WO2014007107A1 - Solid-state imaging device, driving method, and electronic device - Google Patents

Solid-state imaging device, driving method, and electronic device Download PDF

Info

Publication number
WO2014007107A1
WO2014007107A1 PCT/JP2013/067362 JP2013067362W WO2014007107A1 WO 2014007107 A1 WO2014007107 A1 WO 2014007107A1 JP 2013067362 W JP2013067362 W JP 2013067362W WO 2014007107 A1 WO2014007107 A1 WO 2014007107A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
potential
signal
driving
transfer
Prior art date
Application number
PCT/JP2013/067362
Other languages
French (fr)
Japanese (ja)
Inventor
中村 良助
史彦 古閑
晴久 永野川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2014523685A priority Critical patent/JPWO2014007107A1/en
Priority to CN201380034178.1A priority patent/CN104412575A/en
Publication of WO2014007107A1 publication Critical patent/WO2014007107A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/621Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for the control of blooming
    • H04N25/623Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for the control of blooming by evacuation via the output or reset lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present technology relates to a solid-state imaging device, a driving method, and an electronic device, and more particularly, to a solid-state imaging device, a driving method, and an electronic device that enable practical use of a pixel having an overflow structure.
  • CMOS image sensor As a solid-state imaging device, a CMOS solid-state imaging device (hereinafter referred to as a CMOS image sensor) that can be manufactured by a process similar to a CMOS (Complementary Metal-Oxide Semiconductor) integrated circuit is known.
  • CMOS image sensor Complementary Metal-Oxide Semiconductor
  • the CMOS image sensor is characterized in that an active structure having an amplification function for each pixel can be easily created by a miniaturization technique associated with the CMOS process.
  • the CMOS image sensor also has peripheral circuits such as a drive circuit that drives the pixel array unit and a signal processing circuit that processes signals output from each pixel of the pixel array unit on the same chip (substrate) as the pixel array unit. It can be accumulated in Due to such features, CMOS image sensors have attracted attention, and many researches and developments have been made on CMOS image sensors.
  • the green photoelectric conversion unit has a contact unit that transmits the signal charge photoelectrically converted by the organic photoelectric conversion film to the high-concentration N-type diffusion layer formed on the silicon (Si) substrate.
  • the signal charge overflows over the potential barrier of the P-type impurity region and is accumulated in the N-type accumulation unit.
  • the signal charge accumulated in the accumulation unit is transferred to the floating diffusion (FD) by the transfer transistor.
  • an overflow structure Such a structure in which the signal charge is overflowed and supplied to the storage unit is called an overflow structure.
  • the carrier of the signal charge is an electron, but the case of a hole is the same as that of an electron except that the polarity is switched.
  • a signal having a predetermined potential is applied to a gate electrode of a transfer transistor of each color pixel by a transistor of a vertical drive circuit, as in a general CMOS image sensor not having an overflow structure. Applied.
  • the present technology has been made in view of such a situation, and makes it possible to put a pixel having an overflow structure into practical use.
  • a solid-state imaging device includes: a low drive capability transistor that generates a signal to be input to a gate electrode of a transfer transistor of a pixel having an overflow structure; the low drive capability transistor connected in parallel;
  • a solid-state imaging device comprising: a high drive capability transistor that generates a signal to be input to an electrode; and a drive unit that drives the high drive capability transistor after driving the low drive capability transistor and then stopping the low drive capability transistor It is.
  • the driving method according to the first aspect of the present technology corresponds to the solid-state imaging device according to the first aspect of the present technology.
  • the low drive capability transistor that generates a signal to be input to the gate electrode of the transfer transistor of the pixel having the overflow structure is driven, the low drive capability transistor is stopped and the low drive capability is reduced.
  • a high driving capability transistor connected in parallel with the capability transistor and generating a signal to be input to the gate electrode is driven.
  • An electronic apparatus is connected in parallel to a pixel having an overflow structure, a low drive capability transistor that generates a signal to be input to a gate electrode of a transfer transistor of the pixel, and the low drive capability transistor.
  • a high drive capability transistor that generates a signal to be input to the gate electrode; a drive unit that drives the low drive capability transistor after driving the low drive capability transistor; and drives the high drive capability transistor; And an output unit that outputs image data corresponding to an electrical signal generated by a pixel.
  • the pixel having an overflow structure, a low drive capability transistor that generates a signal to be input to a gate electrode of a transfer transistor of the pixel, and the low drive capability transistor are connected in parallel, A high drive capability transistor that generates a signal to be input to the gate electrode, and after the low drive capability transistor is driven, the low drive capability transistor is stopped, the high drive capability transistor is driven, and the pixel The image data corresponding to the electrical signal generated by is output.
  • a solid-state imaging device includes a first transistor that generates a first potential signal to be input to a gate electrode of a transfer transistor of a pixel having an overflow structure, and the first transistor in parallel.
  • a second transistor connected to generate a signal having a second potential higher than the first potential inputted to the gate electrode; and driving the first transistor, and then stopping the first transistor.
  • a solid-state imaging device including a driving unit that drives the second transistor.
  • the first transistor that generates the signal of the first potential to be input to the gate electrode of the transfer transistor of the pixel having the overflow structure is driven, the first transistor is stopped. Then, the second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential inputted to the gate electrode is driven.
  • An electronic device includes a pixel having an overflow structure, a first transistor that generates a first potential signal input to a gate electrode of a transfer transistor of the pixel, and the first transistor A second transistor that is connected in parallel to generate a signal having a second potential higher than the first potential that is input to the gate electrode; and after driving the first transistor, the first transistor And an output unit that outputs image data corresponding to an electrical signal generated by the pixel.
  • a pixel having an overflow structure a first transistor that generates a signal of a first potential that is input to a gate electrode of a transfer transistor of the pixel, and the first transistor are parallel to the first transistor.
  • a second transistor for generating a signal having a second potential higher than the first potential input to the gate electrode and after the first transistor is driven, the first transistor The transistor is stopped, the second transistor is driven, and image data corresponding to the electrical signal generated by the pixel is output.
  • a pixel having an overflow structure can be put into practical use.
  • FIG. 3 is a circuit diagram illustrating a first configuration example of a transfer pulse generation circuit. It is a timing chart which shows the 1st example of a transfer pulse. It is a circuit diagram which shows the 2nd structural example of a transfer pulse generation circuit. It is a timing chart which shows the 2nd example of a transfer pulse.
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of an electronic device to which the present technology is applied.
  • the electronic device 10 includes an optical block 11, an image sensor 12, a camera signal processing unit 13, an image data processing unit 14, a display unit 15, an external interface (I / F) unit 16, a memory unit 17, a media drive 18, an OSD (On Screen Display) unit 19 and control unit 20 are provided.
  • a user interface (I / F) unit 21 is connected to the control unit 20.
  • the image data processing unit 14, the external interface unit 16, the memory unit 17, the media drive 18, the OSD unit 19, the control unit 20, and the like are connected to each other via a bus 22.
  • the electronic device 10 captures an image of a subject and displays an image obtained as a result on the display unit 15 or records image data on the media drive 18.
  • the optical block 11 of the electronic device 10 includes a focus lens, a diaphragm mechanism, and the like.
  • the optical block 11 forms an optical image of the subject on the light receiving surface of the image sensor 12.
  • the image sensor 12 is configured by a CMOS image sensor, a MOS (Metal-Oxide Semiconductor) type solid-state imaging device, or the like.
  • the image sensor 12 receives light from the optical block 11 and photoelectrically converts an optical image obtained by the light reception to generate an electrical signal.
  • the image sensor 12 supplies the generated electrical signal to the camera signal processing unit 13.
  • the camera signal processing unit 13 performs various camera signal processing such as knee correction, gamma correction, and color correction on the electrical signal supplied from the image sensor 12.
  • the camera signal processing unit 13 functions as an output unit, and outputs image data obtained as a result of camera signal processing to the image data processing unit 14.
  • the image data processing unit 14 performs an encoding process on the image data supplied from the camera signal processing unit 13.
  • the image data processing unit 14 supplies the encoded data generated by performing the encoding process to the external interface unit 16 and the media drive 18. Further, the image data processing unit 14 performs a decoding process on the encoded data supplied from the external interface unit 16 or the media drive 18.
  • the image data processing unit 14 supplies the image data generated by performing the decoding process to the display unit 15.
  • the image data processing unit 14 superimposes the display data acquired from the OSD unit 19 on the processing for supplying the image data supplied from the camera signal processing unit 13 to the display unit 15 and the display unit 15. To supply.
  • the display unit 15 displays an image corresponding to the image data supplied from the image data processing unit 14 or image data on which display data is superimposed.
  • the external interface unit 16 includes, for example, a USB (Universal Serial Bus) input / output terminal and the like, and is connected to a printer when printing an image.
  • a drive is connected to the external interface unit 16 as necessary, and a removable medium such as a magnetic disk or an optical disk is appropriately mounted, and a computer program read from them is stored in the memory unit 17 as necessary.
  • the external interface unit 16 has a network interface connected to a predetermined network such as a LAN (Local Area Network) or the Internet.
  • the memory unit 17 stores a program executed by the control unit 20, various data necessary for the control unit 20 to perform processing, and the like.
  • the program stored in the memory unit 17 is read and executed by the control unit 20 at a predetermined timing such as when the electronic device 10 is activated.
  • a recording medium is mounted on the media drive 18, and the media drive 18 drives the recording medium and records image data supplied from the image data processing unit 14.
  • the recording medium driven by the media drive 18 for example, any readable / writable removable medium such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory is used.
  • the recording medium may be any kind of removable media, and may be a tape device, a disk, or a memory card. Of course, a non-contact IC (Integrated Circuit) card may be used. Further, the media drive 18 and the recording medium may be integrated and configured by a non-portable storage medium such as a built-in hard disk drive or an SSD (Solid State Drive).
  • a non-portable storage medium such as a built-in hard disk drive or an SSD (Solid State Drive).
  • the OSD unit 19 generates display data such as a menu screen or an icon made up of symbols, characters, or figures and outputs it to the image data processing unit 14.
  • the control unit 20 is configured using a CPU (Central Processing Unit) or the like.
  • the control unit 20 controls each unit so that the electronic device 10 performs an operation according to a user operation by executing a program.
  • CPU Central Processing Unit
  • control unit 20 reads the encoded data from the media drive 18 in accordance with an instruction from the user interface unit 21, for example, and other devices connected via the network from the external interface unit 16 Can be supplied. Further, the control unit 20 may acquire encoded data and image data supplied from another device via a network via the external interface unit 16 and supply the acquired data to the image data processing unit 14. it can.
  • the user interface unit 21 receives an operation from the user and supplies an instruction corresponding to the operation to the control unit 20.
  • FIG. 2 is a diagram illustrating a configuration example of the image sensor 12 of FIG.
  • the image sensor 12 of FIG. 2 includes a pixel array unit 32, a vertical drive circuit 33, a column processing unit 34, a horizontal drive circuit 35, a horizontal drive circuit 35 in which pixels 31 including photoelectric conversion elements are two-dimensionally arranged in a matrix.
  • the signal line 36, the output circuit 37, and the timing control circuit 38 are included. These are all integrated on a semiconductor substrate 39 made of the same silicon.
  • pixels 31 are two-dimensionally arranged by m rows and n columns (m and n are integers of 1 or more).
  • a row control line (not shown) is wired for each row to the m rows and n columns of pixels 31, and a vertical signal line 31A is wired for each column.
  • FIG. 2 only the pixels 31 corresponding to 10 rows and 12 columns are shown in order to simplify the drawing.
  • the pixel 31 receives light from the subject and photoelectrically converts an optical image obtained by the light reception to generate an electrical signal.
  • the pixel 31 supplies the generated electric signal to the column processing unit 34 in accordance with the selection pulse supplied from the vertical drive circuit 33 via the row control line.
  • the vertical drive circuit 33 is configured by a shift register or the like.
  • the vertical drive circuit 33 sequentially selects each pixel 31 of the pixel array unit 32 in units of rows based on the clock signal and control signal supplied from the timing control circuit 38, and for each pixel 31 in the selected row.
  • a selection pulse is supplied via the row control line.
  • electric signals are supplied to the column processing unit 34 in units of rows.
  • the column processing unit 34 is provided with a column signal processing circuit 34A corresponding to each column of the pixels 31 of the pixel array unit 32.
  • the column signal processing circuit 34A acquires an electric signal output from the pixels 31 for one row for each column based on the clock signal and the control signal supplied from the timing control circuit 38.
  • the column signal processing circuit 34A is a CDS (Correlated Sampling (correlated double sampling)), signal amplification, A / D (Analog / Digital) conversion, etc. for removing fixed pattern noise specific to the pixel 31 from the electric signal. Signal processing.
  • the column signal processing circuit 34 ⁇ / b> A supplies the electric signal after the signal processing to the output circuit 37 through the horizontal signal line 36 in accordance with the selection pulse from the horizontal driving circuit 35.
  • the horizontal drive circuit 35 is configured by a shift register or the like.
  • the horizontal drive circuit 35 sequentially selects each column signal processing circuit 34A based on the clock signal and control signal supplied from the timing control circuit 38, and supplies a selection pulse to the selected column signal processing circuit 34A.
  • the electric signal after signal processing is supplied to the output circuit 37 via the horizontal signal line 36 in units of pixels 31.
  • the output circuit 37 performs various kinds of signal processing on the electrical signals sequentially supplied from the column signal processing circuits 34A via the horizontal signal line 36, and supplies them to the camera signal processing unit 13 in FIG. Specifically, for example, the output circuit 37 buffers the electric signal as it is, and supplies the buffered electric signal to the camera signal processing unit 13. Alternatively, the output circuit 37 buffers the electrical signal by performing signal processing such as black level adjustment, correction of variation for each column, and signal amplification, and supplies the buffered electrical signal to the camera signal processing unit 13. To do.
  • the timing control circuit 38 is based on the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, and the master clock MCK, and controls the clock signal and control that are the reference for the operation of the vertical drive circuit 33, the column processing unit 34, the horizontal drive circuit 35, and the like. Generate signal etc.
  • the timing control circuit 38 supplies the generated clock signal, control signal, and the like to the vertical drive circuit 33, the column processing unit 34, the horizontal drive circuit 35, and the like.
  • FIG. 3 is a diagram illustrating a circuit configuration example of the pixel 31 in FIG. 2.
  • the pixel 31 includes a photoelectric conversion element 51, a transfer transistor 52, an FD (floating diffusion) 53, a reset transistor 54, an amplification transistor 55, and a selection transistor 56.
  • N-channel MOS transistors are used as the transfer transistor 52, reset transistor 54, amplification transistor 55, and selection transistor 56, but P-channel MOS transistors can also be used.
  • the pixel 31 is connected to a power source having a predetermined potential VDD (for example, 2.5 V). Further, the pixel 31 is provided with a reset wiring 71, a transfer wiring 72, and a selection wiring 73 as row control lines.
  • the photoelectric conversion element 51 has an anode connected to a first power supply potential, for example, ground.
  • the photoelectric conversion element 51 photoelectrically converts light from the subject into signal charges (photoelectrons) having a charge amount corresponding to the amount of the light, and accumulates the signal charges.
  • the transfer transistor 52 has a drain connected to the FD 53, a source connected to the cathode of the photoelectric conversion element 51, and a gate connected to the transfer wiring 72.
  • the transfer transistor 52 is turned on (conductive) when the transfer pulse TRF is supplied to the gate from the vertical drive circuit 33 of FIG. Is transferred to the FD 53.
  • the reset transistor 54 has a drain connected to the power supply wiring 70 to which the power supply is connected, a source connected to the FD 53, and a gate connected to the reset wiring 71.
  • the reset transistor 54 is turned on when a reset pulse RST is supplied to the gate from the vertical drive circuit 33 via the reset wiring 71, and resets the FD 53 by discarding the signal charge of the FD 53 to the power supply wiring 70.
  • the amplifying transistor 55 has a drain connected to the power supply wiring 70, a source connected to the drain of the selection transistor 56, and a gate connected to the FD 53.
  • the amplification transistor 55 supplies a signal corresponding to the potential of the FD 53 to the selection transistor 56. That is, the amplification transistor 55 supplies an electric signal corresponding to the signal charge accumulated in the photoelectric conversion element 51 to the selection transistor 56.
  • the selection transistor 56 has a drain connected to the source of the amplification transistor 55, a source connected to the vertical signal line 31A, and a gate connected to the selection wiring 73.
  • the selection transistor 56 is turned on when the selection pulse SEL is supplied to the gate from the vertical drive circuit 33 via the selection wiring 73, and the electrical signal output from the amplification transistor 55 is transmitted via the vertical signal line 31A. To the column signal processing circuit 34A.
  • the vertical drive circuit 33 controls the signal charge transfer operation from the photoelectric conversion element 51 to the FD 53 by the transfer pulse TRF.
  • the vertical drive circuit 33 controls the reset operation of the FD 53 by the reset pulse RST. Further, the vertical drive circuit 33 controls a selection operation for selecting the pixel 31 as a pixel that outputs an electric signal by the selection pulse SEL.
  • FIG. 4 is a cross-sectional view illustrating the outline of the pixel 31.
  • the pixel 31 is provided with a photoelectric conversion element 51, a transfer transistor 52, and the like for each of red, green, and blue.
  • an on-chip lens 81, a planarizing film 82, an upper electrode 83, an organic photoelectric conversion film 84, an insulating film 85, and an insulating film 86 are provided in this order from the outside.
  • the on-chip lens 81 condenses light from the subject on the photoelectric conversion element 51. Light emitted from the on-chip lens 81 is incident on the organic photoelectric conversion film 84 through the planarization film 82 and the upper electrode 83.
  • a vertical transfer path 96 described later and a light shielding film 82A that shields the extension 92a are formed.
  • the light shielding film 82A for example, Al, Ti, W, or the like can be used.
  • the light shielding film 82A is formed on the upper electrode 83 via an insulating film, but in this case, the potential of the light shielding film 82A is not fixed. Therefore, the light shielding film 82A may be formed so as to be in contact with the upper electrode 83. In this case, the potential of the light shielding film 82A is held at the same potential as that of the upper electrode 83.
  • the upper electrode 83 is made of a transparent conductive film such as an indium tin (ITO) film or an indium zinc oxide film, and a fixed negative voltage VL is applied to the upper electrode 83.
  • a transparent conductive film such as an indium tin (ITO) film or an indium zinc oxide film
  • the organic photoelectric conversion film 84 is a green photoelectric conversion element 51G, and has a characteristic of absorbing light having a green wavelength.
  • the organic photoelectric conversion film 84 is made of an organic photoelectric conversion material containing, for example, a rhodamine dye, a melocyanine dye, or quinacridone.
  • the organic photoelectric conversion film 84 receives green light of the incident light and performs photoelectric conversion. Thereby, a pair of electrons and holes is formed in the organic photoelectric conversion film 84.
  • a lower electrode 85A is formed in the insulating film 85.
  • the lower electrode 85A is made of a transparent conductive film such as an indium tin (ITO) film or an indium zinc oxide film, and a voltage VH higher than the voltage VL is applied to the lower electrode 85A.
  • ITO indium tin
  • the electrons in the pair of electrons and holes formed by the organic photoelectric conversion film 84 are attracted to the lower electrode 85A to which the voltage VH higher than the voltage VL is applied.
  • the voltage VH is determined by the potential of an overflow barrier described later.
  • the hole is drawn to the upper electrode 83 to which the negative voltage VL is applied, and is discharged through a wiring (not shown).
  • the insulating film 86 is an antireflection film and is made of, for example, hafnium oxide. In this case, since holes are excited on the back side of the semiconductor substrate 39, dark current generated at the back side interface of the semiconductor substrate 39 by application of the voltage VH to the lower electrode 85A can be suppressed.
  • a contact plug 86A connected to the connecting portion 101 provided on the back side of the semiconductor substrate 39 is formed so as to penetrate therethrough.
  • the contact plug 86 ⁇ / b> A transfers the signal charge of electrons drawn to the lower electrode 85 ⁇ / b> A to the connection portion 101.
  • a well region 91 made of a p-type semiconductor region is formed in the semiconductor substrate 39.
  • a blue photoelectric conversion element 51B and a red photoelectric conversion element 51R are formed so as to be stacked in the light incident direction.
  • the photoelectric conversion element 51B includes an n-type semiconductor region 92 made of n-type impurities formed on the back surface side of the semiconductor substrate 39 and an extension portion 92a formed so as to extend partially so as to reach the front surface side of the semiconductor substrate 39. Consists of.
  • the n-type semiconductor region 92 is irradiated with light from the subject through the on-chip lens 81, the planarization film 82, the upper electrode 83, the organic photoelectric conversion film 84, the insulating film 85, and the insulating film 86. At this time, since the green light is absorbed by the organic photoelectric conversion film 84, the light irradiated to the n-type semiconductor region 92 is light other than green.
  • the n-type semiconductor region 92 absorbs blue light having a short wavelength among the irradiated light, performs photoelectric conversion, and accumulates signal charges obtained as a result.
  • the extension part 92 a outputs the signal charge to the surface side of the semiconductor substrate 39.
  • a high-concentration p-type semiconductor region 93 serving as a hole accumulation layer is formed on the surface side of the extension 92a.
  • the photoelectric conversion element 51R is composed of an n-type semiconductor region 94 formed on the surface side of the semiconductor substrate 39. On the surface side of the n-type semiconductor region 94, a high-concentration p-type semiconductor region 95 serving as a hole accumulation layer is formed.
  • the n-type semiconductor region 94 In the n-type semiconductor region 94, light from the subject passes through the on-chip lens 81, the planarization film 82, the upper electrode 83, the organic photoelectric conversion film 84, the insulating film 85, the insulating film 86, and the n-type semiconductor region 92. Is irradiated. In addition, since green light is absorbed by the organic photoelectric conversion film 84 and blue light is also absorbed by the n-type semiconductor region 92, the light irradiated to the n-type semiconductor region 94 is red light. The n-type semiconductor region 94 absorbs the irradiated red light, performs photoelectric conversion, accumulates signal charges obtained as a result, and outputs the accumulated signal charges to the surface side of the semiconductor substrate 39.
  • the photoelectric conversion element 51B (51R) by forming the p-type semiconductor region 93 (95) at the interface of the semiconductor substrate 39, dark current generated at the interface of the semiconductor substrate 39 can be suppressed.
  • a vertical transfer path 96 for outputting the signal charge transferred from the contact plug 86A to the surface side of the semiconductor substrate 39 is formed.
  • the vertical transfer path 96 has an overflow structure, and is configured by connecting the connection portion 101, the potential barrier layer 102, and the charge storage layer 103 in order from the back surface side of the semiconductor substrate 39.
  • the connecting portion 101 is made of an n-type impurity region having a high impurity concentration.
  • the connection portion 101 is supplied with signal charges transferred from the contact plug 86A.
  • the potential barrier layer 102 is made of a low-concentration p-type impurity region, and constitutes an overflow barrier between the connection portion 101 and the charge storage layer 103.
  • the signal charge exceeding the saturation charge amount of the connecting portion 101 overflows the potential barrier layer 102 and overflows to the charge storage layer 103. That is, in the connection part 101, the signal charge overflows in the vertical direction.
  • the charge storage layer 103 is composed of an n-type impurity region having a concentration lower than that of the connection portion 101, and stores overflowed signal charges.
  • the charge storage layer 103 outputs the stored signal charge to the surface side of the semiconductor substrate 39.
  • a high-concentration p-type semiconductor region 104 serving as a hole storage layer is formed on the surface side of the charge storage layer 103. Thereby, dark current generated at the interface of the semiconductor substrate 39 can be suppressed.
  • a blue FD 53B is formed adjacent to the extension 92a on the surface side of the semiconductor substrate 39, and a red FD 53R is formed adjacent to the photoelectric conversion element 51R.
  • An FD 53G for green is formed adjacent to the path 96.
  • FD53B, FD53R, and FD53G are configured by n-type high concentration impurity regions.
  • a multilayer wiring layer 87 having wirings 87C stacked in a plurality of layers (three layers in this embodiment) is formed via an interlayer insulating film 87A.
  • a blue transfer transistor 52B is provided corresponding to the photoelectric conversion element 51B, and a red transfer transistor 52R is provided corresponding to the photoelectric conversion element 51R.
  • a green transfer transistor 52G is provided corresponding to the photoelectric conversion element 51G.
  • the gate electrode 111B of the transfer transistor 52B is formed on the semiconductor substrate 39 near the extension 92a via the interlayer insulating film 87A, and the gate electrode 111R of the transfer transistor 52R is interlayered on the semiconductor substrate 39 near the photoelectric conversion element 51R. It is formed via an insulating film 87A.
  • the gate electrode 111G is formed on the semiconductor substrate 39 in the vicinity of the vertical transfer path 96 via an interlayer insulating film 87A.
  • the gate electrode 111B, the gate electrode 111R, and the gate electrode 111G are made of, for example, polysilicon.
  • the transfer transistor 52B supplies the signal charge corresponding to the blue light accumulated in the n-type semiconductor region 92 and output via the extension 92a to the FD 53B.
  • the transfer transistor 52R supplies the FD 53R with a signal charge corresponding to the red light that is accumulated in the n-type semiconductor region 94 and output.
  • the transfer transistor 52G supplies the FD 53G with a signal charge corresponding to the green light that is stored in the charge storage layer 103 and output.
  • the charge storage layer 103 can be formed close to the gate electrode 111G, and transfer from the charge storage layer 103 to the FD 53G is advantageous.
  • the organic photoelectric conversion film 84 is provided as the photoelectric conversion element 51G.
  • an organic photoelectric conversion film may be provided as a blue or red photoelectric conversion element.
  • the organic photoelectric conversion film has a characteristic of absorbing light having a blue wavelength.
  • the photoelectric conversion element comprised similarly to the photoelectric conversion element 51B of FIG. 4 functions as a green photoelectric conversion element
  • the photoelectric conversion element comprised similarly to the photoelectric conversion element 51R is as a red photoelectric conversion element. Function.
  • the organic photoelectric conversion film when an organic photoelectric conversion film is provided as a red photoelectric conversion element, the organic photoelectric conversion film has a characteristic of absorbing light having a red wavelength.
  • the photoelectric conversion element comprised similarly to the photoelectric conversion element 51B of FIG. 4 functions as a blue photoelectric conversion element, and the photoelectric conversion element comprised similarly to the photoelectric conversion element 51R is as a green photoelectric conversion element. Function.
  • an organic photoelectric conversion material containing a coumaric acid dye, tris-8-hydroxyquinori Al (Alq3), a melocyanine dye, or the like can be used.
  • an organic photoelectric conversion film that photoelectrically converts red light an organic photoelectric conversion material containing a phthalocyanine dye can be used.
  • the difference in the wavelength of the light split between the photoelectric conversion element 51B and the photoelectric conversion element 51R is large. Therefore, the spectral characteristics are good.
  • FIG. 5 is a timing chart showing an example of the transfer pulse TRF.
  • the horizontal axis represents time (t), and the vertical axis represents potential.
  • time t0, time t1, time t2, time t3, time t4, and time t5 are set.
  • the potential of the selection wiring 73 changes from the low potential Vlow (for example, the ground potential GND) to the high potential Vhigh at time t0, and returns from the high potential Vhigh to the low potential Vlow at time t5. That is, the selection pulse SEL is supplied to the gate of the selection transistor 56 from time t0 to time t5.
  • Vlow for example, the ground potential GND
  • the potential of the reset wiring 71 changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t1. That is, the reset pulse RST is supplied to the gate of the reset transistor 54 from time t0 to time t1.
  • the selection pulse SEL is supplied to the gate of the selection transistor 56, and the reset pulse RST is supplied to the gate of the reset transistor 54. Accordingly, during this period, the FD 53 is reset by the reset transistor 54, and no electrical signal is supplied to the column signal processing circuit 34A.
  • the potential of the transfer wiring 72 changes from the low potential Vlow to the high potential Vhigh at time t2, and returns from the high potential Vhigh to the low potential Vlow at time t3. That is, the transfer pulse TRF is supplied to the gate (gate electrodes 111B, 111R, 111G) of the transfer transistor 52 from time t2 to time t3. At this time, the reset pulse RST is not supplied to the gate of the reset transistor 54.
  • the signal charge transferred to the FD 53 by the transfer transistor 52 is not discarded, and the electric signal corresponding to the signal charge is sent from the amplification transistor 55 and the selection transistor 56 to the column signal processing circuit 34A. To be supplied.
  • the potentials of the reset wiring 71 and the transfer wiring 72 change from the low potential Vlow to the high potential Vhigh, and return from the high potential Vhigh to the low potential Vlow at time t5. That is, from time t4 to time t5, the reset pulse RST is supplied to the gate of the reset transistor 54, and the transfer pulse TRF is supplied to the gate of the transfer transistor 52.
  • the selection pulse SEL is supplied to the gate of the selection transistor 56 from time t4 to time t5, but no electrical signal is supplied to the column signal processing circuit 34A.
  • the electric signal corresponding to the light from the subject is supplied to the column signal processing circuit 34A from the time t2 to the time t3.
  • FIG. 6 is a diagram showing the potential energy of the vertical transfer path 96 when the transfer pulse TRF is the transfer pulse TRF of FIG.
  • the potential barrier layer 102 of the vertical transfer path 96 constitutes an overflow barrier whose potential energy is a predetermined value.
  • the transfer pulse TRF as shown in FIG. 5 is supplied to the gate of the transfer transistor 52, the rising and falling edges of the transfer pulse TRF are steep. Therefore, the well region 91 fluctuates when the transfer pulse TRF rises and falls. Thereby, when the transfer pulse TRF rises, the well region 91 swings to the plus bias side, and the potential energy of the potential barrier layer 102 becomes smaller than a predetermined value.
  • the vertical drive circuit 33 of the electronic device 10 generates a transfer pulse TRF whose rise is not steep.
  • FIG. 7 is a circuit diagram showing a first configuration example of a transfer pulse generation circuit that generates the transfer pulse TRF in the vertical drive circuit 33.
  • a low drive capability transistor 132 connected to the power supply line 131 and the control line 133A, and a high drive capability transistor 134 connected to the power supply line 131 and the control line 133B are parallel to the capacitor 135. It is comprised by connecting to.
  • the power supply wiring 131 is connected to a power supply having a high potential Vhigh.
  • the low drive capability transistor 132 is a transistor with a low drive capability compared to the high drive capability transistor 134, and less charge is output in the ON state than the high drive capability transistor 134.
  • the low drive capability transistor 132 has a drain connected to the power supply wiring 131, a gate connected to the control wiring 133 ⁇ / b> A, and a source connected to the capacitor 135.
  • the low drivability transistor 132 is turned on when a predetermined pulse is input to the gate from the control wiring 133A, and supplies a charge from the power source of the high potential Vhigh to the capacitor 135.
  • a drive circuit 133 that controls the driving of the low drive capability transistor 132 and the high drive capability transistor 134 is connected to the control wiring 133A.
  • the control wiring 133A supplies a predetermined pulse output from the drive circuit 133 to the low drive capability transistor 132.
  • a drive circuit 133 is connected to the control wiring 133B in the same manner as the control wiring 133A.
  • the control wiring 133B supplies a predetermined pulse output from the drive circuit 133 to the high drive capability transistor 134.
  • the high drivability transistor 134 is a transistor having a high drivability compared to the low drivability transistor 132, and more charge is output in the on state than the low drivability transistor 132.
  • the high drivability transistor 134 has a drain connected to the power supply wiring 131, a gate connected to the control wiring 133 ⁇ / b> B, and a source connected to the capacitor 135.
  • the high drivability transistor 134 is turned on when a predetermined pulse is input to the gate from the control wiring 133 ⁇ / b> B, and supplies a charge from the power source to the capacitor 135.
  • the capacitor 135 generates a transfer pulse TRF by accumulating charges supplied from the low drive capability transistor 132 and the high drive capability transistor 134. That is, the low drive capability transistor 132 and the high drive capability transistor 134 generate a transfer pulse TRF via the capacitor 135. The generated transfer pulse TRF is supplied to the transfer wiring 72.
  • FIG. 8 is a timing chart showing the transfer pulse TRF generated by the transfer pulse generation circuit 130 of FIG.
  • the horizontal axis represents time (t), and the vertical axis represents potential.
  • time t0, time t1, time t11, time t12, time t13, time t14, time t4, and time t5 are set.
  • the time t0, time t1, time t4, and time t5 in FIG. 8 are the same as those in FIG.
  • the selection pulse SEL and the reset pulse RST are generated as in the example of FIG.
  • the potential of the control wiring 133A changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t12.
  • the drive circuit 133 drives the low drive capability transistor 132 by supplying a pulse to the gate of the low drive capability transistor 132 via the control wiring 133A. At time t12, the drive circuit 133 stops supplying pulses to the low drive capability transistor 132, and stops the low drive capability transistor 132.
  • the potential of the control wiring 133B changes from the low potential Vlow to the high potential Vhigh, and at time t13, the potential returns from the high potential Vhigh to the low potential Vlow. That is, from time t12 to time t13, the drive circuit 133 drives the high drive capability transistor 134 by supplying a pulse to the gate of the high drive capability transistor 134 via the control wiring 133B. At time t ⁇ b> 13, the drive circuit 133 stops supplying pulses to the low drive capability transistor 134 and stops the low drive capability transistor 134.
  • the potential of the control wiring 133A changes from the low potential Vlow to the high potential Vhigh again, and returns from the high potential Vhigh to the low potential Vlow at time t4.
  • charge is again slowly accumulated in the capacitor 135, and the potential of the transfer wiring 72 gradually rises from the low potential Vlow to the potential V.
  • the potential of the control wiring 133B changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t5.
  • the potential of the transfer wiring 72 rapidly rises from the potential V to the high potential Vhigh.
  • the potential of the transfer wiring 72 returns to the low potential Vlow.
  • the drive circuit 133 drives the low drive capability transistor 132 at the rising edge of the transfer pulse TRF, then stops the low drive capability transistor 132, and causes the high drive capability transistor 134 to Drive. Therefore, the rising edge of the transfer pulse TRF becomes gentle. Therefore, the well region 91 does not fluctuate and the overflow of noise charges to the charge storage layer 103 can be suppressed. As a result, it is possible to suppress deterioration in image quality of the captured image.
  • the voltages applied to the drains of the low drive capability transistor 132 and the high drive capability transistor 134 are the same. Therefore, even when the low drive capability transistor 132 and the high drive capability transistor 134 are turned on at the time of switching from the low drive capability transistor 132 to the high drive capability transistor 134, the low drive capability transistor 132 and the high drive capability transistor 134 No through current is generated between them. Therefore, it is not necessary to provide a period for stopping both the low drive capability transistor 132 and the high drive capability transistor 134 at the time of switching.
  • the transfer pulse generation circuit 130 does not have a circuit that blunts the falling edge of the transfer pulse TRF. Thereby, the falling time of the transfer pulse TRF can be shortened. As a result, the imaging time can be shortened.
  • FIG. 9 is a circuit diagram showing a second configuration example of the transfer pulse generation circuit that generates the transfer pulse TRF in the vertical drive circuit 33.
  • the transfer pulse generation circuit 150 in FIG. 9 includes a transistor 152 connected to the power supply wiring 151A and the control wiring 153A, and a transistor 154 connected to the power supply wiring 151B and the control wiring 153B connected in parallel to the capacitor 155. Composed.
  • the power supply wiring 151A is connected to a power supply having an intermediate potential Vmid that is intermediate (half) between the high potential Vhigh and the low potential Vlow, and the power supply wiring 151B is connected to a power supply having a high potential Vhigh.
  • the transistor 152 has a drain connected to the power supply wiring 151A, a gate connected to the control wiring 153A, and a source connected to the capacitor 155.
  • a predetermined pulse is input to the gate of the control wiring 153A from the control wiring 153A, the transistor 152 is turned on and supplies a charge from the power source of the intermediate potential Vmid to the capacitor 155.
  • a driving circuit 153 that controls driving of the transistor 152 and the transistor 154 is connected to the control wiring 153A.
  • the control wiring 153A supplies a predetermined pulse output from the drive circuit 153 to the transistor 152.
  • a drive circuit 153 is connected to the control wiring 153B in the same manner as the control wiring 153A.
  • the control wiring 153B supplies a predetermined pulse output from the drive circuit 153 to the transistor 154.
  • the transistor 154 has a drain connected to the power supply wiring 151B, a gate connected to the control wiring 153B, and a source connected to the capacitor 155.
  • the transistor 154 is turned on when a predetermined pulse is input to the gate from the control wiring 153B, and supplies a charge from the power source of the high potential Vhigh to the capacitor 155.
  • the capacitor 155 generates a transfer pulse TRF by accumulating charges supplied from the transistor 152 and the transistor 154. That is, the transistor 152 and the transistor 154 generate the transfer pulse TRF via the capacitor 155. The generated transfer pulse TRF is supplied to the transfer wiring 72.
  • FIG. 10 is a timing chart showing the transfer pulse TRF generated by the transfer pulse generation circuit 150 of FIG.
  • the horizontal axis represents time (t), and the vertical axis represents potential.
  • the time t0, time t1, time t21, time t22, time t23, time t24, time t25, time t26, time t4, and time t5 are set in order of time.
  • the time t0, time t1, time t4, and time t5 in FIG. 10 are the same as those in FIG.
  • the selection pulse SEL and the reset pulse RST are generated as in the example of FIG.
  • the potential of the control wiring 153A changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t22.
  • the drive circuit 153 drives the transistor 152 by supplying a pulse to the gate of the transistor 152 through the control wiring 153A.
  • the driver circuit 153 stops supplying the pulse to the transistor 152 and stops the transistor 152.
  • time t22 to time t23 (for example, time for one clock), the potentials of the control wiring 153A and the control wiring 153B are kept at the low potential Vlow. As a result, no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 remains at the low potential Vlow.
  • the potential of the control wiring 153B changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t24. That is, from time t23 to time t24, the drive circuit 153 drives the transistor 154 by supplying a pulse to the gate of the transistor 154 through the control wiring 153B. At time t ⁇ b> 24, the driver circuit 153 stops supplying the pulse to the transistor 154 and stops the transistor 154.
  • the potential of the control wiring 153A again changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t26.
  • the electric charge from the power source of the intermediate potential Vmid is accumulated again in the capacitor 155, and the potential of the transfer wiring 72 rises from the low potential Vlow to the intermediate potential Vmid.
  • no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 returns to the low potential Vlow.
  • time t26 and time t4 (for example, time for one clock), the potentials of the control wiring 153A and the control wiring 153B are kept at the low potential Vlow. As a result, no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 remains at the low potential Vlow.
  • the potential of the control wiring 153B changes from the low potential Vlow to the high potential Vhigh, and at time t5, the potential returns from the high potential Vhigh to the low potential Vlow.
  • the potential of the transfer wiring 72 changes from the low potential Vlow to the high potential Vhigh.
  • no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 returns to the low potential Vlow.
  • the drive circuit 153 drives the transistor 152 to temporarily set the potential of the transfer pulse TRF to the intermediate potential Vmid when the transfer pulse TRF rises, and then stops the transistor 152. Then, the drive circuit 153 drives the transistor 154 to set the potential of the transfer pulse TRF to the high potential Vhigh. Therefore, since the potential of the transfer pulse TRF does not rise to the high potential Vhigh at one time, the well region 91 does not fluctuate and the overflow of noise charges to the charge storage layer 103 can be suppressed. As a result, it is possible to suppress deterioration in image quality of the captured image.
  • the drive circuit 153 provides a period during which the transfer transistor 52 is turned off by setting the potentials of the control wiring 153A and the control wiring 153B to the low potential Vlow when the driving target is switched from the transistor 152 to the transistor 154. Accordingly, when the transistor 152 and the transistor 154 are turned on at the same time, it is possible to prevent a through current from being generated between the transistor 152 and the transistor 154.
  • the transfer pulse generation circuit 150 does not have a circuit that blunts the falling edge of the transfer pulse TRF. Thereby, the falling time of the transfer pulse TRF can be shortened. As a result, the imaging time can be shortened.
  • the number of transistors connected in parallel in the transfer pulse generation circuit 130 (150) is not limited to two, and may be two or more. In this case, the driving capability of each transistor provided in the transfer pulse generation circuit 130 is different.
  • the potential of the power source connected to each transistor provided in the transfer pulse generation circuit 150 is a different potential between the low potential Vlow and the high potential Vhigh.
  • the image sensor 12 may have a horizontal transfer path having a horizontal overflow structure instead of the vertical transfer path 96 having a vertical overflow structure.
  • the present technology can be configured as follows.
  • a low drive capability transistor for generating a signal to be input to the gate electrode of the transfer transistor of the pixel having an overflow structure A high drivability transistor connected in parallel with the low drivability transistor and generating a signal to be input to the gate electrode;
  • a solid-state imaging device comprising: a drive unit that drives the high drive capability transistor after stopping the low drive capability transistor after driving the low drive capability transistor.
  • a solid-state imaging device comprising: a high drive capability transistor that is connected in parallel with the low drive capability transistor and generates a signal to be input to the gate electrode.
  • a driving method including a driving step of driving the low drive capability transistor, then stopping the low drive capability transistor and driving the high drive capability transistor.
  • An electronic device comprising: an output unit that outputs image data corresponding to an electrical signal generated by the pixel.
  • a first transistor that generates a first potential signal that is input to a gate electrode of a transfer transistor of a pixel having an overflow structure;
  • a second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential inputted to the gate electrode;
  • a solid-state imaging device comprising: a driving unit that drives the second transistor after driving the first transistor and stopping the first transistor.
  • the driving unit drives the second transistor after a predetermined period after stopping the first transistor.
  • a first transistor that generates a first potential signal that is input to a gate electrode of a transfer transistor of a pixel having an overflow structure A solid-state imaging device comprising: a second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential input to the gate electrode.
  • a driving method comprising: a driving step of driving the second transistor after stopping the first transistor after driving the first transistor.
  • a pixel having an overflow structure A first transistor that generates a signal of a first potential that is input to a gate electrode of a transfer transistor of the pixel; A second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential inputted to the gate electrode; A driving unit for driving the first transistor, stopping the first transistor, and driving the second transistor; An electronic device comprising: an output unit that outputs image data corresponding to an electrical signal generated by the pixel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

The present technology relates to a solid-state imaging device, driving method, and electronic device that allow the practical application of a pixel having an overflow structure. A low-driving-capability transistor generates a transfer pulse to be input to a gate electrode of a transfer transistor for a pixel having an overflow structure. A high-driving-capability transistor is connected in parallel with the low-driving-capability transistor, and generates a transfer pulse. After driving the low-driving-capability transistor, a driving circuit stops the low-driving-capability transistor, and drives the high-driving-capability transistor. The present technology may, for example, be applied to a CMOS image sensor.

Description

固体撮像装置、駆動方法、および電子機器Solid-state imaging device, driving method, and electronic apparatus
 本技術は、固体撮像装置、駆動方法、および電子機器に関し、特に、オーバーフロー構造を有する画素を実用化することができるようにした固体撮像装置、駆動方法、および電子機器に関する。 The present technology relates to a solid-state imaging device, a driving method, and an electronic device, and more particularly, to a solid-state imaging device, a driving method, and an electronic device that enable practical use of a pixel having an overflow structure.
 固体撮像装置として、CMOS(Complementary Metal-Oxide Semiconductor)集積回路と同様のプロセスで製造できるCMOS型固体撮像装置(以下、CMOSイメージセンサという)が知られている。 As a solid-state imaging device, a CMOS solid-state imaging device (hereinafter referred to as a CMOS image sensor) that can be manufactured by a process similar to a CMOS (Complementary Metal-Oxide Semiconductor) integrated circuit is known.
 CMOSイメージセンサは、CMOSプロセスに付随した微細化技術により、画素ごとに増幅機能を持つアクティブ型の構造を容易に作成することができることを特徴とする。また、CMOSイメージセンサは、画素アレイ部を駆動する駆動回路や画素アレイ部の各画素から出力される信号を処理する信号処理回路などの周辺回路を、画素アレイ部と同一のチップ(基板)上に集積できることを特徴とする。このような特徴を有することにより、CMOSイメージセンサは注目され、CMOSイメージセンサに関して多くの研究や開発がなされている。 The CMOS image sensor is characterized in that an active structure having an amplification function for each pixel can be easily created by a miniaturization technique associated with the CMOS process. The CMOS image sensor also has peripheral circuits such as a drive circuit that drives the pixel array unit and a signal processing circuit that processes signals output from each pixel of the pixel array unit on the same chip (substrate) as the pixel array unit. It can be accumulated in Due to such features, CMOS image sensors have attracted attention, and many researches and developments have been made on CMOS image sensors.
 その結果、近年、同一の画素の縦方向に青色と赤色のそれぞれの波長の光を光電変換する光電変換部が設けられ、緑色の光電変換部は有機光電変換膜を有する固体撮像装置が提案されている(例えば、特許文献1参照)。 As a result, in recent years, a photoelectric conversion unit that photoelectrically converts light of each wavelength of blue and red in the vertical direction of the same pixel is provided, and a solid-state imaging device having an organic photoelectric conversion film has been proposed for the green photoelectric conversion unit. (For example, refer to Patent Document 1).
 この固体撮像装置では、緑色の光電変換部は、有機光電変換膜で光電変換された信号電荷をシリコン(Si)基板上に形成された高濃度N型拡散層に伝達するコンタクト部を有する。そして、光量に応じて信号電荷がP型不純物領域の電位障壁をオーバーフローして乗り越え、N型の蓄積部で蓄積される。蓄積部に蓄積された信号電荷は、転送トランジスタによりフローティングディフージョン(FD)に転送される。 In this solid-state imaging device, the green photoelectric conversion unit has a contact unit that transmits the signal charge photoelectrically converted by the organic photoelectric conversion film to the high-concentration N-type diffusion layer formed on the silicon (Si) substrate. Depending on the amount of light, the signal charge overflows over the potential barrier of the P-type impurity region and is accumulated in the N-type accumulation unit. The signal charge accumulated in the accumulation unit is transferred to the floating diffusion (FD) by the transfer transistor.
 このように信号電荷をオーバーフローさせて蓄積部に供給する構造は、オーバーフロー構造と呼ばれる。なお、ここでは、信号電荷のキャリアは電子であるものとして説明したが、ホールの場合も極性が入れ替わること以外電子の場合と同様である。 Such a structure in which the signal charge is overflowed and supplied to the storage unit is called an overflow structure. Here, it has been described that the carrier of the signal charge is an electron, but the case of a hole is the same as that of an electron except that the polarity is switched.
 オーバーフロー構造を有するCMOSイメージセンサにおいても、オーバーフロー構造を有しない一般的なCMOSイメージセンサと同様に、垂直駆動回路のトランジスタにより、各色の画素の転送トランジスタのゲート電極に対して所定の電位の信号が印加される。 Even in a CMOS image sensor having an overflow structure, a signal having a predetermined potential is applied to a gate electrode of a transfer transistor of each color pixel by a transistor of a vertical drive circuit, as in a general CMOS image sensor not having an overflow structure. Applied.
特開2011-138927号公報JP 2011-138927 A
 ところで、オーバーフロー構造を有する画素を備えるCMOSイメージセンサでは、実用化に向けて工夫が必要であった。 By the way, in the CMOS image sensor provided with the pixel having the overflow structure, it is necessary to devise for practical use.
 本技術は、このような状況に鑑みてなされたものであり、オーバーフロー構造を有する画素を実用化することができるようにするものである。 The present technology has been made in view of such a situation, and makes it possible to put a pixel having an overflow structure into practical use.
 本技術の第1の側面の固体撮像装置は、オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタと、前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタと、前記低駆動能力トランジスタを駆動させた後、前記低駆動能力トランジスタを停止させ、前記高駆動能力トランジスタを駆動させる駆動部とを備える固体撮像装置である。 A solid-state imaging device according to a first aspect of the present technology includes: a low drive capability transistor that generates a signal to be input to a gate electrode of a transfer transistor of a pixel having an overflow structure; the low drive capability transistor connected in parallel; A solid-state imaging device comprising: a high drive capability transistor that generates a signal to be input to an electrode; and a drive unit that drives the high drive capability transistor after driving the low drive capability transistor and then stopping the low drive capability transistor It is.
 本技術の第1の側面の駆動方法は、本技術の第1の側面の固体撮像装置に対応する。 The driving method according to the first aspect of the present technology corresponds to the solid-state imaging device according to the first aspect of the present technology.
 本技術の第1の側面においては、オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタが駆動された後、前記低駆動能力トランジスタが停止され、前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタが駆動される。 In the first aspect of the present technology, after the low drive capability transistor that generates a signal to be input to the gate electrode of the transfer transistor of the pixel having the overflow structure is driven, the low drive capability transistor is stopped and the low drive capability is reduced. A high driving capability transistor connected in parallel with the capability transistor and generating a signal to be input to the gate electrode is driven.
 本技術の第2の側面の電子機器は、オーバーフロー構造を有する画素と、前記画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタと、前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタと、前記低駆動能力トランジスタを駆動させた後、前記低駆動能力トランジスタを停止させ、前記高駆動能力トランジスタを駆動させる駆動部と、前記画素により生成される電気信号に対応する画像データを出力する出力部とを備える電子機器である。 An electronic apparatus according to a second aspect of the present technology is connected in parallel to a pixel having an overflow structure, a low drive capability transistor that generates a signal to be input to a gate electrode of a transfer transistor of the pixel, and the low drive capability transistor. A high drive capability transistor that generates a signal to be input to the gate electrode; a drive unit that drives the low drive capability transistor after driving the low drive capability transistor; and drives the high drive capability transistor; And an output unit that outputs image data corresponding to an electrical signal generated by a pixel.
 本技術の第2の側面においては、オーバーフロー構造を有する画素と、前記画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタと、前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタとが備えられ、前記低駆動能力トランジスタが駆動された後、前記低駆動能力トランジスタが停止されて、前記高駆動能力トランジスタが駆動され、前記画素により生成される電気信号に対応する画像データが出力される。 In a second aspect of the present technology, the pixel having an overflow structure, a low drive capability transistor that generates a signal to be input to a gate electrode of a transfer transistor of the pixel, and the low drive capability transistor are connected in parallel, A high drive capability transistor that generates a signal to be input to the gate electrode, and after the low drive capability transistor is driven, the low drive capability transistor is stopped, the high drive capability transistor is driven, and the pixel The image data corresponding to the electrical signal generated by is output.
 本技術の第3の側面の固体撮像装置は、オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタと、前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタと、前記第1のトランジスタを駆動させた後、前記第1のトランジスタを停止させ、前記第2のトランジスタを駆動させる駆動部とを備える固体撮像装置である。 A solid-state imaging device according to a third aspect of the present technology includes a first transistor that generates a first potential signal to be input to a gate electrode of a transfer transistor of a pixel having an overflow structure, and the first transistor in parallel. A second transistor connected to generate a signal having a second potential higher than the first potential inputted to the gate electrode; and driving the first transistor, and then stopping the first transistor. , A solid-state imaging device including a driving unit that drives the second transistor.
 本技術の第3の側面においては、オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタが駆動された後、前記第1のトランジスタが停止され、前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタが駆動される。 In the third aspect of the present technology, after the first transistor that generates the signal of the first potential to be input to the gate electrode of the transfer transistor of the pixel having the overflow structure is driven, the first transistor is stopped. Then, the second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential inputted to the gate electrode is driven.
 本技術の第4の側面の電子機器は、オーバーフロー構造を有する画素と、前記画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタと、前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタと、前記第1のトランジスタを駆動させた後、前記第1のトランジスタを停止させ、前記第2のトランジスタを駆動させる駆動部と、前記画素により生成される電気信号に対応する画像データを出力する出力部とを備える電子機器である。 An electronic device according to a fourth aspect of the present technology includes a pixel having an overflow structure, a first transistor that generates a first potential signal input to a gate electrode of a transfer transistor of the pixel, and the first transistor A second transistor that is connected in parallel to generate a signal having a second potential higher than the first potential that is input to the gate electrode; and after driving the first transistor, the first transistor And an output unit that outputs image data corresponding to an electrical signal generated by the pixel.
 本技術の第4の側面においては、オーバーフロー構造を有する画素と、前記画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタと、前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタとが備えられ、前記第1のトランジスタが駆動された後、前記第1のトランジスタが停止されて、前記第2のトランジスタが駆動され、前記画素により生成される電気信号に対応する画像データが出力される。 In a fourth aspect of the present technology, a pixel having an overflow structure, a first transistor that generates a signal of a first potential that is input to a gate electrode of a transfer transistor of the pixel, and the first transistor are parallel to the first transistor. And a second transistor for generating a signal having a second potential higher than the first potential input to the gate electrode, and after the first transistor is driven, the first transistor The transistor is stopped, the second transistor is driven, and image data corresponding to the electrical signal generated by the pixel is output.
 本技術によれば、オーバーフロー構造を有する画素を実用化することができる。 According to the present technology, a pixel having an overflow structure can be put into practical use.
本技術を適用した電子機器の一実施の形態の構成例を示すブロック図である。It is a block diagram which shows the structural example of one Embodiment of the electronic device to which this technique is applied. 図1のイメージセンサの構成例を示す図である。It is a figure which shows the structural example of the image sensor of FIG. 図2の画素の回路構成例を示す図である。It is a figure which shows the circuit structural example of the pixel of FIG. 画素の概略を示す断面図である。It is sectional drawing which shows the outline of a pixel. 転送パルスの一例を示すタイミングチャートである。It is a timing chart which shows an example of a transfer pulse. 縦型転送路のポテンシャルエネルギーを示す図である。It is a figure which shows the potential energy of a vertical transfer path. 転送パルス発生回路の第1の構成例を示す回路図である。FIG. 3 is a circuit diagram illustrating a first configuration example of a transfer pulse generation circuit. 転送パルスの第1の例を示すタイミングチャートである。It is a timing chart which shows the 1st example of a transfer pulse. 転送パルス発生回路の第2の構成例を示す回路図である。It is a circuit diagram which shows the 2nd structural example of a transfer pulse generation circuit. 転送パルスの第2の例を示すタイミングチャートである。It is a timing chart which shows the 2nd example of a transfer pulse.
 <一実施の形態>
 [電子機器の一実施の形態の構成例]
 図1は、本技術を適用した電子機器の一実施の形態の構成例を示すブロック図である。
<One embodiment>
[Configuration example of one embodiment of electronic device]
FIG. 1 is a block diagram illustrating a configuration example of an embodiment of an electronic device to which the present technology is applied.
 電子機器10は、光学ブロック11、イメージセンサ12、カメラ信号処理部13、画像データ処理部14、表示部15、外部インタフェース(I/F)部16、メモリ部17、メディアドライブ18、OSD(On Screen Display)部19、および制御部20を備える。また、制御部20には、ユーザインタフェース(I/F)部21が接続されている。 The electronic device 10 includes an optical block 11, an image sensor 12, a camera signal processing unit 13, an image data processing unit 14, a display unit 15, an external interface (I / F) unit 16, a memory unit 17, a media drive 18, an OSD (On Screen Display) unit 19 and control unit 20 are provided. In addition, a user interface (I / F) unit 21 is connected to the control unit 20.
 さらに、画像データ処理部14や外部インタフェース部16、メモリ部17、メディアドライブ18、OSD部19、制御部20等は、バス22を介して互いに接続されている。電子機器10は、被写体を撮像し、その結果得られる画像を表示部15に表示させたり、画像データをメディアドライブ18に記録させたりする。 Furthermore, the image data processing unit 14, the external interface unit 16, the memory unit 17, the media drive 18, the OSD unit 19, the control unit 20, and the like are connected to each other via a bus 22. The electronic device 10 captures an image of a subject and displays an image obtained as a result on the display unit 15 or records image data on the media drive 18.
 具体的には、電子機器10の光学ブロック11は、フォーカスレンズや絞り機構等により構成される。光学ブロック11は、被写体の光学像をイメージセンサ12の受光面に結像させる。 Specifically, the optical block 11 of the electronic device 10 includes a focus lens, a diaphragm mechanism, and the like. The optical block 11 forms an optical image of the subject on the light receiving surface of the image sensor 12.
 イメージセンサ12は、CMOSイメージセンサやMOS(Metal-Oxide Semiconductor)型の固体撮像装置などにより構成される。イメージセンサ12は、光学ブロック11からの光を受光し、受光により得られる光学像を光電変換して、電気信号を生成する。イメージセンサ12は、生成された電気信号をカメラ信号処理部13に供給する。 The image sensor 12 is configured by a CMOS image sensor, a MOS (Metal-Oxide Semiconductor) type solid-state imaging device, or the like. The image sensor 12 receives light from the optical block 11 and photoelectrically converts an optical image obtained by the light reception to generate an electrical signal. The image sensor 12 supplies the generated electrical signal to the camera signal processing unit 13.
 カメラ信号処理部13は、イメージセンサ12から供給された電気信号に対してニー補正やガンマ補正、色補正等の種々のカメラ信号処理を行う。カメラ信号処理部13は、出力部として機能し、カメラ信号処理の結果得られる画像データを、画像データ処理部14に出力する。 The camera signal processing unit 13 performs various camera signal processing such as knee correction, gamma correction, and color correction on the electrical signal supplied from the image sensor 12. The camera signal processing unit 13 functions as an output unit, and outputs image data obtained as a result of camera signal processing to the image data processing unit 14.
 画像データ処理部14は、カメラ信号処理部13から供給された画像データの符号化処理を行う。画像データ処理部14は、符号化処理を行うことにより生成された符号化データを外部インタフェース部16やメディアドライブ18に供給する。また、画像データ処理部14は、外部インタフェース部16やメディアドライブ18から供給された符号化データの復号化処理を行う。 The image data processing unit 14 performs an encoding process on the image data supplied from the camera signal processing unit 13. The image data processing unit 14 supplies the encoded data generated by performing the encoding process to the external interface unit 16 and the media drive 18. Further, the image data processing unit 14 performs a decoding process on the encoded data supplied from the external interface unit 16 or the media drive 18.
 画像データ処理部14は、復号化処理を行うことにより生成された画像データを表示部15に供給する。また、画像データ処理部14は、カメラ信号処理部13から供給された画像データを表示部15に供給する処理や、OSD部19から取得した表示用データを、画像データに重畳させて表示部15に供給する。 The image data processing unit 14 supplies the image data generated by performing the decoding process to the display unit 15. In addition, the image data processing unit 14 superimposes the display data acquired from the OSD unit 19 on the processing for supplying the image data supplied from the camera signal processing unit 13 to the display unit 15 and the display unit 15. To supply.
 表示部15は、画像データ処理部14から供給される、画像データ、または、表示用データが重畳された画像データに対応する画像を表示する。 The display unit 15 displays an image corresponding to the image data supplied from the image data processing unit 14 or image data on which display data is superimposed.
 外部インタフェース部16は、例えば、USB(Universal Serial Bus)入出力端子などで構成され、画像の印刷を行う場合に、プリンタと接続される。また、外部インタフェース部16には、必要に応じてドライブが接続され、磁気ディスク、光ディスク等のリムーバブルメディアが適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて、メモリ部17にインストールされる。さらに、外部インタフェース部16は、LAN(Local Area Network)やインターネット等の所定のネットワークに接続されるネットワークインタフェースを有する。 The external interface unit 16 includes, for example, a USB (Universal Serial Bus) input / output terminal and the like, and is connected to a printer when printing an image. In addition, a drive is connected to the external interface unit 16 as necessary, and a removable medium such as a magnetic disk or an optical disk is appropriately mounted, and a computer program read from them is stored in the memory unit 17 as necessary. Installed. Further, the external interface unit 16 has a network interface connected to a predetermined network such as a LAN (Local Area Network) or the Internet.
 メモリ部17は、制御部20により実行されるプログラムや制御部20が処理を行う上で必要な各種のデータ等を記憶する。メモリ部17に記憶されているプログラムは、電子機器10の起動時などの所定タイミングで制御部20により読み出されて実行される。 The memory unit 17 stores a program executed by the control unit 20, various data necessary for the control unit 20 to perform processing, and the like. The program stored in the memory unit 17 is read and executed by the control unit 20 at a predetermined timing such as when the electronic device 10 is activated.
 メディアドライブ18には、記録メディアが装着され、メディアドライブ18は、記録メディアを駆動し、画像データ処理部14から供給される画像データを記録する。メディアドライブ18で駆動される記録メディアとしては、例えば、磁気ディスク、光磁気ディスク、光ディスク、または半導体メモリ等の、読み書き可能な任意のリムーバブルメディアが用いられる。 A recording medium is mounted on the media drive 18, and the media drive 18 drives the recording medium and records image data supplied from the image data processing unit 14. As the recording medium driven by the media drive 18, for example, any readable / writable removable medium such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory is used.
 また、記録メディアは、リムーバブルメディアとしての種類も任意であり、テープデバイスであってもよいし、ディスクであってもよいし、メモリカードであってもよい。もちろん、非接触IC(Integrated Circuit)カード等であってもよい。また、メディアドライブ18と記録メディアを一体化し、例えば、内蔵型ハードディスクドライブやSSD(Solid State Drive)等のように、非可搬性の記憶媒体により構成されるようにしてもよい。 Further, the recording medium may be any kind of removable media, and may be a tape device, a disk, or a memory card. Of course, a non-contact IC (Integrated Circuit) card may be used. Further, the media drive 18 and the recording medium may be integrated and configured by a non-portable storage medium such as a built-in hard disk drive or an SSD (Solid State Drive).
 OSD部19は、記号、文字、または図形からなるメニュー画面やアイコンなどの表示用データを生成して画像データ処理部14に出力する。 The OSD unit 19 generates display data such as a menu screen or an icon made up of symbols, characters, or figures and outputs it to the image data processing unit 14.
 制御部20は、CPU(Central Processing Unit)等を用いて構成されている。制御部20は、プログラムを実行することで、電子機器10がユーザ操作に応じた動作となるように各部を制御する。 The control unit 20 is configured using a CPU (Central Processing Unit) or the like. The control unit 20 controls each unit so that the electronic device 10 performs an operation according to a user operation by executing a program.
 具体的には、制御部20は、例えば、ユーザインタフェース部21からの指示にしたがって、メディアドライブ18から符号化データを読み出し、それを外部インタフェース部16から、ネットワークを介して接続される他の装置に供給させることができる。また、制御部20は、ネットワークを介して他の装置から供給される符号化データや画像データを、外部インタフェース部16を介して取得し、それを画像データ処理部14に供給したりすることができる。 Specifically, the control unit 20 reads the encoded data from the media drive 18 in accordance with an instruction from the user interface unit 21, for example, and other devices connected via the network from the external interface unit 16 Can be supplied. Further, the control unit 20 may acquire encoded data and image data supplied from another device via a network via the external interface unit 16 and supply the acquired data to the image data processing unit 14. it can.
 ユーザインタフェース部21は、ユーザからの操作を受け、その操作に対応する指示を制御部20に供給する。 The user interface unit 21 receives an operation from the user and supplies an instruction corresponding to the operation to the control unit 20.
 [イメージセンサの構成例]
 図2は、図1のイメージセンサ12の構成例を示す図である。
[Image sensor configuration example]
FIG. 2 is a diagram illustrating a configuration example of the image sensor 12 of FIG.
 図2のイメージセンサ12は、光電変換素子を含む画素31が行列状(マトリックス状)に2次元配置されてなる画素アレイ部32、垂直駆動回路33、カラム処理部34、水平駆動回路35、水平信号線36、出力回路37、およびタイミング制御回路38により構成される。これらは、全て同一のシリコンからなる半導体基板39上に集積される。 The image sensor 12 of FIG. 2 includes a pixel array unit 32, a vertical drive circuit 33, a column processing unit 34, a horizontal drive circuit 35, a horizontal drive circuit 35 in which pixels 31 including photoelectric conversion elements are two-dimensionally arranged in a matrix. The signal line 36, the output circuit 37, and the timing control circuit 38 are included. These are all integrated on a semiconductor substrate 39 made of the same silicon.
 画素アレイ部32には、画素31がm行n列分(m,nは1以上の整数)だけ2次元配置される。また、このm行n列の画素31に対して行ごとに行制御線(図示せず)が配線され、列ごとに垂直信号線31Aが配線される。なお、図2では、図面を簡略化するため、10行12列分の画素31だけを図示する。 In the pixel array section 32, pixels 31 are two-dimensionally arranged by m rows and n columns (m and n are integers of 1 or more). A row control line (not shown) is wired for each row to the m rows and n columns of pixels 31, and a vertical signal line 31A is wired for each column. In FIG. 2, only the pixels 31 corresponding to 10 rows and 12 columns are shown in order to simplify the drawing.
 画素31は、被写体からの光を受光し、受光により得られる光学像を光電変換して電気信号を生成する。画素31は、垂直駆動回路33から行制御線を介して供給される選択パルスに応じて、生成された電気信号をカラム処理部34に供給する。 The pixel 31 receives light from the subject and photoelectrically converts an optical image obtained by the light reception to generate an electrical signal. The pixel 31 supplies the generated electric signal to the column processing unit 34 in accordance with the selection pulse supplied from the vertical drive circuit 33 via the row control line.
 垂直駆動回路33は、シフトレジスタなどによって構成される。垂直駆動回路33は、タイミング制御回路38から供給されるクロック信号や制御信号に基づいて、画素アレイ部32の各画素31を行単位で順次選択し、選択された行の各画素31に対して行制御線を介して選択パルスを供給する。これにより、電気信号が行単位でカラム処理部34に供給される。 The vertical drive circuit 33 is configured by a shift register or the like. The vertical drive circuit 33 sequentially selects each pixel 31 of the pixel array unit 32 in units of rows based on the clock signal and control signal supplied from the timing control circuit 38, and for each pixel 31 in the selected row. A selection pulse is supplied via the row control line. As a result, electric signals are supplied to the column processing unit 34 in units of rows.
 カラム処理部34には、画素アレイ部32の画素31の各列に対応してカラム信号処理回路34Aが設けられている。カラム信号処理回路34Aは、タイミング制御回路38から供給されるクロック信号や制御信号に基づいて、1行分の画素31から出力される電気信号を列ごとに取得する。 The column processing unit 34 is provided with a column signal processing circuit 34A corresponding to each column of the pixels 31 of the pixel array unit 32. The column signal processing circuit 34A acquires an electric signal output from the pixels 31 for one row for each column based on the clock signal and the control signal supplied from the timing control circuit 38.
 カラム信号処理回路34Aは、電気信号に対して画素31固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling(相関二重サンプリング))、信号増幅、A/D(Analog/Digital)変換などの信号処理を行う。そして、カラム信号処理回路34Aは、水平駆動回路35からの選択パルスに応じて、信号処理後の電気信号を、水平信号線36を介して出力回路37に供給する。 The column signal processing circuit 34A is a CDS (Correlated Sampling (correlated double sampling)), signal amplification, A / D (Analog / Digital) conversion, etc. for removing fixed pattern noise specific to the pixel 31 from the electric signal. Signal processing. The column signal processing circuit 34 </ b> A supplies the electric signal after the signal processing to the output circuit 37 through the horizontal signal line 36 in accordance with the selection pulse from the horizontal driving circuit 35.
 水平駆動回路35は、シフトレジスタなどによって構成される。水平駆動回路35は、タイミング制御回路38から供給されるクロック信号や制御信号に基づいて、各カラム信号処理回路34Aを順次選択し、選択されたカラム信号処理回路34Aに選択パルスを供給する。これにより、信号処理後の電気信号が画素31単位で水平信号線36を介して出力回路37に供給される。 The horizontal drive circuit 35 is configured by a shift register or the like. The horizontal drive circuit 35 sequentially selects each column signal processing circuit 34A based on the clock signal and control signal supplied from the timing control circuit 38, and supplies a selection pulse to the selected column signal processing circuit 34A. As a result, the electric signal after signal processing is supplied to the output circuit 37 via the horizontal signal line 36 in units of pixels 31.
 出力回路37は、各カラム信号処理回路34Aから水平信号線36を介して順に供給される電気信号に対して種々の信号処理を施し、図1のカメラ信号処理部13に供給する。具体的には、例えば、出力回路37は、電気信号をそのままバッファリングし、バッファリングされた電気信号をカメラ信号処理部13に供給する。または、出力回路37は、電気信号に対して黒レベル調整、列ごとのばらつきの補正、信号増幅などの信号処理を施してバッファリングし、バッファリングされた電気信号をカメラ信号処理部13に供給する。 The output circuit 37 performs various kinds of signal processing on the electrical signals sequentially supplied from the column signal processing circuits 34A via the horizontal signal line 36, and supplies them to the camera signal processing unit 13 in FIG. Specifically, for example, the output circuit 37 buffers the electric signal as it is, and supplies the buffered electric signal to the camera signal processing unit 13. Alternatively, the output circuit 37 buffers the electrical signal by performing signal processing such as black level adjustment, correction of variation for each column, and signal amplification, and supplies the buffered electrical signal to the camera signal processing unit 13. To do.
 タイミング制御回路38は、垂直同期信号Vsync、水平同期信号Hsync、およびマスタークロックMCKに基づいて、垂直駆動回路33、カラム処理部34、および水平駆動回路35などの動作の基準となるクロック信号や制御信号などを生成する。そして、タイミング制御回路38は、生成されたクロック信号や制御信号などを垂直駆動回路33、カラム処理部34、および水平駆動回路35などに供給する。 The timing control circuit 38 is based on the vertical synchronization signal Vsync, the horizontal synchronization signal Hsync, and the master clock MCK, and controls the clock signal and control that are the reference for the operation of the vertical drive circuit 33, the column processing unit 34, the horizontal drive circuit 35, and the like. Generate signal etc. The timing control circuit 38 supplies the generated clock signal, control signal, and the like to the vertical drive circuit 33, the column processing unit 34, the horizontal drive circuit 35, and the like.
 [画素の回路構成例]
 図3は、図2の画素31の回路構成例を示す図である。
[Pixel circuit configuration example]
FIG. 3 is a diagram illustrating a circuit configuration example of the pixel 31 in FIG. 2.
 図3に示すように、画素31は、光電変換素子51、転送トランジスタ52、FD(フローティングディフュージョン)53、リセットトランジスタ54、増幅トランジスタ55、および選択トランジスタ56により構成される。 3, the pixel 31 includes a photoelectric conversion element 51, a transfer transistor 52, an FD (floating diffusion) 53, a reset transistor 54, an amplification transistor 55, and a selection transistor 56.
 ここでは、転送トランジスタ52、リセットトランジスタ54、増幅トランジスタ55、および選択トランジスタ56として、NチャネルMOSトランジスタを用いた例を示しているが、PチャネルMOSトランジスタを用いることも可能である。 Here, an example is shown in which N-channel MOS transistors are used as the transfer transistor 52, reset transistor 54, amplification transistor 55, and selection transistor 56, but P-channel MOS transistors can also be used.
 また、画素31には、所定の電位VDD(例えば、2.5V)の電源が接続される。また、画素31には、行制御線として、リセット配線71、転送配線72、および選択配線73が配線される。 In addition, the pixel 31 is connected to a power source having a predetermined potential VDD (for example, 2.5 V). Further, the pixel 31 is provided with a reset wiring 71, a transfer wiring 72, and a selection wiring 73 as row control lines.
 光電変換素子51は、アノードが第1の電源電位、例えばグランドに接続されている。光電変換素子51は、被写体からの光を、その光の光量に応じた電荷量の信号電荷(光電子)に光電変換し、信号電荷を蓄積する。 The photoelectric conversion element 51 has an anode connected to a first power supply potential, for example, ground. The photoelectric conversion element 51 photoelectrically converts light from the subject into signal charges (photoelectrons) having a charge amount corresponding to the amount of the light, and accumulates the signal charges.
 転送トランジスタ52は、ドレインがFD53に、ソースが光電変換素子51のカソードに、ゲートが転送配線72にそれぞれ接続されている。転送トランジスタ52は、図2の垂直駆動回路33から転送配線72を介して転送パルスTRFがゲートに供給されると、オン(導通)状態となって、光電変換素子51に蓄積されている信号電荷をFD53に転送する。 The transfer transistor 52 has a drain connected to the FD 53, a source connected to the cathode of the photoelectric conversion element 51, and a gate connected to the transfer wiring 72. The transfer transistor 52 is turned on (conductive) when the transfer pulse TRF is supplied to the gate from the vertical drive circuit 33 of FIG. Is transferred to the FD 53.
 リセットトランジスタ54は、ドレインが、電源が接続される電源配線70に、ソースがFD53に、ゲートがリセット配線71にそれぞれ接続されている。リセットトランジスタ54は、垂直駆動回路33からリセット配線71を介してリセットパルスRSTがゲートに供給されるとオン状態となり、FD53の信号電荷を電源配線70に捨てることによってFD53をリセットする。 The reset transistor 54 has a drain connected to the power supply wiring 70 to which the power supply is connected, a source connected to the FD 53, and a gate connected to the reset wiring 71. The reset transistor 54 is turned on when a reset pulse RST is supplied to the gate from the vertical drive circuit 33 via the reset wiring 71, and resets the FD 53 by discarding the signal charge of the FD 53 to the power supply wiring 70.
 増幅トランジスタ55は、ドレインが電源配線70に、ソースが選択トランジスタ56のドレインに、ゲートがFD53にそれぞれ接続されている。増幅トランジスタ55は、FD53の電位に対応した信号を選択トランジスタ56に供給する。即ち、増幅トランジスタ55は、光電変換素子51に蓄積された信号電荷に対応する電気信号を選択トランジスタ56に供給する。 The amplifying transistor 55 has a drain connected to the power supply wiring 70, a source connected to the drain of the selection transistor 56, and a gate connected to the FD 53. The amplification transistor 55 supplies a signal corresponding to the potential of the FD 53 to the selection transistor 56. That is, the amplification transistor 55 supplies an electric signal corresponding to the signal charge accumulated in the photoelectric conversion element 51 to the selection transistor 56.
 選択トランジスタ56は、ドレインが増幅トランジスタ55のソースに、ソースが垂直信号線31Aに、ゲートが選択配線73にそれぞれ接続されている。選択トランジスタ56は、垂直駆動回路33から選択配線73を介して選択パルスSELがゲートに供給されると、オン状態となって、増幅トランジスタ55から出力される電気信号を、垂直信号線31Aを介してカラム信号処理回路34Aに供給する。 The selection transistor 56 has a drain connected to the source of the amplification transistor 55, a source connected to the vertical signal line 31A, and a gate connected to the selection wiring 73. The selection transistor 56 is turned on when the selection pulse SEL is supplied to the gate from the vertical drive circuit 33 via the selection wiring 73, and the electrical signal output from the amplification transistor 55 is transmitted via the vertical signal line 31A. To the column signal processing circuit 34A.
 以上のように、垂直駆動回路33は、転送パルスTRFにより、光電変換素子51からFD53への信号電荷の転送動作を制御する。また、垂直駆動回路33は、リセットパルスRSTにより、FD53のリセット動作を制御する。さらに、垂直駆動回路33は、選択パルスSELにより、画素31を電気信号を出力する画素として選択する選択動作を制御する。 As described above, the vertical drive circuit 33 controls the signal charge transfer operation from the photoelectric conversion element 51 to the FD 53 by the transfer pulse TRF. The vertical drive circuit 33 controls the reset operation of the FD 53 by the reset pulse RST. Further, the vertical drive circuit 33 controls a selection operation for selecting the pixel 31 as a pixel that outputs an electric signal by the selection pulse SEL.
 [画素の断面図]
 図4は、画素31の概略を示す断面図である。
[Cross section of pixel]
FIG. 4 is a cross-sectional view illustrating the outline of the pixel 31.
 なお、図4では、イメージセンサ12が、半導体基板39の表面側(図中下側)の転送トランジスタ52が形成される側とは反対側の裏面側(図中上側)から光が入射される裏面照射型のCMOSイメージセンサであるものとする。 In FIG. 4, light enters the image sensor 12 from the back surface side (upper side in the drawing) opposite to the side on which the transfer transistor 52 is formed on the front surface side (lower side in the drawing) of the semiconductor substrate 39. It is assumed that the back-illuminated CMOS image sensor.
 また、図4では、図面を簡略化するため、転送トランジスタ52、リセットトランジスタ54、増幅トランジスタ55、および選択トランジスタ56のうちの転送トランジスタ52のみを図示する。 Further, in FIG. 4, only the transfer transistor 52 among the transfer transistor 52, the reset transistor 54, the amplification transistor 55, and the selection transistor 56 is illustrated in order to simplify the drawing.
 図4に示すように、画素31は、赤色、緑色、青色それぞれについて、光電変換素子51、転送トランジスタ52等を設けている。半導体基板39の裏面側には、外側から順に、オンチップレンズ81、平坦化膜82、上部電極83、有機光電変換膜84、絶縁膜85、絶縁膜86が設けられている。 As shown in FIG. 4, the pixel 31 is provided with a photoelectric conversion element 51, a transfer transistor 52, and the like for each of red, green, and blue. On the back side of the semiconductor substrate 39, an on-chip lens 81, a planarizing film 82, an upper electrode 83, an organic photoelectric conversion film 84, an insulating film 85, and an insulating film 86 are provided in this order from the outside.
 オンチップレンズ81は、被写体からの光を光電変換素子51に集光させる。オンチップレンズ81から出射された光は、平坦化膜82と上部電極83を介して有機光電変換膜84に入射される。 The on-chip lens 81 condenses light from the subject on the photoelectric conversion element 51. Light emitted from the on-chip lens 81 is incident on the organic photoelectric conversion film 84 through the planarization film 82 and the upper electrode 83.
 平坦化膜82には、後述する縦型転送路96、および、延長部92aを遮光する遮光膜82Aが形成される。遮光膜82Aとしては、例えばAl,Ti,W等を用いることができる。図4では、遮光膜82Aは、上部電極83上に絶縁膜を介して形成されるものとするが、この場合、遮光膜82Aの電位が固定されない。従って、遮光膜82Aは、上部電極83と接触するように形成されてもよい。この場合、遮光膜82Aの電位が上部電極83と等電位に保持される。 On the planarizing film 82, a vertical transfer path 96 described later and a light shielding film 82A that shields the extension 92a are formed. As the light shielding film 82A, for example, Al, Ti, W, or the like can be used. In FIG. 4, the light shielding film 82A is formed on the upper electrode 83 via an insulating film, but in this case, the potential of the light shielding film 82A is not fixed. Therefore, the light shielding film 82A may be formed so as to be in contact with the upper electrode 83. In this case, the potential of the light shielding film 82A is held at the same potential as that of the upper electrode 83.
 上部電極83は、例えば、インジウム錫(ITO)膜、酸化インジウム亜鉛膜等の透明導電膜で構成され、上部電極83には、固定の負電圧VLが印加される。 The upper electrode 83 is made of a transparent conductive film such as an indium tin (ITO) film or an indium zinc oxide film, and a fixed negative voltage VL is applied to the upper electrode 83.
 有機光電変換膜84は、緑色の光電変換素子51Gであり、緑色の波長の光を吸収する特性を有する。有機光電変換膜84は、例えば、ローダーミン系色素、メラシアニン系色素、キナクリドン等を含む有機光電変換材料で構成される。有機光電変換膜84は、入射された光のうちの緑色の光を受光し、光電変換する。これにより、有機光電変換膜84には、電子とホールの対が形成される。 The organic photoelectric conversion film 84 is a green photoelectric conversion element 51G, and has a characteristic of absorbing light having a green wavelength. The organic photoelectric conversion film 84 is made of an organic photoelectric conversion material containing, for example, a rhodamine dye, a melocyanine dye, or quinacridone. The organic photoelectric conversion film 84 receives green light of the incident light and performs photoelectric conversion. Thereby, a pair of electrons and holes is formed in the organic photoelectric conversion film 84.
 絶縁膜85には、下部電極85Aが形成される。下部電極85Aは、例えば、インジウム錫(ITO)膜、酸化インジウム亜鉛膜等の透明導電膜で構成され、下部電極85Aには、電圧VLよりも高い電圧VHが印加される。 In the insulating film 85, a lower electrode 85A is formed. The lower electrode 85A is made of a transparent conductive film such as an indium tin (ITO) film or an indium zinc oxide film, and a voltage VH higher than the voltage VL is applied to the lower electrode 85A.
 これにより、有機光電変換膜84により形成された電子とホールの対のうちの電子が、電圧VLよりも高い電圧VHが印加されている下部電極85Aに引かれる。なお、電圧VHは、後述するオーバーフローバリアの電位によって決定される。一方、ホールは、負電圧VLが印加された上部電極83に引かれ、図示しない配線を通じて排出される。 Thereby, the electrons in the pair of electrons and holes formed by the organic photoelectric conversion film 84 are attracted to the lower electrode 85A to which the voltage VH higher than the voltage VL is applied. The voltage VH is determined by the potential of an overflow barrier described later. On the other hand, the hole is drawn to the upper electrode 83 to which the negative voltage VL is applied, and is discharged through a wiring (not shown).
 絶縁膜86は、反射防止膜であり、例えば酸化ハフニウムにより構成される。この場合、半導体基板39の裏面側にホールが励起された状態となるため、下部電極85Aへの電圧VHの印加により半導体基板39の裏面側の界面に発生する暗電流を抑制することができる。 The insulating film 86 is an antireflection film and is made of, for example, hafnium oxide. In this case, since holes are excited on the back side of the semiconductor substrate 39, dark current generated at the back side interface of the semiconductor substrate 39 by application of the voltage VH to the lower electrode 85A can be suppressed.
 絶縁膜86には、半導体基板39の裏面側に設けられた接続部101に接続されるコンタクトプラグ86Aが貫通するように形成される。コンタクトプラグ86Aは、下部電極85Aに引かれた電子の信号電荷を接続部101に転送する。 In the insulating film 86, a contact plug 86A connected to the connecting portion 101 provided on the back side of the semiconductor substrate 39 is formed so as to penetrate therethrough. The contact plug 86 </ b> A transfers the signal charge of electrons drawn to the lower electrode 85 </ b> A to the connection portion 101.
 半導体基板39には、p型の半導体領域からなるウェル領域91が形成される。ウェル領域91には、青色の光電変換素子51Bと赤色の光電変換素子51Rが、光の入射方向に積層するように形成される。 In the semiconductor substrate 39, a well region 91 made of a p-type semiconductor region is formed. In the well region 91, a blue photoelectric conversion element 51B and a red photoelectric conversion element 51R are formed so as to be stacked in the light incident direction.
 光電変換素子51Bは、半導体基板39の裏面側に形成されたn型不純物によるn型半導体領域92と、その一部が半導体基板39の表面側に達するように延長して形成された延長部92aにより構成される。 The photoelectric conversion element 51B includes an n-type semiconductor region 92 made of n-type impurities formed on the back surface side of the semiconductor substrate 39 and an extension portion 92a formed so as to extend partially so as to reach the front surface side of the semiconductor substrate 39. Consists of.
 n型半導体領域92には、被写体からの光が、オンチップレンズ81、平坦化膜82、上部電極83、有機光電変換膜84、絶縁膜85、および絶縁膜86を介して照射される。このとき、有機光電変換膜84により緑色の光は吸収されるので、n型半導体領域92に照射される光は、緑色以外の光である。 The n-type semiconductor region 92 is irradiated with light from the subject through the on-chip lens 81, the planarization film 82, the upper electrode 83, the organic photoelectric conversion film 84, the insulating film 85, and the insulating film 86. At this time, since the green light is absorbed by the organic photoelectric conversion film 84, the light irradiated to the n-type semiconductor region 92 is light other than green.
 n型半導体領域92は、照射された光のうちの波長の短い青色の光を吸収して光電変換を行い、その結果得られる信号電荷を蓄積する。延長部92aは、その信号電荷を半導体基板39の表面側に出力する。なお、延長部92aの表面側には、ホール蓄積層となる高濃度のp型半導体領域93が形成されている。 The n-type semiconductor region 92 absorbs blue light having a short wavelength among the irradiated light, performs photoelectric conversion, and accumulates signal charges obtained as a result. The extension part 92 a outputs the signal charge to the surface side of the semiconductor substrate 39. A high-concentration p-type semiconductor region 93 serving as a hole accumulation layer is formed on the surface side of the extension 92a.
 光電変換素子51Rは、半導体基板39の表面側に形成されたn型半導体領域94により構成される。n型半導体領域94の表面側には、ホール蓄積層となる高濃度のp型半導体領域95が形成されている。 The photoelectric conversion element 51R is composed of an n-type semiconductor region 94 formed on the surface side of the semiconductor substrate 39. On the surface side of the n-type semiconductor region 94, a high-concentration p-type semiconductor region 95 serving as a hole accumulation layer is formed.
 n型半導体領域94には、被写体からの光が、オンチップレンズ81、平坦化膜82、上部電極83、有機光電変換膜84、絶縁膜85、絶縁膜86、およびn型半導体領域92を介して照射される。なお、有機光電変換膜84により緑色の光は吸収され、n型半導体領域92により青色の光も吸収されるので、n型半導体領域94に照射される光は、赤色の光である。n型半導体領域94は、照射された赤色の光を吸収して光電変換を行い、その結果得られる信号電荷を蓄積し、蓄積された信号電荷を半導体基板39の表面側に出力する。 In the n-type semiconductor region 94, light from the subject passes through the on-chip lens 81, the planarization film 82, the upper electrode 83, the organic photoelectric conversion film 84, the insulating film 85, the insulating film 86, and the n-type semiconductor region 92. Is irradiated. In addition, since green light is absorbed by the organic photoelectric conversion film 84 and blue light is also absorbed by the n-type semiconductor region 92, the light irradiated to the n-type semiconductor region 94 is red light. The n-type semiconductor region 94 absorbs the irradiated red light, performs photoelectric conversion, accumulates signal charges obtained as a result, and outputs the accumulated signal charges to the surface side of the semiconductor substrate 39.
 光電変換素子51B(51R)において、半導体基板39の界面にp型半導体領域93(95)が形成されることにより、半導体基板39の界面で発生する暗電流を抑制することができる。 In the photoelectric conversion element 51B (51R), by forming the p-type semiconductor region 93 (95) at the interface of the semiconductor substrate 39, dark current generated at the interface of the semiconductor substrate 39 can be suppressed.
 また、ウェル領域91には、コンタクトプラグ86Aから転送される信号電荷を半導体基板39の表面側に出力する縦型転送路96が形成される。縦型転送路96は、オーバーフロー構造を有し、半導体基板39の裏面側から順に、接続部101、電位障壁層102、および電荷蓄積層103が並ぶことにより構成される。 In the well region 91, a vertical transfer path 96 for outputting the signal charge transferred from the contact plug 86A to the surface side of the semiconductor substrate 39 is formed. The vertical transfer path 96 has an overflow structure, and is configured by connecting the connection portion 101, the potential barrier layer 102, and the charge storage layer 103 in order from the back surface side of the semiconductor substrate 39.
 接続部101は、高不純物濃度のn型不純物領域からなる。接続部101には、コンタクトプラグ86Aから転送される信号電荷が供給される。電位障壁層102は、低濃度のp型不純物領域からなり、接続部101と電荷蓄積層103間においてオーバーフローバリアを構成する。 The connecting portion 101 is made of an n-type impurity region having a high impurity concentration. The connection portion 101 is supplied with signal charges transferred from the contact plug 86A. The potential barrier layer 102 is made of a low-concentration p-type impurity region, and constitutes an overflow barrier between the connection portion 101 and the charge storage layer 103.
 接続部101において、接続部101の飽和電荷量を超えた信号電荷は、電位障壁層102を超えて、電荷蓄積層103にオーバーフローされる。即ち、接続部101では、信号電荷が縦方向にオーバーフローされる。電荷蓄積層103は、接続部101よりも低濃度のn型不純物領域で構成され、オーバーフローされた信号電荷を蓄積する。電荷蓄積層103は、蓄積された信号電荷を半導体基板39の表面側に出力する。 In the connecting portion 101, the signal charge exceeding the saturation charge amount of the connecting portion 101 overflows the potential barrier layer 102 and overflows to the charge storage layer 103. That is, in the connection part 101, the signal charge overflows in the vertical direction. The charge storage layer 103 is composed of an n-type impurity region having a concentration lower than that of the connection portion 101, and stores overflowed signal charges. The charge storage layer 103 outputs the stored signal charge to the surface side of the semiconductor substrate 39.
 なお、電荷蓄積層103の表面側には、ホール蓄積層となる高濃度のp型半導体領域104が形成されている。これにより、半導体基板39の界面で発生する暗電流を抑制することができる。 Note that a high-concentration p-type semiconductor region 104 serving as a hole storage layer is formed on the surface side of the charge storage layer 103. Thereby, dark current generated at the interface of the semiconductor substrate 39 can be suppressed.
 また、ウェル領域91には、半導体基板39の表面側に、延長部92aに隣接して青色用のFD53Bが形成され、光電変換素子51Rに隣接して赤色用のFD53Rが形成され、縦型転送路96に隣接して緑色用のFD53Gが形成される。FD53B、FD53R、およびFD53Gは、n型の高濃度不純物領域により構成される。 In the well region 91, a blue FD 53B is formed adjacent to the extension 92a on the surface side of the semiconductor substrate 39, and a red FD 53R is formed adjacent to the photoelectric conversion element 51R. An FD 53G for green is formed adjacent to the path 96. FD53B, FD53R, and FD53G are configured by n-type high concentration impurity regions.
 さらに、半導体基板39の表面側には、層間絶縁膜87Aを介して複数層(本実施の形態では3層)に積層された配線87Cを有する多層配線層87が形成される。 Further, on the surface side of the semiconductor substrate 39, a multilayer wiring layer 87 having wirings 87C stacked in a plurality of layers (three layers in this embodiment) is formed via an interlayer insulating film 87A.
 多層配線層87には、光電変換素子51Bに対応して青色の転送トランジスタ52Bが設けられ、光電変換素子51Rに対応して赤色の転送トランジスタ52Rが設けられる。また、光電変換素子51Gに対応して緑色の転送トランジスタ52Gが設けられる。 In the multilayer wiring layer 87, a blue transfer transistor 52B is provided corresponding to the photoelectric conversion element 51B, and a red transfer transistor 52R is provided corresponding to the photoelectric conversion element 51R. A green transfer transistor 52G is provided corresponding to the photoelectric conversion element 51G.
 転送トランジスタ52Bのゲート電極111Bは、延長部92a付近の半導体基板39上に層間絶縁膜87Aを介して形成され、転送トランジスタ52Rのゲート電極111Rは、光電変換素子51R付近の半導体基板39上に層間絶縁膜87Aを介して形成される。また、ゲート電極111Gは、縦型転送路96付近の半導体基板39上に層間絶縁膜87Aを介して形成される。ゲート電極111B、ゲート電極111R、およびゲート電極111Gは、例えばポリシリコンで構成される。 The gate electrode 111B of the transfer transistor 52B is formed on the semiconductor substrate 39 near the extension 92a via the interlayer insulating film 87A, and the gate electrode 111R of the transfer transistor 52R is interlayered on the semiconductor substrate 39 near the photoelectric conversion element 51R. It is formed via an insulating film 87A. The gate electrode 111G is formed on the semiconductor substrate 39 in the vicinity of the vertical transfer path 96 via an interlayer insulating film 87A. The gate electrode 111B, the gate electrode 111R, and the gate electrode 111G are made of, for example, polysilicon.
 ゲート電極111Bに転送パルスTRFが印加されると、転送トランジスタ52Bは、n型半導体領域92に蓄積され、延長部92aを介して出力される青色の光に対応する信号電荷を、FD53Bに供給する。また、ゲート電極111Rに転送パルスTRFが印加されると、転送トランジスタ52Rは、n型半導体領域94に蓄積され、出力される赤色の光に対応する信号電荷を、FD53Rに供給する。 When the transfer pulse TRF is applied to the gate electrode 111B, the transfer transistor 52B supplies the signal charge corresponding to the blue light accumulated in the n-type semiconductor region 92 and output via the extension 92a to the FD 53B. . When the transfer pulse TRF is applied to the gate electrode 111R, the transfer transistor 52R supplies the FD 53R with a signal charge corresponding to the red light that is accumulated in the n-type semiconductor region 94 and output.
 さらに、ゲート電極111Gに転送パルスTRFが印加されると、転送トランジスタ52Gは、電荷蓄積層103に蓄積され、出力される緑色の光に対応する信号電荷を、FD53Gに供給する。 Further, when the transfer pulse TRF is applied to the gate electrode 111G, the transfer transistor 52G supplies the FD 53G with a signal charge corresponding to the green light that is stored in the charge storage layer 103 and output.
 以上のように、画素31は、縦型転送路96を有するので、電荷蓄積層103をゲート電極111Gに近接して形成でき、電荷蓄積層103からFD53Gへの転送が有利になる。 As described above, since the pixel 31 has the vertical transfer path 96, the charge storage layer 103 can be formed close to the gate electrode 111G, and transfer from the charge storage layer 103 to the FD 53G is advantageous.
 なお、本実施の形態では、光電変換素子51Gとして有機光電変換膜84が設けられたが、青色や赤色の光電変換素子として有機光電変換膜を設けるようにしてもよい。例えば、青色の光電変換素子として有機光電変換膜を設ける場合、有機光電変換膜は、青色の波長の光を吸収する特性を有する。そして、図4の光電変換素子51Bと同様に構成される光電変換素子は、緑色の光電変換素子として機能し、光電変換素子51Rと同様に構成される光電変換素子は、赤色の光電変換素子として機能する。 In the present embodiment, the organic photoelectric conversion film 84 is provided as the photoelectric conversion element 51G. However, an organic photoelectric conversion film may be provided as a blue or red photoelectric conversion element. For example, when an organic photoelectric conversion film is provided as a blue photoelectric conversion element, the organic photoelectric conversion film has a characteristic of absorbing light having a blue wavelength. And the photoelectric conversion element comprised similarly to the photoelectric conversion element 51B of FIG. 4 functions as a green photoelectric conversion element, and the photoelectric conversion element comprised similarly to the photoelectric conversion element 51R is as a red photoelectric conversion element. Function.
 また、赤色の光電変換素子として有機光電変換膜を設ける場合、有機光電変換膜は、赤色の波長の光を吸収する特性を有する。そして、図4の光電変換素子51Bと同様に構成される光電変換素子は、青色の光電変換素子として機能し、光電変換素子51Rと同様に構成される光電変換素子は、緑色の光電変換素子として機能する。 Further, when an organic photoelectric conversion film is provided as a red photoelectric conversion element, the organic photoelectric conversion film has a characteristic of absorbing light having a red wavelength. And the photoelectric conversion element comprised similarly to the photoelectric conversion element 51B of FIG. 4 functions as a blue photoelectric conversion element, and the photoelectric conversion element comprised similarly to the photoelectric conversion element 51R is as a green photoelectric conversion element. Function.
 青色の光を光電変換する有機光電変換膜としては、クマリン酸色素、トリス-8-ヒドリキシキノリAl(Alq3)、メラシアニン系色素等を含む有機光電変換材料を用いることができる。また、赤色の光を光電変換する有機光電変換膜としては、フタロシアニン系色素を含む有機光電変換材料を用いることができる。 As the organic photoelectric conversion film that photoelectrically converts blue light, an organic photoelectric conversion material containing a coumaric acid dye, tris-8-hydroxyquinori Al (Alq3), a melocyanine dye, or the like can be used. Moreover, as an organic photoelectric conversion film that photoelectrically converts red light, an organic photoelectric conversion material containing a phthalocyanine dye can be used.
 但し、本実施の形態のように、半導体基板39内に光電変換素子51Bと光電変換素子51Rを設ける場合、光電変換素子51Bと光電変換素子51Rの間で分光される光の波長の差分が大きいため、分光特性が良い。 However, in the case where the photoelectric conversion element 51B and the photoelectric conversion element 51R are provided in the semiconductor substrate 39 as in the present embodiment, the difference in the wavelength of the light split between the photoelectric conversion element 51B and the photoelectric conversion element 51R is large. Therefore, the spectral characteristics are good.
 [転送パルスTRFにより発生するウェル領域の揺れの説明]
 図5は、転送パルスTRFの一例を示すタイミングチャートである。
[Explanation of shaking of well region generated by transfer pulse TRF]
FIG. 5 is a timing chart showing an example of the transfer pulse TRF.
 なお、図5において、横軸は時刻(t)を表し、縦軸は電位を表す。また、時刻の早い順に、時刻t0、時刻t1、時刻t2、時刻t3、時刻t4、時刻t5とする。 In FIG. 5, the horizontal axis represents time (t), and the vertical axis represents potential. In addition, from the earliest time, time t0, time t1, time t2, time t3, time t4, and time t5 are set.
 図5の例では、時刻t0において、選択配線73の電位は、低電位Vlow(例えば、グランドの電位GND)から高電位Vhighに変化し、時刻t5において、高電位Vhighから低電位Vlowに戻る。即ち、時刻t0から時刻t5までの間、選択パルスSELが選択トランジスタ56のゲートに供給される。 In the example of FIG. 5, the potential of the selection wiring 73 changes from the low potential Vlow (for example, the ground potential GND) to the high potential Vhigh at time t0, and returns from the high potential Vhigh to the low potential Vlow at time t5. That is, the selection pulse SEL is supplied to the gate of the selection transistor 56 from time t0 to time t5.
 また、時刻t0において、リセット配線71の電位は、低電位Vlowから高電位Vhighに変化し、時刻t1において、高電位Vhighから低電位Vlowに戻る。即ち、時刻t0から時刻t1までの間、リセットパルスRSTがリセットトランジスタ54のゲートに供給される。 Further, at time t0, the potential of the reset wiring 71 changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t1. That is, the reset pulse RST is supplied to the gate of the reset transistor 54 from time t0 to time t1.
 以上のように、時刻t0から時刻t1までの間、選択トランジスタ56のゲートに選択パルスSELが供給され、リセットトランジスタ54のゲートにリセットパルスRSTが供給される。従って、この間、リセットトランジスタ54によりFD53がリセットされ、カラム信号処理回路34Aには、何等の電気信号も供給されない。 As described above, from time t0 to time t1, the selection pulse SEL is supplied to the gate of the selection transistor 56, and the reset pulse RST is supplied to the gate of the reset transistor 54. Accordingly, during this period, the FD 53 is reset by the reset transistor 54, and no electrical signal is supplied to the column signal processing circuit 34A.
 そして、時刻t2において、転送配線72の電位は、低電位Vlowから高電位Vhighに変化し、時刻t3において、高電位Vhighから低電位Vlowに戻る。即ち、時刻t2から時刻t3までの間、転送パルスTRFが転送トランジスタ52のゲート(ゲート電極111B,111R,111G)に供給される。このとき、リセットトランジスタ54のゲートには、リセットパルスRSTが供給されていない。 The potential of the transfer wiring 72 changes from the low potential Vlow to the high potential Vhigh at time t2, and returns from the high potential Vhigh to the low potential Vlow at time t3. That is, the transfer pulse TRF is supplied to the gate ( gate electrodes 111B, 111R, 111G) of the transfer transistor 52 from time t2 to time t3. At this time, the reset pulse RST is not supplied to the gate of the reset transistor 54.
 従って、時刻t2から時刻t3までの間、転送トランジスタ52によりFD53に転送された信号電荷は捨てられず、増幅トランジスタ55と選択トランジスタ56により、その信号電荷に対応する電気信号がカラム信号処理回路34Aに供給される。 Therefore, from time t2 to time t3, the signal charge transferred to the FD 53 by the transfer transistor 52 is not discarded, and the electric signal corresponding to the signal charge is sent from the amplification transistor 55 and the selection transistor 56 to the column signal processing circuit 34A. To be supplied.
 その後、時刻t4において、リセット配線71および転送配線72の電位は、低電位Vlowから高電位Vhighに変化し、時刻t5において、高電位Vhighから低電位Vlowに戻る。即ち、時刻t4から時刻t5までの間、リセットパルスRSTがリセットトランジスタ54のゲートに供給され、転送パルスTRFが転送トランジスタ52のゲートに供給される。 Thereafter, at time t4, the potentials of the reset wiring 71 and the transfer wiring 72 change from the low potential Vlow to the high potential Vhigh, and return from the high potential Vhigh to the low potential Vlow at time t5. That is, from time t4 to time t5, the reset pulse RST is supplied to the gate of the reset transistor 54, and the transfer pulse TRF is supplied to the gate of the transfer transistor 52.
 従って、この間、転送トランジスタ52により光電変換素子51に蓄積されている信号電荷がFD53に転送され、リセットトランジスタ54により、その信号電荷が捨てられる。よって、時刻t4から時刻t5までの間、選択トランジスタ56のゲートに選択パルスSELが供給されるが、カラム信号処理回路34Aには、何等の電気信号も供給されない。 Accordingly, during this time, the signal charge accumulated in the photoelectric conversion element 51 is transferred to the FD 53 by the transfer transistor 52, and the signal charge is discarded by the reset transistor 54. Therefore, the selection pulse SEL is supplied to the gate of the selection transistor 56 from time t4 to time t5, but no electrical signal is supplied to the column signal processing circuit 34A.
 以上のように、図5の例では、時刻t2から時刻t3までの間、カラム信号処理回路34Aに、被写体からの光に対応する電気信号が供給される。 As described above, in the example of FIG. 5, the electric signal corresponding to the light from the subject is supplied to the column signal processing circuit 34A from the time t2 to the time t3.
 図6は、転送パルスTRFが図5の転送パルスTRFである場合の縦型転送路96のポテンシャルエネルギーを示す図である。 FIG. 6 is a diagram showing the potential energy of the vertical transfer path 96 when the transfer pulse TRF is the transfer pulse TRF of FIG.
 図6のAに示すように、転送パルスTRFが転送トランジスタ52のゲートに供給されない場合、縦型転送路96の電位障壁層102は、ポテンシャルエネルギーが所定値であるオーバーフローバリアを構成している。 As shown in FIG. 6A, when the transfer pulse TRF is not supplied to the gate of the transfer transistor 52, the potential barrier layer 102 of the vertical transfer path 96 constitutes an overflow barrier whose potential energy is a predetermined value.
 しかしながら、図5に示したような転送パルスTRFが転送トランジスタ52のゲートに供給される場合、転送パルスTRFの立ち上がりと立ち下がりは急峻である。従って、転送パルスTRFの立ち上がりと立ち下がり時にウェル領域91の揺れが発生する。これにより、転送パルスTRFの立ち上がり時、ウェル領域91がプラスバイアス側に揺れ、電位障壁層102のポテンシャルエネルギーは、所定値より小さくなる。 However, when the transfer pulse TRF as shown in FIG. 5 is supplied to the gate of the transfer transistor 52, the rising and falling edges of the transfer pulse TRF are steep. Therefore, the well region 91 fluctuates when the transfer pulse TRF rises and falls. Thereby, when the transfer pulse TRF rises, the well region 91 swings to the plus bias side, and the potential energy of the potential barrier layer 102 becomes smaller than a predetermined value.
 従って、接続部101を介してコンタクトプラグ86Aから転送される信号電荷のうちの本来オーバーフローされない電荷がノイズ電荷として電荷蓄積層103にオーバーフローされる。その結果、撮像された画像において、暗電流の増加や、色ずれなどの画質劣化が発生する。 Therefore, of the signal charges transferred from the contact plug 86A via the connection portion 101, the charges that are not originally overflowed overflow into the charge storage layer 103 as noise charges. As a result, image quality degradation such as an increase in dark current and color shift occurs in the captured image.
 そこで、電子機器10の垂直駆動回路33は、立ち上がりが急峻ではない転送パルスTRFを発生する。 Therefore, the vertical drive circuit 33 of the electronic device 10 generates a transfer pulse TRF whose rise is not steep.
 [転送パルス発生回路の第1の構成例]
 図7は、垂直駆動回路33のうちの転送パルスTRFを発生する転送パルス発生回路の第1の構成例を示す回路図である。
[First Configuration Example of Transfer Pulse Generation Circuit]
FIG. 7 is a circuit diagram showing a first configuration example of a transfer pulse generation circuit that generates the transfer pulse TRF in the vertical drive circuit 33.
 図7の転送パルス発生回路130は、電源配線131と制御配線133Aに接続された低駆動能力トランジスタ132と、電源配線131と制御配線133Bに接続された高駆動能力トランジスタ134が、コンデンサ135に並列に接続されることにより構成される。 In the transfer pulse generation circuit 130 of FIG. 7, a low drive capability transistor 132 connected to the power supply line 131 and the control line 133A, and a high drive capability transistor 134 connected to the power supply line 131 and the control line 133B are parallel to the capacitor 135. It is comprised by connecting to.
 具体的には、電源配線131は、高電位Vhighの電源に接続されている。低駆動能力トランジスタ132は、高駆動能力トランジスタ134に比べて低駆動能力のトランジスタであり、高駆動能力トランジスタ134に比べてオン状態で出力される電荷は少ない。低駆動能力トランジスタ132は、ドレインが電源配線131に、ゲートが制御配線133Aに、ソースがコンデンサ135にそれぞれ接続されている。低駆動能力トランジスタ132は、制御配線133Aから所定のパルスがゲートに入力されると、オン状態となって、高電位Vhighの電源による電荷をコンデンサ135に供給する。 Specifically, the power supply wiring 131 is connected to a power supply having a high potential Vhigh. The low drive capability transistor 132 is a transistor with a low drive capability compared to the high drive capability transistor 134, and less charge is output in the ON state than the high drive capability transistor 134. The low drive capability transistor 132 has a drain connected to the power supply wiring 131, a gate connected to the control wiring 133 </ b> A, and a source connected to the capacitor 135. The low drivability transistor 132 is turned on when a predetermined pulse is input to the gate from the control wiring 133A, and supplies a charge from the power source of the high potential Vhigh to the capacitor 135.
 制御配線133Aには、低駆動能力トランジスタ132と高駆動能力トランジスタ134の駆動を制御する駆動回路133が接続されている。制御配線133Aは、駆動回路133から出力される所定のパルスを低駆動能力トランジスタ132に供給する。制御配線133Bには、制御配線133Aと同様に、駆動回路133が接続されている。制御配線133Bは、駆動回路133から出力される所定のパルスを高駆動能力トランジスタ134に供給する。 A drive circuit 133 that controls the driving of the low drive capability transistor 132 and the high drive capability transistor 134 is connected to the control wiring 133A. The control wiring 133A supplies a predetermined pulse output from the drive circuit 133 to the low drive capability transistor 132. A drive circuit 133 is connected to the control wiring 133B in the same manner as the control wiring 133A. The control wiring 133B supplies a predetermined pulse output from the drive circuit 133 to the high drive capability transistor 134.
 高駆動能力トランジスタ134は、低駆動能力トランジスタ132に比べて高駆動能力のトランジスタであり、低駆動能力トランジスタ132に比べてオン状態で出力される電荷が多い。高駆動能力トランジスタ134は、ドレインが電源配線131に、ゲートが制御配線133Bに、ソースがコンデンサ135にそれぞれ接続されている。高駆動能力トランジスタ134は、制御配線133Bから所定のパルスがゲートに入力されると、オン状態となって、電源による電荷をコンデンサ135に供給する。 The high drivability transistor 134 is a transistor having a high drivability compared to the low drivability transistor 132, and more charge is output in the on state than the low drivability transistor 132. The high drivability transistor 134 has a drain connected to the power supply wiring 131, a gate connected to the control wiring 133 </ b> B, and a source connected to the capacitor 135. The high drivability transistor 134 is turned on when a predetermined pulse is input to the gate from the control wiring 133 </ b> B, and supplies a charge from the power source to the capacitor 135.
 コンデンサ135は、低駆動能力トランジスタ132と高駆動能力トランジスタ134から供給される電荷を蓄積することにより、転送パルスTRFを発生する。即ち、低駆動能力トランジスタ132と高駆動能力トランジスタ134は、コンデンサ135を介して転送パルスTRFを発生する。発生された転送パルスTRFは、転送配線72に供給される。 The capacitor 135 generates a transfer pulse TRF by accumulating charges supplied from the low drive capability transistor 132 and the high drive capability transistor 134. That is, the low drive capability transistor 132 and the high drive capability transistor 134 generate a transfer pulse TRF via the capacitor 135. The generated transfer pulse TRF is supplied to the transfer wiring 72.
 [転送パルスの第1の例]
 図8は、図7の転送パルス発生回路130により発生する転送パルスTRFを示すタイミングチャートである。
[First example of transfer pulse]
FIG. 8 is a timing chart showing the transfer pulse TRF generated by the transfer pulse generation circuit 130 of FIG.
 なお、図8において、横軸は時刻(t)を表し、縦軸は電位を表す。また、時刻の早い順に、時刻t0、時刻t1、時刻t11、時刻t12、時刻t13、時刻t14、時刻t4、時刻t5とする。図8の時刻t0、時刻t1、時刻t4、および時刻t5は、図5と同一のものであり、説明については適宜省略する。 In FIG. 8, the horizontal axis represents time (t), and the vertical axis represents potential. In addition, from the earliest time, time t0, time t1, time t11, time t12, time t13, time t14, time t4, and time t5 are set. The time t0, time t1, time t4, and time t5 in FIG. 8 are the same as those in FIG.
 図8の例では、選択パルスSELとリセットパルスRSTが図5の例と同様に発生する。そして、時刻t11において、制御配線133Aの電位は、低電位Vlowから高電位Vhighに変化し、時刻t12において、高電位Vhighから低電位Vlowに戻る。 In the example of FIG. 8, the selection pulse SEL and the reset pulse RST are generated as in the example of FIG. At time t11, the potential of the control wiring 133A changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t12.
 即ち、時刻t11から時刻t12までの間、駆動回路133は、制御配線133Aを介して低駆動能力トランジスタ132のゲートにパルスを供給することにより、低駆動能力トランジスタ132を駆動させる。そして、時刻t12において、駆動回路133は、低駆動能力トランジスタ132へのパルスの供給を停止し、低駆動能力トランジスタ132を停止させる。 That is, from time t11 to time t12, the drive circuit 133 drives the low drive capability transistor 132 by supplying a pulse to the gate of the low drive capability transistor 132 via the control wiring 133A. At time t12, the drive circuit 133 stops supplying pulses to the low drive capability transistor 132, and stops the low drive capability transistor 132.
 その結果、時刻t11から時刻t12までの間、電荷がコンデンサ135にゆっくり蓄積され、転送配線72の電位は低電位Vlowから所定の電位Vまで緩やかに上昇する。 As a result, from time t11 to time t12, charges are slowly accumulated in the capacitor 135, and the potential of the transfer wiring 72 gradually rises from the low potential Vlow to the predetermined potential V.
 その後、時刻t12において、制御配線133Bの電位が、低電位Vlowから高電位Vhighに変化し、時刻t13において、高電位Vhighから低電位Vlowに戻る。即ち、時刻t12から時刻t13までの間、駆動回路133は、制御配線133Bを介して高駆動能力トランジスタ134のゲートにパルスを供給することにより、高駆動能力トランジスタ134を駆動させる。そして、時刻t13において、駆動回路133は、低駆動能力トランジスタ134へのパルスの供給を停止し、低駆動能力トランジスタ134を停止させる。 Thereafter, at time t12, the potential of the control wiring 133B changes from the low potential Vlow to the high potential Vhigh, and at time t13, the potential returns from the high potential Vhigh to the low potential Vlow. That is, from time t12 to time t13, the drive circuit 133 drives the high drive capability transistor 134 by supplying a pulse to the gate of the high drive capability transistor 134 via the control wiring 133B. At time t <b> 13, the drive circuit 133 stops supplying pulses to the low drive capability transistor 134 and stops the low drive capability transistor 134.
 その結果、時刻t12から時刻t13までの間、電荷がコンデンサ135に素早く蓄積されて、転送配線72の電位は電位Vから高電位Vhighまで急激に上昇する。そして、時刻t13において、コンデンサ135に電荷が蓄積されなくなり、転送配線72の電位は低電位Vlowに戻る。 As a result, from time t12 to time t13, electric charge is quickly accumulated in the capacitor 135, and the potential of the transfer wiring 72 rapidly rises from the potential V to the high potential Vhigh. At time t13, no charge is accumulated in the capacitor 135, and the potential of the transfer wiring 72 returns to the low potential Vlow.
 また、時刻t14において、制御配線133Aの電位は、再び低電位Vlowから高電位Vhighに変化し、時刻t4において、高電位Vhighから低電位Vlowに戻る。これにより、再び電荷がコンデンサ135にゆっくり蓄積され、転送配線72の電位は低電位Vlowから電位Vまで緩やかに上昇する。 Further, at time t14, the potential of the control wiring 133A changes from the low potential Vlow to the high potential Vhigh again, and returns from the high potential Vhigh to the low potential Vlow at time t4. As a result, charge is again slowly accumulated in the capacitor 135, and the potential of the transfer wiring 72 gradually rises from the low potential Vlow to the potential V.
 そして、時刻t4において、制御配線133Bの電位が、低電位Vlowから高電位Vhighに変化し、時刻t5において、高電位Vhighから低電位Vlowに戻る。これにより、電荷が素早くコンデンサ135に蓄積されて、転送配線72の電位は電位Vから高電位Vhighまで急激に上昇し、時刻t5において、転送配線72の電位は、低電位Vlowに戻る。 At time t4, the potential of the control wiring 133B changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t5. As a result, charges are quickly accumulated in the capacitor 135, and the potential of the transfer wiring 72 rapidly rises from the potential V to the high potential Vhigh. At time t5, the potential of the transfer wiring 72 returns to the low potential Vlow.
 以上のように、転送パルス発生回路130では、駆動回路133が、転送パルスTRFの立ち上がり時に、低駆動能力トランジスタ132を駆動させた後、低駆動能力トランジスタ132を停止させ、高駆動能力トランジスタ134を駆動させる。従って、転送パルスTRFの立ち上りは緩やかになる。よって、ウェル領域91の揺れが発生せず、ノイズ電荷の電荷蓄積層103へのオーバーフローを抑制することができる。その結果、撮像された画像の画質劣化を抑制することができる。 As described above, in the transfer pulse generation circuit 130, the drive circuit 133 drives the low drive capability transistor 132 at the rising edge of the transfer pulse TRF, then stops the low drive capability transistor 132, and causes the high drive capability transistor 134 to Drive. Therefore, the rising edge of the transfer pulse TRF becomes gentle. Therefore, the well region 91 does not fluctuate and the overflow of noise charges to the charge storage layer 103 can be suppressed. As a result, it is possible to suppress deterioration in image quality of the captured image.
 また、転送パルス発生回路130では、低駆動能力トランジスタ132と高駆動能力トランジスタ134のドレインに印加される電圧が同一である。従って、低駆動能力トランジスタ132から高駆動能力トランジスタ134への切り替え時に、低駆動能力トランジスタ132と高駆動能力トランジスタ134が同時にオン状態になっても、低駆動能力トランジスタ132と高駆動能力トランジスタ134の間で貫通電流が発生しない。よって、切り替え時に低駆動能力トランジスタ132と高駆動能力トランジスタ134の両方を停止させる期間を設ける必要がない。 In the transfer pulse generation circuit 130, the voltages applied to the drains of the low drive capability transistor 132 and the high drive capability transistor 134 are the same. Therefore, even when the low drive capability transistor 132 and the high drive capability transistor 134 are turned on at the time of switching from the low drive capability transistor 132 to the high drive capability transistor 134, the low drive capability transistor 132 and the high drive capability transistor 134 No through current is generated between them. Therefore, it is not necessary to provide a period for stopping both the low drive capability transistor 132 and the high drive capability transistor 134 at the time of switching.
 さらに、転送パルスTRFの立ち下がり時には、ウェル領域91はマイナスバイアス側に揺れるため、電位障壁層102のポテンシャルエネルギーは、所定値より大きくなる。従って、本来オーバーフローされない電荷がノイズ電荷として電荷蓄積層103にオーバーフローされることはないため、転送パルス発生回路130は、転送パルスTRFの立ち下がりを鈍らせる回路を有しない。これにより、転送パルスTRFの立ち下がり時間を短縮することができる。その結果、撮像時間を短縮することができる。 Furthermore, when the transfer pulse TRF falls, the well region 91 swings to the negative bias side, so that the potential energy of the potential barrier layer 102 becomes larger than a predetermined value. Therefore, since the charge that does not originally overflow does not overflow into the charge storage layer 103 as noise charge, the transfer pulse generation circuit 130 does not have a circuit that blunts the falling edge of the transfer pulse TRF. Thereby, the falling time of the transfer pulse TRF can be shortened. As a result, the imaging time can be shortened.
 [転送パルス発生回路の第2の構成例]
 図9は、垂直駆動回路33のうちの転送パルスTRFを発生する転送パルス発生回路の第2の構成例を示す回路図である。
[Second Configuration Example of Transfer Pulse Generation Circuit]
FIG. 9 is a circuit diagram showing a second configuration example of the transfer pulse generation circuit that generates the transfer pulse TRF in the vertical drive circuit 33.
 図9の転送パルス発生回路150は、電源配線151Aと制御配線153Aに接続されたトランジスタ152と、電源配線151Bと制御配線153Bに接続されたトランジスタ154が、コンデンサ155に並列に接続されることにより構成される。 The transfer pulse generation circuit 150 in FIG. 9 includes a transistor 152 connected to the power supply wiring 151A and the control wiring 153A, and a transistor 154 connected to the power supply wiring 151B and the control wiring 153B connected in parallel to the capacitor 155. Composed.
 具体的には、電源配線151Aは、高電位Vhighと低電位Vlowの中間(半分)の中間電位Vmidの電源に接続され、電源配線151Bは、高電位Vhighの電源に接続されている。 Specifically, the power supply wiring 151A is connected to a power supply having an intermediate potential Vmid that is intermediate (half) between the high potential Vhigh and the low potential Vlow, and the power supply wiring 151B is connected to a power supply having a high potential Vhigh.
 トランジスタ152は、ドレインが電源配線151Aに、ゲートが制御配線153Aに、ソースがコンデンサ155にそれぞれ接続されている。トランジスタ152は、制御配線153Aから所定のパルスがゲートに入力されると、オン状態となって、中間電位Vmidの電源による電荷をコンデンサ155に供給する。 The transistor 152 has a drain connected to the power supply wiring 151A, a gate connected to the control wiring 153A, and a source connected to the capacitor 155. When a predetermined pulse is input to the gate of the control wiring 153A from the control wiring 153A, the transistor 152 is turned on and supplies a charge from the power source of the intermediate potential Vmid to the capacitor 155.
 制御配線153Aには、トランジスタ152とトランジスタ154の駆動を制御する駆動回路153が接続されている。制御配線153Aは、駆動回路153から出力される所定のパルスをトランジスタ152に供給する。制御配線153Bには、制御配線153Aと同様に、駆動回路153が接続されている。制御配線153Bは、駆動回路153から出力される所定のパルスをトランジスタ154に供給する。 A driving circuit 153 that controls driving of the transistor 152 and the transistor 154 is connected to the control wiring 153A. The control wiring 153A supplies a predetermined pulse output from the drive circuit 153 to the transistor 152. A drive circuit 153 is connected to the control wiring 153B in the same manner as the control wiring 153A. The control wiring 153B supplies a predetermined pulse output from the drive circuit 153 to the transistor 154.
 トランジスタ154は、ドレインが電源配線151Bに、ゲートが制御配線153Bに、ソースがコンデンサ155にそれぞれ接続されている。トランジスタ154は、制御配線153Bから所定のパルスがゲートに入力されると、オン状態となって、高電位Vhighの電源による電荷をコンデンサ155に供給する。 The transistor 154 has a drain connected to the power supply wiring 151B, a gate connected to the control wiring 153B, and a source connected to the capacitor 155. The transistor 154 is turned on when a predetermined pulse is input to the gate from the control wiring 153B, and supplies a charge from the power source of the high potential Vhigh to the capacitor 155.
 コンデンサ155は、トランジスタ152とトランジスタ154から供給される電荷を蓄積することにより、転送パルスTRFを発生する。即ち、トランジスタ152とトランジスタ154は、コンデンサ155を介して転送パルスTRFを発生する。発生された転送パルスTRFは、転送配線72に供給される。 The capacitor 155 generates a transfer pulse TRF by accumulating charges supplied from the transistor 152 and the transistor 154. That is, the transistor 152 and the transistor 154 generate the transfer pulse TRF via the capacitor 155. The generated transfer pulse TRF is supplied to the transfer wiring 72.
 [転送パルスの第2の例]
 図10は、図9の転送パルス発生回路150により発生する転送パルスTRFを示すタイミングチャートである。
[Second example of transfer pulse]
FIG. 10 is a timing chart showing the transfer pulse TRF generated by the transfer pulse generation circuit 150 of FIG.
 なお、図10において、横軸は時刻(t)を表し、縦軸は電位を表す。また、時刻の早い順に、時刻t0、時刻t1、時刻t21、時刻t22、時刻t23、時刻t24、時刻t25、時刻t26、時刻t4、時刻t5とする。図10の時刻t0、時刻t1、時刻t4、および時刻t5は、図5と同一のものであり、説明については適宜省略する。 In FIG. 10, the horizontal axis represents time (t), and the vertical axis represents potential. In addition, the time t0, time t1, time t21, time t22, time t23, time t24, time t25, time t26, time t4, and time t5 are set in order of time. The time t0, time t1, time t4, and time t5 in FIG. 10 are the same as those in FIG.
 図10の例では、選択パルスSELとリセットパルスRSTが図5の例と同様に発生する。そして、時刻t21において、制御配線153Aの電位は、低電位Vlowから高電位Vhighに変化し、時刻t22において、高電位Vhighから低電位Vlowに戻る。 In the example of FIG. 10, the selection pulse SEL and the reset pulse RST are generated as in the example of FIG. At time t21, the potential of the control wiring 153A changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t22.
 即ち、時刻t21から時刻t22までの間、駆動回路153は、制御配線153Aを介してトランジスタ152のゲートにパルスを供給することにより、トランジスタ152を駆動させる。そして、時刻t22において、駆動回路153は、トランジスタ152へのパルスの供給を停止し、トランジスタ152を停止させる。 That is, from time t21 to time t22, the drive circuit 153 drives the transistor 152 by supplying a pulse to the gate of the transistor 152 through the control wiring 153A. At time t <b> 22, the driver circuit 153 stops supplying the pulse to the transistor 152 and stops the transistor 152.
 その結果、時刻t21から時刻t22までの間、中間電位Vmidの電源による電荷がコンデンサ155に蓄積され、転送配線72の電位は、低電位Vlowから中間電位Vmidに変化する。そして、時刻t22において、コンデンサ155に電荷が蓄積されなくなり、転送配線72の電位は低電位Vlowに戻る。 As a result, during the period from time t21 to time t22, electric charges from the power source of the intermediate potential Vmid are accumulated in the capacitor 155, and the potential of the transfer wiring 72 changes from the low potential Vlow to the intermediate potential Vmid. At time t22, no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 returns to the low potential Vlow.
 その後、時刻t22から時刻t23までの間(例えば、1クロック分の時間)、制御配線153Aと制御配線153Bの電位は、低電位Vlowのままにされる。これにより、コンデンサ155に電荷が蓄積されず、転送配線72の電位は低電位Vlowのままになる。 Thereafter, from time t22 to time t23 (for example, time for one clock), the potentials of the control wiring 153A and the control wiring 153B are kept at the low potential Vlow. As a result, no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 remains at the low potential Vlow.
 そして、時刻t23において、制御配線153Bの電位が、低電位Vlowから高電位Vhighに変化し、時刻t24において、高電位Vhighから低電位Vlowに戻る。即ち、時刻t23から時刻t24までの間、駆動回路153は、制御配線153Bを介してトランジスタ154のゲートにパルスを供給することにより、トランジスタ154を駆動させる。そして、時刻t24において、駆動回路153は、トランジスタ154へのパルスの供給を停止し、トランジスタ154を停止させる。 At time t23, the potential of the control wiring 153B changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t24. That is, from time t23 to time t24, the drive circuit 153 drives the transistor 154 by supplying a pulse to the gate of the transistor 154 through the control wiring 153B. At time t <b> 24, the driver circuit 153 stops supplying the pulse to the transistor 154 and stops the transistor 154.
 その結果、時刻t23から時刻t24までの間、高電位Vhighの電源による電荷がコンデンサ155に蓄積されて、転送配線72の電位は低電位Vlowから高電位Vhighに変化する。そして、時刻t24において、コンデンサ155に電荷が蓄積されなくなり、転送配線72の電位は低電位Vlowに戻る。 As a result, during the period from time t23 to time t24, electric charges from the power source having the high potential Vhigh are accumulated in the capacitor 155, and the potential of the transfer wiring 72 changes from the low potential Vlow to the high potential Vhigh. At time t24, no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 returns to the low potential Vlow.
 また、時刻t25において、制御配線153Aの電位は、再び低電位Vlowから高電位Vhighに変化し、時刻t26において、高電位Vhighから低電位Vlowに戻る。これにより、時刻t25から時刻t26までの間、再び中間電位Vmidの電源による電荷がコンデンサ155に蓄積され、転送配線72の電位は低電位Vlowから中間電位Vmidに上昇する。そして、時刻t26において、コンデンサ155に電荷が蓄積されなくなり、転送配線72の電位は低電位Vlowに戻る。 Further, at time t25, the potential of the control wiring 153A again changes from the low potential Vlow to the high potential Vhigh, and returns from the high potential Vhigh to the low potential Vlow at time t26. Thereby, from time t25 to time t26, the electric charge from the power source of the intermediate potential Vmid is accumulated again in the capacitor 155, and the potential of the transfer wiring 72 rises from the low potential Vlow to the intermediate potential Vmid. At time t26, no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 returns to the low potential Vlow.
 そして、時刻t26から時刻t4までの間(例えば、1クロック分の時間)、制御配線153Aと制御配線153Bの電位は、低電位Vlowのままにされる。これにより、コンデンサ155に電荷が蓄積されず、転送配線72の電位は低電位Vlowのままになる。 And between time t26 and time t4 (for example, time for one clock), the potentials of the control wiring 153A and the control wiring 153B are kept at the low potential Vlow. As a result, no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 remains at the low potential Vlow.
 その後、時刻t4において、制御配線153Bの電位が、低電位Vlowから高電位Vhighに変化し、時刻t5において、高電位Vhighから低電位Vlowに戻る。これにより、時刻t4から時刻t5までの間、高電位Vhighの電源による電荷がコンデンサ155に蓄積されて、転送配線72の電位は低電位Vlowから高電位Vhighに変化する。そして、時刻t5において、コンデンサ155に電荷が蓄積されなくなり、転送配線72の電位は低電位Vlowに戻る。 Thereafter, at time t4, the potential of the control wiring 153B changes from the low potential Vlow to the high potential Vhigh, and at time t5, the potential returns from the high potential Vhigh to the low potential Vlow. As a result, from time t4 to time t5, electric charges from the power source having the high potential Vhigh are accumulated in the capacitor 155, and the potential of the transfer wiring 72 changes from the low potential Vlow to the high potential Vhigh. At time t5, no charge is accumulated in the capacitor 155, and the potential of the transfer wiring 72 returns to the low potential Vlow.
 以上のように、転送パルス発生回路150では、駆動回路153が、転送パルスTRFの立ち上がり時に、トランジスタ152を駆動させて転送パルスTRFの電位を一旦中間電位Vmidにした後、トランジスタ152を停止させる。そして、駆動回路153は、トランジスタ154を駆動させて転送パルスTRFの電位を高電位Vhighにする。従って、転送パルスTRFの電位が一度に高電位Vhighまで上昇しないので、ウェル領域91の揺れが発生せず、ノイズ電荷の電荷蓄積層103へのオーバーフローを抑制することができる。その結果、撮像された画像の画質劣化を抑制することができる。 As described above, in the transfer pulse generation circuit 150, the drive circuit 153 drives the transistor 152 to temporarily set the potential of the transfer pulse TRF to the intermediate potential Vmid when the transfer pulse TRF rises, and then stops the transistor 152. Then, the drive circuit 153 drives the transistor 154 to set the potential of the transfer pulse TRF to the high potential Vhigh. Therefore, since the potential of the transfer pulse TRF does not rise to the high potential Vhigh at one time, the well region 91 does not fluctuate and the overflow of noise charges to the charge storage layer 103 can be suppressed. As a result, it is possible to suppress deterioration in image quality of the captured image.
 また、駆動回路153は、駆動対象をトランジスタ152からトランジスタ154に切り替えるときに、制御配線153Aと制御配線153Bの電位を低電位Vlowにして、転送トランジスタ52をオフにする期間を設ける。これにより、トランジスタ152とトランジスタ154が同時にオン状態になることにより、トランジスタ152とトランジスタ154の間に貫通電流が発生することを防止することができる。 Further, the drive circuit 153 provides a period during which the transfer transistor 52 is turned off by setting the potentials of the control wiring 153A and the control wiring 153B to the low potential Vlow when the driving target is switched from the transistor 152 to the transistor 154. Accordingly, when the transistor 152 and the transistor 154 are turned on at the same time, it is possible to prevent a through current from being generated between the transistor 152 and the transistor 154.
 さらに、転送パルス発生回路150は、転送パルス発生回路130と同様に、転送パルスTRFの立ち下がりを鈍らせる回路を有しない。これにより、転送パルスTRFの立ち下がり時間を短縮することができる。その結果、撮像時間を短縮することができる。 Further, like the transfer pulse generation circuit 130, the transfer pulse generation circuit 150 does not have a circuit that blunts the falling edge of the transfer pulse TRF. Thereby, the falling time of the transfer pulse TRF can be shortened. As a result, the imaging time can be shortened.
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
 例えば、転送パルス発生回路130(150)において並列に接続されるトランジスタの数は2に限定されず、2以上であればよい。この場合、転送パルス発生回路130に設けられる各トランジスタの駆動能力は異なる。また、転送パルス発生回路150に設けられる各トランジスタに接続される電源の電位は、低電位Vlowから高電位Vhighまでの間の異なる電位である。 For example, the number of transistors connected in parallel in the transfer pulse generation circuit 130 (150) is not limited to two, and may be two or more. In this case, the driving capability of each transistor provided in the transfer pulse generation circuit 130 is different. The potential of the power source connected to each transistor provided in the transfer pulse generation circuit 150 is a different potential between the low potential Vlow and the high potential Vhigh.
 また、イメージセンサ12は、縦方向のオーバーフロー構造を有する縦型転送路96を有するのではなく、横方向のオーバーフロー構造を有する横型転送路を有するようにしてもよい。 Further, the image sensor 12 may have a horizontal transfer path having a horizontal overflow structure instead of the vertical transfer path 96 having a vertical overflow structure.
 さらに、本技術は、以下のような構成もとることができる。 Furthermore, the present technology can be configured as follows.
 (1)
 オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタと、
 前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタと、
 前記低駆動能力トランジスタを駆動させた後、前記低駆動能力トランジスタを停止させ、前記高駆動能力トランジスタを駆動させる駆動部と
 を備える固体撮像装置。
 (2)
 オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタと、
 前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタと
 を備える固体撮像装置が、
 前記低駆動能力トランジスタを駆動させた後、前記低駆動能力トランジスタを停止させ、前記高駆動能力トランジスタを駆動させる駆動ステップ
 を含む駆動方法。
 (3)
 オーバーフロー構造を有する画素と、
 前記画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタと、
 前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタと、
 前記低駆動能力トランジスタを駆動させた後、前記低駆動能力トランジスタを停止させ、前記高駆動能力トランジスタを駆動させる駆動部と、
 前記画素により生成される電気信号に対応する画像データを出力する出力部と
 を備える電子機器。
 (4)
 オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタと、
 前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタと、
 前記第1のトランジスタを駆動させた後、前記第1のトランジスタを停止させ、前記第2のトランジスタを駆動させる駆動部と
 を備える固体撮像装置。
 (5)
 前記第1の電位は、前記第2の電位の半分である
 前記(4)に記載の固体撮像装置。
 (6)
 前記駆動部は、前記第1のトランジスタを停止させた後、所定の期間後に前記第2のトランジスタを駆動させる
 前記(4)または(5)に記載の固体撮像装置。
 (7)
 オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタと、
 前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタと
 を備える
 固体撮像装置が、
 前記第1のトランジスタを駆動させた後、前記第1のトランジスタを停止させ、前記第2のトランジスタを駆動させる駆動ステップ
 を含む駆動方法。
 (8)
 オーバーフロー構造を有する画素と、
 前記画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタと、
 前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタと、
 前記第1のトランジスタを駆動させた後、前記第1のトランジスタを停止させ、前記第2のトランジスタを駆動させる駆動部と、
 前記画素により生成される電気信号に対応する画像データを出力する出力部と
 を備える電子機器。
(1)
A low drive capability transistor for generating a signal to be input to the gate electrode of the transfer transistor of the pixel having an overflow structure;
A high drivability transistor connected in parallel with the low drivability transistor and generating a signal to be input to the gate electrode;
A solid-state imaging device comprising: a drive unit that drives the high drive capability transistor after stopping the low drive capability transistor after driving the low drive capability transistor.
(2)
A low drive capability transistor for generating a signal to be input to the gate electrode of the transfer transistor of the pixel having an overflow structure;
A solid-state imaging device comprising: a high drive capability transistor that is connected in parallel with the low drive capability transistor and generates a signal to be input to the gate electrode.
A driving method including a driving step of driving the low drive capability transistor, then stopping the low drive capability transistor and driving the high drive capability transistor.
(3)
A pixel having an overflow structure;
A low drivability transistor that generates a signal to be input to the gate electrode of the transfer transistor of the pixel;
A high drivability transistor connected in parallel with the low drivability transistor and generating a signal to be input to the gate electrode;
After driving the low drive capability transistor, stopping the low drive capability transistor and driving the high drive capability transistor;
An electronic device comprising: an output unit that outputs image data corresponding to an electrical signal generated by the pixel.
(4)
A first transistor that generates a first potential signal that is input to a gate electrode of a transfer transistor of a pixel having an overflow structure;
A second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential inputted to the gate electrode;
A solid-state imaging device comprising: a driving unit that drives the second transistor after driving the first transistor and stopping the first transistor.
(5)
The solid-state imaging device according to (4), wherein the first potential is half of the second potential.
(6)
The solid-state imaging device according to (4) or (5), wherein the driving unit drives the second transistor after a predetermined period after stopping the first transistor.
(7)
A first transistor that generates a first potential signal that is input to a gate electrode of a transfer transistor of a pixel having an overflow structure;
A solid-state imaging device comprising: a second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential input to the gate electrode.
A driving method comprising: a driving step of driving the second transistor after stopping the first transistor after driving the first transistor.
(8)
A pixel having an overflow structure;
A first transistor that generates a signal of a first potential that is input to a gate electrode of a transfer transistor of the pixel;
A second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential inputted to the gate electrode;
A driving unit for driving the first transistor, stopping the first transistor, and driving the second transistor;
An electronic device comprising: an output unit that outputs image data corresponding to an electrical signal generated by the pixel.
 10 電子機器, 12 イメージセンサ, 14 画像データ処理部, 31 画素, 132 低駆動能力トランジスタ, 133 駆動回路, 134 高駆動能力トランジスタ, 152 トランジスタ, 153 駆動回路, 154 トランジスタ 10 electronic devices, 12 image sensors, 14 image data processing units, 31 pixels, 132 low drive capability transistors, 133 drive circuits, 134 high drive capability transistors, 152 transistors, 153 drive circuits, 154 transistors

Claims (8)

  1.  オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタと、
     前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタと、
     前記低駆動能力トランジスタを駆動させた後、前記低駆動能力トランジスタを停止させ、前記高駆動能力トランジスタを駆動させる駆動部と
     を備える固体撮像装置。
    A low drive capability transistor for generating a signal to be input to the gate electrode of the transfer transistor of the pixel having an overflow structure;
    A high drivability transistor connected in parallel with the low drivability transistor and generating a signal to be input to the gate electrode;
    A solid-state imaging device comprising: a drive unit that drives the high drive capability transistor after stopping the low drive capability transistor after driving the low drive capability transistor.
  2.  オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタと、
     前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタと
     を備える固体撮像装置が、
     前記低駆動能力トランジスタを駆動させた後、前記低駆動能力トランジスタを停止させ、前記高駆動能力トランジスタを駆動させる駆動ステップ
     を含む駆動方法。
    A low drive capability transistor for generating a signal to be input to the gate electrode of the transfer transistor of the pixel having an overflow structure;
    A solid-state imaging device comprising: a high drive capability transistor that is connected in parallel with the low drive capability transistor and generates a signal to be input to the gate electrode.
    A driving method including a driving step of driving the low drive capability transistor, then stopping the low drive capability transistor and driving the high drive capability transistor.
  3.  オーバーフロー構造を有する画素と、
     前記画素の転送トランジスタのゲート電極に入力する信号を発生する低駆動能力トランジスタと、
     前記低駆動能力トランジスタと並列に接続され、前記ゲート電極に入力する信号を発生する高駆動能力トランジスタと、
     前記低駆動能力トランジスタを駆動させた後、前記低駆動能力トランジスタを停止させ、前記高駆動能力トランジスタを駆動させる駆動部と、
     前記画素により生成される電気信号に対応する画像データを出力する出力部と
     を備える電子機器。
    A pixel having an overflow structure;
    A low drivability transistor that generates a signal to be input to the gate electrode of the transfer transistor of the pixel;
    A high drivability transistor connected in parallel with the low drivability transistor and generating a signal to be input to the gate electrode;
    After driving the low drive capability transistor, stopping the low drive capability transistor and driving the high drive capability transistor;
    An electronic device comprising: an output unit that outputs image data corresponding to an electrical signal generated by the pixel.
  4.  オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタと、
     前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタと、
     前記第1のトランジスタを駆動させた後、前記第1のトランジスタを停止させ、前記第2のトランジスタを駆動させる駆動部と
     を備える固体撮像装置。
    A first transistor that generates a first potential signal that is input to a gate electrode of a transfer transistor of a pixel having an overflow structure;
    A second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential inputted to the gate electrode;
    A solid-state imaging device comprising: a driving unit that drives the second transistor after driving the first transistor and stopping the first transistor.
  5.  前記第1の電位は、前記第2の電位の半分である
     請求項4に記載の固体撮像装置。
    The solid-state imaging device according to claim 4, wherein the first potential is half of the second potential.
  6.  前記駆動部は、前記第1のトランジスタを停止させた後、所定の期間後に前記第2のトランジスタを駆動させる
     請求項4に記載の固体撮像装置。
    The solid-state imaging device according to claim 4, wherein the driving unit drives the second transistor after a predetermined period after stopping the first transistor.
  7.  オーバーフロー構造を有する画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタと、
     前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタと
     を備える
     固体撮像装置が、
     前記第1のトランジスタを駆動させた後、前記第1のトランジスタを停止させ、前記第2のトランジスタを駆動させる駆動ステップ
     を含む駆動方法。
    A first transistor that generates a first potential signal that is input to a gate electrode of a transfer transistor of a pixel having an overflow structure;
    A solid-state imaging device comprising: a second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential input to the gate electrode.
    A driving method comprising: a driving step of driving the second transistor after stopping the first transistor after driving the first transistor.
  8.  オーバーフロー構造を有する画素と、
     前記画素の転送トランジスタのゲート電極に入力する第1の電位の信号を発生する第1のトランジスタと、
     前記第1のトランジスタと並列に接続され、前記ゲート電極に入力する前記第1の電位より高い第2の電位の信号を発生する第2のトランジスタと、
     前記第1のトランジスタを駆動させた後、前記第1のトランジスタを停止させ、前記第2のトランジスタを駆動させる駆動部と、
     前記画素により生成される電気信号に対応する画像データを出力する出力部と
     を備える電子機器。
    A pixel having an overflow structure;
    A first transistor that generates a signal of a first potential that is input to a gate electrode of a transfer transistor of the pixel;
    A second transistor connected in parallel with the first transistor and generating a signal having a second potential higher than the first potential inputted to the gate electrode;
    A driving unit for driving the first transistor, stopping the first transistor, and driving the second transistor;
    An electronic device comprising: an output unit that outputs image data corresponding to an electrical signal generated by the pixel.
PCT/JP2013/067362 2012-07-03 2013-06-25 Solid-state imaging device, driving method, and electronic device WO2014007107A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014523685A JPWO2014007107A1 (en) 2012-07-03 2013-06-25 Solid-state imaging device, driving method, and electronic apparatus
CN201380034178.1A CN104412575A (en) 2012-07-03 2013-06-25 Solid-state imaging device, driving method, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012149098 2012-07-03
JP2012-149098 2012-07-03

Publications (1)

Publication Number Publication Date
WO2014007107A1 true WO2014007107A1 (en) 2014-01-09

Family

ID=49881864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067362 WO2014007107A1 (en) 2012-07-03 2013-06-25 Solid-state imaging device, driving method, and electronic device

Country Status (3)

Country Link
JP (1) JPWO2014007107A1 (en)
CN (1) CN104412575A (en)
WO (1) WO2014007107A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042120A (en) * 2004-07-29 2006-02-09 Sharp Corp Amplification type solid-state imaging device
JP2007166240A (en) * 2005-12-14 2007-06-28 Sony Corp Solid state imaging apparatus, driving method of solid state imaging apparatus, and imaging apparatus
WO2012053127A1 (en) * 2010-10-19 2012-04-26 パナソニック株式会社 Solid-state imaging device, driving method therefor, and imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042120A (en) * 2004-07-29 2006-02-09 Sharp Corp Amplification type solid-state imaging device
JP2007166240A (en) * 2005-12-14 2007-06-28 Sony Corp Solid state imaging apparatus, driving method of solid state imaging apparatus, and imaging apparatus
WO2012053127A1 (en) * 2010-10-19 2012-04-26 パナソニック株式会社 Solid-state imaging device, driving method therefor, and imaging device

Also Published As

Publication number Publication date
CN104412575A (en) 2015-03-11
JPWO2014007107A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
US10567691B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP5251736B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP5552858B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP5637384B2 (en) Solid-state imaging device, driving method, and electronic apparatus
JP5568880B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP5369779B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
US9379149B2 (en) Solid-state image pickup device and method of driving the same
US8553124B2 (en) Solid-state image capturing device, method of driving solid-state image capturing device, and image capturing apparatus
JP5601001B2 (en) Solid-state imaging device, driving method, and electronic apparatus
US10645327B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
KR102183357B1 (en) Solid-state image pickup device, driving method thereof, and electronic apparatus
JP2015023250A (en) Solid-state imaging element, method for driving the same, and electronic device
CN110050345B (en) Solid-state image pickup element and electronic device
US9392195B2 (en) Image capturing apparatus and image capturing system
JP2009218680A (en) Drive circuit, drive method, solid-state imaging apparatus, and electronics
JP5557795B2 (en) Solid-state imaging device and imaging apparatus
JP2018093297A (en) Photoelectric conversion device and imaging system
WO2015170533A1 (en) Solid-state image pickup device, driving method for solid-state image pickup device, and electronic apparatus
WO2014196176A1 (en) Solid-state imaging element and imaging apparatus
WO2014007107A1 (en) Solid-state imaging device, driving method, and electronic device
JP7198675B2 (en) Solid-state imaging device, its driving circuit, and imaging device
JP2013187233A (en) Solid-state imaging device, driving method thereof and electronic apparatus
JP2005217705A (en) Semiconductor device of detecting physical quantity distribution, method of driving and control thereof, and driving control apparatus
JP2015076722A (en) Solid photographing element and photographing device
JP2009206423A (en) Solid-state imaging element, manufacturing method of solid-state imaging element, and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813438

Country of ref document: EP

Kind code of ref document: A1