WO2014013058A2 - Convertisseur réversible - Google Patents

Convertisseur réversible Download PDF

Info

Publication number
WO2014013058A2
WO2014013058A2 PCT/EP2013/065314 EP2013065314W WO2014013058A2 WO 2014013058 A2 WO2014013058 A2 WO 2014013058A2 EP 2013065314 W EP2013065314 W EP 2013065314W WO 2014013058 A2 WO2014013058 A2 WO 2014013058A2
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
equipment
battery
conversion
conversion module
Prior art date
Application number
PCT/EP2013/065314
Other languages
English (en)
Other versions
WO2014013058A3 (fr
Inventor
Eric Biagini
François Coste
Original Assignee
Ies Synergy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ies Synergy filed Critical Ies Synergy
Priority to CN201380035854.7A priority Critical patent/CN104471850A/zh
Priority to CA2875924A priority patent/CA2875924A1/fr
Priority to US14/411,936 priority patent/US20150375628A1/en
Priority to EP13740250.9A priority patent/EP2875572A2/fr
Publication of WO2014013058A2 publication Critical patent/WO2014013058A2/fr
Publication of WO2014013058A3 publication Critical patent/WO2014013058A3/fr
Priority to HK15103886.4A priority patent/HK1203702A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • H02M3/3378Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current in a push-pull configuration of the parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to a charging device comprising an AC-DC converter for supplying two outputs at different voltages, reversible type.
  • This charging device is particularly suitable for use as a device embedded in an electric motor vehicle.
  • Many mobile machines use electrical energy and are equipped with batteries, for example electric vehicles, nacelles, pallet trucks ...
  • These machines generally include on-board chargers, that is to say electric battery chargers that are mounted directly on mobile gear. They can also be used with an external battery charger device.
  • the traction battery or batteries (which are used to power the traction system, that is to say the engine, of the above-mentioned machines) have high voltages (for example 48 V, 60 V or 400 V and above), while the onboard electronics require a lower voltage.
  • the most common rated voltage is 12 V, which corresponds to equipment traditionally used in the automotive environment.
  • the invention firstly relates to a charging device for a motorized apparatus, the motorized apparatus comprising a battery and equipment, the charging device comprising a first conversion module and a second conversion module connected to the first conversion module in which which which :
  • the first conversion module is also adapted to be connected to an alternating current source
  • the second conversion module is also adapted to be connected to the battery, and to be connected to the equipment, and said second conversion module comprises a single transformer;
  • the charging device being adapted:
  • a secondary battery is among the equipment, and the device is adapted to be powered by the third voltage DC secondary battery, and to be converted in the second module. converting this direct current from third voltage to first voltage direct current, for supplying the first conversion module.
  • the charging device is also adapted:
  • the second conversion module comprises a first conversion circuit connected to the first conversion module, a second conversion circuit adapted to be connected to the battery, and a third conversion circuit adapted to be connected to the equipment, these three conversion circuits being connected to the single transformer; the charging device preferably comprising a control member of the three conversion circuits.
  • the charging device is adapted to simultaneously supply the second voltage DC battery and the third voltage DC equipment; the charging device preferably comprising means for regulating the third voltage independently of the second voltage.
  • the AC input current has a voltage of 80 V to 300 V, preferably 85 to 265 V and / or a power of 0.5 kW to 35 kW, preferably 1 kW to 6 kW; and or
  • the first voltage is from 270 to 440 V, preferably from 290 to 430 V; and or
  • the second voltage is from 20 to 550 V, preferably from 24 to 500 V; and or
  • the third voltage is from 5 to 20 V, preferably from 10 to 15 V, for example approximately 12 V.
  • the equipment comprises one or more equipment selected from a secondary battery, sensors, lights, an on-board computer, lighting means and a car radio.
  • the motorized device is a vehicle, preferably a motor vehicle with power supply.
  • the invention also relates to a motorized apparatus, comprising the charging device as described above, as well as the battery and the equipment, the equipment being preferably chosen from a secondary battery, sensors, lights, a computer on board , lighting means and a car radio.
  • the motorized device is a vehicle, preferably a motor vehicle with power supply.
  • the invention also relates to a method of charging a battery and supplying equipment to a motorized apparatus, comprising:
  • a first mode of operation the supply of an input AC current, the conversion of the input AC current into a first voltage direct current, as well as:
  • the supply of second voltage direct current by the battery the conversion of the second voltage direct current into a third voltage direct current, and the supply of the equipment with the third voltage direct current;
  • the first mode of operation and the second mode of operation being implemented separately in time
  • each conversion of a direct current to another dc voltage of different voltage comprises an intermediate AC transformation step by means of the same single transformer.
  • a secondary battery is among the equipment, and the method comprises, according to a third mode of operation, the supply of third voltage direct current by the secondary battery, the conversion of the DC voltage from the third voltage to the first voltage direct current. , and the conversion of the direct current from first voltage to alternating current.
  • the charging method also comprises: according to a fourth mode of operation, the supply of direct current of second voltage by the battery, the conversion of the direct current from second voltage to direct current of first voltage, the conversion of the direct current from first voltage to alternating current of output, and supplying the output AC power to an external power grid.
  • the supply of the second voltage DC battery, and the supply of third voltage DC equipment are at least partially simultaneous; the method preferably comprising a regulation of the third voltage independently of the second voltage.
  • the AC input current has a voltage of 80 V to 300 V, preferably 85 to 265 V and / or a power of 0.5 kW to 35 kW, preferably 1 kW to 6 kW; and or
  • the first voltage is from 270 to 440 V, preferably from 290 to 430 V; and or
  • the second voltage is from 20 to 550 V, preferably from 24 to 500 V; and or
  • the third voltage is from 5 to 20 V, preferably from 10 to 15 V, for example approximately 12 V.
  • the equipment comprises one or more equipment selected from a secondary battery, sensors, lights, an on-board computer, lighting means and a car radio.
  • the motorized device is a vehicle, preferably a motor vehicle with power supply.
  • the present invention overcomes the disadvantages of the state of the art. It provides more particularly a charging device for supplying both a traction battery at a relatively high voltage and equipment of the so-called “very low voltage” network, this charging device having a smaller footprint and weight than in the state of the art.
  • the invention also simplifies the connection, to have a more reliable system, and facilitate the integration of the charging device in the motorized device.
  • DC-DC converter (called the second conversion module as part of the application) for supplying both the traction battery and the very low voltage equipment, said DC-DC converter being reversible, that is to say able to be powered both by an external source and by the traction battery, and based on a single transformer.
  • At least two transformers namely one for the supply of the traction battery, and one for the supply of the equipment with very low voltage, as it is the case according to the state of the technical.
  • the single transformer provides galvanic isolation between the three types of DC currents flowing in the system, which meets the safety requirements, especially when the battery voltage is high and must be isolated from the equipment. edge.
  • FIG 1 schematically shows a charging device according to the invention, integrated in a motorized device, operating in the first mode of operation (charging mode).
  • FIG. 2 schematically shows a charging device according to the invention, integrated in a motorized device, operating in the second mode of operation (driving mode).
  • FIG. 3 schematically shows a charging device according to the invention, integrated in a motorized device, operating in the fourth mode of operation (redistribution mode).
  • Figure 4 schematically shows an embodiment of the second conversion module used in the context of the invention.
  • Figure 5 schematically shows a charging device according to the invention, integrated in a motorized device, operating in the third mode of operation (redistribution mode). DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • a charging device 2 is adapted to be mounted or integrated within a motorized device 6 which comprises a battery 5 and equipment 7a, 7b, 7c.
  • the motorized device 6 is a vehicle, in particular a motor vehicle, with electrical power supply.
  • the motorized apparatus 6 may be a handling machine such as an aerial platform, a forklift or a pallet truck.
  • the battery 5 preferably represents the traction battery of the vehicle (or vehicle), that is to say the battery responsible for supplying the engine of the vehicle (or the vehicle). It is understood that this battery 5 may represent a single battery or a set of batteries.
  • the equipment 7a, 7b, 7c may comprise sensors, lights, an on-board computer, lighting means, a car radio ...
  • They may also include a secondary battery 7a, itself capable of supplying the rest of the equipment 7b, 7c.
  • the charging device 2 comprises a first conversion module 3 (AC-DC conversion module) and a second conversion module 4 (DC-DC conversion module) which is connected to the first conversion module 3, and which is connected, when the charging device 2 is integrated in the motorized device 6, the battery 5 and the equipment 7a, 7b, 7c.
  • a first conversion module 3 AC-DC conversion module
  • a second conversion module 4 DC-DC conversion module
  • a power source 1 (such as the power grid) is connected to the first conversion module 3 and the AC power supply.
  • This power source 1 can be a single-phase source, two-phase, three-phase or any other electrical source.
  • the first conversion module 3 converts the input AC current into a first voltage DC (denoted voltage V1), and supplies the second conversion module 4 with this voltage current V1.
  • the second conversion module 4 converts the direct current of voltage V1 into a direct current of second voltage (denoted voltage V2), which supplies the battery 5 (which is thus charged).
  • the second conversion module 4 also converts the DC voltage V1 to a third voltage DC voltage (denoted voltage V3), which supplies the equipment 7a, 7b, 7c.
  • a second mode of operation called a driving mode and shown in FIG. 2
  • the charging device is disconnected from any external power source.
  • the battery 5 supplies DC voltage V2 to the second conversion module 4, which converts this current into a DC voltage V3 supplying the equipment 7a, 7b, 7c.
  • the battery 5 supplies DC voltage V2 to the second conversion module 4, which converts this current into a DC voltage V1 supplying the first conversion module 3, and the first conversion module 3 converts this direct current of voltage V1 AC output, which is supplied to the outside of the motorized device 6, that is to say, for example, which is redistributed to the electrical network, as part of a management said "smart" of electrical energy, including responding to peak consumption on the power network by using the batteries of motorized devices connected to said network.
  • this latter supplies the second conversion module 4 with a DC voltage V3, for example for converting to DC voltage V1 and supplying the first conversion module 3.
  • the alternating current thus produced at the output of the first conversion module 3 can be redistributed towards the electrical network, just as in the fourth mode of operation.
  • it can be used to power additional equipment 12 connected to the motorized device, preferably relatively low power, for example removable electronic equipment, such as a laptop, a mobile phone, digital tablet or other.
  • additional equipment can be connected via conventional sockets, which are also adapted to connect these additional equipment to the sector.
  • the AC input current can be either single-phase, for example with a voltage of 85 to 265 V, or two-phase, for example with a voltage of 200 to 250 V, or multiphase and in particular three-phase, for example with a voltage of 380 to 420 V.
  • the first conversion module 3 generally comprises a power correction circuit (PFC), in order to limit the input current harmonics.
  • PFC power correction circuit
  • Such a circuit also has the advantage of operating over a wide range of input voltages.
  • the voltage V1 of the direct current coming from the first conversion module 3 and supplying the second conversion module 4 (or possibly vice versa) is generally from 270 to 440 V, preferably from 290 to 430 V.
  • this current can have a voltage of about 400 V.
  • the voltage V2 of the direct current coming from the second conversion module 4 and supplying the battery 5 (or vice versa) is generally from 20 to 550 V, preferably from 24 to 500 V. According to one embodiment, the voltage V2 is equal to or substantially equal to the voltage V1. It can thus be about 400 V. According to another embodiment, the voltage V2 is lower than the voltage V1. For example, the voltage V2 may be about 60 V.
  • the value of the voltage V2 can vary over time: it is in principle the battery 5 (and its charge level) that imposes the value of the voltage V2.
  • the voltage V1 may also vary depending on the voltage V2, for example by adapting the operating conditions of the first conversion module 3 to the voltage V2 delivered, depending on the charge level of the battery.
  • the voltage V3 of the direct current coming from the second conversion module 4 and supplying the equipment 7a, 7b, 7c is generally lower than the voltage V1 and lower than the voltage V2.
  • the second conversion module 4 comprises a first conversion circuit 8, a second conversion circuit 9 and a third conversion circuit 10.
  • These three conversion circuits 8, 9, 10 are connected to a single transformer 1 1, that is to say a transformer comprising a single magnetic element and at least three windings connected to each of the three conversion circuits 8, 9, 10.
  • the first conversion circuit 8 is connected to the first conversion module 3 at one of its ends opposite to that in connection with the transformer 1 1. Thus, this first conversion circuit 8 makes it possible to convert a direct voltage current V1 into an intermediate alternating current supplying the transformer 11, or possibly vice versa.
  • the second conversion circuit 9 is connected to the battery 5 at one of its ends opposite to that in connection with the transformer 1 1.
  • this second conversion circuit 9 makes it possible to convert an intermediate AC current from the transformer 1 1 into a direct current of voltage V2 at the output supplying the battery 5 (in charge mode), or vice versa (in rolling or redistribution mode). .
  • the third conversion circuit 10 is connected to the equipment 7a, 7b, 7c by one of its ends opposite to that in connection with the transformer 1 1.
  • this third conversion circuit 10 makes it possible to convert an intermediate AC current originating from the transformer 1 1 into direct current of voltage V3 at the output supplying the equipment 7a, 7b, 7c (in charge or rolling or possibly redistribution mode), or possibly conversely (in some embodiments of the redistribution mode).
  • the first conversion circuit 8, the second conversion circuit 9 and the third conversion circuit 10 are reversible; that is, they can operate in "normal” or “reverse” mode, the input of the circuit in normal mode corresponding to the output of the circuit in reverse mode, and the output of the circuit in normal mode corresponding to the input of the circuit in reverse mode.
  • the intermediate AC currents mentioned above are AC currents having a switching frequency which is preferably relatively high.
  • Each conversion circuit 8, 9, 10 for example comprises a set of switching elements (denoted Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 and Q9, Q10, Q1 1, Q12 in FIG. ). These switching elements are operated synchronously either to cut a DC current to AC, or to rectify a DC current, according to the direction of use of the circuits.
  • a centralized control member provided with a digital programmer controls the three conversion circuits 8, 9, 10, in particular via the switching elements.
  • This control member may in particular comprise means for regulating the voltage V3 independently (in a decorrelated manner) of the voltage V2. This is particularly advantageous in order to avoid that the variations of the voltage V 2 according to the charge level of the battery 5 have any influence on the power supply of the very low-voltage network.
  • the first conversion circuit 8 When one of the conversion circuits is not used, for example the first conversion circuit 8 in rolling mode, it can be disconnected by a switching element (relay).
  • Each conversion circuit 8, 9, 10, and in particular the third conversion circuit 10 may comprise synchronous rectification means, making it possible to increase the efficiency by actively synchronously controlling the diodes and the MOSFET-type compounds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un dispositif de charge comprenant un convertisseur AC-DC permettant d'alimenter deux sorties à des tensions différentes, de type réversible. Ce dispositif de charge est particulièrement approprié pour une utilisation en tant que dispositif embarqué dans un véhicule automobile électrique. Le dispositif permet d'alimenter à la fois une batterie de traction à une tension relativement élevée et des équipements du réseau dit « très basse tension ». Il présente un encombrement et un poids réduits. L'invention repose sur un convertisseur DC-DC (dans le convertisseur AC-DC) à sorties multiples et réversible, comprenant un transformateur unique.

Description

CONVERTISSEUR REVERSIBLE
DOMAINE DE L'INVENTION
La présente invention concerne un dispositif de charge comprenant un convertisseur AC-DC permettant d'alimenter deux sorties à des tensions différentes, de type réversible. Ce dispositif de charge est particulièrement approprié pour une utilisation en tant que dispositif embarqué dans un véhicule automobile électrique.
ARRIERE-PLAN TECHNIQUE
De nombreux engins mobiles utilisent l'énergie électrique et sont équipés de batteries, par exemple des véhicules électriques, des nacelles, des transpalettes... Ces engins comprennent généralement des chargeurs embarqués, c'est-à-dire des chargeurs de batteries électriques qui sont montés directement sur les engins mobiles. Ils peuvent également être utilisés avec un dispositif chargeur de batterie externe.
La fonction principale de ces chargeurs est la recharge des batteries à partir de l'électricité disponible sur le réseau de distribution électrique. Ils assurent donc une conversion d'un courant alternatif en courant continu.
Pour des raisons d'autonomie et de rendement, la ou les batteries de traction (qui sont utilisées pour alimenter le système de traction, c'est-à-dire la motorisation, des engins ci-dessus) ont des tensions élevées (par exemple 48 V, 60 V, voire 400 V et plus), alors que l'électronique embarquée demande une tension plus faible. La tension nominale la plus répandue est de 12 V : elle correspond aux équipements traditionnellement utilisés dans l'environnement automobile.
Il est donc nécessaire d'ajouter un convertisseur de tension continu- continu (DC-DC), qui abaisse la tension de la batterie de traction à la valeur demandée par les équipements de bord.
Il est avantageux d'intégrer à la fois ce convertisseur DC-DC et les moyens de charge de la batterie de traction dans un même dispositif de charge, pour effectuer des gains de volume, de poids, de connectique, de fiabilité, et pour faciliter l'intégration de ces équipements dans le véhicule ou autre engin motorisé.
Toutefois, il reste encore souhaitable de réduire l'encombrement et le poids des dispositifs de charge de ce type.
RESUME DE L'INVENTION
L'invention concerne en premier lieu un dispositif de charge pour un appareil motorisé, l'appareil motorisé comprenant une batterie et des équipements, le dispositif de charge comprenant un premier module de conversion et un deuxième module de conversion connecté au premier module de conversion dans lequel :
- le premier module de conversion est également adapté à être connecté à une source de courant alternatif ;
- le deuxième module de conversion est également adapté à être connecté à la batterie, et à être connecté aux équipements, et ledit deuxième module de conversion comprend un unique transformateur ;
le dispositif de charge étant adapté :
- à être alimenté par la source de courant alternatif en courant alternatif d'entrée, à convertir dans le premier module de conversion ce courant alternatif d'entrée en courant continu ayant une première tension, et en outre :
à convertir dans le deuxième module de conversion le courant continu de première tension en courant continu ayant une deuxième tension, et à alimenter la batterie avec ce courant continu de deuxième tension ; et
à convertir dans le deuxième module de conversion le courant continu de première tension en courant continu ayant une troisième tension, et à alimenter les équipements avec ce courant continu de troisième tension ; et
- à être alimenté par la batterie en courant continu de deuxième tension, à convertir dans le deuxième module de conversion ce courant continu de deuxième tension en courant continu de troisième tension, et à alimenter les équipements avec ce courant continu de troisième tension.
De préférence, une batterie secondaire figure parmi les équipements, et le dispositif est adapté à être alimenté par la batterie secondaire en courant continu de troisième tension, et à convertir dans le deuxième module de conversion ce courant continu de troisième tension en courant continu de première tension, pour alimenter le premier module de conversion.
Selon un mode de réalisation, le dispositif de charge est également adapté :
- à être alimenté par la batterie en courant continu de deuxième tension, à convertir dans le deuxième module de conversion ce courant continu de deuxième tension en courant continu de première tension, à convertir dans le premier module de conversion ce courant continu de première tension en courant alternatif de sortie, et à alimenter la source de courant alternatif avec ce courant alternatif de sortie.
Selon un mode de réalisation, le deuxième module de conversion comprend un premier circuit de conversion connecté au premier module de conversion, un deuxième circuit de conversion adapté à être connecté à la batterie, et un troisième circuit de conversion adapté à être connecté aux équipements, ces trois circuits de conversion étant connectés au transformateur unique ; le dispositif de charge comprenant, de préférence, un organe de commande des trois circuits de conversion.
Selon un mode de réalisation, le dispositif de charge est adapté à alimenter simultanément la batterie en courant continu de deuxième tension, et les équipements en courant continu de troisième tension ; le dispositif de charge comprenant, de préférence, des moyens de régulation de la troisième tension indépendamment de la deuxième tension.
Selon un mode de réalisation :
- le courant alternatif d'entrée présente une tension de 80 V à 300 V, de préférence de 85 à 265 V et / ou une puissance de 0,5 kW à 35 kW, de préférence de 1 kW à 6 kW ; et / ou
- la première tension vaut de 270 à 440 V, de préférence de 290 à 430 V ; et / ou
- la deuxième tension vaut de 20 à 550 V, de préférence de 24 à 500 V ; et / ou
- la troisième tension vaut de 5 à 20 V, de préférence de 10 à 15 V, par exemple environ 12 V.
Selon un mode de réalisation, les équipements comprennent un ou plusieurs équipements choisis parmi une batterie secondaire, des capteurs, des voyants, un ordinateur de bord, des moyens d'éclairage et un autoradio.
Selon un mode de réalisation, l'appareil motorisé est un véhicule, de préférence un véhicule automobile à alimentation électrique. L'invention concerne également un appareil motorisé, comprenant le dispositif de charge tel que décrit ci-dessus, ainsi que la batterie et les équipements, les équipements étant de préférence choisis parmi une batterie secondaire, des capteurs, des voyants, un ordinateur de bord, des moyens d'éclairage et un autoradio.
Selon un mode de réalisation, l'appareil motorisé est un véhicule, de préférence un véhicule automobile à alimentation électrique.
L'invention concerne également un procédé de charge d'une batterie et d'alimentation d'équipements d'un appareil motorisé, comprenant :
- selon un premier mode de fonctionnement, la fourniture d'un courant alternatif d'entrée, la conversion du courant alternatif d'entrée en courant continu de première tension, ainsi que :
la conversion du courant continu de première tension en courant continu de deuxième tension, et l'alimentation de la batterie avec le courant continu de deuxième tension ; et / ou
la conversion du courant continu de première tension en courant continu de troisième tension, et l'alimentation des équipements avec le courant continu de troisième tension ;
- selon un deuxième mode de fonctionnement, la fourniture de courant continu de deuxième tension par la batterie, la conversion du courant continu de deuxième tension en courant continu de troisième tension, et l'alimentation des équipements avec le courant continu de troisième tension ;
le premier mode de fonctionnement et le deuxième mode de fonctionnement étant mis en œuvre de façon séparée dans le temps ;
dans lequel chaque conversion d'un courant continu en un autre courant continu de tension différente comprend une étape de transformation en courant alternatif intermédiaire au moyen d'un même transformateur unique.
De préférence, une batterie secondaire figure parmi les équipements, et le procédé comprend, selon un troisième mode de fonctionnement, la fourniture de courant continu de troisième tension par la batterie secondaire, la conversion du courant continu de troisième tension en courant continu de première tension, et la conversion du courant continu de première tension en courant alternatif.
Selon un mode de réalisation, le procédé de charge comprend également : - selon un quatrième mode de fonctionnement, la fourniture de courant continu de deuxième tension par la batterie, la conversion du courant continu de deuxième tension en courant continu de première tension, la conversion du courant continu de première tension en courant alternatif de sortie, et la fourniture du courant alternatif de sortie à un réseau électrique extérieur.
Selon un mode de réalisation, dans le premier mode de fonctionnement, l'alimentation de la batterie en courant continu de deuxième tension, et l'alimentation des équipements en courant continu de troisième tension sont au moins partiellement simultanées ; le procédé comprenant, de préférence, une régulation de la troisième tension indépendamment de la deuxième tension.
Selon un mode de réalisation :
- le courant alternatif d'entrée présente une tension de 80 V à 300 V, de préférence de 85 à 265 V et / ou une puissance de 0,5 kW à 35 kW, de préférence de 1 kW à 6 kW ; et / ou
- la première tension vaut de 270 à 440 V, de préférence de 290 à 430 V ; et / ou
- la deuxième tension vaut de 20 à 550 V, de préférence de 24 à 500 V ; et / ou
- la troisième tension vaut de 5 à 20 V, de préférence de 10 à 15 V, par exemple environ 12 V.
Selon un mode de réalisation, les équipements comprennent un ou plusieurs équipements choisis parmi une batterie secondaire, des capteurs, des voyants, un ordinateur de bord, des moyens d'éclairage et un autoradio.
Selon un mode de réalisation, l'appareil motorisé est un véhicule, de préférence un véhicule automobile à alimentation électrique.
La présente invention permet de surmonter les inconvénients de l'état de la technique. Elle fournit plus particulièrement un dispositif de charge permettant d'alimenter à la fois une batterie de traction à une tension relativement élevée et des équipements du réseau dit « très basse tension », ce dispositif de charge présentant un encombrement et un poids plus réduits que dans l'état de la technique.
L'invention permet également de simplifier la connectique, de disposer d'un système plus fiable, et de faciliter l'intégration du dispositif de charge dans l'appareil motorisé.
Ceci est accompli grâce à la mise au point d'un convertisseur DC-DC (appelé deuxième module de conversion dans le cadre de la demande) permettant d'alimenter à la fois la batterie de traction et les équipements de très basse tension, ledit convertisseur DC-DC étant réversible, c'est-à-dire pouvant être alimenté aussi bien par une source externe que par la batterie de traction, et reposant sur un transformateur unique.
Ainsi, on évite d'utiliser au moins deux transformateurs, à savoir un pour l'alimentation de la batterie de traction, et un pour l'alimentation des équipements à très basse tension, comme c'est le cas selon l'état de la technique.
Le transformateur unique offre une isolation galvanique entre les trois types de courants continus circulant dans le système, ce qui permet de répondre aux exigences normatives en matière de sécurité, en particulier lorsque la tension de la batterie est élevée et doit donc être isolée des équipements de bord.
Du fait de l'utilisation d'un transformateur unique, celui-ci peut transférer la même puissance électrique vers la batterie principale et à partir de celle-ci. Ainsi, sans augmenter le poids et le volume du dispositif de charge, on dispose d'une puissance importante en mode de roulage pour les équipements de bord. Cela est d'autant plus avantageux que les équipements de bord ont tendance de nos jours à être de plus en plus consommateurs de puissance électrique en mode de roulage, avec par exemple des pointes de consommation à 2 kW pour des équipements de voiture électrique.
BREVE DESCRIPTION DES FIGURES
La figure 1 représente de manière schématique un dispositif de charge selon l'invention, intégré dans un appareil motorisé, fonctionnant selon le premier mode de fonctionnement (mode de charge).
La figure 2 représente de manière schématique un dispositif de charge selon l'invention, intégré dans un appareil motorisé, fonctionnant selon le deuxième mode de fonctionnement (mode de roulage).
La figure 3 représente de manière schématique un dispositif de charge selon l'invention, intégré dans un appareil motorisé, fonctionnant selon le quatrième mode de fonctionnement (mode de redistribution).
La figure 4 représente de manière schématique un mode de réalisation du deuxième module de conversion utilisé dans le cadre de l'invention. La figure 5 représente de manière schématique un dispositif de charge selon l'invention, intégré dans un appareil motorisé, fonctionnant selon le troisième mode de fonctionnement (mode de redistribution). DESCRIPTION DE MODES DE REALISATION DE L'INVENTION
L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
En faisant référence aux figures 1 , 2 et 3, un dispositif de charge 2 selon l'invention est adapté à être monté ou intégré au sein d'un appareil motorisé 6 qui comprend une batterie 5 et des équipements 7a, 7b, 7c.
Selon un mode de réalisation préféré, l'appareil motorisé 6 est un véhicule, notamment un véhicule automobile, à alimentation électrique. Dans d'autres modes de réalisation, l'appareil motorisé 6 peut être un engin de manutention tel qu'une nacelle élévatrice, un chariot élévateur ou un transpalette.
La batterie 5 représente de préférence la batterie de traction du véhicule (ou de l'engin), c'est-à-dire la batterie responsable de l'alimentation du moteur du véhicule (ou de l'engin). Il est entendu que cette batterie 5 peut représenter une batterie unique ou un ensemble de batteries.
Les équipements 7a, 7b, 7c peuvent comprendre des capteurs, des voyants, un ordinateur de bord, des moyens d'éclairage, un autoradio...
Ils peuvent également comprendre une batterie secondaire 7a, elle- même susceptible d'alimenter le reste des équipements 7b, 7c.
Le dispositif de charge 2 comprend un premier module de conversion 3 (module de conversion AC-DC) et un deuxième module de conversion 4 (module de conversion DC-DC) qui est connecté au premier module de conversion 3, et qui est connecté, lorsque le dispositif de charge 2 est intégré dans l'appareil motorisé 6, à la batterie 5 et aux équipements 7a, 7b, 7c.
Dans un premier mode de fonctionnement, appelé mode de charge et représenté à la figure 1 , une source d'alimentation 1 (telle que le réseau électrique) est connectée au premier module de conversion 3 et l'alimente en courant alternatif. Cette source d'alimentation 1 peut être une source monophasée, biphasée, triphasée ou toute autre source électrique.
Le premier module de conversion 3 assure la conversion du courant alternatif d'entrée en courant continu de première tension (notée tension V1 ), et alimente le deuxième module de conversion 4 avec ce courant de tension V1 . Le deuxième module de conversion 4 assure la conversion du courant continu de tension V1 en un courant continu de deuxième tension (notée tension V2), qui alimente la batterie 5 (qui est ainsi chargée).
Optionnellement, le deuxième module de conversion 4 assure également la conversion du courant continu de tension V1 en un courant continu de troisième tension (notée tension V3), qui alimente les équipements 7a, 7b, 7c.
Dans un deuxième mode de fonctionnement, appelé mode de roulage et représenté à la figure 2, le dispositif de charge est déconnecté de toute source d'alimentation externe. Dans ce mode de fonctionnement, la batterie 5 alimente en courant continu de tension V2 le deuxième module de conversion 4, qui convertit ce courant en courant continu de tension V3 alimentant les équipements 7a, 7b, 7c.
Deux modes de redistribution sont également possibles : le troisième mode de fonctionnement, représenté à la figure 5, et le quatrième mode de fonctionnement (facultatif), représenté à la figure 3.
Dans le quatrième mode de fonctionnement, la batterie 5 alimente en courant continu de tension V2 le deuxième module de conversion 4, qui convertit ce courant en courant continu de tension V1 alimentant le premier module de conversion 3, et le premier module de conversion 3 convertit ce courant continu de tension V1 en courant alternatif de sortie, qui est fourni vers l'extérieur de l'appareil motorisé 6, c'est-à-dire par exemple qui est redistribué vers le réseau électrique, dans le cadre d'une gestion dite « intelligente » de l'énergie électrique, permettant notamment de répondre à des pics de consommation sur le réseau électrique en faisant appel aux batteries des appareils motorisés reliés au dit réseau.
Il faut souligner en outre que, dans le cadre de ce mode de redistribution, il peut également y avoir une alimentation des équipements 7a, 7b, 7c en courant continu de tension V3 par le deuxième module de conversion 4, tout comme dans le mode de roulage.
En faisant référence à la figure 5, dans le troisième mode de fonctionnement, qui suppose que les équipements 7a, 7b, 7c comprennent une batterie secondaire 7a, celle-ci alimente le deuxième module de conversion 4 en courant continu de tension V3, par exemple pour conversion en courant continu de tension V1 et alimentation du premier module de conversion 3.
Le courant alternatif ainsi produit en sortie du premier module de conversion 3 peut être redistribué vers le réseau électrique, tout comme dans le quatrième mode de fonctionnement. Alternativement, et comme illustré sur la figure, il peut servir à alimenter des équipements supplémentaires 12 branchés sur l'appareil motorisé, de préférence de puissance relativement peu élevée, par exemple des équipements électroniques amovibles, comme un ordinateur portable, un téléphone portable, une tablette numérique ou autre. Avantageusement ces équipements supplémentaires peuvent être connectés par l'intermédiaire de prises conventionnelles, qui sont également adaptées à relier ces équipements supplémentaires au secteur.
Le courant alternatif d'entrée peut être soit monophasé, par exemple avec une tension de 85 à 265 V, soit biphasé, par exemple avec une tension de 200 à 250 V, soit multiphasé et notamment triphasé, par exemple avec une tension de 380 à 420 V.
Le premier module de conversion 3 comporte en général un circuit correcteur de puissance (PFC), afin de limiter les harmoniques de courant d'entrée. Un tel circuit présente également l'avantage de fonctionner sur une large plage de tensions d'entrée.
La tension V1 du courant continu issu du premier module de conversion 3 et alimentant le deuxième module de conversion 4 (ou éventuellement inversement) vaut en général de 270 à 440 V, de préférence de 290 à 430 V. A titre d'exemple, ce courant peut avoir une tension d'environ 400 V.
La tension V2 du courant continu issu du deuxième module de conversion 4 et alimentant la batterie 5 (ou inversement) vaut en général de 20 à 550 V, de préférence de 24 à 500 V. Selon un mode de réalisation, la tension V2 est égale ou pratiquement égale à la tension V1 . Elle peut ainsi être de 400 V environ. Selon un autre mode de réalisation, la tension V2 est inférieure à la tension V1 . Par exemple, la tension V2 peut être de 60 V environ.
Il faut noter que la valeur de la tension V2 peut varier au cours du temps : c'est en principe la batterie 5 (et son niveau de charge) qui impose la valeur de la tension V2.
La tension V1 peut également varier en fonction de la tension V2, par exemple grâce à une adaptation des conditions de fonctionnement du premier module de conversion 3 à la tension V2 délivrée, selon le niveau de charge de la batterie.
La tension V3 du courant continu issu du deuxième module de conversion 4 et alimentant les équipements 7a, 7b, 7c (éventuellement ou inversement) est généralement inférieure à la tension V1 et inférieure à la tension V2.
Elle vaut typiquement de 5 à 20 V, de préférence de 10 à 15 V, par exemple environ 12 V.
En faisant référence à la figure 4, on décrit un exemple de deuxième module de conversion 4 réversible selon l'invention.
Ainsi, le deuxième module de conversion 4 comprend un premier circuit de de conversion 8, un deuxième circuit de conversion 9 et un troisième circuit de conversion 10.
Ces trois circuits de conversion 8, 9, 10 sont connectés à un transformateur unique 1 1 , c'est-à-dire un transformateur comportant un unique élément magnétique et au moins trois enroulements reliés à chacun des trois circuits de conversion 8, 9, 10.
Le premier circuit de conversion 8 est connecté au premier module de conversion 3 par une de ses extrémités opposée à celle en liaison avec le transformateur 1 1 . Ainsi, ce premier circuit de conversion 8 permet de convertir un courant continu de tension V1 en entrée en un courant alternatif intermédiaire alimentant le transformateur 1 1 , ou éventuellement inversement.
Le deuxième circuit de conversion 9 est connecté à la batterie 5 par une de ses extrémités opposée à celle en liaison avec le transformateur 1 1 . Ainsi, ce deuxième circuit de conversion 9 permet de convertir un courant alternatif intermédiaire issu du transformateur 1 1 en courant continu de tension V2 en sortie alimentant la batterie 5 (en mode de charge), ou inversement (en mode de roulage ou de redistribution).
Le troisième circuit de conversion 10 est connecté aux équipements 7a, 7b, 7c par une de ses extrémités opposée à celle en liaison avec le transformateur 1 1 . Ainsi, ce troisième circuit de conversion 10 permet de convertir un courant alternatif intermédiaire issu du transformateur 1 1 en courant continu de tension V3 en sortie alimentant les équipements 7a, 7b, 7c (en mode de charge ou de roulage ou éventuellement de redistribution), ou éventuellement inversement (dans certains modes de réalisation du mode de redistribution).
Ainsi, de préférence, le premier circuit de conversion 8, le deuxième circuit de conversion 9 et le troisième circuit de conversion 10 sont réversibles ; c'est-à-dire qu'ils peuvent fonctionner en mode « normal » ou en mode « inverse », l'entrée du circuit en mode normal correspondant à la sortie du circuit en mode inverse, et la sortie du circuit en mode normal correspondant à l'entrée du circuit en mode inverse.
Les courants alternatifs intermédiaires mentionnés ci-dessus sont des courants alternatifs ayant une fréquence de découpage qui est de préférence relativement élevée.
Chaque circuit de conversion 8, 9, 10 comporte par exemple un ensemble d'éléments de commutation (notés Q1 , Q2, Q3, Q4 ; Q5, Q6, Q7, Q8 ; et Q9, Q10, Q1 1 , Q12 sur la figure 4). Ces éléments de commutation sont actionnés de manière synchrone soit pour découper un courant continu en courant alternatif, soit pour redresser un courant alternatif en courant continu, selon le sens d'utilisation des circuits.
De préférence, un organe de commande centralisé pourvu d'un programmateur numérique commande les trois circuits de conversion 8, 9, 10, notamment via les éléments de commutation.
Cet organe de commande peut notamment comporter des moyens de régulation de la tension V3 indépendamment (de manière décorrélée) de la tension V2. Cela est particulièrement avantageux afin d'éviter que les variations de la tension V2 selon le niveau de charge de la batterie 5 aient une quelconque influence sur l'alimentation électrique du réseau à très basse tension.
Lorsque l'un des circuits de conversion n'est pas employé, par exemple le premier circuit de conversion 8 en mode de roulage, il peut être déconnecté par un élément de commutation (relais).
Chaque circuit de conversion 8, 9, 10, et notamment le troisième circuit de conversion 10, peut comprendre des moyens de redressement synchrone, permettant d'augmenter le rendement en commandant activement de manière synchrone les diodes et les composés de type MOSFET.

Claims

REVENDICATIONS
Dispositif de charge (2) pour un appareil motorisé (6), l'appareil motorisé (6) comprenant une batterie (5) et des équipements (7a, 7b, 7c) parmi lesquels figure une batterie secondaire (7a), le dispositif de charge comprenant un premier module de conversion (3) et un deuxième module de conversion (4) connecté au premier module de conversion (3) dans lequel :
- le premier module de conversion (3) est également adapté à être connecté à une source de courant alternatif (1 ) ;
- le deuxième module de conversion (4) est également adapté à être connecté à la batterie (5), et à être connecté aux équipements (7a, 7b, 7c), et ledit deuxième module de conversion (4) comprend un unique transformateur (1 1 ) ; le dispositif de charge (2) étant adapté :
- à être alimenté par la source de courant alternatif (1 ) en courant alternatif d'entrée, à convertir dans le premier module de conversion (3) ce courant alternatif d'entrée en courant continu ayant une première tension, et en outre :
à convertir dans le deuxième module de conversion (4) le courant continu de première tension en courant continu ayant une deuxième tension, et à alimenter la batterie (5) avec ce courant continu de deuxième tension ; et
à convertir dans le deuxième module de conversion (4) le courant continu de première tension en courant continu ayant une troisième tension, et à alimenter les équipements (7a, 7b, 7c) avec ce courant continu de troisième tension ;
- à être alimenté par la batterie (5) en courant continu de deuxième tension, à convertir dans le deuxième module de conversion (4) ce courant continu de deuxième tension en courant continu de troisième tension, et à alimenter les équipements (7a, 7b, 7c) avec ce courant continu de troisième tension ; et
- à être alimenté par la batterie secondaire (7a) en courant continu de troisième tension, et à convertir dans le deuxième module de conversion (4) ce courant continu de troisième tension en courant continu de première tension, pour alimenter le premier module de conversion (3).
Dispositif de charge (2) selon la revendication 1 , qui est également adapté :
- à être alimenté par la batterie (5) en courant continu de deuxième tension, à convertir dans le deuxième module de conversion (4) ce courant continu de deuxième tension en courant continu de première tension, à convertir dans le premier module de conversion (3) ce courant continu de première tension en courant alternatif de sortie, et à alimenter la source de courant alternatif (1 ) avec ce courant alternatif de sortie.
Dispositif de charge (2) selon la revendication 1 ou 2, dans lequel le deuxième module de conversion (4) comprend un premier circuit de conversion (8) connecté au premier module de conversion (3), un deuxième circuit de conversion (9) adapté à être connecté à la batterie (5), et un troisième circuit de conversion (10) adapté à être connecté aux équipements (7a, 7b, 7c), ces trois circuits de conversion (8, 9, 10) étant connectés au transformateur (1 1 ) unique ; le dispositif de charge (2) comprenant, de préférence, un organe de commande des trois circuits de conversion (8, 9, 10).
Dispositif de charge (2) selon l'une des revendications 1 à 3, qui est adapté à alimenter simultanément la batterie (5) en courant continu de deuxième tension, et les équipements (7a, 7b, 7c) en courant continu de troisième tension ; le dispositif de charge (2) comprenant, de préférence, des moyens de régulation de la troisième tension indépendamment de la deuxième tension.
Dispositif de charge (2) selon l'une des revendications 1 à 4, dans lequel :
- le courant alternatif d'entrée présente une tension de 80 V à 300 V, de préférence de 85 à 265 V et / ou une puissance de 0,5 kW à 35 kW, de préférence de 1 kW à 6 kW ; et / ou - la première tension vaut de 270 à 440 V, de préférence de 290 à 430 V ; et / ou
- la deuxième tension vaut de 20 à 550 V, de préférence de 24 à 500 V ; et / ou
- la troisième tension vaut de 5 à 20 V, de préférence de 10 à 15 V, par exemple environ 12 V.
Dispositif de charge (2) selon l'une des revendications 1 à 5, dans lequel les équipements (7a, 7b, 7c) comprennent en outre un ou plusieurs équipements choisis parmi des capteurs, des voyants, un ordinateur de bord, des moyens d'éclairage et un autoradio.
Dispositif de charge (2) selon l'une des revendications 1 à 6, dans lequel l'appareil motorisé (6) est un véhicule, de préférence un véhicule automobile à alimentation électrique.
Appareil motorisé (6), comprenant le dispositif de charge (2) selon l'une des revendications 1 à 7, ainsi que la batterie (5) et les équipements (7a, 7b, 7c), les équipements (7a, 7b, 7c), outre la batterie secondaire (7a), étant de préférence choisis parmi des capteurs, des voyants, un ordinateur de bord, des moyens d'éclairage et un autoradio.
Appareil motorisé (6) selon la revendication 8, qui est un véhicule, de préférence un véhicule automobile à alimentation électrique.
Procédé de charge d'une batterie (5) et d'alimentation d'équipements (7a, 7b, 7c) d'un appareil motorisé (6), lesdits équipements (7a, 7b, 6c) comprenant une batterie secondaire (7a), le procédé comprenant :
- selon un premier mode de fonctionnement, la fourniture d'un courant alternatif d'entrée, la conversion du courant alternatif d'entrée en courant continu de première tension, ainsi que :
la conversion du courant continu de première tension en courant continu de deuxième tension, et l'alimentation de la batterie (5) avec le courant continu de deuxième tension ; et / ou
■ la conversion du courant continu de première tension en courant continu de troisième tension, et l'alimentation des équipements (7a, 7b, 7c) avec le courant continu de troisième tension ;
- selon un deuxième mode de fonctionnement, la fourniture de courant continu de deuxième tension par la batterie (5), la conversion du courant continu de deuxième tension en courant continu de troisième tension, et l'alimentation des équipements (7a, 7b, 7c) avec le courant continu de troisième tension ;
- selon un troisième mode de fonctionnement, la fourniture de courant continu de troisième tension par la batterie secondaire (7a), la conversion du courant continu de troisième tension en courant continu de première tension, et la conversion du courant continu de première tension en courant alternatif ;
le premier mode de fonctionnement, le deuxième mode de fonctionnement et le troisième mode de fonctionnement étant mis en œuvre de façon séparée dans le temps ;
dans lequel chaque conversion d'un courant continu en un autre courant continu de tension différente comprend une étape de transformation en courant alternatif intermédiaire au moyen d'un même transformateur unique (1 1 ).
Procédé de charge et d'alimentation selon la revendication 10, comprenant également :
- selon un quatrième mode de fonctionnement, la fourniture de courant continu de deuxième tension par la batterie (5), la conversion du courant continu de deuxième tension en courant continu de première tension, la conversion du courant continu de première tension en courant alternatif de sortie, et la fourniture du courant alternatif de sortie à un réseau électrique extérieur.
Procédé de charge et d'alimentation selon la revendication 10 ou 1 1 , dans lequel, dans le premier mode de fonctionnement, l'alimentation de la batterie (5) en courant continu de deuxième tension, et l'alimentation des équipements (7a, 7b, 7c) en courant continu de troisième tension sont au moins partiellement simultanées ; le procédé comprenant, de préférence, une régulation de la troisième tension indépendamment de la deuxième tension.
Procédé de charge et d'alimentation selon l'une des revendications 10 à 12, dans lequel :
- le courant alternatif d'entrée présente une tension de 80 V à 300 V, de préférence de 85 à 265 V et / ou une puissance de 0,5 kW à 35 kW, de préférence de 1 kW à 6 kW ; et / ou
- la première tension vaut de 270 à 440 V, de préférence de 290 à 430 V ; et / ou
- la deuxième tension vaut de 20 à 550 V, de préférence de 24 à 500 V ; et / ou
- la troisième tension vaut de 5 à 20 V, de préférence de 10 à 15 V, par exemple environ 12 V.
Procédé de charge et d'alimentation selon l'une des revendications 10 à 13, dans lequel les équipements (7a, 7b, 7c) comprennent, outre la batterie secondaire (7a), un ou plusieurs équipements choisis parmi des capteurs, des voyants, un ordinateur de bord, des moyens d'éclairage et un autoradio.
Procédé de charge et d'alimentation selon l'une des revendications 10 à 14, dans lequel l'appareil motorisé (6) est un véhicule, de préférence un véhicule automobile à alimentation électrique.
PCT/EP2013/065314 2012-07-20 2013-07-19 Convertisseur réversible WO2014013058A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380035854.7A CN104471850A (zh) 2012-07-20 2013-07-19 包括三个端口的多向转换器和用于电动车辆的单个变压器
CA2875924A CA2875924A1 (fr) 2012-07-20 2013-07-19 Convertisseur reversible
US14/411,936 US20150375628A1 (en) 2012-07-20 2013-07-19 Multi-directional converter comprising three ports and a single transformer for electric vehicles
EP13740250.9A EP2875572A2 (fr) 2012-07-20 2013-07-19 Convertisseur multi-directionel avec trois ports et un transformateur unique pour les voitures électriques
HK15103886.4A HK1203702A1 (en) 2012-07-20 2015-04-22 Multi-directional converter comprising three ports and a single transformer for electric vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR12/57035 2012-07-20
FR1257035A FR2993728A1 (fr) 2012-07-20 2012-07-20 Convertisseur reversible

Publications (2)

Publication Number Publication Date
WO2014013058A2 true WO2014013058A2 (fr) 2014-01-23
WO2014013058A3 WO2014013058A3 (fr) 2014-04-24

Family

ID=47191892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065314 WO2014013058A2 (fr) 2012-07-20 2013-07-19 Convertisseur réversible

Country Status (7)

Country Link
US (1) US20150375628A1 (fr)
EP (1) EP2875572A2 (fr)
CN (1) CN104471850A (fr)
CA (1) CA2875924A1 (fr)
FR (1) FR2993728A1 (fr)
HK (1) HK1203702A1 (fr)
WO (1) WO2014013058A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040114A1 (fr) * 2015-08-12 2017-02-17 Peugeot Citroen Automobiles Sa Dispositif electrique multifonction
FR3050882A1 (fr) * 2016-04-29 2017-11-03 Thales Sa Reseau electrique d'un aeronef
WO2018193173A1 (fr) * 2017-04-21 2018-10-25 Psa Automobiles Sa Batterie à ensembles de groupe de cellule(s) et module de conversion, pour fournir différentes tensions et faire différentes recharges
GB2613830A (en) * 2021-12-16 2023-06-21 Jaguar Land Rover Ltd Electrical vehicle circuitry
GB2613836A (en) * 2021-12-16 2023-06-21 Jaguar Land Rover Ltd Electrical vehicle circuitry
GB2615870A (en) * 2021-12-16 2023-08-23 Jaguar Land Rover Ltd Electrical vehicle circuitry

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208715B (zh) * 2016-08-05 2019-01-15 南京航空航天大学 一种分布式电源高压直流接入系统及其控制方法
FR3056357B1 (fr) * 2016-09-22 2018-10-12 IFP Energies Nouvelles Dispositif de conversion, procede de commande et vehicule associes
US10778109B2 (en) * 2017-02-23 2020-09-15 Sharp Kabushiki Kaisha Power supply and power supply unit
CN106936184A (zh) * 2017-03-14 2017-07-07 深圳威迈斯电源有限公司 一种车载充电机和dcdc的集成电路
CN117154907A (zh) * 2017-09-30 2023-12-01 深圳威迈斯新能源股份有限公司 一种带逆变功能的三端口充电机
CN109638933A (zh) 2017-10-06 2019-04-16 保时捷股份公司 在充电站或加电站的电力电子装置中的电流隔离
WO2020056603A1 (fr) * 2018-09-18 2020-03-26 深圳欣锐科技股份有限公司 Circuit chargeur embarqué intégré et son procédé de fabrication, et chargeur embarqué intégré
WO2020056604A1 (fr) * 2018-09-18 2020-03-26 深圳欣锐科技股份有限公司 Circuit de chargeur embarqué intégré et procédé de fabrication associé, et chargeur embarqué intégré
CN110198862A (zh) * 2018-09-18 2019-09-03 深圳欣锐科技股份有限公司 集成车载充电机电路及制造方法、集成车载充电机
CN109617419A (zh) * 2019-01-07 2019-04-12 浙江大学 一种隔离型三端口dc-dc变换器
DE102019211553A1 (de) 2019-08-01 2021-02-04 Audi Ag Bidirektionale DC-Wallbox für Elektrofahrzeuge
DE102019124827A1 (de) * 2019-09-16 2021-03-18 Audi Ag Kraftfahrzeug mit einer Elektromaschine als Antriebsmaschine und Verfahren zum Betrieb eines Gleichspannungswandlers in einem Kraftfahrzeug
CN110774909A (zh) * 2019-09-23 2020-02-11 华为技术有限公司 一种obc电路、obc充电器、新能源汽车及充电桩
DE102022202360A1 (de) 2022-03-09 2023-09-14 EA Elektro-Automatik GmbH & Co. KG Schaltungsanordnung zum Erzeugen einer Ausgangsgleichspannung sowie Verwendung der Schaltungsanordnung zum Testen von elektrischen Energiespeichern

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865904A (ja) * 1994-06-06 1996-03-08 Nippondenso Co Ltd 電気自動車用充電装置
JPH08317508A (ja) * 1995-05-17 1996-11-29 Nippondenso Co Ltd 電気自動車用充電装置
DE19921450C5 (de) * 1999-05-08 2006-08-03 Daimlerchrysler Ag Elektrischer Fahrzeugantrieb
JP2003153597A (ja) * 2001-11-14 2003-05-23 Toyota Motor Corp 電源装置
JP4400632B2 (ja) * 2007-02-20 2010-01-20 Tdk株式会社 スイッチング電源装置
JP4770798B2 (ja) * 2007-06-15 2011-09-14 株式会社豊田自動織機 電源装置
US7960857B2 (en) * 2008-12-02 2011-06-14 General Electric Company System and method for vehicle based uninterruptable power supply
KR20120020554A (ko) * 2010-08-30 2012-03-08 삼성전기주식회사 전기 차량용 통합형 충전 장치
JP5577986B2 (ja) * 2010-09-22 2014-08-27 株式会社豊田自動織機 電源装置および車載用電源装置
KR101229441B1 (ko) * 2011-03-18 2013-02-06 주식회사 만도 배터리 충전 장치
DE102011081720A1 (de) * 2011-08-29 2013-02-28 Robert Bosch Gmbh Wandlerschaltung und Verfahren zum Übertragen von elektrischer Energie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040114A1 (fr) * 2015-08-12 2017-02-17 Peugeot Citroen Automobiles Sa Dispositif electrique multifonction
FR3050882A1 (fr) * 2016-04-29 2017-11-03 Thales Sa Reseau electrique d'un aeronef
WO2018193173A1 (fr) * 2017-04-21 2018-10-25 Psa Automobiles Sa Batterie à ensembles de groupe de cellule(s) et module de conversion, pour fournir différentes tensions et faire différentes recharges
FR3065586A1 (fr) * 2017-04-21 2018-10-26 Peugeot Citroen Automobiles Sa Batterie a ensembles de groupe de cellule(s) et module de conversion, pour fournir differentes tensions et faire differentes recharges
CN110999016A (zh) * 2017-04-21 2020-04-10 标致雪铁龙汽车股份有限公司 用于提供各种电压并进行各种充电的具有包括电池单元组和转换模块的组合件的电池
CN110999016B (zh) * 2017-04-21 2023-09-22 标致雪铁龙汽车股份有限公司 用于提供各种电压并进行各种充电的具有包括电池单元组和转换模块的组合件的电池
GB2613830A (en) * 2021-12-16 2023-06-21 Jaguar Land Rover Ltd Electrical vehicle circuitry
GB2613836A (en) * 2021-12-16 2023-06-21 Jaguar Land Rover Ltd Electrical vehicle circuitry
GB2615870A (en) * 2021-12-16 2023-08-23 Jaguar Land Rover Ltd Electrical vehicle circuitry

Also Published As

Publication number Publication date
FR2993728A1 (fr) 2014-01-24
WO2014013058A3 (fr) 2014-04-24
CN104471850A (zh) 2015-03-25
US20150375628A1 (en) 2015-12-31
EP2875572A2 (fr) 2015-05-27
HK1203702A1 (en) 2015-10-30
CA2875924A1 (fr) 2014-01-23

Similar Documents

Publication Publication Date Title
WO2014013058A2 (fr) Convertisseur réversible
EP3066739B1 (fr) Procédé de charge de véhicule électrique à véhicule électrique
EP2859641B1 (fr) Dispositif de charge à entrée adaptative et méthode de chargement
EP3065969B1 (fr) Dispositif de charge compact pour vehicule electrique
FR3066655B1 (fr) Systeme de chargeur electrique pour vehicule electrique ou hybride
FR2930085A1 (fr) Reseau electrique
CA2865799A1 (fr) Dispositif de charge comprenant un convertisseur dc-dc
WO2014068254A1 (fr) Procede de transfert de charge et dispositif electrique associé
EP3515749B1 (fr) Dispositif de conversion, procédé de commande et véhicule associes
EP3389175B1 (fr) Dispositif de conversion, procédé de commande et véhicule associés
FR3083382A1 (fr) Systeme electrique et procede de charge d'une batterie, notamment pour vehicule
FR3074984A1 (fr) Convertisseur continu-continu avec pre-charge d’un premier reseau electrique a partir d’un deuxieme reseau electrique
FR3096936A1 (fr) Dispositif electrique multifonction ameliore pour vehicule automobile electrique ou hybride
FR3064126A1 (fr) Systeme electrique pour vehicule automobile a moteur electrique ou hybride
WO2024003005A1 (fr) Module d'alimentation électrique à rebouclage et double sortie
EP3342747B1 (fr) Structure d'alimentation pour chariot élévateur
FR2974462A1 (fr) Dispositif de charge et procede associe
FR2965123A1 (fr) Dispositif et procede de gestion de l'alimentation en courant electrique d'une charge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740250

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2875924

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14411936

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013740250

Country of ref document: EP