Document 1, and can be downsized and driven by a small battery such as a dry cell. Is excellent.
  • cathodoluminescence analysis is used in combination, lanthanoid series rare earth elements that could not be distinguished only by analysis by characteristic X-rays can be individually separated and correctly identified and quantified.
  • the schematic block diagram of one Example of the elemental analyzer which concerns on this invention The graph which shows the characteristic X-ray spectrum and fluorescence spectrum with respect to the zircon powder obtained by the elemental analyzer of a present Example. The graph which shows the characteristic X-ray spectrum and fluorescence spectrum with respect to mixed powder obtained by the elemental analyzer of a present Example.
  • Explanatory drawing which shows the principle which this pyroelectric crystal charges by changing the temperature of a pyroelectric crystal.
  • Explanatory drawing which shows the principle by which a sample on a sample stand is irradiated with electrons by a pyroelectric crystal.
  • FIG. 1 is a schematic configuration diagram of an elemental analyzer according to the present embodiment.
  • the + z direction in the figure is “up” and the ⁇ z direction is “down”.
  • a stainless steel vacuum vessel 10 includes a stainless steel vacuum vessel 10, a pyroelectric crystal 11 made of a single crystal of LiTaO 3 , a Peltier element 12 for heating / cooling the pyroelectric crystal 11, and a sample S.
  • a sample table 13 made of brass, an energy dispersive X-ray detector (EDX) 14 that detects the spectrum of characteristic X-rays emitted from the sample S by irradiating the sample S with electrons, and the sample by the electrons And a polychromator (spectrometer) 15 for detecting the spectrum of fluorescence emitted from S.
  • EDX energy dispersive X-ray detector
  • the vacuum vessel 10 includes a copper exhaust pipe 16 to which a rotary pump (not shown) is connected.
  • the lower surface of the Peltier element 12 is joined to the upper surface of the distal end of the exhaust pipe 16.
  • the lower surface of the pyroelectric crystal 11 is bonded to the upper surface of the Peltier element 12.
  • the Peltier element 12 heats / cools the pyroelectric crystal 11 when power is supplied from the power supply unit 18.
  • the upper surface of the pyroelectric crystal 11 is a + z plane (a surface that is positively polarized), and the lower surface is a ⁇ z plane (a surface that is negatively polarized).
  • the upper surface of the pyroelectric crystal 11 is negatively charged and the lower surface is positively charged.
  • the copper rod 17 can be inserted and removed from the upper surface of the vacuum vessel 10, and the bottom surface of the sample stage 13 is joined to the lower surface of the tip of the rod 17.
  • the sample mounting surface of the sample table 13 has a 45 ° gradient with respect to the bottom surface of the sample table 13.
  • the energy dispersive X-ray detector (EDX) 14 is disposed so as to be in front of the sample mounting surface, and the polychromator (spectrometer) 15 is further inclined by 45 ° with respect to the sample mounting surface. (Thus, at a position rotated by 90 ° with respect to the surface of the pyroelectric crystal 11).
  • the rod 17 When placing the sample S on the sample stage 13, the rod 17 is removed from the vacuum vessel 10, and the sample S is fixed on a double-sided tape affixed to the sample placement surface of the sample stage 13. Then, the sample stage 13 is directed downward, and the rod 17 is inserted into the vacuum vessel 10. Since the elemental analyzer according to the present embodiment has such an arrangement, as shown in FIG. 1, when the flat sample S is placed on the sample placement surface of the sample stage 13, X-rays emitted from the sample surface Enters the energy dispersive X-ray detector (EDX) 14 from the front, and a large amount of fluorescence also enters the polychromator (spectrometer) 15. The insertion port of the rod 17 of the vacuum vessel 10 is hermetically sealed by an O-ring or the like (not shown).
  • EDX energy dispersive X-ray detector
  • the lower surface of the pyroelectric crystal 11 is electrically connected to the exhaust pipe 16 by a conducting wire or the like.
  • the bottom surface of the sample stage 13 is electrically connected by being joined to the rod 17. Further, the exhaust pipe 16 and the rod 17 are electrically connected by a conducting wire or the like and grounded. As a result, the sample stage 13 and the lower surface of the pyroelectric crystal 11 are electrically connected to have the same potential (ground potential).
  • this vacuum vessel 10 can also be used instead of conducting wire.
  • the power supply unit 18 has a function of periodically switching the direction of a current flowing through the Peltier element 12 as well as a function of flowing a current through the Peltier element 12. Thereby, the upper surface of the Peltier element 12 repeats heating and cooling periodically. Accordingly, the pyroelectric crystal 11 bonded to the upper surface of the Peltier element 12 is periodically heated and cooled.
  • the inside of the vacuum vessel 10 is exhausted through the exhaust pipe 16 by a rotary pump (not shown).
  • the vacuum chamber 10 is evacuated until the internal pressure reaches about several Pa (for example, 1 Pa to 2 Pa).
  • the pyroelectric crystal 11 is heated in this state, an electric field is formed in the direction from the sample stage 13 toward the pyroelectric crystal 11. Thereby, stray electrons in the vacuum are accelerated toward the sample stage 13 and collide with the sample S fixed on the sample stage 13, and characteristic X-rays and fluorescence are emitted from the sample S.
  • pyroelectric crystals cannot be heated indefinitely.
  • the operation of once cooling the pyroelectric crystal, increasing the polarization, and then heating the pyroelectric crystal again is repeated to irradiate the electrons a plurality of times.
  • the pyroelectric crystal is cooled and the polarization is increased, the floating electrons are accelerated toward the pyroelectric crystal 11.
  • the detection sensitivity of the polychromator 15 is generally lower than that of the EDX14. Therefore, by arranging the input end of the optical fiber 19 in the vicinity of the sample surface, the fluorescence emitted from the sample S is efficiently collected in the immediate vicinity of the sample S. The collected fluorescence is sent to the polychromator 15 through the optical fiber 19. Further, the EDX 14 has an X-ray entrance in a direction in which the characteristic X-ray is not hindered by the optical fiber 19.
  • the graph of FIG. 2 shows a characteristic X-ray spectrum (a) and a fluorescence spectrum (b) obtained by the elemental analysis apparatus of this example when a zircon powder containing rare earth elements or the like as a trace component is used as a sample. is there.
  • a characteristic X-ray spectrum of FIG. 2 (a) it can be seen that peaks of Cr, Fe, Ni, Cu, and Zn appear, but the rare-earth element peaks are insignificant and are almost invisible (LaL ⁇ in the figure). LuL ⁇ represents the peak position of the characteristic X-ray of the rare earth element). For this reason, it is determined that the rare earth element is not included only by the characteristic X-ray spectrum of FIG.
  • peaks of Sm, Tb, Dy, and Er appear separately from each other. Therefore, it can be seen that this zircon powder contains at least Sm, Tb, Dy, and Er as rare earth elements.
  • FIG. 3 shows a characteristic X-ray spectrum (a) obtained by the elemental analyzer of this example when a mixed powder of oxides of Nd, Sm, Gd, Dy, Er, and Yb was used as a sample, and a fluorescence spectrum ( b).
  • a characteristic X-ray spectrum
  • the peaks of GdL ⁇ and ErL ⁇ appear separately from other elements. Therefore, it can be seen from the characteristic X-ray spectrum of FIG. 3A that this sample contains at least Gd and Er.
  • peaks other than Gd and Er may contain a plurality of elements, it is difficult to separate and identify them only from this characteristic X-ray spectrum.
  • any or all of Cr, Nd, and Sm may be included, but it is not known whether any or all of these are included only by this peak.
  • the peak of Sm appears separately. Therefore, it can be seen from the fluorescence spectrum of FIG. 3B that this sample contains at least Sm.
  • the characteristic X-ray spectrum of FIG. 3 (a) since the DyL ⁇ and Fe peaks overlap, it is not known whether this sample contains Dy, but from the Dy peak in the fluorescence spectrum of FIG. 3 (b). It can be seen that this sample contains Dy.
  • this sample contains Dy.
  • the intensity of the fluorescence emitted from the sample by electron irradiation is weaker than the intensity of the characteristic X-ray emitted from the sample by the irradiation.
  • the detection sensitivity of the polychromator 15 is generally lower than that of the EDX 14. Therefore, in order to accurately measure the fluorescence emitted from the sample S, it is desirable to increase the amount of irradiation current to the sample S and cause the sample S to generate fluorescence more strongly.
  • a configuration in which the conductive needle 20 is bonded to the upper surface (+ z plane) of the pyroelectric crystal 11 is used as a first modification.
  • the sample placement surface of the sample stage 13 may be curved in a convex shape.
  • the current generated between the pyroelectric crystal 11 and the sample S (more precisely, the sample stage 13) is a straight line connecting the nearest point (nearest contact point) between the pyroelectric crystal 11 and the pyroelectric crystal 11 of the sample stage 13. Since the path becomes the shortest in (1), the resistance is reduced, and the flow is concentrated on the straight line. Therefore, the electron trajectory is concentrated as shown by the arrows in FIG. 4B, and the amount of irradiation current to the sample S is locally increased.
  • the sample S (for example, the powder of the sample S) is fixed near the closest point of the sample stage 13.
  • Characteristic X-rays and fluorescence emitted from the sample S on the sample stage 13 are detected by EDX and a spectroscope provided in a direction of ⁇ 45 ° from the sample placement surface.
  • the needle used in the first modification may be further added to the second modification.
  • an electron lens 21 may be provided between the pyroelectric crystal and the sample stage as shown in FIG.
  • the electron lens 21 is used for focusing electrons in an electron microscope or the like, and includes an electrostatic lens using an electric field and a magnetic lens using a magnetic field.
  • FIG. 7 shows an example in which a donut-shaped permanent magnet is used as the electron lens 21.
  • the magnet is not limited to a permanent magnet, and an electromagnet may be used.
  • the needle used in the first and / or second modification may be added.

Abstract

It is an object of the present invention to provide a portable element analyzing device able to separate the various rare earth elements of the lanthanide series, and to identify and quantify each element. The element analyzing device of the present invention includes: a vacuum chamber; a pyroelectric crystal arranged inside the vacuum chamber; a conductive stage having a sample surface facing one surface of the pyroelectric crystal, while also being connected electrically to the other surface of the pyroelectric crystal and grounded; a Peltier element for heating or cooling the pyroelectric crystal; a characteristic X-ray spectrum detecting means for detecting the characteristic X-ray spectrum emitted by the sample placed on the stage; and a fluorescence spectrum detection means for detecting the fluorescence spectrum emitted by the sample.

Description

元素分析装置Elemental analyzer
 本発明は、試料に含まれる各種の元素、特に希土類元素を検出可能な元素分析装置に関する。 The present invention relates to an element analyzer capable of detecting various elements contained in a sample, particularly rare earth elements.
 希土類元素とは、ランタン(La)からルテチウム(Lu)までのランタノイド系列の15元素にスカンジウム(Sc)とイットリウム(Y)の2元素を加えた計17元素から成るグループの総称である。希土類元素は、鉄鋼材料、磁性体材料、蛍光体材料、超伝導材料等にごく微量添加するだけで、これらの性能を向上させることができるため、最先端技術には無くてはならない材料である。 The rare earth element is a general term for a group consisting of a total of 17 elements in which two elements of scandium (Sc) and yttrium (Y) are added to 15 elements of the lanthanoid series from lanthanum (La) to lutetium (Lu). Rare earth elements are indispensable for cutting-edge technology because they can improve their performance by adding a very small amount to steel materials, magnetic materials, phosphor materials, superconducting materials, etc. .
 しかし、現在、希土類元素が産出される地域は集中しており、産出国の意向によって希土類元素の供給が途絶えたり、価格が上昇したりする状況である。希土類元素の安定的且つ安価な供給には、希土類元素を産出する新たな鉱脈の発見が不可欠である。鉱脈の発見には衛星探査、植生調査、地質学的調査、物理探査、化学分析などがあり、それで大まかな地域を発見し、そこで探鉱し、鉱石を取り出し、細かく砕き、そして分析を行う。これらの手間を少しでも省くため、採掘した鉱石をその場ですぐに分析できる、携帯性に優れた希土類元素の分析装置が待望されている。 However, at present, the area where rare earth elements are produced is concentrated, and the supply of rare earth elements is interrupted or the price rises depending on the intention of the producing country. For stable and inexpensive supply of rare earth elements, discovery of new veins that produce rare earth elements is indispensable. There are satellite exploration, vegetation exploration, geological exploration, geophysical exploration, chemical analysis, etc. for discovering mine veins, where a rough area is discovered, where exploration, ore is extracted, crushed, and analyzed. In order to save these troubles as much as possible, there is a long-awaited need for a portable rare earth element analyzer that can immediately analyze the mined ore.
 本発明者は、これまで、焦電結晶を用いた小型EPMA(電子線マイクロアナライザ)を開発している(非特許文献1)。EPMAとは、電子線を試料(被測定物)に照射することにより発生する特性X線のスペクトルから試料に含まれる元素を検出する装置である。非特許文献1の装置は、この電子線の生成手段として、焦電結晶とペルチェ素子を用いたものである。 The present inventor has so far developed a small EPMA (electron beam microanalyzer) using a pyroelectric crystal (Non-Patent Document 1). EPMA is an apparatus that detects an element contained in a sample from a spectrum of characteristic X-rays generated by irradiating the sample (object to be measured) with an electron beam. The apparatus of Non-Patent Document 1 uses a pyroelectric crystal and a Peltier element as the electron beam generating means.
 焦電結晶は、自発分極を有する結晶であり、平衡状態では、周囲に浮遊する荷電粒子が付着することにより分極による焦電結晶表面の電荷が打ち消され、外部に電界が現れない電気的に中性な状態を保っている(図5の中央の図)。この状態から焦電結晶を加熱すると、焦電結晶内の分極が減少し焦電結晶の表面電荷が減少するため、付着荷電粒子の電荷が相対的に多くなって、正に分極した面(以下、「+z面」とする)では負に帯電し、負に分極した面(以下、「-z面」とする)では正に帯電する(図5の左図)。焦電結晶を加熱後の温度に保つと、分極の減少は止まる一方、過剰となった荷電粒子が焦電結晶の+z面と-z面から離れるため、焦電結晶は再び平衡状態に戻る(図示せず)。一方、平衡状態から焦電結晶を冷却すると、焦電結晶内の分極が増加し表面電荷が増加するため、付着荷電粒子の電荷が相対的に少なくなって、+z面では正に帯電し、-z面では負に帯電する(図5の右図)。焦電結晶を冷却後の温度に保つと、分極の増加は止まる一方、浮遊荷電粒子が焦電結晶の+z面と-z面に付着するため、焦電結晶は再び平衡状態に戻る。大気中では浮遊荷電粒子が多く、焦電結晶は速やかに平衡状態に戻るのに対し、真空中では浮遊荷電粒子が少なく、緩やかに平衡状態に戻る(図示せず)。 A pyroelectric crystal is a crystal having spontaneous polarization, and in an equilibrium state, the charged particles floating around it adhere to the surface, so that the electric charge on the surface of the pyroelectric crystal due to polarization is canceled, and an electric field does not appear outside. The sexual state is maintained (the middle figure in FIG. 5). When the pyroelectric crystal is heated from this state, the polarization in the pyroelectric crystal is reduced and the surface charge of the pyroelectric crystal is reduced. Therefore, the charge of the attached charged particles is relatively increased, and the surface is positively polarized (hereinafter referred to as “polarized surface”). , “+ Z plane”), and negatively charged plane (hereinafter referred to as “−z plane”) is positively charged (left figure in FIG. 5). When the pyroelectric crystal is kept at the temperature after heating, the decrease in polarization stops, but excess charged particles are separated from the + z plane and the −z plane of the pyroelectric crystal, so that the pyroelectric crystal returns to the equilibrium state again ( Not shown). On the other hand, when the pyroelectric crystal is cooled from the equilibrium state, the polarization in the pyroelectric crystal is increased and the surface charge is increased, so that the charge of the attached charged particles is relatively reduced, and the + z plane is positively charged. The z plane is negatively charged (the right figure in FIG. 5). If the pyroelectric crystal is kept at the temperature after cooling, the increase in polarization stops, but the floating charged particles adhere to the + z plane and the −z plane of the pyroelectric crystal, so that the pyroelectric crystal returns to the equilibrium state again. While there are many floating charged particles in the atmosphere and the pyroelectric crystal quickly returns to an equilibrium state, there are few floating charged particles in a vacuum and the state gradually returns to an equilibrium state (not shown).
 ペルチェ素子は焦電結晶を温度変化させるためのものである。非特許文献1の装置では、導電性の試料台上に試料を載置し、一方の面が該試料の表面に対向するように焦電結晶を配置している。そして、該焦電結晶の他方の面を該試料台と電気的に接続し、これを接地している。これにより、ペルチェ素子(図示せず)で焦電結晶の温度を変化させたときに該焦電結晶と試料台の間に電場が生じる(図6の左図)。例えば、試料台に対向する焦電結晶の面(図6の例では+z面)を負に帯電させると、負の浮遊荷電粒子は試料台に向かって、正の浮遊荷電粒子は焦電結晶に向かって、それぞれ加速される(図6の中央の図)。これらの浮遊荷電粒子のうち、試料に照射される電子が特性X線の放出に寄与することになる。大気中では電子は浮遊荷電粒子と衝突し合ってエネルギーを失うが、数Pa程度の真空中では、電子の多くは、エネルギーを失うことなく、試料台上の試料に衝突する。これにより試料から特性X線が放出され(図6の右図)、この放出された特性X線をエネルギー分散型X線検出器(EDX)等で検出することにより、特性X線のスペクトルが得られる。 The Peltier element is for changing the temperature of the pyroelectric crystal. In the apparatus of Non-Patent Document 1, a sample is placed on a conductive sample stage, and a pyroelectric crystal is arranged so that one surface faces the surface of the sample. The other surface of the pyroelectric crystal is electrically connected to the sample stage and grounded. As a result, when the temperature of the pyroelectric crystal is changed by a Peltier element (not shown), an electric field is generated between the pyroelectric crystal and the sample stage (left diagram in FIG. 6). For example, when the surface of the pyroelectric crystal facing the sample stage (the + z plane in the example of FIG. 6) is negatively charged, negative floating charged particles are directed toward the sample stage, and positive floating charged particles are converted to the pyroelectric crystal. Each is accelerated toward the center (the middle diagram in FIG. 6). Among these floating charged particles, electrons irradiated on the sample contribute to the emission of characteristic X-rays. In the atmosphere, electrons collide with suspended charged particles and lose energy, but in a vacuum of several Pa, most of the electrons collide with the sample on the sample stage without losing energy. As a result, characteristic X-rays are emitted from the sample (the right figure in FIG. 6), and the characteristic X-ray spectrum is obtained by detecting the emitted characteristic X-rays with an energy dispersive X-ray detector (EDX) or the like. It is done.
 上記構成で使用する電源は、ペルチェ素子の駆動及び制御に用いる乾電池程度の小型のバッテリーで良く、また、装置全体のサイズもトランクケース以下の大きさで済むため、携帯性に優れている。 The power source used in the above configuration may be a small battery, such as a dry cell used for driving and controlling the Peltier element, and the overall size of the device may be smaller than the trunk case, so it is excellent in portability.
 希土類元素は複数の種類が混交した状態で採掘されることが多く、また、希土類元素のうちランタノイド系列の諸元素は原子番号が隣接している。非特許文献1の小型EPMAでは、このようなランタノイド系列の元素を対象とした場合、隣接希土類元素のピークを十分に分離することができず、これらを個別に正確に同定・定量することが困難であった。 Rare earth elements are often mined in a mixed state, and among the rare earth elements, lanthanoid series elements are adjacent in atomic number. In the small EPMA of Non-Patent Document 1, when such lanthanoid series elements are targeted, the peaks of adjacent rare earth elements cannot be sufficiently separated, and it is difficult to accurately identify and quantify these individually. Met.
 本発明が解決しようとする課題は、携帯性に優れると共に、ランタノイド系列の諸希土類元素についても個別に分離し、正しく同定及び定量することが可能な元素分析装置を提供することである。 The problem to be solved by the present invention is to provide an elemental analyzer that is excellent in portability and that can separate and correctly identify various lanthanoid rare earth elements.
 上記課題を解決するために成された本発明に係る元素分析装置は、
 真空容器と、
 前記真空容器内に配置された焦電結晶と、
 前記真空容器内に、試料を載置する面が前記焦電結晶の一方の面に対向すると共に、該焦電結晶の他方の面と電気的に接続され、かつ、接地されるように配置された導電性の試料台と、
 前記焦電結晶を加熱又は冷却するペルチェ素子と、
 前記試料台に載置した試料から放出される特性X線のスペクトルを検出する特性X線スペクトル検出手段と、
 該試料から放出される蛍光のスペクトルを検出する蛍光スペクトル検出手段と、
 を有することを特徴とする。
An elemental analyzer according to the present invention, which has been made to solve the above problems,
A vacuum vessel;
A pyroelectric crystal disposed in the vacuum vessel;
In the vacuum vessel, the surface on which the sample is placed is opposed to one surface of the pyroelectric crystal, and is disposed so as to be electrically connected to the other surface of the pyroelectric crystal and grounded. Conductive sample stage,
A Peltier element for heating or cooling the pyroelectric crystal;
Characteristic X-ray spectrum detection means for detecting a spectrum of characteristic X-rays emitted from the sample placed on the sample stage;
Fluorescence spectrum detection means for detecting a spectrum of fluorescence emitted from the sample;
It is characterized by having.
 なお、ここで言う「対向」とは、2つの面が正対する状態だけではなく、2つの面が傾いて向き合った状態であっても良い。 It should be noted that the term “opposite” as used herein is not limited to the state where the two surfaces are facing each other, but may be the state where the two surfaces are inclined and face each other.
 本発明者は、特性X線のスペクトルでは重なってしまう希土類元素のピークを分離するために、カソードルミネッセンス分析を併用することを想到した。カソードルミネッセンス分析とは、試料に電子を照射した際に試料から放出される蛍光のスペクトルから、試料に含まれる元素を同定する方法である。
 特性X線による分析では、原子の内側の軌道の電子が入射電子により弾き出され、その軌道に外側の軌道の電子が落ちることにより生じる特性X線を用いるのに対し、カソードルミネッセンス分析では、入射電子により原子の外殻電子(価電子帯やアクセプター準位にある電子)が励起され、生成された電子正孔対が再結合することにより生じる光を用いる。このように、特性X線による分析とカソードルミネッセンス分析では原理が異なるため、特性X線のスペクトルでは分離できなかった希土類元素のピークを、蛍光スペクトルでは分離して同定できる可能性がある。
The inventor of the present invention has conceived that cathodoluminescence analysis is used in combination in order to separate rare earth element peaks that overlap in the characteristic X-ray spectrum. The cathodoluminescence analysis is a method for identifying elements contained in a sample from the spectrum of fluorescence emitted from the sample when the sample is irradiated with electrons.
In the analysis by the characteristic X-ray, the electrons in the inner orbit of the atom are ejected by the incident electrons, and the characteristic X-ray generated by the electrons in the outer orbit dropping into the orbit is used. Is used to excite the outer shell electrons (electrons in the valence band or acceptor level) of the atom, and light generated by recombination of the generated electron-hole pairs is used. As described above, since the principle is different between the characteristic X-ray analysis and the cathodoluminescence analysis, there is a possibility that the rare earth element peak that cannot be separated in the characteristic X-ray spectrum can be separated and identified in the fluorescence spectrum.
 本発明者は、走査電子顕微鏡(SEM)の電子線(電子線の照射には通常のタングステン電子銃を用いる)を利用したカソードルミネッセンス分析により、特性X線のスペクトルでは分離できない希土類元素の検出が可能か否かについて予備実験を行った。そして、これが可能であることを確認し、焦電結晶とペルチェ素子を電子線の生成手段とする、特性X線による分析とカソードルミネッセンス分析の両方が可能な、本発明に係る元素分析装置を作製した。 The present inventor detected rare earth elements that could not be separated in the characteristic X-ray spectrum by cathodoluminescence analysis using an electron beam of a scanning electron microscope (SEM) (a normal tungsten electron gun was used for electron beam irradiation). Preliminary experiments were conducted to see if this was possible. Then, it was confirmed that this was possible, and an elemental analyzer according to the present invention capable of both characteristic X-ray analysis and cathodoluminescence analysis using a pyroelectric crystal and a Peltier element as electron beam generation means was produced. did.
 前記特性X線スペクトル検出手段には、高感度であることと装置の小型化のため、エネルギー分散型X線検出器(EDX)を用いることが望ましいが、波長分散型X線検出器(WDX)を用いても良い。また、蛍光スペクトル検出手段には、ポリクロメータ等の分光器を用いることができる。 For the characteristic X-ray spectrum detection means, it is desirable to use an energy dispersive X-ray detector (EDX) for high sensitivity and miniaturization of the apparatus, but a wavelength dispersive X-ray detector (WDX). May be used. A spectroscope such as a polychromator can be used as the fluorescence spectrum detecting means.
 なお、電子の照射によって試料から放出される蛍光の強度は、該照射により試料から放出される特性X線の強度に比べて弱い。また、分光器の検出感度は、一般的にEDXに比べて低い。そのため、前記蛍光を効率良く集光するために、試料面の近くに光ファイバの入力端を配置し、試料表面の直近で採取した蛍光を該光ファイバにより後段の分光器に送るという構成を採ることが望ましい。 Note that the intensity of fluorescence emitted from the sample by electron irradiation is weaker than the intensity of characteristic X-rays emitted from the sample by the irradiation. Further, the detection sensitivity of the spectrometer is generally lower than that of EDX. For this reason, in order to efficiently collect the fluorescence, an input end of an optical fiber is arranged near the sample surface, and the fluorescence collected immediately near the sample surface is sent to the spectroscope at the subsequent stage through the optical fiber. It is desirable.
 また、試料から放出される蛍光の強度は、試料に照射される電子の単位時間当たりの数(照射電流量)を増やすことによって高めることができる。本発明に係る元素分析装置では、このため、前記焦電結晶の試料に対向する側の面に導電性の針を設けることが望ましい。これにより、焦電結晶と試料の間に生じる電流は、針と試料の該針に対向する箇所を結ぶ直線において最も経路が短くなるため抵抗が小さくなり、該直線上に集中して流れる。そのため、試料への照射電流量が局所的に増加する。前記針の材料には、良導電性の材料を用いることが望ましく、例えば金、銀を好適に用いることができる。なお、強度等を重視する場合は、タングステンやモリブデン等を用いてもよい。 Also, the intensity of the fluorescence emitted from the sample can be increased by increasing the number of electrons irradiated to the sample per unit time (irradiation current amount). In the elemental analyzer according to the present invention, therefore, it is desirable to provide a conductive needle on the surface facing the pyroelectric crystal sample. As a result, the current generated between the pyroelectric crystal and the sample has the shortest path along the straight line connecting the needle and the portion of the sample facing the needle, so that the resistance is reduced and flows in a concentrated manner on the straight line. Therefore, the amount of irradiation current to the sample increases locally. As the material of the needle, it is desirable to use a highly conductive material, for example, gold or silver can be suitably used. Note that tungsten, molybdenum, or the like may be used when importance is attached to strength or the like.
 本発明に係る元素分析装置は、非特許文献1のEPMAと同様に焦電結晶とペルチェ素子を用いる構成であり、小型化が可能で、且つ乾電池程度の小型のバッテリーで駆動できるため、携帯性に優れている。また、カソードルミネッセンス分析を併用するため、特性X線による分析だけでは区別できなかったランタノイド系列の諸希土類元素についても個別に分離し、正しく同定及び定量することが可能となる。 The elemental analyzer according to the present invention has a configuration using a pyroelectric crystal and a Peltier element, similar to the EPMA of Non-Patent Document 1, and can be downsized and driven by a small battery such as a dry cell. Is excellent. In addition, since cathodoluminescence analysis is used in combination, lanthanoid series rare earth elements that could not be distinguished only by analysis by characteristic X-rays can be individually separated and correctly identified and quantified.
本発明に係る元素分析装置の一実施例の概略構成図。The schematic block diagram of one Example of the elemental analyzer which concerns on this invention. 本実施例の元素分析装置により得られた、ジルコン粉末に対する特性X線スペクトルと蛍光スペクトルを示すグラフ。The graph which shows the characteristic X-ray spectrum and fluorescence spectrum with respect to the zircon powder obtained by the elemental analyzer of a present Example. 本実施例の元素分析装置により得られた、混合粉末に対する特性X線スペクトルと蛍光スペクトルを示すグラフ。The graph which shows the characteristic X-ray spectrum and fluorescence spectrum with respect to mixed powder obtained by the elemental analyzer of a present Example. 第1の変形例の元素分析装置の模式図(a)、及び第2の変形例の元素分析装置の模式図(b)。The schematic diagram (a) of the elemental analyzer of a 1st modification, The schematic diagram (b) of the elemental analyzer of a 2nd modification. 焦電結晶の温度が変化することにより、該焦電結晶が帯電する原理を示す説明図。Explanatory drawing which shows the principle which this pyroelectric crystal charges by changing the temperature of a pyroelectric crystal. 焦電結晶により試料台上の試料に電子が照射される原理を示す説明図。Explanatory drawing which shows the principle by which a sample on a sample stand is irradiated with electrons by a pyroelectric crystal. 第3の変形例の元素分析装置の模式図。The schematic diagram of the elemental analyzer of a 3rd modification.
 本発明に係る元素分析装置の一実施例を図面を参照して説明する。図1は、本実施例の元素分析装置の概略構成図である。なお、以下では図中の+z方向を「上」、-z方向を「下」とする。 An embodiment of an elemental analyzer according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an elemental analyzer according to the present embodiment. In the following, the + z direction in the figure is “up” and the −z direction is “down”.
 図1の元素分析装置は、ステンレス製の真空容器10と、LiTaOの単結晶から成る焦電結晶11と、焦電結晶11を加熱/冷却するためのペルチェ素子12と、試料Sを載置する真鍮製の試料台13と、試料Sに電子を照射することにより、試料Sから放出される特性X線のスペクトルを検出するエネルギー分散型X線検出器(EDX)14と、前記電子により試料Sから放出される蛍光のスペクトルを検出するポリクロメータ(分光器)15と、を有する。 1 includes a stainless steel vacuum vessel 10, a pyroelectric crystal 11 made of a single crystal of LiTaO 3 , a Peltier element 12 for heating / cooling the pyroelectric crystal 11, and a sample S. A sample table 13 made of brass, an energy dispersive X-ray detector (EDX) 14 that detects the spectrum of characteristic X-rays emitted from the sample S by irradiating the sample S with electrons, and the sample by the electrons And a polychromator (spectrometer) 15 for detecting the spectrum of fluorescence emitted from S.
 真空容器10は、ロータリーポンプ(図示せず)が接続された銅製の排気管16を備えている。この排気管16の先端上面には、ペルチェ素子12の下面が接合されている。ペルチェ素子12の上面には、焦電結晶11の下面が接合されている。ペルチェ素子12は、電源部18から電力が供給されることにより、焦電結晶11を加熱/冷却する。焦電結晶11の上面は+z面(正に分極する面)、下面は-z面(負に分極する面)であり、ペルチェ素子12が焦電結晶11を加熱することにより、図5に示すように、焦電結晶11の上面が負に帯電し、下面が正に帯電する。 The vacuum vessel 10 includes a copper exhaust pipe 16 to which a rotary pump (not shown) is connected. The lower surface of the Peltier element 12 is joined to the upper surface of the distal end of the exhaust pipe 16. The lower surface of the pyroelectric crystal 11 is bonded to the upper surface of the Peltier element 12. The Peltier element 12 heats / cools the pyroelectric crystal 11 when power is supplied from the power supply unit 18. The upper surface of the pyroelectric crystal 11 is a + z plane (a surface that is positively polarized), and the lower surface is a −z plane (a surface that is negatively polarized). Thus, the upper surface of the pyroelectric crystal 11 is negatively charged and the lower surface is positively charged.
 銅製のロッド17は真空容器10の上面から挿抜可能であり、そのロッド17の先端下面には試料台13の底面が接合されている。試料台13の試料載置面は、該試料台13の底面に対して45°の勾配を持つ。エネルギー分散型X線検出器(EDX)14はこの試料載置面の正面に来るように配置されており、ポリクロメータ(分光器)15はこの試料載置面に対して更に45°傾くように(従って、焦電結晶11の表面に対して90°回転した位置に)設けられている。試料台13に試料Sを載置する際には、ロッド17を真空容器10から抜き、試料台13の試料載置面に貼られた両面テープ上に試料Sを固定する。そして、試料台13を下に向け、ロッド17を真空容器10内に挿入する。本実施例に係る元素分析装置ではこのような配置であるため、図1に示すように、試料台13の試料載置面に平板試料Sを載置したとき、試料面から放出されるX線はエネルギー分散型X線検出器(EDX)14に正面から入射し、ポリクロメータ(分光器)15にも多くの蛍光が入射する。真空容器10のロッド17挿入口はOリング等により気密にシールされる(図示せず)。 The copper rod 17 can be inserted and removed from the upper surface of the vacuum vessel 10, and the bottom surface of the sample stage 13 is joined to the lower surface of the tip of the rod 17. The sample mounting surface of the sample table 13 has a 45 ° gradient with respect to the bottom surface of the sample table 13. The energy dispersive X-ray detector (EDX) 14 is disposed so as to be in front of the sample mounting surface, and the polychromator (spectrometer) 15 is further inclined by 45 ° with respect to the sample mounting surface. (Thus, at a position rotated by 90 ° with respect to the surface of the pyroelectric crystal 11). When placing the sample S on the sample stage 13, the rod 17 is removed from the vacuum vessel 10, and the sample S is fixed on a double-sided tape affixed to the sample placement surface of the sample stage 13. Then, the sample stage 13 is directed downward, and the rod 17 is inserted into the vacuum vessel 10. Since the elemental analyzer according to the present embodiment has such an arrangement, as shown in FIG. 1, when the flat sample S is placed on the sample placement surface of the sample stage 13, X-rays emitted from the sample surface Enters the energy dispersive X-ray detector (EDX) 14 from the front, and a large amount of fluorescence also enters the polychromator (spectrometer) 15. The insertion port of the rod 17 of the vacuum vessel 10 is hermetically sealed by an O-ring or the like (not shown).
 焦電結晶11の下面は、排気管16に導線等によって電気的に接続されている。また、試料台13の底面はロッド17に接合されていることにより、電気的に接続されている。さらに、排気管16とロッド17は、導線等により電気的に接続され、接地されている。これにより、試料台13と焦電結晶11の下面は電気的に接続され、同電位(接地電位)となる。なお、真空容器10が導電性の材料で構成されている場合、該真空容器10を導線の代わりに用いることもできる。 The lower surface of the pyroelectric crystal 11 is electrically connected to the exhaust pipe 16 by a conducting wire or the like. The bottom surface of the sample stage 13 is electrically connected by being joined to the rod 17. Further, the exhaust pipe 16 and the rod 17 are electrically connected by a conducting wire or the like and grounded. As a result, the sample stage 13 and the lower surface of the pyroelectric crystal 11 are electrically connected to have the same potential (ground potential). In addition, when the vacuum vessel 10 is comprised with an electroconductive material, this vacuum vessel 10 can also be used instead of conducting wire.
 電源部18は、ペルチェ素子12に電流を流す機能と共に、ペルチェ素子12に流す電流の向きを周期的に切り替える機能を有する。これにより、ペルチェ素子12の上面は周期的に加熱と冷却を繰り返す。それに伴い、ペルチェ素子12の上面に接合された焦電結晶11は周期的に加熱され、冷却される。 The power supply unit 18 has a function of periodically switching the direction of a current flowing through the Peltier element 12 as well as a function of flowing a current through the Peltier element 12. Thereby, the upper surface of the Peltier element 12 repeats heating and cooling periodically. Accordingly, the pyroelectric crystal 11 bonded to the upper surface of the Peltier element 12 is periodically heated and cooled.
 試料台13に試料Sを載置し、ロッド17を真空容器10に挿入した後、図示しないロータリーポンプにより排気管16を通して真空容器10内の排気を行う。真空容器10内の排気は、内部圧力が数Pa程度(例えば1Pa~2Pa)になるまで行う。この状態で焦電結晶11が加熱されると、試料台13から焦電結晶11に向かう方向に電場が形成される。これにより、真空中の浮遊電子が試料台13に向かって加速され、試料台13上に固定された試料Sに衝突し、試料Sから特性X線と蛍光が放出される。
 しかし、焦電結晶はいつまでも加熱し続ける訳にはいかない。測定データの感度を高めるためには、一旦、焦電結晶を冷却し、分極を増加させてから、再び焦電結晶を加熱する、という操作を繰り返し、電子を複数回照射すれば良い。なお、焦電結晶を冷却し、分極を増加させた際には、浮遊電子は焦電結晶11の方に加速される。
After placing the sample S on the sample stage 13 and inserting the rod 17 into the vacuum vessel 10, the inside of the vacuum vessel 10 is exhausted through the exhaust pipe 16 by a rotary pump (not shown). The vacuum chamber 10 is evacuated until the internal pressure reaches about several Pa (for example, 1 Pa to 2 Pa). When the pyroelectric crystal 11 is heated in this state, an electric field is formed in the direction from the sample stage 13 toward the pyroelectric crystal 11. Thereby, stray electrons in the vacuum are accelerated toward the sample stage 13 and collide with the sample S fixed on the sample stage 13, and characteristic X-rays and fluorescence are emitted from the sample S.
However, pyroelectric crystals cannot be heated indefinitely. In order to increase the sensitivity of the measurement data, the operation of once cooling the pyroelectric crystal, increasing the polarization, and then heating the pyroelectric crystal again is repeated to irradiate the electrons a plurality of times. When the pyroelectric crystal is cooled and the polarization is increased, the floating electrons are accelerated toward the pyroelectric crystal 11.
 ポリクロメータ15の検出感度は、一般的にEDX14に比べて低い。そのため、試料面の付近に光ファイバ19の入力端を配置することにより、試料Sから放出された蛍光を該試料Sの直近で効率良く採取する。採取された蛍光は光ファイバ19によってポリクロメータ15に送られる。また、EDX14は、光ファイバ19によって特性X線が妨げられない方向に、X線の入射口を設ける。 The detection sensitivity of the polychromator 15 is generally lower than that of the EDX14. Therefore, by arranging the input end of the optical fiber 19 in the vicinity of the sample surface, the fluorescence emitted from the sample S is efficiently collected in the immediate vicinity of the sample S. The collected fluorescence is sent to the polychromator 15 through the optical fiber 19. Further, the EDX 14 has an X-ray entrance in a direction in which the characteristic X-ray is not hindered by the optical fiber 19.
 図2のグラフは、微量成分として希土類元素等を含むジルコンの粉末を試料として用いた場合の本実施例の元素分析装置により得られた特性X線スペクトル(a)と、蛍光スペクトル(b)である。
 図2(a)の特性X線スペクトルでは、Cr、Fe、Ni、Cu、Znのピークが現れていることは分かるものの、希土類元素のピークは微量であるため殆ど見えない(図中のLaLα…LuLαは希土類元素の特性X線のピーク位置を示す)。そのため、図2(a)の特性X線スペクトルだけでは、希土類元素が含まれていないようにも判断されてしまう。これに対し、図2(b)に示す蛍光スペクトルでは、Sm、Tb、Dy、Erのピークが、互いに分離して現れている。そのため、このジルコン粉末には、希土類元素として少なくともSm、Tb、Dy、Erが含まれていることが分かる。
The graph of FIG. 2 shows a characteristic X-ray spectrum (a) and a fluorescence spectrum (b) obtained by the elemental analysis apparatus of this example when a zircon powder containing rare earth elements or the like as a trace component is used as a sample. is there.
In the characteristic X-ray spectrum of FIG. 2 (a), it can be seen that peaks of Cr, Fe, Ni, Cu, and Zn appear, but the rare-earth element peaks are insignificant and are almost invisible (LaLα in the figure). LuLα represents the peak position of the characteristic X-ray of the rare earth element). For this reason, it is determined that the rare earth element is not included only by the characteristic X-ray spectrum of FIG. In contrast, in the fluorescence spectrum shown in FIG. 2 (b), peaks of Sm, Tb, Dy, and Er appear separately from each other. Therefore, it can be seen that this zircon powder contains at least Sm, Tb, Dy, and Er as rare earth elements.
 図3はNd、Sm、Gd、Dy、Er、Ybの酸化物の混合粉末を試料として用いた場合の本実施例の元素分析装置により得られた特性X線スペクトル(a)と、蛍光スペクトル(b)である。
 図3(a)の特性X線スペクトルでは、GdLαとErLβのピークは他の元素から分離して現れている。そのため、この試料には少なくともGdとErが含まれていることが、図3(a)の特性X線スペクトルより分かる。
 一方、GdとEr以外のピークについては、複数の元素を含む可能性があるため、この特性X線スペクトルのみからでは、これらを分離して同定することが難しい。例えば5.4keV付近のピークでは、CrとNdとSmのいずれか又は全てが含まれている可能性があるが、このピークだけでは、これらのいずれか又は全てが含まれているかは分からない。これに対し、図3(b)の蛍光スペクトルでは、Smのピークが分離して現れている。そのため、この試料には少なくともSmが含まれていることが、図3(b)の蛍光スペクトルより分かる。
 同様に、図3(a)の特性X線スペクトルでは、DyLαとFeのピークが重なるため、この試料にDyが含まれているか分からないが、図3(b)の蛍光スペクトルにおけるDyのピークから、この試料にDyが含まれていることが分かる。
 このように、図3(a)の特性X線スペクトルからGdとErが含まれていることが、図3(b)の蛍光スペクトルからSm、Dyが含まれていることが、それぞれ分かる。
FIG. 3 shows a characteristic X-ray spectrum (a) obtained by the elemental analyzer of this example when a mixed powder of oxides of Nd, Sm, Gd, Dy, Er, and Yb was used as a sample, and a fluorescence spectrum ( b).
In the characteristic X-ray spectrum of FIG. 3A, the peaks of GdLα and ErLβ appear separately from other elements. Therefore, it can be seen from the characteristic X-ray spectrum of FIG. 3A that this sample contains at least Gd and Er.
On the other hand, since peaks other than Gd and Er may contain a plurality of elements, it is difficult to separate and identify them only from this characteristic X-ray spectrum. For example, in the peak around 5.4 keV, any or all of Cr, Nd, and Sm may be included, but it is not known whether any or all of these are included only by this peak. In contrast, in the fluorescence spectrum of FIG. 3 (b), the peak of Sm appears separately. Therefore, it can be seen from the fluorescence spectrum of FIG. 3B that this sample contains at least Sm.
Similarly, in the characteristic X-ray spectrum of FIG. 3 (a), since the DyLα and Fe peaks overlap, it is not known whether this sample contains Dy, but from the Dy peak in the fluorescence spectrum of FIG. 3 (b). It can be seen that this sample contains Dy.
Thus, it can be seen from the characteristic X-ray spectrum of FIG. 3A that Gd and Er are included, and from the fluorescence spectrum of FIG. 3B that Sm and Dy are included.
 なお、上記のように、電子の照射によって試料から放出される蛍光の強度は、該照射により試料から放出される特性X線の強度に比べて弱い。また、ポリクロメータ15の検出感度は、一般的にEDX14に比べて低い。そのため、試料Sから放出される蛍光を精度良く測定するには、試料Sへの照射電流量を増やし、試料Sからより強く蛍光を生じさせることが望ましい。本発明に係る元素分析装置では、照射電流量を局所的に増やすために、第1の変形例として、焦電結晶11の上面(+z面)に導電性の針20を接合する構成を用いることができる(図4(a))。このように、導電性の針20を焦電結晶11の(+z面)に設けることにより、焦電結晶11と試料S(より正確には試料台13)の間に生じる電流は、針20と該針20に対向する試料の箇所を結ぶ直線において最も経路が短くなるため抵抗が小さくなり、該直線上に集中して流れる。そのため、電子の軌道が図4(a)中の矢印で示すように集中し、試料Sへの照射電流量が局所的に増加する。針20の材料には、金や銀を好適に用いることができる。なお、試料台13上の試料Sから放出される特性X線及び蛍光は、試料載置面から±45°方向に設けたEDX及び分光器により検出する。 As described above, the intensity of the fluorescence emitted from the sample by electron irradiation is weaker than the intensity of the characteristic X-ray emitted from the sample by the irradiation. Further, the detection sensitivity of the polychromator 15 is generally lower than that of the EDX 14. Therefore, in order to accurately measure the fluorescence emitted from the sample S, it is desirable to increase the amount of irradiation current to the sample S and cause the sample S to generate fluorescence more strongly. In the elemental analysis apparatus according to the present invention, in order to locally increase the amount of irradiation current, a configuration in which the conductive needle 20 is bonded to the upper surface (+ z plane) of the pyroelectric crystal 11 is used as a first modification. (FIG. 4 (a)). Thus, by providing the conductive needle 20 on the (+ z plane) of the pyroelectric crystal 11, the current generated between the pyroelectric crystal 11 and the sample S (more precisely, the sample stage 13) Since the path is the shortest in the straight line connecting the sample locations facing the needle 20, the resistance is reduced, and the flow is concentrated on the straight line. Therefore, the electron trajectory concentrates as shown by the arrows in FIG. 4A, and the amount of irradiation current to the sample S increases locally. Gold or silver can be suitably used as the material of the needle 20. The characteristic X-rays and fluorescence emitted from the sample S on the sample stage 13 are detected by EDX and a spectroscope provided in a direction of ± 45 ° from the sample placement surface.
 また、第2の変形例として、図4(b)に示すように、試料台13の試料載置面を凸状に湾曲させても良い。これにより、焦電結晶11と試料S(より正確には試料台13)の間に生じる電流は、焦電結晶11と試料台13の焦電結晶11に最も近い点(最近接点)を結ぶ直線において最も経路が短くなるため抵抗が小さくなり、該直線上に集中して流れる。そのため、電子の軌道が図4(b)中の矢印で示すように集中し、試料Sへの照射電流量が局所的に増加する。試料S(例えば試料Sの粉体)は試料台13の最近接点近傍に固定する。試料台13上の試料Sから放出される特性X線及び蛍光は、試料載置面から±45°方向に設けたEDX及び分光器により検出する。この第2の変形例に、さらに第1の変形例で用いた針を付加してもよい。 As a second modification, as shown in FIG. 4B, the sample placement surface of the sample stage 13 may be curved in a convex shape. As a result, the current generated between the pyroelectric crystal 11 and the sample S (more precisely, the sample stage 13) is a straight line connecting the nearest point (nearest contact point) between the pyroelectric crystal 11 and the pyroelectric crystal 11 of the sample stage 13. Since the path becomes the shortest in (1), the resistance is reduced, and the flow is concentrated on the straight line. Therefore, the electron trajectory is concentrated as shown by the arrows in FIG. 4B, and the amount of irradiation current to the sample S is locally increased. The sample S (for example, the powder of the sample S) is fixed near the closest point of the sample stage 13. Characteristic X-rays and fluorescence emitted from the sample S on the sample stage 13 are detected by EDX and a spectroscope provided in a direction of ± 45 ° from the sample placement surface. The needle used in the first modification may be further added to the second modification.
 第3の変形例として、図7に示すように、焦電結晶と試料台の間に電子レンズ21を設けても良い。電子レンズ21は、電子顕微鏡等において電子を集束させるために用いられているものであり、電場を利用する静電レンズ、磁場を利用する磁界レンズがある。図7には、電子レンズ21として、ドーナツ状の永久磁石を用いる例を示している。前記磁石は永久磁石に限られず、電磁石を用いても良い。これにより、加速された浮遊電子は試料台13上に固定された試料S上の点Pに集中して衝突する。そのため、試料Sへの照射電流量が局所的に増加する。この変形例においても、第1及び/又は第2の変形例で用いた針を付加してもよい。 As a third modification, an electron lens 21 may be provided between the pyroelectric crystal and the sample stage as shown in FIG. The electron lens 21 is used for focusing electrons in an electron microscope or the like, and includes an electrostatic lens using an electric field and a magnetic lens using a magnetic field. FIG. 7 shows an example in which a donut-shaped permanent magnet is used as the electron lens 21. The magnet is not limited to a permanent magnet, and an electromagnet may be used. Thereby, the accelerated stray electrons are concentrated and collide with the point P on the sample S fixed on the sample stage 13. Therefore, the irradiation current amount to the sample S increases locally. Also in this modification, the needle used in the first and / or second modification may be added.
10…真空容器
11…焦電結晶
12…ペルチェ素子
13…試料台
14…EDX
15…ポリクロメータ
16…排気管
17…ロッド
18…電源部
19…光ファイバ
20…針
21…電子レンズ
DESCRIPTION OF SYMBOLS 10 ... Vacuum container 11 ... Pyroelectric crystal 12 ... Peltier device 13 ... Sample stand 14 ... EDX
DESCRIPTION OF SYMBOLS 15 ... Polychromator 16 ... Exhaust pipe 17 ... Rod 18 ... Power supply part 19 ... Optical fiber 20 ... Needle 21 ... Electron lens

Claims (5)

  1.  真空容器と、
     前記真空容器内に配置された焦電結晶と、
     前記真空容器内に、試料を載置する面が前記焦電結晶の一方の面に対向すると共に、該焦電結晶の他方の面と電気的に接続され、かつ、接地されるように配置された導電性の試料台と、
     前記焦電結晶を加熱又は冷却するペルチェ素子と、
     前記試料台に載置した試料から放出される特性X線のスペクトルを検出する特性X線スペクトル検出手段と、
     該試料から放出される蛍光のスペクトルを検出する蛍光スペクトル検出手段と、
     を有することを特徴とする元素分析装置。
    A vacuum vessel;
    A pyroelectric crystal disposed in the vacuum vessel;
    In the vacuum vessel, the surface on which the sample is placed is opposed to one surface of the pyroelectric crystal, and is disposed so as to be electrically connected to the other surface of the pyroelectric crystal and grounded. Conductive sample stage,
    A Peltier element for heating or cooling the pyroelectric crystal;
    Characteristic X-ray spectrum detection means for detecting a spectrum of characteristic X-rays emitted from the sample placed on the sample stage;
    Fluorescence spectrum detection means for detecting a spectrum of fluorescence emitted from the sample;
    An elemental analysis apparatus characterized by comprising:
  2.  前記焦電結晶の前記試料に対向する側の面に導電性の針が設けられていることを特徴とする請求項1に記載の元素分析装置。 The elemental analyzer according to claim 1, wherein a conductive needle is provided on a surface of the pyroelectric crystal facing the sample.
  3.  前記試料台の試料載置面が、凸状に湾曲していることを特徴とする請求項1又は2に記載の元素分析装置。 3. The element analyzer according to claim 1, wherein the sample mounting surface of the sample stage is curved in a convex shape.
  4.  前記試料の表面付近に光ファイバの入力端が配置され、該試料から放出された蛍光を該光ファイバにより前記蛍光スペクトル検出手段に送ることを特徴とする請求項1~3のいずれかに記載の元素分析装置。 The input end of an optical fiber is disposed in the vicinity of the surface of the sample, and fluorescence emitted from the sample is sent to the fluorescence spectrum detecting means through the optical fiber. Elemental analyzer.
  5.  前記焦電結晶の前記試料に対向する側の面と前記試料台の間に電子レンズが設けられていることを特徴とする請求項1~4のいずれかに記載の元素分析装置。 The elemental analyzer according to any one of claims 1 to 4, wherein an electron lens is provided between a surface of the pyroelectric crystal facing the sample and the sample stage.
PCT/JP2013/070066 2012-07-25 2013-07-24 Element analyzing device WO2014017544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526977A JPWO2014017544A1 (en) 2012-07-25 2013-07-24 Elemental analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012164968 2012-07-25
JP2012-164968 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017544A1 true WO2014017544A1 (en) 2014-01-30

Family

ID=49997353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070066 WO2014017544A1 (en) 2012-07-25 2013-07-24 Element analyzing device

Country Status (2)

Country Link
JP (1) JPWO2014017544A1 (en)
WO (1) WO2014017544A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712296B2 (en) 2016-12-23 2020-07-14 Orion Engineering Limited Handheld material analyser
CN113092374A (en) * 2021-04-12 2021-07-09 青岛科技大学 Small-sized vacuum photoelectric test system
CN114295664A (en) * 2021-12-16 2022-04-08 中国煤炭地质总局勘查研究总院 Method for detecting rare earth elements in minerals by using cathodoluminescence

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461876B (en) * 2019-09-06 2022-10-28 余姚舜宇智能光学技术有限公司 Method and system for detecting parameters of sample to be detected based on energy dispersion fluorescence X spectrometer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195336A (en) * 1985-02-25 1986-08-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor evaluation device and semiconductor evaluation method
JPH0712763A (en) * 1993-06-23 1995-01-17 Fine Ceramics Center Surface analysis method and surface analysis device
JPH07248217A (en) * 1994-03-14 1995-09-26 Topcon Corp Analyzing apparatus for sample
JPH11273609A (en) * 1998-03-23 1999-10-08 Hitachi Ltd Signal switching device in cathode luminescence image observing device
JP2001272342A (en) * 2000-03-27 2001-10-05 Kasei Optonix Co Ltd Method for evaluating characteristic of thin film
JP2003139703A (en) * 2001-10-31 2003-05-14 Unisoku Co Ltd Cathode luminescence specimen holder and cathode luminescence spectroscopic analyzer
JP2011086425A (en) * 2009-10-14 2011-04-28 Fujita Gakuen X-ray generating device, and composite apparatus using the same
JP2011133446A (en) * 2009-12-25 2011-07-07 Mitsubishi Electric Corp Defect inspection device and defect inspection method of semiconductor substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195336A (en) * 1985-02-25 1986-08-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor evaluation device and semiconductor evaluation method
JPH0712763A (en) * 1993-06-23 1995-01-17 Fine Ceramics Center Surface analysis method and surface analysis device
JPH07248217A (en) * 1994-03-14 1995-09-26 Topcon Corp Analyzing apparatus for sample
JPH11273609A (en) * 1998-03-23 1999-10-08 Hitachi Ltd Signal switching device in cathode luminescence image observing device
JP2001272342A (en) * 2000-03-27 2001-10-05 Kasei Optonix Co Ltd Method for evaluating characteristic of thin film
JP2003139703A (en) * 2001-10-31 2003-05-14 Unisoku Co Ltd Cathode luminescence specimen holder and cathode luminescence spectroscopic analyzer
JP2011086425A (en) * 2009-10-14 2011-04-28 Fujita Gakuen X-ray generating device, and composite apparatus using the same
JP2011133446A (en) * 2009-12-25 2011-07-07 Mitsubishi Electric Corp Defect inspection device and defect inspection method of semiconductor substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUSUMU IMASHUKU ET AL.: "Development of Minaiaturized Electron Probe X-ray Microanalyzer", ANALYTICAL CHEMISTRY, vol. 83, no. 22, 21 October 2011 (2011-10-21), pages 8363 - 8365 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712296B2 (en) 2016-12-23 2020-07-14 Orion Engineering Limited Handheld material analyser
CN113092374A (en) * 2021-04-12 2021-07-09 青岛科技大学 Small-sized vacuum photoelectric test system
CN113092374B (en) * 2021-04-12 2022-11-15 青岛科技大学 Small vacuum photoelectric test system
CN114295664A (en) * 2021-12-16 2022-04-08 中国煤炭地质总局勘查研究总院 Method for detecting rare earth elements in minerals by using cathodoluminescence

Also Published As

Publication number Publication date
JPWO2014017544A1 (en) 2016-07-11

Similar Documents

Publication Publication Date Title
Asvany et al. COLTRAP: a 22-pole ion trapping machine for spectroscopy at 4 K
Vallance et al. Fast sensors for time-of-flight imaging applications
TW200832490A (en) Electrostatic ion trap
WO2014017544A1 (en) Element analyzing device
JP2017511571A (en) Apparatus and method for submicron elemental image analysis by mass spectrometry
Amini et al. Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera
Buchner et al. Time-resolved photoelectron spectroscopy of liquids
JP2016524781A (en) Detection of ions in an ion trap
CN108122730B (en) Time-of-flight charged particle spectroscopy
Goodacre et al. Blurring the boundaries between ion sources: The application of the RILIS inside a FEBIAD type ion source at ISOLDE
King et al. Some new applications and techniques of molecular beams
vd Wense et al. Towards a direct transition energy measurement of the lowest nuclear excitation in 229Th
JP2007521616A (en) Mass spectrometer for both positive and negative particle detection
Zhao et al. Coincidence velocity map imaging using a single detector
Aviv et al. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions
Weber et al. Developments in Penning trap (mass) spectrometry at MLLTRAP: Towards in-trap decay spectroscopy
Li et al. Development of a miniature magnetic sector mass spectrometer
Saha et al. A combined electron-ion spectrometer for studying complete kinematics of molecular dissociation upon shell selective ionization
Marton et al. Electron Absorption Spectrometer Using an Improved Velocity Analyzer
CA3148020C (en) Focal plane detector
Jones et al. Large-area field-ionization detector for the study of Rydberg atoms
WO2014069530A1 (en) Element analysis device
Stallkamp et al. HILITE—A tool to investigate interactions of matter and light
Oura et al. Experimental setups for photoionization of multiply charged ions by synchrotron radiation
Gutierrez et al. Antiproton cloud compression in the ALPHA apparatus at CERN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822464

Country of ref document: EP

Kind code of ref document: A1