WO2014017233A1 - Microbe activity modulator and method of modulating microbe activity - Google Patents

Microbe activity modulator and method of modulating microbe activity Download PDF

Info

Publication number
WO2014017233A1
WO2014017233A1 PCT/JP2013/067131 JP2013067131W WO2014017233A1 WO 2014017233 A1 WO2014017233 A1 WO 2014017233A1 JP 2013067131 W JP2013067131 W JP 2013067131W WO 2014017233 A1 WO2014017233 A1 WO 2014017233A1
Authority
WO
WIPO (PCT)
Prior art keywords
activity
substance
microbial activity
activity regulator
microorganism
Prior art date
Application number
PCT/JP2013/067131
Other languages
French (fr)
Japanese (ja)
Inventor
稲葉 英樹
庸平 橋本
野村 暢彦
雅典 豊福
昴 生田目
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2012/081397 external-priority patent/WO2014016979A1/en
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2014526823A priority Critical patent/JPWO2014017233A1/en
Publication of WO2014017233A1 publication Critical patent/WO2014017233A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a microorganism activity regulator and a method for regulating microorganism activity.
  • an object of the present invention is to provide a microbial activity regulator with improved operability.
  • the present invention also aims to provide a method for regulating the activity of microorganisms.
  • the present invention provides a microbial activity regulator present in a reaction tank of a biological wastewater treatment facility, which comprises a microbial activity regulator and a transport medium.
  • the present invention also provides the use of a composition comprising a microbial activity regulator and a carrier medium for regulating the activity of microorganisms present in a reaction vessel of a biological wastewater treatment facility.
  • the microbial activity regulator regardless of whether the microbial activity regulator is hydrophilic or not, the microbial activity regulator can be easily added to an aqueous system and added to the environment in which the microorganism is present. It can be diffused and delivered to microorganisms, and the activity of microorganisms can be efficiently regulated. For this reason, the operability of the microbial activity regulating substance can be improved, and it is suitable for regulating the activity of microorganisms present in the reaction tank of the biological wastewater treatment facility, particularly microorganisms involved in wastewater treatment.
  • the microbial activity-regulating substance may be one or more substances selected from the group consisting of a signal substance, a nucleic acid that affects prokaryotic activity, and a protein that affects prokaryotic activity.
  • the microbial activity-regulating substance may be N-acyl-L-homoserine lactone. If the microbial activity regulator is N-acyl-L-homoserine lactone, the microbial activity of many types of gram-negative bacteria can be regulated.
  • the transport medium may be one or more substances selected from the group consisting of vesicles, liposomes, micelles, emulsions, peptides, proteins, metal nanoparticles, carbon nanotubes, fullerenes and first polymers.
  • the first polymer as the carrier medium may be in the form of a hydrogel, nanosphere, microsphere, or dendrimer.
  • the microbial activity regulator or use of the present invention can further improve the operability of the microbial activity regulator by including such a transport medium. Moreover, decomposition
  • the above transport medium may be modified with a sugar chain, an antibody, or a second polymer.
  • the second polymer that modifies the carrier medium may be polyethylene glycol, polyethyleneimine, polyamidoamine.
  • the carrier medium is modified with these substances, so that the above-mentioned activity regulator for microorganisms can be selectively delivered to microorganisms having a specific antigen, or the survivability (remaining time) of the activity regulator for microorganisms can be adjusted. It becomes possible to do.
  • the transport medium may be a liposome.
  • the liposome preferably contains egg yolk lecithin or hydrogenated soybean phosphatidylcholine.
  • the liposome may further contain cholesterol.
  • the liposome contains cholesterol
  • the fluidity of the liposome can be adjusted, and the liposome membrane can be more stably present.
  • the liposome contains stearic acid
  • the liposome is negatively charged, the stability of the membrane is lowered, and the microorganism activity regulator tends to be released more easily.
  • the removal efficiency of ammonia in the wastewater is improved.
  • the present invention is also a method for regulating the activity of microorganisms present in a reaction tank of a biological wastewater treatment facility, wherein the above-mentioned microorganism activity regulator is added to the reaction tank of the biological wastewater treatment facility.
  • a method comprising the steps is provided.
  • the activity of microorganisms present in the reaction tank of the biological wastewater treatment facility can be adjusted easily and efficiently. For this reason, the waste water treatment performed in the reaction tank can be promoted or suppressed as necessary.
  • a microbial activity regulator with improved operability can be provided.
  • the method of adjusting the activity of microorganisms can be provided.
  • FIG. 1 is a graph showing the results of promoting the nitrification reaction.
  • FIG. 2 is a graph showing the results of promoting the nitrification reaction.
  • FIG. 3 is a molecular phylogenetic tree showing the results of simple molecular phylogenetic analysis of Paracoccus AS6 strain.
  • FIG. 4 is a graph showing the action of 3oxoC12-HSL when liposomes are used.
  • FIG. 5 is a graph showing the action of 3oxoC12-HSL when the liposome composition is changed.
  • FIG. 6 is a schematic diagram showing a state in which the microbial activity-regulating substance is conveyed by vesicles.
  • FIG. 1 is a graph showing the results of promoting the nitrification reaction.
  • FIG. 2 is a graph showing the results of promoting the nitrification reaction.
  • FIG. 3 is a molecular phylogenetic tree showing the results of simple molecular phylog
  • FIG. 7 is a schematic diagram showing a state in which a microorganism activity regulator is transported by micelles.
  • FIG. 8 is a schematic diagram showing a state in which the activity regulating substance for microorganisms is carried by a protein.
  • FIG. 9 is a schematic diagram showing a state in which the activity regulating substance for microorganisms is transported by metal nanoparticles.
  • FIG. 10 is a schematic diagram showing a state in which a microorganism activity regulator is transported by carbon nanotubes.
  • FIG. 11 is a schematic diagram showing a state in which a microorganism activity regulator is transported by fullerene.
  • FIG. 12 is a schematic diagram showing a state in which the microorganism activity regulator is transported by the first polymer.
  • FIG. 13 is a schematic diagram showing a state in which a microorganism activity-regulating substance is transported by a hydrogel.
  • FIG. 14 is a schematic diagram showing a state in which a microorganism activity regulator is transported by nanospheres.
  • FIG. 15 is a schematic diagram showing a state in which a microorganism activity regulator is transported by a dendrimer.
  • FIG. 16 is a schematic diagram of a transport medium according to an embodiment of the present invention.
  • FIG. 17 is a schematic view of a transport medium according to another embodiment of the present invention.
  • FIG. 18 is a schematic view of a transport medium according to still another embodiment of the present invention.
  • FIG. 19 is a schematic configuration diagram illustrating a biological wastewater treatment apparatus according to an embodiment of the present invention.
  • FIG. 19 is a schematic configuration diagram illustrating a biological wastewater treatment apparatus according to an embodiment of the present invention.
  • FIG. 20 is a schematic configuration diagram illustrating a biological wastewater treatment apparatus according to another embodiment of the present invention.
  • FIG. 21 is a schematic configuration diagram illustrating a biological wastewater treatment apparatus according to still another embodiment of the present invention.
  • FIG. 22 is a schematic configuration diagram illustrating a biological wastewater treatment apparatus according to still another embodiment of the present invention.
  • N-acyl-L-homoserine lactone (AI1: autoinducer 1); 4,5-dihydroxy-2,3-pentanedione (AI2: autoinducer 2); HHQ (2-alkyl-4 -Quinolones), quinolones and quinolines such as PQS (2-alkyl-3-hydroxy-4-quinolones); indoles; peptides; cyclic dipeptides; diketopiperazines and the like.
  • N-acyl-L-homoserine lactone examples include N-butanoyl-L-homoserine lactone, N-3-oxobutanoyl-L-homoserine lactone, N-3-hydroxybutanoyl-L-homoserine lactone, N- Pentanoyl-L-homoserine lactone, N-3-oxopentanoyl-L-homoserine lactone, N-3-hydroxypentanoyl-L-homoserine lactone, N-hexanoyl-L-homoserine lactone, N-3-oxohexanoyl- L-homoserine lactone, N-3-hydroxyhexanoyl-L-homoserine lactone, N-heptanoyl-L-homoserine lactone, N-3-oxoheptanoyl-L-homoserine lactone, N-3-oxoheptanoy
  • nucleic acids that affect the activity of prokaryotes include enzymes involved in protein synthesis and synthesis inhibition, and DNA and RNA encoding ATP synthase expression. These DNAs are preferably linked downstream of the promoter so that they can be expressed.
  • Nucleic acids that affect the activity of prokaryotes can be obtained by PCR or the like using genomic DNA of prokaryotes such as Escherichia coli and Bacillus as a template. Nucleic acids that affect the activity of prokaryotes are cloned into vectors such as pGEM (Promega), pBluescript (Stratagene), pUC (Takara Bio Inc.), and introduced into Escherichia coli, for example. Can be maintained. Moreover, it can prepare in large quantities from the said E. coli if necessary.
  • Proteins that affect the activity of prokaryotes may be prepared by purification from microorganisms that produce the proteins, for example.
  • an expression vector incorporating a DNA encoding a protein that affects the prokaryotic activity may be expressed in a large amount in a body such as Escherichia coli and purified for preparation.
  • the microorganism activity regulator includes a microorganism activity regulator and a transport medium.
  • the carrier medium may contain a microbial activity-regulating substance, or may form a complex with the microbial activity-regulating substance by a covalent bond or a non-covalent bond.
  • the transport medium is not particularly limited as long as it can form a complex with the microbial activity regulator, and specific examples include vesicles, liposomes, micelles, emulsions, peptides, proteins, metal nanoparticles, carbon nanotubes, fullerenes, 1 polymer and the like. These can be used alone or in combination of two or more. Further, cyclodextrin, cyclophane, calixarene and the like generally used in the field of host-guest chemistry may be used.
  • liposomes When liposomes are used as the transporting medium, liposomes having no charge may be used, or those having a charge may be used. Examples of the charged liposome include a cationic liposome and an anionic liposome.
  • the cationic liposome is a vesicle composed of a lipid bilayer mainly composed of phospholipid and having a positive surface on the surface in contact with the outside world.
  • a lipid bilayer mainly composed of phospholipid and having a positive surface on the surface in contact with the outside world.
  • the phospholipid phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, phosphatidylserine and the like can be used.
  • lipids other than phospholipids such as cholesterol, sugars, proteins and the like can be used.
  • Cationic liposomes are preferred in that the liposome membrane is positively charged and is easily taken up by electrostatic interaction with the negatively charged microbial cell membrane. Cationic liposomes attached to the sludge attract the microorganisms in the sludge and form aggregates. The formation of aggregates brings the physical distance between the cationic liposome and the microorganism closer, increases the probability that the cationic liposome will be fused or biodegraded with the cell membrane of the microorganism, and the microorganism activity regulator is delivered to the microorganism. Efficiency.
  • cationic liposome for example, those used as gene transfer vectors can be used.
  • Cationic liposomes can be obtained by including cationic lipids, cationic polysaccharides and the like in the liposome as constituents of the lipid bilayer.
  • the cationic liposome can contain, for example, a lipid to which a primary amine, secondary amine, tertiary amine or quaternary ammonium cation is bound; a cationic polysaccharide.
  • lipids include N, N-dioleyl-N, N-dimethylammonium chloride (DODAC), N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethyl.
  • Anionic liposomes are vesicles composed of a lipid bilayer mainly composed of phospholipids, and have a negative surface on the surface in contact with the outside world.
  • a lipid bilayer mainly composed of phospholipids
  • the phospholipid phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, phosphatidylserine and the like can be used.
  • lipids other than phospholipids such as cholesterol, sugars, proteins and the like can be used.
  • the liposome may contain lipids other than phospholipids such as cholesterol.
  • lipids other than phospholipids such as cholesterol.
  • the content of lipids other than phospholipids is preferably 50% by mass or less, more preferably 30% by mass or less, based on the mass of the whole liposome, from the viewpoint of adjusting the stability of the liposome membrane.
  • the content is preferably 5 to 20% by mass.
  • Liposomes used as a transport medium may have a plurality of layer structures.
  • a transport medium 1600 shown in FIG. 16 is formed of two layers, an outermost layer 1601 and an inner layer liposome 1602.
  • Inner layer liposome 1602 contains microbial activity regulating substance 1603.
  • the carrier medium 1600 may have a layer structure of three or more layers. In that case, for example, a liposome layer enclosing a microbial activity regulating substance may be formed in the inner layer liposome 1602.
  • Examples of the microbial activity regulating substance 1603 include intercellular information transmission substances (signal substances), nucleic acids that affect the activity of prokaryotes, proteins that affect the activity of prokaryotes, and the like. These can be used alone or in combination of two or more.
  • the microbial activity regulating substance may be a substance that improves the activity of the microorganism or a substance that decreases the activity of the microorganism.
  • FIG. 17 shows a schematic diagram of a transport medium 1700 according to another embodiment of the present invention.
  • the carrying medium 1700 shown in FIG. 17 is the same as the carrying medium shown in FIG. 16 except that the outermost layer 1701 contains the microbial activity regulating substance 1704.
  • the microbial activity regulating substance 1703 and the microbial activity regulating substance 1704 may be the same substance or different substances.
  • the release timing of the microbial activity regulating substance 1703 encapsulated in the inner layer liposome 1702 can be shifted.
  • the outermost layer 1701 is broken or fused with the cell membrane of the microorganism, the microbial activity regulating substance 1704 and the inner layer liposome 1702 are released.
  • the inner layer liposome 1702 is broken or fused with the cell membrane of the microorganism, whereby the microbial activity regulating substance 1703 is released. Since the outermost layer 1701 and the inner layer liposome 1702 are broken at different timings, the release timings of the microbial activity regulating substance 1704 and the microbial activity regulating substance 1703 contained therein are also different.
  • the same substance can be allowed to act on the microorganism for a long time.
  • the amount of the microbial activity modulator per carrier medium can be increased, and a larger amount of the microbial activity modulator can be delivered to the microorganism.
  • FIG. 18 shows a schematic diagram of a transport medium 1800 according to still another embodiment of the present invention.
  • a transport medium 1800 shown in FIG. 18 encloses a microbial activity-regulating substance 1804 inside the lipid bilayer of the liposome which is the outermost layer 1801, and encloses a microbial activity-regulating substance 1803 inside the lipid bilayer of the inner-layer liposome 1802.
  • the microbial activity regulating substance 1803 and the microbial activity regulating substance 1804 may be the same substance or different substances.
  • the inner-layer liposome 1802 enclosing the microbial activity-regulating substance 1803 is the same as the known method for producing liposomes, and for example, the Bangham method can be used. Specifically, liposome constituents such as phospholipids and microbial activity regulator 1803 are dissolved in an organic solvent such as chloroform, and the organic solvent is distilled off to obtain a lipid thin film. Water is added thereto, and hydrated and dispersed using ultrasonic treatment or a vortex mixer, whereby inner-layer liposomes 1802 enclosing the microbial activity-regulating substance 1803 are obtained. Other methods for producing liposomes, such as reverse phase evaporation, ethanol injection, and ether evaporation, may be used.
  • the transport medium 1800 can be produced by incorporating the inner-layer liposome 1802 thus obtained into the liposome or biodegradable polymer that is the outermost layer 1801 by a known method.
  • the outermost layer 1801 is a liposome
  • Micelle is a collection of amphiphilic compounds in a spherical shape.
  • the lipophilic part of the amphiphilic compound is gathered toward the center of the sphere and the hydrophilic part is gathered towards the outside of the sphere. For this reason, the micelle can take in a hydrophobic substance and dissolve it in water.
  • the amphiphilic compound include a copolymer of a hydrophilic polymer (such as polyethylene glycol) and a hydrophobic polymer (such as polyamino acid).
  • Emulsion is one in which two liquids that do not mix together become fine droplets and are dispersed in the other phase.
  • an oil phase in which a hydrophobic substance is dissolved, it can be easily diffused into water as fine droplets.
  • the oil phase include cyclohexane, dodecane, and ethyl acetate.
  • metal nanoparticles examples include gold, silver, platinum, copper, nickel, and iron oxide.
  • various compounds such as polyethylene glycol can be bonded to gold nanoparticles through a thiol group, various substances can be attached and used as a transport medium.
  • Commercially available metal nanoparticles can be used.
  • crown ether, azacrown ether (for example, cyclen), porphyrin, or the like that is chemically modified with polyethylene glycol or the like on an alkali metal or alkaline earth metal such as sodium, potassium, or calcium may be used.
  • Examples of carbon nanotubes that can be used as a transport medium include single-walled carbon nanotubes and multi-walled carbon nanotubes. By utilizing the hydrophobic properties of carbon nanotubes and the space inside, it is possible to attach a substance and use it as a transport medium. A commercially available carbon nanotube can be used.
  • Fullerene is a spherical substance composed of many carbon atoms.
  • Examples of fullerene that can be used as a transport medium include C 60 fullerene having 60 carbon atoms and higher-order fullerene having 70, 74 carbon atoms and the like.
  • Various substances can be attached to fullerenes by covalent bonds or the like and used as a transport medium.
  • Examples of the first polymer that can be used as a transport medium include polyethyleneimine, polyamidoamine, and polyethylene glycol. These polymers can be used as a transport medium because they can stably hold a substance inside by interaction with the substance. It is also characterized by being able to be stably maintained in an environment where microorganisms are present.
  • the first polymer may be in the form of a hydrogel, nanosphere, microsphere, or dendrimer. Since these polymers form a three-dimensional structure, they are suitable as a carrier medium.
  • a biodegradable polymer can be used as the first polymer.
  • the biodegradable polymer is used as the outermost layer of the transport medium of the transport medium, thereby diffusing the microbial activity regulator in the water environment where the microbes are present.
  • biodegradable polymer starch, alginic acid, cellulose, chitin, chitosan, gelatin, collagen, etc. can be used.
  • the biodegradable polymer can be used as it is, and can also be used in the form of microspheres or gels using a curing agent. Further, a plurality of layer structures as shown in FIGS. 16 to 18 may be formed using a biodegradable polymer. By making the outermost layer a biodegradable polymer, the release timing of the microbial activity regulator tends to be easily adjusted.
  • Hydrogel is a polymer that is cross-linked to form a three-dimensional network structure, and a large amount of water is taken inside. Therefore, the substance can be included in the internal water.
  • Specific examples of the hydrogel include gelatin, carboxymethylcellulose, collagen, alginic acid, acrylamide, and polyvinyl alcohol.
  • a spherical substance composed of a polymer having a diameter of 1 ⁇ m or less is called a nanosphere, and a substance having a diameter of several ⁇ m is called a microsphere.
  • Substances can be encapsulated in nanospheres and microspheres by the interaction between the polymer and the substance.
  • Specific examples of the nanosphere / microsphere include polyglycolic acid, polylactic acid, and lactic acid glycolic acid copolymer.
  • Dendrimer is a spherical polymer having a regularly branched structure and a particle size of about several nanometers. Substances can be held and transported in the internal space by hydrophobic interaction or ionic interaction. Since the structure can be controlled at the molecular level and many functional groups exist on the surface, it is advantageous for functionalization.
  • Specific examples of the dendrimer include a polyamidoamine dendrimer, a polypropyleneimine dendrimer, a polylysine dendrimer, and a polyphenyl ether dendrimer.
  • the microorganism activity regulator includes a microorganism activity regulator and a transport medium.
  • the activity regulator for microorganisms can be prepared, for example, as follows. First, a phospholipid dissolved in an organic solvent is mixed with a microbial activity-regulating substance solution. Subsequently, after removing the organic solvent, purified water is added and heated to a temperature equal to or higher than the phase transition temperature of the phospholipid. Thereby, a liposome can be produced.
  • the microbial activity-regulating substance is a fat-soluble substance, it is taken into the inside of the lipid bilayer by hydrophobic interaction as shown in FIG. Thus, it is taken into the inner aqueous phase formed inside the lipid bilayer membrane.
  • the activity regulator for microorganisms can be prepared using, for example, microorganisms.
  • a microorganism that secretes the target microbial activity regulating substance in the form of a vesicle is cultured in the medium, the vesicle encapsulating the microbial activity regulating substance in the culture is secreted.
  • This vesicle can be used as a microorganism activity regulator.
  • the vesicle encapsulating the microbial activity regulator may be used after being purified from the above culture, or the above culture may be used as a microbial activity regulator without purification.
  • microorganisms that secrete microbial activity-regulating substances in the form of vesicles include Paracoccus and Pseudomonas.
  • the method for producing a cationic liposome encapsulating a microbial activity-regulating substance is the same as the method for producing a known liposome, and for example, the Bangham method can be used. Specifically, constituent components of cationic liposomes such as phospholipids are dissolved in an organic solvent such as chloroform, and the organic solvent is distilled off to obtain a lipid thin film. A microbial activity regulator and water are added thereto and hydrated and dispersed using an ultrasonic treatment or a vortex mixer to obtain a cationic liposome encapsulating a microbial activity regulator. Other methods for producing liposomes, such as reverse phase evaporation, ethanol injection, and ether evaporation, may be used.
  • an activity regulator for microorganisms can be prepared by forming micelles by hydrophobic interaction or electrostatic interaction between an amphiphilic compound and a microorganism activity regulator.
  • the micelle forms a spherical micelle with the microbial activity regulating substance 703 that is a hydrophobic substance as the center, the hydrophobic group 702 facing inside, and the hydrophilic group 701 facing outside. Can be dissolved in water.
  • an emulsion When an emulsion is used as the transport medium, it can be prepared, for example, by adding a surfactant to an oil phase in which a microbial activity regulator is dissolved and dispersing it in water.
  • a microorganism activity regulator can be prepared by binding a peptide or protein and a microorganism activity regulator by hydrophobic interaction or ionic interaction. It is preferable to use albumin when the microbial activity-regulating substance is an acidic or neutral substance, and ⁇ 1-acid glycoprotein when it is a basic substance. In addition, the microbial activity regulating substance is incorporated into a protein and transported as shown in FIG.
  • the mode in which the microbial activity-regulating substance 802 is incorporated into the peptide or protein may be a mode in which the three-dimensional structure 801 of the protein is enclosed in a plurality of helix structures or loop structures, or a mode in which the microbial activity regulating substance 802 is attached to the surface of the three-dimensional structure, particularly a recess. .
  • metal nanoparticles are used as the transport medium, for example, as shown in FIG. 9, physical adsorption of the metal nanoparticles 901 bonded to the metal particles 901 via the thiol group of the modification group 902 and the microbial activity regulator 903 is performed.
  • an activity regulator for microorganisms can be prepared.
  • a microbial activity regulating substance 1002 is adhered to the surface or inside of the carbon nanotubes 1001 by hydrophobic interaction, adsorption action, or the like.
  • a microorganism activity regulator can be prepared.
  • the microbial activity regulating substance 1002 is a hydrophilic substance
  • a chain-like modifying group 1003 such as polyethylene glycol is covalently bonded to the surface of the carbon nanotube 1001 outward as shown in FIG.
  • Carbon nanotubes can be used.
  • the microbial activity-regulating substance 1102 is a hydrophobic substance, it can be attached to the side surface of the fullerene 1101 by hydrophobic interaction or the like as shown in FIG. It can also be included. Further, if the microorganism regulating substance 1102 is a hydrophilic substance, as shown in FIG. 11B, a chain-like modifying group 1102 such as polyethylene glycol is covalently bonded from the surface of the fullerene three-dimensional structure to the outside.
  • the fullerene 1101 can be prepared.
  • the first polymer 1201 and the microbial activity regulator 1202 are bonded by a hydrophobic interaction or the like, thereby microbial activity regulator. Can be prepared.
  • the hydrogel When the first polymer is a hydrogel, the hydrogel is swollen in a solvent in which a microbial activity regulator is dissolved or dispersed, so that the first polymer 1301 has a network structure as shown in FIG.
  • the microorganism 130 may be held in the solvent 1303 and the microorganism 130 may be dissolved in the solvent 1303 to prepare a microorganism activity regulator.
  • the activity regulator for microorganisms can be prepared as follows. By mixing the microbial activity regulator and the nanosphere / microsphere in a solvent, as shown in FIG. 14, the microbial activity regulator is converted into the nanosphere / microsphere by the interaction between the nanosphere / microsphere 1401 and the microbial activity regulator 1402. Can be included in the sphere.
  • the first polymer is a dendrimer
  • the microbial activity regulator 1502 and the dendrimer 1501 in a solvent, the hydrophobic interaction between the dendrimer and the microbial activity regulator, ions
  • a microbial activity regulating substance can be retained in the internal space of the dendrimer by the interaction.
  • the microbial activity regulating substance may be chemically bonded to a dendrimer. The microbial activity regulator chemically bonded to the dendrimer is released as the dendrimer is decomposed.
  • the carrier medium may be modified with a sugar chain, an antibody, or a second polymer.
  • a sugar chain that modifies the transport medium
  • the sugar chain that modifies the transport medium
  • the antibody that modifies the transport medium
  • examples of the second polymer that modifies the transport medium include polyethylene glycol, polyethyleneimine, and polyamidoamine.
  • the second polymer that modifies the delivery medium may be in the form of a hydrogel, nanosphere, microsphere, or dendrimer.
  • the activity of the microorganism can be regulated.
  • the microbial activity refers to an activity in which a microorganism decomposes a specific substance (pollutant substance). Improvement of microbial activity means that the ability of a unit amount of microorganisms to decompose a specific pollutant is improved. In addition, a decrease in microbial activity means a decrease in the ability of a unit amount of microorganisms to decompose a specific pollutant.
  • the pollutant examples include sugars such as glucose and maltose; alcohols such as methanol; aldehydes such as formaldehyde; organic solids such as straw; starch, protein, ammonia, nitrate, dimethyl sulfoxide (DMSO) and the like.
  • sugars such as glucose and maltose
  • alcohols such as methanol
  • aldehydes such as formaldehyde
  • organic solids such as straw
  • starch protein, ammonia, nitrate, dimethyl sulfoxide (DMSO) and the like.
  • nitrification activity microbial activity that decomposes ammonia into nitrate
  • denitrification activity microbial activity that decomposes nitrate into nitrogen
  • microorganisms to which the above activity regulator for microorganisms acts effectively include Vibrio, Aeromonas, Streptomyces, Streptococcus, Lactobacillus, Alcaligenes, Ralstonia, Achromobacter, and Halomonas ( Halomonas, Burkholderia, Pseudomonas, Rhodobacter, Paracoccus, Sphingobacterum, Flavobacterium, Flavobacterium Bacillus), Aerobacter, Brevibacterium, Corynebacterium, Comomanas, Micrococcus, Spirillum, Zogrelo e (Clostridium), Dehalococcoides, Aminomonas, Geobacter, Desulfuromonas, Desulfovibrio, Syntrobacter s.
  • Sta hylococcus Methanobacterium genus (Methanobacterium), Mesanosupiriramu genus (Methanospirillum), Mesanosarushina genus (Methanosarcina), Metanorinea genus (Methanolinea) meth knob Levi genus (Methanobrevibacter), include methanosaeta (Methanosaeta) or the like.
  • the above-described method for regulating the activity of microorganisms can be applied to various objects such as marine structures and pipelines that are affected by biofilm formation.
  • a microbial battery it can be applied to a technique for forming a dense biofilm on an anode and a cathode.
  • it can be applied to a technology for forming a biofilm to prevent the attachment of large organisms to offshore structures.
  • the above-mentioned activity regulator for microorganisms is for microorganisms present in a reaction vessel of a biological wastewater treatment facility.
  • the activity of microorganisms existing in the reaction tank can be improved or decreased. Thereby, the waste water treatment performed in the reaction tank can be promoted or suppressed as necessary.
  • FIG. 19 is a schematic configuration diagram showing an activated sludge treatment apparatus according to the biological wastewater treatment facility 1.
  • the activated sludge treatment apparatus 1900 includes an adjustment tank 1901, an aeration tank 1902, and solid-liquid separation means 1903.
  • the organic wastewater is first introduced into the adjustment tank 1901 via the organic wastewater introduction line L1, and after removing suspended matters and the like, is introduced into the aeration tank 1902 via the line L2.
  • Organic waste water is introduced into the aeration tank 1902 and aerated to decompose organic matter by activated sludge (aerobic microorganisms), thereby generating stable substances such as water, carbon dioxide, sulfate, nitrate, and the like, and the sludge is propagated.
  • Treated water containing sludge after being aerated in the aeration tank 1902 is introduced into the solid-liquid separation means 1903 via the line L3.
  • the solid-liquid separation means 1903 sludge and treated water are separated into solid and liquid, the separated treated water is discharged out of the system from the treated water discharge line L4, and the separated sludge is returned to the aeration tank 1902 as returned sludge. A part of the separated sludge is returned via the line L5, and is discharged to the outside from the sludge discharge line L6 as surplus sludge.
  • the solid-liquid separation means 1903 is a settling tank, and the separation treated water is the supernatant and the separation sludge is the sedimentation sludge.
  • a membrane separation device or a centrifugal separation device may be used. good.
  • the signal substance added by the signal substance addition means 1904 may be, for example, in a state of being encapsulated by a transport medium or in a state of being combined with the transport medium to form a complex.
  • the transport medium for transporting the signal substance include vesicles, liposomes, micelles, emulsions, peptides, proteins, metal nanoparticles, carbon nanotubes, and polymers. These can be used alone or in combination of two or more.
  • the activated sludge treatment apparatus 1900 In the activated sludge treatment apparatus 1900 according to the biological wastewater treatment facility 1, when the signal substance is added to the aeration tank 1902 by the signal substance addition means 1904, at least the operation of the aeration tank 1902 in the activated sludge treatment apparatus 1900 is performed.
  • the signal substance may be added to the activated sludge in a state where the activated sludge in the aeration tank 1902 has settled in the lower part of the tank.
  • the activated sludge that has settled in the lower part of the aeration tank 1902 has a higher concentration than the activated sludge concentration in the aeration tank 1902 during the aeration treatment operation.
  • the activated sludge is more concentrated. Signaling substances can be added. Accordingly, since the signal substance can be effectively reached with respect to the microorganisms in the activated sludge, the activity of the microorganisms by the signal substance can be regulated more efficiently.
  • a case where a signal substance is added to an aeration tank 1902 having a volume of 1000 m 3 will be considered.
  • a signal substance having a molecular weight of 500 MW needs to be administered at 10 ⁇ mol / L in order to suitably adjust the activity of the microorganism.
  • 5 kg of the signal substance needs to be added to the aeration tank 1902.
  • the operation of the aeration tank 1902 is stopped and the activated sludge is naturally settled, so that the volume of the activated sludge is reduced to 30% compared to that during operation.
  • the signal substance is administered at a concentration of 1 ⁇ mol / L with respect to the activated sludge that has been concentrated by sedimentation, 1.5 kg of the signal substance is sufficient, and the less signal substance activates in the aeration tank 1902. It is possible to regulate the activity of microorganisms.
  • the configuration in which the aeration process in the aeration tank 1902 is stopped and the signal substance is added has been described. However, for example, by reducing the driving power without completely stopping the aeration process. It can also be set as the state where activated sludge is stored in the tank downward compared with the time of normal operation, and a signal substance is added with respect to the stored activated sludge. Even in this case, it is possible to obtain an effect of regulating the activity by causing the signal substance to act on the microorganism more effectively.
  • FIG. 20 is a schematic configuration diagram showing an activated sludge treatment apparatus according to the biological wastewater treatment facility 2.
  • the activated sludge treatment apparatus 2000 is different from the activated sludge treatment apparatus 1900 according to the biological wastewater treatment facility 1 in the following points. That is, in place of the signal substance addition means 1904, signal substance addition means 2004 and 2014 are provided.
  • the signal substance addition means 2004 shows a configuration in which a signal substance is added to the activated sludge after the solid-liquid separation by the solid-liquid separation means 1903.
  • the activated sludge after solid-liquid separation is concentrated as compared with the activated sludge in the tank during the aeration operation. Since the concentrated activated sludge after such solid-liquid separation is returned to the aeration tank 1902 via the return line L5, a signal substance is added to the activated sludge separated in the solid-liquid separation means 1903.
  • the activity of the microorganisms by the signal substance can be adjusted more efficiently.
  • the signal substance adding unit 2014 is configured to add the signal substance to the activated sludge moving in the return line L5 for returning the activated sludge separated into the solid-liquid separation unit 1903 to the aeration tank 1902. Show.
  • the activated sludge moving in the return line L5 is concentrated compared to the activated sludge in the tank during the aeration operation.
  • the signal substance is added to the configuration in which the signal substance is added to the aeration tank 1902 during the aeration treatment operation.
  • the activity of the microorganism can be regulated more efficiently.
  • the activated sludge treatment apparatus 2000 shows a configuration in which two signal substance addition units 2004 and 2014 are provided, only one of the signal substance addition units 2004 and 2014 may be provided. And by setting it as the aspect provided with the process of adding a signal substance by a signal substance addition means in an activated sludge processing method, the regulation of the activity of microorganisms by a signal substance can be performed more efficiently.
  • FIG. 21 is a schematic configuration diagram showing an activated sludge treatment apparatus according to the biological wastewater treatment facility 3.
  • the activated sludge treatment apparatus 2100 is different from the activated sludge treatment apparatus 1900 according to the biological wastewater treatment facility 1 in the following points. That is, instead of the signal substance adding means 1904, a plurality of signal substance adding means 2104 to 2124 are provided at different positions along the return line L5.
  • the signal substance addition means 2104 to 2124 are provided at different positions along the return line L5, and a return line for returning the activated sludge separated by the solid-liquid separation means 1903 to the aeration tank 1902. It has a function of adding a signal substance to the activated sludge moving in L5. Further, the addition amount of the signal substance by the signal substance addition means 2104 to 2124 is different from each other. In FIG. 3, as an example, the configuration in which the addition amount increases in the order of the signal substance addition means 2104, 2114, 2124 is indicated by the size of the arrow.
  • the signal substance can be added more uniformly to the activated sludge. Can be adjusted more efficiently.
  • the amount of the signal substance added in the plurality of signal substance addition means 2104 to 2124 is made different from each other, for example, depending on the state of the activated sludge such as how the activated sludge flows in the return line L5.
  • the signal substance can be added more uniformly to the activated sludge, and the activity of the microorganisms by the signal substance can be adjusted more efficiently.
  • FIG. 22 is a schematic configuration diagram showing an activated sludge treatment apparatus according to the biological wastewater treatment facility 4.
  • the activated sludge treatment apparatus 2200 is different from the activated sludge treatment apparatus 1900 according to the biological wastewater treatment facility 1 in the following points. That is, instead of the signal substance addition means 1904, a sludge amount detection means 2205 is provided in the return line L5, and the signal substance addition means 2204 adds the signal substance based on the result detected by the sludge amount detection means 2205. It is a point that has been.
  • the sludge amount detection means 2205 is a means for measuring the amount of return sludge (activated sludge) returned to the aeration tank 1902 via the return line L5, for example, a flow meter for measuring the flow rate of sludge flowing through the return line L5.
  • a densitometer that detects the concentration of sludge can be applied. Further, both a flow meter and a concentration meter may be used.
  • the signal substance addition means 2204 is provided downstream of the sludge amount detection means 2205 in the return line L5, and the signal substance addition means 2204 is based on the amount of sludge (flow rate and / or concentration) detected by the sludge amount detection means 2205. It has the function of adding by adjusting the amount of substance added.
  • the signal substance is added from the signal substance addition means 2204 based on the flow rate and / or concentration of the activated sludge detected by the sludge amount detection means 2205 in the signal substance addition step. Added.
  • the addition amount of the signal substance can be appropriately controlled according to the return amount of the activated sludge.
  • the activity of the microorganism by the signal substance can be regulated more efficiently.
  • the biological wastewater treatment facility has been described above, but the present invention is not necessarily limited to the biological wastewater treatment facility described above, and various modifications can be made without changing the gist thereof.
  • the return sludge is returned to the line L2 upstream from the aeration tank 1902, but may be returned directly to the aeration tank 1902.
  • MLSS Mated liquor suspended solids
  • the measurement of MLSS was performed by the following method. First, the activated sludge sample was placed in a centrifuge tube, centrifuged at 3000 rpm for 10 minutes, and then the supernatant was discarded. Next, water was added to the resulting precipitate and mixed well, followed by centrifugation in the same manner as above to discard the supernatant. The obtained precipitate was put in a pre-weighed evaporating dish and dried in a dryer at 105 to 110 ° C. for half a day. Subsequently, the mixture was allowed to cool in a desiccator and weighed. The mass obtained by subtracting the mass of the empty evaporating dish from the measured mass was taken as MLSS.
  • C16-HSL N-hexadecanoyl-L-homoserine lactone
  • N-3-oxododecanoyl-L-homoserine lactone (hereinafter sometimes referred to as “3oxoC12-HSL”) was encapsulated in liposomes to prepare an activity regulator for microorganisms.
  • the composition of the liposome was hydrogenated soybean phosphatidylcholine (HSPC) 29 g / L and cholesterol 13 g / L. Liposomes were made by the following procedure known as the Bangham method.
  • HSPC, cholesterol and 3oxoC12-HSL (1 mM) were dissolved in 10 mL of chloroform. Subsequently, chloroform was removed using an evaporator, and a lipid film was formed on the bottom of the eggplant-shaped flask. Subsequently, a phosphate buffer was added to the eggplant-shaped flask on which the lipid film was formed, and hydrated and dispersed at 60 ° C. while stirring using a vortex mixer. By the above operation, a microorganism activity regulator containing 3oxoC12-HSL was obtained.
  • a phosphate buffer hydrated with liposomes was prepared in the same manner as the above-mentioned microbial activity regulator except that activated sludge was added to the above inorganic salt medium and no 3oxoC12-HSL was contained. The same volume as the medium was added.
  • the ammonia nitrogen concentration in the medium was analyzed by ion chromatography. The results are shown in FIG. In the system to which the activity regulator for microorganisms containing 3oxoC12-HSL was added, it was shown that the decrease rate of ammonia nitrogen was faster and the nitrification reaction was promoted as compared with the negative control.
  • a high homoserine lactone-producing bacterium was screened from activated sludge using a reporter strain that produces violetsein, a violet pigment. More specifically, the strain Chromobacterium violaceum CV026 responding to N-acyl-L-homoserine lactone (C4 to C8-HSL) having 4 to 8 carbon atoms in the acyl group and 10 to 10 carbon atoms in the acyl group.
  • N-acyl-L-homoserine lactone Chromobacterium violaceum strain VIR07 responding to 16 N-acyl-L-homoserine lactones (C10-C16-HSL) was used.
  • N-acyl-L-homoserine lactone to which CV026 strain responds N-butanoyl-L-homoserine lactone, N-3-oxobutanoyl-L-homoserine lactone, N-3-hydroxybutanoyl-L -Homoserine lactone, N-pentanoyl-L-homoserine lactone, N-3-oxopentanoyl-L-homoserine lactone, N-3-hydroxypentanoyl-L-homoserine lactone, N-hexanoyl-L-homoserine lactone, N- 3-oxohexanoyl-L-homoserine lactone, N-3-hydroxyhexano
  • the homoserine lactone to which the VIR07 strain responds includes N-decanoyl-L-homoserine lactone, N-3-oxodecanoyl-L-homoserine lactone, N-3-hydroxydecanoyl-L-homoserine lactone, N-undecanoyl-L.
  • the activated sludge was diluted and applied to an agar medium to obtain an isolated strain.
  • An isolated strain and a reporter strain obtained from activated sludge were applied to adjacent positions on the agar medium. After culturing for several days, the isolated strain was judged to be a homoserine lactone-producing bacterium for the reporter strain that secreted a purple pigment (violacein).
  • the results are shown in Table 1. In the table, the greater the number of “+”, the greater the amount of violacein produced.
  • the AS6 strain which is a high homoserine lactone-producing bacterium, was obtained.
  • the AS6 strain was deposited on May 18, 2012 at the Patent Microorganism Depositary, National Institute of Technology and Evaluation, under the accession number NITE P-1363.
  • Optiprep trade name, Axis Shield
  • HEPES-NaCl solution 40%, 35, 30, 25, 20, 15, 10 (v / v)% of Optiprep (trade name, Axis Shield) mixed in HEPES-NaCl solution.
  • a gradient layer was formed by overlaying in a centrifuge tube, and a pellet dissolved in a 40 (v / v)% Optiprep-HEPES-NaCl solution was added on top. Subsequently, this gradient was ultracentrifuged at 1000000 ⁇ g for 3 hours. After ultracentrifugation, each layer was collected, protein concentration was determined by Bradford method (Bradford, M. 1976. Anal. Biochem. 72, 248-254.), And Stewart method (Stewart, J. 1980. Anal. Biochem. 104, 10-14.) And the phospholipid concentration was analyzed. A layer having a high protein concentration and a high phospholipid concentration was defined as a layer from which vesic
  • C16-HSL produced by the AS6 strain is secreted in the form of vesicles.
  • the operability may be poor, for example, it is necessary to use an organic solvent to dissolve in water.
  • C16-HSL produced by the AS6 strain was hydrophilic because it was secreted in the form of vesicles, and it was revealed that it can be used as it is added to the aqueous system.
  • the attribution taxon of the AS6 strain was estimated by 16S rDNA (16S rRNA gene) base sequence analysis, morphology observation and physiological / biochemical tests.
  • the AS6 strain was cultured on an agar medium at 30 ° C. for 24 hours to extract DNA.
  • the base sequence of 16S rDNA was determined based on the general method described in the above, and homology search with a database and simple molecular phylogenetic analysis were performed. Simplified molecular phylogenetic analysis was performed using the Apollon DB-BA database Ver. 7.0 (trade name, Techno Suruga Laboratories, March 2011 edition, search date May 2, 2012).
  • Fig. 3 shows the results of simple molecular phylogenetic analysis.
  • the lower left line represents the scale bar, and the number located at the branch of the system branch represents the bootstrap value.
  • the T at the end of the stock name indicates that type of reference stock.
  • the base sequence of 16S rDNA of AS6 strain showed high homology to the base sequence of rDNA belonging to the genus Paracoccus.
  • the AS6 strain is contained in a cluster formed by species of the genus Paracoccus, and is closely related to P. versustus and P. bengalerensis. It has been shown. However, there was a possibility that the AS6 strain was attributed to Paracoccus verustus or Paracoccus bengalensis and a different species from these, and the species name was not identified.
  • Morphological observation and physiological / biochemical test Morphological observation with an optical microscope and, for example, “BARROW and FELTHAM, Cowan and Steel's Manual for the Identification of Medical Bacteria. 3rd edition. 1993, Cambridge University, based on the method described in Cambridge Presity. Tests were performed for reaction, aoxidase reaction, acid / gas evolution from glucose, and glucose oxidation / fermentation.
  • test for the presence or absence of growth under anaerobic conditions and the presence or absence of growth at 20 ° C. and the assimilation test for glycerol, saccharose, D-fructose, L-alanine, L-sodium aspartate and sodium lactate Went.
  • Results are shown in Tables 2-4.
  • the AS6 strain was a gram-negative bacillus having no motility, did not oxidize glucose, and both the catalase reaction and oxidase reaction were positive.
  • the AS6 strain did not reduce nitrate, assimilated glucose, L-arabinose and D-mannose, and did not assimilate n-capric acid and sodium citrate. These properties were similar to those of Paracoccus verustus and Paracoccus bengalensis but were not completely consistent.
  • the AS6 strain is a bacterium belonging to the genus Paracoccus which is closely related to Paracoccus verustus and Paracoccus bengalensis.
  • reporter assay Evaluation was performed using a reporter strain Pseudomonas aeruginosa PAO1 ⁇ lasI pME PlasI GFP that fluoresces in response to 3oxoC12-HSL.
  • a GFP green fluorescent protein, aequorin
  • a lasI promoter induced by 3oxoC12-HSL is inserted upstream of the GFP expression gene. It is incorporated into the strain Pseudomonas aeruginosa PAO1.
  • the reporter strain has its own ability to produce 3oxoC12-HSL, it expresses GFP in response to 3oxoC12-HSL in the environment and exhibits fluorescence. Liposomes were produced by the Bangham method.
  • liposome B had the highest fluorescence intensity.
  • aeration tank 1903 Solid-liquid separation tank 1904,2004,2014,2104,2114,2124,2204 ... signal substances adding means, 2205 . sludge quantity detecting means, 1900,2000,2100,2200 ... activated sludge treatment apparatus.

Abstract

Provided is a microbe activity modulator which contains a microbial activity modulating substance and a carrying medium and which is present in a reaction tank in a biological wastewater treatment facility.

Description

微生物用活性調節剤及び微生物の活性を調節する方法Microbial activity regulator and method for regulating microbial activity
 本発明は、微生物用活性調節剤及び微生物の活性を調節する方法に関する。 The present invention relates to a microorganism activity regulator and a method for regulating microorganism activity.
 微生物は細胞間情報伝達物質(以下、「シグナル物質」という。)を介して情報伝達を行い、微生物の密度に依存して病原性物質の分泌やバイオフィルムの生産を制御していることが知られている。このような情報伝達機構のことをクオラムセンシングという(例えば、非特許文献1を参照)。 It is known that microorganisms transmit information through intercellular signal transmitters (hereinafter referred to as “signal substances”) and control the secretion of pathogenic substances and biofilm production depending on the density of the microorganisms. It has been. Such an information transmission mechanism is called quorum sensing (see, for example, Non-Patent Document 1).
 しかしながら、シグナル物質を含む微生物活性調節物質には、水に不溶性のものが多く存在する。このような微生物活性調節物質を水に溶解するためには、有機溶媒等を用いる必要があるなど、操作性が悪い場合がある。そこで、本発明は、操作性が改善された微生物活性調節物質を提供することを目的とする。本発明はまた、微生物の活性を調節する方法を提供することを目的とする。 However, many microbial activity regulating substances including signal substances are insoluble in water. In order to dissolve such a microbial activity-regulating substance in water, it may be necessary to use an organic solvent or the like, and the operability may be poor. Accordingly, an object of the present invention is to provide a microbial activity regulator with improved operability. The present invention also aims to provide a method for regulating the activity of microorganisms.
 本発明は、微生物活性調節物質及び運搬媒体を含む、生物学的排水処理設備の反応槽中に存在する微生物用活性調節剤を提供する。また、本発明は、微生物活性調節物質及び運搬媒体を含む組成物の生物学的排水処理設備の反応槽中に存在する微生物の活性調節のための使用を提供する。 The present invention provides a microbial activity regulator present in a reaction tank of a biological wastewater treatment facility, which comprises a microbial activity regulator and a transport medium. The present invention also provides the use of a composition comprising a microbial activity regulator and a carrier medium for regulating the activity of microorganisms present in a reaction vessel of a biological wastewater treatment facility.
 本発明の微生物用活性調節剤又は使用によれば、上記微生物活性調節物質が親水性であるか否かにかかわらず、容易に水系に添加して微生物の存在する環境中に微生物活性調節物質を拡散させ、微生物に送達することができ、効率よく微生物の活性を調節することができる。このため、微生物活性調節物質の操作性を改善することができ、生物学的排水処理設備の反応槽中に存在する微生物、特に排水処理に関わる微生物の活性調節に適している。 According to the microbial activity regulator or use of the present invention, regardless of whether the microbial activity regulator is hydrophilic or not, the microbial activity regulator can be easily added to an aqueous system and added to the environment in which the microorganism is present. It can be diffused and delivered to microorganisms, and the activity of microorganisms can be efficiently regulated. For this reason, the operability of the microbial activity regulating substance can be improved, and it is suitable for regulating the activity of microorganisms present in the reaction tank of the biological wastewater treatment facility, particularly microorganisms involved in wastewater treatment.
 上記微生物活性調節物質は、シグナル物質、原核生物の活性に影響を与える核酸及び原核生物の活性に影響を与えるタンパク質からなる群より選択される1種以上の物質であってよい。 The microbial activity-regulating substance may be one or more substances selected from the group consisting of a signal substance, a nucleic acid that affects prokaryotic activity, and a protein that affects prokaryotic activity.
 このような微生物活性調節物質を微生物に送達することにより、微生物の活性を調節することができる。 By delivering such a microbial activity regulating substance to a microorganism, the activity of the microorganism can be regulated.
 上記微生物活性調節物質は、N-アシル-L-ホモセリンラクトンであってよい。上記微生物活性調節物質がN-アシル-L-ホモセリンラクトンであれば、多くの種類のグラム陰性菌の微生物活性を調節することができる。 The microbial activity-regulating substance may be N-acyl-L-homoserine lactone. If the microbial activity regulator is N-acyl-L-homoserine lactone, the microbial activity of many types of gram-negative bacteria can be regulated.
 上記の運搬媒体は、ベシクル、リポソーム、ミセル、エマルション、ペプチド、タンパク質、金属ナノ粒子、カーボンナノチューブ、フラーレン及び第1のポリマーからなる群より選択される1種以上の物質であってよい。また、運搬媒体としての第1のポリマーは、ハイドロゲル、ナノスフェア、マイクロスフェア又はデンドリマーの形状であってもよい。 The transport medium may be one or more substances selected from the group consisting of vesicles, liposomes, micelles, emulsions, peptides, proteins, metal nanoparticles, carbon nanotubes, fullerenes and first polymers. Also, the first polymer as the carrier medium may be in the form of a hydrogel, nanosphere, microsphere, or dendrimer.
 本発明の微生物用活性調節剤又は使用は、このような運搬媒体を含むことにより、微生物活性調節物質の操作性をより改善することができる。また、微生物活性調節物質の分解を抑制し、生物学的排水処理設備の反応槽全体により容易に拡散することができ、微生物活性の調節をより確実に行うことができる。 The microbial activity regulator or use of the present invention can further improve the operability of the microbial activity regulator by including such a transport medium. Moreover, decomposition | disassembly of a microbial activity regulator can be suppressed, it can spread | diffuse easily with the whole reaction tank of a biological wastewater treatment facility, and microbial activity can be regulated more reliably.
 上記の運搬媒体は、糖鎖、抗体又は第2のポリマーで修飾されていてもよい。運搬媒体を修飾する第2のポリマーは、ポリエチレングリコール、ポリエチレンイミン、ポリアミドアミンであってもよい。 The above transport medium may be modified with a sugar chain, an antibody, or a second polymer. The second polymer that modifies the carrier medium may be polyethylene glycol, polyethyleneimine, polyamidoamine.
 運搬媒体がこれらの物質で修飾されていることにより、上記の微生物用活性調節剤を選択的に特定の抗原を有する微生物に送達したり、微生物用活性調節剤の残存性(残存時間)を調節することが可能になる。 The carrier medium is modified with these substances, so that the above-mentioned activity regulator for microorganisms can be selectively delivered to microorganisms having a specific antigen, or the survivability (remaining time) of the activity regulator for microorganisms can be adjusted. It becomes possible to do.
 上記運搬媒体はリポソームであってもよい。上記リポソームは、卵黄レシチン又は水素添加大豆ホスファチジルコリンを含んでいることが好ましい。上記リポソームは、コレステロールをさらに含んでいてもよい。 The transport medium may be a liposome. The liposome preferably contains egg yolk lecithin or hydrogenated soybean phosphatidylcholine. The liposome may further contain cholesterol.
 上記リポソームがコレステロールを含むことにより、リポソームの流動性を調節することができ、リポソームの膜をより安定に存在させることができる。 When the liposome contains cholesterol, the fluidity of the liposome can be adjusted, and the liposome membrane can be more stably present.
 上記リポソームは、ステアリン酸をさらに含んでいてもよい。 The liposome may further contain stearic acid.
 上記リポソームがステアリン酸を含むことにより、リポソームは負の電荷を帯び、膜の安定性が低下し、微生物活性調節物質をより放出しやすい傾向にある。 When the liposome contains stearic acid, the liposome is negatively charged, the stability of the membrane is lowered, and the microorganism activity regulator tends to be released more easily.
 上記微生物活性は、硝化活性であることが好ましい。 The microbial activity is preferably nitrification activity.
 微生物活性が硝化活性であると、排水中のアンモニアの除去効率が向上する。 If the microbial activity is nitrification activity, the removal efficiency of ammonia in the wastewater is improved.
 本発明はまた、生物学的排水処理設備の反応槽中に存在する微生物の活性を調節する方法であって、生物学的排水処理設備の反応槽に、上記の微生物用活性調節剤を添加する工程を含む方法を提供する。 The present invention is also a method for regulating the activity of microorganisms present in a reaction tank of a biological wastewater treatment facility, wherein the above-mentioned microorganism activity regulator is added to the reaction tank of the biological wastewater treatment facility. A method comprising the steps is provided.
 上記本発明の方法によれば、容易に効率よく生物学的排水処理設備の反応槽中に存在する微生物の活性を調節することができる。このため、反応槽で行われる排水処理を促進させ、又は、必要に応じて抑制することができる。 According to the method of the present invention, the activity of microorganisms present in the reaction tank of the biological wastewater treatment facility can be adjusted easily and efficiently. For this reason, the waste water treatment performed in the reaction tank can be promoted or suppressed as necessary.
 本発明により、操作性が改善された微生物活性調節物質を提供することができる。また、微生物の活性を調節する方法を提供することができる。 According to the present invention, a microbial activity regulator with improved operability can be provided. Moreover, the method of adjusting the activity of microorganisms can be provided.
図1は、硝化反応の促進の結果を示すグラフである。FIG. 1 is a graph showing the results of promoting the nitrification reaction. 図2は、硝化反応の促進の結果を示すグラフである。FIG. 2 is a graph showing the results of promoting the nitrification reaction. 図3は、パラコッカスAS6株の簡易分子系統解析の結果を示す分子系統樹である。FIG. 3 is a molecular phylogenetic tree showing the results of simple molecular phylogenetic analysis of Paracoccus AS6 strain. 図4は、リポソームを用いたときの3oxoC12-HSLの作用を示すグラフである。FIG. 4 is a graph showing the action of 3oxoC12-HSL when liposomes are used. 図5は、リポソームの組成を変化させたときの3oxoC12-HSLの作用を示すグラフである。FIG. 5 is a graph showing the action of 3oxoC12-HSL when the liposome composition is changed. 図6は、微生物用活性調節物質がベシクルにより運搬される状態を示す模式図である。FIG. 6 is a schematic diagram showing a state in which the microbial activity-regulating substance is conveyed by vesicles. 図7は、微生物用活性調節物質がミセルにより運搬される状態を示す模式図である。FIG. 7 is a schematic diagram showing a state in which a microorganism activity regulator is transported by micelles. 図8は、微生物用活性調節物質がタンパク質により運搬される状態を示す模式図である。FIG. 8 is a schematic diagram showing a state in which the activity regulating substance for microorganisms is carried by a protein. 図9は、微生物用活性調節物質が金属ナノ粒子により運搬される状態を示す模式図である。FIG. 9 is a schematic diagram showing a state in which the activity regulating substance for microorganisms is transported by metal nanoparticles. 図10は、微生物用活性調節物質がカーボンナノチューブにより運搬される状態を示す模式図である。FIG. 10 is a schematic diagram showing a state in which a microorganism activity regulator is transported by carbon nanotubes. 図11は、微生物用活性調節物質がフラーレンにより運搬される状態を示す模式図である。FIG. 11 is a schematic diagram showing a state in which a microorganism activity regulator is transported by fullerene. 図12は、微生物用活性調節物質が第1のポリマーにより運搬される状態を示す模式図である。FIG. 12 is a schematic diagram showing a state in which the microorganism activity regulator is transported by the first polymer. 図13は、微生物用活性調節物質がハイドロゲルにより運搬される状態を示す模式図である。FIG. 13 is a schematic diagram showing a state in which a microorganism activity-regulating substance is transported by a hydrogel. 図14は、微生物用活性調節物質がナノスフェアにより運搬される状態を示す模式図である。FIG. 14 is a schematic diagram showing a state in which a microorganism activity regulator is transported by nanospheres. 図15は、微生物用活性調節物質がデンドリマーにより運搬される状態を示す模式図である。FIG. 15 is a schematic diagram showing a state in which a microorganism activity regulator is transported by a dendrimer. 図16は、本発明の一実施形態に係る運搬媒体の模式図である。FIG. 16 is a schematic diagram of a transport medium according to an embodiment of the present invention. 図17は、本発明の他の実施形態に係る運搬媒体の模式図である。FIG. 17 is a schematic view of a transport medium according to another embodiment of the present invention. 図18は、本発明のさらに他の実施形態に係る運搬媒体の模式図である。FIG. 18 is a schematic view of a transport medium according to still another embodiment of the present invention. 図19は、本発明の一実施形態に係る生物学的排水処理装置を説明する概略構成図である。FIG. 19 is a schematic configuration diagram illustrating a biological wastewater treatment apparatus according to an embodiment of the present invention. 図20は、本発明の他の実施形態に係る生物学的排水処理装置を説明する概略構成図である。FIG. 20 is a schematic configuration diagram illustrating a biological wastewater treatment apparatus according to another embodiment of the present invention. 図21は、本発明のさらに他の実施形態に係る生物学的排水処理装置を説明する概略構成図である。FIG. 21 is a schematic configuration diagram illustrating a biological wastewater treatment apparatus according to still another embodiment of the present invention. 図22は、本発明のさらに他の実施形態に係る生物学的排水処理装置を説明する概略構成図である。FIG. 22 is a schematic configuration diagram illustrating a biological wastewater treatment apparatus according to still another embodiment of the present invention.
(微生物活性調節物質)
 本発明の微生物用活性調節剤は、微生物活性調節物質及び運搬媒体を含む。微生物活性調節物質としては、細胞間情報伝達物質(シグナル物質)、原核生物の活性に影響を与える核酸、原核生物の活性に影響を与えるタンパク質等が挙げられる。これらは1種類を単独で又は複数種類を組み合わせて使用することができる。微生物活性調節物質は、微生物の活性を向上させる物質であっても、微生物の活性を低下させる物質であってもよい。
(Microbial activity regulator)
The microbial activity regulator of the present invention includes a microbial activity regulator and a transport medium. Examples of the microbial activity regulating substance include an intercellular signal transduction substance (signal substance), a nucleic acid that affects the prokaryotic activity, a protein that affects the prokaryotic activity, and the like. These can be used alone or in combination of two or more. The microbial activity regulating substance may be a substance that improves the activity of the microorganism or a substance that decreases the activity of the microorganism.
 シグナル物質としては、N-アシル-L-ホモセリンラクトン(AI1:オートインデューサー1);4,5-ジヒドロキシ-2,3-ペンタンジオン(AI2:オートインデューサー2);HHQ(2-アルキル-4-キノロン)、PQS(2-アルキル-3-ヒドロキシ-4-キノロン)等のキノロン・キノリン類;インドール類;ペプチド;環状ジペプチド;ジケトピペラジン等が挙げられる。N-アシル-L-ホモセリンラクトンとしては、例えば、N-ブタノイル-L-ホモセリンラクトン、N-3-オキソブタノイル-L-ホモセリンラクトン、N-3-ヒドロキシブタノイル-L-ホモセリンラクトン、N-ペンタノイル-L-ホモセリンラクトン、N-3-オキソペンタノイル-L-ホモセリンラクトン、N-3-ヒドロキシペンタノイル-L-ホモセリンラクトン、N-ヘキサノイル-L-ホモセリンラクトン、N-3-オキソヘキサノイル-L-ホモセリンラクトン、N-3-ヒドロキシヘキサノイル-L-ホモセリンラクトン、N-ヘプタノイル-L-ホモセリンラクトン、N-3-オキソヘプタノイル-L-ホモセリンラクトン、N-3-ヒドロキシヘプタノイル-L-ホモセリンラクトン、N-オクタノイル-L-ホモセリンラクトン、N-3-オキソオクタノイル-L-ホモセリンラクトン、N-3-ヒドロキシオクタノイル-L-ホモセリンラクトン、N-ノナノイル-L-ホモセリンラクトン、N-3-オキソノナノイル-L-ホモセリンラクトン、N-3-ヒドロキシノナノイル-L-ホモセリンラクトン、N-デカノイル-L-ホモセリンラクトン、N-3-オキソデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシデカノイル-L-ホモセリンラクトン、N-ウンデカノイル-L-ホモセリンラクトン、N-3-オキソウンデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシウンデカノイル-L-ホモセリンラクトン、N-ドデカノイル-L-ホモセリンラクトン、N-3-オキソドデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシドデカノイル-L-ホモセリンラクトン、N-トリデカノイル-L-ホモセリンラクトン、N-3-オキソトリデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシトリデカノイル-L-ホモセリンラクトン、N-テトラデカノイル-L-ホモセリンラクトン、N-3-オキソテトラデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシテトラデカノイル-L-ホモセリンラクトン、N-ペンタデカノイル-L-ホモセリンラクトン、N-3-オキソペンタデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシペンタデカノイル-L-ホモセリンラクトン、N-ヘキサデカノイル-L-ホモセリンラクトン、N-3-オキソヘキサデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシヘキサデカノイル-L-ホモセリンラクトン等のアシル基の炭素数が4~16であるN-アシル-L-ホモセリンラクトンが挙げられるが、これらに限定されない。 As the signal substance, N-acyl-L-homoserine lactone (AI1: autoinducer 1); 4,5-dihydroxy-2,3-pentanedione (AI2: autoinducer 2); HHQ (2-alkyl-4 -Quinolones), quinolones and quinolines such as PQS (2-alkyl-3-hydroxy-4-quinolones); indoles; peptides; cyclic dipeptides; diketopiperazines and the like. Examples of N-acyl-L-homoserine lactone include N-butanoyl-L-homoserine lactone, N-3-oxobutanoyl-L-homoserine lactone, N-3-hydroxybutanoyl-L-homoserine lactone, N- Pentanoyl-L-homoserine lactone, N-3-oxopentanoyl-L-homoserine lactone, N-3-hydroxypentanoyl-L-homoserine lactone, N-hexanoyl-L-homoserine lactone, N-3-oxohexanoyl- L-homoserine lactone, N-3-hydroxyhexanoyl-L-homoserine lactone, N-heptanoyl-L-homoserine lactone, N-3-oxoheptanoyl-L-homoserine lactone, N-3-hydroxyheptanoyl-L- Homoserine lactone, N-octanoyl-L Homoserine lactone, N-3-oxooctanoyl-L-homoserine lactone, N-3-hydroxyoctanoyl-L-homoserine lactone, N-nonanoyl-L-homoserine lactone, N-3-oxononanoyl-L-homoserine lactone, N -3-hydroxynonanoyl-L-homoserine lactone, N-decanoyl-L-homoserine lactone, N-3-oxodecanoyl-L-homoserine lactone, N-3-hydroxydecanoyl-L-homoserine lactone, N-undecanoyl-L -Homoserine lactone, N-3-oxoundecanoyl-L-homoserine lactone, N-3-hydroxyundecanoyl-L-homoserine lactone, N-dodecanoyl-L-homoserine lactone, N-3-oxododecanoyl-L -Homoserine lactone N-3-hydroxydodecanoyl-L-homoserine lactone, N-tridecanoyl-L-homoserine lactone, N-3-oxotridecanoyl-L-homoserine lactone, N-3-hydroxytridecanoyl-L-homoserine lactone, N-tetradecanoyl-L-homoserine lactone, N-3-oxotetradecanoyl-L-homoserine lactone, N-3-hydroxytetradecanoyl-L-homoserine lactone, N-pentadecanoyl-L-homoserine lactone, N-3-oxopentadecanoyl-L-homoserine lactone, N-3-hydroxypentadecanoyl-L-homoserine lactone, N-hexadecanoyl-L-homoserine lactone, N-3-oxohexadecanoyl-L- Homoserine lactone, N-3-hydroxyhexadeca Examples thereof include, but are not limited to, N-acyl-L-homoserine lactone having 4 to 16 carbon atoms in the acyl group, such as noyl-L-homoserine lactone.
 シグナル物質は、化学合成により調製してもよく、シグナル物質産生菌が培地中に分泌したシグナル物質を精製して調製してもよい。また、シグナル物質産生菌の培養物を、精製することなくシグナル物質として使用してもよい。シグナル物質産生菌としては、パラコッカス属、バークホルデリア属、シュードモナス属、ビブリオ属、アエロモナス属、バチルス属、ストレプトマイセス属、ストレプトコッカス属、ラクトバチルス属などの菌が例示できる。 The signal substance may be prepared by chemical synthesis, or may be prepared by purifying the signal substance secreted into the medium by the signal substance-producing bacteria. Moreover, you may use the culture of a signal substance producing microbe as a signal substance, without refine | purifying. Examples of the signal substance-producing bacteria include bacteria such as Paracoccus, Burkholderia, Pseudomonas, Vibrio, Aeromonas, Bacillus, Streptomyces, Streptococcus, and Lactobacillus.
 原核生物の活性に影響を与える核酸としては、タンパク質の合成や合成抑制に関わる酵素やATP合成酵素の発現をコードするDNAやRNA等が挙げられる。これらのDNAは、プロモーターの下流に発現可能に連結されていることが好ましい。 Examples of nucleic acids that affect the activity of prokaryotes include enzymes involved in protein synthesis and synthesis inhibition, and DNA and RNA encoding ATP synthase expression. These DNAs are preferably linked downstream of the promoter so that they can be expressed.
 原核生物の活性に影響を与える核酸は、大腸菌、バチルス属等の原核生物のゲノムDNAを鋳型としたPCR等によって取得することができる。原核生物の活性に影響を与える核酸は、pGEM(プロメガ社)、pBluescript(ストラタジーン社)、pUC(タカラバイオ株式会社)等のベクターにクローニングし、例えば大腸菌に導入して大腸菌の菌体内でプラスミドの形態で維持することができる。また、必要に応じて上記大腸菌から大量に調製することができる。 Nucleic acids that affect the activity of prokaryotes can be obtained by PCR or the like using genomic DNA of prokaryotes such as Escherichia coli and Bacillus as a template. Nucleic acids that affect the activity of prokaryotes are cloned into vectors such as pGEM (Promega), pBluescript (Stratagene), pUC (Takara Bio Inc.), and introduced into Escherichia coli, for example. Can be maintained. Moreover, it can prepare in large quantities from the said E. coli if necessary.
 原核生物の活性に影響を与えるタンパク質としてはポリメラーゼ、ガラクトシダーゼ、プロテアーゼ等が挙げられる。 Proteins that affect prokaryotic activity include polymerases, galactosidases, proteases, and the like.
 原核生物の活性に影響を与えるタンパク質は、例えば、当該タンパク質を生産する微生物から精製して調製してもよい。あるいは、原核生物の活性に影響を与えるタンパク質をコードするDNAを組み込んだ発現ベクターを用いて、大腸菌等の体内で大量発現させ、これを精製して調製してもよい。 Proteins that affect the activity of prokaryotes may be prepared by purification from microorganisms that produce the proteins, for example. Alternatively, an expression vector incorporating a DNA encoding a protein that affects the prokaryotic activity may be expressed in a large amount in a body such as Escherichia coli and purified for preparation.
(運搬媒体)
 微生物用活性調節剤は、微生物活性調節物質及び運搬媒体を含む。運搬媒体は、微生物活性調節物質を内包するものであってもよく、微生物活性調節物質と共有結合又は非共有結合により複合体を形成するものであってもよい。運搬媒体は微生物活性調節物質と複合体を形成できるものであれば、特に制限はなく、具体例としては、ベシクル、リポソーム、ミセル、エマルション、ペプチド、タンパク質、金属ナノ粒子、カーボンナノチューブ、フラーレン、第1のポリマー等が挙げられる。これらは1種類を単独で又は複数種類を組み合わせて使用することができる。また、ホスト-ゲスト化学の分野で一般的に用いられるシクロデキストリン、シクロファン、カリックスアレーン等を用いてもよい。
(Transport medium)
The microorganism activity regulator includes a microorganism activity regulator and a transport medium. The carrier medium may contain a microbial activity-regulating substance, or may form a complex with the microbial activity-regulating substance by a covalent bond or a non-covalent bond. The transport medium is not particularly limited as long as it can form a complex with the microbial activity regulator, and specific examples include vesicles, liposomes, micelles, emulsions, peptides, proteins, metal nanoparticles, carbon nanotubes, fullerenes, 1 polymer and the like. These can be used alone or in combination of two or more. Further, cyclodextrin, cyclophane, calixarene and the like generally used in the field of host-guest chemistry may be used.
 ベシクルとは、一般的に脂質二重膜で形成された小胞であり、小胞の内側と外側が親水性を示し、脂質二重膜の内部が疎水性を示す。特に、リン脂質を主成分とする脂質二重膜からなる小胞は、リポソームと呼ばれる。リン脂質としては、ホスファチジルコリン、スフィンゴミエリン、ホスファチジルエタノールアミン、ホスファチジルセリン、卵黄レシチン、水素添加大豆ホスファチジルコリン等を使用することができる。疎水性の物質を取り込んだリポソームは、容易に水に添加して拡散させることができる。また、ベシクルは微生物が分泌するものであってもよく、化学的に合成したものであってもよい。 A vesicle is generally a vesicle formed of a lipid bilayer membrane, the inside and outside of the vesicle exhibit hydrophilicity, and the inside of the lipid bilayer membrane exhibits hydrophobicity. In particular, a vesicle composed of a lipid bilayer mainly composed of phospholipid is called a liposome. As the phospholipid, phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, phosphatidylserine, egg yolk lecithin, hydrogenated soybean phosphatidylcholine and the like can be used. Liposomes incorporating a hydrophobic substance can be easily added to water and allowed to diffuse. The vesicles may be secreted by microorganisms or chemically synthesized.
 運搬媒体としてリポソームを用いる場合、リポソームは電荷を有しないものを用いてもよく、電荷を有したものを用いてもよい。電荷を有したリポソームとしては、カチオン性リポソームとアニオン性リポソームが挙げられる。 When liposomes are used as the transporting medium, liposomes having no charge may be used, or those having a charge may be used. Examples of the charged liposome include a cationic liposome and an anionic liposome.
 カチオン性リポソームとは、リン脂質を主成分とする脂質二重層からなる小胞であって、外界と接する表面が正電荷を帯びているものをいう。リン脂質として、ホスファチジルコリン、スフィンゴミエリン、ホスファチジルエタノールアミン、ホスファチジルセリン等を使用することができる。脂質二重膜を構成する他の成分として、コレステロール等のリン脂質以外の脂質、糖、タンパク質等を使用することができる。 The cationic liposome is a vesicle composed of a lipid bilayer mainly composed of phospholipid and having a positive surface on the surface in contact with the outside world. As the phospholipid, phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, phosphatidylserine and the like can be used. As other components constituting the lipid bilayer membrane, lipids other than phospholipids such as cholesterol, sugars, proteins and the like can be used.
 カチオン性リポソームは、リポソームの膜が正電荷を帯びており、負電荷を帯びている微生物の細胞膜との静電的相互作用により、取り込まれやすい点で好ましい。汚泥に付着したカチオン性リポソームは、汚泥中の微生物を引き寄せて凝集体を形成する。凝集体が形成されることで、カチオン性リポソームと微生物との物理的距離が近づき、カチオン性リポソームが微生物の細胞膜と融合又は生分解されて壊れる確率が高まり、微生物活性調節物質が微生物に送達される効率が向上する。 Cationic liposomes are preferred in that the liposome membrane is positively charged and is easily taken up by electrostatic interaction with the negatively charged microbial cell membrane. Cationic liposomes attached to the sludge attract the microorganisms in the sludge and form aggregates. The formation of aggregates brings the physical distance between the cationic liposome and the microorganism closer, increases the probability that the cationic liposome will be fused or biodegraded with the cell membrane of the microorganism, and the microorganism activity regulator is delivered to the microorganism. Efficiency.
 カチオン性リポソームは、例えば、遺伝子導入ベクターとして用いられているものを利用することが可能である。リポソームにカチオン性脂質、カチオン性多糖類等を脂質二重層の構成要素として含ませることで、カチオン性リポソームとすることができる。 As the cationic liposome, for example, those used as gene transfer vectors can be used. Cationic liposomes can be obtained by including cationic lipids, cationic polysaccharides and the like in the liposome as constituents of the lipid bilayer.
 カチオン性リポソームは、例えば、第一級アミン、第二級アミン、第三級アミン又は第四級アンモニウムカチオンが結合した脂質;カチオン性多糖類を含むことができる。このような脂質の具体例として、N,N-ジオレイル-N,N-ジメチルアンモニウムクロリド(DODAC)、N-[1-(2,3-ジオレイルオキシ)プロピル]-N,N,N-トリメチルアンモニウムクロリド(DOTMA)、ジメチルジオクタデシルアンモニウムブロミド(DDAB)、N-[1-(2,3-ジオレイルオキシ)プロピル]-N,N,N-トリメチルアンモニウム硫酸メチル(DOTAP)、3β-[N-(N’,N’-ジメチルアミノエタン)-カルバモイル]コレステロール(DC-Chol)、(1,2-ジミリスチルオキシプロピル-3-ジメチルヒドロキシエチルアンモニウムブロミド(DMRIE)、ジオクタデシルアミドグリシルスペルミン(DOGS)、N,N-ジメチル-(2,3-ジオレイルオキシ)プロピルアミン(DODMA)、1,2-ジオレイル-3-ジメチルアンモニウムプロパン(DODAP)、ステアリルアミン等が挙げられる。カチオン性多糖類の具体例として、キトサン等が挙げられる。 The cationic liposome can contain, for example, a lipid to which a primary amine, secondary amine, tertiary amine or quaternary ammonium cation is bound; a cationic polysaccharide. Specific examples of such lipids include N, N-dioleyl-N, N-dimethylammonium chloride (DODAC), N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethyl. Ammonium chloride (DOTMA), dimethyldioctadecyl ammonium bromide (DDAB), N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium methyl sulfate (DOTAP), 3β- [N -(N ', N'-dimethylaminoethane) -carbamoyl] cholesterol (DC-Chol), (1,2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE), dioctadecylamide glycylspermine ( DOGS), N, N-dimethyl- (2,3-dioleyl) Alkoxy) propylamine (DODMA), 1,2-dioleoyl-3-dimethylammonium propane (DODAP), specific examples of. Cationic polysaccharides stearylamine and the like and chitosan.
 アニオン性リポソーム(以下、負荷電リポソームともいう。)とは、リン脂質を主成分とする脂質二重層からなる小胞であって、外界と接する表面が負電荷を帯びているものをいう。リン脂質として、ホスファチジルコリン、スフィンゴミエリン、ホスファチジルエタノールアミン、ホスファチジルセリン等を使用することができる。脂質二重膜を構成する他の成分として、コレステロール等のリン脂質以外の脂質、糖、タンパク質等を使用することができる。 Anionic liposomes (hereinafter also referred to as negatively charged liposomes) are vesicles composed of a lipid bilayer mainly composed of phospholipids, and have a negative surface on the surface in contact with the outside world. As the phospholipid, phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, phosphatidylserine and the like can be used. As other components constituting the lipid bilayer membrane, lipids other than phospholipids such as cholesterol, sugars, proteins and the like can be used.
 アニオン性リポソームは、例えば、アニオン性脂質又はアニオン性多糖類を含むことができる。アニオン性脂質としては、例えば、ステアリン酸、オレイン酸、パルミチン酸等の脂肪酸;ドデシル硫酸、ヘキサデシル硫酸等のアルキル硫酸が挙げられる。アニオン性多糖類としては、例えば、カラギーナン、デキストラン硫酸等が挙げられる。 Anionic liposomes can contain, for example, anionic lipids or anionic polysaccharides. Examples of the anionic lipid include fatty acids such as stearic acid, oleic acid, and palmitic acid; and alkyl sulfuric acids such as dodecyl sulfate and hexadecyl sulfate. Examples of the anionic polysaccharide include carrageenan and dextran sulfate.
 また、流動性を調節するために、リポソームにコレステロール等のリン脂質以外の脂質を含有してもよい。リン脂質以外の脂質を含有することにより、リポソームの脂質二重膜の流動性を調節することができる。リン脂質以外の脂質の含有量は、リポソームの膜の安定性を調節できる観点から、リポソーム全体の質量を基準として、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、5~20質量%であることが好ましい。 In addition, in order to adjust fluidity, the liposome may contain lipids other than phospholipids such as cholesterol. By containing lipids other than phospholipids, the fluidity of the lipid bilayer membrane of the liposome can be adjusted. The content of lipids other than phospholipids is preferably 50% by mass or less, more preferably 30% by mass or less, based on the mass of the whole liposome, from the viewpoint of adjusting the stability of the liposome membrane. The content is preferably 5 to 20% by mass.
 運搬媒体として用いられるリポソームは、複数の層構造を有していてもよい。図16に示す運搬媒体1600は、最外層1601及び内層リポソーム1602の二層から形成されている。内層リポソーム1602は、微生物活性調節物質1603を内包する。運搬媒体1600は三層以上の層構造を有していてもよく、その場合、例えば、内層リポソーム1602内に、微生物活性調節物質を内包するリポソーム層が形成され得る。 Liposomes used as a transport medium may have a plurality of layer structures. A transport medium 1600 shown in FIG. 16 is formed of two layers, an outermost layer 1601 and an inner layer liposome 1602. Inner layer liposome 1602 contains microbial activity regulating substance 1603. The carrier medium 1600 may have a layer structure of three or more layers. In that case, for example, a liposome layer enclosing a microbial activity regulating substance may be formed in the inner layer liposome 1602.
 微生物活性調節物質1603としては、細胞間情報伝達物質(シグナル物質)、原核生物の活性に影響を与える核酸、原核生物の活性に影響を与えるタンパク質等が挙げられる。これらは1種類を単独で又は複数種類を組み合わせて使用することができる。微生物活性調節物質は、微生物の活性を向上させる物質であっても、微生物の活性を低下させる物質であってもよい。 Examples of the microbial activity regulating substance 1603 include intercellular information transmission substances (signal substances), nucleic acids that affect the activity of prokaryotes, proteins that affect the activity of prokaryotes, and the like. These can be used alone or in combination of two or more. The microbial activity regulating substance may be a substance that improves the activity of the microorganism or a substance that decreases the activity of the microorganism.
 上記運搬媒体1600は最外層1601がリポソームで形成されているため、水環境中でも容易に拡散して微生物まで送達する。上記運搬媒体1600の最外層1601が壊れて内容物が放出しても、微生物活性調節物質1603は内層リポソーム1602に内包されている。そのため、微生物活性調節物質が微生物の分解作用を直接受けることを避けられる。その結果、微生物活性調節物質の送達効率が向上する。 Since the outermost layer 1601 is formed of liposomes, the carrier medium 1600 is easily diffused and delivered to microorganisms even in an aqueous environment. Even if the outermost layer 1601 of the transport medium 1600 is broken and the contents are released, the microbial activity regulating substance 1603 is encapsulated in the inner layer liposome 1602. Therefore, it can be avoided that the microbial activity regulating substance is directly subjected to the microbial degradation action. As a result, the delivery efficiency of the microbial activity regulator is improved.
 図17に、本発明の別の実施形態に係る運搬媒体1700の模式図を示す。図17に示した運搬媒体1700は、最外層1701が微生物活性調節物質1704を内包する点以外は、図16に示した運搬媒体と同じである。微生物活性調節物質1703及び微生物活性調節物質1704は同一物質であってもよく異なる物質であってもよい。 FIG. 17 shows a schematic diagram of a transport medium 1700 according to another embodiment of the present invention. The carrying medium 1700 shown in FIG. 17 is the same as the carrying medium shown in FIG. 16 except that the outermost layer 1701 contains the microbial activity regulating substance 1704. The microbial activity regulating substance 1703 and the microbial activity regulating substance 1704 may be the same substance or different substances.
 最外層1701が微生物活性調節物質1704を内包することにより、内層リポソーム1702に内包される微生物活性調節物質1703の放出のタイミングをずらすことが可能となる。最外層1701が壊れることにより又は微生物の細胞膜と融合することにより、微生物活性調節物質1704及び内層リポソーム1702が放出される。その後、内層リポソーム1702が壊れることにより又は微生物の細胞膜と融合することにより、微生物活性調節物質1703が放出される。最外層1701及び内層リポソーム1702が壊れるタイミングが異なることから、それぞれが内包する微生物活性調節物質1704及び微生物活性調節物質1703の放出のタイミングも異なってくる。 When the outermost layer 1701 encloses the microbial activity regulating substance 1704, the release timing of the microbial activity regulating substance 1703 encapsulated in the inner layer liposome 1702 can be shifted. When the outermost layer 1701 is broken or fused with the cell membrane of the microorganism, the microbial activity regulating substance 1704 and the inner layer liposome 1702 are released. Thereafter, the inner layer liposome 1702 is broken or fused with the cell membrane of the microorganism, whereby the microbial activity regulating substance 1703 is released. Since the outermost layer 1701 and the inner layer liposome 1702 are broken at different timings, the release timings of the microbial activity regulating substance 1704 and the microbial activity regulating substance 1703 contained therein are also different.
 微生物活性調節物質1703及び微生物活性調節物質1704を同一物質とすることで、微生物に同一物質を長時間作用させることが可能である。また、運搬媒体当たりの微生物活性調節物質の量を増加させることができ、微生物により多くの量の微生物活性調節物質を送達することが可能である。微生物活性調節物質1703及び微生物活性調節物質1704を異なる物質とすることで、微生物の異なる部位に異なる物質をそれぞれ作用させることが可能である。 By making the microbial activity regulating substance 1703 and the microbial activity regulating substance 1704 the same substance, the same substance can be allowed to act on the microorganism for a long time. In addition, the amount of the microbial activity modulator per carrier medium can be increased, and a larger amount of the microbial activity modulator can be delivered to the microorganism. By making the microbial activity regulating substance 1703 and the microbial activity regulating substance 1704 different, it is possible to cause different substances to act on different parts of the microorganism.
 図18に、本発明のさらに別の実施形態に係る運搬媒体1800の模式図を示す。図18に示した運搬媒体1800は、最外層1801であるリポソームの脂質二重層内部に微生物活性調節物質1804を内包し、内層リポソーム1802の脂質二重層内部に微生物活性調節物質1803を内包する。微生物活性調節物質1803及び微生物活性調節物質1804は同一物質であってもよく異なる物質であってもよい。 FIG. 18 shows a schematic diagram of a transport medium 1800 according to still another embodiment of the present invention. A transport medium 1800 shown in FIG. 18 encloses a microbial activity-regulating substance 1804 inside the lipid bilayer of the liposome which is the outermost layer 1801, and encloses a microbial activity-regulating substance 1803 inside the lipid bilayer of the inner-layer liposome 1802. The microbial activity regulating substance 1803 and the microbial activity regulating substance 1804 may be the same substance or different substances.
 微生物活性調節物質1803及び1804の水溶性が高い場合には、図16及び17のようにリポソームの小胞内に取り込まれ、微生物活性調節物質1803及び1804の水溶性が低い(疎水性が高い)場合には、図18のようにリポソームの脂質二重層内部に取り込まれる。このように、本発明の運搬媒体は、水溶性微生物活性調節物質及び疎水性微生物活性調節物質のいずれであっても、微生物に効率よく運搬することが可能である。 When the water solubility of the microbial activity regulators 1803 and 1804 is high, they are taken into liposome vesicles as shown in FIGS. 16 and 17, and the microbial activity regulators 1803 and 1804 are low in water solubility (highly hydrophobic). In some cases, it is incorporated into the lipid bilayer of the liposome as shown in FIG. As described above, the transport medium of the present invention can be efficiently transported to microorganisms regardless of whether it is a water-soluble microbial activity regulator or a hydrophobic microbial activity regulator.
 微生物活性調節物質1803を内包する内層リポソーム1802は、公知のリポソームの作成方法と同様であり、例えばバンガム(Bangham)法を利用することができる。具体的には、リン脂質等のリポソームの構成要素、及び微生物用活性調節剤1803をクロロホルム等の有機溶媒に溶解し、有機溶媒を留去し脂質薄膜を得る。そこに水を加えて、超音波処理又はボルテックスミキサーを用いて水和分散させることで、微生物活性調節物質1803を内包する内層リポソーム1802が得られる。リポソームの別の作成方法である、逆相蒸発法、エタノール注入法、エーテル蒸発法等を利用してもよい。 The inner-layer liposome 1802 enclosing the microbial activity-regulating substance 1803 is the same as the known method for producing liposomes, and for example, the Bangham method can be used. Specifically, liposome constituents such as phospholipids and microbial activity regulator 1803 are dissolved in an organic solvent such as chloroform, and the organic solvent is distilled off to obtain a lipid thin film. Water is added thereto, and hydrated and dispersed using ultrasonic treatment or a vortex mixer, whereby inner-layer liposomes 1802 enclosing the microbial activity-regulating substance 1803 are obtained. Other methods for producing liposomes, such as reverse phase evaporation, ethanol injection, and ether evaporation, may be used.
 このようにして得た内層リポソーム1802を、公知の方法で最外層1801であるリポソーム又は生分解性ポリマーに取り込むことで、運搬媒体1800を製造することが可能である。 The transport medium 1800 can be produced by incorporating the inner-layer liposome 1802 thus obtained into the liposome or biodegradable polymer that is the outermost layer 1801 by a known method.
 最外層1801がリポソームである場合、リポソームの製造条件を制御することにより、微生物活性調節物質1803を内包する内層リポソーム1802を包含するリポソームである運搬媒体1800を製造することが可能である。 In the case where the outermost layer 1801 is a liposome, it is possible to manufacture a transport medium 1800 that is a liposome including the inner layer liposome 1802 enclosing the microbial activity regulating substance 1803 by controlling the manufacturing conditions of the liposome.
 ミセルとは、両親媒性化合物が球状に集合したものである。ミセルにおいて、両親媒性化合物の親油性部分は球の中心部を向き、親水性部分は球の外側を向いて集合している。このため、ミセルは、疎水性の物質を取り込んで水に溶解させることができる。両親媒性化合物としては、親水性ポリマー(ポリエチレングリコール等)と疎水性ポリマー(ポリアミノ酸等)との共重合体等が挙げられる。 Micelle is a collection of amphiphilic compounds in a spherical shape. In micelles, the lipophilic part of the amphiphilic compound is gathered toward the center of the sphere and the hydrophilic part is gathered towards the outside of the sphere. For this reason, the micelle can take in a hydrophobic substance and dissolve it in water. Examples of the amphiphilic compound include a copolymer of a hydrophilic polymer (such as polyethylene glycol) and a hydrophobic polymer (such as polyamino acid).
 エマルションとは、混じり合わない二つの液体のうち、一方が微細な液滴となって他方の相の中に分散したものである。疎水性の物質を溶解した油相をエマルション化することで、微細な液滴として容易に水に拡散させることができる。油相としては、シクロヘキサン、ドデカン、酢酸エチル等が挙げられる。 Emulsion is one in which two liquids that do not mix together become fine droplets and are dispersed in the other phase. By emulsifying an oil phase in which a hydrophobic substance is dissolved, it can be easily diffused into water as fine droplets. Examples of the oil phase include cyclohexane, dodecane, and ethyl acetate.
 運搬媒体として使用可能なペプチド及びタンパク質としては、アルブミン、α1-酸性糖タンパク質、エラスチン等が挙げられる。タンパク質やペプチドは、特定の部位に対する親和性が高く、生物に取り込まれやすいため、運搬媒体として使用できる。 Examples of peptides and proteins that can be used as a transport medium include albumin, α1-acid glycoprotein, and elastin. Proteins and peptides can be used as transport media because they have high affinity for specific sites and are easily taken up by living organisms.
 運搬媒体として使用可能な金属ナノ粒子としては、金、銀、白金、銅、ニッケル、酸化鉄等が挙げられる。例えば、金ナノ粒子には、チオール基を介してポリエチレングリコール等の様々な化合物を結合させることができるため、様々な物質を付着させて運搬媒体として使用することができる。金属ナノ粒子は、市販のものを使用することができる。また、ナトリウムおよびカリウム、カルシウムのようなアルカリ金属、アルカリ土類金属に、ポリエチレングリコール等で化学修飾したクラウンエーテル、アザクラウンエーテル(例えば、サイクレン)またはポルフィリン等を用いてもよい。 Examples of metal nanoparticles that can be used as a transport medium include gold, silver, platinum, copper, nickel, and iron oxide. For example, since various compounds such as polyethylene glycol can be bonded to gold nanoparticles through a thiol group, various substances can be attached and used as a transport medium. Commercially available metal nanoparticles can be used. In addition, crown ether, azacrown ether (for example, cyclen), porphyrin, or the like that is chemically modified with polyethylene glycol or the like on an alkali metal or alkaline earth metal such as sodium, potassium, or calcium may be used.
 運搬媒体として使用可能なカーボンナノチューブとしては、単層カーボンナノチューブ、多層カーボンナノチューブ等が挙げられる。カーボンナノチューブの有する疎水的性質や、内部に空間を有することを利用して、物質を付着させて運搬媒体として使用することができる。カーボンナノチューブは、市販のものを使用することができる。 Examples of carbon nanotubes that can be used as a transport medium include single-walled carbon nanotubes and multi-walled carbon nanotubes. By utilizing the hydrophobic properties of carbon nanotubes and the space inside, it is possible to attach a substance and use it as a transport medium. A commercially available carbon nanotube can be used.
 フラーレンは、多数の炭素原子で構成される球状の物質である。運搬媒体として使用可能なフラーレンとしては、炭素数が60のC60フラーレン及び炭素数が70、74等の高次フラーレンが挙げられる。フラーレンに共有結合等で様々な物質を付着させて、運搬媒体として使用することができる。 Fullerene is a spherical substance composed of many carbon atoms. Examples of fullerene that can be used as a transport medium include C 60 fullerene having 60 carbon atoms and higher-order fullerene having 70, 74 carbon atoms and the like. Various substances can be attached to fullerenes by covalent bonds or the like and used as a transport medium.
 運搬媒体として使用可能な第1のポリマーとしては、ポリエチレンイミン、ポリアミドアミン、ポリエチレングリコール等が挙げられる。これらのポリマーは、物質との相互作用により、内部に物質を安定して保持することができるため、運搬媒体として使用することができる。また、微生物の存在する環境内で安定して維持できることも特徴である。 Examples of the first polymer that can be used as a transport medium include polyethyleneimine, polyamidoamine, and polyethylene glycol. These polymers can be used as a transport medium because they can stably hold a substance inside by interaction with the substance. It is also characterized by being able to be stably maintained in an environment where microorganisms are present.
 上記第1のポリマーは、ハイドロゲル、ナノスフェア、マイクロスフェア又はデンドリマーの形状であってもよい。これらのポリマーは、立体的な構造を形成するため、運搬媒体として適している。 The first polymer may be in the form of a hydrogel, nanosphere, microsphere, or dendrimer. Since these polymers form a three-dimensional structure, they are suitable as a carrier medium.
 第1のポリマーとしては、生分解性ポリマーを用いることができる。図16に示すリポソームの例と同様に二層構造とする場合、生分解性ポリマーを運搬媒体の運搬媒体の最外層として利用することによって、微生物が存在する水環境中に微生物活性調節物質を拡散させることができる。運搬媒体の最外層が生分解性ポリマーで形成されているため、水環境中でも容易に拡散して微生物まで送達することができる。また、運搬媒体の最外層が壊れて内容物が放出しても、微生物活性調節物質は内層リポソームに内包されている。そのため、微生物活性調節物質が微生物の分解作用を直接受けることを避けられる。その結果、微生物活性調節物質の送達効率が向上する。 A biodegradable polymer can be used as the first polymer. In the case of a bilayer structure similar to the example of the liposome shown in FIG. 16, the biodegradable polymer is used as the outermost layer of the transport medium of the transport medium, thereby diffusing the microbial activity regulator in the water environment where the microbes are present. Can be made. Since the outermost layer of the carrier medium is formed of a biodegradable polymer, it can be easily diffused and delivered to microorganisms even in an aqueous environment. Even if the outermost layer of the transport medium is broken and the contents are released, the microbial activity regulating substance is encapsulated in the inner layer liposome. Therefore, it can be avoided that the microbial activity regulating substance is directly subjected to the microbial degradation action. As a result, the delivery efficiency of the microbial activity regulator is improved.
 生分解性ポリマーとして、デンプン、アルギン酸、セルロース、キチン、キトサン、ゼラチン、コラーゲン等が利用できる。生分解性ポリマーはそのまま利用することができ、硬化剤を用いてマイクロスフェア又はゲルの形態で利用することもできる。また、生分解性ポリマーを用いて図16~18に示すような複数の層構造を形成させて用いてもよい。最外層を生分解性ポリマーとすることで、微生物活性調節物質の放出タイミングを調節しやすい傾向がある。 As the biodegradable polymer, starch, alginic acid, cellulose, chitin, chitosan, gelatin, collagen, etc. can be used. The biodegradable polymer can be used as it is, and can also be used in the form of microspheres or gels using a curing agent. Further, a plurality of layer structures as shown in FIGS. 16 to 18 may be formed using a biodegradable polymer. By making the outermost layer a biodegradable polymer, the release timing of the microbial activity regulator tends to be easily adjusted.
 ハイドロゲルとは、ポリマーが架橋して3次元の網目構造が形成されたものであり、内部に多量の水を取り込んでいる。したがって、内部の水の中に物質を内包させることができる。具体的なハイドロゲルとしては、例えば、ゼラチン、カルボキシメチルセルロース、コラーゲン、アルギン酸、アクリルアミド、ポリビニルアルコールが挙げられる。 Hydrogel is a polymer that is cross-linked to form a three-dimensional network structure, and a large amount of water is taken inside. Therefore, the substance can be included in the internal water. Specific examples of the hydrogel include gelatin, carboxymethylcellulose, collagen, alginic acid, acrylamide, and polyvinyl alcohol.
 ポリマーで構成される球状の物質で、直径が1μm以下のものをナノスフェアといい、直径が数μmのものをマイクロスフェアという。ポリマーと物質との相互作用によりナノスフェア・マイクロスフェアに物質を内包させることができる。具体的なナノスフェア・マイクロスフェアとしては、例えば、ポリグリコール酸、ポリ乳酸、乳酸グリコール酸共重合体が挙げられる。 A spherical substance composed of a polymer having a diameter of 1 μm or less is called a nanosphere, and a substance having a diameter of several μm is called a microsphere. Substances can be encapsulated in nanospheres and microspheres by the interaction between the polymer and the substance. Specific examples of the nanosphere / microsphere include polyglycolic acid, polylactic acid, and lactic acid glycolic acid copolymer.
 デンドリマーは、規則的に分岐した構造の粒径数nm程度の球状ポリマーである。疎水性相互作用またはイオン相互作用により内部の空間に物質を保持し、運搬することができる。構造が分子レベルで制御でき、表面に多くの官能基が存在しているため、機能化に有利である。具体的なデンドリマーとしては、例えば、ポリアミドアミンデンドリマー、ポリプロピレンイミンデンドリマー、ポリリシンデンドリマー、ポリフェニルエーテルデンドリマーが挙げられる。 Dendrimer is a spherical polymer having a regularly branched structure and a particle size of about several nanometers. Substances can be held and transported in the internal space by hydrophobic interaction or ionic interaction. Since the structure can be controlled at the molecular level and many functional groups exist on the surface, it is advantageous for functionalization. Specific examples of the dendrimer include a polyamidoamine dendrimer, a polypropyleneimine dendrimer, a polylysine dendrimer, and a polyphenyl ether dendrimer.
(微生物用活性調節剤の調製方法)
 微生物用活性調節剤は、微生物活性調節物質及び運搬媒体を含む。運搬媒体としてリポソームを用いる場合、微生物用活性調節剤は、例えば次のようにして調製することができる。まず、有機溶媒に溶解したリン脂質を微生物活性調節物質の溶解液と混合する。続いて、有機溶媒を除去した後、精製水を加え、リン脂質の相転移温度以上の温度となるように加温する。これにより、リポソームを作製することができる。この時、微生物活性調節物質が脂溶性物質の場合は、図6(a)のように脂質二重膜の内部に疎水性相互作用により取り込まれ、水溶性物質の場合は、図6(b)のように脂質二重膜の内側に形成される内水相に取り込まれる。
(Method for preparing microorganism activity regulator)
The microorganism activity regulator includes a microorganism activity regulator and a transport medium. When liposomes are used as the carrier medium, the activity regulator for microorganisms can be prepared, for example, as follows. First, a phospholipid dissolved in an organic solvent is mixed with a microbial activity-regulating substance solution. Subsequently, after removing the organic solvent, purified water is added and heated to a temperature equal to or higher than the phase transition temperature of the phospholipid. Thereby, a liposome can be produced. At this time, when the microbial activity-regulating substance is a fat-soluble substance, it is taken into the inside of the lipid bilayer by hydrophobic interaction as shown in FIG. Thus, it is taken into the inner aqueous phase formed inside the lipid bilayer membrane.
 運搬媒体としてベシクルを用いる場合、微生物用活性調節剤は、例えば微生物を利用して調製することもできる。目的の微生物活性調節物質をベシクルの形態で分泌する微生物を培地中で培養すると、培養物中に微生物活性調節物質を内包したベシクルが分泌される。このベシクルを微生物用活性調節剤として用いることができる。微生物活性調節物質を内包したベシクルは、上記の培養物から精製して用いてもよいし、上記の培養物を、精製することなく微生物用活性調節剤として使用してもよい。微生物活性調節物質をベシクルの形態で分泌する微生物としては、パラコッカス、シュードモナス等が挙げられる。 When vesicles are used as the transport medium, the activity regulator for microorganisms can be prepared using, for example, microorganisms. When a microorganism that secretes the target microbial activity regulating substance in the form of a vesicle is cultured in the medium, the vesicle encapsulating the microbial activity regulating substance in the culture is secreted. This vesicle can be used as a microorganism activity regulator. The vesicle encapsulating the microbial activity regulator may be used after being purified from the above culture, or the above culture may be used as a microbial activity regulator without purification. Examples of microorganisms that secrete microbial activity-regulating substances in the form of vesicles include Paracoccus and Pseudomonas.
 微生物活性調節物質を内包するカチオン性リポソームの作成方法は、公知のリポソームの作成方法と同様であり、例えばバンガム(Bangham)法を利用することができる。具体的には、リン脂質等のカチオン性リポソームの構成要素をクロロホルム等の有機溶媒に溶解し、有機溶媒を留去し脂質薄膜を得る。そこに微生物用活性調節剤及び水を加えて、超音波処理又はボルテックスミキサーを用いて水和分散させることで、微生物活性調節物質を内包するカチオン性リポソームが得られる。リポソームの別の作成方法である、逆相蒸発法、エタノール注入法、エーテル蒸発法等を利用してもよい。 The method for producing a cationic liposome encapsulating a microbial activity-regulating substance is the same as the method for producing a known liposome, and for example, the Bangham method can be used. Specifically, constituent components of cationic liposomes such as phospholipids are dissolved in an organic solvent such as chloroform, and the organic solvent is distilled off to obtain a lipid thin film. A microbial activity regulator and water are added thereto and hydrated and dispersed using an ultrasonic treatment or a vortex mixer to obtain a cationic liposome encapsulating a microbial activity regulator. Other methods for producing liposomes, such as reverse phase evaporation, ethanol injection, and ether evaporation, may be used.
 運搬媒体としてミセルを用いる場合、例えば、両親媒性化合物と微生物活性調節物質との疎水性相互作用や静電相互作用によってミセルを形成させることにより、微生物用活性調節剤を調製することができる。このとき、図7に示すように、ミセルは、疎水性物質である微生物活性調節物質703を中心として、疎水性基702を内側、親水性基701を外側に向けて球状のミセルを形成し、水に溶解させることができる。 When micelles are used as the transport medium, for example, an activity regulator for microorganisms can be prepared by forming micelles by hydrophobic interaction or electrostatic interaction between an amphiphilic compound and a microorganism activity regulator. At this time, as shown in FIG. 7, the micelle forms a spherical micelle with the microbial activity regulating substance 703 that is a hydrophobic substance as the center, the hydrophobic group 702 facing inside, and the hydrophilic group 701 facing outside. Can be dissolved in water.
 運搬媒体としてエマルションを用いる場合、例えば、微生物活性調節物質を溶解した油相に界面活性剤を添加して水中に分散させることで調製することができる。 When an emulsion is used as the transport medium, it can be prepared, for example, by adding a surfactant to an oil phase in which a microbial activity regulator is dissolved and dispersing it in water.
 運搬媒体としてペプチドやタンパク質を用いる場合、例えば、ペプチドやタンパク質と微生物活性調節物質とを疎水性相互作用またはイオン性相互作用等によって結合させることにより、微生物用活性調節剤を調製することができる。微生物活性調節物質が酸性または中性物質である場合はアルブミンを、塩基性物質である場合はα1-酸性糖タンパク質を用いることが好ましい。また、微生物活性調節物質は図8のように、タンパク質に取り込まれて運搬される。微生物活性調節物質802がペプチド又はタンパク質に取り込まれる態様は、タンパク質の3次元構造801の複数のヘリックス構造又はループ構造に包まれる態様でもよく、3次元構造の表面、特に凹部に付着する態様でもよい。 When a peptide or protein is used as a transport medium, for example, a microorganism activity regulator can be prepared by binding a peptide or protein and a microorganism activity regulator by hydrophobic interaction or ionic interaction. It is preferable to use albumin when the microbial activity-regulating substance is an acidic or neutral substance, and α1-acid glycoprotein when it is a basic substance. In addition, the microbial activity regulating substance is incorporated into a protein and transported as shown in FIG. The mode in which the microbial activity-regulating substance 802 is incorporated into the peptide or protein may be a mode in which the three-dimensional structure 801 of the protein is enclosed in a plurality of helix structures or loop structures, or a mode in which the microbial activity regulating substance 802 is attached to the surface of the three-dimensional structure, particularly a recess. .
 運搬媒体として金属ナノ粒子を用いる場合、例えば、図9に示すように金属粒子901に修飾基902のチオール基等を介して結合させた金属ナノ粒子と微生物活性調節物質903とを物理吸着させることにより、微生物用活性調節剤を調製することができる。 When metal nanoparticles are used as the transport medium, for example, as shown in FIG. 9, physical adsorption of the metal nanoparticles 901 bonded to the metal particles 901 via the thiol group of the modification group 902 and the microbial activity regulator 903 is performed. Thus, an activity regulator for microorganisms can be prepared.
 運搬媒体としてカーボンナノチューブを用いる場合、例えば、図10(a)に示すように、微生物活性調節物質1002を、カーボンナノチューブ1001の表面や内部に、疎水性相互作用、吸着作用等により付着させることにより、微生物用活性調節剤を調製することができる。また、微生物活性調節物質1002が親水性物質である場合には、図10(b)に示すようにカーボンナノチューブ1001の表面に外側に向けてポリエチレングリコールなどの鎖状の修飾基1003を共有結合させたカーボンナノチューブを用いて、調製することができる。 When carbon nanotubes are used as the transport medium, for example, as shown in FIG. 10A, a microbial activity regulating substance 1002 is adhered to the surface or inside of the carbon nanotubes 1001 by hydrophobic interaction, adsorption action, or the like. A microorganism activity regulator can be prepared. When the microbial activity regulating substance 1002 is a hydrophilic substance, a chain-like modifying group 1003 such as polyethylene glycol is covalently bonded to the surface of the carbon nanotube 1001 outward as shown in FIG. Carbon nanotubes can be used.
 運搬媒体としてフラーレンを用いる場合、微生物活性調節物質1102が疎水性物質であれば、図11(a)に示すようにフラーレン1101の側面に疎水性相互作用等によって付着させることができ、またフラーレンに内包させることもできる。また、微生物調節物質1102が親水性物質であれば、図11(b)に示すように、フラーレンの3次元構造の表面から外側に向けてポリエチレングリコールなどの鎖状の修飾基1102を共有結合させたフラーレン1101を用いて、調製することができる。 When fullerene is used as the transport medium, if the microbial activity-regulating substance 1102 is a hydrophobic substance, it can be attached to the side surface of the fullerene 1101 by hydrophobic interaction or the like as shown in FIG. It can also be included. Further, if the microorganism regulating substance 1102 is a hydrophilic substance, as shown in FIG. 11B, a chain-like modifying group 1102 such as polyethylene glycol is covalently bonded from the surface of the fullerene three-dimensional structure to the outside. The fullerene 1101 can be prepared.
 運搬媒体として第1のポリマーを用いる場合、図12に示すように、例えば、第1のポリマー1201と微生物活性調節物質1202とを、疎水的相互作用等によって結合させることにより、微生物用活性調節剤を調製することができる。 When the first polymer is used as the transport medium, as shown in FIG. 12, for example, the first polymer 1201 and the microbial activity regulator 1202 are bonded by a hydrophobic interaction or the like, thereby microbial activity regulator. Can be prepared.
 第1のポリマーがハイドロゲルである場合には、微生物活性調節物質を溶解又は分散させた溶媒中でハイドロゲルを膨潤させることにより、図13に示すように、第1のポリマー1301の網目構造中に溶媒1303を保持させ、溶媒1303に微生物活性調節物質1302を溶解させて、微生物用活性調節剤を調製することができる。 When the first polymer is a hydrogel, the hydrogel is swollen in a solvent in which a microbial activity regulator is dissolved or dispersed, so that the first polymer 1301 has a network structure as shown in FIG. The microorganism 130 may be held in the solvent 1303 and the microorganism 130 may be dissolved in the solvent 1303 to prepare a microorganism activity regulator.
 第1のポリマーがナノスフェア・マイクロスフェアである場合には、以下のようにして微生物用活性調節剤を調製することができる。溶媒中で微生物活性調節物質とナノスフェア・マイクロスフェアを混合することにより、図14に示すように、ナノスフェア・マイクロスフェア1401と微生物活性調節物質1402との相互作用により、微生物活性調節物質をナノスフェア・マイクロスフェアに内包させることができる。 When the first polymer is nanosphere / microsphere, the activity regulator for microorganisms can be prepared as follows. By mixing the microbial activity regulator and the nanosphere / microsphere in a solvent, as shown in FIG. 14, the microbial activity regulator is converted into the nanosphere / microsphere by the interaction between the nanosphere / microsphere 1401 and the microbial activity regulator 1402. Can be included in the sphere.
 第1のポリマーがデンドリマーである場合には、図15に示すように、溶媒中で微生物活性調節物質1502とデンドリマー1501を混合することにより、デンドリマーと微生物活性調節物質との疎水性相互作用、イオン相互作用によりデンドリマーの内部の空間に微生物活性調節物質を保持することができる。また、微生物活性調節物質は、デンドリマーに化学結合させたものでもよい。デンドリマーに化学結合された微生物活性調節物質は、デンドリマーの分解等に伴って放出される。 When the first polymer is a dendrimer, as shown in FIG. 15, by mixing the microbial activity regulator 1502 and the dendrimer 1501 in a solvent, the hydrophobic interaction between the dendrimer and the microbial activity regulator, ions A microbial activity regulating substance can be retained in the internal space of the dendrimer by the interaction. Further, the microbial activity regulating substance may be chemically bonded to a dendrimer. The microbial activity regulator chemically bonded to the dendrimer is released as the dendrimer is decomposed.
(運搬媒体の修飾)
 上記運搬媒体は、糖鎖、抗体又は第2のポリマーで修飾されていてもよい。運搬媒体がこれらの物質で修飾されていることにより、上記の微生物用活性調節剤を選択的に特定の抗原を有する微生物に送達したり、微生物用活性調節剤の残存性を調節することが可能になる。運搬媒体を修飾する糖鎖としては、オリゴ糖、ガラクトース、フコース等が挙げられる。また、運搬媒体を修飾する抗体としては、リポ多糖、鞭毛、莢膜、線毛等を抗原とするものが挙げられる。また、運搬媒体を修飾する第2のポリマーとしては、ポリエチレングリコール、ポリエチレンイミン、ポリアミドアミン等が挙げられる。運搬媒体を修飾する第2のポリマーは、ハイドロゲル、ナノスフェア、マイクロスフェア又はデンドリマーの形状であってもよい。
(Modification of transport medium)
The carrier medium may be modified with a sugar chain, an antibody, or a second polymer. By modifying the carrier medium with these substances, it is possible to selectively deliver the above-mentioned microbial activity regulator to microorganisms having a specific antigen, or to control the persistence of the microbial activity regulator. become. Examples of the sugar chain that modifies the transport medium include oligosaccharide, galactose, and fucose. Examples of the antibody that modifies the transport medium include those that use lipopolysaccharide, flagella, capsule, pili and the like as antigens. In addition, examples of the second polymer that modifies the transport medium include polyethylene glycol, polyethyleneimine, and polyamidoamine. The second polymer that modifies the delivery medium may be in the form of a hydrogel, nanosphere, microsphere, or dendrimer.
(運搬媒体の修飾方法)
 運搬媒体を糖鎖、抗体又は第2のポリマーで修飾する方法としては、例えば、化学架橋剤を用いて、運搬媒体を構成する分子に、糖鎖、抗体又は第2のポリマーを結合させる方法が挙げられる。化学架橋剤としては、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)、N-ヒドロキシスクシンイミド(NHS)、スクシンイミジル-4-(N-マレイミドメチル)シクロヘキサン-1-カルボキシレート(SMCC)等が挙げられる。
(Transportation medium modification method)
As a method for modifying the transport medium with a sugar chain, an antibody or a second polymer, for example, a method of binding a sugar chain, an antibody or a second polymer to a molecule constituting the transport medium using a chemical crosslinking agent. Can be mentioned. Chemical crosslinking agents include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), succinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC).
(微生物の活性を調節する方法)
 上記の微生物用活性調節剤を微生物に投与することにより、微生物の活性を調節することができる。ここで、微生物活性とは、微生物が特定の物質(汚濁物質)を分解する活性をいう。微生物活性の向上とは、単位量の微生物が特定の汚濁物質を分解する能力が向上することをいう。また、微生物活性の低下とは、単位量の微生物が特定の汚濁物質を分解する能力が低下することをいう。汚濁物質としては、グルコース、マルトースなどの糖;メタノールなどのアルコール;ホルムアルデヒドなどのアルデヒド;厨芥などの有機性固形物;でんぷん、タンパク質、アンモニア、硝酸塩、ジメチルスルホキシド(DMSO)等が挙げられる。特に、アンモニアを硝酸塩に分解する微生物活性を硝化活性といい、硝酸塩を窒素に分解する微生物活性を脱窒活性という。
(Method of regulating the activity of microorganisms)
By administering the above-mentioned microorganism activity regulator to a microorganism, the activity of the microorganism can be regulated. Here, the microbial activity refers to an activity in which a microorganism decomposes a specific substance (pollutant substance). Improvement of microbial activity means that the ability of a unit amount of microorganisms to decompose a specific pollutant is improved. In addition, a decrease in microbial activity means a decrease in the ability of a unit amount of microorganisms to decompose a specific pollutant. Examples of the pollutant include sugars such as glucose and maltose; alcohols such as methanol; aldehydes such as formaldehyde; organic solids such as straw; starch, protein, ammonia, nitrate, dimethyl sulfoxide (DMSO) and the like. In particular, microbial activity that decomposes ammonia into nitrate is called nitrification activity, and microbial activity that decomposes nitrate into nitrogen is called denitrification activity.
 上記の微生物用活性調節剤が有効に作用する微生物としては、ビブリオ、アエロモナス、ストレプトマイセス、ストレプトコッカス、ラクトバチルス、アルカリゲネス属(Alcaligenes)、ラルストニア(Ralstonia)、アクロモバクター属(Achromobacter)、ハロモナス(Halomonas)、バークホルデリア属(Burkholderia)、シュードモナス(Pseudomonas)、ロドバクター(Rhodobacter)、パラコッカス(Paracoccus)、スフィンゴバクテリウム属(Sphingobacterium)フラボバクテリウム(Flavobacterium)アシドバクテリウム属(Acidobacterium)、バチルス属(Bacillus)、アエロバクター属(Aerobacter)、ブレビバクテリウム属(Brevibacterium)、コリネバクテリウム属(Corynebacterium)、コマモナス属(Comamonas)、ミクロコッカス属(Micrococcus)、スピリラム属(Spirillum)、ズーグレア属(Zoogloea)、クロストリジウム属(Clostridium)、デハロコッカス属(Dehalococcoides)、アミノモナス属(Aminomonas)、ジオバクター属(Geobacter)、デサルホモナス属(Desulfuromonas)、デサルフォビブリオ属(Desulfovibrio)、シントロフォバクター属(Syntrophobacter)、スタフィロコッカス属(Staphylococcus)、メタノバクテリウム属(Methanobacterium)、メサノスピリラム属(Methanospirillum)、メサノサルシナ属(Methanosarcina)、メタノリネア属(Methanolinea)メタノブレビバクター属(Methanobrevibacter)、メタノサエタ属(Methanosaeta)等が挙げられる。 Examples of microorganisms to which the above activity regulator for microorganisms acts effectively include Vibrio, Aeromonas, Streptomyces, Streptococcus, Lactobacillus, Alcaligenes, Ralstonia, Achromobacter, and Halomonas ( Halomonas, Burkholderia, Pseudomonas, Rhodobacter, Paracoccus, Sphingobacterum, Flavobacterium, Flavobacterium Bacillus), Aerobacter, Brevibacterium, Corynebacterium, Comomanas, Micrococcus, Spirillum, Zogrelo e (Clostridium), Dehalococcoides, Aminomonas, Geobacter, Desulfuromonas, Desulfovibrio, Syntrobacter s. Sta hylococcus), Methanobacterium genus (Methanobacterium), Mesanosupiriramu genus (Methanospirillum), Mesanosarushina genus (Methanosarcina), Metanorinea genus (Methanolinea) meth knob Levi genus (Methanobrevibacter), include methanosaeta (Methanosaeta) or the like.
 上記の微生物の活性を調節する方法は、海洋構造物、パイプラインなど、バイオフィルム形成が影響する様々な対象に適用できる。例えば、微生物電池においてはアノード及びカソードに緻密なバイオフィルムを形成させる技術に応用できる。また、海洋構造物の大型生物付着防止のためにバイオフィルムを形成させる技術に応用できる。 The above-described method for regulating the activity of microorganisms can be applied to various objects such as marine structures and pipelines that are affected by biofilm formation. For example, in a microbial battery, it can be applied to a technique for forming a dense biofilm on an anode and a cathode. In addition, it can be applied to a technology for forming a biofilm to prevent the attachment of large organisms to offshore structures.
(生物学的排水処理設備の反応槽中に存在する微生物の活性を調節する方法)
 一実施形態において、上記の微生物用活性調節剤は、生物学的排水処理設備の反応槽中に存在する微生物用である。生物学的排水処理設備の反応槽に、上記の微生物用活性調節剤を添加することにより、反応槽中に存在する微生物の活性を向上又は低下させることができる。これにより、反応槽で行われる排水処理を促進させ、又は、必要に応じて抑制することができる。
(Method of adjusting the activity of microorganisms present in the reaction tank of biological wastewater treatment equipment)
In one embodiment, the above-mentioned activity regulator for microorganisms is for microorganisms present in a reaction vessel of a biological wastewater treatment facility. By adding the above-described activity regulator for microorganisms to the reaction tank of the biological wastewater treatment facility, the activity of microorganisms existing in the reaction tank can be improved or decreased. Thereby, the waste water treatment performed in the reaction tank can be promoted or suppressed as necessary.
 以下、生物学的排水処理設備について、図19~22を参照して、詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, the biological wastewater treatment facility will be described in detail with reference to FIGS. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
(生物学的排水処理設備1)
 図19は、生物学的排水処理設備1に係る活性汚泥処理装置を示す概略構成図である。図19に示すように、活性汚泥処理装置1900は、調整槽1901、曝気槽1902、及び固液分離手段1903を備える。
(Biological wastewater treatment facility 1)
FIG. 19 is a schematic configuration diagram showing an activated sludge treatment apparatus according to the biological wastewater treatment facility 1. As shown in FIG. 19, the activated sludge treatment apparatus 1900 includes an adjustment tank 1901, an aeration tank 1902, and solid-liquid separation means 1903.
 有機性排水は、有機性排水導入ラインL1を介してまず調整槽1901に投入され、浮遊物等を取り除いた後に、ラインL2を介して曝気槽1902に投入される。有機性排水を曝気槽1902に導入し曝気処理することで活性汚泥(好気性微生物)により有機物を分解し、水、炭酸ガス、硫酸塩、硝酸塩等の安定物質を生成すると共に汚泥を増殖させる。曝気槽1902において曝気処理された後の汚泥を含む処理水はラインL3を介して固液分離手段1903に導入される。固液分離手段1903では、汚泥と処理水とが固液分離され、分離処理水は処理水排出ラインL4から系外に排出されると共に、分離汚泥は返送汚泥として曝気槽1902に戻すべく汚泥返送ラインL5を介して返送し、分離汚泥の一部は余剰汚泥として汚泥排出ラインL6から外部に排出するように構成されている。固液分離手段1903は、ここでは、沈殿槽とされ、分離処理水を上澄みとし、分離汚泥を沈降汚泥としているが、固液分離できれば、例えば、膜分離装置や遠心分離装置等であっても良い。 The organic wastewater is first introduced into the adjustment tank 1901 via the organic wastewater introduction line L1, and after removing suspended matters and the like, is introduced into the aeration tank 1902 via the line L2. Organic waste water is introduced into the aeration tank 1902 and aerated to decompose organic matter by activated sludge (aerobic microorganisms), thereby generating stable substances such as water, carbon dioxide, sulfate, nitrate, and the like, and the sludge is propagated. Treated water containing sludge after being aerated in the aeration tank 1902 is introduced into the solid-liquid separation means 1903 via the line L3. In the solid-liquid separation means 1903, sludge and treated water are separated into solid and liquid, the separated treated water is discharged out of the system from the treated water discharge line L4, and the separated sludge is returned to the aeration tank 1902 as returned sludge. A part of the separated sludge is returned via the line L5, and is discharged to the outside from the sludge discharge line L6 as surplus sludge. Here, the solid-liquid separation means 1903 is a settling tank, and the separation treated water is the supernatant and the separation sludge is the sedimentation sludge. However, if solid-liquid separation is possible, for example, a membrane separation device or a centrifugal separation device may be used. good.
 ここで、生物学的排水処理設備1に係る活性汚泥処理装置1900では、曝気槽1902に対して細胞間情報伝達物質(シグナル物質)を投入するシグナル物質添加手段1904(添加手段)を備える。 Here, the activated sludge treatment apparatus 1900 according to the biological wastewater treatment facility 1 includes a signal substance addition means 1904 (addition means) for introducing an intercellular information transmission substance (signal substance) into the aeration tank 1902.
 シグナル物質添加手段1904によって添加されるシグナル物質は、例えば、運搬媒体によって内包された状態や、運搬媒体と結合して複合体を形成した状態であってもよい。シグナル物質を運搬する運搬媒体としては、例えば、ベシクル、リポソーム、ミセル、エマルション、ペプチド、タンパク質、金属ナノ粒子、カーボンナノチューブ、ポリマー等が挙げられる。これらは1種類を単独で又は複数種類を組み合わせて使用することができる。 The signal substance added by the signal substance addition means 1904 may be, for example, in a state of being encapsulated by a transport medium or in a state of being combined with the transport medium to form a complex. Examples of the transport medium for transporting the signal substance include vesicles, liposomes, micelles, emulsions, peptides, proteins, metal nanoparticles, carbon nanotubes, and polymers. These can be used alone or in combination of two or more.
 生物学的排水処理設備1に係る活性汚泥処理装置1900では、曝気槽1902に対して、シグナル物質添加手段1904によってシグナル物質を添加する際に、活性汚泥処理装置1900のうち少なくとも曝気槽1902の運転を停止させて、曝気槽1902内の活性汚泥が槽内下部に沈降した状態で、シグナル物質を活性汚泥に対して添加してもよい。 In the activated sludge treatment apparatus 1900 according to the biological wastewater treatment facility 1, when the signal substance is added to the aeration tank 1902 by the signal substance addition means 1904, at least the operation of the aeration tank 1902 in the activated sludge treatment apparatus 1900 is performed. The signal substance may be added to the activated sludge in a state where the activated sludge in the aeration tank 1902 has settled in the lower part of the tank.
 曝気槽1902内の下部に沈降した状態の活性汚泥は、曝気処理運転中の曝気槽1902内における活性汚泥の濃度よりもその濃度が高い。このように、通常運転中の曝気槽1902内の活性汚泥の濃度よりも濃度が高い状態にある活性汚泥に対してシグナル物質を添加する構成とすることで、より濃縮された活性汚泥に対してシグナル物質を添加することができる。これによって、シグナル物質を活性汚泥中の微生物に対して効果的に到達させることができるため、シグナル物質による微生物の活性の調節をより効率的に行うことができる。 The activated sludge that has settled in the lower part of the aeration tank 1902 has a higher concentration than the activated sludge concentration in the aeration tank 1902 during the aeration treatment operation. Thus, with a configuration in which the signal substance is added to the activated sludge in a state where the concentration is higher than the concentration of the activated sludge in the aeration tank 1902 during normal operation, the activated sludge is more concentrated. Signaling substances can be added. Accordingly, since the signal substance can be effectively reached with respect to the microorganisms in the activated sludge, the activity of the microorganisms by the signal substance can be regulated more efficiently.
 この点について、例えば、容積が1000mである曝気槽1902に対してシグナル物質を添加する場合について考える。ここでは、運転中の曝気槽1902においてシグナル物質を添加する場合には微生物の活性の調節を好適に行うためには、分子量が500MWであるシグナル物質を10μmol/L投与する必要があるとする。この場合、5kgのシグナル物質を曝気槽1902に添加する必要がある。これに対して、曝気槽1902の運転を停止して活性汚泥を自然沈降させることで、活性汚泥の体積が運転中に比べて30%となるまで小さくなったとする。この場合、沈降濃縮した活性汚泥に対して、シグナル物質を濃度が1μmol/Lとなるように投与すると仮定すると、シグナル物質は1.5kgで十分となり、より少ないシグナル物質によって、曝気槽1902で活動する微生物の活性の調節を行うことができる。 In this regard, for example, a case where a signal substance is added to an aeration tank 1902 having a volume of 1000 m 3 will be considered. Here, when a signal substance is added in the operating aeration tank 1902, it is assumed that a signal substance having a molecular weight of 500 MW needs to be administered at 10 μmol / L in order to suitably adjust the activity of the microorganism. In this case, 5 kg of the signal substance needs to be added to the aeration tank 1902. On the other hand, it is assumed that the operation of the aeration tank 1902 is stopped and the activated sludge is naturally settled, so that the volume of the activated sludge is reduced to 30% compared to that during operation. In this case, assuming that the signal substance is administered at a concentration of 1 μmol / L with respect to the activated sludge that has been concentrated by sedimentation, 1.5 kg of the signal substance is sufficient, and the less signal substance activates in the aeration tank 1902. It is possible to regulate the activity of microorganisms.
 なお、生物学的排水処理設備1では、曝気槽1902における曝気処理を停止してシグナル物質を添加する構成についても説明したが、曝気処理を完全に止めずに、例えば運転動力を低下させることで通常運転時に比べて活性汚泥が槽内下方に貯留するような状態とし、貯留した活性汚泥に対してシグナル物質を添加する構成とすることもできる。この場合であっても、シグナル物質をより効果的に微生物に作用させて活性を調節するという効果を得ることができる。 In the biological wastewater treatment facility 1, the configuration in which the aeration process in the aeration tank 1902 is stopped and the signal substance is added has been described. However, for example, by reducing the driving power without completely stopping the aeration process. It can also be set as the state where activated sludge is stored in the tank downward compared with the time of normal operation, and a signal substance is added with respect to the stored activated sludge. Even in this case, it is possible to obtain an effect of regulating the activity by causing the signal substance to act on the microorganism more effectively.
 なお、本発明では曝気槽にシグナル物質を添加する添加工程を備えることを特徴としているが、添加工程をどのように行うかについては、上記生物学的排水処理設備1の態様に限定されない。以下、生物学的排水処理設備2~4を用いて、添加工程に係る他の態様について説明する。 In addition, although it is characterized by providing the addition process which adds a signal substance to an aeration tank in this invention, it is not limited to the aspect of the said biological waste water treatment equipment 1 about how an addition process is performed. Hereinafter, other aspects of the addition process will be described using the biological wastewater treatment facilities 2 to 4.
(生物学的排水処理設備2)
 図20は、生物学的排水処理設備2に係る活性汚泥処理装置を示す概略構成図である。活性汚泥処理装置2000が生物学的排水処理設備1に係る活性汚泥処理装置1900と相違する点は以下の点である。すなわち、シグナル物質添加手段1904に代えて、シグナル物質添加手段2004,2014が設けられている点である。
(Biological wastewater treatment facility 2)
FIG. 20 is a schematic configuration diagram showing an activated sludge treatment apparatus according to the biological wastewater treatment facility 2. The activated sludge treatment apparatus 2000 is different from the activated sludge treatment apparatus 1900 according to the biological wastewater treatment facility 1 in the following points. That is, in place of the signal substance addition means 1904, signal substance addition means 2004 and 2014 are provided.
 シグナル物質添加手段2004は、固液分離手段1903によって固液分離された後の活性汚泥に対してシグナル物質を添加する構成を示している。固液分離後の活性汚泥は、曝気運転中の槽内の活性汚泥と比較して、濃縮されている。このような固液分離後の濃縮された活性汚泥は、返送ラインL5を経て曝気槽1902に返送されるので、固液分離手段1903において分離された活性汚泥に対してシグナル物質を添加することで、曝気処理運転中の曝気槽1902に対してシグナル物質を添加する構成と比較して、シグナル物質による微生物の活性の調節をより効率的に行うことができる。 The signal substance addition means 2004 shows a configuration in which a signal substance is added to the activated sludge after the solid-liquid separation by the solid-liquid separation means 1903. The activated sludge after solid-liquid separation is concentrated as compared with the activated sludge in the tank during the aeration operation. Since the concentrated activated sludge after such solid-liquid separation is returned to the aeration tank 1902 via the return line L5, a signal substance is added to the activated sludge separated in the solid-liquid separation means 1903. Compared with the configuration in which the signal substance is added to the aeration tank 1902 during the aeration treatment operation, the activity of the microorganisms by the signal substance can be adjusted more efficiently.
 また、シグナル物質添加手段2014は、固液分離手段1903によって固液分離された活性汚泥を曝気槽1902に返送するための返送ラインL5内を移動する活性汚泥に対してシグナル物質を添加する構成を示している。返送ラインL5内を移動する活性汚泥は、曝気運転中の槽内の活性汚泥と比較して、濃縮されている。返送ラインL5を経て曝気槽1902に返送される活性汚泥に対してシグナル物質を添加することで、曝気処理運転中の曝気槽1902に対してシグナル物質を添加する構成と比較して、シグナル物質による微生物の活性の調節をより効率的に行うことができる。 In addition, the signal substance adding unit 2014 is configured to add the signal substance to the activated sludge moving in the return line L5 for returning the activated sludge separated into the solid-liquid separation unit 1903 to the aeration tank 1902. Show. The activated sludge moving in the return line L5 is concentrated compared to the activated sludge in the tank during the aeration operation. By adding a signal substance to the activated sludge returned to the aeration tank 1902 via the return line L5, the signal substance is added to the configuration in which the signal substance is added to the aeration tank 1902 during the aeration treatment operation. The activity of the microorganism can be regulated more efficiently.
 なお、活性汚泥処理装置2000では、2つのシグナル物質添加手段2004,2014が設けられた構成を示しているが、シグナル物質添加手段2004,2014のうち一方のみを備えていればよい。そして、活性汚泥処理方法においてシグナル物質添加手段によりシグナル物質を添加する工程を備える態様とすることで、シグナル物質による微生物の活性の調節をより効率的に行うことができる。 In addition, although the activated sludge treatment apparatus 2000 shows a configuration in which two signal substance addition units 2004 and 2014 are provided, only one of the signal substance addition units 2004 and 2014 may be provided. And by setting it as the aspect provided with the process of adding a signal substance by a signal substance addition means in an activated sludge processing method, the regulation of the activity of microorganisms by a signal substance can be performed more efficiently.
(生物学的排水処理設備3)
 図21は、生物学的排水処理設備3に係る活性汚泥処理装置を示す概略構成図である。活性汚泥処理装置2100が生物学的排水処理設備1に係る活性汚泥処理装置1900と相違する点は以下の点である。すなわち、シグナル物質添加手段1904に代えて、返送ラインL5に沿って互いに異なる位置に複数のシグナル物質添加手段2104~2124が設けられている点である。
(Biological wastewater treatment facility 3)
FIG. 21 is a schematic configuration diagram showing an activated sludge treatment apparatus according to the biological wastewater treatment facility 3. The activated sludge treatment apparatus 2100 is different from the activated sludge treatment apparatus 1900 according to the biological wastewater treatment facility 1 in the following points. That is, instead of the signal substance adding means 1904, a plurality of signal substance adding means 2104 to 2124 are provided at different positions along the return line L5.
 また、シグナル物質添加手段2104~2124は、返送ラインL5に沿って、互いに異なる位置に設けられて、固液分離手段1903によって固液分離された活性汚泥を曝気槽1902に返送するための返送ラインL5内を移動する活性汚泥に対してシグナル物質を添加する機能を有する。また、シグナル物質添加手段2104~2124によるシグナル物質の添加量は互いに異なる構成とされている。図3では、その一例として、シグナル物質添加手段2104,2114,2124の順に添加量が増えていく構成を、矢印の大きさで示している。 Further, the signal substance addition means 2104 to 2124 are provided at different positions along the return line L5, and a return line for returning the activated sludge separated by the solid-liquid separation means 1903 to the aeration tank 1902. It has a function of adding a signal substance to the activated sludge moving in L5. Further, the addition amount of the signal substance by the signal substance addition means 2104 to 2124 is different from each other. In FIG. 3, as an example, the configuration in which the addition amount increases in the order of the signal substance addition means 2104, 2114, 2124 is indicated by the size of the arrow.
 このように、返送ラインL5に沿って互いに異なる位置に複数のシグナル物質添加手段2104~2124を設けることで、返送ラインL5内を移動する曝気槽1902内の運転中における濃度よりも高濃度の活性汚泥に対してシグナル物質を添加することによるシグナル物質による微生物の活性の調節効果の向上に加えて、シグナル物質を活性汚泥に対してより均一に添加することができるため、シグナル物質による微生物の活性をより効率的に調節することができる。 As described above, by providing a plurality of signal substance addition means 2104 to 2124 at different positions along the return line L5, an activity having a higher concentration than the concentration during operation in the aeration tank 1902 moving in the return line L5. In addition to improving the regulation effect of microbial activity by the signal substance by adding the signal substance to the sludge, the signal substance can be added more uniformly to the activated sludge. Can be adjusted more efficiently.
 さらに、複数のシグナル物質添加手段2104~2124におけるシグナル物質の添加量を互いに異ならせる構成とすることで、例えば、返送ラインL5内での活性汚泥の流れ方等活性汚泥の状況に応じてシグナル物質の添加量を調整することもでき、シグナル物質を活性汚泥に対してより均一に添加することが可能となり、シグナル物質による微生物の活性をより効率的に調節することができる。 Further, the amount of the signal substance added in the plurality of signal substance addition means 2104 to 2124 is made different from each other, for example, depending on the state of the activated sludge such as how the activated sludge flows in the return line L5. The signal substance can be added more uniformly to the activated sludge, and the activity of the microorganisms by the signal substance can be adjusted more efficiently.
 なお、複数のシグナル物質添加手段2104~2124から添加するシグナル物質の種類を互いに異ならせる構成としてもよい。 Note that the types of signal substances added from the plurality of signal substance addition means 2104 to 2124 may be different from each other.
(生物学的排水処理設備4)
 図22は、生物学的排水処理設備4に係る活性汚泥処理装置を示す概略構成図である。活性汚泥処理装置2200が生物学的排水処理設備1に係る活性汚泥処理装置1900と相違する点は以下の点である。すなわち、シグナル物質添加手段1904に代えて、返送ラインL5に汚泥量検出手段2205が設けられ、シグナル物質添加手段2204が汚泥量検出手段2205により検出された結果に基づいてシグナル物質を添加する構成とされている点である。
(Biological wastewater treatment facility 4)
FIG. 22 is a schematic configuration diagram showing an activated sludge treatment apparatus according to the biological wastewater treatment facility 4. The activated sludge treatment apparatus 2200 is different from the activated sludge treatment apparatus 1900 according to the biological wastewater treatment facility 1 in the following points. That is, instead of the signal substance addition means 1904, a sludge amount detection means 2205 is provided in the return line L5, and the signal substance addition means 2204 adds the signal substance based on the result detected by the sludge amount detection means 2205. It is a point that has been.
 汚泥量検出手段2205は、返送ラインL5を経て曝気槽1902に返送される返送汚泥(活性汚泥)の量を計測する手段であり、例えば、返送ラインL5内を流れる汚泥の流量を計測する流量計や、汚泥の濃度を検出する濃度計を適用することができる。また、流量計と濃度計との両方を用いてもよい。 The sludge amount detection means 2205 is a means for measuring the amount of return sludge (activated sludge) returned to the aeration tank 1902 via the return line L5, for example, a flow meter for measuring the flow rate of sludge flowing through the return line L5. Alternatively, a densitometer that detects the concentration of sludge can be applied. Further, both a flow meter and a concentration meter may be used.
 また、シグナル物質添加手段2204は、返送ラインL5において汚泥量検出手段2205よりも下流側に設けられ、汚泥量検出手段2205によって検出された汚泥の量(流量及び/又は濃度)に基づいて、シグナル物質の添加量を調節して添加する機能を有する。 The signal substance addition means 2204 is provided downstream of the sludge amount detection means 2205 in the return line L5, and the signal substance addition means 2204 is based on the amount of sludge (flow rate and / or concentration) detected by the sludge amount detection means 2205. It has the function of adding by adjusting the amount of substance added.
 上記の活性汚泥処理装置2200による活性汚泥処理方法では、シグナル物質の添加工程において、汚泥量検出手段2205によって検出された活性汚泥の流量及び/又は濃度に基づいてシグナル物質添加手段2204からシグナル物質が添加される。このように、活性汚泥の流量及び/又は濃度に基づいてシグナル物質の添加量を変化させる構成とすることで、活性汚泥の返送量に応じてシグナル物質の添加量を適切に制御することができ、シグナル物質による微生物の活性をより効率的に調節することができる。 In the activated sludge treatment method using the activated sludge treatment apparatus 2200, the signal substance is added from the signal substance addition means 2204 based on the flow rate and / or concentration of the activated sludge detected by the sludge amount detection means 2205 in the signal substance addition step. Added. In this way, by adopting a configuration in which the addition amount of the signal substance is changed based on the flow rate and / or concentration of the activated sludge, the addition amount of the signal substance can be appropriately controlled according to the return amount of the activated sludge. Thus, the activity of the microorganism by the signal substance can be regulated more efficiently.
 以上、生物学的排水処理設備について説明してきたが、本発明は必ずしも上述した生物学的排水処理設備に限定されるものではなく、その要旨を変更しない範囲で様々な変更が可能である。 The biological wastewater treatment facility has been described above, but the present invention is not necessarily limited to the biological wastewater treatment facility described above, and various modifications can be made without changing the gist thereof.
 例えば、上記生物学的排水処理設備においては、返送汚泥を曝気槽1902より上流のラインL2に返送するようにしているが、曝気槽1902に直接返送するようにしてもよい。 For example, in the biological wastewater treatment facility, the return sludge is returned to the line L2 upstream from the aeration tank 1902, but may be returned directly to the aeration tank 1902.
(MLSS)
 以下の実験において、活性汚泥の量は、MLSS(Mixed liquor suspended solids:活性汚泥浮遊物質)に基づいて測定した。MLSSの測定は、以下の方法により行なった。まず、活性汚泥サンプルを遠心管にとり、3000rpmで10分間遠心分離を行なった後、上清を捨てた。次に、得られた沈殿物に水を加えてよく混合した後、再び上記と同様に遠心分離して上清を捨てた。得られた沈殿物を、予め秤量された蒸発皿に入れ、乾燥機中で105~110℃で半日乾燥した。続いて、デシケーター中で放冷後、秤量した。測定された質量から、空の蒸発皿の質量を除いた質量をMLSSとした。
(MLSS)
In the following experiments, the amount of activated sludge was measured based on MLSS (Mixed liquor suspended solids). The measurement of MLSS was performed by the following method. First, the activated sludge sample was placed in a centrifuge tube, centrifuged at 3000 rpm for 10 minutes, and then the supernatant was discarded. Next, water was added to the resulting precipitate and mixed well, followed by centrifugation in the same manner as above to discard the supernatant. The obtained precipitate was put in a pre-weighed evaporating dish and dried in a dryer at 105 to 110 ° C. for half a day. Subsequently, the mixture was allowed to cool in a desiccator and weighed. The mass obtained by subtracting the mass of the empty evaporating dish from the measured mass was taken as MLSS.
(ベシクルに内包されたN-ヘキサデカノイル-L-ホモセリンラクトンの調製)
 N-ヘキサデカノイル-L-ホモセリンラクトン(以下、「C16-HSL」という場合がある。)をベシクル(メンブレンベシクル)の形態で分泌する、パラコッカスAS6株を培地中で培養し、その培養物をベシクルに内包されたC16-HSLとして使用した。パラコッカスAS6株については後述する。C16-HSLの濃度は質量分析法により測定した。
(Preparation of N-hexadecanoyl-L-homoserine lactone encapsulated in vesicles)
A Paracoccus AS6 strain that secretes N-hexadecanoyl-L-homoserine lactone (hereinafter sometimes referred to as “C16-HSL”) in the form of a vesicle (membrane vesicle) is cultured in a medium. Used as C16-HSL encapsulated in vesicles. The Paracoccus AS6 strain will be described later. The concentration of C16-HSL was measured by mass spectrometry.
(硝化反応の促進の検討)
 試験管に、アンモニア態窒素(NH )が50mMとなるように調製した無機塩培地を入れた。続いて、上記の試験管に、活性汚泥をMLSSが5000mg/Lとなるように添加した。さらに、上記の試験管に、ベシクルに内包されたC16-HSLを10μMの終濃度となるように添加した。ベシクルに内包されたC16-HSLは、C16-HSLが疎水性の物質であるにもかかわらず、容易に培地中に拡散させることができた。陰性対照としては、上記の無機塩培地に活性汚泥のみを添加したものを用いた。実験開始時、24時間培養後及び48時間培養後に、培地中のアンモニア態窒素濃度をイオン電極法により測定した。結果を図1に示す。ベシクルに内包されたC16-HSLを添加した系では、陰性対照と比較して、アンモニア態窒素の減少速度が速くなり、硝化反応が促進されたことが示された。
(Examination of promotion of nitrification reaction)
An inorganic salt medium prepared so that ammonia nitrogen (NH 4 + ) was 50 mM was placed in a test tube. Subsequently, activated sludge was added to the test tube so that MLSS was 5000 mg / L. Further, C16-HSL encapsulated in vesicles was added to the test tube to a final concentration of 10 μM. C16-HSL encapsulated in vesicles could be easily diffused into the medium even though C16-HSL was a hydrophobic substance. As a negative control, the above-mentioned inorganic salt medium added with only activated sludge was used. At the start of the experiment, after 24 hours of culture and 48 hours of culture, the ammonia nitrogen concentration in the medium was measured by the ion electrode method. The results are shown in FIG. In the system in which C16-HSL encapsulated in vesicles was added, the rate of decrease of ammonia nitrogen was increased compared to the negative control, indicating that the nitrification reaction was promoted.
(N-3-オキソドデカノイル-L-ホモセリンラクトンを含む微生物用活性調節剤の調製)
 N-3-オキソドデカノイル-L-ホモセリンラクトン(以下、「3oxoC12-HSL」という場合がある。)をリポソームに内包させ、微生物用活性調節剤を調製した。リポソームの組成は水素添加大豆ホスファチジルコリン(HSPC)29g/L、コレステロール13g/Lであった。リポソームはバンガム(Bangham)法として知られる次の手順により作製した。
(Preparation of an activity regulator for microorganisms containing N-3-oxododecanoyl-L-homoserine lactone)
N-3-oxododecanoyl-L-homoserine lactone (hereinafter sometimes referred to as “3oxoC12-HSL”) was encapsulated in liposomes to prepare an activity regulator for microorganisms. The composition of the liposome was hydrogenated soybean phosphatidylcholine (HSPC) 29 g / L and cholesterol 13 g / L. Liposomes were made by the following procedure known as the Bangham method.
 まず、クロロホルム10mLにHSPC、コレステロール及び3oxoC12-HSL(1mM)を溶解した。続いて、エバポレーターを用いてクロロホルムを除去し、ナス型フラスコの底に脂質フィルムを形成させた。続いて脂質フィルムを形成させたナス型フラスコにリン酸バッファを添加し、ボルテックスミキサーを使用して撹拌しながら、60℃で水和及び分散させた。以上の操作により、3oxoC12-HSLを含む微生物用活性調節剤を得た。 First, HSPC, cholesterol and 3oxoC12-HSL (1 mM) were dissolved in 10 mL of chloroform. Subsequently, chloroform was removed using an evaporator, and a lipid film was formed on the bottom of the eggplant-shaped flask. Subsequently, a phosphate buffer was added to the eggplant-shaped flask on which the lipid film was formed, and hydrated and dispersed at 60 ° C. while stirring using a vortex mixer. By the above operation, a microorganism activity regulator containing 3oxoC12-HSL was obtained.
(硝化反応の促進の検討)
 試験管に、アンモニア態窒素(NH )が14mMとなるように調製した無機塩培地を入れた。続いて、上記の試験管に、活性汚泥をMLSSが5000mg/Lとなるように添加した。さらに、上記の試験管に、微生物用活性調節剤(3oxoC12-HSLを内包したリポソーム溶液)を培地と同容量添加した。10μMの終濃度となるように添加した。上記の微生物用活性調節剤は、3oxoC12-HSLが疎水性の物質であるにもかかわらず、容易に培地中に拡散させることができた。陰性対照としては、上記の無機塩培地に活性汚泥を添加した後、3oxoC12-HSLを含まない点以外は上記の微生物用活性調節剤と同様にして調製した、リポソームを水和したリン酸バッファを、培地と同容量添加したものを用いた。実験開始時、24時間、48時間及び72時間培養後に、培地中のアンモニア態窒素濃度をイオンクロマトグラフィーにより分析した。結果を図2に示す。3oxoC12-HSLを含む微生物用活性調節剤を添加した系では、陰性対照と比較して、アンモニア態窒素の減少速度が速くなり、硝化反応が促進されたことが示された。
(Examination of promotion of nitrification reaction)
An inorganic salt medium prepared so that ammonia nitrogen (NH 4 + ) was 14 mM was placed in a test tube. Subsequently, activated sludge was added to the test tube so that MLSS was 5000 mg / L. Furthermore, a microorganism activity regulator (liposome solution containing 3oxoC12-HSL) was added to the test tube in the same volume as the medium. The final concentration was 10 μM. The above-mentioned activity regulator for microorganisms could be easily diffused into the medium despite the fact that 3oxoC12-HSL is a hydrophobic substance. As a negative control, a phosphate buffer hydrated with liposomes was prepared in the same manner as the above-mentioned microbial activity regulator except that activated sludge was added to the above inorganic salt medium and no 3oxoC12-HSL was contained. The same volume as the medium was added. At the start of the experiment, after 24 hours, 48 hours and 72 hours of culture, the ammonia nitrogen concentration in the medium was analyzed by ion chromatography. The results are shown in FIG. In the system to which the activity regulator for microorganisms containing 3oxoC12-HSL was added, it was shown that the decrease rate of ammonia nitrogen was faster and the nitrification reaction was promoted as compared with the negative control.
(パラコッカスAS6株)
(ホモセリンラクトン高生産菌のスクリーニング)
 培地中にホモセリンラクトンが存在すると紫色の色素であるビオラセインを生産するレポーター株を利用して、活性汚泥からホモセリンラクトン高生産菌をスクリーニングした。より具体的には、アシル基の炭素数が4~8のN-アシル-L-ホモセリンラクトン(C4~C8-HSL)に応答するクロモバクテリウム・ビオラセウムCV026株及びアシル基の炭素数が10~16のN-アシル-L-ホモセリンラクトン(C10~C16-HSL)に応答するクロモバクテリウム・ビオラセウム VIR07株を使用した。ここで、CV026株が応答するN-アシル-L-ホモセリンラクトンとしては、N-ブタノイル-L-ホモセリンラクトン、N-3-オキソブタノイル-L-ホモセリンラクトン、N-3-ヒドロキシブタノイル-L-ホモセリンラクトン、N-ペンタノイル-L-ホモセリンラクトン、N-3-オキソペンタノイル-L-ホモセリンラクトン、N-3-ヒドロキシペンタノイル-L-ホモセリンラクトン、N-ヘキサノイル-L-ホモセリンラクトン、N-3-オキソヘキサノイル-L-ホモセリンラクトン、N-3-ヒドロキシヘキサノイル-L-ホモセリンラクトン、N-ヘプタノイル-L-ホモセリンラクトン、N-3-オキソヘプタノイル-L-ホモセリンラクトン、N-3-ヒドロキシヘプタノイル-L-ホモセリンラクトン、N-オクタノイル-L-ホモセリンラクトン、N-3-オキソオクタノイル-L-ホモセリンラクトン、N-3-ヒドロキシオクタノイル-L-ホモセリンラクトン等が挙げられる。また、VIR07株が応答するホモセリンラクトンとしては、N-デカノイル-L-ホモセリンラクトン、N-3-オキソデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシデカノイル-L-ホモセリンラクトン、N-ウンデカノイル-L-ホモセリンラクトン、N-3-オキソウンデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシウンデカノイル-L-ホモセリンラクトン、N-ドデカノイル-L-ホモセリンラクトン、N-3-オキソドデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシドデカノイル-L-ホモセリンラクトン、N-トリデカノイル-L-ホモセリンラクトン、N-3-オキソトリデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシトリデカノイル-L-ホモセリンラクトン、N-テトラデカノイル-L-ホモセリンラクトン、N-3-オキソテトラデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシテトラデカノイル-L-ホモセリンラクトン、N-ペンタデカノイル-L-ホモセリンラクトン、N-3-オキソペンタデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシペンタデカノイル-L-ホモセリンラクトン、N-ヘキサデカノイル-L-ホモセリンラクトン、N-3-オキソヘキサデカノイル-L-ホモセリンラクトン、N-3-ヒドロキシヘキサデカノイル-L-ホモセリンラクトン等が挙げられる。
(Paracoccus AS6 strain)
(Screening for high homoserine lactone-producing bacteria)
When homoserine lactone is present in the culture medium, a high homoserine lactone-producing bacterium was screened from activated sludge using a reporter strain that produces violetsein, a violet pigment. More specifically, the strain Chromobacterium violaceum CV026 responding to N-acyl-L-homoserine lactone (C4 to C8-HSL) having 4 to 8 carbon atoms in the acyl group and 10 to 10 carbon atoms in the acyl group. Chromobacterium violaceum strain VIR07 responding to 16 N-acyl-L-homoserine lactones (C10-C16-HSL) was used. Here, as N-acyl-L-homoserine lactone to which CV026 strain responds, N-butanoyl-L-homoserine lactone, N-3-oxobutanoyl-L-homoserine lactone, N-3-hydroxybutanoyl-L -Homoserine lactone, N-pentanoyl-L-homoserine lactone, N-3-oxopentanoyl-L-homoserine lactone, N-3-hydroxypentanoyl-L-homoserine lactone, N-hexanoyl-L-homoserine lactone, N- 3-oxohexanoyl-L-homoserine lactone, N-3-hydroxyhexanoyl-L-homoserine lactone, N-heptanoyl-L-homoserine lactone, N-3-oxoheptanoyl-L-homoserine lactone, N-3- Hydroxyheptanoyl-L-homoserine lactone N- octanoyl -L- homoserine lactone, N-3- oxo-octanoyl -L- homoserine lactone, N-3- hydroxy octanoyl -L- homoserine lactone, and the like. The homoserine lactone to which the VIR07 strain responds includes N-decanoyl-L-homoserine lactone, N-3-oxodecanoyl-L-homoserine lactone, N-3-hydroxydecanoyl-L-homoserine lactone, N-undecanoyl-L. -Homoserine lactone, N-3-oxoundecanoyl-L-homoserine lactone, N-3-hydroxyundecanoyl-L-homoserine lactone, N-dodecanoyl-L-homoserine lactone, N-3-oxododecanoyl-L -Homoserine lactone, N-3-hydroxydodecanoyl-L-homoserine lactone, N-tridecanoyl-L-homoserine lactone, N-3-oxotridecanoyl-L-homoserine lactone, N-3-hydroxytridecanoyl-L -Homoserine lactone, N- Tradecanoyl-L-homoserine lactone, N-3-oxotetradecanoyl-L-homoserine lactone, N-3-hydroxytetradecanoyl-L-homoserine lactone, N-pentadecanoyl-L-homoserine lactone, N-3- Oxopentadecanoyl-L-homoserine lactone, N-3-hydroxypentadecanoyl-L-homoserine lactone, N-hexadecanoyl-L-homoserine lactone, N-3-oxohexadecanoyl-L-homoserine lactone, N -3-Hydroxyhexadecanoyl-L-homoserine lactone and the like.
 活性汚泥を希釈して寒天培地に塗布し、単離株を得た。寒天培地上の近接する位置に、活性汚泥から得られた単離株及びレポーター株を塗布した。数日培養後、レポーター株が紫色の色素(ビオラセイン)を分泌したものについて、単離株をホモセリンラクトン生産菌と判断した。結果を表1に示す。表中、「+」の数が多い程ビオラセインの生産量が多かったことを示す。この方法により、ホモセリンラクトン高生産菌である、AS6株を得た。AS6株は、2012年5月18日に独立行政法人製品評価技術基盤機構特許微生物寄託センターに受託番号NITE P-1363として寄託した。 The activated sludge was diluted and applied to an agar medium to obtain an isolated strain. An isolated strain and a reporter strain obtained from activated sludge were applied to adjacent positions on the agar medium. After culturing for several days, the isolated strain was judged to be a homoserine lactone-producing bacterium for the reporter strain that secreted a purple pigment (violacein). The results are shown in Table 1. In the table, the greater the number of “+”, the greater the amount of violacein produced. By this method, the AS6 strain, which is a high homoserine lactone-producing bacterium, was obtained. The AS6 strain was deposited on May 18, 2012 at the Patent Microorganism Depositary, National Institute of Technology and Evaluation, under the accession number NITE P-1363.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(AS6株が生産しているシグナル物質の解析)
 AS6株をLB培地で培養し、培養液を6,000×g、15分間遠心分離した。続いて、遠心上清をポアサイズ0.2μmの酢酸セルロースフィルターで濾過した後、1500000×g、3時間、4℃で超遠心した。上清を捨てた後、ペレットをHEPES-NaCl溶液(10mM HEPES-0.85(w/v)%NaCl)で洗浄した。次に、HEPES-NaCl溶液中にOptiprep(商品名、アクシスシールド社)を40、35、30、25、20、15、10(v/v)%混合したものを、濃度が高いものが下に来るように遠心管内に重層してグラジエント層を作成し、一番上に40(v/v)%Optiprep-HEPES-NaCl溶液に溶解したペレットを添加した。続いて、このグラジエントを1000000×g、3時間超遠心した。超遠心分離後、それぞれの層を回収し、ブラッドフォード法(Bradford,M.1976.Anal.Biochem.72,248-254.)によりタンパク質濃度を、スチュワート法(Stewart,J.1980.Anal.Biochem.104,10-14.)によりリン脂質濃度を分析した。タンパク質の濃度及びリン脂質の濃度が高い層をベシクルが抽出された層とした。
(Analysis of signal substance produced by AS6 strain)
The AS6 strain was cultured in LB medium, and the culture solution was centrifuged at 6,000 × g for 15 minutes. Subsequently, the centrifuged supernatant was filtered with a cellulose acetate filter having a pore size of 0.2 μm, and then ultracentrifuged at 1500,000 × g for 3 hours at 4 ° C. After discarding the supernatant, the pellet was washed with HEPES-NaCl solution (10 mM HEPES-0.85 (w / v)% NaCl). Next, 40%, 35, 30, 25, 20, 15, 10 (v / v)% of Optiprep (trade name, Axis Shield) mixed in HEPES-NaCl solution, Then, a gradient layer was formed by overlaying in a centrifuge tube, and a pellet dissolved in a 40 (v / v)% Optiprep-HEPES-NaCl solution was added on top. Subsequently, this gradient was ultracentrifuged at 1000000 × g for 3 hours. After ultracentrifugation, each layer was collected, protein concentration was determined by Bradford method (Bradford, M. 1976. Anal. Biochem. 72, 248-254.), And Stewart method (Stewart, J. 1980. Anal. Biochem. 104, 10-14.) And the phospholipid concentration was analyzed. A layer having a high protein concentration and a high phospholipid concentration was defined as a layer from which vesicles were extracted.
(ベシクルの確認)
 上記のベシクルが抽出された層のサンプルを、ネガティブ染色を用いた透過型電子顕微鏡(TEM)観察により観察した。その結果、ベシクルが存在することが確認された。
(Vesicle confirmation)
The sample of the layer from which the vesicles were extracted was observed by transmission electron microscope (TEM) observation using negative staining. As a result, it was confirmed that vesicles exist.
(シグナル物質の同定)
 質量分析により、上記のベシクルが抽出された層のサンプルを解析し、シグナル物質の標準品との比較により、物質の同定及び濃度測定を行った。その結果、AS6株は、培養液中に1.0μM程度のC16-HSLを分泌しており、また、その中の少なくとも半分量がベシクルに内包された状態で存在することが明らかとなった。C16-HSLのような疎水性の物質は、細胞膜に留まりやすいと考えられている。このため、AS6株は、ベシクルにC16-HSLを内包して細胞外に排出することにより大量のC16-HSLを分泌していると考えられた。
(Identification of signal substance)
The sample of the layer from which the vesicles were extracted was analyzed by mass spectrometry, and the substance was identified and the concentration was measured by comparison with a standard signal substance. As a result, it was revealed that the AS6 strain secreted about 1.0 μM of C16-HSL in the culture solution, and that at least half of the AS6 strain was contained in the vesicle. Hydrophobic substances such as C16-HSL are believed to be likely to remain on the cell membrane. For this reason, it was considered that the AS6 strain secretes a large amount of C16-HSL by enclosing C16-HSL in vesicles and discharging it outside the cell.
 以上の結果から、発明者らは、AS6株が生産するC16-HSLが、ベシクルの形態で分泌されることを発見した。疎水性のシグナル物質を化学合成した場合、水に溶解するために有機溶媒等を用いる必要があるなど、操作性が悪い場合がある。これに対し、AS6株が生産したC16-HSLは、ベシクルの形態で分泌されているため親水性であり、そのまま水系に添加して用いることができることが明らかとなった。 From the above results, the inventors found that C16-HSL produced by the AS6 strain is secreted in the form of vesicles. When a hydrophobic signal substance is chemically synthesized, the operability may be poor, for example, it is necessary to use an organic solvent to dissolve in water. In contrast, C16-HSL produced by the AS6 strain was hydrophilic because it was secreted in the form of vesicles, and it was revealed that it can be used as it is added to the aqueous system.
(AS6株の同定)
 16S rDNA(16S rRNA遺伝子)の塩基配列解析、形態観察及び生理・生化学試験により、AS6株の帰属分類群を推定した。
(Identification of AS6 strain)
The attribution taxon of the AS6 strain was estimated by 16S rDNA (16S rRNA gene) base sequence analysis, morphology observation and physiological / biochemical tests.
(16S rDNAの塩基配列解析)
 AS6株を寒天培地上で30℃、24時間培養し、DNAを抽出した。例えば、「中川恭好、川崎浩子、遺伝子解析法 16S rRNA遺伝子の塩基配列決定法、日本放線菌学会編、『放線菌の分類と同定』、P.88-117、日本学会事務センター(2001)」に記載された、一般的な方法に基づいて、16S rDNAの塩基配列を決定し、データベースとの相同性検索及び簡易分子系統解析を行った。簡易分子系統解析は、アポロンDB-BAデータベース Ver.7.0(商品名、テクノスルガ・ラボ社、2011年3月版、検索日2012年5月2日)に基づいて作成した。
(Base sequence analysis of 16S rDNA)
The AS6 strain was cultured on an agar medium at 30 ° C. for 24 hours to extract DNA. For example, “Yoshiyoshi Nakagawa, Hiroko Kawasaki, Gene analysis method, 16S rRNA gene base sequencing method, edited by the Japanese Society for Actinomycetes,“ Classification and Identification of Actinomycetes ”, P. 88-117, Japan Society for the Science and Technology (2001) The base sequence of 16S rDNA was determined based on the general method described in the above, and homology search with a database and simple molecular phylogenetic analysis were performed. Simplified molecular phylogenetic analysis was performed using the Apollon DB-BA database Ver. 7.0 (trade name, Techno Suruga Laboratories, March 2011 edition, search date May 2, 2012).
 図3に簡易分子系統解析の結果を示す。図3において、左下の線はスケールバーを表し、系統枝の分岐に位置する数字はブートストラップ値を表す。また、株名の末尾のTはその種の基準株であることを示す。相同性検索の結果、AS6株の16S rDNAの塩基配列は、パラコッカス属のrDNAの塩基配列に対して高い相同性を示した。また、簡易分子系統解析の結果、AS6株は、パラコッカス属の種で形成されるクラスター内に含まれ、パラコッカス・ベルスタス(P.versutus)及びパラコッカス・ベンガレンシス(P.bengalensis)に近縁であることが示された。しかしながら、AS6株がパラコッカス・ベルスタス又はパラコッカス・ベンガレンシスに帰属する可能性及びこれらとは異なる種である可能性が考えられ、種名の同定には至らなかった。 Fig. 3 shows the results of simple molecular phylogenetic analysis. In FIG. 3, the lower left line represents the scale bar, and the number located at the branch of the system branch represents the bootstrap value. The T at the end of the stock name indicates that type of reference stock. As a result of homology search, the base sequence of 16S rDNA of AS6 strain showed high homology to the base sequence of rDNA belonging to the genus Paracoccus. In addition, as a result of simple molecular phylogenetic analysis, the AS6 strain is contained in a cluster formed by species of the genus Paracoccus, and is closely related to P. versustus and P. bengalerensis. It has been shown. However, there was a possibility that the AS6 strain was attributed to Paracoccus verustus or Paracoccus bengalensis and a different species from these, and the species name was not identified.
(形態観察及び生理・生化学試験)
 光学顕微鏡による形態観察、及び、例えば「BARROW及びFELTHAM、Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd edition. 1993、Cambridge University Press」に記載された、一般的な方法に基づいて、カタラーゼ反応、アオキシダーゼ反応、ブドウ糖からの酸/ガス発生、ブドウ糖の酸化/発酵について試験を行った。また、API20NEキット(商品名、bioMerieux社製)を用いて、硝酸塩還元、インドール産生、ブドウ糖酸性化、アルギニンジヒドロラーゼ、ウレアーゼ、エスクリン加水分解、ゼラチン加水分解、β-ガラクトシダーゼ及びチトクロームオキシダーゼについての生化学試験、並びに、ブドウ糖、L-アラビノース、D-マンノース、D-マンニトール、N-アセチル-D-グルコサミン、マルトース、グルコン酸カリウム、n-カプリン酸、アジピン酸、dl-リンゴ酸、クエン酸ナトリウム、酢酸フェニルについての資化性試験を行った。さらに、嫌気条件下での生育の有無及び20℃での生育の有無についての試験、並びに、グリセロール、サッカロース、D-フルクトース、L-アラニン、L-アスパラギン酸ナトリウム及び乳酸ナトリウムについての資化性試験を行った。
(Morphological observation and physiological / biochemical test)
Morphological observation with an optical microscope and, for example, “BARROW and FELTHAM, Cowan and Steel's Manual for the Identification of Medical Bacteria. 3rd edition. 1993, Cambridge University, based on the method described in Cambridge Presity. Tests were performed for reaction, aoxidase reaction, acid / gas evolution from glucose, and glucose oxidation / fermentation. Also, biochemistry of nitrate reduction, indole production, glucose acidification, arginine dihydrolase, urease, esculin hydrolysis, gelatin hydrolysis, β-galactosidase and cytochrome oxidase using API20NE kit (trade name, manufactured by bioMerieux) Test, as well as glucose, L-arabinose, D-mannose, D-mannitol, N-acetyl-D-glucosamine, maltose, potassium gluconate, n-capric acid, adipic acid, dl-malic acid, sodium citrate, acetic acid An assimilation test on phenyl was performed. Furthermore, the test for the presence or absence of growth under anaerobic conditions and the presence or absence of growth at 20 ° C., and the assimilation test for glycerol, saccharose, D-fructose, L-alanine, L-sodium aspartate and sodium lactate Went.
 結果を表2~4に示す。AS6株は、運動性を有しないグラム陰性桿菌であり、グルコースを酸化せず、カタラーゼ反応及びオキシダーゼ反応は共に陽性を示した。API20NEキットを用いた試験の結果、AS6株は硝酸塩を還元せず、グルコース、L-アラビノース及びD-マンノース等を資化し、n-カプリン酸及びクエン酸ナトリウムを資化しなかった。これらの性状はパラコッカス・ベルスタス及びパラコッカス・ベンガレンシスの性状と類似していたが完全には一致しなかった。特に、D-マンノースを資化する点ではパラコッカス・ベンガレンシスの性状と異なり、ラクトースを資化する点ではパラコッカス・ベルスタスの性状と異なり、硝酸塩を還元しない点はパラコッカス・ベルスタス及びパラコッカス・ベンガレンシスのいずれとも異なっていた。 Results are shown in Tables 2-4. The AS6 strain was a gram-negative bacillus having no motility, did not oxidize glucose, and both the catalase reaction and oxidase reaction were positive. As a result of the test using the API20NE kit, the AS6 strain did not reduce nitrate, assimilated glucose, L-arabinose and D-mannose, and did not assimilate n-capric acid and sodium citrate. These properties were similar to those of Paracoccus verustus and Paracoccus bengalensis but were not completely consistent. In particular, it differs from the properties of Paracoccus bengalensis in assimilating D-mannose, and it differs from the properties of Paracoccus verustus in the assimilation of lactose, and it does not reduce nitrates in both Paracoccus verustus and Paracoccus bengalensis. It was different.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
+:陽性、-:陰性
Figure JPOXMLDOC01-appb-T000003
+: Positive,-: Negative
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、AS6株は、パラコッカス・ベルスタス及びパラコッカス・ベンガレンシスに近縁なパラコッカス属細菌であると推定された。 From the above results, it was estimated that the AS6 strain is a bacterium belonging to the genus Paracoccus which is closely related to Paracoccus verustus and Paracoccus bengalensis.
(レポーターアッセイ)
 3oxoC12-HSLに応答して蛍光を発するレポーター株Pseudomonas aeruginosa PAO1 δlasI pME PlasI GFPを用いて評価を行った。上記レポーター株は、プラスミドにGFP(緑色蛍光タンパク質:Green fluorescent protein、イクオリン)発現遺伝子を挿入し、さらに3oxoC12-HSLによって誘導されるlasIのプロモーターをGFP発現遺伝子の上流に挿入したものを、lasI破壊株の緑膿菌Pseudomonas aeruginosa PAO1に取り込ませている。上記レポーター株は、自らの3oxoC12-HSLの生産能力は破壊されているが、環境中の3oxoC12-HSLに応答してGFPを発現し、蛍光を示す。リポソームはバンガム(Bangham)法により作製した。
(Reporter assay)
Evaluation was performed using a reporter strain Pseudomonas aeruginosa PAO1 δlasI pME PlasI GFP that fluoresces in response to 3oxoC12-HSL. In the above reporter strain, a GFP (green fluorescent protein, aequorin) expression gene is inserted into a plasmid, and a lasI promoter induced by 3oxoC12-HSL is inserted upstream of the GFP expression gene. It is incorporated into the strain Pseudomonas aeruginosa PAO1. Although the reporter strain has its own ability to produce 3oxoC12-HSL, it expresses GFP in response to 3oxoC12-HSL in the environment and exhibits fluorescence. Liposomes were produced by the Bangham method.
実験方法
1)LB液体培地にレポーター株を投入した系を複数準備し、3oxoC12-HSL(50nM)をDMSOに溶解、あるいは表5,6に示す組成のリポソームに内包する形で添加した。
2)37℃で12時間静置培養した。
3)蛍光光度計を用い、培養液に紫外線を照射してGFPの蛍光発色度合いを分析した。
Experimental Method 1) A plurality of systems in which a reporter strain was introduced into an LB liquid medium was prepared, and 3oxoC12-HSL (50 nM) was dissolved in DMSO or added in the form of being encapsulated in liposomes having the compositions shown in Tables 5 and 6.
2) The culture was stationary at 37 ° C. for 12 hours.
3) Using a fluorometer, the culture solution was irradiated with ultraviolet rays to analyze the degree of fluorescence development of GFP.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図4に示すように、3oxoC12-HSL含有リポソームを用いた場合、3oxo-C12-HSLのみを添加した場合と比較して、蛍光強度が15倍程度まで増強した。また、荷電していないリポソームと負荷電リポソームとでは、ほぼ同程度の蛍光強度を示した。 As shown in FIG. 4, when the 3oxoC12-HSL-containing liposome was used, the fluorescence intensity was enhanced to about 15 times compared to the case where only 3oxo-C12-HSL was added. In addition, uncharged liposomes and negatively charged liposomes showed almost the same fluorescence intensity.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図5に示すように、リポソームにコレステロールを添加し、脂質二重膜の流動性を調節したリポソームA、BおよびCでは、リポソームBが最も蛍光強度が高かった。 As shown in FIG. 5, in liposomes A, B, and C in which cholesterol was added to the liposome to adjust the fluidity of the lipid bilayer, liposome B had the highest fluorescence intensity.
 600,700,800,900,1000,1100,1200,1300,1400,1500…微生物用活性調節剤、601,701…親水性基、602,702…疎水性基、801,901,1001,1101,1201,1301,1401,1501…運搬媒体、603,703,802,903,1002,1102,1202,1302,1402,1502…微生物活性調節物質、902,1003,1103…修飾基、1303…溶媒、1600,1700,1800…運搬媒体、1601,1701,1801…最外層、1602,1702,1802…内層リポソーム、1603,1703,1704,1803,1804…微生物活性調節物質、1901…調整槽、1902…曝気槽、1903…固液分離槽、1904,2004,2014,2104,2114,2124,2204…シグナル物質添加手段、2205…汚泥量検出手段、1900,2000,2100,2200…活性汚泥処理装置。 600,700,800,900,1000,1100,1200,1300,1400,1500 ... microbial activity regulator, 601,701 ... hydrophilic group, 602,702 ... hydrophobic group, 801,901,1001,1101, 1201, 1301, 1401, 1501 ... transport medium, 603, 703, 802, 903, 1002, 1102, 1202, 1302, 1402, 1502 ... microbial activity regulator, 902, 1003, 1103 ... modifying group, 1303 ... solvent, 1600 , 1700, 1800 ... transport medium, 1601, 1701, 1801 ... outermost layer, 1602, 1702, 1802 ... inner liposome, 1603, 1703, 1704, 1803, 1804 ... microbial activity regulator, 1901 ... adjustment tank, 1902 ... aeration tank 1903 ... Solid- liquid separation tank 1904,2004,2014,2104,2114,2124,2204 ... signal substances adding means, 2205 ... sludge quantity detecting means, 1900,2000,2100,2200 ... activated sludge treatment apparatus.

Claims (13)

  1.  微生物活性調節物質及び運搬媒体を含む、生物学的排水処理設備の反応槽中に存在する微生物用活性調節剤。 An activity regulator for microorganisms present in a reaction tank of a biological wastewater treatment facility containing a microorganism activity regulator and a transport medium.
  2.  前記微生物活性調節物質は、細胞間情報伝達物質、原核生物の活性に影響を与える核酸及び原核生物の活性に影響を与えるタンパク質からなる群より選択される1種以上の物質である、請求項1に記載の微生物用活性調節剤。 The microbial activity-regulating substance is one or more substances selected from the group consisting of an intercellular signal transduction substance, a nucleic acid that affects prokaryotic activity, and a protein that affects prokaryotic activity. The activity regulator for microorganisms described in 1.
  3.  前記微生物活性調節物質がN-アシル-L-ホモセリンラクトンである、請求項1又は2に記載の微生物用活性調節剤。 The microorganism activity regulator according to claim 1 or 2, wherein the microorganism activity regulator is N-acyl-L-homoserine lactone.
  4.  前記運搬媒体は、ベシクル、リポソーム、ミセル、エマルション、ペプチド、タンパク質、金属ナノ粒子、カーボンナノチューブ、フラーレン及び第1のポリマーからなる群より選択される1種以上の物質である、請求項1~3のいずれか一項に記載の微生物用活性調節剤。 The carrier medium is one or more substances selected from the group consisting of vesicles, liposomes, micelles, emulsions, peptides, proteins, metal nanoparticles, carbon nanotubes, fullerenes and first polymers. The activity regulator for microorganisms as described in any one of these.
  5.  前記第1のポリマーは、ハイドロゲル、ナノスフェア、マイクロスフェア又はデンドリマーである、請求項4に記載の微生物用活性調節剤。 The microbial activity regulator according to claim 4, wherein the first polymer is a hydrogel, nanosphere, microsphere, or dendrimer.
  6.  前記運搬媒体が、糖鎖、抗体又は第2のポリマーで修飾されている、請求項1~5のいずれか一項に記載の微生物用活性調節剤。 The microorganism activity regulator according to any one of claims 1 to 5, wherein the transport medium is modified with a sugar chain, an antibody, or a second polymer.
  7.  前記第2のポリマーは、ポリエチレングリコール、ポリエチレンイミン、ポリアミドアミンである、請求項6に記載の微生物用活性調節剤。 The microorganism activity regulator according to claim 6, wherein the second polymer is polyethylene glycol, polyethyleneimine, or polyamidoamine.
  8.  前記運搬媒体は、リポソームである、請求項1~7のいずれか一項に記載の微生物用活性調節剤。 The microbial activity regulator according to any one of claims 1 to 7, wherein the transport medium is a liposome.
  9.  前記リポソームは、卵黄レシチン又は水素添加大豆ホスファチジルコリンを含む、請求項8に記載の微生物用活性調節剤。 The microbial activity regulator according to claim 8, wherein the liposome comprises egg yolk lecithin or hydrogenated soybean phosphatidylcholine.
  10.  前記リポソームは、コレステロールをさらに含む、請求項9に記載の微生物用活性調節剤。 The microbial activity regulator according to claim 9, wherein the liposome further comprises cholesterol.
  11.  前記リポソームはステアリン酸をさらに含む、請求項9又は10に記載の微生物用活性調節剤。 The activity regulator for microorganisms according to claim 9 or 10, wherein the liposome further comprises stearic acid.
  12.  前記微生物活性調節物質の微生物活性は、硝化活性である、請求項1~11のいずれか一項に記載の微生物用活性調節剤。 The microbial activity regulator according to any one of claims 1 to 11, wherein the microbial activity of the microbial activity regulating substance is nitrification activity.
  13.  生物学的排水処理設備の反応槽中に存在する微生物の活性を調節する方法であって、生物学的排水処理設備の反応槽に、請求項1~12のいずれか一項に記載の微生物用活性調節剤を添加する工程を含む、方法。 A method for adjusting the activity of microorganisms present in a reaction tank of a biological wastewater treatment facility, wherein the microorganism is used in the reaction tank of a biological wastewater treatment facility. Adding the activity regulator.
PCT/JP2013/067131 2012-07-27 2013-06-21 Microbe activity modulator and method of modulating microbe activity WO2014017233A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526823A JPWO2014017233A1 (en) 2012-07-27 2013-06-21 Microbial activity regulator and method for regulating microbial activity

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012-167498 2012-07-27
JP2012167498 2012-07-27
PCT/JP2012/081397 WO2014016979A1 (en) 2012-07-27 2012-12-04 Microbial activity modulator and method of modulating microbe activity
JPPCT/JP2012/081397 2012-12-04
JP2013068631 2013-03-28
JP2013-068625 2013-03-28
JP2013-068631 2013-03-28
JP2013068625 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014017233A1 true WO2014017233A1 (en) 2014-01-30

Family

ID=49997050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067131 WO2014017233A1 (en) 2012-07-27 2013-06-21 Microbe activity modulator and method of modulating microbe activity

Country Status (2)

Country Link
JP (1) JPWO2014017233A1 (en)
WO (1) WO2014017233A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626232A1 (en) * 2015-06-23 2020-03-25 Lamellar Biomedical Limited Compositions and methods for using lamellar bodies for therapeutic purposes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511545A (en) * 2003-11-20 2007-05-10 デレックス セラピューティックス インコーポレイテッド Stable liposome composition
JP2008530013A (en) * 2005-02-04 2008-08-07 ウイスコンシン アラムナイ リサーチ フオンデーシヨン Compounds and methods for altering communication and toxicity in quorum sensing bacteria
JP2008542208A (en) * 2005-05-24 2008-11-27 エンバイロメンタル バイオテクノロジー シーアールシー ピーティーワイ リミテッド Methods and compositions for controlling biofilm development
JP2010529952A (en) * 2007-05-14 2010-09-02 リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク Induction of physiological dispersive responses in bacterial cells in biofilms
WO2010150691A1 (en) * 2009-06-22 2010-12-29 住友重機械工業株式会社 Method for treating wastewater containing ammonia nitrogen
JP2011031205A (en) * 2009-08-04 2011-02-17 Sumitomo Heavy Ind Ltd Wastewater treatment method
WO2011059963A1 (en) * 2009-11-10 2011-05-19 Novozymes Biologicals, Inc. Methods, compositions and systems for controlling fouling of a membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511545A (en) * 2003-11-20 2007-05-10 デレックス セラピューティックス インコーポレイテッド Stable liposome composition
JP2008530013A (en) * 2005-02-04 2008-08-07 ウイスコンシン アラムナイ リサーチ フオンデーシヨン Compounds and methods for altering communication and toxicity in quorum sensing bacteria
JP2008542208A (en) * 2005-05-24 2008-11-27 エンバイロメンタル バイオテクノロジー シーアールシー ピーティーワイ リミテッド Methods and compositions for controlling biofilm development
JP2010529952A (en) * 2007-05-14 2010-09-02 リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク Induction of physiological dispersive responses in bacterial cells in biofilms
WO2010150691A1 (en) * 2009-06-22 2010-12-29 住友重機械工業株式会社 Method for treating wastewater containing ammonia nitrogen
JP2011031205A (en) * 2009-08-04 2011-02-17 Sumitomo Heavy Ind Ltd Wastewater treatment method
WO2011059963A1 (en) * 2009-11-10 2011-05-19 Novozymes Biologicals, Inc. Methods, compositions and systems for controlling fouling of a membrane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASANORI TOYOFUKU ET AL.: "Intercellular signaling in bacterial communities", BIOSCIENCE & INDUSTRY, vol. 70, no. 4, 1 July 2012 (2012-07-01), pages 263 - 266 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626232A1 (en) * 2015-06-23 2020-03-25 Lamellar Biomedical Limited Compositions and methods for using lamellar bodies for therapeutic purposes

Also Published As

Publication number Publication date
JPWO2014017233A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US7919534B2 (en) Mixing device
Geng et al. Enhanced aerobic sludge granulation in a Sequencing Batch Reactor (SBR) by applying mycelial pellets
Mohapatra et al. Concomitant degradation of bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge
Lee et al. Tumor-specific hybrid polyhydroxybutyrate nanoparticle: surface modification of nanoparticle by enzymatically synthesized functional block copolymer
Sokolova et al. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes
Agbakpe et al. Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation
Rabiee et al. Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review
Gupta et al. Myconanotechnology and application of nanoparticles in biology
WO2014017233A1 (en) Microbe activity modulator and method of modulating microbe activity
Costa et al. Synthesis of organic-inorganic hybrid nanoflowers of lipases from Candida antarctica type B (CALB) and Thermomyces lanuginosus (TLL): Improvement of thermal stability and reusability
Chang et al. Polyethylenimine functionalized ultrasmall mesoporous silica nanoparticles for siRNA delivery
Zhang et al. Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles
CN104974343A (en) Modified polyethyleneimine and application thereof in the preparation of gene transfection vector reagent
WO2014016979A1 (en) Microbial activity modulator and method of modulating microbe activity
de la Hoz et al. Coaxial synthesis of PEI-based Nanocarriers of encapsulated RNA-therapeutics to specifically target muscle cells
Dai et al. Investigation of various cross-linking methods for the immobilization of cytosine arabinoside on bacterial magnetosomes
AU2014200893B2 (en) Mixing device and output fluids of same
Wang et al. Dendrimer modified SWCNTs for High Efficient Delivery and Intracellular Imaging of survivin siRNA.
JP5627313B2 (en) Organic wastewater treatment equipment
Li et al. Effect of triblock copolymers on the lipase catalytic behavior at the interface of conventional O/W emulsions
CA2881274C (en) Mixing device and output fluids of same
Terracciano et al. Diatoms: a natural source of nanostructured silica for drug delivery
Han et al. Synthesis and Characteristics of Self‐Assembled Multifunctional Ln3+‐DNA Hybrid Coordination Polymers
Kundu et al. Oleic-acid functionalized mesoporous silica nanoparticles with a hydroxyapatite core enhanced growth of the hydrocarbon degrader Dietzia maris at oil–water interfaces
Zhang et al. Chiral Graphene Quantum Dots Enhanced Drug Loading into Exosomes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822776

Country of ref document: EP

Kind code of ref document: A1